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Measuring physical activity using wearable sensors is essential for quantifying adherence to exercise regiments in clinical research and
motivating individuals to continue exercising. An important aspect of wearable activity tracking is counting particular movements. One
limitation of many previous models is the need to design the counting for a specific exercise. However, during physical therapy, some
movements are unique to the patient and also valuable to track. To address this, we create an automatic repetition counting system that is
flexible enough to measure multiple distinct and repeating movements during physical therapy without being trained on the specific
motion. Accelerometers, using smartphones, were attached to the body or held by participants to track repetitive motions during different
exercises. 18 participants completed a series of 10 exercises for 30 seconds, including arm circles, bicep curls, bridges, sit-ups, elbow
extensions, leg lifts, lunges, push-ups, squats, and upper trunk rotations. To count the repetitions of each exercise, we apply three analysis
techniques: (a) threshold crossing, (b) threshold crossing with a low-pass filter, and (c) Fourier transform.,e results demonstrate that arm
circles and push-ups can be tracked well, while less periodic and irregularmotions such as upper trunk rotations aremore difficult. Overall,
threshold crossing with low-pass filtering achieves the best performance among these methods. We conclude that the proposed automatic
counting system is capable of tracking exercise repetition without prior training and development for that activity.

1. Introduction

Physical therapy is a key strategy to improve mobility and
quality of a patient’s life after injuries, surgeries, and other
debilitating events [1]. Physical therapy sessions take place in
clinical settings with licensed physical therapists that help to
instruct and encourage patients to increase comfort and
mobility [2]. Unfortunately, these sessions may occur in-
frequently and therefore provide insufficient information
about each patient’s activities and efforts. Evaluation of
physical therapy has always been considered as a challenge in
research [3, 4]. An automated system for tracking exercises
at home can play a vital role in improving patient’s moti-
vation and adherence to prescribed repetitive exercises as

well as help to track and encourage patient’s movements
with minimum guidance from a physical therapist.

Wearable devices are the body-worn technologies that
can perform computing functionalities during execution of
physical tasks [5]. Such knowledge of users’ physical status
provides huge scope for utilizing wearable devices to assist
clinicians to evaluate physical activity and can be applied to
track posture in the clinical population [6]. Accelerometers
are common sensors which are integrated in wearable
technologies, and the use of accelerometers has escalated
significantly over the past decade in the health-monitoring
research area [7]. Using signal features extracted by im-
proved modern accelerometers allowed experts to utilize
those information in clinical science [8]. Despite the fact that
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the use of accelerometers has increased exponentially, re-
liable assessment of physical activity is still needed to explore
[9]. However, it is also important to consider the technol-
ogies that are easily accessible and part of our daily life, such
as cellphones. Most smartphones now incorporate a three-
axis accelerometer sensor, and phone accelerometers are
now used to perform activity recognition [10]. Imple-
menting a simple step count can be achieved easily with the
latest smartphones, but the activity tracking system without
depending on labeled training data offers substantial re-
search scope. ,ere have already been some studies of ac-
tivities on quantifying and recognizing using mobile phones
[11–13], but this technology has not been fully examined for
unknown activity.

In the context of physical therapy, the exercises depend
on the specific conditions of every patient. Physical therapy
exercises can differ significantly from one exercise to the
next, which makes developing tailored recognition strategies
challenging when the type of activities are unknown. One
limitation with activity recognition models is that most of
them are pretrained. People are instructed to make a par-
ticular movement (steps, walking, running, etc.), and data
are acquired on that movement; then, offline analysis is
performed to create a model to specifically measure that
particular movement. Generally, machine learning tech-
niques perform well on this kind of task when large volumes
of data are available [14]. However, pretrained models re-
quire sufficient data for that particular movement to train
and validate; this is difficult for unique instructed move-
ments which can happen in physical therapy rehabilitation.
Furthermore, periodic signals can offer a window of op-
portunities in various research problems. Many previous
studies required large amounts of labeled data to achieve
proper performance to count exercises. For example, to
build RecoFit, a total 114 participants were recorded in over
146 sessions [15]. To address the concern of availability of
quality data, we used the periodic signals and proposed
methods that are adaptive. Our approach does not need
labeled training data to perform automatic counting and it
can be integrated with future work that aims to address real-
time scenarios of repetition count.

In this study, we apply three straightforward analysis
techniques to count the periodic motions. Ten different
exercises were performed to assess not only the analysis
strategies but also compare the quality of results for each
exercise. Repeated exercises can help to perform automatic
counting by using a repetitive structure of signals.

2. Materials and Methods

Smartphones with accelerometers have been placed on 18
subjects, aged 15–25 years, who completed a series of 10
different exercises for 30 seconds each, repeating each ex-
ercise twice, and we took the average of the two readings;
however, differences in the count were rare. 7 females and 11
males participated in the study. ,ese activities were arm
circles, bicep curls, bridges, sit-ups, elbow extensions, leg
lifts, lunges, push-ups, squats, and upper trunk rotations.We
chose 10 common exercises that can be performed safely

allowing untrained participants to execute the exercises
properly. ,e exercises were also selected to involve a
combination and coordination of muscles across the body.
,ree standard analysis techniques have been compared to
count the number of repetitions of each activity: threshold
crossing, threshold crossing with a low-pass filter, and a
Fourier transform approach.

To collect data for this experiment, LG Optimus S
smartphone accelerometers were used. ,e Sensor Log
application (Sensor Log) recorded acceleration on 3 axes.
,e smartphone was either held by participants or strapped
onto them, based on the exercise they were performing. ,e
location of the smartphone for each exercise is listed in
Table 1. Researchers found a similar level of accuracy for
detecting everyday activities from a sensor placed in five
different locations [16]. We decided to place the device
according to what type of exercise, e.g., arm circle and elbow
extension on hand and sit ups on the chest. ,e number of
repetitions of each exercise was recorded by both the par-
ticipant and the observer. Each exercise was repeated, and its
reading was removed from analysis if the number of counted
repetitions by participants and observers were not the same.
Between each exercise, the participants were allowed an
optional one-minute break. ,e smartphone’s sensors were
started at the beginning of each activity and were turned off
at the end of the activity, to eliminate nonexercise data. ,e
collected accelerometer data from smartphones were con-
verted into magnitudes of acceleration and then trimmed
manually only at the beginning and end of the 30-second
session to obtain only the exercises and filter out nonactivity
data. A sign multiplication was applied to the magnitude of
the accelerometer in order to avoid a half-wave rectification
of the signal. If the signal was in the direction of gravity
(using a long-timescale moving average), the signal was
positive and if opposite, it was negative. ,e experiments
have been approved by the Illinois Math and Science
Academy Institutional Review Board. It has been confirmed
that all experiments were performed under relevant
guidelines and regulations.

,ree methods of estimating activity counts including
threshold crossing, threshold crossing with a low-pass filter,
and a Fourier transform approach have been used. Each
method was written in Python, using the NumPy and Sci-
Py + libraries. Each analysis technique is as follows.

2.1. 1reshold Crossing. ,is technique has been utilized to
calculate activity counts by tuning the threshold line position
at two-third of the range between the minimum and
maximum. When the accelerometer data cross the line in a
positive direction, one count would be added. After adding
each count, a refractory period of 0.1 seconds has occurred to
prevent counting another repetition needlessly.

2.2. 1reshold Crossing with Low-Pass Filtering. ,e tech-
nique was identical to the threshold crossing technique,
except for the application of a Butterworth filter to minimize
the impact of high-frequency noise. ,e low-pass filter
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method was performed using a moving average filter with
the formula Ai+1 � 0.9 Ai+ 0.1 Xi.

2.3. FourierTransform. ,ismethod used a standard Fourier
frequency decomposition, where the number of repetitions
was calculated using the dominant frequency based on the
length of time of the data collection.
Count� frequency ∗ time.

,e threshold level was the third quartile (30% per-
centile) of the magnitude distribution, which was chosen by
maximizing accuracy using a grid sampling on a conve-
nience sample for methods 2 and 3.

3. Results

,e general data analysis approach is depicted in Figure 1.
Given this approach, it is expected that exercises with more
periodic and large motions such as squats, push-ups, and
arm circles will likely be counted with higher accuracy. ,e
less periodic and smaller range of motion movements such
as bridges, upper trunk rotations, and bicep circles are less
accurately measured. Table 2 records the accuracy of each
method with the type of exercise performed by individuals.
From the table, it can be seen that arm circles are counted
well even by using the simple threshold method, likely due to
a very small noise in the data and the periodic nature of the
motion. On the other hand, upper trunk rotations were more
difficult to count, especially with the simple threshold
crossing method.

Accelerometer data were recorded for 30 seconds along
with manual counts of the exercises. Figure 2 demonstrates
the 3-axis accelerometer data and the acceleration magni-
tude for arm circles, push-ups, and upper trunk rotations
noting the expected high-, medium-, and low-accuracy
movements. We can observe in these magnitudes (Table 2)
that exercises with more identifiable repetition in the signal
and large motions such as squats, push-ups, and arm circles
will likely be counted with higher accuracy. ,e less re-
petitive and smaller range of motion movements such as
bridges, upper trunk rotations, and bicep circles may be less
accurately measured.

In general, the results demonstrate that threshold
crossing with a low-pass filter is the most effective counting
method, with an average root mean square error of 8.69,
noting a high variation depending on the movement being

tracked. Fourier transform also performs reasonably well,
with a root mean square error of 9.00. ,reshold crossing
without filtering does not perform well based on both of the
roots mean square error of 13.38 as expected. Squats are the
easiest exercise to count, whereas upper trunk rotations are
the most difficult. ,us, we can conclude that periodic
motions with substantial ranges are easiest to count.

4. Discussion

,e goal of this study was to determine the accuracy of
simple methods of counting repetitions from 10 different
activities using an accelerometer. We applied three different
methods of counting which include threshold crossing,
threshold crossing with low-pass filtering, and the Fourier
transform. We find that the best results for all counts belong
to the large, periodic motion exercises, as expected.

To count motions accurately in practice, we need to
address several different challenges. Since accelerometer
data varied depending on the exercise being studied, we did
not tailor the counting method to each specific activity. ,e
chosen countingmethods are flexible and can be used on any
patient, even those with abnormal movement patterns. ,is
flexible approach has an additional benefit of making these
methods more robust; the accuracy achieved without uti-
lizing automatic segmentation or recognition. It can count
activities without having prior knowledge of the type of
activity. Notably, there are limitations to this overall strategy.
We are unable to count more than one distinct activity
taking place in the same period, which can be particularly
problematic when accounting for prolonged moments of
rest between motions. Another constraint is that the ex-
periment was conducted in a limited age group (between 15
and 25). For older people, it might be different and more
challenging. In this case, the duration of the reading for each
exercise should be considered as it will take more time to
complete each repetition and there might be more noise in
accelerometer data. Further critical decision is the location
of an accelerometer.

Machine learning-based activity recognition models can
provide accurate counts when the particular activity being
counted is pretrained. ,ere are numerous studies to show
the reliability and accuracy of accelerometer-based activity
measurements [17]. Fall detection relies on accurate training
data [18, 19]. ReadySteady, an accelerometer-based mobile

Table 1: Location where the smartphone is placed and how it is held by the individual during the exercise.

Exercise Location Holding methods
Arm circle Hand Held in hand: random orientation
Bicep curl Hand Held in hand: random orientation
Bridge Waist Pouch
Crunch Chest Held in hands with hands on positioned on chest
Elbow extension Hand Held in hand: random orientation
Lower trunk rotation Waist Pouch
Lunge Waist Pouch
Push ups Waist Pouch
Squats Waist Pouch
Upper trunk rotation Waist Pouch
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application for activity assessment, has been developed,
which shows that the system can differentiate the intensity of
any activity, for example, sitting, driving, and walking [20].
A previous study analyzed the repetition accuracy of weight
training and calisthenics through an arm-worn acceler-
ometer [15]. Additionally, activity recognition can be im-
proved through the use of dynamic state estimators such as
hidden Markov models [21, 22]. ,e use of segmentation
and activity recognition allowed the researchers to improve
repetition count accuracy, as well as identifying exercise data
from nonexercise data. ,ey also discussed how individual
learning models can improve counting accuracy for the
activities, once activities are segmented and classified.

Further studies demonstrated using a routine tracking of
health can motivate and encourage positive health behaviors
[23, 24]. For instance, researchers at Stanford found that
pedometer users had a 26.9% increase in activity over
baseline [25]. Cadmus–Bertham illustrates that supplying
Fitbits to postmenopausal women led to increased physical
activity, over a period of 16 weeks [26]. Having a simple way
to collect detailed exercise data at home can help physical
therapists tailor their sessions in the clinic, which provides a
large benefit to physical care. In summary, we evaluated the
effectiveness of three different analysis methods in the
counting of exercises. ,e error rate is higher than it is
expected to be considered usable, primarily as there was no
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Figure 1: ,e data from the smartphone accelerometer is analyzed by applying three different counting methods. ,e 3-axis accelerometer
reading is converted to a magnitude and processed further by (top) counting when the function crosses a threshold (middle) (threshold
crossing) but after smoothing the magnitude (bottom) using the frequency indicated by a peak in the Fourier analysis to estimate count over
time.

Table 2: Root mean square error (RMSE) of counts for each analysis technique.

Exercise ,reshold crossing ,reshold with low pass Fourier Avg RMSE
Arm circle 1.99 9.65 8.08 7.36
Bicep curl 16.70 7.36 12.29 12.71
Bridge 13.94 14.39 7.07 12.27
Crunch 7.32 8.56 12.18 9.58
Elbow extension 13.70 10.20 10.57 11.59
Lower trunk rotation 13.47 9.97 7.45 10.59
Lunge 16.95 1.83 0.76 9.85
Push-ups 10.53 1.39 3.70 6.49
Squats 10.71 1.50 0.93 6.27
Upper trunk rotation 19.06 9.77 14.11 14.81
Avg RMSE 13.38 8.69 9.00
,reshold crossing with a low-pass filter performs best with an average root mean square error of 8.69, with the Fourier transform being close with 9.00.
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tuning to individual activities. ,e location of the acceler-
ometer is one concern. It is important to note that without
any prior knowledge of the data, we can see a pattern of how
repetitive exercises can be tracked using our method. ,e
most effective method for each task varied, due to different
amounts of noise and different levels of periodicity.
,reshold crossing works well with arm circles and
crunches. After adding a smoothing filter to remove noise
and high-frequency motion threshold crossing also works
well for lunges, pushups, and squats, with higher general
performance in all activities other than arm circles and
crunches. ,e Fourier transform approach works excep-
tionally well for lunges and squats but generally performs
poorly overall.,ese methods can serve as effective baselines
for unspecified periodic activity counting.

In the future, we plan to perform and test our method on
clinical populations including older subjects and individuals
with disabilities. In addition, machine learning methods can
be explored; this is an extensive approach used in human
activity recognition, but commonly, it is applied to create
pretrained models for specific movements. Variations of
training paradigms will be explored to use machine learning
without identifying the type of movement.

5. Conclusion

In this study, we performed three analysis techniques to
achieve automatic counting of unseen exercises. ,e re-
petitive motions of ten exercises of eighteen participants
were evaluated through (a) threshold crossing, (b) threshold

crossing with a low-pass filter, and (c) Fourier transform.
From the result, we can conclude that less periodic activities
are more prone to error, whereas the periodic motions can
be tracked easily using our approach. ,is study can be
applied to perform and evaluate exercises at home with
minimal help from a physical therapist.,erefore, automatic
counting methods help patients to save time and money by
decreasing the number of rehabilitation sessions and en-
couraging therapy compliance. ,is study would have an
extended effect on physical therapy and, ultimately, such
tracking can provide clinical benefit to patients and
therapists.
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