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A random walk version of Robbins' problem:
small horizon

Abstract In Robbins' problem of minimizing the expected rank, a �nite sequence
of n independent, identically distributed random variables are observed sequentially
and the objective is to stop at such a time that the expected rank of the selected
variable (among the sequence of all n variables) is as small as possible. In this paper
we consider an analogous problem in which the observed random variables are the
steps of a symmetric random walk. Assuming continuously distributed step sizes, we
describe the optimal stopping rules for the cases n = 2 and n = 3 in two versions
of the problem: a �full information" version in which the actual steps of the ran-
dom walk are disclosed to the decision maker; and a �partial information" version
in which only the relative ranks of the positions taken by the random walk are ob-
served. When n = 3, the optimal rule and expected rank depend on the distribution
of the step sizes. We give sharp bounds for the optimal expected rank in the partial
information version, and fairly sharp bounds in the full information version.
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1. Introduction. Robbins' problem of optimal stopping can be de-
scribed as follows: Let X1, X2, . . . , Xn be a �nite sequence of independent,
identically distributed (i.i.d.) random variables de�ned on a probability space
(Ω,F ,P) whose common distribution is continuous (without loss of general-
ity, uniform on [0, 1]), and let ρk :=

∑n
i=1 I(Xk ≥ Xi), k = 1, . . . , n, so ρk

denotes the rank of Xk among X1, . . . , Xn (where we rank the observations
from smallest to largest). The objective is to determine the value of

vn := inf
τ
E(ρτ ),

where the in�mum is over all stopping times adapted to the natural �ltration
of X1, . . . , Xn; and to describe the optimal stopping time τ∗n which attains the
in�mum. Since this problem was proposed by H. Robbins at the International
Conference on Sequential Search and Selection in Real Time (Amherst, 1990),
many mathematicians have worked on it, but despite the real progress that has
been made, several fundamental questions remain open. This is mainly due

http://dx.doi.org/10.14708/ma.v47i2.6477
https://orcid.org/0000-0002-0958-8766
https://orcid.org/0000-0002-6921-6905


294 A random walk version of Robbins' problem

to the fact that the optimal rule is fully history dependent (i.e. the decision
to stop at time k depends on all of the values X1, . . . , Xk observed so far);
see Bruss and Ferguson [4]. In fact, the exact optimal rule is known only for
n ≤ 4. (The case n = 2 is trivial; the case n = 3 was solved by Assaf and
Samuel-Cahn [1]; and the case n = 4 was solved recently by Dendievel and
Swan [7]. The computations in the last paper are considerable.)

Most of the literature on Robbins' problem focuses on asymptotics. Bruss
and Ferguson [3] proved that vn is increasing in n, and that the limit

v := lim
n→∞

vn

is at most 7/3. This was improved slighty by Assaf and Samuel-Cahn [1],
to 2.3318 using a simple threshold rule. On the other hand, the best known
lower bound for v, obtained by Bruss and Ferguson [3], is 1.908. Despite
considerable e�orts by these and other mathematicians, this sizable gap has
not been narrowed much in the last 20 years. The pre-2005 history of the
problem is beautifully laid out in the survey by Bruss [2].

In more recent times, emphasis has shifted to a continuous-time version
of the problem where the arrival times and values of the observations fol-
low a planar Poisson process (the Poisson-embedded Robbins' problem); see
Gnedin [9]. In this context, Meier and S®gner [11] recently constructed a hy-
brid strategy (part rank-based, part threshold rule) with a value of 2.32614.
This is currently the best known upper bound for v, as Bruss and Swan [5]
have shown that the Poisson embedded Robbins' problem has the same lim-
iting value (as the time horizon t tends to in�nity) as the discrete problem.
For more details, we refer to the Ph.D. thesis of Swan [12].

Other works have studied other aspects of Robbins' problem. In partic-
ular, Gnedin and Iksanov [8] showed that lim supn nE[Xτ∗n ] is �nite, proving
a conjecture of Bruss and Swan [5]. In a recent paper, Chen and Goldberg
[10] develop an iterative scheme for solving history-dependent optimal stop-
ping problems and apply this to Robbins' problem, obtaining concrete error
bounds. This may eventually aid numerical e�orts to estimate the optimal
expected rank vn.

We note also that a simpler version of the problem, in which the decision to
stop at time k may depend only on the relative rank ρ̃k :=

∑k
i=1 I(Xk ≥ Xi),

was already solved completely in 1964 by Chow et al. [6]. They obtained the
optimal rule explicitly, and showed that, as n → ∞, the optimal expected
rank converges to approximately 3.87.

In the present article we consider an analog of Robbins' problem for sym-
metric random walks. Our setup is as follows. Let X1, X2, . . . , Xn be a �nite
sequence of i.i.d. random variables de�ned on (Ω,F ,P) whose common distri-
bution is continuous and symmetric about 0, and consider the random walk
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Sn := X1 +X2 + · · ·+Xn, n ≥ 1, with S0 ≡ 0. Let

Rk :=
n∑
i=0

I(Sk ≤ Si)

denote the rank of Sk among S0, S1, · · · , Sn. (Observe that here we rank
the variables from largest to smallest, which is more natural when thinking
of the random walk as modeling, for instance, a stock price process.) We
are interested in �nding a stopping time τ so as to minimize the expected
rank E(Rτ ). We consider two versions of the problem: In the full information

version, we assume that the values of X1, X2, . . . are observed completely,
so we can use any stopping time τ adapted to the �ltration {Fk}, where
Fk := σ({X1, . . . , Xk}) = σ({S0, S1, . . . , Sk}) for k = 0, 1, . . . , n. By contrast,
in the relative ranks version of the problem, we assume that only the relative
ranks

R̃k :=

k∑
i=0

I(Sk ≤ Si), k = 0, 1, . . . , n

are observed, so only stopping times adapted to the �ltration {Gk} may be
used, where Gk := σ({R̃0, R̃1, . . . , R̃k}) for k = 0, 1, . . . , n.

In this note, we give a complete solution to both versions of the problem
when the time horizon is small (n ≤ 3). As far as we are aware, this is the �rst
work to give a detailed treatment of the expected rank problem for random
walks.

It should be noted that in the expected rank problem for i.i.d. random
variables, neither the optimal stopping rule nor the expected rank depends on
the distribution of the Xi's, as long as it is continuous. As will be seen below,
this is no longer the case for the random walk version of the problem. For
n ≥ 3, both the optimal rule and the optimal expected rank depend on the
distribution of the steps X1, X2, . . . of the walk in both the full information
version and the relative ranks version of the problem, though less so in the
latter.

2. Results

Let F denote the common distribution function of X1, X2, . . . . If n = 1,
it does not matter whether we stop at time 0 or time 1: in either case our
expected rank is 3/2 by the symmetry of X1. For a random walk with two
steps, the problem is still distribution-invariant:

Theorem 2.1 Let n = 2. Then the optimal rule in both the full information

and the relative rank versions of the problem is

τ∗ =

{
1 if S1 > 0,

2 otherwise,

and the minimum expected rank is E(Rτ∗) = 15/8.
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By contrast, for a random walk with three steps, the optimal rule and
expected return depend on the distribution in both versions of the problem.

Theorem 2.2 Let n = 3. In the full information version of the problem,

there is a number x∗1 > 0 (given implicitly as a solution of equation (11)
below) such that the optimal rule is

τ∗ =


1 if 0 < X1 ≤ x∗1,
2 if X1 > x∗1 and X2 ∈ (0,∞) ∪ (−X1,−1

2X1]; or

X1 ≤ 0 and X2 ∈ (0,−1
2X1] ∪ (−X1,∞),

3 in all other cases.

(1)

(See Figure 1.) Moreover, F (x∗1) ≥ 1
2 +

√
2
4 ≈ .85355, and the optimal expected

rank E(Rτ∗) satis�es the inequalities

2.2413 ≤ E(Rτ∗) ≤ 55

24
≈ 2.2917, (2)

in which the upper bound is attained.

Figure 1: The stopping regions for the full-information problem with n = 3. Each
region is labeled with the corresponding value of τ∗.
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For the relative ranks version of the problem, we introduce two parameters
p = pX and q = qX , de�ned as

p : = pX := P(0 < X1 < X2 < X3 < X1 +X2),

q : = qX := P(0 < X1 < X2 < X1 +X2 < X3).

Here we use X to denote a generic random variable with the same distribution
as X1, X2 and X3. Observe that p+q = P(0 < X1 < X2 < X3) = 1/48 by the
symmetry of the Xj 's and the fact that all six permutations of (X1, X2, X3)
have the same joint distribution. We �rst give sharp bounds on p for an
important class of random variables.

Definition 2.3 Let U be the class of symmetric random variablesX whose
distribution function F is continuous and satis�es

F (x)− F (0) ≥ F (x+ y)− F (y) ∀x, y > 0.

Note that all unimodal symmetric random variables are in U , but so is, for
example, the random variable that is uniform on (−4,−3) ∪ (−2, 2) ∪ (3, 4).

Proposition 2.4 Let X ∈ U . Then 0 < pX ≤ 1/96. These bounds are

sharp, and the upper bound is attained when X has the uniform distribution

on (−1, 1) (or any other interval symmetric about 0).

Theorem 2.5 Let n = 3. In the relative ranks version of the problem, the

optimal rule τ∗ is as follows:

a) If p ≤ q (in particular, if X ∈ U ), then

τ∗ =


1 if S1 > 0,

2 if S1 ≤ 0 and S2 > S1,

3 otherwise.

b) If instead p > q, then

τ∗ =


1 if S1 > 0,

2 if S1 ≤ 0 < S2,

3 otherwise.

The optimal expected rank is

E(Rτ∗) = min

{
55

24
,
109

48
+ 2p

}
.

Further,

2.2708 ≈ 109

48
< E(Rτ∗) ≤ 55

24
≈ 2.2917,

and these bounds are sharp.
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Note that the optimal rule and expected rank only depend on the distri-
bution of X through the parameter p, and remain constant once p exceeds
1/96.

3. Proofs for the full information case

We begin by making a few simple observations:

1. If we stop at time k, then our expected overall rank in either version of
the problem is

E(Rk|Fk) = E(Rk|Gk) = R̃k +
n− k

2
,

by the symmetry of the walk.

2. When we are at a running minimum of the random walk, it is always
optimal to continue. That is, if at time 0 ≤ k < n we have R̃k = k+1 (or
equivalently, Sk ≤ Si for all i ≤ k), then in view of the �rst observation
above,

E(Rk|Fk) = k + 1 +
n− k

2

=
1

2

(
k + 2 +

n− k − 1

2

)
+

1

2

(
k + 1 +

n− k − 1

2

)
≥ E(Rk+1|Fk).

Thus, continuing one more step and then stopping is at least as good
as stopping immediately. This holds also when we replace Fk by Gk.

3. If we are at time n− 1 having observed S1, . . . , Sn−1, and if we choose
to continue to the nth (and last) step, our expected rank is

E(Rn|S1, . . . , Sn−1) =

n∑
i=0

P(Sn ≤ Si|S1, . . . , Sn−1)

= 1 +

n−1∑
i=0

P(Xn ≤ Si − Sn−1|S1, . . . , Sn−1)

= 1 +
n−1∑
i=0

F (Si − Sn−1)

= n+
1

2
−
n−2∑
i=0

F (Xi+1 + · · ·+Xn−1),

where the last step uses the symmetry of F . Note that this observation
applies only to the full information version.
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Proof (Proof of Theorem 2.1) Let n = 2, and consider �rst the full
information case. If we take the �rst step and S1 ≤ 0, we should continue by
observation 2 above, and our expected rank is E(R2|S1) = 2.5 − F (X1) by
observation 3 above. Suppose S1 > 0 instead. Then E(R2|S1) = 2.5−F (X1) ≥
1.5 = E(R1|S1), so we should stop, with expected rank 1.5. Thus, when we
take at least the �rst step, the optimal expected rank is

1

2
(1.5) +

∫ 0

−∞
{2.5− F (x)}dF (x) = 2−

∫ 1/2

0
udu =

15

8
.

As this is less than 2 (the expected rank of S0), we should take the �rst step
and our optimal expected rank is 15/8. This shows that the optimal rule is
as stated in the theorem. Since τ∗ uses only the relative rank of S1 (that is,
the comparison of S1 to 0 = S0), it follows that this rule is optimal in the
relative ranks version as well. �

We next consider the case n = 3. Here we use backward induction to
determine the optimal rule. First, we de�ne the quantities

Vi(X1, . . . , Xi) := inf
i≤τ≤3

E(Rτ |Fi), i = 0, 1, 2, (3)

Wi(X1, . . . , Xi) := inf
i<τ≤3

E(Rτ |Fi), i = 0, 1, 2, (4)

where in each case, the in�mum is over the set of all stopping times relative
to the �ltration {Fi} that take values in the speci�ed range. In case i = 0,
we write simply V0 and W0 (without any Xj 's) for the quantities on the left.
We also denote V0 by V , and note that V = infτ E(Rτ ). Noting also that
Wi(X1, . . . , Xi) represents our expected rank given that we have decided to
continue at time i, we may further observe that

Vi(X1, . . . , Xi) = min{E(Ri|Fi),Wi(X1, . . . , Xi)}, i = 0, 1, 2 (5)

by backward induction, and

Wi(X1, . . . , Xi) =

∫ ∞
−∞

Vi+1(X1, . . . , Xi, x) dF (x), i = 0, 1 (6)

by conditioning on the value of Xi+1.
Starting one step before the end of the random walk, suppose X1 and X2

(or equivalently, S1 and S2) have been observed. If R̃2 = 3, then the walk is
at a running minimum, so it is optimal to continue, and by observation 3,

V2(X1, X2) = W2(X1, X2) = 3.5− F (X2)− F (X1 +X2).

If, on the other hand, R̃2 = 1, then it is optimal to stop, since E(R2|F2) =
1.5 ≤ 3.5−F (X2)−F (X1+X2) = W2(X1, X2). So in this case, V2(X1, X2) =
1.5.
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The interesting case is when R̃2 = 2. This can happen in two di�erent
ways: (i) X1 > 0 and −X1 < X2 < 0; or (ii) X1 < 0 and 0 < X2 <
−X1. Note that in either case, E(R2|F2) = 2.5, which must be compared to
W2(X1, X2) = 3.5−F (X2)−F (X1+X2) = 2.5+F (−X2)−F (X1+X2). Thus it
is optimal to stop if F (−X2) ≥ F (X1+X2) and to continue otherwise; in other
words, it is optimal to stop if X2 ≤ −X1/2, and to continue otherwise. (Note
that there could be a region of points (X1, X2) for which we are indi�erent
between stopping and continuing; this is why we do not say �it is optimal to
stop if and only if X2 ≤ −X1/2".)

Putting these observations together, we see that, if we had not yet stopped
before, it is optimal to stop at time 2 if one of the following holds:

1. X1 > 0 and X2 > 0; or

2. X1 > 0 and −X1 < X2 ≤ −X1/2; or

3. X1 < 0 and X2 > −X1; or

4. X1 < 0 and 0 < X2 ≤ −X1/2;

and to continue otherwise. Moreover,

V2(X1, X2) = min{R̃2 + 0.5, 1.5 + F (−X2) + F (−X1 −X2)}. (7)

From the above facts, we can compute the optimal expected rank if we
continue after the �rst step, that is, after observing X1 = x: For x > 0, we
have from (6) that

W1(x) = 1.5P(X2 > 0) +

∫ 0

−x/2
{1.5 + F (−x− y) + F (−y)}dF (y)

+ 2.5P
(
−x < X2 < −

x

2

)
+

∫ −x
−∞
{1.5 + F (−x− y) + F (−y)}dF (y)

= 1.5 +

∫ 0

−x/2
{F (−x− y) + F (−y)}dF (y)

+ P
(
−x < X2 < −

x

2

)
+

∫ −x
−∞
{F (−x− y) + F (−y)}dF (y).

Using the symmetry of f , we can simplify this by noting that∫ −a
−b

F (−y)dF (y) =

∫ b

a
F (z)dF (z) =

1

2
[F 2(b)− F 2(a)] (8)

and ∫ −a
−b

F (−x− y)dF (y) =

∫ b

a
F (z − x)dF (z) (9)
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for 0 ≤ a < b ≤ ∞; and by using also that F (0) = 1/2. This gives, for x > 0,

W1(x) =
15

8
+

∫ x/2

0
F (y − x)dF (y) +

∫ ∞
x

F (y − x)dF (y)

+ F (x)− F
(x

2

)
− 1

2

[
F 2(x)− F 2

(x
2

)]
.

(10)

Remembering (5), we must compare this with E(R1|F1) = 2. Taking limits
under the integral signs in (10) (which is justi�ed by dominated convergence),
we obtain

lim
x→∞

W1(x) =
15

8

(which, not coincidentally, is equal to the value of the 2-step problem); and

lim
x↘0

W1(x) =
15

8
+

∫ ∞
0

F (y)dF (y) =
15

8
+

∫ 1

1/2
udu =

9

4
.

Since W1(x) is clearly continuous, it follows that there is a critical point
x∗1 > 0 (not necessarily unique) such that W1(x

∗
1) = 2. Since W1(x) is also

nonincreasing in x (an immediate consequence of the de�nition), we conclude
that it is optimal to stop at time 1 if 0 < X1 ≤ x∗1, and to continue if X1 > x∗1.
(Intuitively, if X1 is very large, one should continue since the risk of falling
back below the starting point of 0 is very small.) Note that x∗1 is a solution
of the equation∫ x/2

0
F (y − x)dF (y) +

∫ ∞
x

F (y − x)dF (y)

+ F (x)− F
(x

2

)
− 1

2

[
F 2(x)− F 2

(x
2

)]
=

1

8
.

(11)

As shown below, x∗1 is always a high quantile of the distribution of X1.

Lemma 3.1 We have

F (x∗1) ≥
1

2
+

√
2

4
≈ .85355.

Proof In (10), we use F (y−x) ≥ F (−x) in the �rst integral and F (y−x) ≥
F (0) = 1/2 in the second to obtain (using the symmetry of F ),

W1(x) ≥ 15

8
+ F (x)− 1

2
F 2(x)− F (x)F

(x
2

)
+

1

2
F 2
(x

2

)
=

15

8
+ F (x)− F 2(x) +

1

2

[
F (x)− F

(x
2

)]2
≥ 15

8
+ F (x){1− F (x)}.

(12)

Setting W1(x
∗
1) = 2 thus yields F (x∗1){1− F (x∗1)} ≤ 1/8, and since we know

F (x∗1) ≥ F (0) = 1/2, it follows that F (x∗1) ≥ 1
2 +

√
2
4 . �
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We now consider the case when X1 = x < 0. Here it is always optimal to
continue as we are at a running minimum, and

W1(x) = 1.5P(X2 > −x) +

∫ −x
−x/2
{1.5 + F (−y) + F (−x− y)}dF (y)

+ 2.5P(0 < X2 < −x/2) +

∫ 0

−∞
{1.5 + F (−y) + F (−x− y)}dF (y)

= 1.5 +

∫ −x
−x/2
{F (−y) + F (−x− y)}dF (y)

+ P(0 < X2 < −x/2) +

∫ 0

−∞
{F (−y) + F (−x− y)}dF (y).

Using (8) and (9), this leads to

W1(x) =
19

8
+

∫ x/2

x
F (y − x)dF (y) +

∫ ∞
0

F (y − x)dF (y)

− F
(x

2

)
+

1

2

[
F 2
(x

2

)
− F 2(x)

]
.

(13)

Proof (Proof of Theorem 2.2) We have already determined the opti-

mal rule and shown, in Lemma 3.1, that F (x∗1) ≥ 1
2 +

√
2
4 . It remains to prove

the estimates (2) and to show that the upper bound is attained.

First we estimate W1(x) by a simpler expression for x < 0. In (13), use
F (y − x) ≥ F (0) = 1/2 in the �rst integral to get∫ x/2

x
F (y − x)dF (y) ≥ 1

2

[
F
(x

2

)
− F (x)

]
.

The second integral we estimate as follows:∫ ∞
0

F (y − x)dF (y) ≥
∫ −x
0

F (−x)dF (y) +

∫ ∞
−x

F (y)dF (y)

= F (−x)

{
F (−x)− 1

2

}
+

1

2

{
1− F 2(−x)

}
=

1

2

(
1− F (−x){1− F (−x)}

)
=

1

2

(
1− F (x){1− F (x)}

)
.

Putting these estimates back into (13) yields

W1(x) ≥ 23

8
− F (x)− 1

2
F
(x

2

)
+

1

2
F 2
(x

2

)
. (14)
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Note that V1(x) = 2 if 0 < x ≤ x∗1, and V1(x) = W1(x) otherwise. At time 0
it is optimal to continue since the walk is at a minimum. Hence,

V =

∫ ∞
−∞

V1(x)dF (x)

=

∫ 0

−∞
W1(x)dF (x) + 2P(0 < X1 ≤ x∗1) +

∫ ∞
x∗1

W1(x)dF (x). (15)

We estimate each integral separately. First, by (14),∫ 0

−∞
W1(x)dF (x) ≥ 23

16
−
∫ 0

−∞
F (x)dF (x)− 1

2

∫ 0

−∞
F
(x

2

){
1− F

(x
2

)}
dF (x)

≥ 23

16
−
∫ 1/2

0
udu− 1

8

∫ 0

−∞
dF (x) =

5

4
.

The other integral can be estimated below using (12), which gives∫ ∞
x∗1

W1(x)dF (x) ≥
∫ ∞
x∗1

[
15

8
+ F (x){1− F (x)}

]
dF (x)

=
15

8
{1− F (x∗1)}+

1

6
− 1

2
F 2(x∗1) +

1

3
F 3(x∗1).

Combining this with the term 2P(0 < X1 ≤ x∗1) from (15) yields∫ ∞
0

V1(x)dF (x) = 2

(
F (x∗1)−

1

2

)
+

∫ ∞
x∗1

W1(x)dF (x)

≥ 25

24
+

1

24

{
3F (x∗1)− 12F 2(x∗1) + 8F 3(x∗1)

}
≥ 25

24
− 1 +

√
2

48
.

To see the last inequality, let g(t) = 3t−12t2+8t3 and note that g has a local

minimum value of −1+
√
2

2 at t = 1
2 +

√
2
4 , so the cubic polynomial in F (x∗1) is

minimized exactly when F (x∗1) = 1
2 +

√
2
4 .

Combining the estimates, we �nally arrive at

V ≥ 5

4
+

25

24
− 1 +

√
2

48
=

109−
√

2

48
≈ 2.24137.

In the next section we will show that 55/24 is a sharp upper bound for
E(Rτ∗) in the relative ranks version of the problem. Since in the full infor-
mation version we can do at least as well, it follows that V ≤ 55/24. This is
attained (in both versions of the problem) when X has the uniform distribu-
tion on (−2,−1) ∪ (1, 2); we leave the details to the interested reader. Thus,
the proof is complete. �
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Examples 3.2 (a) Let X have the uniform distribution on (−1, 1). Then for
0 < x < 1 we have

W1(x) =
9

4
− x

4
− x2

16
,

so that x∗1 = 2(
√

2− 1) ≈ 0.828; and for −1 < x < 0 we have

W1(x) =
9

4
− 3x

4
− 3x2

16
.

The optimal expected rank is

V =
1

2

∫ 0

−1
W1(x)dx+

1

2
· 2x∗1 +

1

2

∫ 1

x∗1

W1(x)dx =
11

4
−
√

2

3
≈ 2.279.

(b) Let X have the standard two-sided exponential (or Laplace) distribu-
tion, with density f(x) = 1

2e
−|x| for x ∈ R. Then for x > 0 we have

W1(x) =
15

8
+

1

8
xe−x +

1

2
e−x − 1

8
e−2x,

and numerically solving W1(x) = 2 gives x∗1 ≈ 1.71. For x < 0 we have

W1(x) =
23

8
+

1

8
xex − 1

2
ex − 1

8
e2x.

The optimal expected rank is approximately 2.271.

4. Proofs for the relative ranks case

In this section we assume that only the relative ranks R̃i, i = 0, 1, . . . , n
are observed. We �x n = 3. Before deriving the optimal rule, we prove
Proposition 2.4. In what follows, |X|(1), |X|(2) and |X|(3) denote the order
statistics of |X1|, |X2| and |X3|, so (|X|(1), |X|(2), |X|(3)) is a permutation of
(|X1|, |X2|, |X3|) with |X|(1) ≤ |X|(2) ≤ |X|(3). We let G denote the distribu-
tion function of |X1|, so, by the symmetry of the Xj 's, G(x) = 2F (x)− 1 for
x ≥ 0.

Proof (Proof of Proposition 2.4) It is easy to see, for any continuous
symmetric distribution, that p > 0. For instance, choose x0 > 0 so that
F (2x0) > F (x0); such a point certainly exists. Then, by symmetry (since
X1, X2, X3 are i.i.d.),

48p = P
(
|X|(3) < |X|(1) + |X|(2)

)
≥ P(x0 < Xi ≤ 2x0 for i = 1, 2, 3)

=
(
F (2x0)− F (x0)

)3
> 0.
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Now assume X ∈ U ; this implies G(x + y) ≤ G(x) + G(y) for all x, y ≥ 0.
We calculate

16q =
1

3
P
(
|X|(3) > |X|(1) + |X|(2)

)
= P

(
|X3| > |X1|+ |X2|

)
=

∫ ∞
0

∫ ∞
0
{1−G(x+ y)}dG(x)dG(y)

≥
∫ ∞
0

∫ ∞
0
{1−G(x)−G(y)}+dG(x)dG(y)

=

∫ 1

0

∫ 1

0
(1− u− v)+dudv =

1

6
.

The only inequality in this calculation becomes an equality when X is uni-
formly distributed on (−1, 1). Thus, p ≤ 1/96, and this bound is attained for
the uniform distribution on (−1, 1).

It remains to show that the lower bound p > 0 is sharp. To this end,
let G(x) = xδ for 0 ≤ x ≤ 1 and δ > 0. (This corresponds with a density
f(x) = δ

2 |x|
δ−1 for x ∈ (−1, 1)\{0}.) For 0 ≤ u ≤ v ≤ 1, we have

G
(
G−1(u) +G−1(v)

)
≤ G

(
2G−1(v)

)
= G

(
2v1/δ

)
≤ 2δv.

Hence, for this G,

16q =

∫ ∞
0

∫ ∞
0
{1−G(x+ y)}dG(x)dG(y)

=

∫ 1

0

∫ 1

0

{
1−G

(
G−1(u) +G−1(v)

)}
dudv

≥
∫ 1

0

∫ 1

0

(
1− 2δ max{u, v}

)
dudv

→
∫ 1

0

∫ 1

0
(1−max{u, v})dudv =

1

3
as δ → 0.

Thus q gets arbitrarily close to 1/48, and p = (1/48)− q gets arbitrarily close
to 0, for su�ciently small δ > 0. �

We will use the parameters p and q to express the probabilities of all 24
possible rank orderings of S0, S1, S2 and S3. Let

∆ := {|X|(3) < |X|(1) + |X|(2)}

be the event that the absolute step sizes satisfy the triangle inequality, and
note that P(∆) = 48p. De�ne the σ-algebras

D := {∅,∆,∆c,Ω}, S := σ({sgn(Xi) : i = 1, 2, 3}),
C := σ({sgn(|Xi| − |Xj |) : i, j = 1, 2, 3, i 6= j}).
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Permutation Re�ection Probability

0 > S1 > S2 > S3 0 < S1 < S2 < S3 1/8

0 > S1 > S3 > S2 0 < S1 < S3 < S2 1/16

0 > S2 > S1 > S3 0 < S2 < S1 < S3 1/24

0 > S2 > S3 > S1 0 < S2 < S3 < S1 1/48

0 > S3 > S1 > S2 0 < S3 < S1 < S2 (1/48) + 2p

0 > S3 > S2 > S1 0 < S3 < S2 < S1 2q

S2 > 0 > S1 > S3 S2 < 0 < S1 < S3 1/48

S2 > 0 > S3 > S1 S2 < 0 < S3 < S1 2p

S2 > S3 > 0 > S1 S2 < S3 < 0 < S1 2q

S3 > 0 > S1 > S2 S3 < 0 < S1 < S2 2q

S3 > 0 > S2 > S1 S3 < 0 < S2 < S1 (1/48) + 2p

S3 > S2 > 0 > S1 S3 < S2 < 0 < S1 1/16

Table 1: The probabilities of the 24 possible rank orderings of 0 = S0, S1, S2
and S3. The �rst column lists permutations with S1 < 0; the second lists the
ones with S1 > 0. By symmetry, the two permutations in each row have the
same probability.

Here we set sgn(x) := 1 if x ≥ 0 and = −1 if x < 0. Thus, D is the σ-algebra
generated by ∆, S is the σ-algebra generated by the signs of X1, X2 and X3,
and C is the σ-algebra generated by the mutual comparisons of |X1|, |X2|
and |X3|. Observe that the σ-algebras C ,D and S are independent by the
symmetry of X. This makes it easy to calculate the probabilities of the 24
permutations of the random walk. For example,

P(0 > S3 > S2 > S1)

= P
(
{X1 < 0, X2 > 0, X3 > 0} ∩ {|X1| > |X2|, |X1| > |X3|} ∩∆c

)
= P(X1 < 0, X2 > 0, X3 > 0)P(|X|(3) = |X1|)P(∆c)

=
1

8
· 1

3
· 48q = 2q.

The other probabilities can be derived similarly; we list them in Table 1.

Proof (Proof of Theorem 2.5) Recall the �ltration {Gi} de�ned by Gi =
σ(R̃1, . . . , R̃i), i = 0, 1, 2, 3. Analogously to (3) and (4) we de�ne

Ṽi(R̃1, . . . , R̃i) := inf
i≤τ≤3

E(Rτ |Gi), i = 0, 1, 2,

W̃i(R̃1, . . . , R̃i) := inf
i<τ≤3

E(Rτ |Gi), i = 0, 1, 2.
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In case i = 0 we write simply Ṽ0 and W̃0 for the left hand sides, and we denote
Ṽ0 also by Ṽ . As in the full information case (cf. (5)),

Ṽi(R̃1, . . . , R̃i) = min{E(Ri|Gi), W̃i(R̃1, . . . , R̃i)}.

a) Assume �rst that p ≤ q; recall that this is the case for all unimodal
distributions. Suppose R̃1 and R̃2 have been observed. Equivalently, the mu-
tual comparisons between 0 = S0, S1 and S2 are known. We consider the six
possible permutations one by one:

Case 1. Suppose 0 < S1 < S2. The probability of this event is 1/4. Here
E(R2|G2) = 1.5 ≤ E(R3|G2), since R3 takes the value 1 with (conditional)
probability 1/2, and otherwise takes at least the value 2. Thus, it is optimal
to stop, and Ṽ2(R̃1, R̃2) = 1.5.

Case 2. Suppose 0 < S2 < S1. This happens with probability 1/8. Here
E(R2|G2) = 2.5, whereas

E(R3|G2) = 8

[
1 · 1

24
+ 2 · 1

48
+ 3 · 2q + 4 ·

(
2p+

1

48

)]
=

7

3
+ 16p,

where we used the third, fourth, sixth and eleventh rows of Table 1. Since
p ≤ 1/96, it follows that E(R3|G2) ≤ 2.5. Hence, it is optimal to continue,
and Ṽ2(R̃1, R̃2) = 7

3 + 16p.

Case 3. Suppose S2 < 0 < S1. This happens with probability 1/8. Here
the walk is at a minimum, so it is optimal to continue, and

Ṽ2(R̃1, R̃2) = E(R3|G2) = 8

[
1 · 1

48
+ 2 · 2p+ 3 · 2q + 4 · 1

16

]
=

34

12
+ 16q.

Case 4. Suppose S1 < 0 < S2. This happens with probability 1/8. Here the
walk is at a maximum, so as in Case 1 it is optimal to stop, and Ṽ2(R̃1, R̃2) =
1.5.

Case 5. Suppose S1 < S2 < 0. This happens with probability 1/8. Here
E(R2|G2) = 2.5, whereas

E(R3|G2) = 8

[
1 ·
(

2p+
1

48

)
+ 2 · 2q + 3 · 1

48
+ 4 · 1

24

]
=

7

3
+ 16q ≥ 2.5,

using that q ≥ 1/96. Thus, it is optimal to stop, and Ṽ2(R̃1, R̃2) = 2.5.

Case 6. Suppose S2 < S1 < 0. This occurs with probability 1/4. Since we
are at a minimum, it is optimal to continue and

Ṽ2(R̃1, R̃2) = E(R3|G2) = 4

[
1 · 2q + 2 ·

(
2p+

1

48

)
+ 3 · 1

16
+ 4 · 1

8

]
=

37

12
+8p.
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This completes the analysis of the situation after two steps.

We assume next that R̃1 has been observed; that is, we know whether
S1 > 0 or S1 < 0. If S1 > 0, then E(R1|G1) = 2, whereas

W̃1(R̃1) =

3∑
k=1

P(R̃2 = k|G1)Ṽ2(R̃1, k)

= P(S2 > S1 > 0|S1 > 0) · (1.5) + P(S1 > S2 > 0|S1 > 0) ·
(

7

3
+ 16p

)
+ P(S1 > 0 > S2|S1 > 0) ·

(
34

12
+ 16q

)
=

1

2
· (1.5) +

1

4

(
7

3
+ 16p

)
+

1

4

(
34

12
+ 16q

)
=

102

48
> 2,

where we used the results from Cases 1-3 above. Thus, it is optimal to stop,
and Ṽ1(R̃1) = 2.

On the other hand, if S1 < 0, then the walk is at a minimum, and so

Ṽ1(R̃1) = W̃1(R̃1) =

3∑
k=1

P(R̃2 = k|G1)Ṽ2(R̃1, k)

= P(S2 > 0 > S1|S1 < 0) · (1.5) + P(0 > S2 > S1|S1 < 0) · (2.5)

+ P(0 > S1 > S2|S1 < 0) ·
(

37

12
+ 8p

)
=

1

4
· (1.5) +

1

4
· (2.5) +

1

2
·
(

37

12
+ 8p

)
=

61

24
+ 4p,

using the results from Cases 4-6 above. We thus obtain

Ṽ = W̃0 = P(S1 > 0)Ṽ1(1) + P(S1 < 0)Ṽ1(2)

=
1

2
· 2 +

1

2
·
(

61

24
+ 4p

)
=

109

48
+ 2p.

Since 0 < p ≤ 1/96 we have 109/48 < Ṽ ≤ 55/24, and both bounds are
sharp.

b) Now suppose p ≥ q. The analysis being very similar, we only indicate at
which points it di�ers from the preceding case. We focus �rst on the situation
after two steps. Note that in Case 2 it is now optimal to stop, with expected
rank 2.5. On the other hand, in Case 5 it now becomes optimal to continue,
with expected rank 7

3 + 16q. The calculation of Ṽ1(R̃1) changes as follows: If
S1 > 0, we now obtain

W̃1(R̃1) =
101

48
+ 4q.
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Version Description Expected Rank

Full Information Lower bound 2.2413

Full Information Laplace Distribution ≈ 2.271

Full Information Uniform Distribution ≈ 2.279

Full Information Maximum 55
24 = 2.2916

Relative Ranks Greatest Lower Bound 109
48 ≈ 2.2708

Relative Ranks Laplace Distribution 73
32 = 2.28125

Relative Ranks Uniform Distribution 55
24 = 2.2916

Relative Ranks Maximum 55
24 = 2.2916

Both Versions Stopping Immediately 2.5

Table 2: Summary of results for n = 3

This is still greater than 2 = E(R1|G1), so it remains optimal to stop, and
Ṽ1(R̃1) = 2. On the other hand, if S1 < 0 then we get Ṽ1(R̃1) = W̃1(R̃1) =
31/12. The optimal expected rank is thus Ṽ = 1

2 · 2 + 1
2 ·

31
12 = 55

24 .

Finally, a close examination of the above analysis reveals that the optimal
rule is as stated in the theorem. �

Example 4.1 For the two-sided exponential (or Laplace) distribution, we
have p = 1/192 and Ṽ = 73/32 = 2.28125. For the Uniform(−1, 1) distribu-
tion, p = 1/96 and Ṽ = 55/24 ≈ 2.2917. We summarize the numerical results
of this paper in Table 2.

5. Concluding remarks

We have derived the optimal stopping rules for n = 2 and n = 3, in both
the full information version and the relative rank version of the problem.
When n = 3, both the optimal rule and the optimal expected rank depend on
the distribution of the step sizes, though less so in the relative rank version.

For the full information version of the problem it seems unlikely, in light
of the complexity of the optimal rule already for n = 3, that the problem can
be solved exactly for even moderately large values of n. In the relative ranks
version, the exact solution can probably be found for a few larger values
of n, though we have not attempted to do so. One di�culty is that, while
for n = 3 precisely half of the probabilities of the 24 permutations did not
depend on the distribution of X, this proportion seems to decrease rapidly as
n grows larger. Moreover, the probabilities that depend on the distribution
can do so in more complicated ways. Even when n = 4, for instance, we might
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need to consider probabilities such as P(|X|(4) < |X|(1) + |X|(2) + |X|(3)),
P(|X|(4) < |X|(1) + |X|(2)), P(|X|(4) + |X|(1) < |X|(3) + |X|(2)), etc. That
said, since there are essentially only �nitely many di�erent stopping rules to
consider, a �brute force" computer algorithm could in principle come up with
the optimal rule as long as n is not too large.

A more interesting approach, however, would be to develop relatively sim-
ple stopping rules which perform well asymptotically for large n, and to aim
for reasonably sharp upper and lower bounds on the ratio V (n)/n, where V (n)

denotes the optimal expected rank for an n-step problem.
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Problem Robbinsa dla bª¡dzenia losowego: maªy horyzont

Pieter C. Allaart, Andrew Allen

Streszczenie W problemie Robbinsa celem jest zatrzymanie sekwencyjnych obser-
wacji sko«czonego ci¡gu niezale»nych zmiennych losowych o tym samym rozkªadzie
tak, aby zminimalizowa¢ oczekiwan¡ rang¦ zatrzymanej zmiennej. Niniejsza praca
po±wi¦cona jest analogonowi problemu Robbinsa, w którym obserwowane zmienne
losowe s¡ warto±ciami symetrycznego bª¡dzenia losowego. Zakªadamy, »e dªugo±ci
kroków s¡ symetrycznymi zmiennymi losowymi o rozkªadzie typu ci¡gªego. Opisu-
jemy optymalne reguªy zatrzymania dla przypadków n = 2 i n = 3 w dwóch wersjach
problemu: wersja z peªn¡ informacj¡, w której rzeczywiste dªugo±ci kroków losowych
s¡ jawne i znane podejmuj¡cemu decyzje statystykowi, oraz wersja z cz¦±ciow¡ in-
formacj¡, w której obserwowane s¡ tylko wzgl¦dne ci¡gi pozycji zajmowanych przez
ci¡gªy, symetryczny, spacer losowy. Dla n = 3 optymalna strategia i oczekiwana
ranga zale»¡ od rozkªadu dªugo±ci kroków. Otrzymano ostre oszacowania dla war-
to±ci oczekiwanej otrzymanej rangi dla wersji problemu z cz¦±ciowa informacj¡ oraz
lepsze oszacowania dla problemu z peªn¡ informacja.

Klasy�kacja tematyczna AMS (2010): 92C50; 62P10.

Sªowa kluczowe: proces Ornsteina-Uhlenbecka, FLOC, estymacja, rozkªad stabilny.
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