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Abstract: Scale formation inside oil and gas pipelines is always one of the main threats to the
efficiency of equipment and their depreciation. In this study, an artificial intelligence method method
is presented to provide the flow regime and volume percentage of a two-phase flow while considering
the presence of scale inside the test pipe. In this non-invasive method, a dual-energy source of barium-
133 and cesium-137 isotopes is irradiated, and the photons are absorbed by a detector as they pass
through the test pipe on the other side of the pipe. The Monte Carlo N Particle Code (MCNP)
simulates the structure and frequency features, such as the amplitudes of the first, second, third,
and fourth dominant frequencies, which are extracted from the data recorded by the detector. These
features use radial basis function neural network (RBFNN) inputs, where two neural networks are
also trained to accurately determine the volume percentage and correctly classify all flow patterns,
independent of scale thickness in the pipe. The advantage of the proposed system in this study
compared to the conventional systems is that it has a better measuring precision as well as a simpler
structure (using one detector instead of two).

Keywords: pipeline’s scale; RBF neural network; two-phase flow; oil and gas; artificial intelligence

1. Introduction

The need to continue drilling or stopping, optimizing the separation process, how
the extracted material is transported, and many other things depend on recognizing the
flow pattern and volume fraction of each component. Gamma radiation is used for the
detection, although hydrostatic, ultrasonic, and hydrometric techniques can also be used
to detect the flow pattern and volume fraction of the multiphase flow. In 1999, Abro et al.
conducted one of the first studies in this field to determine the volume percentage [1]. The
use of the low-energy gamma-ray of americium-241 instead of the traditional source of
caesium-137, and the use of three detectors at 140◦, −154◦, and 180◦ relative to the source
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to find the optimal position of the detector, were the most positive and creative points of
the study. Sattari et al. presented a study in 2020 by decreasing the number of detectors
to one and using two independent GMDH neural networks to determine the percentage
of volume fraction and flow regime [2]. The simulation of three common flow patterns,
namely annular, homogeneous, and stratified, in void fractions of 5% to 90% was done
by removing the noise of the extracted photon spectrum using a Savitzky−Golay filter
and providing the filter output as the input of the neural network. The approach in the
study of Sattari et al. ultimately predicted the volume percentage and type of flow regime
with a root mean square error (RMSE) less than 1.11; however, oil and gas transmission
pipes sometimes deposit scale after a period of use, which was not investigated in this
study. Studies have been conducted in recent years to identify these scales and to make
the mentioned predictions. In 2015, Oliveira et al. conducted a pipeline survey using a
structure that was included a detector and a cesium-137 energy source [3]. The process
was such that the source and the detector were continuously shifted 5 mm at the same
time, and the detector received radiation emitted from the source for 60 s. The results
proved that the presence or absence of scales, as well as their thickness, can be predicted
with good accuracy. In [4], the researchers were able to model flow patterns in different
volume percentages and thickness scales using the SVM network, and to classify the flow
regimes with a not so high accuracy. The volume percentage was also calculated with
an RMSE of less than 3.67. Alamoudi et al. attempted to develop a gamma attenuation
technique using RBFNN to determine the scale thickness of oil pipelines where two-phase
flow with various symmetric patterns and volume fractions exist [5]. The applications of
artificial intelligence in multiphase flowmeters have been discussed in many studies to
date, some of which can be found in [6–15]. In pipelines, valves, and pumps used in the
production and processing of oil, scales may form over time. The formation of scales leads
to the blockage and obstruction of the flow of fluid. At this time, the oilfield scale inhibition
process becomes important. These deposits lead to a reduction in the inner diameter of the
pipe and consequently cause a reduction in the life of the equipment, reducing efficiency,
and ultimately increasing costs [16]. In [17], the researchers implemented a structure
consisting of a dual- energy gamma source to detect the type of flow regimes independent
of scale thickness. Although these important parameters were predicted with an acceptable
accuracy, the use of two detectors increased the cost and complexity of the detection system.
An example of scale deposition in the oil pipe is shown in Figure 1.
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2. Simulation Setup

The modeling of the detection system in this study was performed using version
X of the Monte Carlo N-Particle Code (MCNPX) [18]. The schematic configuration of
the above-mentioned detection system is demonstrated in Figure 2. As is apparent, this
schematic diagram uses the stratified flow as an example. The dual-energy source is on the
left, a pipe in which two-phase flows and scales are formed in it is on the middle, and an
NaI detector to receive the transmitted photons is on the right.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 14 
 

 

2. Simulation Setup 
The modeling of the detection system in this study was performed using version X 

of the Monte Carlo N-Particle Code (MCNPX) [18]. The schematic configuration of the 
above-mentioned detection system is demonstrated in Figure 2. As is apparent, this sche-
matic diagram uses the stratified flow as an example. The dual-energy source is on the 
left, a pipe in which two-phase flows and scales are formed in it is on the middle, and an 
NaI detector to receive the transmitted photons is on the right. 

 
Figure 2. Simulated detection system: (1) NaI detector; (2) gas phase; (3) formed scale; (4) steel 
pipe; (5) liquid phase; (6) dual-energy source; (7) shield. 

The disk source defined for modeling the radiation source. It was located inside a 
shield to move the beams toward the transmission detector. The source includes two ra-
dioisotopes of cesium-137 and barium-133, which acted at 0.662 MeV and 0.356 MeV, re-
spectively. In the proposed structure, just in front of the photon emission source, a 25.4 
mm NaI detector was placed to receive the passing photons. Three annular, stratified, and 
homogeneous flow regimes were simulated by 15% steps in 10% to 85% volumetric per-
centages with 7 different scale thicknesses (0, 0.5, 1, 1.5, 2, 2.5, and 3 cm). These three re-
gimes are illustrated in Figure 3. 

 
Figure 3. Simulated flow regimes from left to right: stratified, homogeneous, and annular, respec-
tively. 

In this study, a steel pipe with inner diameter of 20 cm was selected. The scale inside 
the pipe was a symmetrical circular layer of BaSO4 with different thicknesses. The depic-
tion of the recorded spectra for three flow patterns and different gas volume percentages 
is apparent in Figure 4. 

Figure 2. Simulated detection system: (1) NaI detector; (2) gas phase; (3) formed scale; (4) steel pipe;
(5) liquid phase; (6) dual-energy source; (7) shield.

The disk source defined for modeling the radiation source. It was located inside a
shield to move the beams toward the transmission detector. The source includes two
radioisotopes of cesium-137 and barium-133, which acted at 0.662 MeV and 0.356 MeV,
respectively. In the proposed structure, just in front of the photon emission source, a
25.4 mm NaI detector was placed to receive the passing photons. Three annular, stratified,
and homogeneous flow regimes were simulated by 15% steps in 10% to 85% volumetric
percentages with 7 different scale thicknesses (0, 0.5, 1, 1.5, 2, 2.5, and 3 cm). These three
regimes are illustrated in Figure 3.
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Figure 3. Simulated flow regimes from left to right: stratified, homogeneous, and annular, respectively.

In this study, a steel pipe with inner diameter of 20 cm was selected. The scale inside
the pipe was a symmetrical circular layer of BaSO4 with different thicknesses. The depiction
of the recorded spectra for three flow patterns and different gas volume percentages is
apparent in Figure 4.
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3. Feature Extraction

Elimination of useless data, reduction of size, facilitation of the training process, and
generalization of data can be considered as goals of feature extraction. Using these extracted
features has a better result on the raw data than using machine learning directly, and makes
the interpretation of data simpler. The schematic diagram of this procedure can be seen in
Figure 5.
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Figure 5. Schematic outline of the proposed feature extraction.

Data analysis may be very difficult when the amount of data is huge. Feature extraction
in the domain of time, frequency, and time−frequency are among the various methods of
feature extraction. Of course, these are not the only methods, and there are several methods
that could be implemented to decrease the dimensionality of the data. In the present study,
frequency domain feature extraction was performed, and the received signal was converted
to the frequency domain using FTT (Equation (1) [19]). Then, the first to fourth dominant
frequencies were extracted.

Y(k) =
n

∑
J=1

x(J)w(y−1)(k−1)
n (1)
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where Y(k) = FFT(X) and w_n = eˆ((−2πi)/n) is one of n roots of unity.
As mentioned earlier, one detector was utilized in present investigation and four

features were extracted from it. So, these four features were utilized to train NNs. The
converted signals of all three flow regimes to the frequency domain at a 1 cm scale thickness
are shown in Figure 6.
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4. RBF Neural Network

In recent years, different advanced computational approaches have been applied
in various fields of study, such as fluid mechanic engineering [20–28], chemical engi-
neering [29–33], electrical engineering [34–59], computer engineering [60–76], civil engi-
neering [77–79], petroleum engineering [80–94], energy engineering [95–101], mathemat-
ics [102–110], medical and pharmaceutical [111–116]. It has been proved that ANN is one
of the most powerful computational approaches. In addition, RBF has become one of the
most widely used types of neural networks due to the various applications that have been
developed for it; therefore, it is the most important competitor for multilayer perceptron.
The main architecture of RBF consists of three layers. The input layer is a puller layer and
with no calculation occurring in it. The second layer (hidden layer) establishes a nonlinear
conformity between the input space and another space with a larger dimension. Finally,
third layer generates a weighted sum along with a linear output. Such an output would be
useful if RBF was used to approximate the function. An exclusive trait of RBF is processing
that is done in the hidden layer. Making clusters from input space patterns is a basic idea
of this process. In addition, this distance measurement is done nonlinearly, so if a pattern is
located in an area adjacent to the center of a cluster, the generated value will be close to 1.
The value obtained outside this area is significantly reduced. The important point is that
this region is radially symmetric around the center of the cluster, so the nonlinear function
becomes a known function of the radial base. The most common form of the radial base
function is as follows [117]:

ϕ(r) = exp
[
− r2

2σ2

]
(2)

In RBF, r is the numerical value of the distance from the center of the cluster. Equation
(2) shows a normal bell-shaped curve. Usually, the measured distance to the center of the
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cluster is the Euclidean distance. For each neuron in the hidden layer, the weights show
the coordinates of the center of the cluster. Therefore, once a neuron receives an X input
pattern, the distance is obtained using the following equation [55]:

rj =

√
n

∑
i=1

(
xi − wij

)2 (3)

Therefore, the output of jth neuron in the hidden layer is as follows:

∅j = exp[−
∑n

i=1
(
xi − wij

)2

2σ2 ] (4)

The variable σ is defined as the width or radius of the bell curve, and is sometimes
necessarily determined experimentally. When the distance from the center of the normal
curve reaches σ, the output decreases from 1 to 0.6.

The hidden layer includes some units which are weighted, and these weights are
related to the vector that represents the center of the cluster. Weights can be obtained using
traditional methods like the K-Mean or methods based on the Kohonen algorithm. In
any case, the training is done non-supervised, but the number of expected clusters (k) is
pre-selected, and then these algorithms obtain the best fit for these clusters. In this research,
MATLAB 2018b software was used to extract the mentioned characteristics and design the
RBF neural network. In MATLAB software, there are many different toolboxes for neural
network training, but in designing this network, no pre-designed toolbax was used for
designing the RBF network in order for more freedom of action, and all steps of neural
network training were programmed. It is necessary to say that the preset function of newrb
(available in the MATLAB software) was used to train the network.

Training dataset: The sample of data utilized to fit the model. The dataset that is used
to train the model. The model sees and learns from this data.

Testing dataset: The sample of data utilized to provide an unbiased evaluation of a
final model fit on the training dataset.

5. Results and Discussion

Two neural networks of RBF were designed in this study, with the aim of determining
the type of flow patterns and estimating the gas volume percentages independent of the
thickness of scale in the pipe. The structure of these networks is shown in Figure 7. The
inputs of these networks were the amplitude of the first to fourth dominant frequencies
of the received signal, and their outputs were the void fraction and type of flow patterns.
The type of flow regimes in the classifier network were shown with numbers 1, 2, and 3. In
addition, the numerical ranges for each of the regimes were defined as follows. Numbers
between 0.5 and 1.5 returned to 1. Numbers between 1.5 and 2.5 indicated a homogeneous
regime, and numbers in the range 2.5 to 3.5 indicated a stratified regime.

The predictor network performance for training and testing data can be seen in Figure 9.
This figure displays four graphs fir the f fitting, regression, error, and error histogram. In
the fitting diagram, the optimal output and the output predicted by the neural network
are plotted on a diagram (obviously, the greater the compatibility of these two graphs,
the higher the accuracy of the network). In the regression diagram, the network output
is displayed as black circles and the desired output is displayed as a blue line. The error
diagram shows the difference between the network output data and the desired data. In
addition, the error histogram shows the error scatter. In addition, four error criteria, namely
mean square error (MSE), RMSE, mean absolute error (MAE), and mean relative error
(MRE), were calculated to calculate the error rate of this network as follows:
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A confusion matrix was implemented to represent the performance of the classifier
network. This matrix can be seen for both the training and testing datasets in Figure 8,
which shows 100% accuracy of the trained network.
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The specifications and accuracy of the trained networks can be seen in Table 1.

MRE% = 100 × 1
N

N

∑
j=1

∣∣∣∣∣Xj(Exp)− Xj(Pred)
Xj(Pred)

∣∣∣∣∣ (5)
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RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(6)

MSE =
∑N

j=1
(
Xj(Exp)− Xj(Pred)

)2

N
(7)

MAE% =
1
N

N

∑
j=1

∣∣Xj(Exp)− Xj(Pred)
∣∣ (8)

where N is the number of data, and X (Exp) and X (Pred) stand for the experimental and
predicted (ANN) values, respectively.

Table 1. Specifications of the designed networks.

Predictor Network Classifier Network

Goal of MSE 0 0
RBF spread 5 4

Number of neuron in hidden layer 38 43

CalculCalculated MSE Train data Test data Train data Test data
3.36 6.015 0 0

Calculated RMSE 1.83 2.45 0 0
Calculated MAE 1.57 1.72 0 0

Calculated MRE% 5.86 5.16 0 0

6. Conclusions

In the present investigation, an attempt was made to present a manner for predicting
the volume percentage and flow pattern in scaled oil pipelines based on a non-invasive
method with a creative structure based on gamma radiation. In this regard, using the Monte
Carlo code, a dual-energy source was simulated on one side of the oil transfer pipe and a
detector on the other side. This process was performed to simulate different flow regimes in
different volume percentages, as well as to model the thickness of the scale inside the tube.
The feature extraction routine in the frequency domain, after all the simulations and data
collection, was used to better decipher the collected data. The extracted features, which
included the amplitude of the first to fourth dominant frequencies, were considered as
neural network inputs. The prediction of volume percentage with RMSE less than 1.83 and
fully classifying flow regimes were the results of the two designed neural networks. The
number of detectors was decreased to one, resulting in a simplified system and reduced
costs. This reduction was due to feature extraction method, which is an advantage over
previous works. The results of this investigation show that the proposed process can be
used in oil and petrochemical industries to measure the volume percentages and detect the
fluid flow regimes.
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