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Abstract: Microgrids have been proposed as a solution to the growing deterioration of traditional
electrical power systems and the energy transition towards renewable sources. One of the most
important aspects of the efficient operation of a microgrid is its topology, that is, how the components
are connected. Some papers have studied microgrid topologies; however, these studies do not
perform an exhaustive analysis of the types of topologies, their applications, characteristics, or
technical advantages and disadvantages. The contribution of this paper is the integration of the most
important functional properties of microgrid topologies in terms of reliability, efficiency, structure,
costs, and control methods. The study analyzes 21 topologies divided into six classifications with
their respective sub-classifications. The analysis was based on the characteristics of the current (AC
or DC), the control mechanisms, the transition between the operating modes, and the operating
costs. As a result of the evaluation, it was evidenced that SST-based completely isolated coupled

fl:eégtfgsr AC topologies, completely isolated two-stage AC decoupled, and multiple microgrids show the best
Citation: Cabana-Jiménez, K.; performances. In contrast, the use of two-stage and three-stage partially isolated AC decoupled
Candelo-Becerra, J.E.; Sousa Santos, topologies is not recommended because of their high operating cost and low efficiency and reliability.
V. Comprehensive Analysis of
Microgrids Configurations and Keywords: distributed generation; electrical power system microgrid; network topology; renew-
Topologies. Sustainability 2022, 14, able energy
1056. https://doi.org/10.3390/
su14031056

Academic Editors: Manuel Alcazar
Ortega and Carlos Vargas-Salgado 1. Introduction

Traditional electric power systems (EPS) are characterized by supplying energy to
users from centralized generation systems. Currently, these systems are in crisis due to the
predominant use of fossil fuels that cause environmental problems. Another problem in
these systems is that the power supplies are located far from the demand centers, causing
energy and economic losses [1]. Additionally, the long distances between the generation
and consumption centers, the obsolescence of EPS elements, and the growth of electricity
demand have increased energy quality problems [2,3]. As a solution to these problems,
EPS have recently been divided into a small distributed network, known as a microgrid
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MG) [4].

MGs have been defined in various ways by specialized literature. The IEEE Std
2030.8-2018 standard defines an MG as the interconnection of a set of distributed energy
resources (DER) and loads that act as a particular controllable entity concerning the EPS [5].
This article is an open access article  Axccording to the IEC TS 62898-1:2017 standard, an MG is an electrical system with energy
distributed under the terms and  resources and loads that act as a controllable entity, able of operating in an island or
conditions of the Creative Commons ~ EPS-connected mode [6]. In [7], the authors defined an MG as a small-scale controlled
Attribution (CC BY) license (https://  €nergy system that can operate in island mode or be connected to the EPS in a defined area.
creativecommons.org/ licenses /by / Despite the different descriptions, definitions agree on the characteristics of their modes of
40/). operation [8].
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MGs have become an option to reduce dependency between consumption centers and
EPS [1]. According to [9-11], MGs can export and import energy from the EPS and to the
EPS using renewable energy sources.

It is expected that in the short- and medium-term the number of MGs may increase due
to benefits such as improving power quality and supplying local power when EPS power
outages occur [12-14]. However, challenges are posed for MGs due to their bi-directional
power flows, EPS structure, configuration type, classification, location, and the varying
characteristics of some distributed generation units [15,16].

An MG may change according to their topology and configuration [17]. Connection or
disconnection of the DER produces different topologies that may cause variations in the
current directions and limits [18,19]. Additionally, improper installation and intermittent
behavior of DERs may produce some problems related to frequency variation, voltage
instability, power losses increasing, and active and reactive power imbalance. Therefore, a
control method that guarantees efficient and safe power transfer is essential [20].

Due to the importance of MGs in the current context of changes in EPS, several
researchers have conducted studies on their evolution and challenges. In [2], hybrid MGs
based on the interconnection of the current (DC or AC) networks and the EPS were reviewed.
However, AC and DC topologies were not considered, nor were selection suggestions.
In [21], a system of multiple interconnected hybrid MGs was studied; however, it was not
detailed in the characteristics of the topology but in the structure used.

In [22], the authors focused on the obstacles to implementing DC MGs, such as
standardization and protection schemes. The study argued that before moving towards
protection challenges, it is necessary to understand the architecture of the DC MG. The
authors briefly described some DC MG topologies with their advantages and disadvantages.
In the study presented in [12], three topologies of MGs were studied that intend to adapt to
the marine environment, selecting the most suitable one in a land-sea relay fishing net. In
both studies, a limited number of topologies were analyzed.

In [23], MG models and strategies based on four dimensions were assessed: goals and
modeling metrics, resilience scenarios, modeling approaches, and strategies and topologies.
The network topologies used in each dimension were: (a) MGs as virtual feeders for global
resilience, (b) dynamic formation of MGs for global resilience, (c) MGs in island mode
for local resilience, and (d) MGs for local resilience. These dimensions only represent the
centralized control method; therefore, it did not delve into other types of topologies.

Although the selection of the MG topology is one of the most significant aspects for
the efficient incorporation of DER in EPS, studies on the subject are based on diverse and
limited criteria that do not allow a comprehensive analysis of the types of topologies, their
applications, characteristics, or technical advantages and disadvantages.

Due to the limited and scattered information reported on the main characteristics of
MG topologies, this article aims to analyze and compare the main topologies presented in
various studies. The evaluation is based on the characteristics of the current (AC or DC),
the control mechanisms, the transition between the operating modes, and the operating
costs, allowing for the assessment of the technical advantages and disadvantages of each
topology. This study intended to contribute to establishing criteria that facilitate the design
and selection of the appropriate topologies for EPS expansion projects that include the
incorporation of MGs with DER.

The contribution of this paper is the integration of the most important functional
properties of MG topologies in terms of reliability, efficiency, structure, costs, and control
methods. The research carried out is relevant because MGs are part of possible solutions for
the energy transition towards renewable sources and to reverse the growing deterioration
of EPS.

This paper is organized as follows. Section 2 describes the classifications of MGs and
operation modes. Section 3 discusses the topologies of MGs, classifications, advantages,
disadvantages, and finally, the conclusion is presented according to the results.
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2. Classification of MGs

An MG is classified as a controllable entity made up of loads and DER that can operate
connected to the electricity EPS or in island mode under defined electrical limits [24].
DERs can be integrated into wind generators, photovoltaic (PV) panels, microturbines,
and other low-power generators, which are located close to the users [25]. Due to the
reduction in prices and the increase in the energy conversion efficiency of DERs, developed
countries have reached a certain level of mass use of these resources. However, in many less
developed countries, difficulties as high electricity prices, obsolescence of EPS elements,
and the lack of attractive economic models have prevented the massive penetration of
DERs into electricity systems [26].

The general structure of an MG is represented in Figure 1. This network is connected
to the EPS through a point of common coupling (PCC) to exchange energy or operate in
island mode in case of maintenance or unintentional island mode scenarios [27].
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Figure 1. General scheme of an MG [27].

Figure 1 shows that an MG can be represented as a system that integrates a set of loads,
DERs units, and energy storage systems (ESS) that allow storing and delivering power. In
an MG, the generation units can be selected according to the primary energy available. The
main types of generation are PV, wind, hydro, diesel, and hybrid energy [28].

Electricity production based on renewable energies increased from 10% in 2010 to
20% in 2020. This is due to the reduction in the costs of solar and wind technologies and
the development of government policies aimed at encouraging the use of these forms of
generation [29,30].

Wind generation has not only been proven to be highly profitable, with low operating
costs, but it is also adaptable to various places because of abundant and free resources
of wind.

Solar generation represents an unlimited resource, which does not generate noise to
the population that is near the power plants. It is also highly profitable, and PV cells have
also shown a strong increase in efficiency, which allows for greater transformer capacity.
Another advantage is that these systems do not have moving parts, nor do they require
high maintenance costs [31,32].

MGs have three operation modes. The first mode is connected to the EPS, which
handles better stability issues and electricity costs. The second mode is disconnected from
the EPS, which converts the EPS into a small grid that supplies the load in emergency or
island mode. The third mode is MG shutdown, which is a network security measure to
avoid damages to elements [33]. These modes of operation are represented in Figure 2.
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Figure 2. Operation modes of an MG [33].

According to Figure 2, three control mechanisms are used to change from one operation
mode to another. The first control mechanism is disconnection from the EPS, in which the
MG can turn the operation to island mode. The second control mechanism is connection
to the EPS, which allows the MG to operate with the EPS. Finally, the third mechanism is
shutdown control, which turns off the MG and stops operation [33,34].

MGs can be classified according to the criteria shown in Figure 3 considering the
electricity demand, the capacity of the system, and the type of circuit (AC/DC) [1,33,35].
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Figure 3. Classification of MGs [33].

According to Figure 3, by considering the electricity demand, MGs can be classified
into three types. The first type is the simple MG, which has a single type of distributed
generation (DG). The second type is the multi-DG MG composed of several simple MGs.
The third type is the utility MG, where loads are prioritized based on user reliability
requirements.

The classification according to capacity refers to the type of loads, the power demand,
and the area that the MG must supply. According to its extension, the size of the MG
defines the availability of the equipment, the operation with the EPS, and the installation
and maintenance costs [8]. Table 1 shows the types of MGs according to their capacity.
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Table 1. Classification of MGs according to capacity [33].

Type Capacity (MW)
Simple MG Less than 2
Corporate MG Between 2 and 5
Feeder area MG Between 5 and 20
Substation area MG Greater than 20

Depending on the loads in remote areas (island,

Independent MG . .
mountainous area, or a village).

According to the type of circuit, the MGs can be classified as AC, DC, and hybrid
MGs [36]. This is the most used classification because it considers characteristics of the
electric current that is generated, distributed, and consumed [37]. A DC MG has the
advantages of storage system integration, higher efficiency because of elimination of DG
synchronization, and fewer AC-DC-AC conversions. AC MGs have had a predominance
over DC MGs because of the easy transformation of voltage levels with low-frequency
transformers, protection, and fault handling. However, AC MGs face challenges with DG
timing and reactive power control [38]. On the other hand, studies indicate that 30% of
the energy produced in AC is transferred to the DC supply or passes through at least
one converter before it is used, a situation that, together with advances in semiconductor
technology, allows us to reconsider the implementation of DC MGs [38].

3. MGs Topologies

During the design of an MG, the components and physical arrangement must be
considered to achieve a proper transition between the different modes of operation. The
connection of the loads, the microgenerators, and the storage elements, require rigor-
ous analysis to obtain the operation and the desired efficiency by the network operator
and the user. The way to interconnect all the elements of the network is known as MG
topology [39,40].

Topologies can be selected considering the following characteristics [34,41,42]:
Control mechanisms of the dynamic characteristics of the DGs resources;

Voltage regulation and frequency for power balance both in island mode and connected
to the EPS;

The transition between operation modes to detect situations that cause changes;
Economic dispatch to share the load between different DGs;

Renewable sources are available;

Minimum impact on the distribution network;

Coordination between DERs.

The principal classifications of MG topologies are shown in Figure 4. Depending
on the type of power supplied, MG topologies are divided into DC, AC, hybrid, and
3-NET [21,43,44]. According to its configuration, MGs are classified into cascade-type and
parallel-type MGs.

AC MG systems use the same operating mechanisms as traditional AC power systems,
such as frequency, voltage levels, and protection features [45]. DC MGs have been imple-
mented in recent times because of the development of power electronics technology that
has increased DC loads and power converters for DC voltage transformation at different
levels for different applications [46]. At present, DC MG systems are implemented in
special applications such as aviation, automotive, marine, and manufacturing industries;
however, an expansion in residential distribution systems is planned [47,48].

Hybrid MG topologies, as seen in Figure 5, can be classified as AC coupling, AC
decoupling, and multiple MGs [44].
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Figure 5. Hybrid topologies of MG [2,21,43].

In the coupled AC topology, the connection to the EPS is made through an AC MG. In
the decoupled AC topology, there is not a direct connection between the utility EPS and the
AC MG [2]; therefore, it is more expensive. A decoupled MG, in general, is more expensive
than coupled MG because higher capacity AC-DC converters are needed [2,49,50]. The
multiple MGs’ topology corresponds to a network of several MGs AC or DC that are
connected to the high-voltage network and other MGs.

The 3-Net MG topology consists of the union of three different types of networks: a
high-quality DC network, a low-quality DC network, and an AC network. This topology
makes it possible to supply energy in a single MG to elements of different levels of sensitiv-
ity concerning changes in the power quality parameters. An example is rural networks that
may have loads such as computers, which are very sensitive to voltage disturbances, along
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with loads such as water heaters, which are not sensitive to these disturbances. Although
3-Net MGs have high reliability, they represent a higher cost in their development and
implementation [39].

According to the configuration, MG topologies can be divided into two categories:
parallel type and cascade type. The parallel type has been the subject of numerous investi-
gations and is used in applications that include state-of-charge (SOC) balance for storage
systems and obtaining optimal economic distribution schemes for DGs [43]. They also
include voltage drop control with a maximum power point tracking (MPPT) regulator of
PV systems and an optimal DG distribution scheme.

The cascade type is recent and has a relevant function in applications that require the
reliable use of DER at a high-voltage level [51]. Furthermore, it is practical in MGs that operate
in island mode, where the energy balance between all modules is fundamental [51-53].

3.1. Control Structures of DC and AC MGs

According to the control structures, the AC and DC MGs are divided into two groups
as can be seen in Figure 6. The first group is the control methods, and the second group is
the load-sharing techniques [54,55].
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Figure 6. Topologies of AC and DC MGs [33].

In the control structures, the power electronic converters are essential components
because they must ensure the adequate supply and distribution of the electrical load
without affecting the correct operation of the system [55,56].

3.1.1. Control Method
PV Systems

In PV systems the control methods depend on the type of configuration (i.e., central-
ized inverter, inverter chain, and microinverter configuration).

Centralized Inverter Configuration

The centralized inverter configuration, presented in Figure 7, has one of the highest
efficiencies of all PV systems (over 98%). This configuration is estimated to be used in 44%
of PV systems installed in the commercial and utility sectors.
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Bus AC

Figure 7. Centralized inverter configuration [55,56].

This configuration is used mainly in residential as well as in small and medium
commercial applications offering reliability [57-59]. Additionally, both the implementation
and maintenance costs are the lowest of the PV configuration types [57-59]. However,
damage to the inverter stops the entire system, so constant maintenance is necessary, and
available inverters are required for replacement [57-59]. Some applications using this
topology for AC and DC MGs were assessed in [60-62].

Inverter Chain Configuration

The inverter chain represented in Figure 8 has high efficiency (approx. 98%), making
it highly profitable. It has power ranges of around 150 kW peak and is estimated to have
the highest percentage of use in the market [57-59].

Bus AC ”. BEB
K|
HHyHHEGEHH

- B

<

<

Figure 8. Inverter chains [55,56].

This configuration is reliable, which allows it to be used in residential and some
commercial applications. Because there are different inverter cell groupings, the damage of
one does not prevent the system from generating power continually [57-59]. However, this
configuration is expensive because it requires an inverter for each group of cells, increasing
maintenance costs [57-59]. Applications with this configuration were studied in [63-65].

Microinverter Configuration

The microinverter configuration, presented in Figure 9, is the least used. In this
configuration, the inverter is connected directly to a battery and converts DC to AC.
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Figure 9. Microinverter [55,56].

The batteries are charged by PV cells and are optimized to be used with a single PV
panel [57-59]. In this configuration, installation costs are low, and parts are easy to replace,
ensuring continuous use and fast maintenance. In addition, the panels are independent,
which means that the failure of one does not affect the total system [57-59]. However, it does
not have galvanic isolation between the AC-DC connection, affecting reliability between
users [57-59]. In [66,67] various implementations of this architecture were assessed.

Wind Systems

In wind systems, the control methods depend on the technology of the generator used
(i.e., induction generator, double-winding induction generator, synchronous generator, and
permanent-magnet synchronous generator).

Induction Generator

The induction generator configuration (see Figure 10) can be divided into cage rotor
and wound rotor. In addition, it can present multiple configurations according to the use of
the loads, such as capacitor banks, frequency converters, and starters. This configuration
generates electricity, converting the mechanical energy of the movement of the blades into
a magnetic field [31,58].

Induction
generator

-

G o -

Figure 10. Induction generator [55,56].

This configuration is built robustly, ensuring its prolonged use. Generally, it does not
require additional elements and can easily be used in parallel configurations in spaces
already used, such as farms and vacant lots [31,58]. However, this configuration has moving
parts that require constant maintenance, take up a lot of space, and generally require high
starting torque. Additionally, the power factor of this generator can be reduced to low
values [31,58]. This topology was used in [68,69].
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Double-Winding Induction Generator

The double-winding induction generator is characterized by having a winding that
covers the rotor. In this configuration, represented in Figure 11, the stator fulfills the
function of controlling the power flow, while the power is controlled from the connection
to the rotor [56,70].

Ldadadedodel Radadadal ] " A
1 1
: Double : P
- winding :
: induction :
+ \\generator // |
i i
L el el
o AY) Grid

Figure 11. Induction generator [55,56].

This configuration allows greater power generation without overheating and allows
the stator to be connected directly to the EPS [56,70]. However, they require additional
equipment to control the frequency of the network [56,70].

Synchronous Generator

This configuration, as shown in Figure 12, comprises a fixed stator with a three-phase
wound and a rotor with a magnetic field. They also have multiple subdivisions based on
construction, excitation mode, and the parts used [70].

Synchronous e

generator AY

AY Grid

Figure 12. Synchronous generator [55,56].

The synchronous generator has a wide range of configurations, making it suitable
for multiple situations and locations. An example is the excitation mode, which can be
used as power from the EPS or through a capacitor bank. In [70], a comparative study
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was performed of each type of synchronous generator according to its subdivisions. The
disadvantage of this configuration depends on the selected construction. For example, if a
variable speed induction generator with a partial power converter is chosen, an energy loss
is produced due to the heat in its gears. In [70], an analysis was performed according to
its subdivision.

Permanent-Magnet Synchronous Generator

Figure 13 shows the permanent-magnet synchronous generator configuration.

Permanent
magnet
synchronous
generator

Uncontroller
rectifier

Figure 13. Permanent-magnet synchronous generator [55,56].

This configuration is generally used in offshore wind turbines [71]. Its operating
principle is like the synchronous generators, in terms of the dependence of the speed on
the energy consumption of the EPS. Due to their construction characteristics, they generate
a large amount of power [72,73]. However, its use is limited because it has more complex
control systems and a high maintenance cost [72,73].

3.1.2. Load Sharing Techniques

Load sharing techniques are divided according to the type of control (i.e., centralized
control, master and slave control, average load sharing control, and ring control).

Centralized control

In centralized control, the loads and DG units connect via a centralized connection or
centralized DC bus. In this configuration presented in Figure 14, the main or centralized
control has two functions: to link the MG with the user or with the EPS [74,75].

This configuration presents high efficiency at low costs and only requires a converter
for connection to the EPS. Additionally, the electronic elements used are simple, and wiring
is cheap and simple [74,75]. However, as the principal connection axis is the centralized
control, a failure could isolate the MG and convert it to an inoperable network. Additionally,
it is very susceptible to a bad network design [74,75].

In [76], a model to a mini-grid project in sub-Saharan Africa was implemented using
a centralized control architecture considering multiple connected nodes to optimize the
resource, size, nodal location, and generation dispatch. On the other hand, in [77], the
centralized control strategy for AC MG connected to the EPS, taking into account the differ-
ent DGs, was developed. Other applications that use centralized control were discussed
in [78,79].
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Control 1 4—%—
Control 2 _%—

Figure 14. Centralized control [55,56].

Master and Slave Control

In the configuration shown in Figure 15, a voltage inverter works as master control
and adopts the reactive power control method (PQ). When the system works in island
mode, the inverter adopts the voltage—frequency control method (V/F) [54,80,81]. In this
configuration, the master unit can be classified into three subcategories: battery energy
storage system (BESS), DG, and a combination of BESS-DG [54,80,81]. This type of control
allows excellent energy performance and voltage recovery at the MG/EPS PCC [80,81].

Voltage Master =
reference control [~ | -\, 1

n — —- Load
:4' Control N y

Figure 15. Master—slave control [55,56].

According to Figure 15, the complete system depends on the master control. When
this mater control fails, the configuration stops working, requiring constant monitoring
and maintenance [80,81]. In [82], master-slave wave farm systems and control methods
were investigated.

Average Load Sharing Control

In the average load sharing control (see Figure 16), each inverter shares the load
regulation process. A common bus related to current is used to calculate the average of the
current. Each time a current cycle occurs, the system performs a new calculation to average
the load. It has two main configurations: single-inverter and parallel-inverter system [83].
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Figure 16. Average load sharing [55,56].

This configuration makes the system reliable due to its ability to distribute the control
actions among all inverters. Additionally, it also presents an optimal performance in the
current and voltage variables [83]. However, it can be affected by the line impedance effect,
producing some power losses [83].

In [84], a distributed control scheme, with current sharing and average voltage regu-
lation in DC MGs, was proposed. The contribution is that the proposed control scheme
achieves average voltage regulation without the need for voltage measurements. On the
other hand, in [85,86] a hierarchical control strategy was used for DC MGs with DG.

Ring Control

As can be seen in Figure 17, in this strategy control, a loop is created where a module
with its inverter is connected in series to another inverter, using a bus that controls the
voltage output. Additionally, a connection is made between the last and the first modules
to complete the loop [83].

:i:=======:========:===:!'
n — H H
" Control 1 —_ il Load | ¢
H a vl I :l
" " : H
:: ’:::::::::::::=='::
== = o]
n H H
Control 2 — o 5 H
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" reference . : i
n . H
==
:: " : :
" !:::::::::::::::!‘
n H H
i f— : H
Control N - : H
== A=)
n n . .
n n
n n

Figure 17. Ring control [55,56].

This configuration presents a good response to changes in the system, and it allows
for the obtainment of a stable output voltage [83]. However, if an inverter fails, the perfor-
mance of the system is compromised, leading to the possibility of completely disabling
the network. It also presents limitations in the electrical capacity [83,87]. A ring DC MG
control architecture was used to manage load balancing and power distribution in [88-90].

3.2. Hybrid MG Topologies

Hybrid MG topologies are divided into AC coupled, AC decoupled, and multiple
MGs with their respective subcategories. Each of these topologies is discussed below.
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3.2.1. Coupled AC

AC coupled MGs can have partially isolated or completely isolated configurations.
The characteristics of each configuration are described below.

Partially Isolated Configuration

This configuration is generally used to interconnect several asynchronous AC net-
works. The most typical applications of these topologies are large-scale PV and wind farms.
In this configuration (see Figure 18) the AC MG is connected to the EPS in normal operation
mode, and low-capacity AC-DC converters are used to handle the energy flow between the
EPS and the DC network [2,49,50].

LVAC
DC netw. MVAC N
MVDC }E
MVDC
~ L Ve
AC netw. -
LVAC
Grid
MVAC

Figure 18. Partially isolated configuration [2].

The AC-DC converter that connects the DC network to the EPS is not behind the
transformer; therefore, the nominal power of the transformer reduces because it must
conduct the flow of energy from the AC network. Therefore, galvanic isolation does not
exist for the DC network unless a second transformer is added [2]. In this configuration,
the protection of devices for DC medium voltage (MV) networks is unusual, and their cost
is expensive, so it is not often used because MV networks DC are rarely used in MGs [2].

Completely Isolated Configuration

This configuration presented in Figure 19 is divided into three main stages and is
more common than the partially isolated configuration. The micro-source stage is the
first one, where DG units, ESS, and the DC link are connected. The second one is the
combined source, where the inverter and the AC link are located to connect them. Finally,
the third stage is the MG, where the low-voltage interconnections and the EPS are carried
out [2,49,50].

LVAC
AC netw. \ " }— DC netw. MV.& }l{ »
LVAC = LVDC _%_L\’Dc

Figure 19. Completely isolated configuration [2].

This configuration compared to conventional configurations strengthens the reliability
and flexibility of the distribution network. In addition, its plug-and-play-based system
benefits the incorporation of next-generation, charging, or storage devices [2].

A transformer between MGs and the EPS is used at the PCC. It supplies galvanic isola-
tion to the MG and decreases the voltage to create AC and DC low-voltage networks [2].
Although this configuration is suitable for incorporating DG units in the network, many con-
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verters are required to connect the DG AC units to the DC network. However, connecting
DG units to the network would improve the efficiency of the configuration [2].

3.2.2. Decouple AC

AC decoupled MGs are divided into the following configurations: two-stage com-
pletely isolated, two-stage partially isolated, and three-stage partially isolated configuration.
The characteristics of each configuration are described below.

Two-Stage Completely Isolated Configuration

In this configuration, shown in Figure 20, a solid-state transformer (SST) is at the input,
supplying galvanic isolation to the MG.

[~

LvDC
MVAC :ﬂ{ ", a
a DC netw. AC netw.
= LvDC LVAC I LVAC

Grid
MVAC

Figure 20. Two-stage completely isolated configuration [2].

This configuration avoids the stability or timing problems that occur when DG units
are integrated into the traditional EPS. Additionally, the system works securely with
several DG units [2]. However, tight control of interface converters can affect system
stability [2,49,50].

Two-Stage Partially Isolated Configuration

The two-stage partially isolated topology (see Figure 21) (as the AC coupled partially
isolated topology), is less usual than the other topologies because the protection of the
devices for the DC MV network is not as usual, and their cost is relatively high.

]
R MV&@ —
\ ~ DC netw. AC netw. -
= MVDC LVAC LVAC
1=
Grid

MVAC

Figure 21. Two-stage partially isolated configuration [2].

This topology presents a simple perspective on the generation of the DC MG regarding
the conversion stages. The SST, which is placed in the AC LV network, uniquely guarantees
the isolation of this network [2,49,50].

Three-Stage Partially Isolated Configuration

This configuration, represented in Figure 22, provides DC MV and LV networks as
well as an AC LV network [2]. Additionally, it employs a DC MT network as the two-stage
partially isolated configuration.
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YW1 loc netw. DC netw. _@_ AC netw.
=" mvbc LvdC LVAC
Grid
MVAC

MVAC | N,

MV DC

= ~ ) LVDC
~ i =

= LVAC
Y

Figure 22. Three-stage partially isolated configuration [2].

The usage of a medium-frequency (MF) transformer in the DC-DC stage supplies gal-
vanic isolation of the LV side of the MG and the size of the devices is extremely reduced [2].
Moreover, the use of an MF transformer makes it suitable for small- or large-scale integra-
tion of DG units, ESS, or loads. Nevertheless, it must improve reliability and efficiency
while it reduces price and size devices [2,49,50].

3.2.3. Multiple MGs

Multiple MGs are autonomous, independently managed, and operated systems that
allow the use of DG units and loads efficiently. Each MG may have some functions or
capacity such as excess renewable generation, which could benefit other MGs in the same
area and at different times [91].

AC—DC
Figure 23 shows the structure of multiple MGs AC and DC.

n, DC - n, DC
= netw. — netw.
~ AC < n, DC
netw. — netw.
Grid Grid
AC AC
netw. netw.

Figure 23. Multiple AC-DC MGs [21,43].

Neighboring MGs connected can increase their performance in backup, reliability,
economic dispatch, and power quality [43]. However, the energy management of multiple
MGs system is a complex problem since the DG units within each multiple MG, the energy
exchange between the multiple MGs, and the energy exchange between the EPS and the
MGs must be coordinated. The development of multiple MG systems is limited by the
current energy management capacity [54,91].
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Based on SST

The configuration based on SST (see Figure 24) uses an SST that acts as a power router,
which can perform all the functions of a conventional transformer [43].

‘ SST
N 4 }l{ | | bc =/1_| Ac
| — netw. [ |/ N\ netw.

Grid
Figure 24. Based on SST [43].

This configuration can coordinate the power exchange between neighboring AC
and DC MGs. It offers high-power quality and allows a reduction in the number of
faults [43,92,93]. However, the three-phase unbalance problem can cause adverse impacts
on the power quality of the SST [92,93]. Applications that integrated SSTs and DG were
studied in [94-96].

3.3. 3-NET

This configuration is based on the union of three different networks, as seen in Fig-
ure 25. The first one is a high-quality DC network, the second one is a low-quality DC
network, and the third one is an AC network connected to the EPS through a PCC. This
configuration is essential for situations where there are constant interruptions and concerns
about power quality [39,97].

DC
E fl netw.
High quality
DC

AC
netw.

DC
E zl netw.
Low quality
DC

Figure 25. 3-NET [39].

The reliability offered by this configuration is very high. In addition, many loads can
be connected to any of the types of networks. For example, it would be feasible to connect
a heater to the low-quality DC network and sensitive electronic devices to the high-quality
DC network. However, the design and implementation costs of this network are high, and
high power losses can be presented [39,97].

Currently, it is necessary to develop flexible MGs capable of operating both connected
to the EPS and in island mode. Therefore, studies about MG topologies, architectures,
planning, and configurations are necessary. A challenge of this configuration is the need to
integrate new technologies of power electronics, telecommunications, generators, and ESS,
among others [47].
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3.4. Classification by Configuration

The topologies according to their configuration can be classified as cascade and parallel
types. The characteristics of each type are discussed below.

3.4.1. Cascade Type

The cascade-type configuration [98,99], also known as series-type configuration, is
observed in Figure 26 [100]. This configuration offers an efficient solution using DG in high
voltage. It also allows a high-quality power supply due to frequency regulation [52,53].
Generally, most ESS are located in a localized area, where centralized control is in common
use [81].

AC
netw.

AC

netw.
PCC

Grid

netw.

Figure 26. Cascade type [100].

This configuration allows easy increasing the voltage without the use of expensive
and huge transformers [51]. One stage for power conversion is required to integrate the
low-voltage devices into the MG [53,101]. It is easy and flexible to implement, especially
for connecting PV systems to the EPS, MGs, and battery management [101,102]. However,
increasing the number of cascaded MGs makes it more difficult to install the ESS in a local-
ized area. The cost of communication through a sophisticated and expensive centralized
control depends on a large bandwidth which becomes a complex situation [51].

3.4.2. Parallel Type

The parallel-type configuration [103,104] (see Figure 27) uses droop control, does not
require physical communication links, and is easy to implement [62]. However, all local
controllers need to communicate with a central controller, which weakens the reliability
and scalability of the system if adequate control strategies are not adopted [53,105].

When the MG is connected to the EPS, DG units are controlled as current sources to
maintain operating with the EPS [53]. In island mode, the decentralized control methods,
which mainly include droop control and its variants, are used to achieve frequency syn-
chronization and power-sharing [53]. Additionally, it allows increasing the power capacity
and efficiency of the system and reduces the ripple of the output current [105]. However, a
two-stage DC/AC power conversion is required to integrate the low-voltage devices into
the MG [53,101]. The accuracy of the power distribution is very sensitive to the output
impedance of the inverters. The harmonic power in the case of non-linear loads is poorly
compensated, and not connecting the inverters at the same time to the bus affects the power
distribution [106].
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\ AC

netw.

AC

PCC

Grid

netw.

AC

netw.

Figure 27. Parallel type [53,105].

3.5. Summary of the MG Characteristics
Table 2 summarizes each topology assessed, references, advantages, disadvantages,

and application.

Table 2. Summary of the MG characteristics.

Topology Advantage Disadvantage Application Reference
Reliability. Depends on the power _
Centralized inverter Widely used. inverter. Commercial: MV and [57-62,83]
Low cost. Constant maintenance
Efficiency. Residential
Inverter chain Peak power. High cost. esl .eIT 1al. [57-59,63-65,83]
R Commercial: LV, MV.
Reliability.
Maintenance. .. . . .
Microinverter Cost. Non-galvanic isolation Residential. [57-59,66,67,83]

Independent panels.

in ac-dc connection

Commercial: LV.

Constant maintenance.

Robust. ; .
. . Installation area. High and low power.
Induction generator Eﬁ‘gﬁggﬁﬁfgﬁ%‘gﬁggﬁ Starting torque is Variable speed [31,58,68,69]
Installation area required. generators.
' Power factor
e Power. High and low power.
. lgou:?le wmdmi; No overheating. Stator l\ITH otad dﬁp;endency. Variable speed [56,70]
induction generator connection. etwork frequency generators.
Svnchronous generator I_Vl\lfig;eflzﬁbélgg’ Subject to the generator Industrial. [56,70]
Y. g con ﬁguratgions selected Generating stations. ’
Permanent-magnet Power Control system’s Offshore wind turbines [71-73]
synchronous generator ’ maintenance cost Generator stations -
Efgglsfint. Depends on the Residential.
Centralized control Use one pow er converter converter Susceptible Commercial: LV and [74-79]
’ to design. MV.

Simple electronics.




Sustainability 2022, 14, 1056

20 of 25

Table 2. Cont.

Topology Advantage Disadvantage Application Reference
Constant monitoring. Commercial: LV and

Performance. Constant maintenance. HV.

Master-slave control Voltage in the PCC. Depends on the master Power storage in [54,80-82]

control. capacitors.
. Parallel power systems.

Average load sharing Reliability. Impedance effect. Power storage in [83-86]

Performance Power losses.

capacitors.

Response time.

Electrical capacity.
A faulty inverter

Parallel power systems.
Power storage in

Ring control (3C) sﬁgﬁ; disables the network capacitors. [83,87-90,107]
’ completely. Uninterrupted systems.
Interconnection of
Partially isolated . Uncommon. several AC networks.
coupled AC Size of the power converter Costs. Remote or large-scale [2,49,50]
wind or PV farms.
Flexibility.
Completely isolated Reliability. Number of power Integration of DG units [2,49,50]
coupled AC Plug-and-play system. converters into the EPS. T
Galvanic isolation.
Galvanic isolation.
Two-stage completely Stability. Regulation of power Integration of DG units [2,49,50]
isolated decouple AC Synchronization converters. into the ESPS 7
Reliability.
Two-stage partially . Uncommon. Integration of DG units
isolated decouple AC SST conversion stages Costs. into the EPS. [2,49,501
MYV, LV networks.
Three-stage partially Efficiency. Small- or large-scale
isolated decouple AC ME transformer. Reliability. integration of DG, ESS, [2,49,50]
or loads.
Power backup. Energy management.
Multiple AC—DC Reliability. Energy exchange LV networks [54,91]
Power quality. between MGs.

Power quality.
The number of failures.

Integration of DG units

SST The power is exchanged Three-phase imbalance. into the EPS [43,54,91-96]
between neighboring '
AC-DC MGs.
Efficiency. Cost Residential and
3-NET Reliability. ) Commercial: LV and [39,47,97]
The number of loads. Loss of power demand. MV networks.
High-voltage
s lications.
Electricity supply. The number of MGs. app
Cascade type Frequency control CStorage pn{gs : Ener%y storage [51-53,81,98-102]
implementation. ommunication. applications.
imp Bandwidth. PV applications.
Battery management.
Power capacity.
Efficiency. Fre
. quency B
Parallel type The rlppcl(fl frfe L};e output Power share. synchronization. [53,101,103-106]
Reliability.

During the selection of the topologies, the mechanisms to control the dynamic charac-
teristics of the DG resources, the frequency and voltage regulation, the energy balance, the
transition between the operation modes, and the economic dispatch must be considered.
These characteristics allow the EPS to supply the energy demanded by the loads in a reliable
and coordinated manner with minimal impact on the distribution networks.

Based on the analysis performed of the topologies, it can be inferred that hybrid MG
topologies, such as SST-based completely isolated coupled AC, two-stage completely iso-
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lated decoupled AC, and multi-MGs, have proven to be feasible to operate in combination
with the EPS. In contrast, two- and three-stage partially isolated AC decoupled topologies
still have a challenge in terms of the need to reduce operating costs, and improve efficiency
and reliability, for this reason, this topology is rarely used.

4. Conclusions

Currently, EPS face challenges due to the obsolescence of their components and
the need to carry out an energy transition towards renewable sources. One way to face
these problems has been the development of MGs that promise to be a good alternative
solution due to their flexibility, efficiency, and capacity for dynamic operation in conjunction
with EPS.

The form of connection of the energy sources and the loads, as well as the possible
connection alternatives between the MGs themselves and the EPS, constitute one of the
most important aspects in the operation of the MGs. These forms of connection are called
topologies, and it is one of the most relevant research fields within the current conjuncture
of the development of new forms of management of EPS.

In this study, 21 MG topologies were analyzed, taking as reference the characteristics
of the current (AC or DC), the control mechanisms, the transition between the operating
modes, and the operating costs.

As a result of the evaluation, it was evidenced that the use of hybrid MG topologies is
recommended, specifically, the SST-based completely isolated coupled AC, the two-stage
completely isolated decoupled AC, and multiple MGs. These topologies have the advantage
that they are feasible for the incorporation of DG units in the EPS and for improving the
flexibility and reliability of the distribution network.

It was also observed that two -and three-stage partially isolated AC decoupled topolo-
gies have high operating costs and have low efficiency and reliability; therefore, they should
continue to be improved.
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