
Journal of Neuroendocrinology. 2021;00:e13022.	 ﻿	   |  1 of 14
https://doi.org/10.1111/jne.13022

wileyonlinelibrary.com/journal/jne

 

Received: 1 June 2021  |  Revised: 19 July 2021  |  Accepted: 26 July 2021
DOI: 10.1111/jne.13022  

I N V I T E D  R E V I E W

Allopregnanolone: The missing link to explain the effects of 
stress on tic exacerbation?

Marco Bortolato1,2  |   Barbara J. Coffey2,3 |   Vilma Gabbay2,4 |   Simona Scheggi5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.

1Department of Pharmacology and 
Toxicology, College of Pharmacy, University 
of Utah, Salt Lake City, UT, USA
2Research Consortium on NeuroEndocrine 
Causes of Tics (ReConNECT)
3Department of Psychiatry and Behavioral 
Science, Miller School of Medicine, 
University of Miami, Miami, FL, USA
4Department of Psychiatry and Behavioral 
Sciences, Albert Einstein College of 
Medicine, Bronx, NY, USA
5Department of Molecular and 
Developmental Medicine, School of 
Medicine, University of Siena, Siena, Italy

Correspondence
Marco Bortolato, Department of 
Pharmacology and Toxicology, College of 
Pharmacy, University of Utah, L.S. Skaggs 
Hall, Room 3916, 30 S 2000 E Salt Lake City, 
UT 84112, USA.
Email: marco.bortolato@utah.edu

Simona Scheggi, Department of Molecular 
and Developmental Medicine, School of 
Medicine, University of Siena, Via Aldo 
Moro, 2, 53100 Siena, Italy.
Email: simona.scheggi@unisi.it

Funding information
NIH, Grant/Award Number: R21NS108722; 
NIH, Grant/Award Number: R21DA049530. 
Open Access Funding provided by Universita 
degli Studi di Siena within the CRUI-CARE 
Agreement. WOA Institution: Universita 
degli Studi di Siena. Blended DEAL: CARE.

Abstract
The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-one; AP) elicits plei-
otropic effects in the central nervous system, ranging from neuroprotective and anti-
inflammatory functions to the regulation of mood and emotional responses. Several 
lines of research show that the brain rapidly produces AP in response to acute stress 
to reduce the allostatic load and enhance coping. These effects not only are likely 
mediated by GABAA receptor activation but also result from the contributions of 
other mechanisms, such as the stimulation of membrane progesterone receptors. In 
keeping with this evidence, AP has been shown to exert rapid, potent antidepressant 
properties and has been recently approved for the therapy of moderate-to-severe 
postpartum depression. In addition to depression, emerging evidence points to the 
potential of AP as a therapy for other neuropsychiatric disorders, including anxiety, 
seizures, post-traumatic stress disorder and cognitive problems. Although this evi-
dence has spurred interest in further therapeutic applications of AP, some investi-
gations suggest that this neurosteroid may also be associated with adverse events 
in specific disorders. For example, our group has recently documented that AP in-
creases tic-like manifestations in several animal models of tic disorders; furthermore, 
our results indicate that inhibiting AP synthesis and signalling reduces the exacerba-
tion of tic severity associated with acute stress. Although the specific mechanisms 
of these effects remain partially elusive, our findings point to the possibility that the 
GABAergic activation by AP may also lead to disinhibitory effects, which could inter-
fere with the ability of patients to suppress their tics. Future studies will be necessary 
to verify whether these mechanisms may apply to other externalising manifestations, 
such as impulse-control problems and manic symptoms.
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1  | INTRODUC TION

The neurosteroid allopregnanolone (3α-hydroxy-5α-pregnan-20-
one; AP) is the product of a two-step biosynthetic process from 
progesterone: the first step, catalysed by the enzyme 5α-reductase 
(5αR), is the irreversible conversion of progesterone into 5α-
dihydro-progesterone (DHP); the second step, mediated by 3α-
hydroxysteroid oxidoreductase (3α-HSOR), is the reduction of DHP 
into AP1 (Figure 1).

This metabolic pathway is expressed in several brain areas im-
plicated in emotional regulation, including the cortex and limbic 
regions, underscoring the role of this neurosteroid in affective 
modulation. In addition to this mechanism, the same two enzymes 
catalyse the synthesis of other neurosteroids, such as tetrahydrode-
oxycorticosterone (3α,21-dihydroxy-5α-pregnan-20-one; THDOC) 
and 3α-androstanediol (5α-androstane-3α,17β-diol).2

The best-characterised mechanism of action of AP (as well as 
THDOC and 3α-androstanediol) is the activation of GABAA recep-
tor,3 a chloride ion channel consisting of five subunits (out of 19 dif-
ferent subtypes: six α, three β, three γ and three ρ subunits, and one 
each of ϵ, δ, θ and π subunits). AP binds to two highly conserved 
sites within GABAA receptors, localised within the transmembrane 
domains of α and β subunits, in a distinct position from the benzo-
diazepine site.4,5 The strength and duration of the action of AP is 
also influenced by the subunit composition of GABAA receptors. For 
example, AP enhances either the tonic or phasic inhibition mediated 
by these receptors, depending on the presence of δ or γ2 subunits, 
respectively.6-10 In addition to GABAA receptor subunit composition, 
the effects of AP vary depending on its concentrations. In the nano-
molar range, AP acts as a positive allosteric modulator by prolong-
ing spontaneous chloride currents.11,12 However, at concentrations 
higher than 10 μm (such as those that occur in the brain at the end 
of the pregnancy),13 AP acts as a GABAA receptor agonist, and its 
effect is sufficient to suppress excitatory neurotransmission.14

The mechanisms of action of AP are not limited to GABAA recep-
tors. For example, low concentrations of AP activate several mem-
brane progesterone receptors (mPRs).15 These G protein-coupled, 
cell-surface receptors are expressed in several brain regions, such as 
the limbic system, striatum, substantia nigra and cerebellum.16 The 
functional roles of mPRs are still poorly understood, although some 
of these receptors have been shown to influence GABAA receptor 
signalling, by affecting its trafficking17 or facilitating the phosphory-
lation of β3 subunits.18,19 Other mechanisms of action of AP include:

•	 the activation of pregnane-X-receptor,20 a nuclear receptor that 
controls the metabolism of xenobiotics.21 The interaction of AP 

with this receptor has been shown to mediate some of its neuro-
protective and behavioural effects20,22,23;

•	 the positive modulation of P2X4 purinergic receptors24;
•	 the inhibition of nicotinic receptors25;
•	 the inhibition of toll-like receptors 2, 4 and 7.26,27

However, the specific contributions of each of these receptors to 
the behavioural effects of AP remain poorly understood.

Similar to the other GABAA receptor activators, AP elicits potent 
sedative and anticonvulsant effects.28-32 Recent clinical data show 
that AP elicits potent antidepressant, and anxiolytic effects. Indeed, 
brexanolone (an exogenous analogue of AP) was recently approved 
by the US Food and Drug Administration for the treatment of post-
partum depression,33 a condition associated with a physiological 
decline in progesterone and its metabolites,34-36 following the suc-
cessful results of two multicentre, double-blind, placebo-controlled 
trials.37 Notably, several studies have documented a reduction in 
plasma and cerebrospinal AP levels of individuals affected by major 
depression.38,39 Similar declines have been documented in anxiety 
and post-traumatic stress disorder,40-42 potentially opening up the 
development of AP-based treatments for these conditions. The 
beneficial effects of AP are not only limited to epilepsy and affec-
tive disorders, but also may extend to neurodegenerative disorders, 
likely given the well-documented neurogenetic43 and neuroprotec-
tive properties of this neurosteroid.44-47 In particular, several lines of 
research point to the therapeutic potential of AP for Alzheimer's dis-
ease.48,49 Indeed, AP administration once a week for 6 months was 
found to promote neurogenesis, reduce β-amyloid accumulation and 
improve memory and learning in one of the best-validated animal 
models of Alzheimer's disease, the triple transgenic mouse.50

A detailed presentation of the therapeutic potential and appli-
cations of AP is beyond the scope of this article, although several 
excellent reviews are available.32,49,51,52

Given these highly promising horizons, it may be tempting to re-
gard AP as a panacea for a broad array of neuropsychiatric problems. 
Nevertheless, just as in the case of other endogenous compounds 
with therapeutic potential, caution should be advocated about over-
generalising the beneficial effects of AP. Although most research 
attention has been devoted to the therapeutic potential of AP and 
other neurosteroids, some emerging evidence, particularly in animal 
models, suggests that there may be another side of the coin. A poi-
gnant example of this concept is offered by the potential role of AP 
as a causal factor for dysphoria and negative mood in women with 
premenstrual dysphoric disorder (PMDD).53 This condition is char-
acterised by a cluster of irritability, aggression, and emotional lability 
during the luteal phase of the menstrual cycle (when progesterone 

F I G U R E  1  Allopregnanolone (AP) 
synthesis pathway. 5αR, 5α-reductase; 
DHP, dihydroprogesterone; 3αHSOR, 3α-
hydroxysteroid oxidoreductase
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levels are exceptionally high).54 Although no consistent difference 
in AP levels has been shown between PMDD-affected women and 
healthy controls,55-57 Timby et al58 reported that this condition is as-
sociated with alterations of AP sensitivity over the menstrual cycle. 
Indeed, pharmacological inhibition of 5αR by finasteride has been 
proposed as a potential remedy to mitigate symptoms in women 
with PMDD.59

Another critical question awaiting experimental verification con-
cerns the applicability of AP to conditions that lie on the opposite 
side of depression along the affective spectrum, such as hyperthy-
mia, hypomania and mania. Several studies have documented that 
treatment with canonical antidepressants, even in individuals with 
unipolar depression, significantly increases the risk of mania.60 To 
the best of our knowledge, no evidence is currently available on the 
potential liability of AP for these conditions; nevertheless, the possi-
bility that AP may also increase the risk for this type of switch should 
not be regarded as beyond the realms of possibility. Indeed, ket-
amine, comprising another rapid, potent antidepressant treatment 
(albeit based on a completely different mechanism of action than 
AP), has been recently reported to cause affective switch to manic 
symptoms in bipolar patients,61-63 even though this untoward effect 
does not appear to apply to major depression.64

Against this background, work performed by our group has 
pointed to the possible implication of AP and other neurosteroids 
in the pathophysiology of tic disorders, a category of neurodevelop-
mental conditions characterised by rapid, non-rhythmic movements 
or utterances, typically executed in a recurrent, patterned fashion.65 
Below, we briefly summarise the clinical course and neurobiology 
of these disorders, as well as the body of evidence that supports 
a potential modulatory role of AP for tic severity. Finally, we dis-
cuss what putative mechanisms may underlie AP's implication in tic 
disorders and review how these processes may inform the develop-
ment of new therapies for these and other related neuropsychiatric 
problems.

2  | TIC DISORDERS

2.1 | Clinical course and phenomenology of tics

Although approximately 20% of children exhibit isolated tics,66,67 
these manifestations are not pathological in the majority of cases. 
However, when executed in a chronic, pervasive fashion, tics limit 
functioning and can lead to significant disability, negatively impact-
ing socioemotional adjustment, educational attainment and quality 
of life.68,69 The Diagnostic and Statistical Manual of Mental Disorders, 
5th edition, lists three tic disorders among the neurodevelopmental 
disorders, with onset before age 18 years, which are differentiated 
based on tic characteristics and duration criteria65:

•	 Tourette's disorder (TD), characterised by multiple motor tics 
and at least one vocal tic which have been present for more than 
1 year;

•	 Persistent (chronic) motor or vocal tic disorder, characterised by 
either motor or vocal tics for more than 1 year;

•	 Provisional tic disorder, described by single or multiple tics for less 
than 1 year.

These diagnostic distinctions, however, do not likely reflect neu-
robiological differences. Indeed, it has been argued that tic disorders 
should be regarded as a pathological spectrum. In support of this idea, 
most cases of provisional tic disorder evolve into chronic tic disorders 
because they do not remit within 1 year.70 The most disabling tic disor-
der, TD, has a prevalence of 0.5%-1% in the paediatric population71-73 
with a marked male preponderance (male:female  =  3-4:1).74,75 The 
personal burden of TD is complicated by the very high prevalence of 
comorbid psychiatric disorders, including attention-deficit hyperac-
tivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety 
and depression.76-80 Given this background, the current pharmaco-
therapies for TD remain highly unsatisfactory. The main pharmaco-
logical strategies for TD are dopaminergic antagonists/partial agonists 
and alpha 2 agonists,81 which are associated with inconsistent effi-
cacy and multiple significant adverse effects, including dyskinesias, 
cognitive dulling and metabolic problems.82,83 More recent clinical 
trials targeting the dopaminergic system, including dopamine agonists 
(pramipexole) and vesicular monoamine transporters (valbenazine and 
deutetrabenazine), have been disappointing.84,85

The clinical course of TD follows a typical developmental trajec-
tory, with onset of tics around 6 years of age, a gradual progression 
reaching lifetime peak tic severity around 10-12  years86 and sub-
sequent attenuation or remission87,88; however, it is estimated that 
about 24% of TD patients continue to experience moderate to severe 
tics throughout adulthood.89 Aside from these diachronic changes in 
severity, tics wax and wane over the course of days and months. 
These fluctuations impact every phenomenological aspect of tics, 
namely number, frequency, intensity, complexity and interference 
in daily life.90 Although the biological causes of these fluctuations 
remain elusive, several lines point to environmental stress as a cru-
cial influence for tic severity. For example, ample evidence has doc-
umented that tic severity is associated with the intensity of stressful 
life events.91,92 This relationship has been confirmed by longitudi-
nal analyses, which have documented that cumulative psychosocial 
stress predicts future tic severity.93 Furthermore, other studies have 
shown that tic severity is correlated with self-report ratings of daily 
stress94 and recent negative events.95 Although these studies sup-
port the conventional framework that acute or short-term stress 
has a detrimental impact on tic severity, more detailed analyses of 
this relationship have recently outlined a more complex picture. 
For example, tics may be particularly sensitive to specific types of 
stressors, such as overstimulation, intense emotional tension, frus-
tration, fatigue and sleep loss.96,97 Conversely, the Trier social stress 
test, which is an experimental task requiring participants to deliver a 
speech to an unsympathetic audience, was found to decrease, rather 
than increase, tic execution.98 These results indicate that the rela-
tionship between stress and tics is multifaceted and specific to indi-
vidual environmental challenges.
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A helpful framework to understand the source of complexity 
of the relationship between stress and tics requires discussion of 
premonitory urges, unpleasant sensations of tension and discom-
fort that precede tic execution and increase the drive to tic.99 The 
execution of tics relieves the negative feelings associated with pre-
monitory urges. The behavioural model of tic maintenance100,101 
posits that tics are negatively reinforced insofar as they reduce the 
discomfort associated with premonitory urges. This perspective is 
supported by preliminary studies on the stress response in TD pa-
tients. In particular, several studies have documented that TD pa-
tients respond to acute stressors with a magnified activation of the 
hypothalamic-pituitary-adrenal axis.102,103 However, evening corti-
sol levels were negatively correlated with tic severity,103 suggesting 
that tics may be executed as a possible form of maladaptive stress 
coping in TD patients. In line with this perspective, several patients 
describe their tics as automatic or even voluntary reactions to sup-
press the premonitory urge.104 Although both urges and tics can be 
temporarily suppressed, this volitional control is generally stressful 
and aggravates urges up to a point in which tics become insuppress-
ible. From this perspective, recent studies have shown that stress 
does not intrinsically increase tics, but rather impairs the ability to 
suppress them105 and control premonitory urges. These studies sug-
gest that the relationship between stress and tic severity is likely 
influenced by a complex functional balance between the severity of 
premonitory urges and the ability to suppress tics.

An additional, yet critical dimension in this imbalance is the 
contribution of impulsivity. Several studies have shown that TD is 
characterised by an impairment of inhibitory control of behaviour.106 
Recent studies have shown that, in TD patients, tic severity was cor-
related with waiting motor impulsivity, as tested with the four-choice 

serial reaction time task.107 However, it should be noted that TD pa-
tients do not show greater impulsivity across all cognitive tasks,108 
suggesting that specific domains of motor impulsivity may drive tics.

2.2 | Neurobiological mechanisms of tics

Several lines of evidence indicate that tic disorders are underpinned 
by a broad set of anatomical and functional alterations within the 
cortico-basal ganglia-thalamo-cortical circuitry (Figure 2).

In particular, structural imaging studies have documented that 
TD patients display a slight, yet significant, reduction of the volume 
of the dorsal striatum (caudate and putamen),109 as well as several 
compartments of the cortex.110,111 Functional imaging studies have 
shown that tics are caused by a transient excess of activity of the 
connectivity between the cortex and the basal ganglia (and, in par-
ticular, the striatum).112 Tic execution is generally preceded by ac-
tivation of the supplementary motor and anterior cingulate cortex, 
followed by stimulation of the putamen and the cerebellum.113,114

The molecular and neurobiological causes of these alterations 
remain poorly understood, even though several studies have doc-
umented a selective loss in cholinergic and parvalbumin-positive 
GABAergic interneurones in the dorsal striatum of individuals with 
severe TD.115-117 Building on this evidence, it is possible that a local 
reduction in striatal interneurones (likely a result of genetic and 
early-life inflammatory factors) may lead to the formation of "focal 
disinhibition areas" in the dorsal striatum.118 In addition, several lines 
of research have shown a reduction in GABA content in the cortex of 
TD patients.119,120 Another critical factor in tic ontogeny is the over-
activation of dopaminergic neurotransmission in the nigrostriatal 

F I G U R E  2   Schematic presentation of 
the cortico-basal ganglia-thalamo-cortical 
(CBGTC) circuit. MSN, medium spiny 
neurone
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pathway,121-125 which may favour the emergence of off-target move-
ments by inhibiting the indirect pathway.126

The mechanisms of premonitory urges are less clear, although 
functional imaging studies suggest that these phenomena are driven 
by connectivity of the motor cortex, insula and supplementary motor 
area.127-129 Overall, these data highlight that premonitory urges and 
other sensory antecedents of tics are based on the activation of cor-
tical regions involved in the modulation of sensory processing and 
motor output.

Of relevance to the present discussion, several studies have 
shown that tic suppression and cognitive control of motor be-
haviour are underpinned by the activation of the prefrontal cortex 
(PFC).130-132 Interestingly, the relationship between tic severity and 
waiting impulsivity is mediated by connectivity between the orbitof-
rontal cortex (a subregion of the PFC particularly susceptible to the 
adverse effects of stress) and the caudate nucleus.107

2.3 | Animal models of tic disorders

One of the best research tools for examining the functional and mo-
lecular substrates of tics is provided by animal models.128 However, 
a critical conceptual hurdle in modelling TD is that very few animals 
display spontaneous tic-like behaviours with a compelling construct 
and predictive validity.133

One of the few mouse models that exhibits these responses is 
afforded by D1CT-7 mice, a transgenic line harbouring a cholera 
toxin subunit in neurones expressing D1 dopamine receptors.134,135 
A synopsis of the phenotypes of D1CT-7 and their relevance to TD 
and comorbid entities is provided in Table 1. These animals display 
short (0.05-0.1 s) clonic bursts, highly isomorphic with simple tics. 
Additionally, D1CT-7 mice also display other phenotypes reminiscent 
of ADHD and OCD, including hyperlocomotion and perseverative 
responses. In addition to this face validity, D1CT-7 mice also carry 
a high degree of predictive validity, underscored by their sensitiv-
ity to hallmark therapies for TD, such as antipsychotics and cloni-
dine.136,137 D1CT-7 mice respond to acute environmental stressors 
with a marked exacerbation of tic-like behaviours. Specifically, we 
found that spatial confinement in a cylinder within the home cage 
leads to a substantial increase in tic-like behaviours and prepulse in-
hibition (PPI) deficits. Both of these behavioural abnormalities are 
countered by benchmark therapies for TD, such as haloperidol and 
clonidine.136 Although their construct validity as a TD model was 
initially questioned,137 recent discoveries on tic ontogeny have doc-
umented that the origin of tic-like responses is based on the same 
type of sensorimotor cortical hyperactivation observed in TD (a de-
tailed discussion of this issue is provided elsewhere 133).

Aside from the case of D1CT-7 mice, several questions remain 
open on the heuristic criteria to define which behavioural abnormal-
ities in rodents can be used to model tics.138 Models of focal disinhi-
bition, generated by microinjections of GABAA receptor antagonists 
(bicuculline and picrotoxin) in the dorsal striatum,139,140 are criti-
cal for validating the causal implication of the proximal ontogenic 

mechanisms of tics because they also engage in rapid, tic-like bursts 
of activation of isolated muscle groups. However, these models are 
not well suited for studying tic phenomenology or validate novel 
therapies because they are based only on striatal mechanisms rather 
than on the modulatory processes from other brain regions, such as 
the cortex, midbrain and cerebellum. A viable alternative is provided 
by spontaneous or pharmacologically induced stereotypies (and 
particularly grooming, digging, and rearing sequences). Just like tics, 
these responses are perseverative, purposeless, can be increased 
by dopaminergic agonists and environmental stress, and respond 
to most benchmark pharmacological therapies for TD. Another be-
havioural paradigm used to probe the biological foundation of tic 
disorders is offered by PPI, defined as the attenuation of the star-
tle response that occurs when the eliciting stimulus is preceded by 
a weaker signal.141 PPI is generally used as an operational index of 
sensorimotor gating, namely the perceptual domain that enables the 
exclusion of irrelevant information.142 Several premises underscore 
the translational relevance of PPI with respect to TD: first, PPI defi-
cits have been documented in TD patients143-145; second, the biolog-
ical substrates of PPI overlap with the CBTCG circuitry146,147; third, 
this index is impaired by dopaminergic agonists148-150 and reduced 
by antipsychotic medications149; and, fourth, PPI is impaired by envi-
ronmental stressors in rodents and humans.151,152

3  | THE ROLE OF AP IN TIC DISORDERS

3.1 | Clinical findings

Our first exploration of the potential involvement of neurosteroids 
in the ontogeny of tic disorders came from a single-case observation 
in a 34-year-old man affected by severe, treatment-refractory TD, 
characterised by explosive phonic tics, stereotyped coprolalia and 
self-injuring motor tics, as well as cleaning and checking compulsions 
and contamination-theme obsessions.153 Initially inspired by previ-
ous findings on the therapeutic effects of the antiandrogen flutamide 
in TD,154 we used the 5αR inhibitor finasteride (5 mg day-1), which 
also exerts well-recognised antiandrogenic properties by inhibiting 
the conversion of testosterone into the potent androgen dihydrotes-
tosterone (DHT). Indeed, finasteride is currently approved for the 
therapy of conditions associated with high DHT levels, namely be-
nign prostatic hyperplasia and male-pattern baldness.155 We found 
that finasteride led to a gradual yet marked improvement of vocal 
and, to a lesser extent, motor tics, with no apparent adverse event 
other than a modest decline in libido. Over the course of 18 weeks, 
finasteride reduced total tic severity scores by approximately 38%. 
However, upon treatment discontinuation, the symptoms resumed 
abruptly, requiring rapid reinstatement of the therapy.153 This en-
couraging result led us to conduct a proof-of-concept open-label 
study with 16 patients,156,157 which confirmed our initial results and 
showed that the ameliorative effects of finasteride reached signifi-
cance by week 6 of therapy, with a plateau by the week 12 week of 
finasteride administration. Importantly, our results documented that 



6 of 14  |     BORTOLATO et al.

81.2% of these patients reported that their tic reduction reflected 
their improved ability to suppress tics in stressful contexts. Similar 
results were reported in an independent pilot study conducted in 
Taiwan.158 Despite these encouraging results, our plans to conduct 
a double-blind, placebo-controlled trial were scuttled following 
emerging evidence on the increased risk of depression in a subset of 
patients treated with finasteride.159,160

3.2 | Preclinical findings

Our next step was to investigate the neuroanatomic and molecular 
substrates supporting the effect of finasteride in models of TD. To 
this end, we began testing the behavioural impact of this drug on the 
stereotypies and PPI deficits caused by non-selective dopaminergic 
agonists in rats.161 Our findings showed that both finasteride and 
other 5αR inhibitors, such as dutasteride and SKF 105111, elicited 
potent antidopaminergic effects and reversed both stereotypies 
and PPI deficits induced by the dopaminergic agonists apomorphine 
and d-amphetamine.161 These studies were followed by several 
experiments aimed at locating the neuroanatomical and molecular 
foundations of these effects. These follow-up studies documented 
that the antidopaminergic effects of finasteride were supported 
by the PFC and the nucleus accumbens shell.162 Furthermore, we 
showed that finasteride specifically countered the effects of D1 (and 
possibly D3), rather than D2 dopamine receptors, both in rats and 
mice.163,164 Interestingly, the findings of antidopaminergic proper-
ties of finasteride also led to the discovery of other potential thera-
peutic application of 5αR inhibitors in animal models of other motor 
disturbances, such as levodopa-induced dyskinesias,165,166 as well as 
in opioid use disorder.167 It is worth noting that the antidopaminer-
gic effects of finasteride are not associated with extrapyramidal side 

effects, such as catalepsy,161 likely a result of the interference with 
D1, rather than D2 dopamine receptor signalling.

Recognising that the effects of finasteride in patients appeared 
to centre around their increased ability to suppress and camouflage 
tics in the presence of stress, we hypothesised that the mechanisms 
for finasteride might reflect the inhibition of the synthesis of AP and 
other neurosteroids implicated in the regulation of stress response, 
rather than DHT. This idea was also supported by the findings that 
the antipsychotic-like effects of finasteride were present in both 
castrated male162 and female rats.

The most convincing demonstration of a primary role of AP in 
the regulation of PPI came from our analyses on the sensitivity of 
5αR1 knockout mice to the PPI-disrupting effects of D1 receptor 
agonists.168 Similar to finasteride-treated animals, these mice ex-
hibited no PPI deficits in response to the potent D1 receptor ag-
onist SKF 82958168; however, these effects were fully restored 
following treatment with AP, but not other products of 5αR me-
tabolism, indicating that this neurosteroid is necessary for the TD-
related effects of D1 receptor stimulation.168 To address whether 
a tic-exacerbating stressor may also lead to TD-related deficits 
through the up-regulation of AP levels, we investigated the effects 
of sleep deprivation in PPI. Building on our discovery that sleep 
deprivation impairs sensorimotor gating,169 we documented that 
this manipulation increases 5αR expression in the PFC. Notably, 
we reported that sleep deprivation reduced PPI by increasing the 
concentration of AP in the PFC. Indeed, finasteride reversed these 
effects, whereas exogenous administration of AP exacerbated 
these deficits.170

Based on these findings, we investigated whether AP or other 
neurosteroids might be implicated in the ontogeny of tic-like be-
haviours and gating deficits in D1CT-7 mice. A synoptic view of the 
results of these experiments is reported in Table 2.

Phenotypes in DICT-7 mice
Phenotypes in TD 
patients

Face validity Sudden axial jerks Tics

PPI deficits PPI deficits

Hyperlocomotion Hyperactivity in ADHD (?)

Increased perseverative 
behaviours (digging, rearing, 
grooming)

Complusions in OCD

Stress-induced exacerbation of 
jerks and repetitive behaviour

Stress-induced 
exacerbation of tics

Construct validity Neuropotentiation of 
somatosensory cortex

Hyperactivity of 
somatosensory cortex 
during urges

Predictive validity Response to D2 receptor 
antagonists

Response to haloperidol 
and pimozide

Response to D2 receptor 
antagonists

Response to ecopipam

Response to clonidine Response to clonidine

Abbreviations: ADHD, attention-deficit hyperactivity disorder; OCD, obsessive-compulsive 
disorder; PPI, prepulse inhibition.

TA B L E  1   Comparison of phenotypes in 
D1CT-7 mice and Tourette's disorder (TD) 
patients
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Our results showed that, in this model, acute stress led to a gen-
eralised enhancement of the levels of progesterone, DHP and AP in 
the PFC. We investigated the systemic effects of these steroids in 
TD but found that only AP elicited behavioural abnormalities akin to 
those observed following spatial confinement.171 Notably, D1CT-7 
mice were found to have higher baseline levels of AP in the PFC 
compared to their wild-type controls; however, they did not show 
any significant change in the subunit expression of GABAA receptors 
in this area. Furthermore, the 5αR inhibitor finasteride normalised 
behavioural alterations induced by stress in D1CT-7 mice, without 
producing any such effects in wild-type littermates.171 Notably, the 
same results were observed using the endogenous antagonist of 
AP, isoallopregnanolone (3β-hydroxy-5α-pregnan-20-one, a natural 
3β epimer of AP).172 Although isoallopregnanolone has an efficacy 
comparable to that of finasteride and does not elicit extrapyramidal 
symptoms, it does not produce the same profound depressogenic-
like effects observed after finasteride treatment.173 These data 
indicate that, unlike finasteride, isoallopregnanolone may be a via-
ble therapy for reducing the adverse effects of acute stress on tic 
exacerbation.

3.3 | Mechanisms of AP in tic exacerbation

At present, the downstream mechanisms by which AP exacerbates 
tic-like behaviours and impairs PPI in rodent models of TD remain 
unclear. AP exerts a broad array of modulatory effects on dopa-
minergic transmission and signalling, which may help explain some 
of the effects observed in animal models of TD. For example, AP 
prevents the increase in extracellular dopamine concentrations in-
duced by footshock stress174 but dose-dependently increases dopa-
mine release in the nucleus accumbens both in relation to baseline 

conditions and in response to morphine, a potent rewarding stimu-
lus.175 This action is particularly notable because it may help explain 
previous data indicating that AP promotes motivated and reward-
directed responses176,177 and reinstates ethanol-seeking behav-
iour.178,179 Given that the actions of AP on dopamine appear to be 
state-dependent, it will be essential to verify whether these effects 
differ between animal models of TD and their controls, under normal 
conditions or in the presence of stress.

Our data also point directly to a selective effect of AP on the 
signalling of D1 receptors. Although ongoing studies are focusing on 
the molecular details of this interaction, it should be noted that, in 
line with our results, previous studies have also documented that AP 
modulates some behavioural effects of D1 receptor activation,180,181 
and both progesterone and AP affect the phosphorylation of 
DARPP-32 (dopamine and cAMP-regulated phosphoprotein of mo-
lecular weight 32 000), a critical neuronal phosphoprotein that in-
tegrates signalling information in dopaminoceptive neurones.182,183

Irrespective of the specific interaction with D1 receptors, the be-
havioural outcomes of AP are likely a result of the positive allosteric 
modulation of GABAA receptors in the PFC. However, it should be 
noted that our experiments showed that, unlike the genetic inacti-
vation of 5αR1, neither the GABAA antagonist bicuculline nor the 
genetic knockout for GABAA δ subunit affected the ability of D1 
receptor agonist to impair PPI.168 These studies suggest that other 
receptors may be implicated in the effects of AP. Of note, neuroste-
roidogenic enzymes are co-localised with GABAA receptors in cor-
tical pyramidal neurones; thus, high concentrations of AP in these 
cells may lead to aberrant inhibition of projection neurones in the 
PFC, resulting in greater stimulation of the striatum. Accordingly, 
stress has been shown to impair the function of the PFC.184 This 
framework would posit that AP may reduce the inhibitory connectiv-
ity of the PFC on the striatum, ultimately countering the mechanism 
of volitional tic suppression and facilitating tic execution (Figure 3). 
Alternatively, AP may be sulfonated into AP sulfate, which acts as a 
negative allosteric modulator of NMDA glutamate receptors.185

4  | CONCLUSIONS AND FUTURE 
DIREC TIONS

The data summarised in this review show that converging lines of 
evidence support the implication of AP (and possibly other neuro-
steroids) in the pathophysiology of tic disorders. The most convinc-
ing data from our group suggest that AP may mediate the adverse 
effects of acute stress on tic severity and, possibly, contribute to the 
fluctuations in TD symptoms by modulating the ability of the PFC 
to inhibit the generation of tics in the dorsal striatum. Although this 
process provides a compelling explanation of the observed effects of 
finasteride in TD patients, future endocrinological and neuroimag-
ing studies are warranted to verify how AP modifies tic suppression 
and its underlying neural patterns. From a therapeutic perspective, 
these ideas may lead to novel treatments aimed at stabilising AP lev-
els in tic disorders. The demasculinising and depressogenic effects 

TA B L E  2  Effects of neurosteroids and steroidogenesis inhibitors 
on tic-like behaviours in D1CT-7 mice

Neurosteroids/drugs
Effects on 
DICT-7 mice

Progesterone

Dihydroprogesterone

Allopregnanolone

Tetrahydrodeoxycorticosterone

Isoallopregnanolone

Testosterone

Dihydrotestosterone

Finasteride (5αR inhibitor)

Dutasteride (5αR inhibitor)

Indomethacin (3α-HSOR inhibitor)
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of finasteride raise significant concerns about its application as a 
therapy in children, particularly given consideration of the high co-
morbidity of depression and anxiety in TD patients; however, our re-
cent data on isoallopregnanolone as a potential therapy with similar 
effectiveness as finasteride172 in mouse models of TD highlight that 
this endogenous AP antagonist (or other compounds with a similar 
mechanism of action) may be a promising therapeutic alternative for 
TD, given its optimal profile of clinical tolerability and safety.186

Another critical question that will need to be addressed by future 
investigations concerns the possibility that the processes by which AP 
can exacerbate tics may apply to other neuropsychiatric conditions, 
and in particular impulse-control problems, given the notable neu-
robiological overlap between mechanisms of motor impulsivity and 
tic control.107 This possibility is indirectly supported by preliminary 
data indicating that finasteride reduces impulsivity173 and patho-
logical gambling.157 In addition, we recently documented that finas-
teride also potently reduces opioid self-administration,167 another 
behavioural response highly influenced by impulsivity. Assuming that 
AP can reduce the prefrontal control of striatal outputs, this mech-
anism may also be responsible for a disinhibitory effect, which may 
account for the exacerbation of impulsive behaviours in response 
to acute stress. From this perspective, it is worth noting that other 
GABAA receptor activators, such as benzodiazepines, are occasion-
ally associated with a significant increase of impulsive and external-
ising behaviour in vulnerable individuals, including children.187 These 
disinhibited reactions, such as hyperactivity, sexual disinhibition, 
hostility and rage, are also observed in response to other GABAergic 
sedatives, such as alcohol. These paradoxical reactions may reflect 
differences in GABAA receptor sensitivity or other neurobiological 
differences in inhibitory control. From this perspective, it is interest-
ing to note that the effects of AP on externalising behaviour may vary 

depending on the endogenous content of this neurosteroid. For ex-
ample, in dominant male mice, low doses of AP increase aggression by 
approximately 50%188,189; conversely, AP has anti-aggressive effects 
in the mouse model of social isolation, which is accompanied by a 
dramatic decline of AP brain levels.190,191

Building on these premises, we hypothesise that, in subjects with 
high baseline AP concentrations, this neurosteroid may promote ex-
ternalising and impulsive reactions to acute stress, which may be par-
ticularly problematic in the presence of other predisposing factors. 
Conversely, in individuals with low endogenous levels of AP, its use 
may help reduce internalising responses to stress (such as depres-
sive and anxious symptoms) by promoting euthymia and eudaimonia. 
This framework posits that AP levels in the brain may contribute to 
the dynamic of internalising and externalising styles of the stress re-
sponse. If supported by experimental data, such a conceptualisation 
may point to a much more complex role of this neurosteroid in mood 
and personality regulation. More importantly, this direction may 
pave the way to a new generation of neurosteroid-based therapies 
aimed at reattuning our corticolimbic responses to stress and reward.
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