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Optimal Low-Thrust Orbit Transfers Made Easy:
A Direct Approach

Mirko Leomanni*, Gianni Bianchini†, Andrea Garulli ‡, Renato Quartullo §

Università di Siena, Siena, 53100, Italy

The optimization of low-thrust, multi-revolution orbit transfer trajectories is often regarded as a

difficult problem in modern astrodynamics. In this paper, a flexible and computationally efficient ap-

proach is presented for the optimization of low-thrust orbit transfers under eclipse constraints. The

proposed approach leverages a new dynamic model of the orbital motion and a Lyapunov-based ini-

tial guess generation scheme that is very easy to tune. A multi-objective, single-phase formulation of

the optimal control problem is devised, which provides a convenient way to trade off fuel consumption

and time of flight. A distinctive feature of such a formulation is that it requires no prior information

about the structure of the optimal solution. Simulation results for two benchmark orbit transfer

scenarios indicate that minimum-time, minimum-fuel and mixed time/fuel-optimal instances of the

control problem can be readily solved via direct collocation, while incurring a significantly lower

computational demand with respect to existing techniques.

Nomenclature

a, e, i, ω, Ω, v = Classical orbital elements

p, f , g, h, k, L = Modified equinoctial elements

ρ, ex, ey, hx, hy, σ = Ideal elements

e = Relative eccentricity vector

g0 = Standard gravity, m/s2

Isp = Specific impulse, s

m = Spacecraft mass, kg

q = Thrust unit vector

Re = Earth radius, m

Rs = Sun radius, m

res = Satellite-Earth vector, m

rs = Earth-Sun vector, m

rss = Satellite-Sun vector, m

s = Ideal anomaly, rad

Tmax = Maximum deliverable thrust, N

t = Time, s

u = Control acceleration, m/s2

x = System state

z = Target equinoctial elements

α = Time/fuel trade-off parameter

γ = Relative inclination, rad

ǫ = Mesh error tolerance

∆m = Mass variation, kg

∆t = Time of flight, days

λ1, λ2 = Nodal elements, rad

µ = Earth gravitational parameter, m3/s2
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ξ = Efficiency factor

ξcut = Cut-off parameter

̺R = Radial perturbation, m/s2

̺T = Transverse perturbation, m/s2

̺N = Normal perturbation, m/s2

̺ = Perturbing acceleration vector, m/s2

̺J2 = J2 acceleration vector, m/s2

ζ = Throttle command

η = Throttle control input

θe = Angular size of Earth radius, rad

θes = Earth-Sun angle, rad

θs = Angular size of Sun radius, rad

ϕaz, ϕel = Tuning parameters, rad

ψ = Shadow function

ψℓ = Smoothed shadow function

I. Introduction

In recent years, low-thrust propulsion technologies such as Electric Propulsion (EP) have become popular as the pri-

mary means of propulsion for both planetary and interplanetary space missions. Their main appeal is a fuel efficiency

which is ten times higher than that of conventional chemical thrusters. This feature is especially relevant in applica-

tions requiring large delta-v increments, a notable case being the orbital transfer about a central body. The low-thrust

orbit transfer problem can be stated as the determination of a continuous spacecraft trajectory that satisfies initial and

terminal conditions defined along two different orbits, while minimizing fuel expenditure and/or time of flight (TOF).

Except for very special cases, this is a nonlinear optimal control problem (OCP) which is extremely hard to solve.

Complications arise mainly due to the large time scale of the maneuver and to the bang-off-bang structure of the opti-

mal control policy. An evident indication of such difficulties is that most papers on the subject deal only with a specific

objective (either time or fuel optimization) or a specific transfer scenario.

Techniques for addressing the challenging issues in low-thrust trajectory optimization have been investigated for

many years. Historically, the solution strategies have been divided into two general categories: indirect methods and

direct methods [1]. In indirect methods, necessary conditions for optimality are derived from optimal control theory

via variational arguments. The necessary conditions form a boundary-value problem which is solved numerically

in order to determine the optimal solution, see, e.g., [2–4]. The primary advantage of indirect methods is that they

provide highly accurate solutions. Their main drawback is the very high sensitivity of the numerical solution to

the initial guess for the costate variables, which makes these methods only suitable for systems of relatively low

dimension. Direct methods, on the other hand, transcribe the continuous-time optimal control problem into a static

nonlinear programming problem (NLP) which is solved by a nonlinear optimizer, see, e.g., [5–7]. This alleviates the

sensitivity issue, as the solution procedure is much more robust with respect to the selection of the initial trajectory

guess. In particular, direct pseudospectral methods (see, e.g., [8–10]) have been applied to low-thrust problems with

considerable success. In these methods, the state and control variables are parameterized using polynomials, and the

system evolution is approximated via orthogonal collocation. Regardless of the transcription strategy, however, the

application of direct methods typically requires the solution of large and computationally demanding NLPs. For a

complete overview on these topics, the reader is referred to the dedicated books [11–13].

Despite the advances in optimization techniques and tools, the low-thrust orbit transfer problem is still a com-

putationally difficult one. Given the practical need to ease the computation, a number of studies have focused on

approximate or suboptimal solution strategies. In [14, 15], control parametrization and averaging are exploited in

order to reduce the size of the optimization problem. Although these approaches are more computationally efficient

compared to those based on the exact dynamic model, the accumulated errors may be large, so that the true spacecraft

trajectory may fail to reach the target orbit. Lyapunov-based guidance laws such as the Q-law [16, 17] have also been

proposed in order to rapidly explore the solution space. These are usually quite robust to modeling errors, but lack

optimality due to their heuristic nature. For these reasons, they are commonly employed as an initial guess for sub-

sequent optimization (see, e.g., [18]). In many cases, however, finding an adequate set of tuning parameters for such

guidance laws can be as time consuming as the optimization process itself. Along a different line, some efforts have

been made to study the impact of different parameterizations of the orbital motion on the computational efficiency

of the optimization process, see, e.g., [19, 20]. In particular, it is found in [19] that regularizing the orbital dynamics

provides an effective way to speed-up the computation. In this paper, we will show that large computational gains are
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possible by working on the parametrization, while retaining the ability to solve the control problem to full optimality.

Another major source of complexity in low-thrust trajectory optimization is due to eclipsing. This is particularly

relevant since most of the existing EP system are solar powered and therefore they are unable to operate during solar

eclipse periods. Indeed, as pointed out in [21, 22], low-thrust trajectory optimization without concerns for eclipsing is

futile when subsequent analysis reveal that a thrusting maneuver has been scheduled in the shadow region. The net

effect of solar eclipses is to introduce a state-dependent discontinuity in the control input structure, which constitutes a

serious challenge for gradient-based optimization techniques. Unfortunately, this important issue is often disregarded

in the literature. In the seminal paper [23], the low-thrust orbit transfer problem with eclipsing is tackled by adopting

an indirect method. More recently, the problem has been framed in the context of direct optimization. In particular, two

different formulations have demonstrated their utility in applications: single-phase and multi-phase ones. The multi-

phase formulation divides the OCP into multiple phases in which the system dynamics are smooth, while ensuring the

continuity of the state trajectory among different phases through an appropriate set of event constraints. In this way,

discontinuities are removed from the dynamic model and the optimization is cast over the switch times. A limitation

of this method is that the structure of the optimal solution must be guessed a priori, which typically involves a rather

complex machinery. For instance, it is not trivial to determine whether a phase should be added to the formulation.

Multi-phase approaches have been employed in [21] and [24] for the solution of minimum-fuel and minimum-time

problems with eclipsing, respectively. The single-phase formulation is defined in the usual way and considers the OCP

as a whole. An advantage of this method over multi-phase formulations is that it requires no prior information about

the structure of the optimal solution, although some kind of smoothing is needed for the system dynamics. In [22],

a single-phase approach is employed in combination with a smoothed eclipse model in order to solve a minimum-

fuel problem involving a large number of orbital revolutions. This is done by using hybrid differential dynamic

programming [25]. In [26], the minimum-time problem with eclipsing is similarly cast and it is solved via collocation.

A suboptimal solution to the minimum-fuel problem, which consists of applying the Q-law in the eclipsed part of the

transfer and the optimal control policy in the remaining part, is also discussed.

The aim of this paper is to present a new approach for the optimization of low-thrust orbit transfers, employing

a direct collocation method. The work is in the same spirit of [22, 26], but some key features are introduced in the

problem definition. First, equinoctial elements are replaced by a novel nonsingular set of ideal elements inspired

by Hansen’s theory (see [27–29]) for the description of the orbital motion. The rationale behind this choice is the

observation that the dynamics of the ideal anomaly do not directly depend on the perturbing acceleration, as opposed

to those of all other anomalies. This makes the ideal anomaly attractive as a basis for regularization (see, e.g., [30,31]).

Moreover, ideal elements enjoy a higher level of sparsity of the dynamic model structure compared to other element

sets. This is advantageous because the OCP to be solved turns out to be a sparse NLP. As a second contribution,

a flexible optimization framework is established, which unifies different types of performance requirements under

the same single-phase OCP formulation. The adopted cost function involves a convex combination of TOF and fuel

consumption, providing a suitable way to trade off these objectives by means of a scalar parameter. Eclipse effects are

taken into account by adapting the smoothing technique in [22] to the the proposed state parametrization. The OCP

is transcribed into a sparse NLP by using the commercial package GPOPS–II [32], which implements an hp-adaptive

Legendre–Gauss–Radau pseudospectral collocation strategy. The NLP is then solved by using a sparse nonlinear

optimizer. Furthermore, a new Lyapunov-based guidance scheme that addresses the initial guess generation problem

is devised. The guidance scheme features only three assignable parameters, which can be tuned in an intuitive manner.

The proposed optimization architecture is tested on two orbit transfer scenarios taken from the literature: a GTO-

GEO transfer and a LEO-GEO transfer. Simulation results show that the method is able to solve minimum-time,

mimimum-fuel and mixed time/fuel-optimal problem instances involving many eclipse transitions in a computationally

efficient manner. Moreover, the capability of the method to solve large-scale optimization problems on low-power

hardware is demonstrated for a realization featuring nearly half a million NLP variables. Overall, the obtained results

indicate that the adopted parametrization and optimization scheme allow one to tackle the low-thrust OCP with relative

ease in comparison to previous approaches.

The paper is organized as follows. Section II illustrates the new parametrization of the orbital motion and Sec-

tion III details the dynamic model used for trajectory optimization as well as the eclipse smoothing technique. Sec-

tion IV discusses the proposed OCP formulation and Section V presents the Lyapunov guidance scheme employed

for the initial guess generation. Detailed simulation case studies of the optimization architecture are presented in

Section VI for the considered orbit transfer scenarios. Section VII summarizes the main findings of this research and

finalizes the paper.
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II. Parametrization of the Orbital Motion

The first step towards the derivation of an optimal orbit transfer strategy is to define a suitable set of parameters

describing the orbital motion and to determine how such parameters evolve in response to perturbations. In this

section, the perturbed Kepler problem is briefly reviewed and a new parametrization of the orbital motion is presented

for this problem. The proposed parametrization is based on a nonsingular set of orbital parameters inspired by Hansen’s

theory.

A. Perturbed Kepler Problem

The perturbed Kepler problem amounts to describing the evolution of an orbit in response to a perturbing acceleration

that accounts for all contributions other than point mass gravity. The classical solution to this problem is expressed

in terms of the orbital elements {a, e, i, ω, Ω, v}, namely the semimajor axis, eccentricity, inclination, argument of

periapsis, right ascension of the ascending node, and true anomaly. Let ̺R, ̺T and ̺N be the radial, transverse and

normal components of the perturbing acceleration, expressed in the Radial-Transverse-Normal frame centered at the

satellite. Whenever nonconservative perturbations such as thrusting are involved, it is customary to describe the

evolution of the classical elements through Gauss’ variational equations

ȧ =
2a2

√

µa(1 − e2)

[

e sin(v) ̺R + (1 + e cos(v)) ̺T

]

ė =

√

a(1 − e2)

µ

[

sin(v) ̺R +
e + (2 + e cos(v)) cos(v)

(1 + e cos(v))
̺T

]

i̇ =

√

a(1 − e2)

µ

[

cos(v + ω)

1 + e cos(v)
̺N

]

Ω̇ =

√

a(1 − e2)

µ

[

sin(v + ω)

(1 + e cos(v)) sin(i)
̺N

]

ω̇ =

√

a(1 − e2)

µ

[

−cos(v)

e
̺R +

(2 + e cos(v)) sin(v)

e(1 + e cos(v))
̺T −

sin(v + ω) cot(i)

1 + e cos(v)
̺N

]

v̇ =

√

µ

a3

(1 + e cos(v))2

(1 − e2)3/2
+

√

a(1 − e2)

µ

[

cos(v)

e
̺R −

(2 + e cos(v)) sin(v)

e(1 + e cos(v))
̺T

]

(1)

where µ is the gravitational parameter and the overdot symbol denotes the time derivative.

As seen from Eq. (1), the variational equations for the classical elements are singular at e = 0 and i = 0, i.e., for

circular and equatorial orbits. The standard method to overcome this issue is to employ a set of modified equinoctial

elements defined by

p = a(1 − e2)

f = e cos(Ω + ω)

g = e sin(Ω + ω)

h = tan(i/2) cos(Ω)

k = tan(i/2) sin(Ω)

L = Ω + ω + v

(2)

The dynamics of the modified equinoctial elements are obtained by differentiating (2) with respect to time and using

(1), which results in a highly coupled set of differential equations. In particular, the normal component ̺N of the

perturbing acceleration affects the evolution of all the parameters in (2), except for the semiparameter p. This is

undesirable from the point of view of numerical optimization, which often benefits from sparsity in the system model

structure [20]. In the following, an alternative set of nonsingular elements is presented to address this issue.
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B. Ideal Elements

Let us define the ideal anomaly s via the integral relation

s =

∫ t

t0

√

µ

a3(τ)

[1 + e(τ) cos(v(τ))]2

[1 − e2(τ)]3/2
dτ (3)

where t denotes the actual time and t0 is the initial time. Notice from (1) that the time derivative of (3) is equal to v̇

for the unperturbed motion (̺R = ̺T = ̺N = 0). However, the analogy breaks down in the perturbed case. Based on

(2)-(3), the following set parameters is proposed in order to describe the orbital motion

ρ = p/Re

ex = f cos(L − s) + g sin(L − s)

ey = − f sin(L − s) + g cos(L − s)

hx = h cos(L − s) + k sin(L − s)

hy = −h sin(L − s) + k cos(L − s)

σ = L − s

(4)

where Re is the radius of the central body (the Earth in this study). The parametrization (4) is obtained from the mod-

ified equinoctial elements by normalizing the semiparameter p, subtracting the ideal anomaly from the true longitude

to obtain the slowly time-varying parameter σ, and rotating both the eccentricity vector [ f g]T and the ascending node

vector [h k]T by an angle −σ about the orbit normal. The latter transformation corresponds to rotating the equinoctial

frame by an angle σ about the orbit normal, so as to match the instantaneous orientation of the Hansen ideal frame

(see, e.g., [33]). Indeed, σ is precisely the in-plane angle between the basis vectors of the Hansel frame and that of the

equinoctial frame (in this paper, the initial orientation of the Hansen ideal frame, i.e., the so-called departure frame, is

defined by setting σ(0) = L(0), so that s(0) = 0). One can thus refer to the parameters in (4) as ideal elements.

The variational equations for the ideal elements are obtained from (1)-(4) as

ρ̇ =

√
Reρ√
µ κc

2ρ ̺T

ėx =

√
Reρ√
µ κc

{

κc sin(s) ̺R +

[

2κc cos(s) + κs sin(s)
]

̺T

}

ėy =

√
Reρ√
µ κc

{

− κc cos(s) ̺R +

[

2κc sin(s) − κs cos(s)
]

̺T

}

ḣx =

√
Reρ√
µ κc

[

hxhy sin(s) + κx cos(s)
]

̺N

ḣy =

√
Reρ√
µ κc

[

hxhy cos(s) + κy sin(s)
]

̺N

σ̇ =

√
Reρ√
µ κc

[

hx sin(s) − hy cos(s)
]

̺N

(5)

where
κc = 1 + ex cos(s) + ey sin(s)

κs = ex sin(s) − ey cos(s)

κx = (1 + h2
x − h2

y)/2

κy = (1 − h2
x + h2

y)/2

(6)

Notice that the right hand side of (5) is independent of the parameter σ. Moreover, the normal component ̺N of the

perturbing acceleration affects only the parameters hx, hy and σ.

The particular structure of (5)-(6) suggests to adopt the ideal anomaly s as the independent integration variable.

Such a procedure is commonly known as regularization [31]. Hereafter, the notation (·)′ = d(·)/ds will be adopted.

From (2)-(4) and (6) one has that

t′ =
dt

ds
=

√

R3
e

µ

ρ3/2

κ2
c

:= κt (7)
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where the actual time t is now a dependent variable, i.e., t = t(s). Therefore, the regularized dynamics of the ideal

elements take on the form

[ρ′ e′x e′y h′x h′y σ
′]T
= κt [ρ̇ ėx ėy ḣx ḣy σ̇]T (8)

with [ρ̇ ėx ėy ḣx ḣy σ̇]T as in (5)-(6).

III. System Model

In this Section, the proposed parametrization of the orbital motion is exploited to define the system dynamic model

used for trajectory optimization. The model includes thrusting, Earth oblateness, and solar eclipse effects.

Let us define the state vector x = [ρ ex ey hx hy σ]T and the acceleration vector ̺ = [̺R ̺T ̺N]T . The vector ̺

accounts for the perturbing acceleration ̺J2 induced by the zonal harmonic J2 of the gravitational potential and for a

control acceleration u, i.e.,

̺ = ̺J2 + u (9)

The contribution ̺J2 can be expressed in terms of x and s as follows

̺J2(x, s) = −
3µ κ4

c J2

2 R2
e ρ

4

































































1 −
12(hx sin(s) − hy cos(s))2

(1 + h2
x + h2

y)2

8(hx sin(s)−hy cos(s))(hx cos(s)+hy sin(s))

(1 + h2
x + h2

y)2

4(hx sin(s) − hy cos(s))(1 − h2
x − h2

y)

(1 + h2
x + h2

y)2

































































(10)

where J2 is the J2 harmonic coefficient [34]. The regularized dynamics of the state vector x are obtained from (5)-(10)

as follows

x′ = f(x, s) +G(x, s)u (11)

where f(x, s) = G(x, s)̺J2(x, s) and

G(x, s)=
R2

e ρ
2

µ κ3
c











































































0 2ρ 0

κc sin(s) 2κc cos(s)+κs sin(s) 0

−κc cos(s) 2κc sin(s)−κs cos(s) 0

0 0 hxhy sin(s)+κx cos(s)

0 0 hxhy cos(s)+κy sin(s)

0 0 hx sin(s) − hy cos(s)











































































The input vector u in (11) describes the acceleration generated by the spacecraft propulsion system, which in this

work consists of a steerable thruster. More specifically, the three-dimensional vector u is parameterized as

u =
Tmax

m
ζ q (12)

where Tmax is the maximum deliverable thrust, m is the satellite mass, ζ ∈ [0, 1] is the throttle factor, and q is the

unitary thrust direction vector (‖q‖ = 1). In this setting, the actual control commands are ζ and q.

The mass variation due to thrusting is accounted for by augmenting system (11)-(12) with the regularized mass

flow rate equation

m′ = −κt

m ‖u‖
g0 Isp

= −κt

Tmax

g0 Isp

ζ (13)

where g0 denotes the standard gravity and Isp is the specific impulse. The dynamic model description is completed

by the timing equation (7). The full system state vector is then [xT m t]T and the corresponding regularized dynamic

equations are given by (7), (11) and (13).
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A. Eclipse Conditions

A spacecraft is shadowed from the Sun when the angle θes between the Earth and the Sun, seen from the spacecraft,

is smaller than the apparent angular size θe of the Earth radius plus the apparent angular size θs of the Sun radius. A

standard definition for the shadow function is then

ψ =

{

0 if θes ≤ θe + θs

1 if θes > θe + θs
(14)

where ψ = 0 indicates that that the satellite is shadowed, while no shadowing takes place for ψ = 1. The angles θes, θe

and θs are given by

θes = arccos

(

rT
esrss

‖res‖ ‖rss‖

)

θe = arcsin(Re/‖res‖)

θs = arcsin(Rs/‖rss‖)

(15)

where res and rss are the Earth and the Sun position vectors relative to the spacecraft, and Rs denotes the Sun radius.

The satellite-Sun vector rss is given by

rss = rs(t) + res (16)

where rs(t) is the ECI position vector of the Sun, which is available as a function of time from ephemeris data. The

position vector res can be expressed in terms of x and s as follows

res = κr

























cos(s − σ)(h2
x − h2

y) + 2 sin(s − σ)hxhy + cos(s + σ)

sin(s − σ)(h2
y − h2

x) + 2 cos(s − σ)hxhy + sin(s + σ)

2(hx sin(s) − hy cos(s))

























(17)

where

κr = −
Re ρ

κc(1 + h2
x + h2

y)

For the purpose of numerical optimization, the step function (14) is smoothed by using a logistic function of the

form [22]

ψℓ =
1

1 + e c ℓ
(18)

where c > 0 is an assignable gain and ℓ = θe + θs − θes. Notice that such an approximation does not necessarily involve

a decrease of modeling accuracy. In fact, eclipse transitions are truly smooth physical phenomena.

IV. Optimal Control Problem

In this paper, the control objective is to transfer a satellite from a given initial orbit towards a predefined target orbit

in finite time. The target orbit is specified in terms of equinoctial elements (see (2)) by introducing the reference state

vector

z =





















































p

f

g

h

k





















































=























































a(1 − e
2
)

e cos(Ω + ω)

e sin(Ω + ω)

tan(i/2) cos(Ω)

tan(i/2) sin(Ω)























































(19)

Let s f be the final value for the integration variable s. According to (4), the orbit matching condition at instant s f can

be formalized as

Cx(s f ) − D(σ(s f ))z = 0 (20)

where C = [I5×5 05×1] and

D(σ) =







































1/Re 0 0 0 0

0 cos(σ) sin(σ) 0 0

0 − sin(σ) cos(σ) 0 0

0 0 0 cos(σ) sin(σ)

0 0 0 − sin(σ) cos(σ)







































(21)
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Thrust limitations due to eclipsing are taken into account in (12) by setting

ζ = ψℓ η (22)

and considering η ∈ [0, 1] as a new throttle control input. Substituting (22) into (12) gives the expression for the

control input vector applied to system (11)

u =
Tmax

m
ψℓ η q (23)

where the decision variables are η and q.

For the system model at hand, the time of flight (TOF), expressed in days, is given by

∆t =
t(s f ) − t(0)

86400
(24)

Moreover, by using (13),(22), and the fact that 0 ≤ ψℓ ≤ 1, one can establish the following upper bound on the fuel

consumption

∆m =

∫ s f

0

κt

Tmax

g0 Isp

η ds (25)

where κt = κt(x, s) according to (6)-(7). In order to trade off fuel consumption and TOF, we define the performance

index

J = (1 − α)∆t + α∆m (26)

where α ∈ [0, 1] is a predefined constant. The considered optimal control problem is then formulated as

min
q, η, s f

J = (1 − α)∆t + α∆m

s.t. x(0) = x0, m(0) = m0, t(0) = t0

x′ = f(x, s) +G(x, s)
Tmax

m
ψℓ η q

m′ =−κt

Tmax

g0 Isp

ψℓ η

t′ = κt

Cx(s f ) − D(σ(s f ))z = 0

Lmin ≤ σ(s f ) + s f ≤ Lmax

∆tmin ≤ ∆t ≤ ∆tmax

0 ≤ η ≤ 1

‖q‖ = 1

(27)

where x0, m0 and t0 are given initial conditions and {Lmin,∆tmin}, {Lmax,∆tmax} are prescribed lower and upper bounds

for the terminal values of the true longitude and of the TOF (one can assign a fixed terminal longitude L and a fixed

TOF ∆t by setting Lmin = Lmax = L and ∆tmin = ∆tmax = ∆t ). Notice that the final value s f of the ideal anomaly is

itself a decision variable. Problem (27) is in the form of a standard Bolza problem for the nonlinear nonautonomous

system defined by the regularized dynamics of the state vector [xT m t]T .

Remark 1. The upper bound (25) has been employed to avoid including the stiff function ψℓ = ψℓ(x, t, s) in the

optimization cost. This is done to facilitate numerical optimization. The resulting ∆m is an excellent approximation

of the actual fuel consumption dictated by (13),(22), due to the minimization with respect to η and the fact that for

sufficiently large values of c the shadow function (18) closely approximates the step function.

Remark 2. The nonconvex constraint ‖q‖ = 1 has been identified as a major source of computational issues for

the solution of problem (27). For ease of computation, in the software implementation of (27) this constraint is

reformulated by introducing the auxiliary decision vector w and enforcing q = w/‖w‖ as well as the convex inequality

‖w‖2 ≤ 1. The latter is included without loss of generality in order to bound the domain of the OCP.

A collocation approach is employed to transcribe the continuous-time problem (27) into a static NLP, which is

then solved with a suitable nonlinear optimizer. It is worth recalling that, due to the lack of convexity of problem (27),

the quality of the solution will be highly dependent of the availability of a reasonable initial guess. In the following, a

Lyapunov-based guidance strategy addressing the initial guess generation problem is presented.
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V. Initial Guess Generation

The initial guess basically provides the initialization point for the NLP solver. In order to generate an initial guess for

the solution of problem (27), one has to determine a suitable value for s f as well as a candidate trajectory, defined

on the interval s ∈ [0, s f ], for the state and control components {x(s), m(s), t(s), q(s), η(s)}. Technically speaking,

the initial guess need not be a feasible solution to problem (27), therefore any trajectory may be used in principle.

However, experience suggests that for large-scale optimization problems such as the one considered herein the initial

guess must be reasonably close to feasibility, otherwise the optimizer may fail to return a solution [12]. In this

respect, the application of feedback control techniques based on Lyapunov theory has seen a considerable success. A

Lyapunov guidance scheme inspired by the Q-law [16,17] is proposed below. It aims at providing a good initial guess

for the optimization of low-thrust orbit transfers involving predefined changes in all orbital elements except for the

true anomaly.

A. Lyapunov-based Guidance Scheme

The first step for the derivation of the guidance scheme is to quantify the deviation between the controlled orbit and the

target one (note that the parameters in Section II do not quantify such deviation, as they describe the absolute motion).

To this aim, we find it convenient to employ a subset of the orbital parameters introduced in [35]. In particular, we

will make use of the relative inclination γ (the angle between the orbital planes of the two orbits), and of the angles λ2

and λ1 made respectively by the periapsis of the controlled orbit and by the target periapsis, with respect to the relative

line of nodes. By using the results in [35] together with (2), (4) and (19), one can construct a nonlinear coordinate

transformation y = y(x, z) such that
[

a e γ λ1 λ2

]T
= y(x, z) (28)

Defining the relative eccentricity vector as

e =

[

e cos(λ2) − e cos(λ1)

e sin(λ2) − e sin(λ1)

]

, (29)

it can be verified that the controlled and the target orbits coincide if a = a, e = 0 and γ = 0, where a and e denote

respectively the target semimajor axis and eccentricity. As a scalar measure of the deviation of a from a, of e from 0,

and of γ from 0, we consider the Lyapunov function candidate

V(y) =
ka

2

√

µ

a















√

a

a
− 1















2

+

√

µ

p

[

ke

‖e‖2

2
+ kγ tan2

(

γ

2

)

]

(30)

where ka ≥ 0, ke ≥ 0, kγ ≥ 0 are constant weighting parameters (for notational simplicity, the dependance on constant

parameters is not made explicit in the argument of V). The rationale behind the definition of (30) is similar to that

leading to the Q-law. While the Q-law attempts to quantify the “best-case quadratic time-to-go” for the maneuver, the

specific form of (30) attempts to quantify the delta-v needed to bring the actual orbit to the target orbit. Indeed, it can

be easily seen that the dimensional unit of (30) is m/s.

The s-derivative of (30) is evaluated along the trajectory of system (11), neglecting J2 effects (i.e., f(x, s) = 0).

This results in

V ′ =
∂V(y)

∂y

∂y(x, z)

∂x
G(x, s) u := hT u (31)

Substituting (23) into (31) gives

V ′ = hT Tmax

m
ψℓ η q (32)

In order to achieve V ′ ≤ 0, the following functional form is assigned to the initial guess of the thrust direction vector q

q = − h

‖h‖
(33)

Substituting (33) into (32), one gets

V ′ = −‖h‖ Tmax

m
ψℓ η (34)

so that V ′ ≤ 0, as expected.
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In (34), the throttle control input η ∈ [0, 1] is yet to be specified. The initial guess of η is specified according to

the coasting mechanism described in [17], which employs the time derivative of V as an indicator of whether to thrust

or coast. The time derivative V̇ is obtained from (7) and (34) as

V̇ =
V ′

κt

= −‖h‖
κt

Tmax

m
ψℓ η (35)

At each instant s, the maximum value hmax and minimum value hmin of the gain factor ‖h‖/κt = ‖h(x, s)‖/κt(x, s) in

(35) are predicted over a future time span whose length is equal to one orbital period. This is done by sweeping τ over

the interval [s, s + 2π] in the expression ‖h(x, τ)‖/κt(x, τ), while holding the system state x constant and equal to the

present value x(s). A minor amendment of the method in [17] is implemented so as to effectively cope with eclipse

effects. It boils down to discarding eclipse periods occurring in the interval [s, s + 2π] when computing hmax and

hmin (in other words, hmax and hmin are evaluated over non-eclipsed orbital arcs). Then, a thrusting efficiency factor is

defined as

ξ =
‖h‖/κt − hmin

hmax − hmin

(36)

A coasting phase is enforced whenever the thrusting efficiency is below a predefined threshold ξcut ∈ [0, 1], by setting

η = 0 if ξ < ξcut. Throttle cut-offs due to eclipsing are accounted for by setting η = ψℓ when ξ ≥ ξcut. Summarizing,

one has that

η =



















ψℓ if ξ ≥ ξcut

0 if ξ < ξcut

(37)

For minimum time problems, it is customary to set ξcut = 0, so as to fire the thruster whenever it is possible. For ξcut > 0

a trade-off is established between TOF and control effort. For additional details about the coasting mechanism, the

reader is referred to [17].

The initial guess for the state and control components {x(s), m(s), t(s), q(s), η(s)} is generated by integrating

system (7),(11),(13) with the control input (23),(33),(37). Due to the way the feedback control policy is defined, the

initial guess gets close to a feasible solution to problem (27) as soon as the Lyapunov function (30) approaches zero.

An interesting feature of the proposed guidance scheme is that scaling all the weighting parameters in (30) by the

same positive constant does not change the control policy, and hence it does not affect the state trajectory guess. This

allows one to restrict the domain of definition of {ka, ke, kγ} to the positive orthant of the unit sphere, by means of the

spherical coordinate transformation

ka = cos(ϕaz) cos(ϕel)

ke = sin(ϕaz) cos(ϕel)

kγ = sin(ϕel),

(38)

where the free parameters are ϕaz ∈ [0, π/2] and ϕel ∈ [0, π/2]. In this way, the tuning of the initial guess can

be conveniently cast as a two-dimensional search over {ϕaz, ϕel} for minimum time problems or a three-dimensional

search over {ϕaz, ϕel, ξcut} for problems involving fuel optimization. For the case studies presented in Section VI, we

adopted a naive search procedure which consists of initializing all the tuning parameters to zero, increasing ϕaz and

ϕel until a reasonably low TOF is achieved, and then increasing ξcut until the desired TOF/fuel trade-off is reached. By

doing so, we were able to generate a suitable trajectory guess in few minutes. The use of the parametrization in [35]

is instrumental to this purpose, as it allows one to describe the relative motion via a minimal set of variables, which

translates into a reduced number of weighting parameters in (30). It is also worth remarking that the control policy

(33),(37) is well defined for circular and equatorial orbits, as opposed to the Q-law formulation.

B. Definition of the Initial Mesh

In order to solve (27) by collocation, one must specify an initial mesh, i.e., a discretization grid for the initial guess.

In hp-adaptive collocation methods, the mesh is refined during the solution process either by dividing a mesh segment

or by increasing the number of collocation points within the segment. Clearly, the size and thus the complexity of the

optimization problem will be proportional to the resolution of the initial mesh. Moreover, as with any mesh refinement

method, the performance of the hp method does depend upon the structure of the initial mesh. For these reasons, the

definition of the initial mesh is a critical step of the solution process. The approach proposed herein for the generation

of the initial mesh is as follows. First, system (7),(11),(13),(23),(33),(37) is numerically integrated and the solution

is collected at equally spaced points in the domain s, unless an eclipse event is detected. The event detection routine

keeps track of all eclipse transitions and associates a sample point to each transition. The resulting sample sequence is

eventually downsampled by using a method that involves a reduction of the downsample factor in the event proximity.
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Figure 1. Illustration of the initial mesh generation strategy, showing the profile of the shadow function (14) together with the location the

mesh points.

This produces a discretization grid which is finer in correspondence of eclipse transitions (see Fig. 1), where the system

dynamics are inherently stiff. The transitions of the throttle control input η arising from (37) are not treated as events,

as they vary less predictably in the solution process and can be assigned freely by the optimizer.

VI. Numerical Simulations

In this section, the results of numerical simulations are reported for two benchmark orbit transfer scenarios taken

from the literature in order to demonstrate the capabilities of the proposed method. The single-phase OCP (27) is

solved using the MATLAB optimal control software GPOPS–II [32] in combination with the NLP optimizer IPOPT

[36]. GPOPS–II employs an hp-adaptive Legendre–Gauss–Radau quadrature orthogonal collocation strategy where

the optimal control problem is transcribed into a large sparse NLP, and the NLP is solved on successive mesh iterations

until a desired accuracy is achieved. The initial guess for the first mesh iteration is obtained as in Section V. In

subsequent iterations, the solver is warm-started with the optimal solution from the previous iteration. In this study,

the hp mesh refinement strategy described in [37] is employed. Besides the standard features of hp methods, the

approach in [37] provides the ability to merge mesh segment and to lower the degree of the approximating polynomial,

potentially reducing the size of the optimization problem. The mesh refinement accuracy tolerance is set to ǫ = 5·10−6,

unless otherwise specified. The number of collocation points per mesh segment is allowed to vary from 4 to 6. The

IPOPT optimizer is set up with the linear solver ma57 and an error tolerance of 5·10−7. The first and second derivatives

required by IPOPT are computed analytically by the automatic differentiation software ADiGator [38]. The constant c

in (18) is set to c = 298.78, which according to [22] is a realistic value for Earth-centered transfers. All the simulations

have been performed on a laptop equipped with a Intel Core I7-5600U processor and 16 GB of RAM.

A. GTO-GEO Transfer

Herein, we consider the GTO–GEO orbit transfer problem previously solved in [24,26] via GPOPS-II. The equinoctial

elements for the initial GTO and the target GEO are reported in Table 1. The GTO elements refer to an orbit with a

perigee of 6563.6 km, an apogee of 42164.3 km, and an inclination of 28.5 deg. The GEO elements refer to a circular,

equatorial orbit with a radius of 42165 km. The Julian date at the beginning of the transfer is JD0 = 2451625.5. The

propulsion parameters are Tmax = 0.31158 N and Isp = 1800 s, while the spacecraft initial mass is m0 = 1200 kg. All

planetary constants for this problem are set equal to those in [24, 26] and are not reported here for brevity.

Problem (26)-(27) is set up with α = 0 in order to determine the minimum TOF for the transfer. The initial guess

for the problem is generated by tuning the guidance scheme with ϕaz = 7 · π/180 rad, ϕel = 45 · π/180 rad and ξcut = 0,

resulting in trajectory with a TOF of 120.42 days and in a fuel expenditure of 169.79 kg. The trajectory obtained by

solving the OCP is depicted in Fig. 2. It covers approximately 162 revolutions, in terms of the true longitude. The

components of the thrust direction vector q are shown in Fig. 3. The throttle control input η is always forced to 1

except during eclipse phases. The resulting TOF is 118.74 days and the fuel consumption amounts to 169.38 kg. In

Table 1. Equinoctial elements of the initial and the target orbit for the GTO-GEO transfer

Orbit p (km) f g h k

GTO 11359.07 0.7306 0 0.2539676 0

GEO 42165 0 0 0 0
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Figure 2. Planar projection of the time-optimal GTO-GEO transfer trajectory: thrust phases are colored red, eclipse phases are colored

gray.
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Figure 3. Thrust direction vector profile (interpolated from all non-eclipsed trajectory samples) for the time-optimal GTO-GEO transfer.

this case, they are not far from those provided by the initial guess. The total CPU time for the optimization process is

16 minutes.

The obtained results are compared with those in [24, 26] in Table 2. Both the TOF and the fuel consumption are

lower than those in Ref. [24] and practically equal to those in Ref. [26]. Remarkably, the CPU time is one order of

magnitude smaller compared to that in Ref. [26]. This is an especially good figure considering that in [26] the mesh

error tolerance is set to 10−5, while we employed a tolerance value of 5 · 10−6. As a result, we ended up solving a

problem with approximately twice the number of NLP variables. Since the main differences between the approach
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Table 2. Literature comparison for the GTO-GEO transfer

Source TOF (days) Fuel (kg) CPU time (min)

Ref. [24] 121.22 172.23 n/a

Ref. [26] 118.62 169.44 165

This paper 118.74 169.38 16

Table 3. Mesh iteration history for the time-optimal GTO-GEO problem

Iteration Mesh error NLP var. CPU time

1 9.97e-5 162337 317.7 s

2 5.03e-5 127693 95.07 s

3 6.15e-6 129901 158.4 s

4 5.35e-6 130069 164.1 s

5 4.76e-6 130117 183.7 s
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Figure 4. Planar projection of the fuel-optimal GTO-GEO transfer trajectory: thrust phases are colored red, eclipse phases are colored

gray, and optimal coast phases are colored blue.

in [26] and the proposed one lie in the parametrization of the dynamic model and in the way the optimization problem

is formulated, the observed gain in computational efficiency should be attributed to these two factors. A detailed

breakdown of the mesh iteration history is reported in Table 3. Note that the number of variables in the first iteration is

actually higher than that in the last iteration, indicating that the initial mesh is on average more dense than the final one.

Although this may seem counter-intuitive, it turned out that initializing the solver with a denser initial mesh does result

in a lower number of mesh iterations, which in turns leads to a shorter overall CPU time. Table 3 also demonstrates the

ability of the mesh refinement algorithm [37] to compress the problem size, thus reducing the computational burden.

A fuel-optimal GTO-GEO transfer with fixed TOF has been simulated by setting α = 1 and ∆tmin = ∆tmax = 129.4

days in (26)-(27). The initial guess is left unchanged and equal to that of the minimum time problem, so as to assess

the capability of the method to locate optimal coasting arcs without prior indication (i.e., to identify the bang-off-bang

structure of the fuel-optimal solution). The problem is solved twice using two different mesh error tolerance levels:

ǫ = 5 · 10−6 and ǫ = 5 · 10−7. The solution for ǫ = 5 · 10−6 features a fuel consumption of 159.39 kg and takes a CPU

time of 25.4 min. It involves 7 mesh iterations, with a number of NLP variables in the final mesh equal to 126132.

The solution for ǫ = 5 · 10−7 features a fuel consumption of 159.24 kg and takes a CPU time of 94.6 min. The number

of mesh iterations and of NLP variables in the final mesh amount respectively to 11 and 180444. It can be seen that
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Figure 5. Detail of the throttle control input profile for the fuel-optimal GTO-GEO transfer.

Table 4. Results for the GTO-GEO transfer

Solution type TOF (days) Fuel (kg) CPU time (min)

Time-optimal 118.74 169.38 16

Mixed (α = 0.5) 122.62 162.40 36.9

Fuel-optimal 129.4 (fixed) 159.39 25.4

Fuel-optimal (ǫ=5 · 10−7) 129.4 (fixed) 159.24 94.6

the optimal cost is approximately the same for the two solutions, and that the computational load scales reasonably

well with the mesh accuracy. From a qualitative point of view, a lower mesh error tolerance results in a more accurate

localization of the coast arcs. The trajectory obtained for ǫ = 5 ·10−7, reported in Fig. 4, covers 165 orbital revolutions

and cumulates 420 on-off throttle command transitions. A detail of the throttle control input profile is shown in Fig. 5.

The mixed time/fuel-optimal problem has been investigated by solving (26)-(27) with α = 0.5. In this case, the

TOF is not assigned and the optimizer has to search for a pareto-optimal solution. The resulting performance figure

is: TOF of 122.6 days, fuel consumption of 162.4 kg and CPU time of 36.9 min. The pareto-optimal solution displays

a TOF that is close to the time-optimal one, while the fuel expenditure is lowered by approximately 7 kg compared to

the time-optimal policy. The GTO-GEO transfer results are summarized in Table 4.

B. LEO-GEO Transfer

Herein, we consider the same LEO–GEO orbit transfer scenario studied in [21, 22]. The equinoctial elements for the

initial LEO and the target GEO are reported in Table 5. The LEO elements refer to an orbit with an altitude of 500

km above the Earth surface, an inclination of 28.5 deg, and a right ascension of the ascending node of 180 deg. The

GEO elements refer to a circular, equatorial orbit with a radius of about 42241 km. The Julian date at the beginning

of the transfer is JD0 = 2457377.5. The propulsion parameters are Tmax = 1.445 N and Isp = 1849.347748 s, while

the spacecraft initial mass is m0 = 1000 kg. The planetary constants for this problem are set equal to those in [21,22].

As for the previous case study, we start by evaluating the minimum TOF for the maneuver using α = 0. The

initial guess for the minimum-time problem is generated by tuning the guidance scheme with ϕaz = 20 · π/180 rad,

ϕel = 30 · π/180 rad and ξcut = 0. The resulting trajectory converges in approximately 252 orbital revolutions, leading

to a time of flight of 44.96 days and a fuel consumption of 289.9 kg. The much higher number of revolutions compared

to the GTO-GEO transfer means that we are going to solve a more difficult optimization problem.

The solution to the time-optimal LEO-GEO problem involves 6 mesh iterations, with a number of NLP variables

equal to 252529 in the initial mesh and to 199897 in the final one. The total CPU time taken by the optimization

process is 28.3 minutes. The trajectory returned by the optimizer is depicted in Fig. 6. It covers approximately 251

Table 5. Equinoctial elements of the initial and the target orbit for the LEO-GEO transfer

Orbit p (km) f g h k

LEO 6878.140 0 0 -0.2539676 0

GEO 42241.095482 0 0 0 0
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Figure 6. Time-optimal LEO-GEO transfer trajectory: thrust phases are colored red, eclipse phases are colored gray.
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Figure 7. Thrust direction vector profile for the time-optimal LEO-GEO transfer.

Table 6. Literature comparison for the LEO-GEO transfer

Source TOF (days) Fuel (kg) CPU time (min)

Ref. [21] 43.13 281.21 n/a

Ref. [22] 44.48 280.88 31.8a

This paper 42.37 276.70 28.3b

a Dual Intel Xeon E5-2860v3, 24 cores
b Intel Core I7-5600U, single core

revolutions in terms of the true longitude. The profile of the thrust direction vector components is shown in Fig. 7.

Similarly to the time-optimal GTO-GEO problem, the throttle control input η is always forced to 1 except during

eclipses. The optimal TOF is 42.37 days and the fuel consumption amounts to 276.70 kg.

The obtained results are compared with those in [21, 22] in Table 6. In these works, the minimum TOF for the

maneuver is estimated via heuristic methods and a minimum-fuel problem is solved in which the TOF is fixed and

equal to the estimated TOF. As expected, the minimum TOF resulting from the solution to (26)-(27) with α = 0

is lower than that in [21, 22]. Remarkably, the fuel consumption is also lower than that reported in those papers.

The total CPU time is close to that obtained in [22] using hybrid differential dynamic programming. Note that we

employed a J2-perturbed model while Ref. [22] also models the effect of minor orbital perturbations (J3, J4, third-

body). However, the results in [22] are generated on a dual Intel Xeon E5-2860v3 workstation with a significant part of
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Figure 8. Fuel-optimal LEO-GEO transfer trajectory: thrust phases are colored red, eclipse phases are colored gray, and optimal coast

phases are colored blue.
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Figure 9. Thrust direction vector profile for the fuel-optimal LEO-GEO transfer.

the workload parallelized over 24 cores, while we employed a laptop processor operated on a single core. Therefore,

the computational performance of the proposed solution seems to compare very favorably with that in [22]. The CPU

time for Ref. [21] is not reported, because it lists the total computation time only for the last stage of its multi-phase

method (based on the average iteration time reported for the previous stages, we estimated a cumulative CPU time of

47.4 minutes).

Finally, in order to challenge the proposed method, we generated a 405 revolution trajectory guess containing

many thrust and coast arcs, by tuning the guidance scheme with ϕaz = 7 ·π/180 rad, ϕel = 30 ·π/180 rad and ξcut = 0.3.

This initial guess displays a TOF of 76.7 days and a fuel consumption of 271.01 kg. A minimum fuel problem is set

up by using α = 1 and constraining the problem TOF to be equal to the guessed TOF. The problem involves 434304

NLP variables on the initial mesh. Problems of this size are reportedly out of reach even for state-of-the-art low-thrust

trajectory optimization software such as Mystic [18] (according to [19], computation time limits Mystic to about 250

revolutions for optimized trajectories before switching to the Q-law). We solved the problem twice using the mesh

tolerance levels ǫ = 5 · 10−6 and ǫ = 5 · 10−7. The solution for ǫ = 5 · 10−6 features a fuel consumption of 236.28

kg and a CPU time of 170 min. It involves 5 mesh iterations, with a number of NLP variables in the final mesh equal

to 290832. The solution for ǫ = 5 · 10−7 features a fuel consumption of 236.29 kg and a CPU time of 311.5 min.

The number of mesh iterations and of NLP variables in the final mesh amount respectively to 9 and 364848. The

trajectory obtained for ǫ = 5 · 10−7, reported in Fig. 8, covers 405.45 orbital revolutions and cumulates 869 on-off

throttle command transitions. The corresponding thrust direction vector profile is shown in Fig. 9.
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Table 7. Results for the LEO-GEO transfer

Solution type TOF (days) Fuel (kg) CPU time (min)

Time-optimal 42.37 276.70 28.3

Fuel-optimal 76.7 (fixed) 236.28 170

Fuel-optimal (ǫ=5 · 10−7) 76.7 (fixed) 236.29 311.5

Note that, for this example, the solution provided by the initial guess is quite far from the optimal one. This

demonstrates the capability of the proposed method to effectively explore the solution space. Moreover, it highlights

the advantages brought by trajectory optimization with respect to heuristic approaches such as the one in Section V,

in terms of achievable performance. The LEO-GEO transfer results are summarized in Table 7.

VII. Conclusions

A direct approach has been presented for the optimization of low-thrust orbit transfer trajectories under eclipse con-

straints. A specifically conceived parametrization of the orbital motion has been employed in combination with a

suitable eclipse smoothing technique in order to define a flexible single-phase optimal control problem formulation. It

has been shown that state-of-the-art pseudospectral collocation algorithms are able to solve this problem effectively.

The optimization procedure is complemented by a Lyapunov guidance scheme that can be exploited to generate a

reasonable initial guess for the nonlinear solver in short time. The proposed approach is general enough to encom-

pass minimum-time, mimimum-fuel and mixed time/fuel-optimal control problems. Simulations on several relevant

missions show that the new parametrization and optimization scheme provide a remarkable improvement in terms of

computational efficiency with respect to comparable methods.
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