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The 2014–2015 Ebola epidemic affected several African countries, claiming more than 11,000 

lives and leaving thousands with ongoing sequelae. Safe and effective vaccines could prevent or 

limit future outbreaks. The recombinant vesicular stomatitis virus–vectored Zaire Ebola (rVSV-

ZEBOV) vaccine has shown marked immunogenicity and efficacy in humans but is reactogenic at 

higher doses. To understand its effects, we examined plasma samples from 115 healthy volunteers 

from Geneva who received low-dose (LD) or high-dose (HD) vaccine or placebo. Fifteen plasma 

chemokines/cytokines were assessed at baseline and on days 1, 2 to 3, and 7 after injection. 

Significant increases in monocyte-mediated MCP-1/CCL2, MIP-1β/CCL4, IL-6, TNF-α, IL-1Ra, 

and IL-10 occurred on day 1. A signature explaining 68% of cytokine/chemokine vaccine-

response variability was identified. Its score was higher in HD versus LD vaccinees and was 

associated positively with vaccine viremia and negatively with cytopenia. It was higher in 

vaccinees with injection-site pain, fever, myalgia, chills, and headache; higher scores reflected 

increasing severity. In contrast, HD vaccinees who subsequently developed arthritis had lower day 

1 scores than other HD vaccinees. Vaccine dose did not influence the signature despite its 

influence on specific outcomes. The Geneva-derived signature associated strongly (ρ = 0.97) with 

that of a cohort of 75 vaccinees from a parallel trial in Lambaréné, Gabon. Its score in Geneva HD 

vaccinees with subsequent arthritis was significantly lower than that in Lambaréné HD vaccinees, 

none of whom experienced arthritis. This signature, which reveals monocytes’ critical role in 

rVSV-ZEBOV immunogenicity and safety across doses and continents, should prove useful in 

assessments of other vaccines.

Introduction

A vaccine’s safety is a core element in its development and acceptance, yet there is little 

information on how vaccine-induced responses determine adverse outcomes. Despite recent 

progress in discovery of molecular signatures of vaccine-induced immune responses in 

humans offered by novel, cutting-edge technologies and systems biology approaches, 

biomarkers of vaccine safety and immunogenicity have yet to be identified for most 

vaccines.

There are currently no approved vaccines against Ebola virus disease (EVD). In 2014, an 

EVD outbreak affecting several African countries triggered international collaboration in the 

testing of EVD vaccine candidates (1). The most advanced in its development is the 

replication-competent recombinant vesicular stomatitis virus (rVSV)–based vector vaccine 

expressing the glycoprotein (GP) of the Zaire Ebola virus (rVSV-ZEBOV) (2), which 

conferred a high protection rate in the ring vaccination trial conducted in Guinea (3). The 

phase 1/2 studies were performed in 2014–2015 in the United States (4) and in Africa and 

Europe, with trials in the latter two continents led by a World Health Organization (WHO)–

coordinated consortium [VSV-Ebola Consortium (VEBCON)] (5). In healthy adults, rVSV-

ZEBOV was immunogenic but reactogenic. In phase 1 trials, vaccine doses ranged from 3 × 

105 to 1 × 108 plaque-forming units (pfu), and both reactogenicity and immunogenicity 

proved to be dose-dependent (4–6), although the frequency and intensity of adverse events 

(AEs) were variable. In the Geneva randomized controlled trial (RCT) comparing low-dose 

(LD) (3 × 105 pfu) or high-dose (HD) (1 × 107 or 5 × 107 pfu) vaccine to placebo, 97% of 

vaccinees experienced reactogenicity (6). Characterized by early-onset local and systemic 
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inflammation, it was transient and generally well tolerated (6). In the second week after 

immunization, rVSV-ZEBOV–associated arthritis was identified in 13 of 51 LD and 11 of 

51 HD vaccinees (24%) (6). Although early reactogenicity was similar at other sites, arthritis 

was rarely reported (4, 5). The underlying mechanisms of rVSV-ZEBOV–induced AE 

remain unknown; further investigation is required to determine vaccine safety in vulnerable 

populations such as children, pregnant women, and the immunocompromised and to inform 

the clinical development of other rVSV-based vaccines (7–9). The Innovative Medicine 

Initiative 2 (IMI2) Joint Undertaking–supported VSV-EBOVAC project is examining the 

mechanisms underlying the immunogenicity and safety of rVSV-ZEBOV by using cutting-

edge omics and state-of-the-art technologies (10).

Inflammation results from coordinated vaccine-specific and non-specific biochemical and 

cellular events reflecting cell migration and activation triggered early after infection or 

vaccination. Chemokines attract immune cells such as monocytes, granulocytes, or 

lymphocytes to infected or inflamed tissues (11, 12). Upon activation, these cells locally 

release mediators such as cytokines and chemokines (11), which play a key role in EVD 

(13). Because Ebola virus GP mediates cell tropism in EVD, we postulated that vaccination 

with rVSV-ZEBOV might involve similar target cells.

To study the immunological basis of rVSV-ZEBOV–induced AE and the influence of the 

vaccine dose on these immune responses, we quantified selected chemokines and cytokines 

in the plasma of Geneva vaccinees before and after LD or HD immunization (5, 6). We 

investigated whether a composite pattern of interconnected mediators might be identified. A 

distinct plasma signature emerged, composed of six markers whose up-regulation was 

vaccine dose–dependent and significantly correlated with vaccine-related viremia, cytopenia, 

and AE—including rVSV-ZEBOV–associated arthritis. Extending our analyses to vaccinees 

from Lambaréné, Gabon confirmed the signature’s validity across different genetic 

backgrounds and environmental settings.

Results

The Geneva derivation cohort identifies vaccine-induced, dose-dependent changes in 
specific plasma markers

Plasma samples were collected on days 0, 1, 2 or 3, and 7 in the 115 participants of the 

Geneva RCT (fig. S1) and were subjected to multiplex analysis of 15 chemokines/cytokines 

with documented involvement in responses to Ebola (13–19), VSV (20, 21), or other viral 

vaccines (22, 23). These included monocyte [monocyte chemoattractant protein-1 (MCP-1/

CCL2), macrophage inflammatory protein-1α (MIP-1α/CCL3), and MIP-1β/CCL4]– or 

granulocyte [interleukin-8 (IL-8/CXCL8) and epithelial-derived neutrophil-activating 

peptide 78 (ENA-78/CXCL5)]–attracting chemokines, growth factors [granulocyte-

macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor 

(G-CSF)], proinflammatory [tumor necrosis factor–α (TNF-α) and interferon-γ (IFN-γ)] 

and anti-inflammatory [IL-1 receptor antagonist (IL-1Ra) and IL-10] cytokines, and some T 

cell cytokines (IL-2, IL-4, IL-6, and IL-17). The geometric mean concentrations (GMCs) of 

granulocyte-attracting chemokines, growth factors, T cell cytokines, IL-1β, and MIP-1α/

CCL3 remained unchanged after immunization (table S1). In contrast, a synchronized day 1 
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GMC increase was observed for two monocyte-attracting chemokines (MCP-1/CCL2 and 

MIP-1β/CCL4) and two proinflammatory (IL-6 and TNF-α) and two anti-inflammatory 

(IL-1Ra and IL-10) cytokines (Table 1 and Figs. 1A and 2, A and B). This peak was 

followed by a rapid return to baseline, identifying the ratio of day 1/day 0 GMCs as the 

optimal marker of vaccine responses (table S2). In HD vaccinees, the largest fold increases 

were observed for IL-6 [13.5 (95% CI, 8.3 to 21.9)], IL-1Ra [10.6 (95% CI, 8.4 to 13.4)], 

and IL-10 [7.1 (95% CI, 4.7 to 10.7)], followed by TNF-α [4.0 (95% CI, 2.4 to 6.5)], 

MCP-1/CCL2 [3.4 (95% CI, 3.0 to 3.8)], and MIP-1β/CCL4 [2.3 (95% CI, 2.1 to 2.6)]. 

Although weaker in magnitude, significant changes were also observed in LD vaccinees 

(table S2).

Correlated plasma chemokine/cytokine responses define a specific rVSV-ZEBOV signature

We found that the chemokine and cytokine responses in the plasma of vaccinees correlated 

significantly in a dose-independent manner (table S3, A to C). The strongest associations 

among day 1 GMCs were between MCP-1/CCL2 and MIP-1β/CCL4 (Spearman’s 

correlation coefficient ρ = 0.71, P < 0.001) and between IL-6 and TNF-α (ρ = 0.6, P < 

0.001). Strong correlations were similarly identified for the day 1/day 0 GMC ratios (table 

S4). Cronbach’s α values were 0.89, 0.86, and 0.91 for LD, HD, and all vaccinees, 

respectively, indicating that the variability in vaccine-induced responses is largely based on a 

common trait. Principal components analysis (PCA) identified the contribution of each 

marker to the variability of responses and defined this common trait. A significant 

association was observed in placebo recipients between MCP-1/CCL2 and MIP-1β/CCL4 (ρ 
= 0.66, P < 0.01) (table S4), indicating that this variance was not associated with 

immunization. MIP-1β/CCL4, contributing less to the variability, was thus excluded from 

the equation, without affecting Cronbach’s α (0.88 in all vaccinees). The single principal 

component with an Eigen value greater than 1 (3.38), explaining 68% of the variability of 

the day 1/day 0 chemokine/cytokine ratios, was retained. After normalization and 

standardization, the equation of the signature was defined by “0.266 × MCP-1STD + 0.265 × 

IL-1RaSTD + 0.211 × TNF-αSTD + 0.228 × IL-10STD + 0.242 × IL-6STD,” where each 

marker is expressed by its log10-transformed day 1/day 0 ratio and is standardized.

The score of this equation, henceforth, the Geneva rVSV-ZEBOV signature, was 

significantly influenced by vaccine dose (overall, P < 0.001): It was higher in HD versus LD 

vaccinees [mean, 0.59 (SD, ±0.80) versus −0.61 (SD, ±0.81); P < 0.001] and lowest in 

placebo recipients [mean, −1.12 (SD, ±0.16); P < 0.001 versus HD; fig. S2]. To define the 

influence of the dose on the signature’s equation, we reassessed it separately within the LD 

and HD vaccinees. Similar signatures were obtained (see Supplementary Materials), 

indicating that the equation defining the vaccine signature is dose-independent.

The signature is strongly associated with hematological, virological, and immunological 
outcomes

rVSV-ZEBOV immunization triggers transient, dose-dependent viremia and hematological 

changes (5, 6). We observed strong positive associations between the rVSV-ZEBOV 

signature and peak (ρ = 0.68, P < 0.001), day 1 (ρ = 0.64, P < 0.001), and day 3 (ρ = 0.61, 

P < 0.001) viremia. In contrast, strong negative associations were identified with day 1 
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lymphopenia (ρ = −0.79, P < 0.001) and thrombocytopenia (ρ = −0.55, P < 0.001) and day 

3 thrombocytopenia (ρ = −0.49, P < 0.001) and neutropenia (ρ = −0.42, P < 0.001). Thus, 

higher viral loads were associated with higher signature scores, which, in turn, correlated 

with more pronounced cytopenia. Multivariate analyses indicated that the signature’s 

influences on biological outcomes largely persisted independent of vaccine dose (Table 2).

Given that innate responses are considered to affect subsequent adaptive responses to 

vaccination, we asked whether this day 1 signature correlated with anti–EBOV-GP 

immunoglobulin G (IgG) antibody titers. Significant positive associations were observed at 1 

month (ρ = 0.44, P < 0.001) and 6 months (ρ = 0.45, P < 0.001) after immunization (fig. S3) 

(5, 6). In contrast to biological outcomes, associations with antibody responses essentially 

reflected the influence of the vaccine dose.

Signature scores correlate with the type and severity of vaccine-induced AEs

We next assessed associations between the rVSV-ZEBOV signature and clinical 

characteristics. We found lower scores in females (−0.33 versus 0.04, P = 0.047) and no 

association with age (ρ = 0.12, P = 0.21). As reported, AEs occurred in most (97%) HD 

vaccinees, with dose-dependent incidence and severity (5, 6). Strongly positive associations 

(Table 2) were observed between the score of the chemokine/cytokine signature and 

injection site pain and swelling, fever, myalgia, chills, and even headaches but not early-

onset arthralgia, fatigue, or other AEs (Table 3, table S5, and Fig. 2C). Scores were 

significantly higher in subjects with “any” (at least one) AEs. These AEs correlatedmost 

strongly with changes in the GMCs of the MCP-1/CCL2 and MIP-1β/CCL4 chemokines 

and in IL-1Ra and IL-6 (Table 3). TNF-α elevations were seen only in subjects with myalgia 

or “any AEs.” Thus, local and systemic inflammatory rVSV-ZEBOV–triggered AEs 

presumably reflect the recruitment and activation of specific cells, predominantly 

monocytes, given the role of their chemokines and products.

The standardized grading of the severity of rVSV-ZEBOV–induced AEs (24) identified 63 

vaccinees (62%) with at least one grade ≥2 AE. The scores correlated with the severity of 

subjective fever (P < 0.001), myalgia (P = 0.008), chills (P = 0.003), and any grade ≥2 AEs 

(P = 0.031) (Fig. 2C and table S6).

Although the signature correlated independently with vaccine dose and biological/clinical 

outcomes (Table 2), multivariate analyses indicated that reactogenicity was jointly 

influenced by the dose and the signature (Table 4). As an example, restricting analyses to 

HD vaccinees identified significantly lower IL-10 responses in subjects with early-onset 

arthralgia (table S7), a finding not identified when including all vaccinees (Table 2).

HD vaccinees with subsequent arthritis had lower day 1 signature scores

We previously reported viral arthritis at similar frequencies (20 to 25%) in Geneva HD and 

LD vaccinees, identifying age as a determinant only in LD vaccinees and suggesting that 

distinct mechanisms were at play (6). We thus sought to investigate associations between the 

signature and viral arthritis in each dose group. Similar baseline GMCs were observed in 

subjects with or without subsequent arthritis. In HD vaccinees who later developed arthritis, 

the day 1 score was significantly lower than in their counterparts (Table 5). This reflected 
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significantly lower IL-1Ra, IL-6, TNF-α, MCP-1/CCL2, and MIP-1β/CCL4 responses. In 

contrast, LD vaccinees who later developed arthritis had a higher composite score but 

similar GMCs of cytokines/chemokines as vaccinees without arthritis. Thus, the association 

between rVSV-ZEBOV–induced innate responses and subsequent arthritis is dose-

dependent.

The plasma signature of rVSV-ZEBOV likely originates outside the blood compartment

We next used the dual-color reverse transcriptase multiplex ligation-dependent probe 

amplification (dcRT-MLPA) assay (25) to assess changes in mRNA expression of the 

signature markers in whole-blood RNA samples. Baseline gene expression occasionally 

differed between groups (Table 6), perhaps due to successive rather than simultaneous 

recruitment of HD and LD vaccinees, but was compensated for by using the day 1/day 0 

ratio. Although significant up-regulation of MCP-1/CCL2 and IL-1Ra/IL-1Rn transcripts 

was observed in the blood, the expression of MIP-1β/CCL4, TNF-α, IL-6, and IL-10 
remained unexpectedly unchanged (Table 6, table S8, and fig. S4). Thus, the plasma vaccine 

signature likely reflects vaccine-induced innate responses occurring largely outside of the 

blood compartment.

The rVSV-ZEBOV Geneva and Lambaréné signatures correlate strongly

Vaccine responses may be modulated by genetic and environmental influences. We thus 

asked whether innate responses to rVSV-ZEBOV differ between the Geneva cohort and a 

distinct cohort from an African setting with potential Ebola virus exposure (26, 27). 

Cytokines/chemokines were quantified in cryopreserved plasma samples of 75 subjects 

immunized in Lambaréné (fig. S1). Up-regulated markers included the same chemokines/

cytokines that defined the Geneva signature, peaking on day 1 (Figs. 1B and 2, A and B, and 

table S9). At baseline, higher TNF-α (15-fold), IL-10 (12-fold), and MIP-1β/CCL4 (1.7-

fold) concentrations were observed in Lambaréné than in Geneva, whereas MCP-1/CCL2 

levels were twofold higher in Geneva (table S10). Nevertheless, similar vaccine responses 

were observed in both sites, except for TNF-α and MIP-1β/CCL4, whose higher baseline 

concentrations blunted responses in Lambaréné (Fig. 1B and tables S11 to S13).

To define whether the Geneva signature could predict rVSV-ZEBOV responses elicited 

elsewhere, we applied an independent PCA to the Lambaréné data (see Materials and 

Methods). The main component explained 48.4% of the variability of responses, included 

the same markers, and was translated by a similar signature (0.242 × MCP-1STD + 0.344 × 

IL-1RaSTD + 0.247 × TNF-αSTD + 0.340 × IL-10STD + 0.244 × IL-6STD). Its mean scores 

differed significantly between LD (−1.22 ± 0.78) and HD (0.30 ± 0.80, P < 0.001) vaccinees 

(fig. S5). We next asked whether applying the Geneva signature to the Lambaréné data (fig. 

S6) would generate similar results. Both signatures correlated strongly (ρ = 0.97, P < 0.001; 

Fig. 3) but are not equal. In Lambaréné vaccinees, PCA identified an additional component 

including TNF-α and IL-10, the two cytokines with high baseline concentrations, explaining 

a further 23.5% of the variability of responses. The Lambaréné signature can be derived 

from the Geneva signature and applied to the Lambaréné data (Geneva/Lambaréné 

signature) by the following equation: Lambaréné signature = −0.53 + 1.40 × Geneva/

Lambaréné signature.
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When the Geneva signature was applied to the Lambaréné data, significant positive and 

negative associations were again observed with day 1 viremia (ρ = 0.36, P = 0.002) and 

lymphopenia (ρ = −0.50, P < 0.001) but not thrombocytopenia (table S14). We found 

significant associations with the occurrence (P = 0.001; Table 7 and Fig. 2C) and severity (P 
= 0.001; Fig. 2D and table S14) of any AEs and of injection site pain (P = 0.003; Table 7). 

For other AEs, scores and chemokine/cytokine GMCs were higher in affected subjects but 

did not reach statistical significance. Similarly, responses did not significantly differentiate 

Lambaréné vaccinees with grade 1 or 2 AEs (Fig. 2D and table S14). Although significantly 

fewer Lambaréné HD vaccinees reported fever, chills, and myalgia (tables S15 and S16), 

similar day 1/day 0 cytokine/chemokine responses were observed in both sites (Tables 3 and 

7). Baseline IL-10 concentrations, higher in Lambaréné, were not associated with reduced 

reactogenicity. The signature score of GenevaHDvaccinees with subsequent arthritis [0.16 

(95% CI, 0.12 to 0.44)] was significantly lower than that of Lambaréné HD vaccinees [0.58 

(95% CI, 0.42 to 0.74); P = 0.021; fig. S7], none of whom experienced arthritis.

Discussion

Herein, we report a safety biosignature for rVSV-ZEBOV, identified in the plasma as a 

specific composition of interconnected chemokines/cytokines and validated in two distinct 

cohorts across various vaccine doses and continents. This signature reveals previously 

uncharacterized innate responses to rVSV-ZEBOV and provides insights into their 

contribution to the onset and severity of biological and clinical outcomes.

Among the 15 plasma markers selected for their potential involvement in responses to rVSV-

ZEBOV (13–23), a subset of only six chemokines/cytokines differentiated placebo recipients 

from vaccinees and LD from HD vaccinees. In contrast to the predominantly lymphoid 

markers composing a recently identified H1N1 influenza vaccine signature (28), vaccine 

responses here are monocytic: The two chemokines are monocyte chemoattractants (29), and 

the induced pro- and anti-inflammatory cytokines are monocyte products (30–32). The 

finding that rVSV-ZEBOV preferentially elicits monocyte responses is not unexpected: 

Ebola virus targets monocytes/macrophages (19, 33), and we previously reported their dose-

dependent activation by rVSV-ZEBOV (6). Despite the abundance of blood monocytes, the 

transcript expression of most of these chemokines/cytokines was not increased in blood 

cells. Although blood cells may contribute to the response by releasing proteins such as 

TNF-α and IL-6 from storage vesicles (34, 35), we postulate that this plasma signature is 

generated mostly in extravascular, vaccine-targeted cells and tissues. Responses to rVSV-

ZEBOV, initiated at the site of injection and in the draining lymph nodes, might be 

orchestrated by type I IFNs: In mice, VSV RNA induces high-level production of IFN-α and 

IFN-β (36), known to trigger the six markers (37, 38). In humans, studies initially 

demonstrated that live vaccines such as yellow fever vaccine induce genes regulating virus 

innate sensing and type I IFN production (39, 40). Subsequently, type I IFN was confirmed 

as a pivotal marker of vaccine responses, even in response to inactivated influenza vaccines, 

in both adults (41) and young children (42). Further studies are required to characterize type 

I IFN responses to rVSV-ZEBOV, as well as the relative contribution of rVSV [which 

triggers reactogenicity (21) and transient lymphopenia in mice (43) and induces MCP-1/

CCL2 production by human monocytes (20)] and EBOV-GP [which also triggers immune 
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reactivity (14, 15, 44–50)]. These early innate responses likely play a critical role in the 

large, cross-reactive post-exposure efficacy observed in experimental animal models given 

rVSV-ZEBOV (51, 52). Their potential contribution to the early effectiveness observed in 

the Guinea ring immunization trial (53) is intriguing.

The signature score increased with VSV viremia yet independent of vaccine dose: Its 

positive association, persisting through day 3, suggests a minor and/or insufficient role in the 

control of primary VSV viremia. In contrast, negative dose-independent associations with 

lymphopenia, neutropenia, and thrombocytopenia point to protective effects against virus-

induced cytopenia; whether innate responses reduce cell egress from the blood compartment 

and/or limit virus-mediated cell destruction remains unknown. Although innate immune 

responses set the stage for adaptive vaccine responses (42, 54, 55) and were associated with 

EBOV-GP antibody responses, these were associated with the dose rather than with plasma 

cytokines. It will be of significant interest to define whether (or not) gene expression 

analyses will reveal a direct influence of specific responses [such as type I IFN (36)] on 

antibody titers.

Vaccine reactogenicity has long been thought to reflect innate responses and inflammation. 

Local pain was associated with MCP-1/CCL2, MIP-1β/CCL4, IL-1Ra, and IL-6, likely 

reflecting monocyte recruitment and activation at the injection site. The same markers 

correlated with vaccine-induced fever and “flu-like symptoms,” a finding that again points to 

the preferential activation of monocytes/macrophages by rVSV-ZEBOV (19). IL-1Ra has 

anti-inflammatory properties but is produced as an acute-phase protein also reflecting 

monocyte activation (56). TNF-α was significantly elevated only in myalgia, and early-onset 

arthralgia did not coincide with myalgia but was associated with lower IL-10 responses, 

possibly reflecting the protective role of IL-10 in joint inflammation (57). These influences 

were jointly influenced by the vaccine dose, indicating associations between dose, innate 

responses, and reactogenicity. Comparing the signature of replicating and nonreplicating 

Ebola vaccine candidates (45–50) of rVSV with distinct envelope genes and of rVSV 

vectors with distinct viral properties could shed light on mechanisms underlying their 

relative safety profile and be used in various populations. The acute reactogenicity of rVSV-

ZEBOV was transient and did not prevent its use in the field (53), and vaccine safety was 

subsequently confirmed in thousands of vaccinees (3). Thus, the levels of reactogenicity and 

attendant plasma chemokine and cytokine responses described here may also inform the 

development of standards and standardized templates assessing the risks and benefits of live 

virus vaccines (58).

The pathophysiology leading to the dissemination of rVSV-ZEBOV into the joints and to 

arthritis (5, 6) remained undefined; arthritis after wild-type VSV infection or rVSV 

vaccination with non–EBOV-GP inserts has not been reported (59, 60). Here, we 

demonstrate significantly lower scores and weaker day 1 innate responses in HD vaccinees 

who later developed arthritis. Although higher VSV viremia is associated with higher scores 

(Table 2), days 1 to 3 viral loads were similar in subjects with or without subsequent arthritis 

(6). This suggests that at a high viral inoculum, such as the current dose of 2 × 107 pfu, 

strong early innate responses do not reduce early VSV viremia but may contribute to limit 

the duration of viral replication or viral dissemination in peripheral tissues and subsequent 

Huttner et al. Page 8

Sci Transl Med. Author manuscript; available in PMC 2019 February 18.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



enhanced risks of rVSV-ZEBOV–induced viral arthritis and dermatitis (5, 6). In contrast, in 

LD vaccinees who later developed arthritis, early cytokine/chemokine concentrations were 

similar, and the score was higher compared to that of their LD counterparts. This confirms 

that distinct mechanisms are at play in HD and LD vaccinees, where age is an independent 

factor (6). Further studies are thus needed to define the relative contribution of the 

magnitude and duration of immune responses, the relative role of monocytes in infection 

control versus viral dissemination, and the age-associated joint vulnerability (5, 6); these 

may then help to explain the markedly higher reporting rates of arthritis in Geneva than in 

Lambaréné.

Applying the Geneva signature to an African population at risk of Ebola exposure was key to 

its validation. In Lambaréné, rVSV-ZEBOV up-regulated the same markers, with similar 

responses despite distinct baseline TNF-α, IL-10, and MCP-1/CCL2 levels. The Geneva 

signature correlated highly with that of the independently derived Lambaréné signature.

The frequency of self-reported, vaccine-induced AEs is notably lower in African settings 

(61). We demonstrate here that this lower incidence (5) does not reflect weaker innate 

responses nor higher baseline concentrations of anti-inflammatory cytokines such as IL-10; 

innate responses were similar in European and African volunteers. The fact that the 

signature score of Geneva HD vaccinees with subsequent arthritis is significantly lower than 

that of Lambaréné vaccinees may provide a first explanation for the discrepant reporting of 

arthritis among centers (5). It also emphasizes the importance of assessing vaccine safety in 

the settings where they will be used.

Our study has limitations. Samples were collected in rapidly implemented clinical trials, 

resulting in some missing samples. Further, we preselected markers of potential interest to 

increase the likelihood of detection of vaccine-associated changes. Although this proved 

successful, additional biomarkers are likely to be identified and eventually refine this first 

plasma signature. The measure of 63 markers in an exposed health care worker identified the 

same and additional up-regulated markers (62), some of which were not confirmed in our 

controlled study. Finally, only Geneva participants were randomized; a few of them are 

open-label. Thus, some changes might have been overlooked by distinct baseline values.

Nonetheless, a vaccine signature’s independence from genetic and environmental influences 

could be demonstrated. This signature of the cytokine pattern underlying vaccine 

reactogenicity offers the first lead to understanding the pathophysiology of rVSV-ZEBOV, a 

complex chimeric vaccine with great potential against a deadly disease (53) but with 

reactogenicity at high doses. It strongly suggests the direct influence of innate responses on 

biological and clinical outcomes, including viral dissemination and arthritis. This prompts 

further work toward the use of early signatures to predict subsequent AEs and the 

reassessment of the strategy to use lower doses of rVSV-ZEBOV in subjects with weaker 

immunity, such as young children. It will also be useful in the development of distinct rVSV-

EBOV constructs or of rVSV-based vaccines. The signature’s relevance extends beyond the 

rVSV-ZEBOV vaccine: It highlights the critical contribution of monocyte recruitment and 

activation to both immunogenicity and safety and the possibility that blood transcriptomics 

may fail to identify responses elicited outside the blood compartment.
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Materials and Methods

The VEBCON Consortium

In August 2014, the Public Health Agency of Canada donated 800 vials of the rVSV-

ZEBOV vaccine to WHO, which created VEBCON to initiate dose-ranging phase 1 clinical 

trials. These phase 1 trials were initiated in Germany (NCT02283099), Kenya 

(NCT02296983), Gabon (PACTR2014000089322), and Switzerland [a phase 1/2 RCT; 

NCT02287480] and were supported financially through WHO by grants from the Wellcome 

Trust Foundation, the Bill and Melinda Gates Foundation, and the German Center for 

Infection Research.

The VEBCON Consortium includes the following members: S. T. Agnandji (Centre de 

Recherches Médicales de Lambaréné, Gabon; Institut für Tropenmedizin, 

Universitätsklinikum Tübingen, Germany) and S. Krishna (St George’s University of 

London, U.K.; Institut für Tropenmedizin, Universität Tübingen, Germany; Centre de 

Recherches Médicales de Lambaréné Lambarene, Gabon); P. G. Kremsner and J. S. 

Brosnahan (Institut für Tropenmedizin, Universität Tübingen, Germany; Centre de 

Recherches Médicales de Lambaréné, Gabon); P. Bejon and P. Njuguna (Kenya Medical 

Research Institute, Kilifi, Kenya); M. M. Addo (University Medical Center Hamburg, 

Germany); S. Becker and V. Krähling (Institute of Virology, Marburg, Germany); C.-A. 

Siegrist and A. Huttner (Geneva University Hospitals); and P. Fast (WHO, Geneva, 

Switzerland).

The EBOVAC Consortium

The VSV-EBOVAC Consortium was constituted at the launch of the VSV-EBOVAC IMI2 

project to include its core members. The VSV-EBOVAC Consortium includes the following 

members (in alphabetical order): S. T. Agnandji, R. Ahmed, J. Anderson, F. Auderset, L. 

Borgianni, J. Brosnahan, A. Ciabattini, O. Engler, M. C. Haks, G. Heppner, A. Gerlini, P. G. 

Kremsner, S. Leib, T. Monath, F. Ndungu, P. Njuguna, G. Pozzi, F. Santoro, and C.-A. 

Siegrist.

Study design, population, and key previous outcomes

We performed a prospective derivation and validation cohort study nested within the phase 1 

Geneva (randomized) and Lambaréné (dose-escalation) trials (registration nos. 

NCT02287480 and PACTR201411000919191, respectively), whose biological and clinical 

outcomes have been reported elsewhere (5, 6). All participants with available plasma 

samples (n = 190) were included; these had received an LD [3 × 105 pfu, n = 71 (Geneva, 

51; Lambaréné, 20)] or HD [Geneva, 1 × 107 or 5 × 107 pfu (n = 51); Lambaréné, 3 × 106 or 

2 × 107 pfu (n = 55)] of the same batch of rVSV-ZEBOV or placebo (Geneva, n = 13) (fig. 

S1). Although vaccine reactogenicity, viremia, and ZEBOV-GP–specific IgG enzyme-linked 

immunosorbent assay antibody titers were dose-dependent in Geneva and Lambaréné, 

vaccine-induced arthritis was reported only in Geneva. In that RCT, age emerged as a risk 

factor for rVSV-ZEBOV arthritis in LD but not in HD vaccinees (6).
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Multiplex analyses of chemokines and cytokines

The kinetics of 15 markers were quantified in cryopreserved plasma using a specifically 

designed 15-nucleotide oligomer multiplex (Fluorokine MAP Multiplex Human Cytokine 

Panel, R&D Systems) according to the supplier’s instructions (see Supplementary 

Materials). Briefly, beads conjugated to the analyte-specific capture antibodies, samples, 

standards, and controls were incubated at room temperature for 3 hours. Biotinylated 

detector antibodies and R-phycoerythrin–conjugated streptavidin (SAPE) were subsequently 

added. The mean fluorescence intensity of each analyte was read on the Bio-Plex 200 array 

reader (Bio-Rad Laboratories) using the Luminex xMAP Technology (Luminex 

Corporation). Sample concentrations were calculated using a five-parameter logistic 

regression curve (Bio-Plex Manager 6.0). Interassay variation coefficients were monitored 

using internal controls. These were below 15% for all. Values below each assay’s cutoff 

were arbitrarily valued at 0.01 pg/ml to use a single negative threshold for each marker. 

Alternatively, we used 50% of the minimal detection dose of each specific marker, as 

provided by the manufacturer, to display individual results in Fig. 1. The use of either 

method did not affect the definition of the signature.

Reverse transcriptase multiplex ligation-dependent probe amplification assay

Total RNA from PAXgene blood collection tubes was extracted using the PAXgene Blood 

RNA kit (BD Biosciences) including on-column deoxyribonuclease digestion according to 

the manufacturer’s protocol. RNA was quantified by a NanoDrop ND-1000 

spectrophotometer (NanoDrop Technologies). Gene expression profiles of IL-1RN (IL-1Ra), 

IL-6, TNF-α, IL-10, MCP-1/CCL2, and MIP-1β/CCL4 were determined using dcRT-MLPA, 

as described previously (25, 63). Briefly, for each target-specific sequence, a specific reverse 

transcriptase primer was designed, located immediately downstream of the left- and right-

hand half-probe target sequence. After reverse transcription of 125 ng of RNA using M-

MLV reverse transcriptase (Promega), left- and right-hand half-probes were hybridized to 

the complementary DNA at 60°C overnight. Annealed half-probes were ligated and 

subsequently amplified by polymerase chain reaction (PCR) (33 cycles for 30 s at 95°C, 30 s 

at 58°C, and 60 s at 72°C, followed by 1 cycle for 20 min at 72°C). Primers and probes were 

from Sigma-Aldrich Chemie, and MLPA reagents were from MRC-Holland. PCR 

amplification products were diluted in a 1:10 ratio in Hi-Di formamide containing 400HD 

ROX size standard and analyzed on an Applied Biosystems 3730 capillary sequencer in 

GeneScan mode (BaseClear). Trace data were analyzed using the GeneMapper software 

package 5.0 (Applied Biosystems). Signals below the threshold value for noise cutoff in 

GeneMapper (log2-transformed peak area, ≤7.64) were assigned the threshold value for 

noise cutoff. Subsequently, results from target genes were normalized to the average signal 

of housekeeping gene GAPDH and assigned the threshold value if below 7.64.

Results from target genes were calculated relative to the average signal of reference gene 

GAPDH. After data normalization, signals below the assay cutoff (log2-transformed peak 

area, ≤7.64) were assigned the threshold value for noise cutoff.
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Identification of the Geneva signature

Cronbach’s α was used to assess whether the variation of cytokines/chemokines up-

regulated between days 0 and 1 measured a single trait. Postulating that day 1 changes were 

triggered by immunization, a PCA was conducted in Geneva participants to identify 

components explaining the variability in cytokines/chemokines. The day 1/day 0 ratios of 

the selected cytokines/chemokines were introduced into the model. Ratios were transformed 

(log10 function) to normalize data and were standardized so that the means and the SD 

equaled 0.

The Eigen values for the components were 3.38, 0.70, 0.53, 0.29, and 0.11. The single 

component with the Eigen value greater than 1 was therefore retained. This component 

explained 68% of the variability of the ratios. The equation of this principal component was 

as follows:

0.489 × MCP‐1STD + 0.487 × IL‐1RaSTD + 0.387 × TNF‐ αSTD + 0.419 × IL‐10STD + 0.445 × IL‐6STD

The ratio of cytokines/chemokines introduced in the equation was also standardized. This 

standardization involves the mean and SD of each ratio in the Geneva samples:

IL‐1RaSTD = log 10 IL‐1Raday 1/IL‐1Raday 0 − 0.568 /0.572

IL‐6STD = log 10 IL‐6day 1/IL‐6day 0 − 0.603 /0.937

TNF‐ αSTD = log 10 TNF‐ αday 1 /TNF‐ αday 0 − 0.334 /0.797

IL‐10STD = log 10 IL‐10day 1/IL‐10day 0 − 0.489 /0.848

MCP‐1STD = log 10 MCP‐1day 1/MCP‐1day 0 − 0.295 /0.314

The SD of the signature in participants was 1.84 (and the mean was 0). The coefficient in the 

equation was then divided by 1.84 so that the SD of the signature equals 1. Thus, the final 

equation for the signature was as follows:

Signature = 0.266 × MCP‐1STD + 0.265 × IL‐1RaSTD + 0.211 × TNF‐ αSTD + 0.228 × IL‐10STD + 0.242
× IL‐6STD

The Kaiser-Meyer-Olkin measure of adequacy (64) was assessed to check the adequacy of 

our model. The obtained values were 0.73 for IL-1Ra, 0.83 for IL-6, 0.80 for TNF-α, 0.84 
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for IL-10, and 0.71 for MCP-1; the overall measure of adequacy was 0.77. A measure 

between 0.70 and 0.79 is interpreted as “middling” and between 0.80 and 0.89 as 

“meritorious” (64). We concluded that our model was adequate. The signature was assessed 

in n = 113 participants because two participants had at least one cytokine missing.

Identification of the Lambaréné plasma signature

After the same approach used for the Geneva data, we conducted a PCA with the Lambaréné 

data. The ratio of the five selected cytokines/chemokines was transformed (log10 function) 

and standardized.

The Eigen values for the components were 2.42, 1.18, 0.77, 0.41, and 0.22. The two 

components with an Eigen value greater than 1 were retained. The first component explained 

48% of the variability of ratios of cytokines/chemokines, whereas the second components 

explained 24% of the variability. The equations of these components were as follows:

Component 1 = 0.529 × MCP‐1STD + 0.535 × IL‐1RaSTD + 0.384 × TNF‐ αSTD + 0.376 × IL‐10STD + 0.379
× IL‐6STD

Component 2 = − 0.182 × MCP‐1STD − 0.331 × IL‐1RaSTD + 0.615 × TNF‐ αSTD + 0.538 × IL‐10STD

− 0.437 × IL‐6STD

The ratio of cytokines/chemokines introduced in the equations was also standardized. This 

standardization involved the mean and SD of each ratio in the Lambaréné samples:

IL‐1RaSTD = log 10 IL‐1Raday 1/IL‐1Raday 0 − 0.972 /0.467

IL‐6STD = log 10 IL‐6day 1/IL‐6day 0 − 0.784 /0.983

TNF‐ αSTD = log 10 TNF‐ αday 1 /TNF‐ αday 0 − 0.131 /0.181

IL‐10STD = log 10 IL‐10day 1/IL‐10day 0 − 0.571 /0.751

MCP‐1STD = log 10 MCP‐1day 1/MCP‐1day 0 − 0.498 /0.299

The standardization is not the same as in the Geneva sample because the distribution of the 

ratios of cytokines/chemokines is different in Lambaréné and Geneva.
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Interpreting the first components as the signature, the SD of the signature was 1.56 (and the 

mean was 0). The coefficient in the equation was then divided by 1.56 so that the SD of the 

signature equaled 1. Finally, the equation for the signature was as follows:

Signature = 0.242 × MCP‐1STD + 0.344 × IL‐1RaSTD + 0.247 × TNF‐ αSTD + 0.340 × IL‐10STD + 0.244
× IL‐6STD

The Kaiser-Meyer-Olkin values were 0.60 for IL-1Ra, 0.71 for IL-6, 0.53 for TNF-α, 0.56 

for IL-10, and 0.58 for MCP-1. The overall measure of adequacy was 0.59. A measure 

between 0.50 and 0.59 is interpreted as “miserable,” between 0.60 and 0.69 as “mediocre,” 

and between 0.70 and 0.79 as “middling.” The PCA model in the Lambaréné samples was 

thus less adequate than with the Geneva samples. However, this model identified a similar 

principal component to the signature determined with the Geneva samples and explaining by 

itself 48% of the variability in ratios of cytokines/chemokines. The signature was assessed in 

n = 60 vaccinees; in the remaining 15 vaccinees, at least one cytokine was missing.

Statistical analyses

Chemokines and cytokines were reported by vaccine dose and study day using GMCs 

(log10). GMCs were compared between independent groups using t tests or ANOVA (with 

Scheffe’s correction for multiplicity of tests and post hoc analyses) and over time using 

linear regression models with mixed effects to account for repeated measures. The 

association between the signature and biological outcomes/AEs was assessed using linear 

and logistic regression models with adjustment for the dose. The type I error level was 0.05, 

and all statistical tests were two-sided. Analyses were conducted in R 3.2.2 (R Foundation 

for Statistical Computing, version 2.15.2) and STATA 14.0 IC (StataCorp LP).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Up-regulated plasma markers after rVSV-ZEBOV immunization.
Individual values are expressed in picograms per milliliter for each subject in each dose 

group and at each time point assessed, before and after rVSV-ZEBOV immunization or 

placebo injection in Geneva (A) or Lambaréné (B). The number of samples assessed at each 

time point is given in Table 1 and table S12. Samples with undetectable concentrations were 

arbitrarily given 50% of the specific minimal detection dose, as described in Materials and 

Methods.
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Fig. 2. Plasma chemokines/cytokines and signatures in rVSV-ZEBOV vaccinees from Geneva 
and Lambaréné.
(A) Day 1 GMCs are expressed in picograms per milliliter (IL-6, TNF-α, and IL-10),1 × 

10−2 (MIP-1β/CCL4), 1 × 10−3 (MCP-1/CCL2), or 1 × 10−4 (IL-1Ra) and illustrated for 

Geneva (left) and Lambaréné (right) vaccinees. (B) Vaccine responses, expressed by the day 

1/day 0 ratios, are illustrated for each chemokine and cytokine for which up-regulation was 

observed after immunization in Geneva (left) or Lambaréné (right). (C) The plasma 

signatures are illustrated for Geneva (left) and Lambaréné (right) vaccinees with and without 
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AEs. (D) The plasma signatures are expressed for Geneva (left) and Lambaréné (right) 

vaccinees reporting grade 0 to 3 AEs.
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Fig. 3. Correlation between the Lambaréné signature and the Geneva signature applied to 
Lambaréné vaccinees.
Representation of the signature (in arbitrary units) calculated directly in vaccine recipients 

from Lambaréné (vertical axis) and when applying the Geneva signature to the Lambaréné 

data (horizontal axis).
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Table 1
GMCs of up-regulated markers in Geneva participants.

Analyses included all subjects and the indicated numbers of plasma samples. ANOVA, analysis of variance; 

CI, confidence interval.

Markers Placebo LD (3 × 105 pfu) HD (107 or 5 × 107 pfu) P values for comparison between dose groups 
ANOVA with post hoc Scheffe

Days n GMC (pg/ml)
(95% CI)

n GMC (pg/ml)
(95% CI)

n GMC (pg/ml)
(95% CI)

Global Placebo
versus LD

Placebo
versus HD

LD versus
HD

IL-1Ra 0 13 505.5 (371.1–688.7) 51 581.3 (488.5–691.9) 51 480.3 (410.7–561.6) 0.27 0.76 0.96 0.28

1 13 492.3 (385.4–628.8) 49 1029.3 (797.3–1328.9) 51 5093.9 (3941.5–6583.1) <0.001 0.031 <0.001 <0.001

2 5 352.8 (171.9-724) 28 1307.6 (1079.7–1583.5) 21 1279.2 (960.7–1703.2) <0.001 <0.001 <0.001 0.99

3 8 428.3 (272.3–673.7) 23 784.4 (620.6–991.6) 30 670.3 (558.6–804.3) 0.035 0.035 0.14 0.59

7 13 457.5 (321.8–650.3) 51 689.1 (572.6–829.3) 51 574 (482.3–683.1) 0.099 0.14 0.54 0.37

P = 0.14 P < 0.001 P < 0.001

IL-6 0 13 0.1 (0–0.4) 51 0.4 (0.2–0.8) 51 0.1 (0–0.2) 0.002 0.19 0.89 0.002

1 13 0.1 (0–0.3) 49 0.8 (0.4–1.4) 51 1.2 (0.8–1.9) <0.001 0.003 <0.001 0.50

2 5 0.2 (0–1.1) 28 0.6 (0.3–1.3) 21 0.1 (0–0.3) 0.027 0.67 0.77 0.028

3 8 0 (0–0.1) 23 0.3 (0.1–0.7) 29 0.1 (0–0.2) 0.056 0.077 0.48 0.26

7 13 0.1 (0–0.2) 51 0.3 (0.2–0.6) 51 0.1 (0–0.1) 0.001 0.035 0.90 0.004

P = 0.21 P < 0.001 P < 0.001

TNF-α 0 13 0.2 (0–0.8) 51 0.3 (0.1–0.6) 51 0.3 (0.1–0.5) 0.87 0.88 0.95 0.96

1 13 0.3 (0.1–1) 49 0.4 (0.2–0.7) 51 1 (0.6–1.8) 0.047 0.90 0.18 0.099

2 5 0.3 (0–4) 28 0.6 (0.2–1.6) 21 1.4 (0.6-3) 0.30 0.84 0.43 0.46

3 8 0.1 (0–0.3) 23 0.4 (0.1–1.2) 30 0.6 (0.3–1.5) 0.081 0.21 0.081 0.81

7 13 0.3 (0.1–1.3) 51 0.3 (0.1–0.6) 51 0.5 (0.3–1) 0.46 1 0.74 0.50

P = 0.097 P = 0.11 P < 0.001

IL-10 0 13 0.2 (0.1–0.5) 51 0.1 (0.1–0.1) 51 0.1 (0–0.1) 0.17 0.31 0.17 0.86

1 13 0.2 (0.1–0.4) 49 0.2 (0.1–0.3) 51 0.5 (0.3–0.8) 0.010 0.96 0.11 0.021

2 5 0.2 (0–0.8) 28 0.2 (0.1–0.4) 21 0.2 (0.1–0.4) 0.92 0.95 0.92 0.99

3 8 0.1 (0–0.2) 23 0.1 (0–0.2) 30 0.1 (0–0.1) 0.83 0.94 >0.99 0.84

7 13 0.1 (0–0.4) 51 0.1 (0–0.1) 51 0.1 (0–0.1) 0.52 0.52 0.66 0.93
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Markers Placebo LD (3 × 105 pfu) HD (107 or 5 × 107 pfu) P values for comparison between dose groups 
ANOVA with post hoc Scheffe

Days n GMC (pg/ml)
(95% CI)

n GMC (pg/ml)
(95% CI)

n GMC (pg/ml)
(95% CI)

Global Placebo
versus LD

Placebo
versus HD

LD versus
HD

P = 0.10 P = 0.003 P < 0.001

MCP-1 0 13 180.4 (151–215.6) 51 175.1 (154.1–199) 51 165.9 (153.6–179.3) 0.68 0.97 0.78 0.77

1 13 160.6 (132.9–194) 49 246.1 (209.4–289.1) 51 556 (474.1–652) <0.001 0.053 <0.001 <0.001

2 5 184.2 (138.7–244.6) 27 204 (180.7–230.3) 21 218.1 (185.4–256.5) 0.58 0.83 0.62 0.80

3 8 154.6 (126.2–189.3) 24 197 (172.4–225.1) 30 191.4 (174.5–210) 0.13 0.14 0.20 0.94

7 13 169.4 (142.3–201.8) 51 184.1 (160.5–211.3) 51 176 (161.8–191.5) 0.75 0.81 0.96 0.86

P = 0.42 P < 0.001 P < 0.001

MIP-1β 0 13 23.6 (13.4–41.6) 51 38.8 (33–45.5) 51 32 (26.7–38.4) 0.055 0.070 0.36 0.37

1 13 22.7 (14.1–36.6) 49 52.5 (43.8–62.9) 51 74.1 (61.5–89.1) <0.001 0.001 <0.001 0.048

2 5 19.3 (6.3–59.1) 27 46.7 (37.2–58.7) 21 34.5 (27.6-43) 0.020 0.028 0.21 0.29

3 8 29.3 (17.5-49) 24 38.7 (30.7–48.8) 30 31.6 (24.2–41.1) 0.45 0.61 0.96 0.55

7 13 27.1 (18.2–40.4) 51 34.8 (29.5-41) 51 26.8 (22.1–32.6) 0.13 0.49 >0.99 0.15

P = 0.16 P < 0.001 P < 0.001
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Table 2
Multivariate analyses of the determinants of biological outcomes in Geneva.

Multivariate analyses were conducted to assess the association between the signature and biological outcomes 

adjusting for the vaccine dose. Linear regression models were used. For the factor dose, placebo was the 

reference category (denoted “Ref”): The regression coefficients for LD and HD represent the mean difference 

in the biological outcome compared with placebo, adjusted for the signature. The P value parallel to the 

reference category is the P value for testing the global association between the vaccine dose (all doses) and the 

outcomes. The regression coefficients for the signature represent the mean increase in biological outcomes for 

an increase in signature of one unit, adjusted for the vaccine dose. For some biological outcomes (peak VSV 

and VSV viremia at day 1 and at day 3), a log10 transformation was applied to fulfill the assumptions of a 

linear regression model. n denotes the number of volunteers included in the analyses (that is, those without any 

missing data for the outcomes and the signature).

Outcomes Predictors Estimate (SE) P

Peak VSV
    (log10) (n = 112)

Dose Placebo Ref <0.001

Low 0.04 (0.16) 0.78

High 1.03 (0.19) <0.001

Signature Per unit 0.20 (0.07) 0.003

VSV viremia (log10)

   Day 1 (n = 113) Dose Placebo Ref <0.001

Low 0.01 (0.17) 0.95

High 0.97 (0.21) <0.001

Signature Per unit 0.15 (0.07) 0.035

   Day 3 (n = 112) Dose Placebo Ref <0.001

Low −0.01 (0.17) 0.97

High 0.68 (0.21) 0.001

Signature Per unit 0.24 (0.07) 0.001

Lymphopenia

   Day 1 (n = 113) Dose Placebo Ref <0.001

Low −0.12 (0.06) 0.060

High −0.26 (0.08) <0.001

Signature Per unit −0.19 (0.03) <0.001

   Day 3 (n = 113) Dose Placebo Ref 0.014

Low −0.14 (0.07) 0.043

High −0.01 (0.08) 0.88

Signature Per unit −0.04 (0.03) 0.13

Thrombocytopenia

   Day 1 (n = 113) Dose Placebo Ref 0.55

Low 0.00 (0.02) 0.92

High −0.02 (0.03) 0.53

Signature Per unit −0.04 (0.01) <0.001
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Outcomes Predictors Estimate (SE) P

   Day 3 (n = 113) Dose Placebo Ref 0.022

Low −0.07 (0.02) 0.008

High −0.08 (0.03) 0.013

Signature Per unit −0.03 (0.01) 0.003

Monocytosis

   Day 1 (n = 113) Dose Placebo Ref 0.14

Low 0.23 (0.13) 0.088

High 0.32 (0.16) 0.049

Signature Per unit −0.04 (0.06) 0.48

   Day 3 (n = 113) Dose Placebo Ref 0.048

Low 0.32 (0.14) 0.025

High 0.18 (0.17) 0.30

Signature Per unit −0.04 (0.06) 0.45

Neutropenia

   Day 1 (n = 112) Dose Placebo Ref 0.59

Low 0.10 (0.13) 0.44

High 0.02 (0.15) 0.88

Signature Per unit 0.15 (0.05) 0.006

   Day 3 (n = 111) Dose Placebo Ref <0.001

Low −0.26 (0.07) <0.001

High −0.34 (0.09) <0.001

Signature Per unit −0.05 (0.03) 0.10

Sci Transl Med. Author manuscript; available in PMC 2019 February 18.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Huttner et al. Page 27

Table 3
Associations between the signature, chemokines/cytokines, and early AEs in Geneva 
participants.

AEs were included if reported within 14 days of VSV-ZEBOV immunization.

Markers* Local pain (n = 53) No local pain (n = 62) Difference/ratio† P‡§

Signature 0.27 (0.00 to 0.54) −0.46 (−0.68 to −0.23) 0.73 (0.37 to 1.08) 0.001

IL-1Ra 6.89 (4.98 to 9.54) 2.21 (1.64 to 2.99) 3.11 (1.99 to 4.87) <0.001

IL-6 7.83 (4.17 to 14.69) 2.31 (1.44 to 3.69) 3.39 (1.53 to 7.51) 0.003

TNF-α 2.61 (1.58 to 4.32) 1.84 (1.17 to 2.91) 1.42 (0.71 to 2.82) 0.32

IL-10 4.73 (2.71 to 8.27) 2.17 (1.38 to 3.41) 2.18 (1.05 to 4.52) 0.036

MCP-1 2.75 (2.27 to 3.34) 1.50 (1.29 to 1.75) 1.83 (1.43 to 2.36) <0.001

MIP-1β 2.03 (1.76 to 2.35) 1.36 (1.18 to 1.56) 1.50 (1.22 to 1.83) 0.001

Objective fever (n = 14) No objective fever (n = 101)

Signature 0.67 (0.25 to 1.09) −0.24 (−0.43 to −0.05) 0.91 (0.41 to 1.40) 0.001

IL-1Ra 10.60 (5.77 to 19.46) 3.19 (2.48 to 4.09) 3.33 (1.64 to 6.74) 0.002

IL-6 14.06 (4.14 to 47.71) 3.36 (2.23 to 5.06) 4.19 (1.04 to 13.88) 0.045

TNF-α 3.21 (1.40 to 7.35) 2.04 (1.41 to 2.95) 1.57 (0.60 to 4.15) 0.34

IL-10 13.29 (4.66 to 37.96) 2.51 (1.74 to 3.62) 5.30 (1.60 to 17.60) 0.009

MCP-1 3.59 (2.56 to 5.04) 1.81 (1.58 to 2.08) 1.98 (1.34 to 2.93) 0.002

MIP-1β 2.10 (1.61 to 2.73) 1.57 (1.40 to 1.76) 1.33 (0.98 to 1.81) 0.066

Subjective fever (n = 49) No subjective fever (n = 66)

Signature 0.31 (−0.02 to 0.63) −0.45 (−0.63 to −0.27) 0.76 (0.38 to 1.13) <0.001

IL-1Ra 7.15 (4.92 to 10.39) 2.27 (1.74 to 2.96) 3.15 (1.98 to 5.01) <0.001

IL-6 8.34 (3.90 to 17.83) 2.33 (1.63 to 3.33) 3.57 (1.52 to 8.40) 0.004

TNF-α 3.28 (1.71 to 6.28) 1.58 (1.14 to 2.19) 2.07 (0.99 to 4.34) 0.053

IL-10 4.73 (2.39 to 9.36) 2.25 (1.57 to 3.21) 2.11 (0.96 to 4.61) 0.062

MCP-1 2.72 (2.23 to 3.32) 1.56 (1.33 to 1.82) 1.75 (1.35 to 2.26) <0.001

MIP-1β 1.95 (1.64 to 2.32) 1.43 (1.26 to 1.62) 1.37 (1.10 to 1.70) 0.048

Myalgia (n = 57) No myalgia (n = 58)

Signature 0.18 (−0.11 to 0.47) −0.43 (−0.63 to −0.24) 0.61 (0.25 to 0.97) 0.001

IL-1Ra 5.29 (3.68 to 7.61) 2.60 (1.93 to 3.51) 2.03 (1.26 to 3.27) 0.004

IL-6 7.19 (3.73 to 13.85) 2.26 (1.50 to 3.39) 3.19 (1.46 to 6.97) 0.004

TNF-α 3.54 (1.95 to 6.45) 1.32 (1.01 to 1.74) 2.68 (1.37 to 5.22) 0.004

IL-10 4.25 (2.33 to 7.75) 2.25 (1.52 to 3.32) 1.89 (0.92 to 3.90) 0.085

MCP-1 2.43 (2.01 to 2.94) 1.61 (1.35 to 1.91) 1.51 (1.17 to 1.96) 0.002

MIP-1β 1.86 (1.59 to 2.17) 1.43 (1.25 to 1.64) 1.30 (1.05 to 1.60) 0.015

Chills (n = 44) No chills (n = 71)

Signature 0.20 (−0.12 to 0.51) −0.32 (−0.54 to −0.11) 0.52 (0.12 to 0.91) 0.011

IL-1Ra 5.92 (3.93 to 8.92) 2.80 (2.11 to 3.72) 2.12 (1.28 to 3.51) 0.004
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Markers* Local pain (n = 53) No local pain (n = 62) Difference/ratio† P‡§

IL-6 6.22 (3.15 to 12.27) 3.09 (1.91 to 5.01) 2.01 (0.86 to 4.69) 0.104

TNF-α 2.65 (1.46 to 4.79) 1.91 (1.27 to 2.88) 1.39 (0.67 to 2.88) 0.38

IL-10 5.18 (2.62 to 10.24) 2.27 (1.53 to 3.36) 2.28 (1.03 to 5.09) 0.043

MCP-1 2.55 (2.03 to 3.19) 1.70 (1.45 to 1.98) 1.50 (1.14 to 1.98) 0.005

MIP-1β 1.87 (1.59 to 2.19) 1.50 (1.31 to 1.72) 1.24 (1.00 to 1.54) 0.047

Arthralgia (n = 17) No arthralgia (n = 98)

Signature −0.10 (−0.44 to 0.24) −0.13 (−0.34 to 0.08) 0.03 (−0.39 to 0.45) 0.89

IL-1Ra 3.96 (2.15 to 7.30) 3.65 (2.80 to 4.76) 1.09 (0.54 to 2.19) 0.81

IL-6 4.30 (1.80 to 10.28) 3.96 (2.54 to 6.17) 1.09 (0.39 to 3.04) 0.87

TNF-α 1.91 (1.15 to 3.16) 2.21 (1.50 to 3.25) 0.86 (0.45 to 1.67) 0.66

IL-10 2.68 (1.66 to 4.33) 3.16 (2.09 to 4.79) 0.85 (0.44 to 1.63) 0.61

MCP-1 2.15 (1.67 to 2.76) 1.94 (1.67 to 2.26) 1.11 (0.82 to 1.50) 0.50

MIP-1β 1.62 (1.35 to 1.94) 1.63 (1.45 to 1.84) 0.99 (0.79 to 1.24) 0.93

Headache (n = 52) No headache (n = 63)

Signature 0.12 (−0.20 to 0.44) −0.33 (−0.53 to −0.14) 0.45 (0.07 to 0.84) 0.021

IL-1Ra 5.56 (3.82 to 8.09) 2.64 (1.97 to 3.55) 2.10 (1.30 to 2.41) 0.003

IL-6 8.36 (4.18 to 16.73) 2.19 (1.48 to 3.24) 3.82 (1.70 to 8.58) 0.002

TNF-α 3.05 (1.54 to 6.02) 1.62 (1.27 to 2.07) 1.88 (0.90 to 3.93) 0.092

IL-10 3.06 (1.67 to 5.64) 3.10 (2.02 to 4.76) 0.99 (0.46 to 2.10) 0.98

MCP-1 2.23 (1.80 to 2.77) 1.78 (1.51 to 2.10) 1.25 (0.95 to 1.65) 0.11

MIP-1β 1.71 (1.43 to 2.04) 1.57 (1.38 to 1.78) 1.09 (0.87 to 1.36) 0.46

Fatigue (n = 69) No fatigue (n = 46)

Signature −0.07 (−0.34 to 0.19) −0.21 (−0.45 to 0.03) 0.14 (−0.22 to 0.50) 0.45

IL-1Ra 3.88 (2.81 to 5.37) 3.43 (2.38 to 4.96) 1.13 (0.69 to 1.86) 0.62

IL-6 5.27 (3.00 to 9.26) 2.65 (1.60 to 4.38) 1.99 (0.93 to 4.27) 0.078

TNF-α 2.41 (1.43 to 4.08) 1.82 (1.35 to 2.46) 1.32 (0.72 to 2.45) 0.37

IL-10 2.81 (1.71 to 4.61) 3.55 (2.14 to 5.90) 0.79 (0.39 to 1.62) 0.52

MCP-1 2.04 (1.70 to 2.45) 1.87 (1.54 to 2.28) 1.09 (0.83 to 1.43) 0.53

MIP-1β 1.70 (1.47 to 1.96) 1.53 (1.31 to 1.78) 1.11 (0.90 to 1.38) 0.33

Any AEs (n = 106) No AEs (n = 9)

Signature −0.08 (−0.27 to 0.12) −0.70 (−1.07 to −0.34) 0.62 (0.17 to 1.08) 0.011

IL-1Ra 3.93 (3.04 to 5.08) 1.83 (1.11 to 2.99) 2.15 (1.17 to 3.97) 0.018

IL-6 4.46 (2.92 to 6.80) 1.17 (0.60 to 2.26) 3.83 (1.64 to 8.94) 0.004

TNF-α 2.32 (1.61 to 3.33) 0.94 (0.69 to 1.28) 2.47 (1.51 to 4.04) 0.001

IL-10 3.27 (2.22 to 4.80) 1.59 (0.86 to 2.95) 2.05 (0.93 to 4.50) 0.071

MCP-1 2.03 (1.76 to 2.34) 1.42 (0.99 to 2.04) 1.43 (0.92 to 2.22) 0.098

MIP-1β 1.67 (1.49 to 1.87) 1.25 (1.00 to 1.57) 1.33 (1.00 to 1.76) 0.048

*
Mean values (95% CI).

†
Mean difference (signature) and mean ratios (chemokines/cytokines) between participants with and without specific AEs.
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‡
Signature: t tests were conducted to compare the mean signature in participants with or without specific AEs.

§
Chemokines/cytokines: P value for the comparison of the day 1/day 0 ratio of plasma markers between participants with and without each AE. t 

tests were conducted on log10-transformed data.
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Table 4
Multivariate analyses of the determinants of clinical outcomes in Geneva vaccinees (n = 
102)

Multivariate analyses were conducted to assess the association between the signature and AEs adjusting for 

the vaccine dose. Logistic regression models were used. The reported adjusted odds ratios (ORs) capture the 

increase in risk of an AE compared with the reference category (denoted “Ref”).

AEs (outcome) Predictors Adjusted OR (95% CI) P

Pain Dose Low Ref

High 13.98 (4.01–48.72) <0.001

Signature <0 Ref

≥0 1.05 (0.30–3.64) 0.94

Objective fever Dose Low Ref

High 8.42 (0.84–84.42) 0.070

Signature <0 Ref

≥0 3.00 (0.51–17.54) 0.22

Subjective fever Dose Low Ref

High 3.36 (1.16–9.68) 0.025

Signature <0 Ref

≥0 1.97 (0.69–5.66) 0.21

Myalgia Dose Low Ref

High 2.36 (0.83–6.66) 0.11

Signature <0 Ref

≥0 1.60 (0.56–4.54) 0.38

Arthralgia Dose Low Ref

High 0.94 (0.23–3.88) 0.94

Signature <0 Ref

≥0 1.62 (0.39–6.64) 0.51

Chills Dose Low Ref

High 3.84 (1.25–11.74) 0.018

Signature <0 Ref

≥0 0.73 (0.24–2.20) 0.57

Headache Dose Low Ref

High 1.87 (0.67–5.28) 0.23

Signature <0 Ref

≥0 1.78 (0.63–5.00) 0.28

Fatigue Dose Low Ref

High 1.11 (0.37–3.29) 0.85

Signature <0 Ref

≥0 0.55 (0.18–1.61) 0.27
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Table 5
Innate responses (day 1/day 0 ratios of geometric means) and association with rVSV-
ZEBOV arthritis.

Analyses included all vaccinees (n = 102).

HD group Arthritis (n = 11) No arthritis (n = 40) P* Difference of ratios (95% CI)†

Signature −0.16 (−0.12 to 0.44) 0.70 (0.45 to 0.96) 0.009 −0.54 (−0.94 to −0.14)

IL-1Ra 6.23 (4.27 to 9.10) 12.28 (9.15 to 16.47) 0.011 0.51 (0.31 to 0.84)

IL-6 4.37 (1.44 to 13.25) 18.37 (9.14 to 36.89) 0.045 0.24 (0.06 to 0.97)

TNF-α 2.01 (1.16 to 3.47) 4.80 (2.73 to 8.45) 0.037 0.42 (0.19 to 0.95)

MCP-1 2.59 (2.20 to 3.06) 3.59 (2.99 to 4.33) 0.014 0.72 (0.56 to 0.93)

MIP-1β 1.91 (1.70 to 2.18) 2.44 (2.12 to 2.80) 0.017 0.78 (0.64 to 0.96)

IL-10 6.03 (2.09 to 17.44) 7.40 (4.27 to 12.82) 0.74 0.82 (0.21 to 2.98)

LD group Arthritis (n = 13) No arthritis (n = 38) P value* Difference of ratios (95% CI)†

Signature −0.19 (−0.62 to 0.25) −0.75 (−1.00 to −0.50) 0.042 0.56 (0.02 to 1.10)

IL-1Ra 2.43 (1.47 to 4.03) 1.58 (1.17 to 2.14) 0.18 1.54 (0.81 to 2.946)

IL-6 4.25 (1.35 to 13.39) 1.37 (0.93 to 2.02) 0.099 3.11 (0.78 to 12.38)

TNF-α 2.68 (0.86 to 8.34) 1.03 (0.56 to 1.89) 0.18 2.60 (0.62 to 10.87)

MCP-1 1.67 (1.37 to 2.04) 1.33 (1.11 to 1.59) 0.12 1.26 (0.94 to 1.68)

MIP-1β 1.56 (1.23 to 1.97) 1.23 (1.02 to 1.48) 0.14 1.27 (0.92 to 1.75)

IL-10 5.28 (1.78 to 15.63) 1.36 (0.75 to 2.49) 0.053 3.87 (0.98 to 15.34)

*
t test on the signature and on log10-transformed ratios for cytokines/chemokines.

†
Mean difference in signature or ratios of the geometric mean ratio (cytokines/chemokines) in vaccinees with or without arthritis.
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Table 6
Relative gene expression levels (log2) of markers comprising the plasma signature in 

rVSV-ZEBOV vaccinees or placebo recipients of Geneva.

Analyses included all vaccinees (n = 102) and placebo controls (n = 13).

Placebo LD (3 × 105 pfu) HD (107 or 5 × 107 pfu) P values for comparison between dose 
groups ANOVA with post hoc Scheffe

Days n GMC* (95% CI) n GMC* (95% CI) n GMC* (95% CI) P versus LD P versus HD LD versus HD

IL-1RN (IL-1Rα) 0 13 13.59 (13.08–14.09) 51 14.17 (13.99–14.36) 51 12.39 (12.02–12.75) 0.18 0.001 <0.001

1 13 13.93 (13.39–14.48) 51 15.04 (14.71–15.37) 51 15.81 (15.64–15.98) 0.001 <0.001 <0.001

IL-6 0 13 8.61 (7.74–9.48) 51 8.33 (8.14–8.51) 51 7.95 (7.83–8.07) 0.43 0.012 0.028

1 13 8.06 (7.68–8.45) 51 7.97 (7.76–8.17) 51 7.73 (7.64–7.81) 0.87 0.17 0.11

TNF-α 0 13 11.20 (11.08–11.31) 51 11.16 (11.08–11.25) 51 11.06 (10.97–11.15) 0.93 0.31 0.19

1 13 11.22 (11.02–11.42) 51 11.26 (11.18–11.34) 51 11.49 (11.37–11.60) 0.95 0.056 0.006

IL-10 0 13 7.83 (7.61–8.04) 51 7.76 (7.67–7.85) 51 7.89 (7.66–8.15) 0.95 0.96 0.62

1 13 7.66 (7.61–7.71) 51 7.74 (7.64–7.84) 51 7.94 (7.72–8.16) 0.91 0.30 0.22

MCP-1 0 13 7.81 (7.59–8.03) 51 7.91 (7.78–8.04) 51 7.65 (7.63–7.66) 0.64 0.31 0.001

1 13 7.78 (7.64–7.92) 51 10.52 (10.13–10.91) 51 11.66 (11.44–11.89) <0.001 <0.001 <0.001

MIP-1β 0 13 10.97 (10.67–11.27) 51 10.65 (10.44–10.87) 51 10.99 (10.89–11.09) 0.21 >0.99 0.017

1 13 10.95 (10.62–11.28) 51 10.88 (10.76–11.01) 51 11.04 (10.92–11.16) 0.90 0.79 0.20

*
We report the GMC of log2-transformed relative expression levels in whole-blood samples normalized against glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH).
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Table 7
Associations between the signature, chemokines/cytokines and main vaccine-related AEs 
in Lambaréné vaccinees.

AEs were included if reported within 14 days of VSV-ZEBOV immunization. “Missing” indicates the number 

of subjects without available day 0 or day 1 plasma samples, that is, not included.

Markers Local pain (n = 42) No local pain (n = 33) Difference/ratio* P†‡

Missing 10 5

Signature 0.65 (0.44 to 0.86) 0.13 (−0.12 to 0.38) 0.52 (0.18 to 0.85) 0.003

IL-1Ra 11.53 (8.36 to 15.90) 7.83 (5.14 to 11.94) 1.47 (0.86 to 1.06) 0.16

IL-6 10.73 (4.66 to 24.71) 3.71 (1.74 to 7.91) 2.90 (0.92 to 9.16) 0.070

TNF-α 1.43 (1.29 to 1.59) 1.29 (1.08 to 1.53) 1.12 (0.90 to 1.38) 0.30

IL-10 6.35 (3.63 to 11.12) 2.34 (1.25 to 4.35) 2.72 (1.16 to 6.39) 0.022

MCP-1 4.14 (3.39 to 5.06) 2.47 (1.92 to 3.17) 1.68 (1.21 to 2.32) 0.003

MIP-1β 1.66 (1.42 to 1.94) 1.22 (1.01 to 1.48) 1.36 (1.05 to 1.75) 0.020

Markers Objective fever (n = 7) No objective fever (n = 68) Difference/ratio* P†‡

Missing 1 14

Signature 0.73 (0.20 to 1.27) 0.33 (0.15 to 0.52) 0.40 (−0.30 to 1.10) 0.22

IL-1Ra 13.99 (6.87 to 28.46) 8.97 (6.70 to 12.01) 1.56 (0.61 to 3.96) 0.30

IL-6 16.03 (1.56 to 165.07) 5.47 (3.05 to 9.79) 2.93 (0.14 to 61.77) 0.42

TNF-α 1.30 (1.02 to 1.64) 1.36 (0.21 to 1.53) 0.95 (0.70 to 1.30) 0.73

IL-10 7.12 (3.15 to 16.11) 3.47 (2.15 to 5.58) 2.05 (0.69 to 6.12) 0.17

MCP-1 4.09 (3.15 to 5.33) 3.05 (2.53 to 3.69) 1.34 (0.93 to 1.93) 0.10

MIP-1β 1.39 (1.02 to 1.89) 1.41 (1.22 to 1.63) 0.99 (0.66 to 1.48) 0.93

Markers Subjective fever (n = 18) No subjective fever (n = 67) Difference/ratio* P†‡

Missing 1 14

Signature 0.54 (0.24 to 0.85) 0.31 (0.09 to 0.52) 0.23 (−0.15 to 0.62) 0.22

IL-1Ra 11.73 (7.26 to 18.95) 8.59 (6.18 to 11.93) 1.37 (0.75 to 2.50) 0.30

IL-6 7.43 (2.74 to 20.14) 5.62 (2.79 to 11.33) 1.32 (0.37 to 4.68) 0.66

TNF-α 1.44 (1.21 to 1.72) 1.32 (1.16 to 1.50) 1.09 (0.87 to 1.37) 0.44

IL-10 6.66 (2.93 to 15.12) 2.96 81.78 to 4.92) 2.25 (0.82 to 6.15) 0.11

MCP-1 3.39 (2.55 to 4.51) 3.05 (2.46 to 3.79) 1.11 (0.77 to 1.61) 0.57

MIP-1β 1.54 (1.27 to 1.87) 1.36 (1.15 to 1.61) 1.13 (0.87 to 1.47) 0.36

Markers Myalgia (n = 12) No myalgia (n = 63) Difference/ratio* P†‡

Missing 0 15

Signature 0.55 (0.26 to 0.84) 0.33 (0.12 to 0.54) 0.22 (−0.16 to 0.59) 0.24

IL-1Ra 11.17 (6.65 to 18.77) 9.98 (6.55 to 12.32) 1.24 (0.65 to 2.37) 0.49

IL-6 4.58 (2.41 to 8.73) 6.53 (3.25 to 13.14) 0.70 (0.26 to 1.87) 0.47

TNF-α 1.38 (1.18 to 1.61) 1.35 (1.19 to 1.53) 1.03 (0.83 to 1.27) 0.81

IL-10 6.95 (2.65 to 18.25) 3.19 (1.96 to 5.18) 2.18 (0.68 to 6.98) 0.18
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Markers Local pain (n = 42) No local pain (n = 33) Difference/ratio* P†‡

MCP-1 4.08 (2.99 to 5.56) 2.95 (2.41 to 3.60) 1.38 80.93 to 2.05) 0.10

MIP-1β 1.46 (1.15 to 1.84) 1.40 (1.20 to 1.63) 1.04 (0.78 to 1.40) 0.77

Markers Chills (n = 4) No chills (n = 71) Difference/ratio* P†‡

Missing 0 15

Signature 0.86 (0.27 to 1.46) 0.34 (0.16 to 0.52) 0.52 (−0.40 to 1.45) 0.18

IL-1Ra 23.42 (10.15 to 54.01) 8.79 (6.65 to 11.62) 2.67 (0.73 to 9.66) 0.10

IL-6 8.72 (0.91 to 83.93) 5.93 (3.27 to 10.77) 1.47 (0.04 to 50.97) 0.77

TNF-α 1.68 (1.12 to 2.50) 1.33 (1.19 to 1.49) 1.26 (0.67 to 2.35) 0.35

IL-10 7.69 (2.88 to 20.58) 3.54 (2.23 to 5.61) 2.17 (0.50 to 9.55) 0.23

MCP-1 4.81 (2.93 to 7.90) 3.05 (2.54 to 3.66) 1.58 (0.74 to 3.37) 0.17

MIP-1β 1.27 (0.79 to 2.03) 1.42 (1.24 to 1.63) 0.89 (0.43 to 1.86) 0.68

Markers Any AEs (n = 45) No AEs (n = 30) Difference/ratio* P†‡

Missing 5 10

Signature 0.59 (0.40 to 0.78) −0.06 (−0.35 to 0.24) 0.65 (0.28 to 1.01) 0.001

IL-1Ra 11.82 (8.94 to 15.62) 5.91 (3.40 to 10.29) 2.00 (1.05 to 3.82) 0.037

IL-6 8.18 (4.24 to 15.79) 3.37 (1.14 to 9.95) 2.43 (0.65 to 9.03) 0.18

TNF-α 1.40 (1.28 to 1.54) 1.26 (0.98 to 1.64) 1.11 (0.83 to 1.48) 0.47

IL-10 6.15 (3.87 to 9.78) 1.37 (0.63 to 2.96) 4.49 (1.76 to 11.45) 0.003

MCP-1 3.83 (3.19 to 4.60) 2.12 (1.55 to 2.89) 1.81 (1.24 to 2.63) 0.003

MIP-1β 1.56 (1.36 to 1.79) 1.16 (0.88 to 1.51) 1.35 (0.98 to 1.85) 0.064

*
We report the mean difference (signature) and mean ratios (chemokines/cytokines) between participants with and without specific AEs.

†
Signature: t tests were conducted to compare the signature in participants with or without specific AEs.

‡
Chemokines/cytokines: P value for the comparison of the day 1/day 0 ratio of plasma markers between participants with and without each AE. t 

tests were conducted on log10-transformed data.
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