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On a singular limit of the Kobayashi–Warren–Carter

energy

Yoshikazu Giga, Jun Okamoto, Koya Sakakibara and Masaaki Uesaka

Abstract

By introducing a new topology, a representation formula of the Gamma limit of the

Kobayashi–Warren–Carter energy is given in a multi-dimensional domain. A key step is

to study the Gamma limit of a single-well Modica–Mortola functional. The convergence

introduced here is called the sliced graph convergence, which is finer than conventional L1

convergence, and the problem is reduced to a one-dimensional setting by a slicing argument.

Keywords: Gamma limit, Modica–Mortola functional, Kobayashi–Warren–Carter energy, multi-dimensional

domain.
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1 Introduction

We consider the Kobayashi–Warren–Carter energy, which is a sum of a weighted total variation

and a single-well Modica–Mortola energy. Their explicit forms are

EεKWC(u, v) :=

∫
Ω
α(v)|Du|+ EεsMM(v), (1.1)

EεsMM(v) :=
ε

2

∫
Ω
|∇v|2dLN +

1

2ε

∫
Ω
F (v)dLN ,

where Ω is a bounded domain in RN with the Lebesgue measure LN , α ≥ 0, ε > 0 is a small

parameter, and F is a single-well potential which takes its minimum at v = 1. Typical examples

of α and F are α(v) = v2 and F (v) = (v − 1)2, respectively. These are the original choices

in [KWC1, KWC3]. The first term in (1.1) is a weighted total variation with weight α(v).

This energy was first introduced by [KWC1, KWC3] to model motion of grain boundaries of

polycrystal which have some structures like the averaged angle of each grain. This energy is

quite popular in materials science.

We are interested in a singular limit of the Kobayashi–Warren–Carter energy EεKWC as ε

tends to zero. If we assume boundedness of EεKWC for a sequence (u, vε) for fixed u, then

vε tends to a unique minimum of F as ε → 0 in the L2 sense. However, if u has a jump

discontinuity, its convergence is not uniform near such places, even in a one-dimensional setting,

suggesting that we have to introduce a finer topology than L2 or L1 topology. In fact, in a one-

dimensional setting, the notion of graph convergence of vε to a set-valued function is introduced,

and representations of Gamma limits of EεKWC and EεsMM are given in [GOU].

In this paper, we extend this one-dimensional results to a multi-dimensional setting. For this

purpose, we introduce a new concept of convergence called sliced graph convergence. Roughly

speaking, it requires graph convergence on each line. Under this convergence in vε and the L1-

convergence in u, one is able to derive a representation formula for the Gamma limit of EεKWC

as ε→ 0. It is

E0
KWC(u,Ξ) := α(1)

∫
Ω\Ju

|Du|+
∫
Ju

min
ξ−≤ξ≤ξ+

α(ξ)
∣∣u+ − u−

∣∣dHN−1 + E0
sMM(Ξ),

E0
sMM(Ξ) := 2

∫
Σ

{
G(ξ−) +G(ξ+)

}
dHN−1

when vε converges to a set-valued function Ξ of form

Ξ(z) =

{
[ξ−(z), ξ+(z)] , z ∈ Σ,

1, z /∈ Σ,
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where Σ is a countably N − 1 rectifiable set, and ξ± are HN−1-measurable functions with

ξ− ≤ 1 ≤ ξ+. Here HN−1 denotes the N − 1 dimensional Hausdorff measure. The function G is

defined by

G(σ) :=

∣∣∣∣∫ σ

1

√
F (τ)dτ

∣∣∣∣ .
The functions u+ and u− denote upper and lower approximate limits in the measure-theoretic

sense [Fe].

In the case α(v) = v2, we see

E0
KWC(u,Ξ) =

∫
Ω\Ju

|Du|+
∫
Ju∩Σ

(
ξ−+
)2 ∣∣u+ − u−

∣∣dHN−1 + E0
sMM(Ξ),

where a+ denotes the positive part of a function a, i.e., a+ = max(a, 0). In [GOU], the case

α(v) = v2 is discussed for a one-dimensional setting. (Unfortunately, ξ−+ has been misprinted as

ξ− in [GOU].) When F (v) = (v − 1)2,

E0
sMM(Ξ) =

∫
Σ

{
(ξ− − 1)2 + (ξ+ − 1)2

}
dHN−1.

In a one-dimensional setting, the results in [GOU] gave a full characterization of the Gamma

limit: the compactness result and the mere convergence result. On the other hand, it is un-

clear what kind of set-valued functions should be considered as the limit of vε in a multi-

dimensional setting, assuming EεsMM(vε) is bounded. A compactness result is still missing in a

multi-dimensional setting.

The basic idea is to reduce a multi-dimensional setting to a one-dimensional setting by a

slicing argument based on the following disintegration

∫
Ω
f(z)dLN (z) =

∫
πν(Ων)

(∫
π−1
ν (x)

f dH1

)
dLN−1(x),

where πν denotes the projection of RN to the subspace orthogonal to a unit vector ν, and

Ων = πν(Ω). This idea is often used to study the singular limit of the Ambrosio–Tortorelli

functional

Eε(u, v) =

∫
Ω
v2|∇u|2 dLN + λ

∫
Ω

(u− h)2 dLN + EεsMM(v), λ ≥ 0

as in [AT, AT2, FL], where h is a given L2 function and F (v) = (v − 1)2. This problem can be

handled in L1 topology, and its limit is known to be the Mumford–Shah functional

E0(u,K) =

∫
Ω\K
|∇u|2 dLN +HN−1(K) + λ

∫
Ω

(u− h)2 dLN ,
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where K is a countably N −1 rectifiable set. In this case, in our language, it suffices to consider

the case ξ− = 0, ξ+ = 1 on Σ = K so that

E0
sMM(Ξ) = HN−1(K).

In our case, however, as observed in the one-dimensional problem [GOU], it is reasonable to

study non-constant ξ±. Moreover, the fidelity term including λ is also allowed in our case.

Our first main result is the Gamma-convergence of

EεsMM(v) +

∫
J
α(v)j(y)dHN−1(y)

for a given countably rectifiable set J , where j is an HN−1-integrable function on J . This

energy is a special case of EεKWC(u, v) when u has a jump in J while it is constant outside J .

To show liminf inequality, we decompose Σ into a disjoint union of compact sets {Ki}i lying in

almost flat hypersurfaces. Then we reduce the problem in a one-dimensional setting like [FL].

To show limsup inequality, we approximate ξ± so that they are constants in each Ki. This

approximation procedure is quite involved because one should approximate not only energies

but also approximate in the sliced graph topology. The basic choice of recovery sequences is

similar to [AT, FL].

This paper’s main result is the Gamma-convergence of the Kobayashi–Warren–Carter energy.

The additional difficulty comes from the
∫
α(v)|Du| part, and this part can be carried out by

decomposing the domain of integration into two parts: place close to Σ of the limit Ξ of vε, and

outside such place.

The most difficult problem is how to choose a suitable topology for vε to Ξ. We take a

slice, a straight line passing through x with direction ν for LN−1-almost every x ∈ πν(Ω) for

some directions ν. We need several concepts of set-valued functions to formulate the topology,

including measurability, as discussed in [AF].

The compactness is missing for the convergence of EεKWC to E0
KWC. Therefore, we do not

know whether a minimizer of E0
KWC exists under suitable boundary conditions or a minimizer

of energy like E0
KWC + λ

∫
Ω(u− h)2dLN exists. If one minimizes E0

KWC in the Ξ variable, i.e.,

TVKWC(u) := inf
Ξ∈A0

E0
KWC(u,Ξ),

this can be calculated as

TVKWC(u) =

∫
Σ
σ
(
|u+ − u−|

)
dHN−1 +

∫
Ω\Ju

|Du|
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with

σ(r) := min
ξ−,ξ+

{
r min
ξ−≤ξ≤ξ+

α(ξ) + 2
(
G(ξ−) +G(ξ+)

)}
= min

ξ−

{
r min
ξ−≤ξ≤1

α(ξ) + 2G(ξ−)

}
, r ≥ 0

if α(v) ≥ α(1) for v ≥ 1. This σ is always concave. If F (v) = (v − 1)2, then

σ(r) = min
ξ−

{
r(ξ−+)2 + (ξ− − 1)2

}
=

r

r + 1
.

In other words,

TVKWC(u) =

∫
Σ

|u+ − u−|
1 + |u+ − u−|dH

N−1 +

∫
Ω\Ju

|Du|.

This functional is a kind of total variation but has different aspects. For example, if u is a

piecewise constant monotone increasing function in a one-dimensional setting, the total variation

TV (u) =
∫

Ω |Du| equals supu − inf u. This case is often called a staircase problem since TV

does not care about the number and size of jumps for monotone functions. In contrast to TV ,

the TVKWC costs less if the number of jumps is smaller, provided that each jump is the same

size and supu − inf u is the same. The energy like TVKWC for a piecewise constant function is

derived as the surface tension of grain boundaries in polycrystals [LL], which is an active area,

as studied by [GaSp].

The Modica–Mortola functional is the sum of Dirichlet energy and potential energy. The

Gamma limit problem was first studied in [MM1]. Since then, there has been much literature

studying the Gamma-convergence problems. If F is a double-well potential, say F (v) = (v2−1)2,

then the Modica–Mortola functional reads

EεdMM(v) =
ε

2

∫
Ω
|∇v|2dLN +

1

2ε

∫
Ω

(v2 − 1)2dLN .

If EεdMM(vε) is bounded, vε(z) converges to either 1 or −1 for LN -almost all z ∈ Ω by taking

a subsequence. The interface between two states, {lim vε = 1} and {lim vε = −1}, is called a

transition interface. In a one-dimensional setting, its Gamma limit is considered in L1 topology

and is characterized by the number of transition points [MM2]. This result is extended to a

multi-dimensional setting in [M, St], and the Gamma limit is a constant multiple of the surface

area of the transition interface. However, the topology of convergence of vε is either in L1

topology or in measure (including almost everywhere convergence). If we consider its Gamma

limit in the sliced graph convergence, we expect that the limit equals

E0
dMM(Ξ) = 2

∫
Σ

{
G−(ξ−) +G+(ξ+)

}
dHN−1 +G−(1)HN−1(Σ)
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for

Ξ(z) :=

{
[ξ−(z), ξ+(z)] , for z ∈ Σ,

either 1 or − 1, otherwise,

where [−1, 1] ⊂ [ξ−, ξ+]. Here, G± is defined as

G±(σ) =

∣∣∣∣∫ σ

±1

√
F (τ)dτ

∣∣∣∣ .
The first term in E0

dMM(Ξ) is invisible in L1 convergence, while the second term is the Gamma

limit of EdMM in the L1 sense. We do not give proof in this paper. If compactness is available, the

Gamma-convergence yields the convergence of a local minimizer and the global minimizer. For

L1 convergence, based on this strategy, the convergence of a local minimizer has been established

in [KS] when the limit is a strict local minimizer. The convergence of critical points is outside

the framework of a general theory and should be discussed separately as in [HT]. In recent years,

the Gamma limit of the double-well Modica–Mortola function with spatial inhomogeneity has

been studied from a homogenization point of view (see, e.g. [CFHP1], [CFHP2]) but still under

L1 or convergence in measure.

The Mumford–Shah functional E0 is difficult to handle because one of the variables is a

set K. This is the motivation for introducing Eε, called the Ambrosio–Tortorelli functional,

to approximate E0 in [AT]. The Gamma limit of Eε is by now well studied [AT, AT2], and

with weights [FL]. The convergence of critical parts is studied in [FLS] in a one-dimensional

setting; the higher-dimensional case was studied quite recently by [BMR] by adjusting the idea

of [LSt]. The Ambrosio–Tortorelli approximation is now used in various problems, including the

decomposition of brittle fractures [FMa] and the Steiner problem [LS, BLM]. However, in all

these works, the energy for u is a v-weighted Dirichlet energy, not v-weighted total variation

energy.

A singular limit of the gradient flow of the double-well Modica–Mortola flow is well studied.

The sharp interface limit, i.e., ε → 0 yields the mean curvature flow of an interface. For an

early stage of development, see [BL, XC, MSch], on convergence to a smooth mean curvature

flow and [ESS] on convergence to a level-set mean curvature flow [G]. For more recent studies,

see, for example, [AHM, To].

The gradient flow of the Kobayashi–Warren–Carter energy EεKWC is proposed in [KWC1] (see

also [KWC2, KWC3]) to model grain boundary motion when each grain has some structure. Its
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explicit form is

τ1vt = s∆v + (1− v)− 2sv|∇v|,

τ0v
2ut = sdiv

(
v2 ∇u
|∇u|

)
,

where τ0, τ1, and s are positive parameters. This system is regarded as the gradient flow of

EεKWC with F (v) = (v− 1)2, ε = 1, and α(v) = v2. Because of the presence of the singular term

∇u/|∇u|, the meaning of the solution itself is non-trivial since, even if v ≡ 1, the flow is the

total variation flow, and a non-local quantity determines the speed [KG]. At this moment, the

well-posedness of its initial-value problem is an open question. If the second equation is replaced

by

τ0(v2 + δ)ut = sdiv
(
(v2 + δ′)∇u/|∇u|+ µ∇u

)
with δ > 0, δ′ ≥ 0 and µ ≥ 0 satisfying δ′+µ > 0, the existence and large-time behavior of solu-

tions are established in [IKY, MoSh, MoShW1, SWat, SWY, WSh] under several homogeneous

boundary conditions. However, its uniqueness is only proved in a one-dimensional setting under

µ > 0 [IKY, Theorem 2.2]. These results can be extended to the cases of non-homogeneous

boundary conditions. Under non-homogeneous Dirichlet boundary conditions, we are able to

find various structural patterns of steady states; see [MoShW2].

The singular limit of the gradient flow of EεKWC is not known even if α(v) = v2 + δ′, δ′ > 0.

In [ELM], a gradient flow of

E(u,Σ) =

∫
Σ
σ
(∣∣u+ − u−

∣∣) dHN−1, N = 2

is studied. Here u is a piecewise constant function outside a union Σ of smooth curves, including

triple junction, and σ is a given non-negative function. Our TVKWC is a typical example. They

take variation of E not only u but also of Σ and derive a weighted curvature flow with evolutions

of boundary values of u together with motion of triple junction. It is not clear that the singular

limit of the gradient flow of EεKWC gives this flow since, in the total variation flow, the variation

is taken only in the direction of u and does not include domain variation, which is the source of

the mean curvature flow.

This paper is organized as follows. In Section 2, we introduce the notion of sliced graph

convergence. In Section 3, we discuss the liminf inequality of the singular limit of EεsMM with

an additional term under the sliced graph convergence. In Section 4, we discuss the limsup

inequality by constructing recovery sequences. In Section 5, we discuss the singular limit of

EεKWC.

The results of this paper are based on the thesis [O] of the second author.
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2 Sliced graph convergence

In this section, we introduce the notion of sliced graph convergence. We first recall a few basic

notions of a set-valued function, especially on the measurability. Consequently, we review the

notion of the slicing argument and introduce the concept of sliced graph convergence.

2.1 A set-valued function and its measurability

We first recall a few basic notions of a set-valued function; see [AF]. Let M be a Borel set in

Rd and Γ be a set-valued function on M with values in 2R
m\{∅} such that Γ(z) is closed in

Rm for all z ∈ M . We say that such Γ is a closed set-valued function. We say that Γ is Borel

measurable if Γ−1(U) is a Borel set whenever U is an open set in Rm. Here, the inverse Γ−1(U)

is defined as

Γ−1(U) :=
{
z ∈M

∣∣ Γ(z) ∩ U 6= ∅
}
.

Similarly, we say that Γ is Lebesgue measurable if Γ−1(U) is Lebesgue measurable whenever U

is an open set.

Assume that M is closed. We say that Γ is upper semicontinuous if graph Γ is closed in

M ×Rm, where

graph Γ :=
{
z = (x, y) ∈M ×Rm

∣∣ y ∈ Γ(x), x ∈M
}
.

If Γ is upper semicontinuous, Γ is Borel measurable [AF].

Assume that M is compact. Then, graph Γ is compact if it is closed. We set

C = {Γ | graph Γ is compact in M ×Rm and Γ(x) 6= ∅ for x ∈M} .

For Γ1,Γ2 ∈ C, we set

dg(Γ1,Γ2) := dH(graph Γ1, graph Γ2),

where dH denotes the Hausdorff distance of two sets in M ×Rm, defined by

dH(A,B) := max

{
sup
x∈A

dist(z,B), sup
w∈B

dist(w,A)

}
for A,B ⊂M ×Rm, and

dist(z,B) := inf
w∈B

dist(z, w), dist(z, w) = |z − w|,

where | · | denotes the Euclidean norm in Rd ×Rm.
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We recall a fundamental property of a Borel measurable set-valued function [AF, Theorem

8.1.4].

Theorem 1. Let Γ be a closed set-valued function on a Borel set M in Rd with values in

2R
m\{∅}. The following three statements are equivalent:

(i) Γ is Borel (resp. Lebesgue) measurable.

(ii) graph Γ is a Borel set (M⊗B measurable set) in M ×Rm.

(iii) There is a sequence of Borel (Lebesgue) measurable functions {fj}∞j=1 such that

Γ(z) =
{
fj(z)

∣∣ j = 1, 2, . . .
}
.

Here M denotes the σ-algebra of Lebesgue measurable sets in M and B denotes the σ-algebra of

Borel sets in Rm.

2.2 The definition of the sliced graph convergence

We next recall the notation often used in the slicing argument [FL]. Let S be a set in RN . Let

SN−1 denote the unit sphere in RN centered at the origin, i.e.,

SN−1 =
{
ν ∈ RN

∣∣ |ν| = 1
}
.

For a given ν, let Πν denote the hyperplane whose normal equals ν. In other words,

Πν :=
{
x ∈ RN

∣∣ 〈x, ν〉 = 0
}
,

where 〈 , 〉 denotes the standard inner product in RN . For x ∈ Πν , let Sx,ν denote the intersection

of S and the whole line with direction ν, which contains x; that is,

Sx,ν :=
{
x+ tν

∣∣ t ∈ S1
x,ν

}
,

where

S1
x,ν :=

{
t ∈ R

∣∣ x+ tν ∈ S
}
⊂ R.

We also set

Sν :=
{
x ∈ Πν

∣∣ Sx,ν 6= ∅} .
See Figure 1. For a given function f on S, we associate it with a function fx,ν on S1

x,ν defined

by

fx,ν(t) := f(x+ tν).
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Figure 1: Slicing

Let Ω be a bounded domain in RN , and T denote the set of all Lebesgue measurable (closed)

set-valued function Γ : Ω→ 2R. For ν ∈ SN−1, we consider Ω1
x,ν ⊂ R and the (sliced) set-valued

function Γx,ν on Ω1
x,ν defined by Γx,ν(t) = Γ(x+ tν). Let Γx,ν denote its closure defined on the

closure of Ω1
x,ν . Namely, it is uniquely determined so that the graph of Γx,ν equals the closure

of graph Γx,ν in R ×R. As with usual measurable functions, Γ(1) and Γ(2) belonging to T are

identified if Γ(1)(z) = Γ(2)(z) for LN -a.e. z ∈ Ω. By Fubini’s theorem, Γ
(1)
x,ν(t) = Γ

(2)
x,ν(t) for

L1-a.e. t for LN−1-a.e. x ∈ Ων . With this identification, we consider its equivalence class, and

we call each Γ(1), Γ(2) a representative of this equivalence class. For ν ∈ SN−1, we define the

subset Bν ⊂ T as follows: Γ ∈ Bν if, for a.e. x ∈ Ων ,

• There is a representative of Γx,ν such that Γx,ν = Γx,ν on Ω1
x,ν ;

• graph Γx,ν is compact in Ω1
x,ν ×R.

We note that if Γ(1),Γ(2) ∈ Bν , then Γ
(1)
x,ν ,Γ

(2)
x,ν ∈ C with M = Ω1

x,ν by a suitable choice of

representative of Γ
(1)
x,ν ,Γ

(2)
x,ν , which follows from the definition.

In this situation, we have the following fact:

Lemma 2. The function

f(x) = dg

(
Γ

(1)
x,ν ,Γ

(2)
x,ν

)
= dH

(
graph Γ(1)

x,ν , graph Γ(2)
x,ν

)
is Lebesgue measurable in Ων .

Proof. Since each Lebesgue measurable function f has a Borel measurable function f with

f(z) = f(z) for LN -a.e. z ∈ Ω, by Theorem 1 (iii), there is a Borel measurable representative of

Γ. By Theorem 1 (ii), graph Γ is a Borel set for the Borel representative of Γ. Since the graph

of the set-valued function T : x 7−→ graph Γx,ν on Ων equals graph Γ for Γ ∈ Bν by taking a

suitable representative of Γ, we see that T should be Borel measurable if Γ is Borel measurable

by Theorem 1 (ii). (Note that T (x) is a compact set in R × R.) Since dH is continuous, the

map f(x) should be measurable. 2
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We now introduce a metric on Bν of form

dν

(
Γ(1),Γ(2)

)
:=

∫
Ων

dg

(
Γ

(1)
x,ν ,Γ

(2)
x,ν

)
1 + dg

(
Γ

(1)
x,ν ,Γ

(2)
x,ν

) dLN−1(x)

for Γ1,Γ2 ∈ Bν , where LN−1 denotes the Lebesgue measure on Πν . From Lemma 2.2, we see that

this is a well-defined quantity for all Γ(1),Γ(2) ∈ Bν . We identify Γ(1),Γ(2) ∈ Bν if Γ
(1)
x,ν = Γ

(2)
x,ν

for a.e. x. With this identification, (Bν , dν) is indeed a metric space. By a standard argument,

we see that (Bν , dν) is a complete metric space; we do not give proof since we do not use this

fact.

Let D be a countable dense set in SN−1. We set

BD :=
⋂
ν∈D
Bν .

It is a metric space with metric

dD

(
Γ(1),Γ(2)

)
:=

∞∑
j=1

1

2j
dνj
(
Γ(1),Γ(2)

)
1 + dνj

(
Γ(1),Γ(2)

) ,
where D = {νj}∞j=1. (This is also a complete metric space.)

We shall fix D. The convergence with respect to dD is called the sliced graph convergence.

If {Γk} ⊂ BD converges to Γ ∈ BD with respect to dD, we write Γk
sg−→ Γ (as k →∞). Roughly

speaking, Γk
sg−→ Γ if the graph of the slice Γk converges to that of Γ for a.e. x ∈ Ων for any

ν ∈ D. For a function v on Ω, we associate a set-valued function Γv by Γv(x) = {v(x)}. If

Γk = Γvk for some vk, we shortly write vk
sg−→ Γ instead of Γvk

sg−→ Γ. We note that if v ∈ H1(Ω),

the L2-Sobolev space of order 1, then Γv ∈ BD for any D.

We conclude this subsection by showing that the notions of the graph convergence and the

sliced graph convergence are unrelated for N ≥ 2. First, we give an example that the graph

convergence does not imply the sliced graph convergence. Let C(r) denote the circle of radius

r > 0 centered at the origin in R2. It is clear that dH (C(r), C(r − ε)) → 0 as ε > 0 tends to

zero. However, for ν = (1, 0), C(r − ε)x,ν with x = (0,±r) is empty and does not converge to a

single point C(r)x,ν = {(0,±r)}. In this case, C(r− ε)x,ν converges to C(r)x,ν in the Hausdorff

sense except the case x = (0,±r). To make the exceptional set has a positive L1 measure in Πν ,

11



we recall a thick Cantor set defined by

G := [0, 1]\U

U :=
⋃{(

a

2n
− 1

22n+1
,
a

2n
+

1

22n+1

) ∣∣∣∣ n, a = 1, 2, . . .

}
.

This G is a compact set with a positive L1 measure. We set

K :=
⋃
r∈G

C(r), Kε :=
⋃
r∈G

C(r − ε).

Kε converges to K as ε→ 0 in the Hausdorff distance sense. However, for any ν ∈ S2, the slice

(Kε)x,ν does not converge to Kx,ν for x ∈ Πν with |x| ∈ G. It is easy to construct an example

that the graph convergence does not imply the sliced graph convergence based on this set. Let

Ω be an open unit disk centered at the origin. We set

Γε(x) :=

{
[0, 1], z ∈ Kε

{1}, z ∈ Ω\Kε

, Γ(x) :=

{
[0, 1], z ∈ K
{1}, z ∈ Ω\K

.

The graph convergence of Γε to Γ is equivalent to the Hausdorff convergence of Kε to K. The

sliced graph convergence is equivalent to saying (Kε)x,ν → Kx,ν for ν ∈ D and a.e. x, where

D is some dense set in S1. However, from the construction of Kε and K, we observe that for

any ν ∈ S1, the slice Kx,ν does not converge to K for x with |x| ∈ G, which has a positive L1

measure on Πν . Thus, we see that Γε does not converge to Γ in the sense of the sliced graph

convergence while Γε converges to Γ in the sense of graph convergence.

The sliced graph convergence does not imply the graph convergence even if the graph con-

vergence is interpreted in the sense of essential distance. For any HN -measurable set A in RN+1

and a point p ∈ RN+1, we set the essential distance from p to A as

de(p,A) := inf
{
r > 0

∣∣ HN (Br(p) ∩A) > 0
}
,

where Br(p) is a closed ball of radius r centered at p. We set

Nδ(A) :=
{
q ∈ RN+1

∣∣ de(q, A) < δ
}
,

and the essential Hausdorff distance is defined as

deH(A,B) := inf
{
δ > 0

∣∣ A ⊂ Nδ(B), B ⊂ Nδ(A)
}
.

12



Let Ω be a domain in RN (N ≥ 2) containing B1(0) and set

Γε(z) =
{

(1− |z|/ε)+

}
, Γ0(z) = {0}

for z ∈ Ω and ε > 0. Clearly, for any ν ∈ SN−1, x ∈ Ων with x 6= 0,

dH
(
graph Γεx,ν , graph Γ0

x,ν

)
→ 0

holds as ε→ 0, However,

deH
(
graph Γε, graph Γ0

)
= 1;

in particular, Γε does not converge to Γ0 in the deH convergence of the graphs.

3 Lower semicontinuity

We now introduce a single-well Modica–Mortola function EεsMM on H1(Ω) when Ω is a bounded

domain in RN . For v ∈ H1(Ω), we set an integral

EεsMM(v) :=
ε

2

∫
Ω
|∇v|2 dLN +

1

2ε

∫
Ω
F (v) dLN ,

where LN denotes the N -dimensional Lebesgue measure. Here, the potential energy F is a

single-well potential. We shall assume that

(F1) F ∈ C1(R) is non-negative, and F (v) = 0 if and only if v = 1,

(F2) lim inf |v|→∞ F (v) > 0. We occasionally impose a stronger growth assumption than (F2):

(F2’) (monotonicity condition) F ′(v)(v − 1) ≥ 0 for all v ∈ R.

We are interested in the Gamma limit of EεsMM as ε→ 0 under the sliced graph convergence.

We define the subset A0 := A0(Ω) ⊂ BD as follows: Ξ ∈ A0(Ω) if there is a countably N − 1

rectifiable set Σ ⊂ Ω such that

Ξ(z) =

{
1, z ∈ Ω\Σ
[ξ−, ξ+] , z ∈ Σ

(3.1)

with HN−1-measurable function ξ± on Σ and ξ−(z) ≤ 1 ≤ ξ+(z) for HN−1-a.e. z ∈ Σ. For the

definition of countably N − 1 rectifiability, see the beginning of Section 3.2. Here Hm denotes

the m-dimensional Hausdorff measure.

We briefly remark on the compactness of the graph of Ξ ∈ A0. By definition, if Ξ is of form

(3.1), then Ξ(z) is compact. However, there may be a chance that graph Γx,ν is not compact,
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even for the one-dimensional case (N = 1). Indeed, if a set-valued function on (0, 1) is of form

Ξ(z) =

{
[1,m] for z = 1/m

{1} otherwise,

then Ξ is not compact in [0, 1] ×R. It is also possible to construct an example that Ξ 6= Ξ in

(0, 1), which is why we impose Ξ ∈ BD in the definition of A0.

For Ξ ∈ A0, we define a functional

E0
sMM(Ξ,Ω) := 2

∫
Σ

{
G(ξ−) +G(ξ+)

}
dHN−1, where G(σ) :=

∣∣∣∣∫ σ

1

√
F (τ) dτ

∣∣∣∣ .
For later applications, it is convenient to consider a more general functional. Let J be a countably

N − 1 rectifiable set, and α : R → [0,∞) be continuous. Let j be a non-negative HN−1-

measurable function on J . We denote the triplet (J, j, α) by J . We set

E0,J
sMM(Ξ,Ω) = E0

sMM(Ξ,Ω) +

∫
J∩Σ

(
min

ξ−≤ξ≤ξ+
α(ξ)

)
dHN−1.

For S, we also set

Eε,JsMM(v) := EεsMM(v) +

∫
J
α(v)j dHN−1,

which is important to study the Kobayashi–Warren–Carter energy.

3.1 Liminf inequality

We shall state the “liminf inequality” for the convergence of Eε,JsMM.

Theorem 3. Let Ω be a bounded domain in RN . Assume that F satisfies (F1) and (F2). For

J = (J, j, α), assume that J is countably N − 1 rectifiable in Ω with a non-negative HN−1-

measurable function j on J and that α ∈ C(R) is non-negative. Let D be a countable dense set

of SN−1. Let {vε}0<ε<1 be in H1(Ω) so that Γvε ∈ BD. If vε
sg−→ Ξ and Ξ ∈ A0, then

E0,J
sMM(Ξ,Ω) ≤ lim inf

ε→0
Eε,JsMM(vε).

Remark 4. (i) The last inequality is called the liminf inequality. Here, we assume that the

limit Ξ is in A0, which is a stronger assumption than the one-dimensional result [GOU,

Theorem 2.1 (i)], where this condition automatically follows from the finiteness of the

right-hand side of the liminf inequality.

(ii) In a one-dimensional setting, we consider the limit functional in Ω. Here we only consider

it in Ω. Thus, our definition of A0 is different from [GOU]. Under suitable assumptions on
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the boundary, say C1, we are able to extend the result onto Ω. Of course, we may replace

Ω with a flat torus TN = RN/ZN .

(iii) In [GOU], α(v) is taken v2 so that

E0,b
sMM(Ξ,M) = E0

sMM(Ξ,M) + b
(
(min Ξ(a))+

)2
,

where (f)+ denotes the positive part defined by f+ = max(f, 0). However, in [GOU], this

operation was missing in the definition, which is incorrect.

3.2 Basic properties of a countably N − 1 rectifiable set

To prove Theorem 3, we begin with the basic properties of a countably N − 1 rectifiable set. A

set J in RN is said to be countably N − 1 rectifiable if

J ⊂ J0 ∪

 ∞⋃
j=1

Fj
(
RN−1

)
where HN−1(J0) = 0 and Fj : RN−1 → RN are Lipschitz mappings for j = 1, 2, . . ..

Definition 5. Let δ > 0. A set K in RN is δ-flat if there are V ⊂ RN−1, a C1 function

ψ : RN−1 → R, and a rotation A ∈ SO(N) such that

K =
{

(x, ψ(x))A
∣∣ x ∈ V }

and ‖∇ψ‖∞ ≤ δ.

Lemma 6. Let Σ be a countably N−1 rectifiable set. For any δ > 0, there is a disjoint countable

family {Ki}∞i=1 of compact δ-flat sets and HN−1-measure zero N0 such that

Σ = N0 ∪
( ∞⋃
i=1

Ki

)
.

Proof. By [Sim, Lemma 11.1], there is a countable family of C1 manifolds {Mi}∞i=1 and N with

HN−1(N) = 0 such that

Σ ⊂ N ∪
( ∞⋃
i=1

Mi

)
.

Since Mi is a C1 manifold, it can be written as a countable family of δ-flat sets. Thus, we may
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assume that Mi is δ-flat. We define {Ni,Σi}∞k=1 inductively by

N1 := Σ ∩M1, Σ1 := Σ\N1

Ni+1 := Σi ∩Mi+1, Σi+1 := Σi\Ni (i = 1, 2, . . .).

Here, Ni is HN−1-measurable and HN−1(Ni) <∞. Since HN−1 is Borel regular, for any δ, there

exists a compact set C ⊂ Ni such that HN−1(Ni\C) < δ. Thus, there is a disjoint countable

family {Mij}∞j=1 of compact sets, and an HN−1-zero set Ni0 such that

Ni = Ni0 ∪

 ∞⋃
j=1

Mij

 (i = 1, 2, . . .).

Indeed, we define a sequence of compact sets {Mij} inductively by

Mi1 ⊂ Ni,

Mi,j+1 ⊂ Ni\
j⋃

k=1

Mik, j = 1, 2, . . .

such that HN−1
(
Ni\

⋃j
k=1Mik

)
< 1/2j . Then, setting Ni0 = Ni\

⋃∞
j=1Mij yields the desired

decomposition of Ni. Setting

N0 = (N ∩ Σ) ∪
( ∞⋃
i=1

Ni0

)
and renumbering {Mij} as {Ki}, the desired decomposition is obtained. 2

3.3 Proof of liminf inequality

Proof of Theorem 3. By Lemma 6, for δ ∈ (0, 1), we decompose Σ as

Σ = N0 ∪
( ∞⋃
i=1

Ki

)
,

where {Ki}∞i=1 is a disjoint family of compact δ-flat sets and HN−1(N0) = 0. We set

Σm =

m⋃
i=1

Ki

and take a disjoint family of open sets {Umi }mi=1 such that Ki ⊂ Umi . By definition, Ki is of the

form

Ki =
{

(x, ψ(x))Ai
∣∣ x ∈ Vi}
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for some Ai ∈ SO(N), a compact set Vi ⊂ RN−1 and ψi ∈ C1(RN−1) with ‖∇ψi‖∞ ≤ δ. Since

D is dense in SN−1, we are able to take νi ⊂ D, which is close to the normal of the hyperplane

Pi =
{

(x, 0)Ai
∣∣ x ∈ RN−1

}
for i = 1, . . . ,m. We may assume that νi is normal to Pi and ‖∇ψi‖∞ ≤ 2δ by rotating slightly.

See Figure 2. We decompose

Figure 2: The set Σ2

EεsMM(vε) ≥
m∑
i=1

∫
Umi

{
ε

2
|∇vε|2 +

1

2ε
F (vε)

}
dLN .

By slicing, we observe that the right-hand side is∫
Umi

{
ε

2
|∇vε|2 +

1

2ε
F (vε)

}
dLN

=

∫
(Umi )νi

(∫
(Umi )1

x,νi

{
ε

2
|∇vε|2x,νi +

1

2ε
F (vε,x,νi)

}
dt

)
dLN−1(x)

≥
∫

(Umi )νi

(∫
(Umi )1

x,νi

{
ε

2

∣∣∂t(vε,x,νi)∣∣2 +
1

2ε
F (vε,x,νi)

}
dt

)
dLN−1(x).

Since vε
sg−→ Ξ, we see that vε,x,ν converges to Ξx,νi as ε→ 0 in the sense of the graph convergence

in a one dimensional setting for LN−1-a.e. x. Applying the one-dimensional result [GOU,

Theorem 2.1 (i)], we have

lim inf
ε→0

∫
(Umi )1

x,νi

{
ε

2

∣∣∂t(vε,x,νi)∣∣2 +
1

2ε
F (vε,x,νi)

}
dt ≥

∞∑
k=1

2
{
G
(
ξ+
x,νi

(tk)
)

+G
(
ξ−
x,νi

(tk)
)}
(3.2)

for {tk}∞k=1, where Ξx,νi(t) is not a singleton in (Umi )1
x,νi

. This set {tk}∞k=1 contains a unique

point tx such as

(Ki)
1
x,νi ∩ (Um)1

x,νi = {tx},
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so the right-hand side of (3.2) is estimated from below by

2
{
G
(
ξ+
x,νi

(tx)
)

+G
(
ξ−
x,νi

(tx)
)}

.

Since integration is lower semicontinuous by Fatou’s lemma, we now observe that

lim inf
ε→0

EεsMM(vε) ≥
m∑
i=1

∫
(Umi )νi

G̃
(
x+ txν

i
)

dLN−1(x),

where G̃(x) = 2 {G (ξ+(x)) +G (ξ−(x))} (x ∈ Σ). By the area formula, we see∫
Ki

G̃(y) dHN−1(y) =

∫
Vi

G̃ ((x, ψi(x))Ai)

√
1 + |∇ψi(x)|2 dLN−1(x)

≤
√

1 + (2δ)2

∫
(Umi )νi

G̃(x+ txν
i) dLN−1(x).

Thus

lim inf
ε→0

EεsMM(vε) ≥
(
1 + (2δ)2

)−1/2
m∑
i=1

∫
Ki

G̃(x) dHN−1(x)

=
(
1 + (2δ)2

)−1/2
∫

Σm

G̃(x) dHN−1(x).

Sending m→∞ and then δ → 0, we conclude

lim inf
ε→0

EεsMM(vε) ≥
∫

Σ
G̃(x) dHN−1(x).

It remains to prove

lim inf
ε→0

∫
J
α(vε)j dHN−1 ≥

∫
J∩Σ

(
min

ξ−≤ξ≤ξ+
α(ξ)

)
j dHN−1

when vε
sg−→ Ξ. It suffices to prove that

lim inf
ε→0

∫
J∩Ki

α(vε)j dHN−1 ≥
∫
J∩Ki

(
min

ξ−≤ξ≤ξ+
α(ξ)

)
j dHN−1.

By slicing, we may reduce the problem in a one-dimensional setting. If the dimension equals

one, this follows directly from the definition of graph convergence.

The proof is now complete. 2
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4 Construction of recovery sequences

Our goal in this section is to construct what is called a recovery sequence {wε} to establish

limsup inequality.

Theorem 7. Let Ω be a bounded domain in RN . Assume that F satisfies (F1) and (F2’).

For J = (J, j, α), assume that J is countably N − 1 rectifiable in Ω with a non-negative

HN−1-integrable function j on J and that α ∈ C(R) is non-negative. For any Ξ ∈ A0 with

E0,J
sMM(Ξ,Ω) <∞, there exists a sequence {wε} ⊂ H1(Ω) such that

E0,J
sMM(Ξ,Ω) ≥ lim sup

ε→0
Eε,JsMM(wε),

lim
ε→0

dν(Γwε ,Ξ) = 0 for all ν ∈ SN−1.

In particular, wε
sg−→ Ξ in BD for any D ⊂ SN−1 with D = SN−1. By Theorem 3,

E0,J
sMM(Ξ,Ω) = lim

ε→0
Eε,JsMM(wε).

4.1 Approximation

We begin with various approximations.

Lemma 8. Assume ther same hypotheses concerning Ω and S = (J, j, α) as in Theorem 7.

Assume that F satisfies (F1). Assume Ξ ∈ A0 so that its singular set Σ =
{
y ∈ Ω

∣∣ Ξ(y) 6= {1}
}

is countably N − 1 rectifiable. Let δ be an arbitrarily fixed positive number. Then, there exists a

sequence {Ξm}∞m=1 ⊂ A0 such that the following properties hold:

(i) E0,J
sMM(Ξ,Ω) ≥ lim supm→∞E

0,J
sMM(Ξm,Ω),

(ii) limm→∞ dν(Ξm,Ξ) = 0 for all ν ∈ SN−1,

(iii) Ξm(y) ⊂ Ξ(y) for all y ∈ Ω,

(iv) the singular set Σm =
{
y ∈ Ω

∣∣ Ξm(y) 6= {1}
}

consists of a disjoint finite union of compact

δ-flat sets {Kj}kj=1,

(v) ξ+
m, ξ−m are constant functions on each Kj (j = 1, . . . , k), where Ξm(y) = [ξ−m(y), ξ+

m(y)] 3 1

on Σm. Here k may depend on m.

We recall an elementary fact.

Proposition 9. Let h ∈ C(R) be a non-negative function that satisfies h(1) = 0 and is strictly

monotonically increasing for σ ≥ 1. Let {aj}∞j=1 be a sequence such that aj ≥ 1 (j = 1, 2, . . .)
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and
∞∑
j=1

h(aj) <∞.

Then

lim
m→∞

sup
j≥m

(aj − 1) = 0.

Proof. By monotonicity of h for σ ≥ 1, we observe that

h

(
sup
j≥m

aj

)
= sup

j≥m
h(aj) ≤

∑
j≥m

h(aj)→ 0

as m→∞. This yields the desired result since h(σ) is strictly monotone for σ ≥ 1. 2

We next recall a special case of co-area formula [Sim, 12.7] for a countably rectifiable set.

Lemma 10. Let Σ be a countably N − 1 rectifiable set on Ω, and let g be an HN−1-measurable

function on Σ. For ν ∈ SN−1, let πν denote the restriction on Σ of the orthogonal projection

from RN to Πν . Then

∫
Σ
gJ∗πν dHN−1 =

∫
Ων

(∫
Σ1
x,ν

gx,ν(t) dH0(t)

)
dLN−1(x).

Here J∗f denotes the Jacobian of a mapping f from Σ to Πν .

Proof of Theorem 8. We divide the proof into two steps.

Step 1. We shall construct Ξm satisfying (i)–(iv).

By Lemma 6, we found a disjoint family of compact δ-flat sets {Kj}∞j=1 such that Σ =⋃∞
j=1Kj up to HN−1-measure zero set for Σ associated with Ξ. By the co-area formula (Lemma

10) and J∗πν ≤ 1, we observe

∫
Kj

G̃(y) dHN−1(y) ≥
∫
Kj

G̃J∗πν dHN−1 =

∫
Ων

(∫
(Kj)1x,ν

G̃x,ν(t) dH0(t)

)
dLN−1(x), (4.1)

where G̃(y) = 2
(
G (ξ+(y)) +G (ξ−(y))

)
. Since E0,J

sMM(Ξ,Ω) <∞, we see that

∞∑
j=1

∫
Kj

G̃dHN−1(y) <∞. (4.2)

We then take

Ξm(y) =

{
[ξ−(y), ξ+(y)] , y ∈ Σm =

⋃m
j=1Kj

{1} , otherwise.
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By definition, (i), (iii), and (iv) are trivially fulfilled.

It remains to prove (ii). By (4.1) and (4.2), we observe that

∞∑
j=1

∫
Ων

(∫
(Kj)1x,ν

G̃x,ν(t) dH0(t)

)
dLN−1(x) <∞

for Ξ. Since all integrands are non-negative, the monotone convergence theorem implies that

∞∑
j=1

∫
Ων

(∫
(Kj)1x,ν

G̃x,ν dH0

)
dLN−1(x) =

∫
Ων

 ∞∑
j=1

∫
(Kj)1x,ν

G̃x,ν dH0

 dLN−1(x).

Thus
∞∑
j=1

∫
(Kj)1x,ν

G̃x,ν dH0 <∞

for LN−1-a.e. x ∈ Ων . Proposition 9 yields

lim
m→0

sup
j≥m

sup
t∈(Kj)1x,ν

(
ξ+
x,ν(t)− 1

)
= 0

and, similarly,

lim
m→0

sup
j≥m

sup
t∈(Kj)1x,ν

(
1− ξ−x,ν(t)

)
= 0.

Since

dH

(
(Ξm)x,ν ,Ξx,ν

)
= sup

j≥m+1
sup

t∈(Kj)1x,ν

max
{∣∣ξ+

x,ν(t)− 1
∣∣ , ∣∣ξ−x,ν(t)− 1

∣∣} ,
we conclude that

dH

(
(Ξm)x,ν ,Ξx,ν

)
→ 0

as m→∞ for a.e. x ∈ Ων . Since the integrand of

dν (Ξm,Ξ) =

∫
Ων

dH

(
(Ξm)x,ν ,Ξx,ν

)
1 + dH

(
(Ξm)x,ν ,Ξx,ν

) dLN−1(x)

is bounded by 1, the Lebesgue dominated convergence theorem implies (ii).

Step 2. We next approximate Ξm constructed by Step 1 and construct a sequence {Ξmk}∞k=1

satisfying (i)–(v) by replacing Ξ with Ξm. If such a sequence exists, a diagonal argument yields

the desired sequence.
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We may assume that

Ξ(y) =

{
[ξ−(y), ξ+(y)] , y ∈ Σm =

⋃m
j=1Kj

{1} , otherwise.

We approximate ξ+ from below. For a given integer n, we set

ξ+
n (y) := inf

{
ξ+(z)

∣∣∣ z ∈ Ikn} , Ikn :=

{
y ∈ Σm

∣∣∣∣ k − 1

n
≤ ξ+(y)− 1 <

k

n

}
for k = 1, 2, . . .. Since Ikn is HN−1-measurable set, as in the proof of Lemma 6, Ikn is decomposed

as a countable disjoint family of compact sets up to HN−1-measure zero set. We approximate

ξ− from above similarly, and we set

Ξm,n(y) =

{
[ξ−n (y), ξ+

n (y)] , y ∈ Σm

{1} , otherwise.

It is easy to see that Ξm,n satisfies (iii) and (iv) by replacing m with n. Since E0
sMM(Ξ,Ω) ≥

E0
sMM(Ξm,n,Ω) and

min
ξ−n (y)≤ξ≤ξ+n (y)

j(y)α(ξ)→ min
ξ−(y)≤ξ≤ξ+(y)

j(y)α(ξ) as n→∞ for HN−1-a.e. y

with bound j(y)α(1), the property (i) follows from the Lebesgue dominated convergence theorem.

Since

dH

(
(Ξm,n)x,ν ,Ξx,ν

)
= sup

t∈(Σm)1x,ν

max
{∣∣ξ+

x,ν − ξ+
n,x,ν

∣∣ , ∣∣ξ−x,ν − ξ−n,x,ν∣∣} ≤ 1/n,

we now conclude (ii) as discussed at the end of Step 1. 2

4.2 Recovery sequences

In this subsection, we shall prove Theorem 7. An essential step is constructing a recovery

sequence {wε} when Ξ has a simple structure, and the basic idea is similar to that of [AT, FL].

Besides generalization to general F satisfying (F1) and (F2’) from F (z) = (z−1)2, our situation

is more involved because Ξ(y) = [0, 1] for y ∈ Σ in their case, while in our case, Ξ(y) =

[ξ−(y), ξ+(y)] for a general ξ− ≤ 1 ≤ ξ+. Moreover, we must show the convergence in dν and

handle the α-term.

Lemma 11. Assume the same hypotheses concerning Ω, F , and J = (J, j, α) as in Theorem

7. For Ξ ∈ A0, assume that its singular set Σ = {x ∈ Ω | Ξ(x) 6= {1}} consists of a disjoint

finite union of compact δ-flat sets {Kj}kj=1, and ξ− and ξ+ are constant functions in each Kj

(j = 1, . . . , k), where Ξ(x) = [ξ−, ξ+] on Σ. Then there exists a sequence {wε} ⊂ H1(Ω) such
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that

E0,J
sMM(Ξ,Ω) ≥ lim sup

ε→0
Eε,JsMM(wε),

lim dν(Γwε ,Ξ) = 0 for all ν ∈ SN−1.

This lemma follows from the explicit construction of functions {wε} similarly to the standard

double-well Modica–Mortola functional.

Proof. We take a disjoint family of open sets {Uj}kj=1 with the property Kj ⊂ Uj . It suffices to

construct a desired sequence {wε} so that the support of wε − 1 is contained in
⋃k
j=1 Uj , so we

shall construct such wε in each Uj . We may assume k = 1 and write K1, U1 by K,U , and ξ−, ξ+

by a, b (a ≤ 1 ≤ b) so that

Ξ(y) =

{
[a, b] , y ∈ K,
{1} , y ∈ U\K.

For c < 1 and s > 0, let ψ(s, c) be a function determined by∫ ψ

c

1√
F (z)

dz = s.

By (F1), this equation is uniquely solvable for all s ∈ [0, s∗) with

s∗ :=

∫ 1

c

1√
F (z)

dz.

This ψ(s, c) solves the initial value problem
dψ

ds
=
√
F (ψ), s ∈ (0, s∗)

ψ(0, c) = c,
(4.3)

although this ODE may admit many solutions. For c > 1, we parallelly define ψ by∫ c

ψ

1√
F (z)

dz = s

for s ∈ (0, s∗) with

s∗ :=

∫ c

1

1√
F (z)

dz.

In this case, ψ also solves (4.3). We consider the even extension of ψ (still denoted by ψ) for

s < 0 so that ψ(s, c) = ψ(−s, c). For the case c = 1, we set ψ(s, c) ≡ 1. For a, b with [a, b] 3 1,
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we consider a rescaled function ψε(s, ·) = ψ(s/ε, ·) and then define

Ψε(s, a, b) =



1 , s ≤ −2
√
ε

α1s+ β1 , −2
√
ε ≤ s ≤ −√ε

ψε(−s, a) , −√ε ≤ s ≤ 0

ψε(s, a) , 0 ≤ s ≤ √ε
α2s+ β2 ,

√
ε ≤ s ≤ 2

√
ε

ψε(s− 3
√
ε, b) , 2

√
ε ≤ s ≤ 4

√
ε

α3s+ β3 , 4
√
ε ≤ s ≤ 5

√
ε

1 , 5
√
ε ≤ s

with αi, βi ∈ R (i = 1, 2, 3) so that Ψε is Lipschitz continuous.

s

Ψε(s, a, b)

a

1

b

−2
√
ε−√

ε
√
ε 2

√
ε 3

√
ε 4

√
ε 5

√
ε

Figure 3: The graph of Ψε(s, a, b). Thick lines are the part of the graph of ψε(s, a) or ψε(s, b),
and other parts are linear.

Let η be a minimizer of α in [a, b]. We first consider the case when η < 1 so that a ≤ η < 1.

In this case, by definition of Ψε, there is a unique s0 > 0 such that Ψε(s0, a, b) = η. We then set

ϕε(s, a, b) = Ψε(s+ s0, a, b).

For the case η ≥ 1, we take the smallest positive s0 > 0 such that Ψε(s0, a, b) = η. This

s0 = s0(ε) is of order ε3/2 as ε → 0. Since K is a δ-flat surface, it is on the graph of a C1
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function p. So we can write

K = {(x′, p(x′)) | x′ ∈ V }.

We set A := {(x, z) | p(x) ≥ z} and B := {(x, z) | p(x) < z}. Let sd(z) be the signed distance of

z from K, i.e.

sd(z) := d(z,A)− d(z,B).

If sd(z) is non-negative then we simply write it by d(z). We then take

wε(z) = ϕε (sd(z), a, b) ,

This is the desired sequence such that the support of wε − 1 is contained in U for sufficiently

small ε > 0. Since wε is Lipschitz continuous, it is clear that wε ∈ H1(Ω). Since

∇wε = (∂sΨε) (sd(z) + s0, a, b)∇sd(z),

we have for |sd(z)| < √ε− s0,

∇wε(z) = (∂sψε) (sd(z) + s0, a)∇sd(z)

=
1

ε
(∂sψ) ((sd(z) + δ0) /ε, a)∇sd(z).

Thus, for z with −√ε+ s0 < sd(z) <
√
ε− s0, we see that

|∇wε(z)|2 =
1

ε2

∣∣(∂sψ) ((sd(z) + s0) /ε, a)
∣∣2.

Let Uε denote set

Uε =
{
z ∈ Ω

∣∣ −√ε+ s0 < sd(z) <
√
ε− s0

}
.

Since s0 is of order ε3/2, the closure U ε converges to K in the sense of Hausdorff distance. We

proceed

E0
sMM(wε, Uε) =

∫
Uε

{
ε

2
|∇wε|2 +

1

2ε
F (wε)

}
dLN

=
1

2ε

∫
Uε

∣∣(∂sψ) ((sd(z) + s0) /ε, a)
∣∣2 + F

(
ψ ((sd(z) + s0) /ε, a)

)
dLN (z)

=
1

ε

∫
Uε

F
(
ψ ((sd(z) + s0) /ε, a)

)
dLN (z)

by (4.3). To simplify the notation, we set

fε(t) =
1

ε
F
(
ψ ((t+ s0)/ε, a)

)
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and observe that

E0
sMM(wε, Uε) =

∫
Uε

fε (sd(z)) dLN (z) =

∫ β(ε)

−β(ε)
fε(t)H(t) dt, β(ε) :=

√
ε− s0(ε)

withH(t) := HN−1
({
z ∈ Uε

∣∣ d(z) = t
})

by the co-area formula. We setA(t) := LN
({
z ∈ Uε

∣∣ |sd(z)| < t
})

and observe that A(t) =
∫ t
−tH(s)ds by the co-area formula. Integrating by parts, we observe

that ∫ β(ε)

−β(ε)
fε(t)H(t) dt =

∫ β(ε)

0
fε(t)H(t) dt+

∫ 0

−β(ε)
fε(t)H(t) dt

=

∫ β(ε)

0
fε(t) (H(t) +H(−t)) dt

=

∫ β(ε)

0
fε(t)A

′(t) dt

= fε (β(ε))A (β(ε))−
∫ β(ε)

0
f ′ε(t)A(t) dt.

By the relation of Minkowski contents and area [Fe, Theorem 3.2.39], we know that

lim
t↓0

A(t)/2t = HN−1(K).

In other words,

A(t) = 2
(
HN−1(K) + ρ(t)

)
t

with ρ such that ρ(t)→ 0 as t→ 0. Thus,

−
∫ β(ε)

0
f ′ε(t)A(t) dt ≤ −

∫ β(ε)

0
f ′ε(t)2tdt

(
HN−1(K) + max

0≤t≤β(ε)
ρ(t)+

)
since f ′ε(t) ≤ 0. Here we invoke (F2’) so that F ′(σ) ≤ 0 for σ < 1. We thus observe that

EεsMM(wε, Uε) ≤ fε (β(ε))A (β(ε))−
∫ β(ε)

0
f ′ε(t)2tdt

(
HN−1(K) + max

0≤t≤β(ε)
ρ(t)+

)
.

Integrating by parts yields

−
∫ β(ε)

0
f ′ε(t)2tdt = 2

∫ β(ε)

0
fε(t) dt− 2fε (β(ε))β(ε).
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Since ψ(s) = ψ(s, a) solves (4.3), we see

fε(t− s0) =
1

ε
F (ψ(t/ε))

=
1

ε
(∂sψ)(t/ε)

√
F (ψ(t/ε))

= − d

dt

(
G (ψ(t/ε))

)
.

Thus ∫ β(ε)

0
fε(t) dt = G (ψ(s0/ε))−G

(
ψ(1/

√
ε)
)
.

Since s0/ε→ 0, ψ(1/
√
ε, a)→ 1 as ε→ 0, we obtain

lim
ε→0

∫ β(ε)

0
fε(t)dt = G(a).

Combing these manipulations, we obtain that

lim sup
ε→0

EεsMM(wε, Uε) ≤ lim sup
ε→0

fε (β(s))

{
A (β(ε))− 2

(
HN−1(K)− max

0≤t≤β(ε)
|ρ(t)|

)
β(ε)

}
+ 2HN−1(K)G(a)

We thus conclude that

lim sup
ε→0

EεsMM(wε, Uε) ≤ 2HN−1(K)G(a)

provided that

lim
ε→0

fε (β(ε))β(ε) <∞

since
(
A(t)− 2HN−1(K)t

) /
t = ρ(t) → 0 as t → 0. This condition follows from the following

lemma by setting ε1/2 = δ. Indeed, we obtain a stronger result

lim sup
ε→0

fε (β(ε))β(ε)
/
ε1/2 <∞.

Lemma 12. Assume that F satisfies (F1), (F2’). Then, for c ∈ R,

F (ψ(1/δ, c))
/
δ2 ≤ (1− c)2 for δ > 0.

Proof of Lemma 12. We may assume c < 1 since the argument for c > 1 is symmetric and the

case c = 1 is trivial. We write ψ(s, a) by ψ(s). By definition and monotonicity (F2’) of F , we

see
1

δ
=

∫ ψ(1/δ)

c

1√
F (z)

dz ≤ ψ(1/δ)− c√
F (ψ(1/δ))

.
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Taking the square of both sides, we end up with

F (ψ(1/δ))
/
δ2 ≤ (ψ(1/δ)− c)2 ≤ (1− c)2.

2

Let Vε denote the set

Vε :=
{
z ∈ Ω | 2√ε < d(z) + s0 < 4

√
ε
}
.

We observe that

E0
sMM(wε, Vε) =

1

ε

∫
Vε

F

(
ψ

(
d(z) + s0 − 3

√
ε

ε
, b

))
dLN (z)

=
1

ε

∫ 4
√
ε−s0

2
√
ε−s0

F

(
ψ

(
t+ s0 − 3

√
ε

ε
, b

))
H(t) dt

=

∫ 4
√
ε−s0

2
√
ε−s0

f̃ε(t− 3
√
ε)H(t) dt,

where f̃ε(t) := 1
εF
(
ψ ((t+ s0)/ε, b)

)
. We set Ã(t) := LN

({
z ∈ Vε

∣∣ 0 ≤ d(z) < t
})

and observe

that Ã(t) =
∫ t

0 H(s)ds by the co-area formula. As before, we see

Ã(t) =
(
HN−1(K) + ρ(t)

)
t

with ρ such that ρ(t)→ 0 as t→ 0. We set

b(ε) := f̃ε(
√
ε− s0)Ã(4

√
ε− s0)− f̃ε(−

√
ε− s0)Ã(2

√
ε− s0),

and observe that

E0
sMM(wε, Vε) ≤ b(ε)−

∫ 4
√
ε−s0

2
√
ε−s0

f̃ ′ε(t− 3
√
ε)tdt

(
HN−1(K) + max

2
√
ε−s0≤t≤4

√
ε−s0

ρ(t)+

)
.

Integration by parts yields

−
∫ 4
√
ε−s0

2
√
ε−s0

f̃ ′ε(t− 3
√
ε)t dt =

∫ 4
√
ε−s0

2
√
ε−s0

f̃ε(t− 3
√
ε) dt− 2

√
εf̃ε(β(ε)),

and we see ∫ 4
√
ε−s0

2
√
ε−s0

f̃ε(t− 3
√
ε) dt = 2

∫ β(ε)

0
f̃ε(t) dt.
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As before, we thus conclude that

lim sup
ε→0

EεsMM(wε, Vε) ≤ 2HN−1(K)G(b).

The part corresponding to ψ(s, b) is similar, and the part where Ψε is linear will vanish as

ε→ 0. So, we conclude

lim
ε→0

EεsMM(wε,Ω) ≤ E0
sMM(Ξ,Ω).

The term related to α is independent of ε because of the choice of s0 so that wε(x) = η for

x ∈ K.

Since HN−1(K) <∞, by the co-area formula (Lemma 10), K1
x,ν is a finite set for LN−1-a.e.

x ∈ Ων . In the Hausdorff sense, (Sε)
1
x,ν → K1

x,ν holds, as observed in the following lemma for

Sε =
{
y ∈ RN

∣∣ d(y,K) = ε
}
.

Therefore, we observe that for LN−1-a.e. x ∈ Ων ,

lim sup∗wε,x,ν = b, lim inf∗wε,x,ν = a on K1
x,ν

and outside K1
x,ν , lim sup∗wε,x,ν = lim inf∗wε,x,ν = 1. We conclude that wε,x,ν converges to Ξx,ν

in the graph sense on Ω1
x,ν , which proves (ii). 2

Lemma 13. Let K be a compact set in a bounded open subset Ω of RN and set

Sε =
{
y ∈ Ω

∣∣ d(y,K) = ε
}
.

For ν ∈ SN−1, let x ∈ Ων be such that K1
x,ν is a non-empty finite set. Then, (Sε)

1
x,ν → K1

x,ν in

Hausdorff distance in R as ε→ 0.

Proof of Lemma 13. If (Sε)
1
x,ν is not empty, it is clear that

sup
y∈(Sε)1x,ν

d(y,K1
x,ν) ≤ ε→ 0

as ε→ 0. It remains to prove that for any t0 ∈ K1
x,ν , there is a sequence tε ∈ (Sε)

1
x,ν such that

tε → t0 in R. We set

f(δ) = d (x+ ν(t0 + δ),K) for δ > 0.

Since t0 is isolated and K is compact, we see that f(δ) > 0 for sufficiently small δ, say δ < δ0.

Moreover, f(δ) is continuous on (0, δ0) since K is compact. Since f(δ) ≤ δ, f satisfies f(δ)→ 0

as δ → 0. By the intermediate value theorem, for sufficiently small ε, say ε ∈ (0, ε0), there
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always exists δ(ε) such that f (δ(ε)) = ε, which implies that

tε = t0 + δ(ε) ∈ (Sε)
1
x,ν .

Since δ(ε)→ 0 as ε→ 0, this implies tε → t0. The proof is now complete. 2

Proof of Theorem 7. This follows from Lemma 8 and Lemma 11 by a diagonal argument. 2

5 Singular limit of the Kobayashi–Warren–Carter energy

We first recall the Kobayashi–Warren–Carter energy. For a given α ∈ C(R) with α ≥ 0, we

consider the Kobayashi–Warren–Carter energy of the form

EεKWC(u, v) =

∫
Ω
α(v)|Du|+ EεsMM(v)

for u ∈ BV (Ω) and v ∈ H1(Ω). The first term is the weighted total variation of u with weight

w = α(v), defined by∫
Ω
w|Du| := sup

{
−
∫

Ω
udivϕ dLN

∣∣∣ |ϕ(z)| ≤ w(z) a.e. x, ϕ ∈ C1
c (Ω)

}
for any non-negative Lebesgue measurable function w on Ω.

We next define the functional, which turns out to be a singular limit of the Kobayashi–

Warren–Carter energy. For Ξ ∈ A0(Ω), let Σ be its singular set in the sense that

Σ =
{
z ∈ Ω

∣∣ Ξ(z) 6= {1}
}
.

For u ∈ BV (Ω), let Ju denote the set of its jump discontinuities. In other words,

Ju =
{
z ∈ Ω\Σ0

∣∣ j(z) := |u(z + 0ν)− u(z − 0ν)| > 0
}
.

Here ν denotes the approximate normal of Ju, and u(z±0ν) denotes the trace of u in the direction

of ±ν. We consider a triplet J (u) = (Ju, j, α) and consider E0,J
sMM(Ξ,Ω), whose explicit form is

E0,J
sMM(Ξ,Ω) = E0

sMM(Ξ,Ω) +

∫
J∩Σ

j min
ξ−≤ξ≤ξ+

α(ξ) dHN−1,

where Ξ(z) = [ξ−(z), ξ+(z)] for z ∈ Σ. We then define the limit Kobayashi–Warren–Carter

energy:

E0
KWC(u,Ξ,Ω) =

∫
Ω\Ju

α(1)|Du|+ E
0,J (u)
sMM (Ξ,Ω),
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in which the explicit representation of the second term is

E
0,J (u)
sMM (Ξ,Ω) = E0

sMM(Ξ,Ω) +

∫
Ju∩Σ

|u+ − u−|α0(z) dHN−1(z)

with u± = u(z ± 0ν) and

α0(z) := min
{
α(ξ)

∣∣ ξ−(z) ≤ ξ ≤ ξ+(z)
}
.

Here u± are defined by

u+(x) := inf

{
t ∈ R

∣∣∣∣ lim
r→0

LN (Br(x) ∩ {u > t})
rN

= 0

}
,

u−(x) := sup

{
t ∈ R

∣∣∣∣ lim
r→0

LN (Br(x) ∩ {u < t})
rN

= 0

}
,

where Br(x) is the closed ball of radius r centered at x in RN . This is a measure-theoretic

upper and lower limit of u at x. If u+(x) = u−(x), we say that u is approximately continuous.

For more detail, see [Fe]. We are now in a position to state our main results rigorously.

Theorem 14. Let Ω be a bounded domain in RN . Assume that F satisfies (F1) and (F2) and

that α ∈ C(R) is non-negative.

(i) (liminf inequality) Assume that {uε}0<ε<1 ⊂ BV (Ω) converges to u ∈ BV (Ω) in L1, i.e.,

‖uε − u‖L1 → 0. Assume that {uε}0<ε<1 ⊂ H1(Ω). If vε
sg−→ Ξ and Ξ ∈ A0, then

E0
KMC(u,Ξ Ω) ≤ lim inf

ε→0
EεKMC(uε, vε).

(ii) (limsup inequality) For any Ξ ∈ A0 and u ∈ BV (Ω), there exists a family of Lipschitz

functions {wε}0<ε<1 such that

E0
KMC(u,Ξ,Ω) = lim

ε→0
EεKMC(u,wε).

Corollary 15. Assume the same hypotheses of Theorem 14. Assume that f ∈ L2(Ω) and λ ≥ 0.

Then the results of Theorem 14 with E0
KWC(u,Ξ,Ω) and EεKWC(u,Ξ,Ω) being replaced with

E0
KMC(u,Ξ,Ω) +

λ

2

∫
Ω
|u− f |2 dLN and EεKMC(u, v) +

λ

2

∫
Ω
|u− f |2 dLN ,

respectively, still hold, provided that u ∈ L2(Ω).

Remark 16. (i) In a one-dimensional case, the liminf inequality here is weaker than [GOU,
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Theorem 2.3 (i)] because we assume u ∈ BV (Ω), not u ∈ BV (Ω\Σ0) with

Σ0 =
{
x ∈ Σ

∣∣ α0(z) = 0
}
.

It seems possible to extend our results to this situation, but we did not try to avoid

technical complications.

(ii) It is clear that Corollary 15 immediately follows from Theorem 14 once we admit that

uε → u in L1(Ω) implies

‖u− f‖2L2 ≤ lim inf
ε→0

‖uε − f‖2L2 .

The last lower semicontinuity holds by Fatou’s lemma since uε′ → u LN -a.e. by taking a

suitable subsequence.

Proof of Theorem 14. Part (ii) follows easily from Theorem 7. Indeed, taking wε in Theorem 7

for J = J (u), we see that

E0,J
sMM(Ξ,Ω) = lim

ε→0
Eε,JsMM(wε).

Since ∫
Ω
α(wε)|Du| =

∫
Ω\Ju

α(wε)|Du|+
∫
Ju

|u+ − u−|α(wε) dHN−1,

it suffices to prove that

lim
ε→0

∫
Ω\Ju

α(wε)|Du| =
∫

Ω\Ju
α(1)|Du|.

Similarly in the proof of Theorem 7, by a diagonal argument, we may assume that wε is bounded.

Since, by construction, wε(z)→ 1 for z ∈ Ω\Σ with a uniform bound for α(wε) and since

|Du| (Σ ∩ (Ω\Ju)) = 0,

the Lebesgue dominated convergence theorem yields the desired convergence.

It remains to prove (i). For this purpose, we recall a few properties of the measure 〈Du, ν〉
for u ∈ BV (Ω), where Du denotes the distributional gradient of u and ν ∈ SN−1. The following

disintegration lemma is found in [AFP, Theorem 3.107].

Lemma 17. For u ∈ BV (Ω) and ν ∈ SN−1,

|〈Du, ν〉| = (HN−1bΩν)⊗ |Dux,ν |

In other words, ∫
Ω
ϕ |〈Du, ν〉| =

∫
Ων

{∫
Ω1
x,ν

ϕx,ν |Dux,ν |
}

dHN−1(x)
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for any bounded Borel function ϕ : Ω→ R.

We also need a representation of the total variation of a vector-valued measure and its

component. Let τ > 0 and monotone increasing sequence (aj)j∈Z such that aj+1 < aj + τ be

given. We consider a division of RN into a family of rectangles of the form

RτJ,(aj) =
N∏
i=1

[aji , aji+1), J = (j1, . . . , jN ) ∈ ZN

We say that the division {RτJ,(aj)}J∈ZN is a τ -rectangular division associated with (aj). Hereafter,

we may omit (aj) and write {RτJ}J∈ZN in short.

Lemma 18. Let µ be an Rd-valued finite Radon measure in a domain Ω in RN . Let {τk} be a

decreasing sequence converging to zero as k →∞. Let {RτkJ }J be a fixed τk-rectangular division

of RN . Let D be a dense subset of SN−1. Then

|µ|(A) = sup
{
|〈µ, νk〉| (A)

∣∣ νk : Ω→ D is constant on RτkJ ∩ Ω, J ∈ ZN , k = 1, 2, . . .
}
,

where A is a Borel set.

We postpone its proof to the end of this section.

We shall prove (i). We recall the decomposition of Σ into a countable disjoint union of δ-flat

compact sets Ki up to HN−1-measure zero set, and take the corresponding νi ∈ D as in Theorem

3. We use the notation in Theorem 3. We may assume that
⋂∞
m=1 U

m
i = Ki. By Lemma 17, we

proceed ∫
Umi

α(vε) |Duε| ≥
∫
Umi

α(vε)
∣∣〈Duε, νi〉∣∣

=

∫
(Umi )νi

{∫
(Umi )1

x,νi

α(vε,x,νi)
∣∣Duε,x,νi∣∣

}
dHN−1(x).

By one dimensional result [GOU, Lemma 5.1], we see that

lim inf
ε→0

∫
(Umi )1

x,νi

α(vε,x,νi)
∣∣Duε,x,νi∣∣

≥
∫

(Umi \Σ)1
x,νi

α(1)
∣∣Dux,νi∣∣+

∑
t∈(Σ∩Umi )1

x,νi

 min
ξ−
x,νi
≤ξ≤ξ+

x,νi

α(ξ)

∣∣∣u+
x,νi
− u−

x,νi

∣∣∣ (t).
(In [GOU, Lemma 5.1], α(v) is taken as v2, but the proof works for general α. In [GOU, Lemma
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5.1], |ξ−i |2 should be
(
(ξ−i )+

)2
.) The last term is bounded from below by

α0

(
x+ tixν

i
) ∣∣u+ − u−

∣∣ (x+ tixν
i
)

since (Km
i )1

x,νi
(⊂ (Σ ∩ Umi )1

x,νi) is a singleton {tix}. By the area formula, we see

∫
Km
i

α0

∣∣u+ − u−
∣∣ dHN−1 ≤

√
1 + (2δ)2

∫
(Km

i )νi

α0

(
x+ tixν

i
) ∣∣u+ − u−

∣∣ (x+ tixν
i
)

dHN−1(x).

Combining these observations, by Fatou’s lemma, we conclude that

lim inf
ε→0

∫
Umi

α (vε) |Duε| ≥
1√

1 + (2δ)2

∫
Km
i

α0

∣∣u+ − u−
∣∣ dHN−1.

Adding from i = 1 to m, we conclude that

lim inf
ε→0

∫
Vm

α (vε) |Duε| ≥
1√

1 + (2δ)2

∫
Σm

α0

∣∣u+ − u−
∣∣ dHN−1

for V m =
⋃m
i=1 U

m
i .

For Wm = Ω\V m, we take ν ∈ D and argue in the same way to get

lim inf
ε→0

∫
Wm

α(vε) |Duε| ≥
∫

(Wm)ν

{∫
(Wm\Σ)1x,ν

α(1) |Dux,ν |

+
∑

t∈(Σ∩Wm)1x,ν

(
min

ξ−x,ν≤ξ≤ξ+x,ν
α(ξ)

)∣∣u+
x,ν − u−x,ν

∣∣ (t)} dHN−1(x)

≥ α(1)

∫
(Wm)ν

{∫
(Wm\Σ)1x,ν

|Dux,ν |
}

dHN−1(x)

= α(1)

∫
Wm\Σ

|〈Du, ν〉| .

The last equality follows from Lemma 17. Since Wm ∩ Σm = ∅, combining the estimate of the

integral on V m, we now observe that

lim inf
ε→0

∫
Ω
α(vε) |Duε| ≥ lim inf

ε→0

∫
Wm\(Σ\Σm)

α(vε) |〈Du, ν〉|+ lim inf
ε→0

∫
Vm

α(vε) |Duε|

≥ α(1)

∫
Wm\(Σ\Σm)

|〈Du, ν〉|+ 1√
1 + (2δ)2

∫
Σm

α0

∣∣u+ − u−
∣∣ dHN−1.

Passing m to ∞ yields

lim inf
ε→0

∫
Ω
α(vε) |Duε| ≥ α(1)

∫
Ω\Σ
|〈Du, ν〉|+ 1√

1 + (2δ)2

∫
Σ
α0

∣∣u+ − u−
∣∣ dHN−1
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by Fatou’s lemma. Since δ > 0 can be taken arbitrarily, we now conclude that

lim inf
ε→0

∫
Ω
α(vε) |Duε| ≥ α(1)

∫
Ω\Σ
|〈Du, ν〉|+

∫
Ω∩Σ

α0

∣∣u+ − u−
∣∣ dHN−1.

For any ν ∈ D, we may replace Ω with an open set in Ω, for example, Ω0 ∩ Ω where Ω0

is an open rectangle. Applying the co-area formula (or Fubini’s theorem) to the projection

(x1, . . . , xN ) 7−→ xi, we have HN−1 (Σ ∩ {xi = q}) = 0 for L1-a.e. q, since otherwise, LN (Σ) > 0.

Thus, for any τ > 0, there is a τ -rectangular division {RτJ}J with HN−1(∂RτJ ∩ Σ) = 0. Since

HN−1(∂RτJ ∩ Σ) = 0, by dividing Ω into {Ω ∩RτJ}J , we conclude that

lim inf
ε→0

∫
Ω
α(vε) |Duε| ≥ α(1)

∫
Ω\Σ
|〈Du, ν(x)〉|+

∫
Ω∩Σ

α0

∣∣u+ − u−
∣∣ dHN−1

where ν : Ω→ D is a constant on each rectangle. Applying Lemma 18, we now conclude that

lim inf
ε→0

∫
Ω
α(vε) |Duε| ≥ α(1)

∫
Ω\Σ
|Du|+

∫
Ω
α0

∣∣u+ − u−
∣∣ dHN−1.

Since we already obtained

lim inf
ε→0

EεsMM(vε) ≥ E0
sMM(Ξ,Ω)

by Theorem 3 and since

EεKWC(v) = EεsMM(v) +

∫
Ω
α(v)|Du|,

the desired liminf inequality follows. 2

Proof of Lemma 18. We may assume that A is open since µ is a Radon measure. By duality

representation,

|µ|(A) = sup

{
d∑
i=1

∫
A
ϕi dµi

∣∣∣∣ ϕ = (ϕ1, . . . , ϕd) ∈ Cc(A), ‖ϕ‖L∞ ≤ 1

}
,

where Cc(A) denotes the space of (Rd-valued) continuous functions compactly supported in A

and ‖ϕ‖∞ := supx∈Ω |ϕ(x)| with the Euclidean norm |a| = 〈a, a〉1/2 for a ∈ Rd. Since µ(A) <∞,

by this representation, we see that for any δ > 0, there exists ϕ ∈ Cc(A) with ‖ϕ‖∞ ≤ 1 satisfying

|µ|(A) ≤
d∑
i=1

∫
A
ϕi dµi + δ.

Since ϕ is uniformly continuous in A and D is dense, for sufficiently large k, there is τk-
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rectangular division {RτkJ } and νδk : Ω→ D, which is constant on RτkJ ∩ Ω such that∣∣∣ϕ− νδkck∣∣∣ < δ in RτkJ ∩ Ω

with some constant 0 ≤ ck ≤ 1. This inequality implies that

d∑
i=1

∫
A
ϕi dµi ≤

∑
J

∫
R
τk
J ∩A

ck〈µ, νδk〉+ δ|µ|(A)

≤
∣∣∣〈µ, νδk〉∣∣∣ (A) + δ|µ|(A).

Thus we obtain that

|µ|(A) ≤
∣∣∣〈µ, νδk〉∣∣∣ (A) + δ + δ|µ|(A).

Hence, by µ(A) <∞ and the arbitrariness δ > 0, we have

|µ|(A) ≤ sup
{
|〈µ, νk〉| (A)

∣∣ νk : Ω→ D, νk is constant on RτkJ ∩ Ω, J ∈ ZN , k = 1, 2, . . .
}
.

The reverse inequality is trivial, so the proof is now complete. 2
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