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Abstract

Low-electron-dose observation is indispensable for observing various samples using a transmis-

sion electron microscope; consequently, image processing has been used to improve transmis-

sion electron microscopy (TEM) images. To apply such image processing to in situ observa-

tions, we here apply a convolutional neural network to TEM imaging. Using a dataset that

includes short-exposure images and long-exposure images, we develop a pipeline for processed

short-exposure images, based on end-to-end training. The quality of images acquired with a

total dose of approximately 5 e− per pixel becomes comparable to that of images acquired

with a total dose of approximately 1000 e− per pixel. Because the conversion time is approxi-

mately 8 ms, in situ observation at 125 fps is possible. This imaging technique enables in situ

observation of electron-beam-sensitive specimens.

Key Words: deep learning, transmission electron microscopy, fast improvement, nanoparti-

cles
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Introduction

Transmission electron microscopy (TEM) is a powerful tool for visualization from nano- to

atomic-scale. TEM has a very wide range of applications in material sciences, biology, electro-

chemistry, fluids, geology, and the environmental sciences. One of the current limitations for

the further application of TEM is the influence of electron irradiation on a sample: A beam-

sensitive material will often lose its characteristic structure under electron irradiation before

an image can be acquired. Cryo-TEM observation is an outstanding technique to reduce the

electron-induced damage on a sample (Morán & Dahl, 1952; Chlanda & Sachse, 2014). Never-

theless, an additional technique is required for in situ time-resolved imaging using liquid-cell

TEM (De Jonge & Ross, 2011). In order to capture an ever-changing phenomenon, it is nec-

essary to follow the phenomenon by looking at the noisy TEM images obtained in a short

period of time with a low electron dose. In addition, low electron dose imaging is desirable for

liquid-cell TEM to suppress rate-dependent beam effects, such as the generation of radical ions

(Schneider et al., 2014). However, it seems that both the improvement of temporal resolution

and that of spatial resolution are in conflict (De Jonge et al., 2019).

Over the past decade, image analysis has been dramatically developed by machine learning.

Regarding simple image denoising, numerous methods have been proposed for image denoising,

including sub-pixel convolutional neural networks (CNNs) (Shi et al., 2016), nuclear norm

minimization (Gu et al., 2014), sparse coding (Elad & Aharon, 2006) and domain filtering

(Dabov et al., 2007). The machine learning has also developed image analysis methods of TEM

imaging. In particular, U-Net architecture (Ronneberger et al., 2015; Falk et al., 2019) has

been used for various image processing tasks cell counting, object detection and segmentation

in addition to image improvement. Using a deep learning trained on simulated TEM data,

the local structures of graphene have been found (Madsen et al., 2018). For high resolution
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TEM data, the segmentation between the clean surface and surface contaminant layers has

been succeeded (Sadre et al., 2020). Automated analysis has revealed the connectome of the

drosophila brain from a huge amount of electron microscope images (Li et al., 2020).

Recently, a new technique of deep learning has been proposed for low-light image enhance-

ment. In this method, an image is acquired with a low-light so that the original image can be

used as ground truth for comparison (Lim et al., 2015). A CNN is applied for image improve-

ment, and an image set of short-exposure and long-exposure images are prepared for training

(Chen et al., 2018). The object detection in short-exposure images is also succeeded (Loh &

Chan, 2019). The corresponding results have shown that not only the machine learning model

but also datasets need improvement. Machine learning technique has a large potential for an

extension of the application of TEM.

As considering a new application to in situ imaging using liquid-cell TEM imaging, low-

dose observation is necessary. Moreover, it is better to realize the high temporal resolution. In

the present work, in order to solve both matters, we introduce a CNN model for TEM imaging

and evaluate the image quality and the speed for image improvement. Low-dose observation

TEM images are enhanced by using the CNN model trained with the dataset, which contains

high-dose-electron (HDE) and low-dose-electron (LDE) TEM images with the same field of

view. In general, image conversion is fast, although it takes a long time to train a CNN model.

Using a CNN help increase the speed of image improvement, enabling in situ observation.

Methods

We used a transmission electron microscope equipped with a field-emission gun (JEM-2100F,

JEOL, Tokyo) operated at an acceleration voltage of 200 kV and a CMOS camera, OneView

IS (Gatan, Inc., Pleasanton, CA, USA). For training, we prepare sets of high-dose-electron

and low-dose-electron TEM images with the same field of view. All images were acquired with

drift correction using the function incorporated into the software (Digital Micrograph, Gatan.

Inc., Pleasanton, CA, USA) used to operate the CMOS camera. The HDE image resolution
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Table 1. The number of images for training and validation.

Set No. Material Training Validation

1 Ni 224 36

2 FeNi 260 40

3 SiC 140 20

4 Silicate 176 24

5 Alumina 200 40

was 4096 × 4096 pixels, and its exposure time was 5 s. After an HDE image was acquired, the

corresponding LDE image is taken at a resolution of 512 × 512 pixels and with an exposure

time of 3.3 ms. The typical total doses in each view were 1010 e− and 106 e− in HDE and LDE

images, respectively, on the camera. The dose rate was calibrated using a Faraday cage (JEOL

Ltd., Tokyo, Japan). The numbers of electrons on each pixel were ∼ 1000 e− and ∼ 5 – 10 e−

in the HDE and LDE images, respectively. Typical magnifications used in the present study

were 25, 000× and 30, 000×; the dose rate on the samples was therefore ∼ 102 e−nm−2s−1 in

case of LDE observation. The number of images for training data is summarized in Table 1.

The typical samples were particles of Ni (metal), FeNi (alloy), SiC (semiconductor), silicate

(mineral), and alumina (ceramics) with diameters of 30–200 nm.

The original binary data of the digital micrograph were converted to grayscale images in

tiff format with the dark current subtracted and including the intensity with 16-bit expression

in each pixel. The obtained images were preprocessed with intensity rescaling. Before training,

the position of each HDE image was adjusted so that its position fit the corresponding LDE

image, thereby compensating for sample drift in the sequences.

Our deep learning model has the U-Net architecture (Ronneberger et al., 2015) with

the ResNet encoder/decoder (He et al., 2016) using the segmentation package in PyTorch

(Yakubovskiy, 2020). The schematic of our image improvement is shown in Fig. 1. The model

parameters were fine-tuned against the pre-trained Resnet-18 model from the ImageNet data
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Fig. 1. Schematic of image improvement using our deep learning model.

using the L1 loss function and the Adam optimizer (Kingma & Ba, 2015) with the learning

rate of 10−4. The concrete form of L1 function for two images is written as

L1 = 1
N

∑
x

|IA(x) − IB(x)|, (1)

where x represents the position of a pixel. IA(x) and IB(x) are the normalized intensity of

two images at the position x, and N is the total number of pixels. In each iteration, an LDE

image was randomly flipped horizontally and/or vertically for data augmentation. We did not

apply rotations and random crops since they were not effective in our study because pixelwise

lateral noise in LDE images is broken. It suggests that our current model does not make any

improvement for other cameras. All training was conducted on a Linux machine with a 10-core

Intel i9-9900X 3.5 GHz CPU and an NVIDIA Quadro RTX 8000 graphics card (see Machine

No. 1 in Table 3).

Results & Discussion

Overview of the Image Improvement

Figure 2 shows the epoch dependence of the loss of the training dataset and the validation

dataset. As the training proceeded, the value of the loss decreased until 100 epochs. Whereas

the loss value for the training data decreased after 100 epochs, that for the validation data

was steady. We also checked the loss in more than 1000 epochs, and observed a slight increase

in the loss value of the validation data because of overfitting. In the present study, we used
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Fig. 2. Training loss and validation loss.
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Fig. 3. Examples of HDE, LDE and output images (left to right); images of Ni, FeNi, SiC, silicate,

and alumina displayed top to bottom. Arrows and boxes indicate examples of the failure results of

the improvement. The presented images were used for validation, not training.
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Table 2. Qualitative comparison of output images for validation using the mean absolute error

(MAE) and the peak signal-to-noise ratio (PSNR).

Set no. Material MAE PSNR

1 Ni 0.075 ± 0.026 20.82 ± 2.13

2 FeNi 0.034 ± 0.011 25.10 ± 1.86

3 SiC 0.074 ± 0.020 20.80 ± 1.60

4 Silicate 0.062 ± 0.025 21.60 ± 2.82

5 Alumina 0.075 ± 0.026 20.69 ± 2.06

(Average) 0.063 ± 0.028 21.97 ± 2.79

the finetuned parameter at 900 epochs.

Figure 3 shows some examples of HDE images, LDE images, and output images obtained

using our model from corresponding LDE images. These HDE and LDE image sets were not

used for training. Images of Ni, FeNi, SiC, silicate, and alumina are displayed from the top

row to the bottom row in Fig. 3. Various sizes and contrasts of nanoparticles are observed

in HDE images. The preprocessed LDE images are similar to the images displayed by the

camera software (Gatan Digital Micrograph) during low-dose-rate observations. All of the

images show noise resembling a sandstorm. A common feature of all of the output images is

that the noise is removed, although a haze remained in the background of the images in the

third and fifth rows of Fig. 3. The overlapping nanoparticles, such as those in the fourth row

and first column image of Fig. 3, were reproduced in the output images. Thus, we obtained

an image comparable to an HDE image from a sandstorm image, although the improvement

failed in some cases: the appearance of imaginary nanoparticles indicated by the arrow in the

image in the fifth row and first column of Fig. 3, and the disappearance of nanoparticles, such

as in the boxed area in the image in the third row and third column of Fig. 3.

The quality of the improvement appears to depend on the sample. For a qualitative com-

parison of the quality of the output images, the mean absolute error (MAE) and the peak
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signal-to-noise ratio (PSNR) are listed in Table 2. The MAE is the difference between images

at the pixel level (see details in the next subsection) and the large MAE value indicates a

large difference between images. The PSNR is a logarithm of the inverse of the mean square

error where a large value of PSNR indicates that two images are similar. Both indicators show

that our model is more effective for set No. 2 (FeNi) than the other sets. In set No. 2, the

magnitude of the electron count on nanoparticles is less than 50% of that on the background in

HDE images. However, in sets No. 3 (SiC) and No. 5 (alumina), the magnitude of the electron

count on the nanoparticles is almost 90% of that on the background in HDE images; i.e., most

of the SiC and alumina nanoparticles exhibit relatively weaker contrast than FeNi particles.

The small difference in contrast between the background and the nanoparticles, which is only

10%, may prevent the image improvement. In sets No. 1 (Ni) and No. 4 (silicate), the HDE

images tend to aggregate nanoparticles with weak and strong contrast. In particular, the large

standard deviation of the PSNR of set No. 4 might be reflected the variety of images.

Since all datasets are acquired under similar experimental conditions [focus, magnification,

lens conditions, apertures and substrate (amorphous carbon thin film)], we speculate the origin

of the difference in our improvement as follows: When the size of a nanoparticle is small, the

amount of electron beam transmission at the nanoparticle is close to that at the background

and it is difficult to improve the image. This effect leads to the size dependence of nanoparticles

on image improvement. The degree of image improvement differs between nanoparticles with

the same size but different electron beam transparency. It leads to the material dependence

on image improvement. At least, the statistical data indicates that our model parameters in

this study provides the same level of image quality for 30–200 nm nanoparticles of various

materials with the magnification of 25, 000×–30, 000×.

Example of Visualization of LDE Image

In a microscope image, indicators of the performance include the accuracy of the size of an

object and the accuracy of the separation of two adjacent objects. We studied the improvement
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Fig. 4. Examples of (a) an HDE image, (b) a LDE image and (c) an output image of set No. 4.

The average dose is about 1200 e− per pixel and 4.7 e− per pixel in a box. The insets in the figures

show enlarged images of parts of region I and II. The presented images were used for validation, not

training.

rate and these two indicators in detail as an example in set No. 4.

Figure 4 shows an example of (a) an HDE image, (b) an LDE image, and (c) a corresponding

output image from (b). In Fig. 4(a), there are nine silicate nanoparticles in region I indicated

by the dashed-line box and three nanoparticles in region II. The nanoparticles are typically

100 nm in diameter. Figure 4(b) shows a preprocessed LDE image. Sandstorm-like noise is

present in the whole image. Only two particles are recognized in region I, and it is difficult

to recognize a particle in region II. Figure 4(c) is the output image generated from Fig. 4(b)

by our model. Particles are recognized in both regions I and II, and no particles are observed

elsewhere, as in Fig. 4(a).

All images have been normalized and have intensity values from 0 to 1 in each pixel, and

the L1 function indicates the difference in the intensity at pixels (see Eq. 1). The maximum

value of L1 is 1, where an image is composed of only black and white pixels and another image

is composed of the opposite color, e.g., a set of all black and all white images. On the contrary,

the minimum value is 0; where two images are in complete agreement. The value of the L1

loss in Fig. 4(a) and Fig. 4(b) is 0.34. After the training, the value decreases to 0.02 in the
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(a) (b)

(c) (d)

HDELDE

Fig. 5. (a) Raw intensity histograms of the HDE and LDE images shown in Fig. 4. Scaled intensity

histograms of (b) the HDE image, (c) the corresponding LDE image, and (d) the output image in

Figs. 4(a)–(c), respectively. The abscissa is the electron count and the ordinate is the number of

pixels. The data is plotted as semi-log plots.
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Fig. 6. Line profile of A–B shown in Fig. 4: (a) the HDE image, (b) the LDE image, and (c) the

output image. Circles are the data used to calculate the diameter of the nanoparticle. The dotted

line shows the average of the background.

case of Fig. 4(a) and Fig. 4(c). The image is improved by our model.

Figure 5(a) shows the raw intensity histograms of the HDE and LDE images shown in Fig. 4

as semi-log plots. As the minimum electron count of the HDE image is 396 and the maximum

value of the LDE image is 24, the histogram of the LDE image is barely visible in this plot.

The histograms of the HDE and the LDE images are scaled as shown in Figs. 5(b) and 5(c),

respectively. On the histogram corresponding to the HDE image [Fig. 5(b)] shows two peaks.

The sharp peak arises from the background, whose value is about 0.7–0.8. Another broad

peak at 0.3 originates from the nanoparticles. Two peaks are clearly separated on the intensity

histogram. However, the intensity histogram corresponding to the LDE image [Fig. 5(c)] shows

a single peak. The intensity of the nanoparticles is not substantially different from that of the

background. Figure 5(d) shows the histogram of the output image. Despite the conversion

of the LDE image [Fig. 4(b)], whose histogram shows a broad single peak [Fig. 5(c)], a sharp

peak at 0.7 and a broad peak at 0.4 appear. The shape of the histogram is similar to that

of the histogram of the HDE image although there is no intensity greater than 0.8 or smaller

than 0.15.

We here focus on the discrimination of nanoparticles from viewpoint of image improvement.

We first investigated whether the size of nanoparticles could be accurately reproduced in the

output images. A magnified view of location A–B in the LDE image is shown in the bottom-left

11
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inset in Fig. 4. Although all nanoparticles are easily found in the HDE and output images, all

of the nanoparticles are difficult to observe in the LDE image. The line profiles corresponding

to A–B in Fig. 4 are shown in Fig. 6. In the HDE image [Fig. 6(a)] and the output image

[Fig. 6(c)], a concave curve appears at the center because of the nanoparticle. In the LDE image

shown in Fig. 6(b), random noise is present and the concave curve does not appear. When the

shape of the nanoparticle is assumed to be spherical, the diameter of the nanoparticle is found

to be 95.2 nm in the HDE image and 96.0 nm in the output image on the basis of the data

corresponding to the center of the concave curve. The output image generated by our model

reproduces the size of the nanoparticle with an accuracy within 1%.

In addition, we investigated the edge width of a nanoparticle. The edge width was estimated

by comparing a region of strong contrast and the estimated diameter of a particle with an

assumed spherical shape. The distance between crosspoints composed of the line profile (blue

solid line) and the background (horizontal dotted line) in Figs. 6(a) and 6(c) was assumed to

represent the pseudo-diameter of the nanoparticle indicated by A–B in Fig. 4. By subtracting

the estimated particle diameter from the pseudo-diameter of the nanoparticle, we obtained

the value of twice the edge width. The obtained edge widths were 6.9 nm and 10.1 nm for

the nanoparticle in the HDE image and that in the output image, respectively. Thus, the

magnitude of the edge width in the output image is comparable to that in the HDE image.

We also investigated whether two adjacent nanoparticles could be distinguished. The line

profiles corresponding to C–D in Fig. 4 are shown in Fig. 7. The line profile of the LDE image

[Fig. 7(b)] shows random noise, as does that in Fig. 6(b). At location C–D, nanoparticles are

difficult to recognize in the LDE image. By contrast, nanoparticles are recognized in the HDE

and output images. From the line profile of the HDE image [Fig. 7(a)], we obtained diameters

of dHDE
1 = 58.3 nm and dHDE

2 = 73.0 nm for the nanoparticles in the HDE image. From the

nanoparticles’ center position indicated by dotted vertical lines shown in Fig. 7(a), the distance

between two nanoparticles is obtained as lHDE = 78.4 nm. The condition (dHDE
1 + dHDE

2 )/2 <

lHDE is satisfied; that is, the system has sufficient resolution to distinguish two nanoparticles.
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Fig. 7. Line profile of C–D shown in Fig. 4: (a) the HDE image, (b) the LDE image, and (c) the

output image. Circles are the data used to calculate the diameter of the nanoparticle. The dotted

line shows the average of the background.

In the case of the output image in Fig. 7(c), the sizes of nanoparticles are dout
1 = 72.5 nm

and dout
2 = 53.8 nm. The difference in nanoparticle size determined from the HDE and output

images is more than 20%. The distance between nanoparticles is lout = 72.9 nm, which is

close to the lHDE. The condition (dout
1 + dout

2 )/2 < lout is also satisfied for output image. After

applying our CNN model, we could distinguish between two adjacent nanoparticles at this size

scale.

Our model removes noise from LDE images, clearly revealing the presence of nanoparticles.

The center position and the distance between adjacent nanoparticles can be reproduced at

this size scale. Although the size of the nanoparticles in the output image matches that in

the HDE image, the nanoparticles’ shape is uncertain (see Fig. 4). Moreover, the intensity

of the line profile due to the internal structure of the nanoparticles can disappear during the

image processing because our model is a CNN that appears to spatially average the intensity.

Therefore, restoring the image of agglomerated nanoparticles like those in region I of Fig. 4

tends to be difficult, although isolated nanoparticles are correctly reproduced after our image

processing. For instance, we can count only five or seven nanoparticles in region I of the output

image [Fig.4(c)] against nine nanoparticles in the corresponding HDE image [Fig. 4(a)].

In our dataset, there is no significant difference in the choice of architecture. Therefore, we

show the results using U-Net architecture, which is the simple and conventional architecture.
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Table 3. Waiting time for an output image in various processors. The unit is in milliseconds. The

values were obtained as an average from 100 samples.

Machine

No.
Processor

Model

number
Calc.

Calc.

including

data transfer

1 CPU Intel Core i9-9900X 3.50 GHz 106 ± 0.7 –

GPU NVIDIA Quadro RTX 8000 4.4 ± 0.0 8.0 ± 0.1

2 CPU Intel Core i7-9700 3.00 GHz 300 ± 10 –

GPU NVIDIA Geforce GTX 1650 5.3 ± 0.6 25 ± 0.5

It is also works well for in situ observation where fast image improvement is necessary (see

the next subsection). Further improvement in prediction accuracy may be expected by using

other architecture for other datasets.

Waiting Time for Improvement

For in situ TEM observations with low electron doses, improving the LDE image on a timescale

that approaches the camera speed is important. In maintaining the high performance of the

TEM observation, the output image should be generated from the LDE image faster than the

frame rate of the camera. The framerates of the CMOS camera (OneView IS) are 25 and

300 frames per second in normal mode (output size: 4096 × 4096 pixels) and binning 8 mode

(output size: 512×512 pixels), respectively. Our goal was to convert to one image within 40 ms

in the first step and then every 3.3 ms thereafter. Table 3 shows the waiting time for converting

an LDE image using our model and two types of machines. The first configuration (Machine

No. 1) is a calculation machine for numerical calculation, where the training in this study is

performed. The second configuration (Machine No. 2) is a personal computer for normal use.

In both cases, the CPU calculation requires hundreds of milliseconds. The GPU calculation

is fast, and the performance is more than 40 times greater than that of CPU calculation; that

14
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is, the conversion time is several milliseconds. The time of conversion using the Geforce GTX

1650 graphics card is approximately the same as that using the Quadro RTX 8000 graphics

card. However, GPU calculation requires the data transfer from the CPU to the GPU and

from the GPU to the CPU. When the data transfer is taken into account, the total waiting

time is 8 ms with Machine No. 1 and 25 ms with Machine No. 2. Although the waiting time

of 8 ms is more than two times longer than the 3.3 ms maximum temporal resolution of the

Gatan OneView camera operating in binning 8 mode, it is substantially shorter than the 40

ms estimated from the frame rate of the OneView camera in normal use (25 fps).

Summary

We improved TEM images acquired using LDE by applying a simple CNN. Our model is

based on the U-Net architecture with the ResNet encoder. We demonstrated that enabling

the observation of objects that are difficult to visualize in the LDE image because our model can

reproduce objects from the noise in addition to removing noise. The position of nanoparticles

in the HDE images was reproduced in the corresponding output images, and the size and the

edge width of nanoparticles were similar in the HDE and output images. In contrast, their

shape reproduction requires further improvement. The time necessary for the image conversion

is approximately 8 ms, making the method applicable for in situ observation at a frame rate

of 125 fps or lower. Our model is effective for investigating fast dynamic processes such as

nucleation from a solution or tracking the motion of nanoparticles via LDE TEM observation.
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