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1.  Introduction
Pine Island Glacier, in the Amundsen Sea sector of West Antarctica, experienced large grounding line re-
treat, thinning, and acceleration over the past four decades (Depoorter et al., 2013; Mouginot et al., 2014; 
Paolo et al., 2015; Rignot et al., 2013, 2019; Shepherd et al., 2012, 2018), contributing the equivalent of 
3.0 mm of global sea-level rise between 1979 and 2017 (Rignot et al., 2019). These changes were triggered 
by increasing amounts of sub-ice shelf melt under Pine Island ice shelf (PIIS), caused by intrusions of 
warm modified Circumpolar Deep Water (mCDW, about 3E C warmer than the in situ freezing point) that 
is transported onto the continental shelf through submarine glacial troughs (Dutrieux et al., 2014; Jacobs 
et al., 2011; Nakayama et al., 2013; Pritchard et al., 2012). Satellite-based estimates of ice shelf melt rate 
close to the grounding line of Pine Island reach E 200 m  1yrE   locally (Shean et al., 2019) and the rapid melting 
close to the grounding line impacts its grounding line evolution as well as its future contribution to sea-level 
rise (Cornford et al., 2015; Favier et al., 2014; Joughin et al., 2014; Nias et al., 2016; Seroussi, Nakayama, 
et al., 2017).

Ocean simulations of ice shelf melt rates are, however, not yet able to reproduce such high melt rates (Jour-
dain et al., 2019; Nakayama et al., 2019; Schodlok et al., 2015; Seroussi, Nakayama, et al., 2017), as they 
face several challenges: (a) a fine-scale grid resolution is required to accurately resolve the ice shelf cavity 
geometry, (b) coupled ice-ocean models that capture the feedback between these two components are only 
starting to emerge, and (c) limited in situ observations are available in ice shelf cavities, especially close 
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to the grounding line. Nakayama et al. (2019) have developed an ocean simulation at an unprecedentedly 
high-resolution (∼200 m horizontal and 10 m vertical resolutions) that resolves shelf-sea and sub-ice-shelf 
environments for the eastern Amundsen Sea. Results highlight a good agreement with observations over-
all but are unable to reproduce the high melt rate estimates close to the grounding lines of Pine Island 
and Thwaites glaciers (Milillo et al., 2019; Shean et al., 2019): modeled PIIS melt rates reach E 80 m  1yrE  , 
which is E 2.5 time smaller than the E 200 m  1yrE   remote-sensing estimates of melt rate in the area (Milillo 
et al., 2019; Shean et al., 2019). In Greenland, studies have shown that an increase in subglacial freshwater 
discharge at the grounding line leads to a higher rate of melting along the ice front and under floating ice 
shelves (Cai et al., 2017; Cowton et al., 2018; Morlighem et al., 2019; Sciascia et al., 2014; Slater et al., 2018; 
Straneo et al., 2011; Xu et al., 2012, 2013). For Antarctic ice shelves, the importance of subglacial freshwater 
discharge is only starting to be discussed (Wei et al., 2020).

We use a regional ocean simulation of the PIIS cavity to investigate (a) the impact of subglacial freshwater 
discharge on ice shelf basal melt and (b) pathways of glacial meltwater in the ice shelf cavity. The simu-
lations are based on the high-resolution configuration of Nakayama et al.  (2019) and include subglacial 
freshwater discharge following Cai et al. (2017).

2.  Methods and Experiments
2.1.  Ocean Model

We use a regional configuration of the Massachusetts Institute of Technology general circulation model 
with hydrostatic approximation, dynamic/thermodynamic sea-ice (Losch et al., 2010), and thermodynamic 
ice shelf (Losch, 2008). Nominal horizontal and vertical grid resolutions are ∼200 and 10 m, respectively. 
We compute ice shelf melt rates from a three-equation model (Hellmer & Olbers, 1989; Holland & Jen-
kins, 1999; Jenkins, 1991) using velocity-dependent exchange of heat and salt at the ice shelf base. This 
model is almost identical to Nakayama et al. (2019), the only differences being: (a) the model domain only 
includes the PIIS cavity (Figure 1), (b) the ocean bathymetry and ice shelf draft are based on the updated 
BedMachine-Antarctica (Morlighem et al., 2020), and (c) the lateral ocean boundary conditions are provid-
ed by the latest version of Nakayama et al. (2019) with improved representations of mCDW properties. A 
passive tracer is released at the ice shelf base at the same rate as melting occurs to track glacial meltwater 
(Nakayama et al., 2017). Tidal impact is small for the PIIS so tides are not included (Nakayama et al., 2019).

Figure 1.  (a) Ocean bathymetry with partially transparent white patch indicating Pine Island ice shelf location. R1 and 
R2 show subglacial freshwater flux outlets on the eastern model boundary in the Qsg experiments and G and H indicate 
the locations used for the spatial averages of ice shelf melt rate, thermal driving, and ocean current. Pink dashed lines 
show the locations of vertical sections used in Figures 2, 4 and S3. Black arrow indicates the Ice flow direction. (b) Pine 
Island ice shelf draft. Red arrows and regions enclosed by red lines indicate sub-ice shelf channels. (c) Antarctic map 
with the red box denoting the model domain.
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2.2.  Experiments

We conduct five experiments with varying amounts of subglacial freshwater discharge, that all start from 
the same conditions on January 30, 2010 (defined as day 0), after a 30-day spin-up with no subglacial fresh-
water discharge. The control (CTRL) experiment has no subglacial freshwater discharge. All five sensitivity 
experiments include subglacial freshwater discharge in two locations at the easter model boundary, denoted 
R1 and R2 in Figure 1, that coincide with the grounding line. All experiments end on February 28, 2010 (day 
29). Freshwater discharges are applied over areas of 200 m by 20 m with fluxes of 0.011 m  1sE   and 0.0036 m 

1sE   for the Qsg experiment, respectively, for R1 and R2.

The water amount is estimated using a steady-state thermal model based on an enthalpy formulation 
(Aschwanden et al., 2012) implemented and tested in the Ice-sheet and Sea-Level System Model (Kleiner 
et al., 2015; Seroussi et al., 2013). Surface velocities (Rignot et al., 2011) are reproduced using data assim-
ilation to constrain basal friction (Morlighem et al., 2010). The geothermal flux is from Shapiro and Rit-
zwoller (2004), the surface temperature from RACMO2.1 (Lenaerts et al., 2012), and the general procedure 
to run the thermal model is similar to Seroussi, Ivins, et al. (2017). The water produced at the ice base is 
then routed under the ice using the routing model from the TopoToolbox (Schwanghart & Scherler, 2014) 
and the geometry from BedMachine-Antarctica (Morlighem et al., 2020). We only consider the two main 
locations of water discharge in PIIS cavity at R1 and R2. Three other locations display water discharge in 
PIIS cavity, but the amount of water discharge in these locations is an order of magnitude smaller than the 
R2 discharge and are therefore not included in our simulations. The subglacial discharge used in the Qsg 
experiment (1.3 and 0.41 Gt  1yrE   at R1 and R2 discharge locations, respectively) represents a time average 
melt caused by geothermal heat flux and frictional heat at the base of the grounded ice, similar to Joughin 
et al. (2009). Three additional experiments with 2, 10, and 50 times more freshwater (2*Qsg, 10*Qsg, and 
50*Qsg, respectively) compared to the Qsg case are also performed (Table S1).

Ocean conditions under the PIIS cavity show little temporal variations over the simulation period, especial-
ly close to the grounding line (Nakayama et al., 2019). Thus, we mainly analyze average properties over the 
last 10 days (day 20–29).

3.  Results
The regional simulation of the eastern Amundsen Sea (Nakayama et al., 2019) has been extensively com-
pared with existing observations (Davis et al., 2018; Dutrieux et al., 2014; Jacobs & Giulivi, 2010; Jenkins 
et al., 2010; Nakayama et al., 2013; Webber et al., 2017). We refer interested readers to Nakayama et al. (2019) 
for more details.

3.1.  Control Simulation

The CTRL experiment simulates the ocean conditions in the absence of subglacial freshwater discharge. 
The last 10-day mean potential temperature, salinity, and glacial meltwater fraction along a vertical sec-
tion going from open water to the PIIS grounding line (vertical section X-Y in Figure  1a) show the in-
flow of mCDW into the cavity (Figures 2a and 2b), similar to observations (Jenkins et al., 2010; Nakayama 
et al., 2019). The ice shelf melt rates close to the grounding line in boxes G and H reach E 80 m yr−1 and E 
40 m yr−1, respectively (Figures 3a and 3d, and Table S2).

The mixture of mCDW and glacial meltwater is buoyant compared to surrounding water masses, and rises 
toward the lighter isopycnal surfaces. The glacial meltwater fraction is E 0.5% close to the grounding line 
(see red arrow in Figure 2c) and increases toward the shallower depth (at 300–450 m depths) as the ice shelf 
continues to melt in the middle to the outer part of ice shelf away from the grounding line. The ice shelf 
meltwater fraction reaches E 1.5% in the outer part of the ice shelf cavity at depths of 300–450 m (Figure 2c). 
This maximum is located over the E 27.4 isopycnals, while almost no glacial meltwater can be identified 
below the 27.6 isopycnal. Glacial meltwater is concentrated at depths of 200–400 m close to the ice front 
(Figures 2c and 4g), consistent with the observations of glacial meltwater fraction at the ice shelf front 
(Biddle et al., 2019; Dutrieux et al., 2014; Garabato et al., 2017; Jacobs et al., 2011; Nakayama et al., 2013).
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The horizontal distributions of glacial meltwater along the 27.4 and 27.6 isopycnal surfaces (Figure 3) show 
the pathways of glacial meltwater toward the open ocean. Water with high meltwater fraction (E 1.5%) can 
be identified in the ice shelf channels on the 27.4 isopycnal (Figure 3g). Some of these channels extend 
along the flow direction of PIIS (red arrows and region enclosed by red lines in Figure 1b). On the 27.6-iso-
pycnal, glacial meltwater fraction is smaller with peak values of E 1%. The spatial pattern presents rather 

Figure 2.  Ten-day average (day 20–29) potential temperature (a, d, g, j, m), salinity (b, e, h, k, n), and glacial meltwater fraction (c, f, i, l, o) along section X-Y for 
the control (CTRL) (a–c), Qsg (d–f), 2*Qsg (g–i), 10*Qsg (j–l), and 50*Qsg (m–o) experiments, respectively. Thick black lines on the panels (c, f, i, l, and o), show 
the 27.4 kg  3mE   and 27.6 kg  3mE   isopycnals. Red arrows indicate the region close to the grounding line.
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Figure 3.



Geophysical Research Letters

NAKAYAMA ET AL.

10.1029/2021GL093923

6 of 11

different pathways of glacial melt-mCDW mixture toward the ice shelf front (Figure 3j), likely influenced 
by cavity scale circulation.

The vertical sections A-B, C-D, and E-F are somewhat perpendicular to the ice flow direction of Pine Island 
Glacier (black arrow in Figure 1) and show the vertical structures of glacial meltwater outflow at different 
locations in the cavity. We observe two local maxima of glacial meltwater close to the grounding line along 
section E-F (see red arrows in Figure 4i). These two peaks are formed because of the high ice shelf melt rate 
in these areas (see Figure 3d), corresponding to R1 and R2 in Figure 1. A thick portion of the ice shelf with a 
deep draft between them prevents glacial meltwater from merging into one channel (Figure 4i). Consistent 
with Nakayama et al. (2019), topographically constrained boundary currents are found transporting mCDW 
toward the grounding line. East-southeastward current (toward the grounding line) is found over the north-
ward-shallowing slopes (magenta arrows in Figure 4l), while west-northwestward current (toward the ice 
shelf front) is found over the northward-deepening slopes (cyan arrows in Figure 4l) of the two small-scale 
troughs.

Section C-D, located E 70 km downstream, shows a clear two-layer structure. The thermocline is located 
at E 400-m depth, separating mCDW from the upper colder and fresher Winter Water (Figures 4b and 4e). 
Glacial meltwater is concentrated above the thermocline (Figure 4h). Although the velocity structure is 
more complex than for section E-F, east-southeastward currents are predominantly found over the north-
ward-shallowing slopes (the magenta arrows in Figure 4k), while west-northwestward currents are found 
over the northward-deepening slopes, similar to section E-F. This topographically constrained current plays 
an important role in determining the pathways of ice shelf meltwater.

Section A-B, located just outside of the cavity, shows two peaks of glacial meltwater fraction concentrated 
between 200 and 400 m on both sides of the section. The locations of glacial meltwater outflows are over the 
northward-deepening slopes (cyan arrows in Figure 4j) similar to section C-D.

3.2.  Impact of Subglacial Freshwater Discharge

We conduct four sensitivity experiments showing transient responses to varying amounts of subglacial 
freshwater discharges (Table  S1). Time series of PIIS cavity's total kinematic energy for Qsg and 2*Qsg 
remain similar compared to CTRL (Figure S1). These results indicate that Qsg and 2*Qsg cases reach qua-
si-steady state during the sensitivity experiments. For all sensitivity experiments, ice shelf basal melt rates 
stabilize within 15 days (Figure S1). The total PIIS melt rates are 58.3 Gt  1yrE  , 61.6 Gt  1yrE  , 63.2 Gt  1yrE  , 
69.2 Gt  1yrE  , and 85.4 Gt  1yrE   for CTRL, Qsg, 2*Qsg, 10*Qsg, and 50*Qsg, respectively (Table S2). The overall 
spatial distributions of ice-shelf melt rate are similar in all experiments (Figures 3 and S2), with patterns 
of melt rates correlating with the channels at the base of the ice shelf and largest melt rates close to the 
grounding line. Differences can be observed especially close to the subglacial water discharge locations. The 
average melt rates in box G (600 m by 600 m area with the center located at 99.6 W and 75.3 S [Figure 1]), 
close to the source of subglacial freshwater discharge R1, are 80.6, 148, 175, 292, and 389 m yr−1 for CTRL, 
Qsg, 2*Qsg, 10*Qsg, and 50*Qsg, respectively (Table S2). The averaged melt rates in box H (600 m by 600 m 
area with the center located at 99.5 W and 75.1 S [Figure 1]), close to the source of subglacial discharge 
R2, are smaller by E 50% compared to the melt rate in box G. However, they increase in a similar way for 
CTRL, Qsg, 2*Qsg, 10*Qsg, and 50*Qsg, confirming the importance of subglacial freshwater discharge. The 
enhancement of melt rates by subglacial discharge relative to the CTRL case is highlighted by the melt ratio 
(Figures 3f and S2). The ice shelf melt ratio is especially high along the path of meltwater plumes initiated 
at R1 and R2, with ratios up to 10 for the 10*Qsg experiment.

Figure 3.  Spatial patterns of 10-day mean simulated basal melt rate under Pine Island ice shelf for the control (CTRL), Qsg, and 10*Qsg cases (a–c). Close-ups 
for the region close to the grounding line are additionally shown. (d) Same as (a) with a different color scale to indicate small-scale features. (e and f) Melt ratios 
of Qsg to CTRL and 10*Qsg to CTRL cases. Horizontal distributions of meltwater fraction along 27.4 kg  3mE   (g–i) and 27.6 kg  3mE   (j–l) on day 29 for the CTRL, 
Qsg, and 10*Qsg cases, respectively. We note that at the model boundary, the passive tracer representing glacial melt is able to exit the model domain. The ice 
front is indicated by the orange lines in the panels (g–l). Red arrows in (g) indicate the locations of sub-ice shelf channels. The pink dashed lines show the 
locations of vertical section E-F (g, j).
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Close to the grounding line, the higher ice shelf melt rates for experiments with subglacial freshwater dis-
charge compared to CTRL can be primarily explained by the increase of ocean currents (Table S2). Currents 
in the uppermost grid cell below the ice shelf are 0.085 m  1sE  , 0.15 m  1sE  , 0.19 m  1sE  , 0.31 m  1sE  , and 0.46 m  1sE   
in box G for CTRL, Qsg, 2*Qsg, 10*Qsg, and 50*Qsg, respectively, while the thermal driving remains almost 

Figure 4.  Ten-day average (day 20–29) potential temperature (a–c), salinity (d–f), glacial meltwater fraction (g–i), and east-southeastward ocean current (j–l) 
along the A-B (a, d, g, j), C-D (b, e, h, k), and E-F (c, f, i, l) sections, respectively, for control (see Figure 1 for location of sections). East-southeastward ocean 
current is selected as it aligns with the ice flow direction of Pine Island Glacier and is perpendicular to sections A-B, C-D, and E-F. Red arrows in (i) indicate 
the local maxima of the glacial meltwater fraction. Magenta (cyan) arrows in (j–l) show locations of ocean currents over the northward-shallowing (southward-
shallowing) slopes.
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unchanged (between 2.60 and 2.69, Figure S2). For the region further away from the grounding line, the 
higher melting area becomes larger and the magnitude of melting increases as subglacial freshwater flux 
increases. For example, the melt ratio between 10*Qsg and CTRL is 5–10 along the path of glacial meltwater 
plume (Figure 3f). This enhanced melt is primarily explained by the increase in uppermost ocean speed 
beneath the ice, but thermal driving also increases by a factor of 2 for locations with thin ice shelves away 
from the grounding line. The increased thermal driving is likely caused by the injection of subglacial fresh-
water discharge (∼1E C warmer than the sea water freezing point at the grounding line), which forms more 
buoyant and warmer glacial meltwater plume filling spaces beneath ice (Figures 1, 3 and S2).

For CTRL, Qsg, and 2*Qsg, the impact of subglacial freshwater discharge on oceanographic properties is 
mostly limited to the region close to the grounding line (red arrows in Figure 2). Almost no changes are de-
tected at the ice shelf front. For example, the strength of ocean circulation fluctuates for different sensitivity 
experiments without any noticeable trend (Figures 2 and S3). Vertical sections of glacial meltwater tracer re-
main almost identical (Figure 2). We are, however, able to observe different features for 10*Qsg and 50*Qsg 
experiments. Within 40 km from the grounding line, the 1E C isotherm deepens by E 40 and 80 m, respectively 
(Figure 2d). For the 50*Qsg case, the large amount of subglacial freshwater discharge forms a buoyant wa-
termass, which ascends to the top of the ocean beneath the ice, filling all available spaces (Figure 2o). At 
the ice shelf front, this buoyant meltwater plume rises to the surface (Figure 2o). Strong glacial meltwater 
outflow can be found at the southern side of the PIIS front (Figure S3y). Oceanographic responses are large 
for 10*Qsg and 50*Qsg and it is likely that transient responses to new quasi-steady state are still ongoing at 
the end of the sensitivity experiments.

4.  Discussion
Simulated PIIS melt rates increase from ∼80E  m yr−1 to ∼150E  m yr−1 over some area within 5–10 km from 
the grounding line (box G) when a realistic subglacial freshwater discharge (Qsg) is applied (Table  S2). 
However, the overall effect of subglacial freshwater discharge is small; the average PIIS melt rate increases 
by just 5.7% for the Qsg case (Table S2). Only experiments 10*Qsg and 50*Qsg cause a significant change in 
the average basal melt.

Satellite-based estimates of PIIS melt rate show that melt rates have peak values of 200 m  1yrE   at several 
locations within 5–10 km from the grounding line (Figure S4 in Shean et al., 2019). The integrated PIIS 
melt rate from satellite observations is E 90 Gt  1yrE   for 2008–2015 (Shean et al., 2019). This means that the 
simulated total PIIS melt rate (E 60 Gt  1yrE   for the Qsg case) is smaller by E 50% and the total area with high 
melt (E 150 m  1yrE  ) is reduced compared to observations (Figure S4). Such differences may arise from the ice 
shelf configuration used in this simulation with thicker ice close to the grounding zone. Thickening of PIIS, 
weakening of mCDW intrusions toward the grounding zone, and reduction in basal melting are suggested 
to have happened around 2014 (Christianson et al., 2016).

Large discharges, such as 10*Qsg and 50*Qsg, are not expected to happen in the coming decades. Subglacial 
lakes in the Pine Island basin have been observed to discharge ∼0.1 0.15E   Gt over periods of three weeks 
(Joughin et al., 2016; Milillo et al., 2017), roughly doubling the amount of subglacial discharge during these 
drainage events. Estimates of future rainfall and runoff over the grounded ice of Pine Island Glacier are 
also not expected to increase to large amounts over the coming century. Simulations of surface mass bal-
ance changes in the Amundsen Sea Sector by the end of the 21st century based on a regional atmospheric 
model forced with CMIP5 outputs show that the rainfall over the grounded part of Pine Island Glacier will 
increase from 0.1 to 0.3 Gt yr−1, while the runoff over this same region will increase from 0 to 0.3 Gt yr−1 
(Donat-Magnin et al., 2020).

Our simulations contrast with results from the Greenland Ice Sheet. In Greenland, subglacial discharge 
at the grounding line has been shown to drive fjord-scale circulation and to increase melting along the 
entire glacier terminus (Cai et al., 2017; Mankoff et al., 2016; Slater et al., 2018; Washam et al., 2020; Xu 
et al., 2012). The relatively minor effects of subglacial discharge on the average melt rate and circulation 
beneath PIIS especially for the CTRL, Qsg, and 2*Qsg cases contrast these results from Greenland. This 
contrast may be the results of differences in the amount of freshwater discharge at the grounding line, ice 
cavity geometry, and ocean conditions.
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Our results are impacted by several limitations. High-resolution data, including the deep channels and 
other topographic features at the ice shelf base, are critical to capture detailed water pathways, sub-ice shelf 
circulation, and melt pattern (Adusumilli et al., 2020; Dutrieux et al., 2013; Nakayama et al., 2018; Shean 
et al., 2019; Wåhlin et al., 2021). Another limitation is the lack of feedback between ice melt from ocean 
heat flux and ice shelf draft elevation. This fixed draft prevents capturing feedback between basal melt, ice 
shelf base elevation and slopes or the formation and evolution of channels, known to impact basal melt (De 
Rydt & Gudmundsson, 2016; Favier et al., 2019; Milillo et al., 2019; Seroussi, Nakayama, et al., 2017; Shean 
et al., 2019). Higher melt rates might accelerate grounding line retreat and impact the stability of glaciers 
upstream, which is an important area for future study. We also note that our model simulation is only con-
ducted for the PIIS austral summer conditions and pathways of glacial meltwater may be different for other 
seasons and other ice shelves (Zheng et al., 2021).

5.  Conclusions
Satellite-based observations show that the PIIS melt rate is as high as E 200 m  1yrE   close to the grounding 
line, but ocean simulations with realistic configuration have so far failed to reproduce such a high melt rate. 
Our experiment without subglacial freshwater discharge simulates an ice shelf melt rate of 58 Gt  1yrE   with 
the highest values reaching E 80 m  1yrE   close to the grounding line. When subglacial freshwater discharge 
originating from frictional heat and geothermal heat flux at the grounded ice base is added to the simula-
tions, the average melt rate remains largely unchanged but freshwater discharge substantially enhances 
ice shelf melting close to the discharge location, successfully simulating high ice shelf melt rate, similar to 
remote-sensing estimates. Our results also suggest that the buoyant plume could rise to the surface at the ice 
shelf front only if very high amounts of freshwater discharge, about 50 times larger than those estimated for 
the current conditions were reached, making this unlikely to happen over the coming decades.

Data Availability Statement
The model code, input, and results are available at https://zenodo.org/record/5183196#.YRx2j9MzZ7I and 
https://ecco.jpl.nasa.gov/drive/files/ECCO2/High_res_PIG/PIG_only_200m. Each user must first register 
for an Earthdata account at https://urs.earthdata.nasa.gov/users/new in order to access these files in NASA 
Earthdata.
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