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Travel time reliability-based optimization problem for CAVs dedicated 

lanes 

This paper proposed an optimization problem that determines the deployment 

pattern of dedicated lanes to connected autonomous vehicles (CAVs) considering 

the stochastic traffic demand and the stochastic traffic capacity. The difference 

between CAVs and regular human-piloted vehicles (RHVs) is driving behavior. 

The driving behavior of CAVs is expected to be more standardized than that of 

RHVs. Therefore, we assume that when the penetration ratio of CAVs increases in 

the lane flow, the mean lane capacity will increase, and the lane capacity variance 

will decrease. The mean and the variance of lane travel time decrease when the 

penetration ratio increases. Following this assumption, the difference in the 

stochastic properties between CAVs and RHVs is considered in a traffic 

assignment model. The traffic assignment model is formulated as a variational 

inequality problem. The network design problem with equilibrium constraints was 

solved by a simulated annealing algorithm in a test network. 

Keywords: connected autonomous vehicles (CAVs); travel time reliability; 

stochastic lane capacity; mixed traffic flow 

Subject classification codes: include these here if the journal requires them 

1. Introduction 

It is expected that connected-autonomous vehicles (CAVs) will penetrate the road 

network in the near future. CAVs can benefit society because they contribute to the 

improvement of traffic safety and labor productivity. From a policy perspective, it is 

important to stimulate customers to purchase CAVs and move to the society where CAVs 

penetrate more. The government can offer policies to give citizens incentives to purchase 

CAVs. One of the incentives is to deploy dedicated lanes to CAVs. The CAV-dedicate 

lane is the lane that only CAVs can pass through, while the conventional lane is shared 

by CAVs and the regular human-piloted vehicles (RHVs). The higher the CAVs 

penetration rate in society is, the more efficient road network usage is realized thanks to 



the proficient driving of CAVs (e.g., Levin and Boyles, 2015; Chen et al., 2016; Wang et 

al., 2019). The CAVs are expected to improve the link or lane capacity and to reduce road 

congestion. As a network management policy, the deployment of the CAV-dedicated lane 

can contribute to the faster penetration of CAVs into general consumers. 

Some studies address a problem to determine the optimal deployment of CAV-

dedicated lanes (Chen et al., 2016, 2017; Zhang and Nie, 2018). The previous studies 

assume a deterministic traffic demand and travel time, while some other studies focus on 

the difference in route choice behavior between CAVs and RHVs. The major contribution 

of CAVs to the whole road network is to improve traffic efficiency owing to their 

proficient driving behavior. Focusing on the critical headway time, the driving behaviors 

of CAVs and RHVs are different from each other. It is expected that the critical headway 

time of CAVs is shorter than that of RHVs (Levin and Boyles, 2016; Wang et al., 2019), 

and the variation of the headway times of CAVs is smaller than that of RHVs. The CAV 

technologies such as platooning technology can shorten the headway or the reaction time 

between the leader and the follower. The driving behaviors of RHVs have more 

uncertainties because the driving skill of each driver varies. If the number of skillful 

drivers is large in a link flow, the link capacity becomes large, and link capacity 

fluctuation becomes small. By contrast, if the number of non-skillful drivers increases in 

a link flow, the link capacity becomes small, and link capacity fluctuation becomes large. 

As a result, both the travel time and the fluctuation of travel time increase. 

The previous studies address the mixed traffic flow of RHVs and the vehicles with 

the Advanced Traveler Information System (ATIS). Yang (1998) focuses on the 

difference in the accessibility to traffic information between ATIS-equipped vehicles and 

non-equipped vehicles and assumes that one of the two types of vehicles employs a user 

equilibrium criterion and the other one employs a stochastic user equilibrium criterion for 



the path choice behavior. Yang et al. (2007) extended the traffic assignment model that 

is proposed in Yang (1998) to a Stackelberg game and assumed that vehicles equipped 

with ATIS follow system optimum (SO) and other vehicles follow user equilibrium (UE) 

or Cournot Nash equilibrium in the path choice behavior. 

Some studies recently extend the above studies to the traffic assignment model 

considering the mixed flows of CAVs and RHVs (Chen et al., 2016; Bagloee et al., 2017; 

Zhang and Nie, 2018). Some studies also focus on the difference in path choice criteria 

between CAVs and RHVs. Bagloee et al. (2017) and Zhang and Nie (2018) assume that 

RHVs and CAVs follow UE and SO in the path choice behavior. Chen et al. (2016) 

proposed a model that determines the optimal deployment pattern of the CAV-dedicated 

lanes in which CAVs and RHVs follow UE in the path choice behavior. The model 

assumed that the incentive for CAVs is the exclusive usage of the CAV-dedicated lane. 

In the model of Wang et al. (2019), CAVs follow UE, while RHVs follow the cross-

nested logit (CNL) model in the path choice behavior. CNL model can relax the 

assumption of the perfect knowledge of the traffic situation. Seo and Asakura (2017) 

analyzed the market penetration dynamics of CAVs in terms of the value of time (VoT), 

travel time, and fare. Table 1 summarizes the path choice criteria and the assumptions for 

traffic demand and link capacity in the previous studies. Note that in Table 1, the constant 

capacity means that the link capacity is determined exogenously and independent of the 

penetration rate of CAVs or vehicles with ATIS. The variable capacity means the link 

capacity is determined depending on the penetration rate of CAVs. 

[Table 1 near here] 

The similarity of the above previous studies except for Chen et al. (2016) is that 

they assume that CAVs and RHVs follow different path choice criteria. It is reasonable 

to consider the differences in the knowledge level of the real-time traffic situation or VoT 



because the CAVs can obtain and analyze more real-time traffic information than RHVs. 

The CAV drivers are expected to enjoy spare time while moving in the vehicle. However, 

it is not reasonable to impose more additional costs on CAVs than RHVs for realizing the 

system optimal situation in the whole road network while RHVs behave selfishly in 

driving. The imposition of the additional costs to CAVs cannot motivate consumers to 

purchase the CAVs. Incentives should be given to CAV-users to promote CAVs for 

improving network efficiency. 

The difference in driving behaviors can be reflected in stochastic link capacity. 

Many studies deal with stochastic link capacity in the traffic assignment model. Chen et 

al. (1999) proposed the concept of capacity reliability, and the concept was extended by 

Chen et al. (2002). Uchida (2015) proposed a traffic assignment problem that 

simultaneously considers stochastic traffic demand and stochastic link capacity. However, 

the stochastic link capacity that considered the mixed traffic flows of CAVs and RHVs is 

not considered in the previous studies as far as the authors know. 

Fewer studies proposed network design problems that consider stochastic traffic 

demand. Uchida et al. (2011) formulated a network design problem in a multi-modal 

network considering the stochastic traffic demand and travel time reliability. An and Lo 

(2016) optimized a transit network based on robust optimization. There are two major 

trends to consider the stochastic demand in a network design problem. The former 

assumes the stochastic demand as a random variable, and the latter considers the demand 

uncertainty by robust optimization. 

Each study listed above addresses a static traffic assignment model, while some 

studies deal with the mixed flow of CAVs and RHVs from the viewpoint of a dynamic 

approach. van den Berg and Verhoef (2016) investigated the impacts of the penetration 

of CAVs on the link capacity, the VoT, and changes in the heterogeneity of VoTs. Levin 



and Boyles (2016) proposed a multi-class cell transmission model for mixed traffic flows. 

Pan et al. (2019) proposed a multi-class and multilane cell transmission model for the 

mixed traffic flows. Ye and Yamamoto (2018) analyzed the mixed flow by the 

fundamental diagram approach and reported that neither the low nor high penetration rate 

of CAVs contributes to improving network efficiency and that the medium penetration 

rate may benefit network efficiency. 

While the dynamic approach has fruitful advantages to evaluate the impact of the 

CAV technology on the traffic flow, there are limitations in implementing the network 

design problem because the solution obtained by the dynamic approach does not rely on 

the calculation condition. As mentioned in Wang et al. (2019), the dynamic traffic 

assignment model can describe the effect of the dynamicity of the mixed traffic flows on 

the path choice behavior (e.g., Levin and Boyles, 2016). However, the model may not be 

suitable to apply to the network design problem, such as the optimal CAV dedicated lane 

installation problem, because the solution requires the simulation calculation, and the 

high computational burden limits the application to the network design problem.  

Following the above studies, as far as the authors know, there is no study that 

deals with the optimal CAVs dedicated lane deployment model considering the stochastic 

traffic demand and the travel time reliability. In terms of the stochastic aspect of CAVs, 

some studies address the perception error of drivers by applying the stochastic user 

equilibrium model or the cross-nested logit model (e.g., Yang. 1998; Wang et al., 2019). 

However, these studies remain to consider deterministic traffic demand and travel time. 

The proposed model in this paper considers the stochastic traffic demand and capacity 

and travel time reliability simultaneously. The path travel time is also formulated as a 

stochastic variable. Thus, the risk-averse path choice behavior is assumed. 



The proposed model in this paper is formulated as a bi-level problem in a road 

network. The upper-level problem is solved by a heuristic algorithm, a simulated 

annealing algorithm. The lower-level problem is the traffic assignment problem 

formulated as a variational inequality (VI) problem like the related studies (Zhang and 

Nie, 2018; Chen et al., 2016; Wang et al., 2019). To represent the heterogeneous 

stochastic properties of driving behaviors between CAVs and RHVs, we assumed a 

stochastic traffic capacity (e.g., Chen et al., 1999; Sumalee and Kurauchi, 2006; Tani and 

Uchida, 2018) that is calculated by the mixed traffic flow of CAVs and RHVs. The 

capacity in this study is defined for each lane in a link in the network rather than for each 

link. The basic model for representing the lane capacity of CAVs and RHVs is based on 

the model proposed in Wang et al. (2019). We assume that the mean and the variance of 

the lane capacity increase and decrease, respectively, when the penetration rate of CAVs 

in the lane increases. The automated driving and platooning technology (Gong and Du, 

2018) support this relationship.  

The formulation of the stochastic traffic flow and the stochastic travel times was 

developed from the concept of stochastic traffic flows shown in Tani and Uchida (2018). 

In the path choice behavior, both CAVs and RHVs are assumed to follow UE, which is 

the same assumption employed in Chen et al. (2016). The VI problem is solved using 

successive averages (MSA) by Sheffi (1985).  

In general, the network design problem is classified into a continuous network 

design problem and a discrete network design problem. In this paper, we optimize the 

location of the CAV-dedicated lane. Thus, our proposed problem is classified into a 

discrete network design problem. In the literature, many algorithms for a discrete network 

design problem are proposed, e.g., branch-and-bound technique (LeBlanc, 1975), 

support-function based algorithm (Gao et al., 2004), active-set algorithm (Zhang et al., 



2014), and simulated annealing (Fan and Machemehl, 2006). We adopt a heuristic 

algorithm, a simulated annealing algorithm for solving the proposed problem to simplify 

the implementation. 

The contributions of this study are threefold. First, this study assumed a traffic 

assignment model considering the stochastic mixed traffic demand and the stochastic 

mixed link capacity of CAVs and RHVs. The mean and the variance of lane capacity in 

this study are dependent on the CAV penetration ratio in a lane flow.  

Second, we applied the proposed traffic assignment model to a network design 

problem that determines the optimal locations of the CAV-dedicated lanes. Third, CAVs 

and RHVs are assumed to take a risk-averse path choice behavior considering travel time 

reliability. 

The remainder of this paper comprises three sections: Section 2 presents notations, 

assumptions, and the methodology of the proposed model in this study. Section 3 presents 

the results of the numerical calculations. Concluding remarks and future research needs 

are presented in the final section. 

2. Methodology 

Let G(N, A) denote a general road network. N and A are the sets of nodes and links in the 

network, respectively. 

2.1 Notations and assumptions 

The notations used in this paper are summarized below.  

𝑁 Set of nodes 

𝐴 Set of links 

𝐼 Set of OD pairs 



𝐽 ,  Set of paths between OD pair i for type h ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  vehicles 

𝑄 Total traffic demand with the mean of 𝑞 and the coefficient of variation of 𝑐𝑣 

𝑄  Traffic demand between OD pair i corresponding to the portion of 𝑝   

𝑄  Traffic demand of type h vehicles between OD pair i corresponding to the 

portion of 𝑝 ,   

𝐹  The flow of type h vehicles on path j between OD pair i corresponding to the 

portion of 𝑝 , ,  with the mean of 𝑓  

𝑉  The flow of type h vehicles on lane l corresponding to the portion of 𝑝  with 

the mean of 𝑣  

𝐶  The capacity of lane l with the mean of 𝑐  and the coefficient of variation of 𝑐𝑣  

𝐶  The capacity of lane l with the pure traffic flow of type h 

𝑝  The penetration rate of CAVs on lane l 

𝐿 The set of lanes that is defined as 𝐿 𝐿 ∪ 𝐿   where 𝐿   is the set of CAV 

dedicated lanes and 𝐿  is the set of shared lanes 

𝐿  The set of candidates for the dedicated lane or the shared lane 

𝐿  The set of non-candidates for the dedicated lane or the shared lane 

𝑇  Travel time of lane l 

𝑇 , ,  Travel time of type h vehicles on path j between OD pair i 

𝜂 , ,   Travel cost of type h vehicles on path j between OD pair i 

𝛀𝐟  The set of mean path flow vector that is represented as 𝛀𝐟 𝛀𝐟  where 

𝛀𝐟  and 𝛀𝐟  are the sets of the mean path flow vector of CAVs and RHVs, 

respectively 



 

Without loss of generality, the following assumptions are set in this paper. 

(1) The total traffic demand is assumed to follow a lognormal distribution (Tani and 

Uchida, 2018). The mean and the coefficient of variation of the total traffic 

demand are given exogenously. 

(2) Each OD pair has traffic demands of CAVs and RHVs.  

(3) The lane capacity follows a lognormal distribution. The mean and the coefficient 

of variation of the lane capacity are determined by the penetration rate of CAVs 

on the lane. 

2.2 Network representation 

This study presents the special network representation to demonstrate the network design 

under the mixed traffic flows of CAVs and RHVs. Each link in the road network in this 

study is composed of two lanes. The possible combination of two lanes in each link is 

either a CAV dedicated lane and a shared lane or two shared lanes. There is at least one 

shared lane in each link of the network. Another lane can be converted from the shared 

lane to the CAV dedicated lane. Note that this assumption is set for simplifying the 

scheme proposed in this study. If each link has a couple of lanes, the total number of 

policy variables in the feasible region changes depending on the network setting. For 

example, when the number of targeted links is N, and the number of lanes of each targeted 

𝛀𝐯   The set of mean flows of the shared lanes that is represented as 𝛀𝐯 ,
𝛀𝐯  

where 𝛀𝐯 ,
 is the set of mean flows of CAVs on the shared lane and 𝛀𝐯  is 

the set of mean flows of RHVs 

𝛀𝐯   The set of mean flows of the dedicated lanes for CAVs 

𝐱  The vector of the policy variables of the upper problem 



link is m, the total number of policy variables in the feasible region is 𝑚 1 . 

In this study, a path in the network is defined as the sequence of lanes. Therefore, 

the travel time of a path in the network is calculated as the summation of travel times of 

lanes that compose the path. All CAVs and RHVs can pass through the shared lanes, 

while only CAVs can pass through the CAV dedicated lanes. Thus, CAVs have more 

alternative paths than RHVs, when at least one link has a CAV dedicated lane in the 

network. The set of lanes in the network is denoted by 𝐿 𝐿 ∪ 𝐿  where 𝐿  is the set of 

CAV dedicated lanes and 𝐿  is the set of shared lanes in the network. Each lane 𝑙 ∈ 𝐿 has 

its capacity denoted by 𝐶 . The mean and the coefficient of variation of each lane capacity 

in the network are determined only by the penetration rate of CAVs of the lane. The set 

of lanes in the network is also denoted by 𝐿 𝐿 ∪ 𝐿  where 𝐿  is the set of candidates 

for the dedicated lane of CAVs and 𝐿  is the set of shared lanes. Each lane in 𝐿  can be 

the dedicated lane or the shared lane. The vector of policy variables, 𝐱 expresses the state 

of each lane in 𝐿 . The element of 𝐱, 𝑥  ∀𝑙 ∈ 𝐿  is equal to one if lane l is the dedicated 

lane of CAVs, and to zero if lane l is the shared lane.  

Figure 1 illustrates an example of the concept of the shared lane and the dedicated 

lane in a simple network. The network has an OD pair, two paths, and three links. Each 

link has two lanes. Hence, the road network consists of 6 lanes and three nodes. We 

assume that one lane on each link is a shared lane, and the other lane is the candidate for 

the dedicated lane of CAVs. In Figure 1, the vector of policy variables, 𝐱 0,0,1  shows 

that only link 3 has a dedicated lane of CAVs. The drivers can change their lanes at each 

node. The road administrator is assumed to decide where to deploy the CAV dedicated 

lane(s) in the road network. Thus, the number of alternative policies for the road 

administrator is 2| | . As shown above, the link and lane concepts are explicitly 



distinguished in this paper. 

[Figure 1 near here] 

2.3 Traffic flow modeling 

The methodology applied for modeling the mixed traffic flows with CAVs and RHVs is 

identical to our previous work (Tani and Uchida, 2018). The appendix shown in Tani and 

Uchida (2018) mathematically proved that the coefficient of variation of each link flow 

in a network that is calculated based on independent stochastic OD traffic demands is 

smaller than that calculated based on correlated stochastic OD traffic demands. This study 

extends the findings shown in Tani and Uchida (2018) and presents the new formulation 

of stochastic traffic flows that need no approximate expression in calculating the moment 

of random network variables.  

We assume a stochastic total traffic demand, Q, which follows a lognormal 

distribution. Its mean and coefficient of variance are represented as 𝑞 and 𝑐𝑣, respectively, 

and are given exogenously. The mean and variance of total traffic demand are formulated 

respectively as: 

The traffic demand for OD pair i, which is defined by using the ratio of the demand to the 

total traffic demand, 𝑝 0  is shown as: 

where ∑ 𝑝∈ 1. The mean and variance-covariance of each OD traffic demand are 

defined respectively as: 

𝐸 𝑄 𝑞 (1) 

var 𝑄 𝑞 ⋅ 𝑐𝑣  (2) 

𝑄 𝑝 ⋅ 𝑄   ∀𝑖 ∈ 𝐼 (3) 

𝐸 𝑄 𝑝 ⋅ 𝑞   ∀𝑖 ∈ 𝐼 (4) 

cov 𝑄 ,𝑄 𝑝 ⋅ 𝑝 ⋅ 𝑞 ⋅ 𝑐𝑣    ∀𝑖, 𝑖 ∈ 𝐼 (5) 



Here, note that (5) expresses also the variance of the traffic demand for OD pair i, when 

𝑖 𝑖 .  Next, we set the penetration rate of vehicle type h ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  for OD pair i, 

𝑝 ,  across all OD pairs where ∑ 𝑝 ,∈ , 1 ∀𝑖 ∈ 𝐼  and 𝑝 , 0 ∀𝑖 ∈ 𝐼,∀ℎ ∈

𝐶𝐴𝑉,𝑅𝐻𝑉 . The traffic demand of type h vehicles for OD pair i is defined as: 

The penetration rate, 𝑝 ,  corresponds to the portion of type h vehicles for OD pair i. The 

mean and the variance-covariance of each traffic demand are defined respectively as: 

The flow of type h vehicles on path j that serves OD pair i is defined as  

where 𝑝 , , 0  is the portion of type h vehicles on path j serving OD pair i and that 

holds ∑ 𝑝 , , 1. The mean and variance-covariance of each path flow are defined 

respectively as: 

Here, the portions of 𝑝 ,  and 𝑝  are given exogenously. However, the path choice 

probabilities of 𝑝 , ,  are calculated endogenously by solving the equilibrium problem 

𝑄 𝑝 , ⋅ 𝑄  

𝑝 , ⋅ 𝑝 ⋅ 𝑄   ∀𝑖 ∈ 𝐼,∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  

(6) 

𝐸 𝑄 𝑝 , ⋅ 𝐸 𝑄  

𝑝 , ⋅ 𝑝 ⋅ 𝑞   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 

(7) 

cov 𝑄 ,𝑄  𝑝 , ⋅ 𝑝 ⋅ 𝑝 , ⋅ 𝑝 ⋅ 𝑞 ⋅ 𝑐𝑣   ∀ℎ,ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖, 𝑖 ∈ 𝐼 (8) 

𝐹 𝑝 , , ⋅ 𝑄  

𝑝 , , ⋅ 𝑝 , ⋅ 𝑝 ⋅ 𝑄   ∀𝑖 ∈ 𝐼,∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  

(9) 

𝐸 𝐹 𝐸 𝑝 , , ⋅ 𝑄  

𝑝 , , ⋅ 𝑝 , ⋅ 𝑝 ⋅ 𝑞   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 ,  

(10) 

cov 𝐹 ,𝐹 𝑝 , , ⋅ 𝑝 , ⋅ 𝑝 ⋅ 𝑝 , , ⋅ 𝑝 , ⋅ 𝑝 ⋅ 𝑞 ⋅ 𝑐𝑣     

∀ℎ, ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖, 𝑖 ∈ 𝐼,∀𝑗, 𝑗 ∈ 𝐽 ,  

(11) 



that is described later in this paper. The path flow and the mean path flow are always non-

negative. 

For each OD pair, since the sum of path flows must be the corresponding OD 

demand, the sum of path flows and the mean path flows are respectively preserved as 

The flow of type h vehicles on lane l is represented as: 

where 𝛿 , ,  is a variable that equals one if lane 𝑙 is a part of path 𝑗 ∈ 𝐽 ,  and 0 otherwise. 

Note that each link in the network comprises two lanes, and thus the two sets of nodes 

and lanes that compose the network are as described in 2.2. The mean flow of type h 

vehicles on each lane is represented as: 

In the above equations, if 𝑙 ∈ 𝐿  then lane l is a shared lane. If 𝑙 ∈ 𝐿  then lane l is a 

CAV-dedicated lane.  

From (9), the path flow is represented as a product of a variable, 𝑝 , , ⋅ 𝑝 , ⋅ 𝑝 , 

and the total traffic demand, 𝑄. A lane flow summarizes the path flows as shown in (16) 

and (17). Hence, the lane flow is also represented as a product of a variable, and the total 

traffic demand shown as: 

𝐹 0   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 ,  (12) 

𝐸 𝐹 0   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐽 ,  (13) 

𝐹
∈ ,

𝑄    ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 (14) 

𝐸 𝐹
∈ ,

𝐸 𝑄    ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 (15) 

𝑉 𝛿 , , ⋅ 𝐹
∈ ,∈

   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑙 ∈ 𝐿 (16) 

𝐸 𝑉 𝛿 , , ⋅ 𝐸 𝐹
∈ ,∈

   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉   ∀𝑙 ∈ 𝐿 (17) 



Here, 𝑝 ∑ ∑ 𝛿 , , ⋅ 𝑝 , , ⋅ 𝑝 , ⋅ 𝑝∈ ,∈  is a variable that corresponds to the lane 

flow 𝑉 . This property of the flow of type h vehicles on lane 𝑙 ∈ 𝐿 realizes the simple 

representation of its variance. The variance of the flow of type h vehicles on lane 𝑙 ∈ 𝐿 is 

represented as: 

where 𝑣 𝐸 𝑉  and 𝑞 𝐸 𝑄 . Note that the variance of the total flow on lane l, 

𝑉 ∑ 𝑉∈ ,  is represented as:  

𝑉 𝛿 , , ⋅ 𝐹
∈ ,∈

𝑝 ⋅ 𝑄   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉   ∀𝑙 ∈ 𝐿 (18) 

var 𝑉 var 𝛿 , , ⋅ 𝐹
∈ ,∈

 

𝛿 , ,

∈ ,∈ ,∈∈

⋅ 𝛿 , , ⋅ cov 𝐹 ,𝐹  

𝛿 , ,

∈ ,∈ ,∈∈

⋅ 𝛿 , , ⋅ 𝑝 , , ⋅ 𝑝 , , ⋅ cov 𝑄 ,𝑄   

𝛿 , , ⋅ 𝑝 , ,

∈ ,

⋅ 𝑞
∈

⋅ 𝑐𝑣  

𝑣 ⋅ 𝑐𝑣    ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉 ,∀𝑙 ∈ 𝐿 

(19) 



where 𝑣 𝐸 𝑉 . The variance of lane flow is represented with the mean lane flow and 

the coefficient of variation of the total traffic demand from the above equation. This 

formulation is based on Tani and Uchida (2018). The relationship between (19) and (20) 

is demonstrated with a toy network in the Appendix. 

The series of the formulation of stochastic traffic flows is advantageous to the 

numerical computation because it does not require the approximation of the random 

variables. This property contributes to computing the network design problem 

constrained to the traffic assignment problem considering the stochastic traffic network 

and the travel time reliability. 

2.4 Stochastic lane capacity in the mixed flow 

In previous studies that deal with mixed flows of CAVs and RHVs, a deterministic lane 

capacity is assumed in the same manner as employed in calculating traffic demands and 

travel times (e.g., Zhang and Nie, 2018; Wang et al., 2019). The previous studies consider 

var 𝑉 var 𝑉
∈ ,

 

var 𝛿 , , ⋅ 𝐹
∈ ,∈∈ ,

 

𝛿 , ,

∈ ,∈ ,∈∈

⋅ 𝛿 , , ⋅ cov 𝐹 ,𝐹
∈ ,∈ ,

 

𝛿 , ,

∈ ,∈ ,∈∈

⋅ 𝛿 , , ⋅ 𝑝 , , ⋅ 𝑝 , ,

∈ ,∈ ,

⋅ cov 𝑄 ,𝑄   

𝛿 , , ⋅ 𝑝 , ,

∈ ,

⋅ 𝑞
∈∈ ,

⋅ 𝑐𝑣  

𝑣 ⋅ 𝑐𝑣    ∀𝑙 ∈ 𝐿 

(20) 



the difference in the headway times between CAVs and RHVs for expressing different 

driving behaviors of CAVs and RHVs (e.g., Levin and Boyles, 2016; Wang et al., 2019). 

However, the lane capacity representation in the previous studies misses the difference in 

the stochastic nature between the driving behaviors. The mean and variance of lane 

capacity are expected to increase and decrease, respectively, when the penetration rate of 

CAVs increases in the lane flow. This study considers the relationship between stochastic 

lane capacity and the penetration rate of CAVs in a lane. In this study, we adopt the lane 

capacity that is proposed in Wang et al. (2019) shown below:  

where  

The inverses of lane capacities for pure CAV flows and pure RHV flows approximate 

headway times for CAVs and RHVs. Here, we assume that the headway times for CAVs 

and RHVs are equal across the same vehicle type (Wang et al., 2019). 

Wang et al. (2019) assumed the deterministic road network and therefore 

represented the lane capacity as the deterministic variable. The above two equations use 

the notations defined in this study. 𝑐 ,  and 𝑐 ,  are the deterministic lane capacity 

when the penetration rates of CAVs are one and zero, respectively. Note that the lane 

capacity and the penetration rate of CAVs are determined by the deterministic lane flows 

of CAVs and RHVs, 𝑣  and 𝑣 . Following the above conditions, we extend (21) by 

substituting the stochastic lane capacity, 𝐶 ,  and 𝐶 ,  following lognormal 

𝑐 𝑣 , 𝑣
1

𝑝 𝑣 , 𝑣 ⋅ 1
𝑐 ,

1 𝑝 𝑣 , 𝑣 ⋅ 1
𝑐 ,

    

∀𝑙 ∈ 𝐿 

(21) 

𝑝 𝑣 , 𝑣
𝑣

𝑣 𝑣
   ∀𝑙 ∈ 𝐿 

(22) 



distributions for 𝑐 ,  and 𝑐 ,  in (21), respectively. The stochastic lane capacity of the 

mixed traffic flow is then defined as: 

where 

Note that, on the right side of (23), the inverse of lane capacity given exogenously also 

follows a lognormal distribution, while the summation of the lognormal distributions does 

not follow a lognormal distribution. Some studies use lognormal distributions (e.g., 

Sumalee and Xu, 2011; Zhou and Chen, 2008; Zhao and Kockleman, 2002) to express 

traffic flows. The method of Fenton (1960) is adopted to approximate the summation of 

independent lognormal distributions as a lognormal distribution. Hence, the lane capacity 

of (23) is now approximated as a lognormal distribution. In (24), the penetration rate of 

CAVs is defined by using stochastic lane flows. The lane flow, 𝑉 , in this study is defined 

as the product of a variable, 𝑝 , and the total traffic demand 𝑄 as shown in (18). Since 

the total traffic demand appears in both the numerator and denominator of (24), the 

penetration rate of CAVs is calculated using the corresponding variables of the lane flows. 

Figure 2 shows the mean lane capacity when the penetration rate of CAVs changes from 

0 to 1.  

[Figure 2 near here] 

2.5 Travel time 

We calculate the lane travel time by applying the BPR function (Bureau of public roads, 

1964). The BPR function is often used in some previous studies. We substitute the 

𝐶 𝑉 ,𝑉
1

𝑝 𝑉 ,𝑉 ⋅ 1
𝐶 ,

1 𝑝 𝑉 ,𝑉 ⋅ 1
𝐶 ,

  

∀𝑙 ∈ 𝐿  

(23) 

𝑝 𝑉 ,𝑉
𝑉

𝑉 𝑉

𝑝

𝑝 𝑝
 ∀𝑙 ∈ 𝐿 

(24) 



stochastic lane flows and lane capacity into the BPR function and obtain the lane travel 

time as a random variable (e.g., Lam et al., 2008; Shao et al., 2006; Uchida, 2015).  

According to 2.3 and 2.4, the lane flows and the lane capacity follow lognormal 

distributions. Here, 𝑡  and 𝑛  are the free-flow travel time and the parameter for the BPR 

function of lane l. The parameter 𝛽 𝑉 ,𝑉  in (25), which is originally defined in 

this paper, is a decreasing function with respect to the penetration rate of CAVs. The lane 

travel time has a deterministic term and a stochastic term. The deterministic term is a 

constant that represents free-flow travel time, and the stochastic term is a stochastic delay 

due to congestion. The stochastic term follows a lognormal distribution. Therefore, the 

lane travel time follows a shifted-lognormal distribution (Srinivasan et al., 2014; Tani and 

Uchida, 2018). The mean and variance of lane travel time are denoted respectively as:  

where 

The flow-capacity ratio and its moment are analytically calculated following the property 

of a lognormal distribution since 𝑉 𝑉 𝑝 𝑝 ∙ 𝑄  follows a 

lognormal distribution. Some previous studies that assume other distributions (e.g., 

normal distribution) as a traffic demand require an approximation method for calculating 

𝑇 𝑉 ,𝑉 𝑡 ⋅ 1 𝛽 𝑉 ,𝑉 ⋅
𝑉 𝑉

𝐶 𝑉 ,𝑉
   

∀𝑙 ∈ 𝐿 

(25) 

𝐸 𝑇 𝑡 ⋅ 1 𝛽 𝑉 ,𝑉 ⋅ 𝐸
𝑉 𝑉
𝐶 𝑉 ,𝑉

   ∀𝑙 ∈ 𝐿 
(26) 

var 𝑇 𝐸 𝑇 𝐸 𝑇    ∀𝑙 ∈ 𝐿 (27) 

𝐸 𝑇 𝑡 ⋅

⎝

⎜⎜
⎛

1 2𝛽 𝑉 ,𝑉 ⋅ 𝐸
𝑉 𝑉

𝐶 𝑉 ,𝑉

𝛽 𝑉 ,𝑉 ⋅ 𝐸
𝑉 𝑉

𝐶 𝑉 ,𝑉 ⎠

⎟⎟
⎞

 ∀𝑙 ∈ 𝐿 

(28) 



the moments of random variables such as Isserlis (1918) (e.g., Clark and Watling, 2005; 

Uchida, 2014). We also note that the adopted method does not require the Taylor series 

approximation of the lane travel time function, as shown in Uchida (2014). Figure 3 

shows the mean lane travel time when the mean lane flows of CAVs and RHVs change 

from 0 to 1,200 [pcu/hour]. 

[Figure 3 near here] 

The path travel time for traffic demand of type ℎ vehicles is the summation of 

travel times of the lanes that compose the path, which is shown as: 

The mean and variance of the path travel time are denoted respectively as: 

For setting the path choice criteria, all drivers in this study are assumed to take 

risk-averse path choice behavior. The path travel cost in this study is calculated as: 

Note that 𝛾 denotes the risk-averse degree and that the drivers in this study are 

assumed to decide their paths based only on the travel time and the travel time reliability. 

The covariance of the travel times between two lanes in the network can be defined 

analytically. However, for simplicity, we calculate the variance of the path travel time 

without considering the lane travel time covariance. 

𝑇 , , 𝛿 , , , ⋅ 𝑇
∈

   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 ,  (29) 

𝐸 𝑇 , , 𝛿 , ,

∈

∙ 𝐸 𝑇     ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 ,  (30) 

var 𝑇 , , 𝛿 , ,

∈

∙ var 𝑇    ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 ,  (31) 

𝜂 , , 𝐸 𝑇 , , 𝛾 ⋅ var 𝑇 , ,     ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 ,  (32) 



2.6 Multiclass traffic assignment model  

In this section, we show a traffic assignment model for mixed traffic flows. This problem 

corresponds to the lower problem of the proposed bi-level problem. The traffic 

assignment problem of drivers who take the risk-averse path choice behavior is 

formulated as a variational inequality (VI) problem, same as Zhang and Nie (2018) and 

Wang et al. (2019). The equilibrium conditions of the traffic assignment model are shown 

as: 

where 𝐟 represents the vector of the mean path flows. Note that 𝑓 , , 𝐸 𝐹 , ,  and 𝜋  is 

the minimum path cost between OD pair i. Following the formulations in 2.3, 2.4, and 

2.5, note that the mean path flow vector determines the mean and variance of link flow, 

link travel time, and path travel time respectively and deterministically. Thus, the mean 

path flow vector determines the path travel cost considering the stochastic path travel 

time deterministically following the related prior studies (e.g., Shao et al., 2006; Lam et 

al., 2008; Chen et al., 2010).  

We set the convex set of the mean path flow vector, 𝛀𝐟 that satisfies both the flow 

conservation condition (10) and the non-negativity condition (13). If the mean path flow 

vector, 𝐟  is a member of set, 𝛀𝐟 , the traffic assignment problem is formulated as a 

nonlinear variational inequality problem shown as:  

𝜂 , , 𝐟∗ ⋅ 𝑓 , , 𝑓 , ,
∗

∈ ,∈∈ ,

0   ∀𝐟 ∈ 𝛀𝐟 
(34) 

The above path-flow-based variational inequality problem follows the related studies that 

considered the stochastic travel time and the risk-averse path choice behavior (e.g., Shao 

𝑓 , , ⋅ 𝜂 , , 𝐟 𝜋 0   ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 ,   

𝜂 , , 𝐟 𝜋 0,𝑓 , , 0 ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉  ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 ,  

(33) 



et al., 2006; Chen et al., 2010). The solution of 𝐟∗ and the corresponding minimum path 

cost 𝜂 , , 𝐟∗  ∀ℎ ∈ 𝐶𝐴𝑉,𝑅𝐻𝑉 ,∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 ,  are obtained by solving (34).  

The path-flow-based traffic assignment problem of (34) is transformed into a lane-

based problem. Set 𝛀𝐟  is represented as 𝛀𝐟 𝛀𝐟   where 𝛀𝐟   and 𝛀𝐟   are the 

sets of the mean path flow vector of CAVs and RHVs, respectively. With (10), (13) and 

the lane-path relationship, (17), 𝛀𝐟   and 𝛀𝐟   are projected onto 𝛀𝐯   and 𝛀𝐯  

respectively. The vector of the mean lane flows, 𝐯 is represented as 𝐯 , 𝐯  where 𝐯  

and 𝐯  are the vectors of mean lane flows for shared lanes and dedicated lanes, 

respectively. As for the difference between two-lane types, the sets of the two kinds of 

mean lane flows are respectively defined as 𝛀𝐯 𝛀𝐯 ,
𝛀𝐯  and 𝛀𝐯 𝛀𝐯 ,

 

where 𝛀𝐯 𝛀𝐯 ,
𝛀𝐯 ,

 . The lane-based traffic assignment problem is 

formulated as a nonlinear variational inequality problem shown as: 

Find 𝐯∗ ∈ 𝛀𝐯 , 𝐯∗ ∈ 𝛀𝐯  such that �̂� 𝐯 ⋅ 𝐯 𝐯 ∗ 0   ∀𝐯 ∈ 𝛀𝐯  

and �̂� 𝐯 ⋅ 𝐯 𝐯 ∗ 0   ∀𝐯 ∈ 𝛀𝐯  

(35) 

where 𝐯 𝐯 , 𝐯 ,  and 𝐯 𝐯 , . Here, �̂� ⋅  in (35) represents the lane cost 

function defined as the sum of the mean and variance of lane travel time. Following (30)-

(32), the mean and variance of path travel time are additively separable in the mean and 

variance of the travel times of the corresponding lanes that compose the path. The path 

travel cost is additively separable in the corresponding lane travel costs. Therefore, the 

total travel cost calculated from the mean path flow and the path travel cost can be 

calculated from the mean lane flow and the lane travel cost. Thus, a variational inequality 

problem of (35) is deduced from (34) subject to the two sets of  𝛀𝐯  and 𝛀𝐯 . Needless to 

say, 𝛀𝐯  and 𝛀𝐯  are also deduced subject to flow conservation condition, (10) and the 

non-negativity condition, (13), respectively. 



2.7 Network design problem 

A network design problem presented in this study is formulated as a bi-level 

programming problem. The upper-level problem minimizes the total travel cost in the 

network given by  

s.t. (35). The above problem is solved subject to the network equilibrium constraints 

defined in 2.6. Note that (37) denotes the vector of policy variables for (36), whose 

component, 𝑥  ∀𝑙 ∈ 𝐿  is the binary variable equals 1 when a dedicated lane is provided 

on the candidate lane l and 0 otherwise. The vector of policy variable, 𝐱 changes the states 

of the set of lanes in (16)-(20) in the lower problem. The above objective function is 

defined by the sum of the mean total travel time and the weighted standard deviation of 

total travel time. Note that, in this problem, the penetration rate of CAVs in total traffic 

demand, 𝑝  in (4), is always fixed.  

2.8 Solution algorithm 

We applied the method of successive averages (MSA) introduced by Sheffi (1985) to 

calculate CAV flows and RHV flows that are the solution to (33). We adopted a heuristic 

algorithm, a simulated annealing algorithm, to solve the upper-level problem. Some 

studies adopted a heuristic algorithm such as a simulated-annealing algorithm and a 

genetic algorithm for solving the discrete network design problem (Fan and Machemehl, 

2006) or the continuous network design problem (Friesz et al., 1992). The solution 

procedure for the upper model in this study is shown in Algorithm 1. 

 

Algorithm 1. Solution algorithm for the upper problem 

min𝑍 𝐱 𝐸 𝑉 𝐱 ⋅ 𝑇 𝐱
∈

𝛾 ⋅ var 𝑉 𝐱 ⋅ 𝑇 𝐱
∈

 
(36) 

w.r.t. 𝐱 𝑥 ,⋯ , 𝑥 ,⋯𝑥  (37) 



Step 1: Set an initial feasible solution, 𝐱 𝐱 and the initial temperature, 𝑡. 

Step 2: Generate a tentative solution 𝐱  from the neighbor of the current solution, 𝑁 𝐱  

randomly. Compute the gap of objective values, Δ 𝑓 𝐱 𝑓 𝐱 . If Δ 0, then set 

𝐱 𝐱 . Otherwise, set 𝐱 𝐱  with the probability of 𝑒 .  

Step 3: If 𝑓 𝐱 𝑓 𝐱 , then set 𝐱 𝐱. 

Step 4: If the number of replacing the solution vector, 𝐱 is larger than 𝜀, then go to Step 

2. 

Step 5: If the current temperature is larger than the stop temperature 𝑡 𝑡 , then 𝐱  is 

the solution, otherwise go to Step 2 after updating the temperature, t. 

 

3. Numerical experiments 

3.1 The network of Nguyen and Dupuis (1984) 

3.1.1 Basic settings 

We performed numerical calculations in test networks. At first, we used a test network 

(see Figure 4) shown in Nguyen and Dupuis (1984). The network has 25 nodes, 19 links, 

25 paths, and 4 OD pairs. The OD pairs are (1, 3), (1, 4), (2, 3), and (2, 4). Following the 

assumption of the network described in 2.2, there are 38 factual lanes in total. In this 

study, the lane-path sequence is enumerated. The mean and the coefficient of variation of 

the total traffic demand, 𝑄, are 10,000 [pcu/hour] and 0.3, respectively. The total demand 

is divided into the total demand for CAVs, 𝑄 𝑝 ∙ 𝑄 and that for RHVs 𝑄

1 𝑝 ∙ 𝑄. The traffic demand for each OD pair and each vehicle type is given as 𝑄

𝑝 ∙ 𝑝 , ∙ 𝑄 𝑖 1, . . . ,4  where 𝑝 , 0.25. All 19 links are unidirectional, as shown in 

Figure 4. The free flow travel time of each lane on a link is 0.05 [hour]. Other parameters 

of the cost function of each lane on a link, 𝛼 , and 𝑛  are 1, and 6, respectively. The 



parameter of 𝛽  is defined as 𝛽 𝑉 ,𝑉 =0.1+2 ⋅ 1 𝑝 𝑉 ,𝑉  for 

representing the performance improvement of lane travel time when the CAV penetration 

rate becomes large. 

In this numerical calculation, we prepare two cases in which different parameters 

are provided to the lane capacity in (23). In case 1, the parameters of the lane capacity are 

set as 𝐸 𝐶 , =950 [pcu/hour], 𝐸 𝐶 , =950 [pcu/hour], 𝑐𝑣 , =0.2 and 𝑐𝑣 , =0.2. 

In case 2, they are set as 950, 950, 0, and 0.2, respectively. In case 1, only the effects of 

𝛽 𝑉 ,𝑉  on travel times in the network are examined. In case 2, the uncertainty 

of lane capacity is less than that of case 1. The risk-averse degree in the path cost function 

that is also the coefficient of the objective function in the upper problem, γ is set as 1. 

The iteration number of the traffic assignment model is set as 150. In this numerical 

experiment, the number of feasible solutions for the upper problems is 2 524,288. 

We tried to obtain the minimum solution by a simulated annealing algorithm among the 

feasible set. 

[Figure 4 near here] 

3.1.2 Simulation results 

We solved eleven upper problems obtained by changing the penetration rate of CAVs of 

the total traffic demand from 0 to 1 with increments of 0.1. Figures 5, 6, and 7 show the 

transition of the value of the objective function, the mean total travel time, and the 

standard deviation of the total travel time. Each figure shows the results of two cases; the 

left one is of case 1, and the right one is of case 2. In each case, the optimized results and 

the results without the CAV-dedicated lane are shown. Figure 8 shows the decreasing 

ratio brought by the optimized CAV-dedicated lane deployment corresponding to the 

results shown in Figures 5, 6, and 7. The decreasing ratio is defined as the objective value 



in the case that no dedicated lane is installed in all links divided by that in the optimized 

case. Thus, if the decreasing value is one, the objective values of the two cases mentioned 

above are the same. 

Figure 5 shows that the values of the objective function in both cases decrease as 

the penetration rate increases. The same tendencies are observed in the mean and standard 

deviation values of total travel time (Figures 6 and 7). In all figures, the absolute 

difference value for each criterion, i.e., the objective function, the mean total travel time, 

or the standard deviation of total travel time, is very small when the penetration rate of 

CAVs is between 0 and 0.3. However, the absolute value difference becomes larger when 

the penetration rate of CAVs is between 0.3 and 0.9. Note that there is no difference in 

the penetration rate of 1. Especially, the absolute difference value for case 1 is larger than 

that of case 2. Figure 8 shows the decreasing ratio for each criterion. In terms of the 

decreasing ratio, the results of case 1 and case 2 are similar.  

To summarize the results shown above, the optimized CAV-dedicated lane 

deployment enhanced the network use efficiency. Especially when the performances of 

CAVs and RHVs are similar as described in case 1, the network use efficiency is highly 

enhanced by the optimized CAV-dedicated lane deployment compared with case 2, where 

there is a large difference in the performances. 

[Figure 5 near here] 

[Figure 6 near here] 

[Figure 7 near here] 

[Figure 8 near here] 

To verify the results shown above, for each CAV penetration rate, we calculated the 

values of the objective function for each feasible solution. Figures 9 and 10 respectively 

show the results for case 1 and case 2, when the penetration rates of CAVs of total traffic 



demand are 0.1. 0.3, 0.5, 0.7 and 0.9. The horizontal axis and the vertical axis of each 

histogram represent the value of the objective function and the frequencies in each class 

interval, respectively. The vertical red line and the vertical black line show the globally 

optimized value and the value for the case without the CAV-dedicated lane, respectively. 

The five histograms on the left side show the whole shapes of the distributions depicted 

by adjusting the range of the horizontal axis to make it easy to see. The horizontal axes 

of the other five histograms on the right side are the same as that of the histogram at the 

bottom. In Figure 9, in the two histograms on the left side for 𝑝 0.7 and 𝑝 0.9, 

the red line and the black line are located at the left edge and the right edge of the 

horizontal axis, respectively. Both histograms show unimodal distributions, while the 

other three histograms on the left side for the other penetration rates show multimodal 

distributions. The same tendency can be observed in Figure 10. 

[Figure 9 near here] 

[Figure 10 near here] 

Table 2 shows the number of better solutions for case 1. The better solutions 

defined in this study are the feasible solutions with lower values of the objective function 

than the solution where no CAV-dedicated lane is deployed in the network. Table 3 shows 

the same results for case 2. Almost all patterns of CAV dedicated lane deployment 

increase the value of the objective function when the CAV penetration rate is between 0 

and 0.5, while the number of better solutions increases rapidly when the CAV penetration 

rate is between 0.4 and 0.6. Tables 2 and 3 show a small number of better solutions when 

the CAV penetration rate is between 0 and 0.3. These results indicate that road network 

modification can make the network more efficient even in the small CAV penetration rate. 

The network modification causes the increment of the costs in some lanes, and this cost 

increment changes the path choice behavior of each driver. 



[Table 2 near here] 

[Table 3 near here] 

Tables 4 and 5 compare the values of the objective function of the global solution 

and the heuristic solution of case 1 and case 2, respectively. The value shown in each 

table is the ratio of the value of the objective function from the proposed model to that of 

the global solution at each penetration rate. It is shown that the proposed model in this 

study can find a globally optimized solution or an approximation solution to the globally 

optimized solution at each penetration rate in both cases. 

[Table 4 near here] 

[Table 5 near here] 

In the above conditions, the coefficient of variation of the lane capacity of CAVs, 𝐶 ,  

is set as zero. This assumption aims to help readers understand the impact of the 

penetration of CAVs on the reduction of traffic capacity. However, in the real situation, 

the coefficient of variation of 𝐶 ,  would be positive but smaller than that of RHVs. 

Besides, the mean and coefficient of variation of 𝐶 ,  can be changed by adjusting the 

automated driving performance. Thus, we examined the transition of the value of the 

objective function of the upper model when the mean capacity and coefficient of variation 

of 𝐶 ,  varied between 950 and 1,250 and between 0 and 0.2, respectively. The results 

of the numerical calculation are shown in Figure 11. The other conditions are the same as 

those described above, but the penetration rate of total traffic demand of CAVs is fixed 

as 0.5 as an example. Figure 11 shows that the value of the objective function decreases 

when the mean and coefficient of variation of CAVs increases and decreases, respectively. 

[Figure 11 near here] 



3.1.3 Comparison of the deterministic network and the stochastic network  

Next, we compare the mean total travel times of the deterministic network and the 

stochastic network. Note that the proposed model can consider the deterministic traffic 

demands and the lane capacities by setting the corresponding coefficient of variation as 

zero. The parameters of the lane capacity of the deterministic network are set 

as 𝐸 𝐶 , =1,250 [pcu/hour], 𝐸 𝐶 , =950 [pcu/hour], 𝑐𝑣 , =0 and 𝑐𝑣 , =0. The 

parameters of the lane capacity of the stochastic network are set as 𝐸 𝐶 , =1,250 

[pcu/hour], 𝐸 𝐶 , =950 [pcu/hour], 𝑐𝑣 , =0 and 𝑐𝑣 , =0.2. The other settings are 

the same as the settings in 3.1.1. The penetration rates of CAVs of all traffic demands are 

assumed to be the same, and all of the penetration rates change between 0 and 1 at the 

same time, like 3.1.1 and 3.1.2. 

 Figure 12 shows the mean total travel times of the deterministic network and the 

stochastic network. As the penetration rate of CAVs of total traffic demand increases, two 

mean total travel times tend to decrease. By considering the stochasticity of traffic 

demands and lane capacities, there is a difference between the mean total travel times of 

the two cases. Both curves approach each other as the penetration rates of CAVs increase. 

This result indicates that the large penetration rate of CAVs reduces the uncertainty of 

the road network.  

[Figure 12 near here] 

 

3.2 The experiment in the Sioux Falls network  

In this section, we check the performance of the proposed network design model 

on a larger test network, the Sioux Falls network shown in Figure 13. We used the 

network data from the Github dataset, “Transportation Networks for Research,” at 



https://github.com/bstabler/TransportationNetworks. The network has 24 nodes, 76 links, 

and 283 OD pairs.  

[Figure 13 near here] 

Figure 14 shows the histogram of the mean OD traffic demands. The coefficient 

of variation of total traffic demand is set as 0.2. Figure 15 shows the histogram of the 

penetration rates of CAVs for all OD traffic demands. 

[Figure 14 near here] 

[Figure 15 near here] 

The parameters of the lane capacity in the case of the stochastic network are set 

as 𝐸 𝐶 , =3,000 [pcu/hour], 𝐸 𝐶 , =2,500 [pcu/hour], 𝑐𝑣 , =0 and 𝑐𝑣 , =0.2. 

The free flow travel time of each lane on a link is 0.05 [hour]. Other parameters of the 

cost function of each lane on a link, 𝛼 , 𝛽  and 𝑛  are 1, 2, and 3, respectively. The other 

conditions are the same as those of 3.1. 

Figures 16 and 17 show the mean flow and mean cost of two lanes on each link 

in the network. In both figures, the first lane corresponds to a shared lane. On the other 

hand, the second lane corresponds to either a shared lane or dedicated lane of which state 

is determined by the policy variable. Figure 18 shows the transition of the value of the 

objective function for each iteration computed by a simulated annealing algorithm. 

[Figure 16 near here] 

[Figure 17 near here] 

[Figure 18 near here] 

 

4. Concluding remarks 

This study proposed a model to find the optimal deployment of the CAV-dedicated lanes 

in a road network. The model considers the stochastic traffic demand, the travel time 



reliability, and the stochastic lane capacity of the mixed flows of CAVs and RHVs. This 

study assumes the lane capacity as a random variable following a lognormal distribution 

and addresses the stochastic nature of the lane capacity calculated from the penetration 

rate of CAVs. Because of the automated technology of CAVs, we assume that the mean 

and the variance of lane capacity increases and decreases, respectively, when the 

penetration rate of CAVs increases in the lane flow. We assume that the traffic demand 

follows a lognormal distribution, and thus the corresponding lane travel time follows a 

shifted lognormal distribution. The driver in this study is assumed to take a risk-averse 

path choice behavior.  

Based on the assumptions, the proposed model is formulated as a bi-level 

problem. The traffic assignment problem set as the lower-level problem in this study is 

formulated as a VI problem. The lower model is solved by the MSA. The upper problem 

that finds optimal deployment of the CAV-dedicated lanes is solved by a heuristic 

algorithm, a simulated annealing algorithm, subject to the equilibrium constraints from 

the lower-level problem. 

The numerical calculations considering a stochastic lane capacity were 

performed to demonstrate the proposed model. We used the test network of Nguyen and 

Dupuis (1984) and the Sioux Falls network. The results show that the model finds an 

optimized solution. We compare the solutions from the proposed model with the globally 

optimized solution. All solutions from the proposed model are close to the global solution 

under the adopted test network. The network efficiency under the optimized deployment 

of the CAV-dedicated lanes is better than when no dedicated lane is deployed in the 

network. The results also show that network efficiency is enhanced when the performance 

of CAVs is improved. 



The methodological contributions of the proposed model are twofold. First, by 

considering the stochastic total traffic demand and the correlated OD traffic demands, the 

approximate expression for the moment calculation of random network variables is no 

longer required to formulate the traffic assignment problem considering stochastic 

network. If the traffic flows follow a lognormal distribution, the previous studies that 

adopt this assumption applied the approximate expression for the moment calculation of 

random network variables. However, our method guarantees the reproductive property of 

random variables, and thus the specific approximation is not required even when 

lognormal-distributed OD traffic demands are assumed. Besides, any moment of 

lognormal-distributed lane flow and lane capacity can be calculated analytically. Thus, 

the mean and variance-covariance of lane travel time or lane delay time also can be 

calculated analytically. 

Second, we developed a scheme that evaluates the stochastic impact of the 

penetration of CAVs on network efficiency. As we described in the introduction part, we 

could not find any studies that evaluated the stochastic impact of the penetration of CAVs 

on network efficiency. These previous studies discussed the difference in the mean lane 

capacities of the mixed traffic flows of CAVs and RHVs. We defined the stochastic lane 

capacity considering the mixed traffic flows. The formulation of the stochastic mixed 

traffic flows is based on our newly developed formulation of the stochastic traffic flow 

mentioned above. 

As future tasks, the difference between the VoT and the value of travel time 

reliability (VoTR) between CAVs and RHVs should be discussed. The VoT of CAVs is 

expected to be smaller than that of RHVs because the passengers in CAVs enjoy non-

driving activity during their trip. The impact of the assumption of the uncertain VoT on 

the network flow also can be included in future research. Relating to the difference in 



VoT and VoTR, the risk-averse coefficients in the path cost functions also can be different 

in CAVs and RHVs. The analysis of the different risk-averse behavior is also included in 

future tasks.  

Some studies address the problem of the market dynamics of CAVs (e.g., Chen et 

al., 2016; Seo and Asakura, 2017). The penetration rate of CAVs on OD traffic demands 

can change by deploying the dedicated lanes of CAVs. The feedback mechanism from 

the deployment pattern to the future OD traffic demand must be implemented from a 

future perspective to analyze the impact of the dedicated lane deployment on the future 

penetration rate of CAVs. 

It is also essential to consider the dynamicity of the mixed traffic flow in the 

network design problem in future work. The penetration of CAVs will bring about 

innovative changes in the traffic flow dynamics. This study adopts a static approach to 

evaluate the macroscopic impact of the mixed traffic flow on network efficiency. The 

newly proposed BPR function defines the stochastic travel time in the mixed traffic flow. 

Though the proposed function represents the stochastic property of the mixed traffic flow, 

it cannot address the dynamicity of the mixed traffic flow. Addressing the dynamicity of 

the mixed traffic flow is our future work. 
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Appendix 

For describing the relationship between (19) and (20), we demonstrate the formulation on 

the series of the traffic flows by using a test network shown in Figure A1. The test network 

consists of two OD pairs, four paths, and five lanes. For simplicity, in this example, some 



of the two nodes are connected by a shared lane. Each OD pair has two different demands 

of vehicles, i.e., CAVs and RHVs. The flow on lane 2 describes the relationship between 

(18) and (19) because only lane 2 carries the path flows from both traffic demands. The 

flows on lane 2 are represented as; 𝑉 𝐹 , 𝐹 ,  and 𝑉 𝐹 , 𝐹 , . 

Following (18), we rewrite the variance of the flow of type h vehicles on lane 2 shown 

as: 

var 𝑉 𝟏𝟐 𝚺 𝟏𝟐 

where 

𝚺
var 𝐹 , cov 𝐹 , ,𝐹 ,

cov 𝐹 , ,𝐹 , var 𝐹 ,
 

𝟏 1 1  

Hence, the variance of the flow on lane 2 is represented as: 

var 𝑉 𝟏 𝚺 𝟏  

where 

𝚺
𝚺 𝚺 ,

𝚺 , 𝚺
 

Note that 𝚺 ,  represents the non-diagonal matrix illustrated as: 

𝚺 , cov 𝐹 , ,𝐹 , cov 𝐹 , ,𝐹 ,

cov 𝐹 , ,𝐹 , cov 𝐹 , ,𝐹 ,
 

𝚺 ,  is a transpose of 𝚺 , . If the statistically independent OD demands are 

assumed, e.g., Lam et al. (2008), the non-diagonal matrix is a zero matrix. Hence, the 

variance of the flow on lane 2 is represented as: 

var 𝑉 𝟏 𝚺 𝟏  

𝟏 𝚺 𝟏 𝟏 𝚺 𝟏  

where 



𝚺
𝚺 𝟎
𝟎 𝚺

 

𝟏 1 1 1 1  

Figure A2 shows the series of the traffic flows that are defined in this paper and the 

relationship between the flow on lane l, 𝑉  and other kinds of traffic flows. As shown in 

Figure A2, 𝑄  and 𝑄  are statistically correlated, and its correlation coefficient can 

be calculated from (5) because the total traffic demand generates both flows. In a similar 

way, 𝑉  and 𝑉  are statistically correlated with each other. If the total traffic 

demands of CAVs and RHVs are independent of each other, 𝑉  and 𝑉  are also 

independent of each other. 

[Figure A1 near here] 

[Figure A2 near here] 
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The list of tables 

 

Table 1. The assumptions on path choice criteria, traffic demand, and link/lane capacity. 

   Properties of traffic assignment model 

 
Model Traffic demand CAVs or vehicles 

with ATIS  

RHVs Link/lane capacity 

Yang (1998) Traffic assignment model Deterministic UE SUE Deterministic and 

constant 

Yang et al. (2007) Traffic assignment model Deterministic SO UE or CN Deterministic and 

constant 

Chen et al. (2016) Traffic assignment model Deterministic UE UE Deterministic and 

constant 

Bagloee et al. (2017) Traffic assignment model Deterministic SO UE Deterministic and 

constant 



Zhang and Nie (2018) Traffic assignment model Deterministic SO UE Deterministic and 

variable 

Wang et al. (2019) Traffic assignment model Deterministic UE CNL Deterministic and 

variable 

van den Berg and 

Verhoef (2016) 

Bottleneck model Deterministic - - - 

Levin and Boyles 

(2015) 

Traffic assignment model Deterministic UE UE Deterministic and 

variable 

Levin and Boyles 

(2016) 

Cell transmission model Deterministic - - - 

Pan et al. (2019) Cell transmission model Deterministic - - - 

Ye and Yamamoto 

(2018) 

Traffic flow model Deterministic - - - 

This study Traffic assignment model Stochastic UE UE Stochastic and variable 

  



Table 2. The comparison of the solutions (Case 1). 

  CAV penetration rate 0.0 0.1 0.2 0.3 0.4 0.5 

The number of better solutions 2 6 1 7 729 59,512 

The ratio of better solutions [%] 0.00 0.00 0.00 0.00 0.14 11.35 

CAV penetration rate 0.6 0.7 0.8 0.9 1.0 
 

The number of better solutions 524,272 524,286 524,279 524,285 524,287 
 

The ratio of better solutions [%] 100.00 100.00 100.00 100.00 100.00 
 



Table 3. The comparison of the solutions (Case 2). 

CAV penetration rate 0.0 0.1 0.2 0.3 0.4 0.5 

The number of better solutions 2 4 1 75 1,017 51,919 

The ratio of better solutions [%] 0.00 0.00 0.00 0.01 0.19 9.90 

CAV penetration rate 0.6 0.7 0.8 0.9 1.0 
 

The number of better solutions 476,536 524,279 524,285 524,284 524,287 
 

The ratio of better solutions [%] 90.89 100.00 100.00 100.00 100.00 
 



Table 4. The comparison between the global solution and the heuristic solution (Case 1). 

  

CAV penetration rate 0.0 0.1 0.2 0.3 0.4 0.5 

The ratio of the value of the objective function 1.00 1.0

0 

1.0

0 

1.0

0 

1.0

0 

1.0

0 

CAV penetration rate 0.6 0.7 0.8 0.9 1.0 
 

The ratio of the value of the objective function 1.00 1.0

0 

1.0

0 

1.0

0 

1.0

0 

 



Table 5. The comparison between the global solution and the heuristic solution (Case 2). 

  

CAV penetration rate 0.0 0.1 0.2 0.3 0.4 0.5 

The ratio of the value of the objective function 1.00 1.0

0 

1.0

0 

1.0

0 

1.0

0 

1.0

0 

CAV penetration rate 0.6 0.7 0.8 0.9 1.0 
 

The ratio of the value of the objective function 1.00 1.0

0 

1.0

2 

1.0

3 

1.0

0 
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