

HOKKAIDO UNIVERSITY

Title	Compartmentalization of interleukin 36 subfamily according to inducible and constitutive expression in the kidneys of a murine autoimmune nephritis model
Author(s)	Namba, Takashi; Ichii, Osamu; Nakamura, Teppei; Masum, Md Abdul; Otani, Yuki; Hosotani, Marina; Elewa, Yaser Hosny Ali; Kon, Yasuhiro
Citation	Cell and tissue research, s00441-021-03495-8 https://doi.org/10.1007/s00441-021-03495-8
Issue Date	2021-07-21
Doc URL	http://hdl.handle.net/2115/86347
Rights	This is a post-peer-review, pre-copyedit version of an article published in Cell and tissue research. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00441-021-03495-8
Туре	article (author version)
File Information	Cell and tissue researchs00441-021-03495-8.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

1 Title page

2	Co	mpartmentalization of Interleukin 36 subfamily according to inducible and constitutive
3	exp	pression in the kidneys of a murine autoimmune nephritis model
4		
5	Tak	ashi Namba ¹ , Osamu Ichii ^{1,2} *, Teppei Nakamura ^{1,3} , Md. Abdul Masum ^{1,4} , Yuki Otani ¹ ,
6	Ma	rina Hosotani ⁵ , Yaser Hosny Ali Elewa ^{1,6} , and Yasuhiro Kon ¹
7		
8	1.	Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary
9		Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
10	2.	Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University,
11		Sapporo, Hokkaido, 060-8589, Japan
12	3.	Section of Biological Safety Research, Chitose Laboratory, Japan Food Research
13		Laboratories, Chitose, Hokkaido, 066-0052, Japan
14	4.	Department of Anatomy, Histology and Physiology, Faculty of Animal Science and
15		Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
16	5.	Laboratory of Veterinary Anatomy, Department of Veterinary Medicine, Rakuno Gakuen
17		University, Ebetsu, Hokkaido, 069-8501, Japan
18	6.	Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University,
19		44519, Egypt
20	*C	orresponding author: Osamu Ichii, D.V.M., Ph.D.

21 Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary

22 Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818,

23 JAPAN.

24 Tel & Fax: +81-11-706-5189, Email: <u>ichi-o@vetmed.hokudai.ac.jp</u>

25

26 Acknowledgments and Funding Information

- 27 This study was supported in part by JSPS KAKENHI (grant numbers JP20J22559 [Mr. Namba],
- 28 18H02331 and 19K22352 [Dr. Ichii]). The research described in this paper was chosen for the
- 29 Encouragement Award at the 162nd Japanese Association of Veterinary Anatomists in Ibaraki
- 30 (10-12th September 2019).

32 Abstract

The interleukin (IL) 36 subfamily belongs to the IL-1 family and is comprised of agonists (IL-36a, 33 IL-36β, IL-36γ) and antagonists (IL-36Ra, IL-38). We previously reported IL-36α overexpression 34 35 in renal tubules of chronic nephritis mice. To understand the localization status and biological relationships among each member of the IL-36 subfamily in the kidneys, MRL/MpJ-Fas^{lpr/lpr} 36 37 mice were investigated as autoimmune nephritis models using pathology-based techniques. MRL/MpJ-Fas^{lpr/lpr} mice exhibited disease onset from 3 months and severe nephritis at 6-7 38 39 months (early and late stages, respectively). Briefly, IL-36y and IL-36Ra were constitutively 40 expressed in murine kidneys, while the expression of IL-36α, IL-36β, IL-36Ra, and IL-38 was induced in MRL/MpJ-Fas^{lpr/lpr} mice. IL-36a expression was significantly increased and localized 41 42 to injured tubular epithelial cells (TECs). CD44⁺-activated parietal epithelial cells (PECs) also 43 exhibited higher IL-36 α positive rates, particularly in males. IL-36 β and IL-38 are expressed in interstitial plasma cells. Quantitative indices for IL-36a and IL-38 positively correlated with 44 45 nephritis severity. Similar to IL-36a, IL-36Ra localized to TECs and PECs at the late stage; however, MRL/MpJ-Fas^{lpr/lpr} and healthy MRL/MpJ mice possessed IL-36Ra⁺-smooth muscle 46 47 cells in kidney arterial tunica media at both stages. IL-36y was constitutively expressed in renal 48 sympathetic axons regardless of strain and stage. IL-36 receptor gene was ubiquitously expressed in the kidneys and was induced proportional to disease severity. MRL/MpJ-Fas^{lpr/lpr} mice kidneys 49

50	possessed significantly upregulated IL-36 downstream candidates, including NF- κ B- or
51	MAPK-pathway organizing molecules. Thus, the IL-36 subfamily contributes to homeostasis and
52	inflammation in the kidneys, and especially, an IL-36 α -dominant imbalance could strongly
53	impact nephritis deterioration.
54	
55	Keywords: Nephritis; Systemic autoimmune disease; Chronic kidney disease; Inflammatory
56	cytokine; Interleukin 36
57	
58	

List of abort criations	List	of	abbre	viat	ions
-------------------------	------	----	-------	------	------

60	Actb:	beta-actin

- 61 α -SMA: alpha smooth muscle actin
- 62 BUN: blood urea nitrogen
- 63 CKD: chronic kidney disease
- 64 Cr: creatinine
- 65 dsDNA: double stranded DNA)
- 66 DT: distal tubule
- 67 GO: gene ontology
- 68 HNF-4 α : hepatic nuclear factor 4, alpha
- 69 IF: immunofluorescence
- 70 IHC: immunohistochemistry
- 71 IL: interleukin
- 72 ISH: *in situ* hybridization
- 73 MAPK: mitogen-activated protease
- 74 MD: macula densa
- 75 MRL/lpr: MRL/MpJ-*Fas^{lpr/lpr}*
- 76 MRL/+: MRL/MpJ

- 77 NF-κB: nuclear factor kappa B
- 78 PAS-H: periodic acid Schiff-hematoxylin
- 79 PBS: phosphate-buffered saline
- 80 PEC: parietal epithelial cell
- 81 PT: proximal tubule
- 82 qPCR: quantitative polymerase chain reaction
- 83 R: receptor
- 84 Ra: receptor antagonist
- 85 RC: renal corpuscle
- 86 SE: standard error
- 87 SLE: systemic lupus erythematosus
- 88 S/B ratio: weight ratio of spleen to body
- 89 TEC: tubular epithelial cell
- 90 TIL: tubulointerstitial lesion
- 91 uACR: urinary albumin to creatinine ratio
- 92 UUO: unilateral ureteral obstruction

93 1. Introduction

Chronic kidney disease (CKD) is caused by various factors, such as hypertension, drug use, and 94 certain infections (Webster et al. 2017; Chen et al. 2019). Immunological alternations are closely 95 96 associated with CKD development. For example, a complication of nephritis is frequently 97 observed in systemic lupus erythematosus (SLE), a chronic autoimmune disease characterized by 98 damaged systemic organs including the skin, spleen, kidneys, and/or central nervous system in 99 conjunction with autoantibody production (Yu et al. 2014). It has been reported that nephritis 100 develops in approximately 50% of SLE patients (Almaani et al. 2017). Renal histopathological 101 changes in CKD manifest as glomerular and/or tubulointerstitial lesions (TILs), and their features 102 differ among the various types of renal diseases. Further, CKD development is strongly mediated by inflammatory cytokines and chemokines such as interleukin (IL) 1, tumor necrosis factor α , 103 104 and interferon γ , and these factors are primarily produced by kidney resident cells and 105 hematopoietic cells recruited during inflammation (Ramesh and Reeves 2004; Iwata et al. 2011). 106 The IL-1 family plays crucial roles in acute and chronic inflammation. In humans, this family is composed of 7 agonists (IL-1a, IL-1β, IL-18, IL-33, IL-36a, IL-36β, and IL-36γ) and 4 107 108 antagonists (IL-1 receptor antagonist [Ra], IL-36Ra, IL-37, and IL-38), while mice lack IL-37 109 function (Garlanda et al. 2013). Although these cytokines are produced in response to 110 inflammation, some of the IL-1 family members are constitutively expressed in the mesenchymal

111	cells and epithelial cells of several organs (Garlanda et al. 2013; Mantovani et al. 2019). Briefly,
112	IL-1 α and IL-33 localize to type 2 alveolar epithelial cells and intestinal epithelial cells,
113	respectively (Mantovani et al. 2019). The IL-1 family is regulated through protein processing and
114	by maintaining a balance between IL-1 family agonists and antagonists. Thus, an imbalance in
115	IL1 family members is induced during pathological development due to inflammation and genetic
116	mutation, ultimately leading to disease progression (Mantovani et al. 2019).
117	Our previous study revealed that IL-36a was overexpressed in injured epithelial cells of the
118	distal tubules (DTs) in several murine models of nephritis including MRL/lpr mice (Ichii et al.
119	2010, 2017). The IL-36 subfamily of the IL-1 family is comprised of IL-36 α , IL-36 β , IL-36 γ , and
120	IL-36Ra, which are also known as IL-1F6, IL-1F8, IL-1F9, and IL-1F5, respectively. All of the
121	members of the IL-36 subfamily can bind to the IL-36 receptor (IL-36R) (Garlanda et al. 2013).
122	IL-36 α , IL-36 β , and IL-36 γ function as agonists for IL-36R, and IL-36Ra in turn functions as
123	their antagonist. Additionally, IL-38 (known as IL-1F10) is the putative antagonist for IL-36R, as
124	it can bind to IL-36R and inhibit IL-36 signaling (Garlanda et al. 2013; Queen et al. 2019). It has
125	been reported that IL-36 agonists promote inflammatory responses in the lungs, skin, kidneys,
126	and joints by activating mitogen-activated protease (MAPK) and nuclear factor kappa B (NF- κ B),
127	and all IL-36 cytokines in the skin and IL-36y in the intestine are constitutively expressed to
128	facilitate the host response to infection (Ahsan et al. 2018; Queen et al. 2019). In the kidneys,

129	IL-36 α expression positively correlates with the progression of TILs, including cell death, cell
130	infiltration, and fibrosis in murine kidneys with unilateral ureteral obstruction (UUO). In vitro
131	experiments have shown that IL-36 α production is induced in epithelial cells of DT by
132	lipopolysaccharide, a toll-like receptor ligand (Ichii et al. 2017). Another study revealed that TILs
133	were ameliorated in an IL-36R knockout mouse model with UUO or with renal
134	ischemia-reperfusion injury (Chi et al. 2017; Nishikawa et al. 2018). Furthermore, IL-36α levels
135	were also increased in the kidneys and urine of patients with both acute kidney injury and CKD
136	(Chi et al. 2017; Nishikawa et al. 2018). In regard to IL-38 function in the kidney, the injection
137	improved the glomerular damage in MRL/MpJ-Fas ^{lpr/lpr} (MRL/lpr) mice, which are
138	representative autoimmune disease-prone mice that are characterized by severe lymphadenopathy,
139	splenomegaly, and glomerular nephritis; however, it must be noted that the presence of
140	IL-38-producing cells remains undetermined in the kidney (Cohen and Eisenberg 1991; Chu et al.
141	2017). These studies suggest that the IL-36 subfamily is involved in the development of renal
142	disorders and has potential for use as a novel target for the treatment and diagnosis of various
143	renal diseases.
144	In other tissues, the molecular crosstalk between IL-36 cytokines and disease development
145	has been more thoroughly characterized. Psoriasis is an immune-mediated inflammatory skin

146 condition that exhibits an upregulation of IL-36 α , IL-36 β , IL-36 γ , and IL-36Ra primarily in the

147	keratinocytes of human patients and mouse models (Blumberg et al. 2007, 2010; Johnston et al.
148	2011). Furthermore, IL-36Ra knockout mice presented with a more severe phenotype of psoriatic
149	skin (Blumberg et al. 2007). In patients with SLE, the serum levels of IL-36 α and IL-36 γ were
150	positively correlated with the SLE disease activity index, although that of IL-36Ra was decreased
151	(Chu et al. 2015; Mai et al. 2018). Therefore, the expression patterns of the IL-36 subfamily
152	appear to differ among disease types. Additionally, it has been reported that IL-1 family members
153	can induce production of other family members, as IL-1 α can stimulate IL-36 α to induce
154	inflammation in the skin (Garlanda et al. 2013; Milora et al. 2015). Although it is possible that
155	IL-36 subfamily members closely interact with each other in the kidneys, their fine localization
156	and biological functions remain unclear.
157	Here, we investigated MRL/lpr and MRL/MpJ (MRL/+) as a murine model of autoimmune
158	nephritis and a healthy control, respectively. This study revealed differences in the localization of
159	IL-36 subfamily cytokines. Specifically, IL-367 and IL-36Ra were constitutively expressed in
160	murine kidneys, while IL-36 α , IL-36 β , IL-36Ra, and IL-38 were induced in MRL/lpr mice. These
161	finding suggest that the IL-36 subfamily is associated with both homeostasis and inflammation in
162	the kidneys.

2. Material and methods

165 2.1. Animals and sample collection

166	Male and female MRL/+ and MRL/lpr mice at 3-7 months were purchased from Japan SLC,
167	Inc. (Hamamatsu, Japan) and were maintained under specific pathogen-free conditions. All
168	animal experimentation was approved by the Institutional Animal Care and Use Committee of the
169	Graduate School of Veterinary Medicine, Hokkaido University (approval No.16-0124, 20-0012).
170	Experimental animals were handled in accordance with the Guide for the Care and Use of
171	Laboratory Animals, Graduate School of Veterinary Medicine, Hokkaido University (approved
172	by the Association for Assessment and Accreditation of Laboratory Animal Care International).
173	Urine was collected by pressure urination and stored at -30°C. Under deep anesthesia using a
174	mixture of medetomidine (0.3 mg/kg), midazolam (4 mg/kg), and butorphanol (5 mg/kg), body
175	weight was measured, and blood samples were collected from the femoral arteries. The mice were
176	then euthanized by cervical dislocation. The weights of the spleens were measured, and then the
177	weight ratio of spleen to body (S/B ratio) was calculated.

2.2. Serological analysis and urinalysis

180 Serum levels of anti-double stranded DNA (dsDNA) antibody were measured as an index of
181 systemic autoimmune condition using an LBIS Anti-dsDNA-Mouse ELISA Kit (FUJIFILM

182	Wako Pure Chemical Corporation, Osaka, Japan) according to the manufacturer's instructions.
183	Serum concentrations of creatinine (Cr) and blood urea nitrogen (BUN) were determined using a
184	Fuji Dri-Chem 7000v instrument (FUJIFILM Medical Co., Ltd., Osaka, Japan) according to the
185	manufacturer's instructions. Urinary levels of Cr and albumin were measured using a Urinary
186	Creatinine Assay Kit (Detroit R&D, Inc., Detroit, MI, USA) and an LBIS Mouse Albumin ELISA
187	Kit (FUJIFILM Wako Pure Chemical Corporation), respectively, and the urinary
188	albumin-to-creatinine ratio (uACR) was then calculated.

190 2.3. Histological analysis

Kidneys were fixed overnight using 10% neutral buffered formalin at room temperature or 4% paraformaldehyde at 4°C. Specimens were routinely dehydrated using ethanol and then embedded in paraffin. Paraffin sections (2-µm thick) fixed with 10% neutral buffered formalin were prepared and stained with periodic acid Schiff-hematoxylin (PAS-H) to analyze renal histopathology.

196

197 2.4. Immunohistochemistry (IHC) and immunofluorescence (IF)

IHC and/or IF analyses for B220, CD3, Iba-1, Gr-1, CD138, CD44, alpha smooth muscle
actin (α-SMA), tyrosine hydroxylase, calbindin-D28k, hepatic nuclear factor 4 alpha (HNF-4α),

200	and phosphorylated (p)-NF- κ B-p65 were performed to detect B-cells, T-cells, macrophages,
201	neutrophils, plasma cells, activated parietal epithelial cells (PECs), smooth muscle cells,
202	sympathetic neurons, distal convoluted tubules, proximal tubules (PTs), and activated NF-κB-p65,
203	respectively. Similar assays for IL-36 α , IL-36 β , IL-36 γ , IL-36Ra, and IL-38 were also performed
204	for the localization analysis. Paraffin sections (2- μ m thick) fixed with 4% paraformal dehyde were
205	deparaffinized and then antigen retrieved. To block internal peroxidase activity for IHC, the
206	sections were soaked in methanol containing 0.3% H_2O_2 for 20 min at room temperature. After
207	washing three times in phosphate-buffered saline (PBS), the sections were incubated with
208	blocking serum for 1 h at room temperature to block the non-specific sites. Then, sections were
209	incubated with primary antibodies overnight at 4°C. Subsequently, the sections were washed
210	three times in PBS and were then incubated with secondary antibodies for 30 min at room
211	temperature. After washing three times in PBS, the sections for IHC were incubated with
212	streptavidin-conjugated horseradish peroxidase (SABPO(R) kit; Nichirei, Tokyo, Japan) for 30
213	min at room temperature and subsequently washed three times in PBS. Then, the immunopositive
214	reaction was visualized using 3,3'-diaminobenzidine tetrahydrochloride-H ₂ O ₂ solution. Finally,
215	the sections were lightly stained with hematoxylin. For IF, the tissue sections were incubated with
216	Hoechst 33342 (1:500; FUJIFILM Wako Pure Chemical Corporation) for nuclear staining at
217	room temperature for 30 min and then washed three times. This was followed by examinations

218	under an All-in-one Fluorescence Microscope BZ-X710 (Keyence, Osaka, Japan). The details of
219	the antibodies, antigen retrieval, blocking and combination of multiple IFs are listed in
220	Supplemental Table 1, and Supplemental Figure 1 shows the immunostaining results of the IL-36
221	subfamily compared to the staining of each control immunoglobulin G.
222	
223	2.5. In situ hybridization (ISH)
224	For ISH, formalin-fixed paraffin-embedded sections were assessed using an RNAscope 2.5

224	For ISH, formalin-fixed paraffin-embedded sections were assessed using an RNAscope 2.5
225	assay following the manufacturer's instructions, and all reagents and equipment for hybridization
226	was purchased from Advanced Cell Diagnostics, Inc. (Hayward, CA, USA). Paraffin sections
227	(5- μ m thick) fixed with 10% neutral buffered formalin were air-dried overnight and then baked in
228	HybEZ II oven for 1 h at 60°C. All procedures for ISH were performed using RNAscope 2.5 HD
229	Reagent Kit-BROWN following the manufacturer's instructions. RNAscope Target
230	probe-Mm-Ilrl2 (Mouse, Cat. No. 403761), RNAscope positive control probe-Mm-Polr2a (Cat.
231	No. 312471), and RNAscope negative control probe-DapB (Cat. No. 310043) was used. Further,
232	we performed ISH for <i>Il1rl2</i> followed by PAS-H staining to distinguish between PTs and DTs.
233	

234 2.6. Histoplanimetry

235 In PAS-H stained sections, 30 glomeruli that showed a vascular and/or urinary pole were

236	selected, and the number of nuclei in the glomerulus, the size, and the area ratio of PAS^+
237	mesangium to glomerulus were all measured and calculated using NDP. view2 (Hamamatsu
238	Photonics Co., Ltd., Hamamatsu, Japan) and a BZ-X Analyzer (Keyence). To evaluate infiltrated
239	cells, including B220 ⁺ B-cells, CD3 ⁺ T-cells, Iba-1 ⁺ macrophages, and Gr-1 ⁺ neutrophils, the
240	number was counted within 30 glomeruli with a vascular and/or urinary pole using NDP.view2.
241	These cells were also counted in 20 tubulointerstitial areas at 400× magnification, which were
242	first selected in the renal cortex at 4× magnification and then replaced to exclude glomeruli, and
243	the averages per area were then calculated. For quantification of IL-36 α , the number of IL-36 α^+
244	tubules and renal corpuscles (RCs) in the cortex area was calculated in 3 sections from each
245	mouse. Then, the number of IL-36 α^+ tubules was divided by the cortex area, and the ratio of
246	IL-36 α^+ RCs number to total RCs number was calculated. In 25 RCs from each male MRL/lpr at
247	6-7 months, the IL-36 α^+ PEC ratio was examined in CD44 positive or negative PECs using a
248	BZ-X Analyzer. To evaluate IL-38, the number of positive cells was counted in 20
249	tubulointerstitial areas at 400x magnification using NDP. view2, and the averages per area were
250	then calculated.

251

2.7. Quantitative polymerase chain reaction (qPCR) 252

Kidneys were soaked in RNA later solution (Thermo Fisher Scientific, Waltham, MA, USA) 253

254	at 4°C and then stored at -80°C after the solution was removed. Total RNA from kidneys was
255	purified using TRIzol reagent (Thermo Fisher Scientific) following the manufacturer's
256	instructions. The purified total RNA was treated as a template to synthesize cDNA using
257	ReverTra Ace qPCR RT Master Mix (Toyobo Co., Ltd., Osaka, Japan). qPCR analysis was
258	performed on the cDNA (20 ng/µl) using THUNDERBIRD® SYBR® qPCR Mix (Toyobo Co.,
259	Ltd.) and gene-specific primers (Supplemental Table 2). The qPCR cycling conditions were as
260	follows: 95°C for 1 min, (95°C for 15 s, 60°C for 45 s [40 cycles]). The data were normalized
261	according to the values of beta-actin (Actb), and those of female MRL/+ mice at 3 months using
262	the delta-delta Ct method.

264 **2.8.** *Microarray analysis*

Similar to the qPCR analysis, total RNA was isolated from the kidneys of female MRL/+ and MRL/lpr mice at 6 months (n= 3). RNA integrity was validated using an Agilent 2100 Bioanalyzer II (Agilent Technologies, Santa Clara, CA, USA), and complementary RNA was synthesized using a Low Input Quick Amp Labeling Kit (Agilent Technologies). Gene expression was analyzed using an Agilent Technologies Microarray Scanner and SurePrint G3 Mouse 8x60K v2.0 (Agilent Technologies), and the raw data were normalized through the use of a 75Percentile shift (GeneSpring; Agilent Technologies). Toppgene Suite (https://toppgene.cchmc.org/) and 272 Morpheus (https://software.broadinstitute.org/morpheus/) were used for gene ontology (GO)
273 analysis and heatmap preparation, respectively.

274

275	<i>2.9</i> .	Statistical	analysis
-----	--------------	--------------------	----------

The results were expressed as the mean \pm standard error (SE) and statistically analyzed in a non-parametric manner. The significance between 2 groups was analyzed using the Mann-Whitney *U*-test (P < 0.05). As an exception, the values in the microarray analysis were compared using the Student's t-test (P < 0.05). The correlation between 2 parameters was analyzed using Spearman's correlation test (P < 0.05).

3. Results

283 3.1. Development of autoimmune nephritis in MRL/lpr mice

284	First, autoimmune disease and nephritis in MRL/lpr mice at 3 and 6-7 months were
285	evaluated using serological, urinary, and histopathological analyses (Table1, and Supplemental
286	Figure 2-4). In regard to indices of autoimmune disease, male and female MRL/lpr mice,
287	regardless of age, showed significantly higher values in the S/B ratio (over 2.6-fold, $P < 0.05$ at
288	the early stage; 7.0-fold, $P < 0.01$ at the late stage) and the serum level of anti-dsDNA antibody
289	(over 53.5-fold, $P < 0.05$ at the early stage; 55.2-fold, $P < 0.01$ at the late stage) compared to the
290	values observed for each sex of MRL/+ mice that served as healthy controls. Furthermore, in
291	MRL/lpr mice, the S/B ratio in both sexes (over 2.6-fold, $P < 0.05$) and the serum level of
292	anti-dsDNA antibody in males (over 3.1-fold, $P < 0.05$) was significantly increased with age. For
293	renal function indices at 6-7 months, only BUN levels were significantly higher in both sexes of
294	MRL/lpr mice compared to those values in MRL/+ mice (over 1.7-fold, $P < 0.05$). Meanwhile,
295	there was a significant difference in renal histopathology between MRL/+ and MRL/lpr mice. At
296	6-7 months, both sexes of the MRL/lpr mice exhibited significantly higher values of nuclei in a
297	glomerulus (over 1.7-fold, $P < 0.01$), glomerular size (over 1.7-fold, $P < 0.01$), the area ratio of
298	mesangium to glomerulus (over 1.3-fold, $P < 0.05$), and the number of infiltrated cells such as
299	B220 ⁺ B-cells (over 11.3-fold, $P < 0.01$ in glomeruli; over 3.2-fold, $P < 0.05$ in

300 tubulointerstitium), CD3⁺T-cells (over 9.3-fold, P < 0.01 in glomeruli; over 4.9-fold, P < 0.01 in 301 tubulointerstitium), Iba-1⁺ macrophages (over 9.7-fold, P < 0.05 in glomeruli; over 1.8-fold, P < 0.050.01 in tubulointerstitium), and Gr-1⁺ neutrophils (over 2.9-fold, P < 0.05 in glomeruli; over 302 303 1.4-fold, P < 0.05 in tubulointerstitium) in glomeruli and tubulointerstitium compared to those in MRL/+ mice. In MRL/lpr mice, the majority of the histopathological indices, with the exception 304 305 of the mesangial area ratio in the male, were significantly increased with age. Based on these 306 findings, we confirmed the development of autoimmune disease followed by nephritis in 307 MRL/lpr mice and classified both strains of mice at 3 and 6-7 months as early and late stage of 308 autoimmune nephritis, respectively. 309 310 3.2. Enhanced mRNA expression of II1f6 among the IL-36 subfamily members in MRL/lpr 311 kidneys 312 The mRNA expression of the IL-36 subfamily in the kidneys was evaluated using qPCR. 313 Among the IL-1 family members expressed in the late stage of autoimmune nephritis, *Illf6* coding IL-36a was the most upregulated in both sexes of MRL/lpr mice, and the mRNA levels of 314 315 *Illf6* (over 7.5-fold, P < 0.01), *Illb* (over 2.1-fold, P < 0.01), and *Illrn* (8.2-fold, P < 0.01) in 316 MRL/lpr mice were significantly higher than those observed in MRL/+ mice (Figure 1a and 317 Supplemental Figure 5). However, other IL-36 subfamily members did not show any common

318	alterations between males and females in MRL/lpr mice among strains, sexes, or in regard to
319	disease development (Figure 1b to e). For <i>Illf</i> 8 coding of IL-36β, female MRL/+ mice exhibited
320	significantly decreased expression with age (under 0.8-fold, $P < 0.05$; Figure 1b). For <i>Il1f</i> 9 of
321	coding IL-36y, female MRL/lpr mice at the late stage exhibited significantly higher expression
322	levels compared to those of the female and male mice at the early and late stages, respectively
323	(over 2.5-fold, $P < 0.05$; Figure 1c). For <i>ll1f5</i> coding of IL-36Ra, female MRL/+ mice and male
324	MRL/lpr mice exhibited decreased expression with aging (under 0.3-fold, $P < 0.05$), and there
325	were sex differences in MRL/+ and MRL/lpr mice at the early and late stages, respectively, and
326	these differences were more pronounced in female mice than in male mice (over 2.2-fold, $P <$
327	0.05; Figure 1d). For <i>Illf10</i> coding of IL-38, there was no significant difference among strains,
328	stages, or disease stages (Figure 1e). Thus, as described in our previous reports, <i>Illf</i> 6 in both
329	sexes of MRL/lpr mouse kidneys was the most remarkably upregulated and was most associated
330	with the progression of autoimmune nephritis among the IL-36 subfamily members (Ichii et al.
331	2010, 2017).

3.3. IL-36a overexpression in renal tubules of MRL/lpr mice 333

Using immunostaining, the localization of the IL-36 subfamily in kidneys was examined. 334 Initially, IL-36 α^+ reactions appeared in renal tubules from the early stage of autoimmune nephritis, 335

and these tubules tended to be increased in number in MRL/lpr mice as disease development 336 progressed (Figure 2a-b"). IL-36 α^+ reactions localized to the cytoplasm and nucleus of renal 337 338 tubular epithelial cells (TECs) and appeared first in the segment close to macula densa (MD), and 339 IL-36α⁺ tubules frequently exhibited dilated tubular lumens and urinary casts at the late stage, as reported in our previous studies (Figure 2c and c') (Ichii et al. 2010, 2017). As shown in Figure 2d, 340 341 the number of IL-36 α^+ tubules was significantly increased in all groups as disease progression 342 occurred, and those in both sexes at the late stage were significantly higher in MRL/lpr mice compared to these values in MRL/+ mice (over 9.3-fold, P < 0.05). According to double IF 343 344 staining for IL-36a and calbindin-D28k (a DT marker), IL-36a primarily localized to DT 345 epithelial cells; however, several IL-36a⁺ TECs did not show calbindin-D28k⁺ reactions in IL-36 α^+ tubules (Figure 2e-e''). Furthermore, IL-36 α^+ TECs were also observed in HNF-4 α^+ PT; 346 347 however, this number was quite low (Figure 2f-f').

348

349 3.4. CD44⁺ activated PECs expressing IL-36a in male MRL/lpr mice

350 IL-36 α also localized to PECs in Bowman's capsules, and these were more frequently 351 observed in male MRL/lpr mice at the late stage (Figure 2b''', 3a and a'). In female mice, only 352 MRL/lpr mice at the late stage also possessed a small number of IL-36 α ⁺ PECs that exhibited 353 cuboidal shapes. For histoplanimetry, both male strains exhibited a significantly higher ratio of

354	IL-36 α^+ RCs to total RCs compared to that of the female strains at the late stage, and this ratio was
355	the highest in male MRL/lpr mice (Figure 3b). Additionally, as shown in Supplemental Figure 6a,
356	another autoimmune nephritis model (BXSB/MpJ-Yaa) also possessed IL-36α ⁺ PECs.
357	Next, we performed double IF for IL-36 α and CD44, a marker for activated PECs that is
358	indicative of their proliferation, migration, and matrix production (Smeets et al. 2009). CD44 was
359	observed on the cell membranes of PECs and infiltrated cells in RCs, and IL-36 α and CD44 were
360	frequently co-localized in PECs (Figure 3c-c"). We then counted and calculated the ratio of
361	IL-36 α^+ PECs in CD44 positive or - negative PECs in male MRL/lpr mouse cells at the late stage.
362	As shown in Figure 3d, IL-36 α was significantly and highly co-localized with CD44 in PECs
363	$(84.17 \pm 2.59\%).$

3.5. Localization of IL-36β and IL-36γ in plasma cells and sympathetic nerves, respectively 365

Next, the localization of other IL-36 agonists (IL-36 β and IL-36 γ) was analyzed in the 366 kidneys. IL-36β localized to the cytoplasm of CD138⁺ plasma cells in both sexes of MRL/lpr 367 mice at the late stage but not at the early stage (Figure 4a-b"). However, the number of positive 368 cells was low in the kidneys, with one or two positive cells observed in each kidney section. 369 IL-36 γ^+ reactions appeared at the peri-vessels and peri-glomeruli of all groups (Figure 4c). 370 371

According to double IF assays, IL-36y was co-localized with tyrosine hydroxylase, a marker for

372	peripheral sympathetic neurons (Figure 4d-d''). We also confirmed that the IL- $36\gamma^+$ reaction could
373	be observed in the myenteric nerve plexus of the jejunum (Supplemental Figure 6b). Interestingly,
374	there were IL-36y positive and negative axons in the kidneys of all groups; however, we could not
375	identify constant localization patterns of IL-36γ among sexes, strains, or disease stages (Figure
376	<mark>4d-d"</mark>).

378 **3.6.** Localization of IL-36Ra in smooth muscle cells, DT epithelial cells, and PECs

379 We also examined the localization of IL-36 subfamily antagonists in the kidneys. For 380 IL-36Ra, all groups exhibited positive reactions in the intrarenal arteries and arterioles, and 381 IL-36Ra was localized in the cytoplasm of α -SMA⁺ smooth muscle cells within the tunica media (Figure 5a-b"). However, in vasculitis lesions in MRL/lpr mice, the IL-36Ra⁺ reaction was 382 383 defective in a subset of these lesions with transmural cell infiltration (Figure 5c). Furthermore, smooth muscle cells of arteries and bronchioles in the lungs also expressed IL-36Ra 384 385 (Supplemental Figure 6c). Both sexes of MRL/lpr mice at the late stage possessed IL-36Ra⁺ PECs that exhibited both flat and cuboidal shapes (Figure 5d and Supplemental Figure 1d'). However, 386 387 we could not determine obvious sex differences in IHC, unlike the IL-36a expression in PECs. In 388 both strains at the late stage, granular IL-36Ra⁺ reactions were observed in the apical portion of TECs (Figure 5e). Although female MRL/+ and male MRL/lpr mice exhibited age-related 389

390	decreases in <i>Il1f5</i> expression (Figure 1d), a similar tendency was not observed in regard to protein
391	expression. According to IF or IHC using serial sections, IL-36Ra co-localized with
392	calbindin-D28k but not with HNF-4 α , thus indicating its expression in DTs (Figure 5f-g').
393	Furthermore, several TECs co-expressed IL-36Ra and IL-36 α (Figure 5h and h').

395 3.7. IL-38 overexpression in the plasma cells of MRL/lpr mice

396	Another IL-36R antagonist, IL-38, localized to the cytoplasm of renal interstitial cells in all
397	groups, and the expression appeared to be abundant in both sexes of MRL/lpr mice at the late
398	stage compared to that of the other groups (Figure 6a-b""). Using serial sections followed by IHC,
399	CD138 ⁺ plasma cells were positive for IL-38 ⁺ reactions (Figure 6c and c'). In disagreement with
400	the mRNA analysis, both sexes of MRL/lpr mice showed that the number of IL-38 ⁺ cells
401	significantly increased with the progression of nephritis (over 4.7-fold, $P < 0.05$), and at the late
402	stage, the number of IL-38 ⁺ cells of MRL/lpr mice tended to be higher than that of MRL/+ mice
403	(Figure 6d). These IL-38 ⁺ cells did not directly contact the IL-36 α^+ tubules (Figure 6e and e').
404	

405 3.8. Overexpression of IL-36a and IL-38 is positively correlated with autoimmune nephritis

406 The protein expression of IL-36 α and IL-38 at the late stage of autoimmune nephritis was 407 enhanced in MRL/lpr mice compared to that in MRL/+ mice among the IL-36 subfamily

408	members (Figure 2, 3, and 6). Thus, we analyzed correlations between the parameters of IL-36 α
409	and IL-38 and indices for autoimmune disease, renal function, and histopathology in both sexes
410	of MRL/lpr mice (Table 2). In regard to the number of IL-36 α^+ tubules, there were significant
411	positive correlations with serum levels of anti-dsDNA, uACR, the number of all infiltrated cells,
412	particularly CD3 ⁺ T-cells and Iba-1 ⁺ macrophages, into the tubulointerstitium. Furthermore,
413	IL-36 α^+ tubules were significantly and positively correlated with BUN in females and with S/B
414	ratio in males. In regard to the IL-36 α^+ RC ratio, male MRL/lpr mice exhibited significant and
415	positive correlations with all indices for autoimmune disease and glomerular injury and with
416	uACR. In contrast, the IL-36 α^+ RC ratio of female MRL/lpr mice was significantly and positively
417	correlated with BUN, uACR, glomerular size, glomerular nucleus number, and mesangial area
418	ratio. Characteristically, both sexes of MRL/lpr mice showed a significantly positive correlation
419	between the IL-36 α^+ RC ratio and Gr-1 ⁺ neutrophil number among infiltrated cells in the
420	glomerulus. Additionally, there was a significantly positive correlation between the number of
421	IL-36 α^+ tubules and the RC ratio in both sexes.
422	In regard to the IL-38 ⁺ cell number, both sexes of MRL/lpr mice exhibited significantly
423	positive correlations with the values of anti-dsDNA antibody, uACR, CD3 ⁺ T-cells in

- 424 tubulointerstitium, and IL-36 α^+ tubules. In female MRL/lpr mice, there were also significant
- 425 positive correlations between IL-38⁺ cells and the indices for BUN, Cr, and other infiltration cells

426 into the tubulointerstitium.

427

428 **3.9.** Ubiquitous mRNA expression of Il1rl2 in murine kidneys

429	According to our previous study, IL-36R was localized in podocytes, PTs, and DTs in healthy
430	kidneys, whereas it was observed in interstitial cells and platelets in unilateral ureteral obstruction
431	kidneys (Ichii et al. 2017). To identify the localization and induction of the IL-36R mRNA <i>Il1rl2</i> ,
432	we performed ISH assays in MRL/+ and MRL/lpr mice at the late stage. <i>Illrl2</i> localized to TECs,
433	mesangial cells, podocytes, PECs, interstitial cells, transitional epithelial cells, smooth muscle
434	cells, and endothelial cells in the kidneys of both strains from the cortex to the medulla (Figure
435	7a-b"). In the kidneys of both sexes of MRL/lpr mice, <i>Il1rl2</i> was induced in TECs, PECs, and
436	infiltrated immune cells in glomerular and tubulointerstitial lesions and in vasculitis, and positive
437	signals in PECs tended to be higher in male MRL/lpr mice than in female mice, similar to the
438	localization pattern of IL-36 α (Figure 7a-b"). As shown in Figure 7c and c', $Il1rl2^+$ signals were
439	primarily localized in DT epithelial cells, and MRL/lpr exhibited localization in the cells in close
440	proximity to the vascular pole, including the juxtaglomerular complex. However, qPCR analysis
441	revealed that there was no difference in mRNA levels of <i>Il1rl2</i> among the groups (Figure 7d).
442	

443 3.10. Upregulation of IL-1 family signaling in MRL/lpr kidneys

444	Stimulation of IL-36R induces IL-1 family signaling, including MAPK and NF-KB (Towne
445	et al. 2004). To detect the significant GO associated with these signaling pathways, gene
446	expression in the kidneys at the late stage was comprehensively compared between female
447	MRL/+ and MRL/lpr mice by microarray focusing on 2-fold upregulated genes in the latter
448	(Figure 7e and f). As shown in Figure 7e, 25 genes associated with positive regulation of MAPK
449	activity (GO: 0043406) were significantly upregulated in MRL/lpr mice. Furthermore, in the
450	genes related to positive regulation of NF-KB transcription factor activity (GO: 0051092),
451	MRL/lpr mice possessed 11 genes that were significantly upregulated compared to levels in
452	MRL/+ mice (Figure 7f). To confirm the activation of the NF- κ B pathway, we performed IHC for
453	p-NF-KB-p65, the effective component of NF-KB (Supplemental Figure 7). Positive reactions
454	and the number was abundant in both sexes of MRI /lpr mice. Therefore, II -1 family signaling
456	including that of IL-36R, was upregulated in MRL/lpr mice.

458 **4. Discussion**

459 The present study demonstrated the localization of the IL-36 subfamily in murine kidneys (Table 460 3). In regard to mRNA expression, both sexes of MRL/lpr mice manifested autoimmune nephritis, 461 and our results demonstrated that IL-36a coded by *Illf*6 was the most overexpressed in the 462 kidneys of MRL/lpr mice among the IL-1 family members at the late stage as previously reported 463 (Ichii et al. 2010, 2017). In contrast, no common alteration was observed in the mRNA expression 464 of other IL-36 subfamily members between male and female MRL/lpr mice. In our previous study, 465 murine kidney injury models created by UUO and folic acid injection revealed the 466 downregulation of *Il1f5* and *Il1f8* in the kidney, while Nishikawa et al. reported that the mRNA expression of IL-36a, IL-36β, and IL-36γ was upregulated in murine kidneys with 467 ischemia-reperfusion injury (Ichii et al. 2017; Nishikawa et al. 2018). Importantly, a 468 469 disease-specific expression pattern of the IL-36 subfamily was also reported in other organs. In mice, collagen-induced arthritis increased the mRNA levels of all members of this family; 470 471 however, only *Illf6*, *Illf9*, and *Illf5* were upregulated in antigen-induced arthritis (Boutet et al. 472 2016). Thus, these gene expression analyses indicated that IL-36a contributes to the progression 473 of various kidney diseases, while the expression of other members may depend upon disease type. 474 We investigated the localization of IL-36 subfamily cytokines, and IL-36a was mainly 475 localized to TECs in DT and not in PT. Characteristically, some IL-36 α^+ TECs exhibited

476	decreased specific marker expression for each renal tubule, indicating an alternation of
477	morpho-functional phenotypes. Furthermore, PECs also expressed IL-36a during disease
478	progression in MRL/lpr mice, and this was abundant in males. Chi et al. reported the presence of
479	IL-36 α^+ PECs in human patients with a pathologic diagnosis of TIL in nephritis or diabetic
480	nephropathy (Chi et al. 2017). Importantly, IL-36 α^+ PECs frequently presented with a cuboidal
481	and not squamous morphology and a positive reaction for CD44, an activated PEC marker. CD44
482	is a glycoprotein involved in cell-cell interactions, cell adhesion, and cell migration (Smeets et al.
483	2009; Berger and Moeller 2014). Furthermore, IL-36 α^+ PEC number is positively correlated with
484	neutrophil infiltration into the glomerulus in MRL/lpr mice. Neutrophil-secreting enzymes,
485	including elastase, cathepsin G, and proteinase 3, play crucial roles in processing and activating
486	IL-36 agonists, thus suggesting that neutrophils in glomeruli are involved in IL-36 α production in
487	PECs (Clancy et al. 2017). In mice, female PECs are squamous, while male PECs are composed
488	of squamous to cuboidal cells under the control of sex-hormones. Furthermore, several
489	glomerular lesions, including focal segmental glomerular sclerosis, are more severe in males than
490	they are in females in mice as well as humans (Ahmadizadeh et al. 1984; Schwartzman-Morris
491	and Putterman 2012; Kuppe et al. 2019). Thus, induced IL-36a expression appeared to be
492	associated with the morpho-functional changes of epithelial cells as TECs and PECs and
493	contribute to the pathogenesis of autoimmune nephritis.

494	In MRL/lpr mouse kidneys, CD138 ⁺ plasma cells expressed IL-36 β and IL-38, an agonist
495	and antagonist of IL-36 signaling, respectively. Plasma cells produce antibodies in addition to
496	immunosuppressive and pro-inflammatory cytokines such as IL-10 and IL-17, respectively,
497	(Dang et al. 2014). It has been reported that IL-36 α , IL-36 β , IL-36 γ , and IL-36Ra are expressed in
498	plasma cells, indicating that these cells might be one of the main producers of IL-36 subfamily
499	members (Boutet et al. 2016). In another report, IL-36 β^+ plasma cells were observed in the
500	synovium and colonic mucosa of human patients with rheumatoid arthritis and Crohn's disease,
501	respectively, and the number of IL-36 β^+ cells was increased in the former only (Boutet et al. 2016).
502	In contrast, IL-36 β^+ cells were rarely observed in the tubulointerstitium of MRL/lpr mice at the
503	late stage only. Therefore, we concluded that the contribution of IL-36 β to the pathogenesis of
504	autoimmune nephritis in MRL/lpr mice was relatively low compared to that of other members.
505	In contrast, IL-38 ⁺ plasma cells were significantly increased in MRL/lpr mice during the
506	progression of nephritis; however, the mRNA level was not altered. SLE patients possessed high
507	serum levels of IL-38 that were associated with the risk of lupus nephritis and central nervous
508	system lupus (Rudloff et al. 2015). In MRL/lpr mice and another SLE model mouse induced by
509	pristane, IL-38 injection ameliorated skin inflammation and nephritis and reduced proteinuria
510	(Chu et al. 2017; Xu et al. 2020). Additionally, in vitro experiments demonstrated that IL-38
511	inhibited Th17 responses such as the production of IL-17 and IL-22 that were activated by IL-36

512	signaling (Van De Veerdonk et al. 2012; Chu et al. 2017). In the present study, infiltration of
513	IL-38 ⁺ plasma cells into the tubulointerstitium was relatively mild compared to that observed in
514	T-cells and in macrophages. However, the IL-38 ⁺ cell number in the tubulointerstitium exhibited a
515	positive correlation with certain indices for TIL such as IL-36 α^+ tubule number. Therefore, these
516	results indicated that IL-38 was induced by IL-36 α upregulation and was involved in TIL as an
517	antagonist.
518	We found that IL-36y and IL-36Ra were constitutively expressed in murine kidneys. IL-36y
519	was localized to sympathetic nerves in the kidney, as observed previously in the intestine.
520	Another study also revealed that IL-36 γ was expressed and upregulated in spinal neurons of a
521	mouse model of chronic inflammatory pain induced by injection of complete Freund's adjuvant
522	(Li et al. 2019). However, in the kidney, IL-36 γ was also expressed under healthy conditions.
523	Similar to IL-36 γ localization, IL-1 α , a member of the IL-1 family, is expressed in rat peripheral
524	nerves in accordance with the distribution of noradrenergic innervation of organs such as the
525	colon and pancreas (Bartfai and Schultzberg 1993). Cytokines exert several physiological
526	functions in the nervous system. For example, tumor necrosis factor α is produced by neurons,
527	astrocytes, and microglia and contributes to the development of the hippocampus, ionic
528	homeostasis, and synaptic plasticity and also to the initiation and progression of some neuronal
529	diseases (Park and Bowers 2010). Further investigation is required to elucidate the physiological

530	functions of IL-36 γ in the kidneys through the function of nerves, and these studies should
531	particularly focus on representative sympathetic nerve activity such as the regulation of renal
532	blood flow (Schiller et al. 2017).
533	Under healthy conditions, IL-36Ra was expressed in smooth muscle cells of the tunica media
534	of arteries and arterioles and was partially absent in the cells with vasculitis in MRL/lpr mice. It
535	has been reported that IL-36Ra was expressed in keratinocytes, in various immune cells such as
536	B-cells, macrophages, and dendritic cells, and in perivascular cells surrounding the fetal blood
537	vessels of human placentas (Southcombe et al. 2015; Queen et al. 2019). Further, blood vessels in
538	the tumor and tonsil of patients with colon carcinoma express IL-36Ra with IL-36 γ , and there was
539	a positive correlation between IL-36Ra expression and the upregulation of immune checkpoint
540	markers such as programmed cell death 1, programmed cell death ligand 1, and cytotoxic
541	T-lymphocyte associated protein 4 (Weinstein et al. 2019). Additionally, DT epithelial cells and
542	PECs also expressed IL-36Ra in accordance with IL-36 α localization, and both of them were at
543	least partially co-expressed in DT epithelial cells. Therefore, IL-36Ra induction may be
544	associated with IL-36 α overexpression in injured or activated renal epithelial cells to regulate
545	inflammation, and this has been reported as a positive correlation between the mRNA and protein
546	levels in synovial tissues of patients with rheumatoid arthritis (Boutet et al. 2016).

Our ISH study revealed that the mRNA of IL-36R, Il1rl2, was ubiquitously expressed in

548	murine kidneys. It has been previously reported that IL-36R is expressed in immune and
549	non-immune cells, where the former are dendritic cells, T-cells, and macrophages and the latter
550	are the epithelial cells of renal tubules and bronchioles, keratinocytes, and fibroblasts (Ichii et al.
551	2017; Queen et al. 2019). Additionally, autoimmune nephritis models exhibited induction of
552	<i>Illrl2</i> in renal lesions, including TECs of dilated tubules and proliferative cells, and this induction
553	was markedly present in mesangial cells and PECs. In MRL/lpr mice at the late stage, our
554	microarray analysis and IHC for p-NF- κ B showed the upregulation of genes associated with
555	MAPK and NF-κB pathways, which are common to the IL-1 family, including IL-36α (Towne et
556	al. 2004). In IL-36R-expressing cells, these pathways promote inflammatory responses through
557	the production of cytokines and chemokines, including IL-6, IL-8, TNF- α , CXCL1, and CXCL8,
558	suggesting that renal inflammation in MRL/lpr cells was activated by IL-36a (Queen et al. 2019).
559	Reportedly, patients with SLE show high serum levels of IL-36 α , IL-36 γ , and IL-38 and a
560	low level of IL-36Ra, and peripheral blood mononuclear cells are suspected to be their origin
561	(Rudloff et al. 2015; Mai et al. 2018). However, the levels of these proteins have not yet been
562	investigated in MRL/lpr mice. In mice, systemic autoimmune disease is caused by <i>lpr</i> mutation, a
563	defect in the expression of Fas antigen, which is involved in apoptosis of T-cells to eliminate
564	autoreactive cells under normal conditions (Gillette-Ferguson and Sidman 1994). Furthermore,
565	MRL/lpr mice showed increased expression of <i>Il1b</i> and <i>Ifng</i> in spleens and lymph nodes before

566	the onset of autoimmune disease, suggesting that <i>lpr</i> mutation might be associated with the
567	upregulation of cytokines (Lemay et al. 1996). In the kidneys, we considered that the gene
568	mutation might regulate the IL-36 subfamily expression through indirect pathways; the
569	progression of autoimmune disease might induce renal inflammation, leading to overexpression
570	of IL-36 α , which exacerbates the symptoms of nephritis.
571	In conclusion, we demonstrated the functional compartmentalization of the IL-36 subfamily
572	in murine kidneys, and each member exhibited constitutive or induced expression. Although
573	further studies are required to elucidate the functions of each member of this family in the kidneys,
574	our results strongly suggest that a balance of IL-36 agonists and antagonists is maintained under
575	health conditions; however, inflammatory conditions cause an IL-36 α -dominant imbalance,
576	ultimately leading to deterioration and increased renal pathology. Therefore, redressing the
577	balance, particularly IL-36 α inhibition, may play a key role in the development of novel
578	therapeutic strategies targeting kidney disease.

580	Consent to participate
581	Author contributions
582	Ta.N., O.I., Y.O., and Y.K. designed the study; Ta.N., O.I., Te.N., M.A.M., Y.O., M.H., and
583	E.Y.H.A. performed experiments and analyzed the data; Ta.N., O.I., and Y.K. drafted and revised
584	the manuscript. All authors were involved in the writing of the manuscript and approved the final
585	manuscript.
586	
587	Conflict of interest
588	The authors have no conflicts of interest directly relevant to the content of this article.
589	
590	Funding
591	This study was supported in part by JSPS KAKENHI (grant numbers JP20J22559 [Mr. Namba],
592	18H02331 and 19K22352 [Dr. Ichii]).
593	
594	Ethical approval
595	All animal experiments were approved by the Institutional Animal Care and Use Committee of
596	Hokkaido University and the Faculty of Veterinary Medicine, Hokkaido University (approval No.
597	16-0024, 20-0012). Our animal experiments program was approved by the Association for

598 Assessment and Accreditation of Laboratory Animal Care International.

599 **Reference**

- 600 Ahmadizadeh M, Echt R, Chao-Hen K, Hook JB (1984) Sex and strain differences in mouse
- 601 kidney: Bowman's capsule morphology and susceptibility to chloroform. Toxicol Lett
- 602 20:161–171. https://doi.org/10.1016/0378-4274(84)90142-5
- Ahsan F, Maertzdorf J, Guhlich-Bornhof U, Kaufmann SHE, Moura-Alves P (2018) IL-36/LXR
- axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis.
- 605 Sci Rep 8:1520. https://doi.org/10.1038/s41598-018-19476-x
- Almaani S, Meara A, Rovin BH (2017) Update on lupus nephritis. Clin J Am Soc Nephrol
- 607 12:825–835. https://doi.org/10.2215/CJN.05780616
- Bartfai T, Schultzberg M (1993) Cytokines in neuronal cell types. Neurochem Int 22:435–444.
- 609 https://doi.org/10.1016/0197-0186(93)90038-7
- 610 Berger K, Moeller MJ (2014) Mechanisms of epithelial repair and regeneration after acute kidney
- 611 injury. Semin Nephrol 34:394–403. https://doi.org/10.1016/j.semnephrol.2014.06.006
- 612 Blumberg H, Dinh H, Dean C, Trueblood ES, Bailey K, Shows D, Bhagavathula N, Aslam MN,
- 613 Varani J, Towne JE, Sims JE (2010) IL-1RL2 and Its Ligands Contribute to the Cytokine
- 614 Network in Psoriasis. J Immunol 185:4354–4362.
- 615 https://doi.org/10.4049/jimmunol.1000313
- 616 Blumberg H, Dinh H, Trueblood ES, Pretorius J, Kugler D, Weng N, Kanaly ST, Towne JE, Willis
- 617 CR, Kuechle MK, Sims JE, Peschon JJ (2007) Opposing activities of two novel members of
- the IL-1 ligand family regulate skin inflammation. J Exp Med 204:2603–2614.
- 619 https://doi.org/10.1084/jem.20070157
- 620 Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, Morel F, Lecron JC,
- 621 Rolli-Derkinderen M, Bourreille A, Vigne S, Gabay C, Palmer G, Le Goff B, Blanchard F
- 622 (2016) Distinct expression of interleukin (IL)-36 α , β and γ , their antagonist IL-36Ra and

- 623 IL-38 in psoriasis, rheumatoid arthritis and Crohn's disease. Clin Exp Immunol 184:159–
- 624 173. https://doi.org/10.1111/cei.12761
- 625 Chen TK, Knicely DH, Grams ME (2019) Chronic Kidney Disease Diagnosis and Management:
- 626 A Review. JAMA J Am Med Assoc 322:1294–1304.
- 627 https://dx.doi.org/10.1001%2Fjama.2019.14745
- 628 Chi H-H, Hua K-F, Lin Y-C, Chu C-L, Hsieh C-Y, Hsu Y-J, Ka S-M, Tsai Y-L, Liu F-C, Chen A
- 629 (2017) IL-36 Signaling Facilitates Activation of the NLRP3 Inflammasome and
- 630 IL-23/IL-17 Axis in Renal Inflammation and Fibrosis. J Am Soc Nephrol 28:2022–2037.
- 631 https://doi.org/10.1681/ASN.2016080840
- 632 Chu M, Tam LS, Zhu J, Jiao D, Liu DH, Cai Z, Dong J, Kai Lam CW, Wong CK (2017) In vivo
- anti-inflammatory activities of novel cytokine IL-38 in Murphy Roths Large (MRL)/lpr
- 634 mice. Immunobiology 222:483–493. https://doi.org/10.1016/j.imbio.2016.10.012
- 635 Chu M, Wong CK, Cai Z, Dong J, Jiao D, Kam NW, Lam CWK, Tam LS (2015) Elevated
- 636 expression and pro-inflammatory activity of IL-36 in patients with systemic lupus
- 637 erythematosus. Molecules 20:19588–19604. https://doi.org/10.3390/molecules201019588
- 638 Clancy DM, Henry CM, Sullivan GP, Martin SJ (2017) Neutrophil extracellular traps can serve as
- 639 platforms for processing and activation of IL-1 family cytokines. FEBS J 284:1712–1725.
- 640 https://doi.org/10.1111/febs.14075
- 641 Cohen PL, Eisenberg RA (1991) Lpr and gld: Single Gene Models of Systemic Autoimmunity
- and Lymphoproliferative Disease. Annu Rev Immunol 9:243–269.
- 643 https://doi.org/10.1146/annurev.iy.09.040191.001331
- Dang VD, Hilgenberg E, Ries S, Shen P, Fillatreau S (2014) From the regulatory functions of B
- 645 cells to the identification of cytokine-producing plasma cell subsets. Curr Opin Immunol
- 646 28:77–83. https://doi.org/10.1016/j.coi.2014.02.009

- 647 Garlanda C, Dinarello CA, Mantovani A (2013) The Interleukin-1 Family: Back to the Future.
- 648 Immunity 39:1003–1018. https://dx.doi.org/10.1016%2Fj.immuni.2013.11.010
- 649 Gillette-Ferguson I, Sidman CL (1994) A specific intercellular pathway of apoptotic cell death is
- defective in the mature peripheral T cells of autoimmune *lpr* and *gld* mice. Eur J Immunol
- 651 24:1181–1185. https://doi.org/10.1002/eji.1830240526
- 652 Ichii O, Kimura J, Okamura T, Horino T, Nakamura T, Sasaki H, Elewa YHA, Kon Y (2017)
- IL-36α Regulates Tubulointerstitial Inflammation in the Mouse Kidney. Front Immunol
 8:1346. https://doi.org/10.3389/fimmu.2017.01346
- 655 Ichii O, Otsuka S, Sasaki N Yabuki A, Ohta H, Takiguchi M, Hashimoto Y, Endoh D, Kon Y
- (2010) Local overexpression of interleukin-1 family, member 6 relates to the development
- of tubulointerstitial lesions. Lab Investig 90:459–475.
- 658 https://doi.org/10.1038/labinvest.2009.148
- 659 Iwata Y, Furuichi K, Kaneko S, Wada T (2011) The role of cytokine in the lupus nephritis. J

660 Biomed Biotechnol 2011: 594809. https://doi.org/10.1155/2011/594809

- Johnston A, Xing X, Guzman AM, Riblett M, Loyd CM, Ward NL, Wohn C, Prens EP, Wang F,
- Maier LE, Kang S, Voorhees JJ, Elder JT, Gudjonsson JE (2011) IL-1F5, -F6, -F8, and -F9:
- 663 A Novel IL-1 Family Signaling System That Is Active in Psoriasis and Promotes
- Keratinocyte Antimicrobial Peptide Expression. J Immunol 186:2613–2622.
- 665 https://doi.org/10.4049/jimmunol.1003162
- Kuppe C, Leuchtle K, Wagner A, Kabgani N, Saritas T, Puelles VG, Smeets B, Hakroush S, van
- der Vlag J, Boor P, Schiffer M, Gröne HJ, Fogo A, Floege J, Moeller MJ (2019) Novel
- 668 parietal epithelial cell subpopulations contribute to focal segmental glomerulosclerosis and
- glomerular tip lesions. Kidney Int 96:80–93. https://doi.org/10.1016/j.kint.2019.01.037
- 670 Lemay S, Mao C, Singh AK (1996) Cytokine gene expression in the MRL/lpr model of lupus

- 671 nephritis. Kidney Int 50:85–93. https://doi.org/10.1038/ki.1996.290
- 672 Li Q, Liu S, Li L, Ji X, Wang M, Zhou J (2019) Spinal IL-36γ/IL-36R participates in the
- 673 maintenance of chronic inflammatory pain through astroglial JNK pathway. Glia 67:438–
- 674 451. https://doi.org/10.1002/glia.23552
- Mai S Z, Li C J, Xie X Y, Xiong H, Xu M, Zeng F Q, Guo Q, Han Y F (2018) Increased serum
- 676 IL-36 α and IL-36 γ levels in patients with systemic lupus erythematosus: Association with
- disease activity and arthritis. Int Immunopharmacol 58:103–108.
- 678 https://doi.org/10.1016/j.intimp.2018.03.011
- 679 Mantovani A, Dinarello CA, Molgora M, Garlanda C (2019) Interleukin-1 and Related Cytokines
- 680 in the Regulation of Inflammation and Immunity. Immunity 50:778–795.
- 681 https://doi.org/10.1016/j.immuni.2019.03.012
- 682 Milora KA, Fu H, Dubaz O, Jensen LE (2015) Unprocessed interleukin-36α regulates
- 683 psoriasis-like skin inflammation in cooperation with interleukin-1. J Invest Dermatol
- 684 135:2992–3000. https://doi.org/10.1038/jid.2015.289
- 685 Nishikawa H, Taniguchi Y, Matsumoto T, Arima N, Masaki M, Shimamura Y, Inoue K, Horino T,
- 686 Fujimoto S, Ohko K, Komatsu T, Udaka K, Sano S, Terada Y (2018) Knockout of the
- 687 interleukin-36 receptor protects against renal ischemia-reperfusion injury by reduction of
- 688 proinflammatory cytokines. Kidney Int 93:599–614.
- 689 https://doi.org/10.1016/j.kint.2017.09.017
- 690 Park KM, Bowers WJ (2010) Tumor necrosis factor-alpha mediated signaling in neuronal
- homeostasis and dysfunction. Cell. Signal. 22:977–983.
- 692 https://dx.doi.org/10.1016%2Fj.cellsig.2010.01.010
- 693 Queen D, Ediriweera C, Liu L (2019) Function and Regulation of IL-36 Signaling in
- 694 Inflammatory Diseases and Cancer Development. Front Cell Dev Biol 7:317.

695 https://dx.doi.org/10.3389%2Ffcell.2019.00317

696 Ramesh G, Reeves WB (2004) Inflammatory cytokines in acute renal failure. Kidney Int. Suppl.

697 66:S56–S61. https://doi.org/10.1111/j.1523-1755.2004.09109.x

- 698 Rudloff I, Godsell J, Nold-Petry CA, Harris J, Hoi A, Morand EF, Nold MF (2015) Brief Report:
- 699 Interleukin-38 Exerts Antiinflammatory Functions and Is Associated With Disease Activity
- in Systemic Lupus Erythematosus. Arthritis Rheumatol 67:3219–3225.
- 701 https://doi.org/10.1002/art.39328
- 502 Schiller AM, Pellegrino PR, Zucker IH (2017) Eppur Si Muove: The dynamic nature of
- 703 physiological control of renal blood flow by the renal sympathetic nerves. Auton Neurosci
- 704 Basic Clin 204:17–24. https://doi.org/10.1016/j.autneu.2016.08.003
- 705 Schwartzman-Morris J, Putterman C (2012) Gender differences in the pathogenesis and outcome

of lupus and of lupus nephritis. Clin Dev Immunol 2012:604892.

- 707 https://dx.doi.org/10.1155%2F2012%2F604892
- Smeets B, Uhlig S, Fuss A, Mooren F, Wetzels JFM, Floege J, Moeller MJ (2009) Tracing the
- 709 origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol

710 20:2604–2615. https://doi.org/10.1681/ASN.2009010122

711 Southcombe JH, Redman CWG, Sargent IL, Granne I (2015) Interleukin-1 family cytokines and

their regulatory proteins in normal pregnancy and pre-eclampsia. Clin Exp Immunol

- 713 181:480–490. https://doi.org/10.1111/cei.12608
- Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE (2004) Interleukin (IL)-1F6, IL-1F8, and
- 715 IL-1F9 Signal Through IL-1Rrp2 and IL-1RAcP to Activate the Pathway Leading to NF-κB
- 716 and MAPKs. J Biol Chem 279:13677–13688. https://doi.org/10.1074/jbc.M400117200
- 717 Van De Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea MG, Joosten
- 718 LAB, Van Der Meer JWM, Hao R, Kalabokis V, Dinarello CA (2012) IL-38 binds to the

- 719 IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor
- antagonist. Proc Natl Acad Sci USA 109:3001–3005.
- 721 https://doi.org/10.1073/pnas.1121534109
- 722 Webster AC, Nagler E V., Morton RL, Masson P (2017) Chronic Kidney Disease. Lancet
- 723 389:1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5
- 724 Weinstein AM, Giraldo NA, Petitprez F, Julie C, Lacroix L, Peschaud F, Emile JF, Marisa L,
- 725 Fridman WH, Storkus WJ, Sautès-Fridman C (2019) Association of IL-36γ with tertiary
- 126 lymphoid structures and inflammatory immune infiltrates in human colorectal cancer.
- 727 Cancer Immunol Immunother 68:109–120. https://doi.org/10.1007/s00262-018-2259-0
- Xu W D, Su L C, Liu X Y, Wang J M, Yuan Z C, Qin Z, Zhou X P, Huang A F (2020) IL-38: A
- novel cytokine in systemic lupus erythematosus pathogenesis. J Cell Mol Med jcmm. 24:
- 730 12379-12389. https://doi.org/10.1111/jcmm.15737
- 731 Yu C, Gershwin ME, Chang C (2014) Diagnostic criteria for systemic lupus erythematosus: A
- 732 critical review. J Autoimmun 48–49:10–13. https://doi.org/10.1016/j.jaut.2014.01.004
- 733
- 734

Figure Legends

736	Figure 1. mRNA expression of IL-36 subfamily members in the murine kidneys
737	(a-e) Relative mRNA expression of IL-36 subfamily members in the kidneys. The expression
738	levels are normalized to the values of beta-actin (Actb) of female MRL/+ mice at the early stage
739	of autoimmune nephritis. Each bar represents the mean \pm SE (n= 4-11). *: Significant difference
740	in MRL/lpr mice against MRL/+ mice of the same sex at the same stage (*: $P < 0.05$, **: $P < 0.01$).
741	†: Significant difference in female against male mice of the same strain at the same stage (†: $P <$
742	0.05, \dagger ; <i>P</i> <0.01). §: Significant difference at the late stage against the early stage in the same
743	mice strains of the same sex (§: $P < 0.05$, §§: $P < 0.01$). Mann-Whitney U-test. F: Female. M:
744	Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage of autoimmune
745	nephritis (6-7 months). Quantitative PCR analysis.
746	
747	Figure 2. IL-36 α localization in the renal tubules of the murine kidneys
748	(a-b''') Immunohistochemistry (IHC) images for IL-36 α . IL-36 α^+ renal tubules (arrowheads) are
749	observed in all groups at the early stage of autoimmune nephritis, and those numbers tends to
750	increase in both sexes of MRL/lpr mice as they age. Meanwhile, IL-36 α^+ renal corpuscles
751	(arrows) are frequently found in male MRL/lpr mice at the late stage. Bars= $100 \ \mu m$.

752 (c and c') Representative IHC images for IL-36α in male MRL/lpr mice at the early and late stages.

T53 IL-36 α^+ reactions (arrowheads) are observed in the cytoplasm and nucleus of tubular epithelial cells, including a segment of macula densa (MD) and dilated tubules with urinary cast. Bars= 50 μm.

(d) The number of IL-36 α^+ renal tubules. Each bar represents the mean \pm SE (n= 4-9). *: Significant difference in MRL/lpr against MRL/+ mice of the same sex at the same stage (*: *P* < 0.05). †: Significant difference in female against male mice of the same strain at the same stage (†: *P* < 0.05). §: Significant difference at the late stage against the early stage in the same mouse strains of the same sex (§: *P* < 0.05, §§: *P* < 0.01). Mann-Whitney *U*-test.

761 (e-f") Representative double immunofluorescence images for IL-36 α (green) with 762 calbindin-D28k (red, distal tubule marker) or HNF-4 α (red, proximal tubule marker) in male 763 MRL/lpr mice at the late stage. IL-36 α^+ cells are mainly observed in calbindin-D28k⁺ distal 764 tubules (panel e-e"), while the number of these cells in HNF-4 α^+ proximal tubules is quite few 765 (panel f-f"). Arrowheads indicate IL-36 α^+ , calbindin-D28k⁺, or HNF-4 α^+ cells. The nucleus is 766 stained by Hoechst (blue). Insets indicate high magnification images of areas marked by the white 767 squares. Bars= 50 µm.

- F: Female. M: Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage of
- autoimmune nephritis (6-7 months).

771 Figure 3. IL-36α localization in parietal epithelial cells of the murine kidneys

- 772 (a and a) Representative immunohistochemistry images for IL-36α in female and male MRL/lpr
- mice at the late stage of autoimmune nephritis. IL- $36\alpha^+$ reactions (arrowheads) are observed in
- the cytoplasm and nucleus of cuboidal parietal epithelial cells (PECs). Bars= $50 \mu m$.
- (b) Percentage of the number of IL-36 α^+ renal corpuscles (RCs) to that of total RCs. Each bar
- represents the mean \pm SE (n= 4-9). *: Significant difference in MRL/lpr against MRL/+ mice of
- the same sex at the same stage (**: P < 0.01). †: Significant difference in female against male mice
- of the same strain at the same stage (\dagger : P < 0.05, \dagger \dagger : P < 0.01). §: Significant difference at the late
- stage against the early stage in the same mouse strains of the same sex (§§: P < 0.01).
- 780 Mann-Whitney *U*-test. ND: Not detected.
- 781 (c-c") Representative double immunofluorescence images for IL-36α (green) and CD44 (red) in
- male MRL/lpr mice at the late stage. IL-36α is frequently co-expressed in CD44⁺ PECs
- 783 (arrowheads). Arrows indicate infiltrated CD44⁺ cells. The nucleus is stained by Hoechst (blue).
- Inset indicates high magnification image of area marked by the white square. Bars= $50 \mu m$.
- (d) Percentage of IL-36 α^+ PECs in CD44 positive and negative PECs in male MRL/lpr mice at the
- 186 late stage. Each bars represent the mean \pm SE (n= 5). *: Significant difference in CD44⁺ PECs
- against CD44⁻ PECs (Mann-Whitney *U*-test, ** P < 0.01).
- F: Female. M: Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage

autoimmune nephritis (6-7 months).

790

791 **Figure 4. Localization of IL-36β and IL-36γ in murine kidneys**

(a) Representative immunohistochemistry (IHC) image for IL-36 β in female MRL/lpr mice at the

- 1793 late stage of autoimmune nephritis. IL-36 β^+ reactions (arrowheads) are rarely observed in the
- 794 cytoplasm of interstitial cells. Bars= $50 \mu m$.
- 795 (b-b") Representative double immunofluorescence (IF) images for IL-36β (green) and CD138
- (red, plasma cell marker) in female MRL/lpr mice at the late stage. IL-36 β is expressed in CD138⁺
- 797 plasma cells (arrowheads). Arrows indicate IL-36 β ⁻ CD138⁺ cells. The nucleus is stained by
- Hoechst (blue). Inset indicates high magnification image of the area marked by the white square.

799 Bars= 50 μ m.

- 800 (c) Representative IHC image for IL-36 γ in male MRL/lpr mice at the late stage. IL-36 γ^+
- 801 reactions (arrowheads) are found mainly in the interstitium surrounding the vessels or renal
- 802 corpuscles. Bars= $50 \mu m$.

(d-d") Representative double IF images for IL-36γ (green) and tyrosine hydroxylase (red, sympathetic nerve marker) in male MRL/+ mice at the late stage. Tyrosine hydroxylase⁺ sympathetic axons exhibit IL-36γ positive and negative reactions (arrowheads and arrows, respectively). The nucleus is stained by Hoechst (blue). Inset indicates high magnification image

807 of the area marked by the white square. Bars= $50 \mu m$.

808 F: Female. M: Male. Late: Late stage autoimmune nephritis (6-7 months).

809

810 Figure 5. Localization of IL-36Ra in the murine kidneys

(a) Representative immunohistochemistry (IHC) image for IL-36Ra in male MRL/lpr mice at the 811 812 late stage of autoimmune nephritis. IL-36Ra⁺ reactions (arrowheads) are observed in the tunica 813 media of arteries. IA: Interlobar artery. AA: Arcuate artery. L: Lumen of renal pelvis. Bars= 100 814 μm.

815 (b-b") Representative double immunofluorescence (IF) images for IL-36Ra (green) with 816 alpha-smooth muscle actin (α-SMA; red, smooth muscle cell marker) in male MRL/lpr mice at 817 the late stage. IL-36Ra⁺ reactions are observed in the cytoplasm of smooth muscle cells of arteries 818 and arterioles. Arrowheads indicate IL-36Ra⁺ or α-SMA⁺ cells. The nucleus is stained by Hoechst 819 (blue). Dotted lines represent renal corpuscles. Inset indicates high magnification image of the 820 area marked by the white square. InA: Intralobular artery. GA: Glomerular arteriole. Bars= 50 821 μm. 822 (c-e) Representative IHC images for IL-36Ra in male MRL/lpr mice at the late stage. The

- 823 IL-36Ra⁺ reaction in smooth muscle cells with vasculitis (asterisk) is partially defective (panel c).
- 824 IL-36Ra⁺ reactions are observed in parietal and tubular epithelial cells (panel d and e,

respectively). Arrowheads indicate IL-36Ra⁺ reactions. Insets indicate high magnification images

- s26 of the areas marked by the black squares. IA: Interlobar artery. Bars= $50 \mu m$.
- 827 (f-f") Representative double IF images for IL-36Ra (green) and calbindin-D28k (red, distal tubule
- 828 marker) in male MRL/lpr mice at the late stage. The granular IL-36Ra⁺ reactions are expressed in 829 the apical portion of distal tubular epithelial cells. Arrowheads indicate IL-36Ra⁺ or 830 calbindin-D28k⁺ cells. The nucleus is stained by Hoechst (blue). Insets indicate high
- magnification images of areas marked by the black squares. Bars= $50 \mu m$.
- (g and g') Representative serial sections followed by IHC for IL-36Ra and HNF-4 α (proximal)
- tubule marker) in male MRL/lpr mice at the late stage. The IL-36Ra⁺ reaction is not observed in
- 834 HNF-4 α^+ proximal tubules. Asterisks indicate IL-36Ra⁺ HNF-4 α^- tubules. Bars= 50 μ m.
- ⁸³⁵ (h and h) Representative serial sections followed by IHC for IL-36Ra and IL-36α in female
- 836 MRL/lpr mice at the late stage. A portion of the tubular epithelial cells co-express IL-36Ra and
- 837 IL-36α (arrowheads). Asterisks indicate the same tubules. Insets indicate high magnification
- images of the areas marked by the black squares. Bars= $50 \mu m$.
- F: Female. M: Male. Late: Late stage autoimmune nephritis (6-7 months).

840

841 Figure 6. Localization of IL-38 in the murine kidneys

842 (a-b") Immunohistochemistry (IHC) images for IL-38. IL-38⁺ cells are found in the

tubulointerstitium of all groups, and that number is abundant in both sexes of MRL/lpr mice at

- late stage of autoimmune nephritis compared to those observed in the others. Bars= $50 \mu m$.
- 845 (c and c) Representative serial sections followed by IHC for IL-38 and CD138 (plasma cell
- 846 marker) in male MRL/lpr mice at the late stage. IL-38 is expressed in CD138⁺ plasma cells
- 847 (arrowheads). Bars= $50 \mu m$.
- (d) The number of IL-38⁺ cells in the tubulointerstitium. Each bar represents the mean \pm SE (n=
- 4-9). §: Significant difference at the late stage against the early stage in the same mouse strains of
- same sex (§: P < 0.05). Mann-Whitney U-test.
- 851 (e and e') Representative serial sections followed by IHC for IL-38 and IL-36α in female MRL/lpr
- mice at the late stage. IL-38⁺ cells (arrowheads) are not surrounding IL-36 α^+ renal tubules
- 853 (asterisks). Bars= $50 \mu m$.
- F: Female. M: Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage
- autoimmune nephritis (6-7 months).
- 856
- Figure 7. *Illrl2* localization and upregulated downstream-genes involved in IL-1 family
 signaling in murine kidneys
- 859 (a-b") Representative *in situ* hybridization (ISH) images for *ll1rl2* in male MRL/+ and MRL/lpr
- 860 mice at the late stage of autoimmune nephritis. $Il1rl2^+$ reactions (arrowheads) are observed in

861 glomeruli, tubulointerstitium, and vasculature from cortex to medulla in both strains, and this 862 expression is induced in glomerular and tubulointerstitial lesions of MRL/lpr mice. Dotted lines indicate renal corpuscles (RCs). Insets indicate high magnification images of the areas marked by 863 864 the black squares. Ti: Tubulointerstitium. L: Lumen of renal pelvis. Bars= 50 µm. 865 (c and c') Representative ISH for *Il1rl2* images followed by periodic acid Schiff-hematoxylin 866 (PAS-H) staining in female MRL/lpr mice at the late stage. Illrl2⁺ reaction (arrowheads) is observed in PAS⁻ distal tubules (DTs) and not in PAS⁺ proximal tubules (PTs). The positive cells 867 are in close proximity to the vascular pole in MRL/lpr mice at the late stage. Insets indicate high 868 869 magnification images of the areas marked by the black squares. MD: Macula densa. Bars= $50 \mu m$. 870 (d) mRNA expression of *ll1rl2* coding IL-36R in kidneys. The expression levels are normalized 871 to the values of beta-actin (Actb), and those of female MRL/+ mice at the early stage. Each bar 872 represents the mean \pm SE (n= 4-11).

873 (e and f) Gene ontology (GO) analysis for positive regulation of mitogen-activated protease 874 (MAPK) activity (GO: 0043406; panel e) and of nuclear factor kappa B (NF- κ B) transcription 875 factor activity (GO: 0051092; panel f) in the kidneys of female MRL/lpr mice at the late stage 876 compared to those values in female MRL/+ mice at the same stage. MRL/lpr mice possess 25 877 genes associated with positive regulation of MAPK activity (panel e) and 11 genes associated 878 NF- κ B transcription factor activity (panel f) that are upregulated more than 2-fold compared to

those of MRL/+ mice. Each value represents the relative mRNA level of MRL/lpr mice against

- 880 MRL/+ mice (n =3). *: Significant difference in female MRL/lpr mice at the late stage against the
- same sexes of MRL/+ mice at the same stage (Student t-test, * P < 0.05, ** P < 0.01). Min:
- 882 Minimum expression of mRNA in the list. Max: Maximum expression of mRNA in the list.
- F: Female. M: Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage
- autoimmune nephritis (6-7 months).
- 885

Table 1. Indices of autoimmune disease, renal functions, and renal histopathology

		Early				Late					
		Female		N	fale	F	emale	Male			
Index		MRL/+	MRL/+ MRL/lpr MRL/+ MRL/lpr MRL/+		MRL/+	MRL/lpr	MRL/+	MRL/lpr			
Autoimmune	S/B ratio (%)	$0.26 \pm 0.01^{b^{\ast}}$	$0.69 \pm 0.07^{a^*}$	0.20 ± 0.01	$0.59 \pm 0.08^{a^*}$	0.25 ± 0.02	$2.29 \pm 0.53^{a^{**},c^{**}}$	0.22 ± 0.01	$1.54 \pm 0.23^{a^{**},c^{*}}$		
disease	dsDNA (U/mL)	7.56 ± 0.94	$406.31 \pm 74.99^{a^*}$	3.77 ± 1.58	$201.71 \pm 39.23^{a^*}$	8.70 ± 3.95	$807.90 \pm 88.02^{a^*}$	11.46 ± 3.67	$632.48 \pm 95.29^{a^{**},c^{**}}$		
	BUN (mg/dL)	20.83 ± 2.14	28.23 ± 5.42	28.28 ± 1.77	31.93 ± 4.97	26.60 ± 2.08	$52.63 \pm 3.33^{a^*}$	21.13 ± 1.64	$36.81 \pm 4.53^{a^*}$		
Renal function	Cr (mg/dL)	0.38 ± 0.06	0.28 ± 0.03	0.34 ± 0.10 0.32 ± 0.04		0.29 ± 0.06	0.51 ± 0.15	0.70 ± 0.39	1.13 ±0.80		
	uACR (µg/mg)		Ν	Æ		$29.40 \pm 10.43^{\$}$	345.021 ± 133.42	42.03 ± 9.94	463.14 ± 118.14		
	Glo. Nucleus (No.)	41.95 ± 0.41	$45.4 \pm 0.20^{a^{*}\!,b^{*}}$	42.33 ± 1.11	$47.63 \pm 0.54^{a^{\ast}}$	$45.65 \pm 0.96^{\$}$	$78.64 \pm 5.59^{a^{**},c^{**}}$	43.08 ± 0.37	$62.74 \pm 5.13^{a^{**},c^*}$		
	Glo. Size (×10 ³ µm ²)	$2.18\pm0.03^{b^\ast}$	$2.24\pm0.07^{b^\ast}$	2.54 ± 0.05	$2.82 \pm 0.10^{a^*}$	$2.94\pm0.19^{\dagger\$}$	$5.54 \pm 0.63^{a^{**},c^{**}}$	2.58 ± 0.03	$4.51 \pm 0.42^{a^{**},c^{*}}$		
	Mesangial area (%)	34.89 ± 1.07	$40.10 \pm 0.79^{a^{\ast}}$	36.23 ± 0.95	$38.61 \pm 0.74^{a^{\ast}}$	$37.33 \pm 1.40^{\$}$	$47.08 \pm 2.17^{a^{*}\!,b^{*}\!,c^{*}}$	34.32 ± 0.88	$46.10 \pm 1.92^{a^{**}}$		
	Glo. B220 (No./Glo.)	0.03 ± 0.02	0.03 ± 0.03	0.03 ± 0.02	0.08 ± 0.02	0.03 ± 0.02	$1.46\pm 0.43^{a^{**},c^{**}}$	0.08 ± 0.03	$0.90 \pm 0.17^{a^{**},c^{**}}$		
Danal	Glo. CD3 (No./Glo.)	0.11 ± 0.03	0.18 ± 0.06	0.10 ± 0.04	0.17 ± 0.04	0.11 ± 0.03	$1.95\pm0.38^{a^{**},c^{**}}$	0.13 ± 0.02	$1.21\pm 0.23^{a^{**},c^{**}}$		
Kenai historethelegy	Glo. Iba-1 (No./Glo.)	0.01 ± 0.01	0.02 ± 0.01	0.01 ± 0.01	0.12 ± 0.06	0.17 ± 0.13	$1.65 \pm 0.18^{a^{*}\!,c^{**}}$	0.03 ± 0.02	$0.74 \pm 0.10^{a^{**},c^{**}}$		
instopathology	Glo. Gr-1 (No./Glo.)	0.11 ± 0.02	0.12 ± 0.04	0.09 ± 0.05 0.21 ± 0.08		$0.28\pm0.13^{\dagger}$	$0.81 \pm 0.10^{a^*,c^{**}}$ 0.13 ± 0.03		$1.03 \pm 0.31^{a^{**},c^*}$		
	Ti. B220 (No./mm ²)	5.42 ± 2.19	10.38 ± 2.78	7.08 ± 2.20	13.92 ± 2.99	10.38 ± 3.49	$52.70 \pm 11.04^{a^{*}\!,c^{**}}$	14.15 ± 1.76	$45.60 \pm 4.05^{a^{**},c^{**}}$		
	Ti. CD3 (No./mm ²)	13.21 ±1.72	$93.16 \pm 1.56^{a^{\ast}}$	23.35 ± 4.08	$86.79 \pm 3.11^{a^*}$	24.76 ± 10.29	$24.76 \pm 10.29 \qquad 296.43 \pm 32.25^{a^{**},c^{**}}$		196.22 ±27.35 ^{a**,c**}		
	Ti. Iba-1 (No./mm ²)	3.99 ± 1.42	$26.52 \pm 6.42^{a^*}$	17.34 ± 14.16	38.28 ± 10.67	$127.12 \pm 21.46^{\$}$	$386.15 \pm 50.66^{a^{**},c^{**}}$	$159.20 \pm 11.71^{c^*}$	$289.18 \pm 21.88^{a^{**,c^{**}}}$		
	Ti. Gr-1 (No./mm ²)	2.83 ± 1.02	7.55 ± 1.85	3.77 ± 0.39	$9.43 \pm 1.02^{a^*}$	$13.21 \pm 4.92^{\$}$	$2\overline{3.46 \pm 2.58^{a^{*},c^{*}}}$	$14.39 \pm 1.05^{c^*}$	20.21 ± 2.33 ^{a*,c**}		

2 Each value represents the mean \pm SE (n = 4–9, except for Cr; n = 3–8). Mann–Whitney U test

3 S/B ratio weight ratio of spleen to body, dsDNA serum anti-double-stranded DNA antibody level, BUN blood urea nitrogen, Cr serum creatinine level, uACR urinary

4 albumin-to-creatinine ratio, *Glo* glomerulus, *Ti* tubulointerstitium, *No* number, *NE* not examined, *Early* early stage autoimmune nephritis (3 months), *Late* late stage autoimmune

5 nephritis (6–7 months)

- ⁶ ^aSignificant difference in MRL/lpr against MRL/ + mice of the same sex at the same stage (*P < 0.05, **P < 0.01)
- ⁷ ^bSignificant difference in female versus male mice of the same strain at the same stage (*P < 0.05, **P < 0.01)
- 8 °Significant difference at the late stage against the early stage in the same mouse strains of the same sex (*P < 0.05, **P < 0.01)

		IL36α ⁺ tubules			IL36α ⁺ PECs				Ti. IL-38 ⁺ cells				
		Fer	nale	Μ	ale	Fer	nale	М	ale	Fei	nale	М	ale
In	ndex	ρ	Р	ρ	Р	ρ	Р	ρ	Р	ρ	Р	ρ	Р
Autoimmune	S/B ratio	0.500	0.117	0.681*	0.010	0.121	0.722	0.736**	< 0.010	0.401	0.222	0.391	0.187
disease	dsDNA	0.782^{**}	< 0.010	0.698**	< 0.010	0.528	0.117	0.714^{**}	< 0.010	0.646^{*}	0.044	0.624^{*}	0.023
	BUN	0.636*	0.035	0.413	0.161	0.674^{*}	0.023	0.487	0.091	0.668^{*}	0.025	0.157	0.608
Renal function	Cr	0.517	0.126	-0.191	0.573	0.429	0.215	0.036	0.915	0.633*	0.050	-0.014	0.968
	uACR	0.943**	< 0.010	0.967**	< 0.010	0.845*	0.034	0.800^*	0.010	0.671^{*}	0.034	0.680^*	0.011
	Glo. Nucleus	0.927**	< 0.010	0.791**	< 0.010	0.674^{*}	0.023	0.923**	< 0.010	0.691*	0.018	0.737**	< 0.010
	Glo. Size	0.918**	< 0.010	0.819**	< 0.010	0.674^{*}	0.023	0.918**	< 0.010	0.807**	< 0.010	0.770^{**}	< 0.010
	Mesangial area	0.818^{**}	< 0.010	0.791**	< 0.010	0.661*	0.027	0.709^{**}	< 0.010	0.673*	0.023	0.704**	< 0.010
	Glo. B220 ⁺ cells	0.615*	0.044	0.736**	< 0.010	0.122	0.720	0.711^{**}	< 0.010	0.474	0.140	0.415	0.158
	Glo. CD3 ⁺ cells	0.659*	0.027	0.797**	< 0.010	0.231	0.495	0.758^{**}	< 0.010	0.480	0.135	0.523	0.067
	Glo. Iba-1 ⁺ cells	0.548	0.081	0.865**	< 0.010	0.190	0.577	0.901**	< 0.010	0.375	0.256	0.728**	< 0.010
Renal	Glo. Gr-1 ⁺ cells	0.888^{**}	< 0.010	0.802^{**}	< 0.010	0.676^{*}	0.022	0.906**	< 0.010	0.624^{*}	0.040	0.632*	0.021
histopathology	Ti. B220 ⁺ cells	0.718^*	0.013	0.652^{*}	0.016	0.283	0.399	0.465	0.109	0.636*	0.035	0.277	0.360
	Ti. CD3+ cells	0.918**	< 0.010	0.857^{**}	< 0.010	0.674^{*}	0.023	0.758^{**}	< 0.010	0.880^{**}	< 0.010	0.597^{*}	0.031
	Ti. Iba-1 ⁺ cells	0.900^{**}	< 0.010	0.808^{**}	< 0.010	0.674^{*}	0.023	0.648^{*}	0.017	0.737**	0.010	0.370	0.208
	Ti. Gr-1 ⁺ cells	0.679^{*}	0.022	0.731**	< 0.010	0.392	0.233	0.736**	< 0.010	0.610^{*}	0.046	0.404	0.171
	IL-36α ⁺ tubules	-	-	-	-	0.674^{*}	0.023	0.885^{**}	< 0.010	0.820^{**}	< 0.010	0.737**	< 0.010
	IL-36a ⁺ PECs	0.674^{*}	0.023	0.885**	< 0.010	-	-	-	-	0.547	0.082	0.779**	< 0.010
	Ti. IL-38 ⁺ cells	0.820^{**}	< 0.010	0.737**	< 0.010	0.547	0.082	0.779^{**}	< 0.010	-	-	-	-

Table 2. Correlation analysis between parameters of IL-36a and IL-38 and indices for autoimmune nephritis in MRL/lpr

1

2 ρ : Spearman's correlation coefficient (n= 6-13, * P < 0.05, ** P < 0.01). S/B ratio: Weight ratio of spleen to body. dsDNA: Serum anti-double-stranded DNA antibody level.

3 BUN: Blood urea nitrogen Cr: Serum creatinine level uACR: Urinary albumin to creatinine ratio. Glo: Glomerulus. Ti: Tubulointerstitium PECs: Parietal epithelial cells.

Table 3. Localization of IL-36 subfamil	v members in murine kidnevs
Tuble of Boculization of HB co bubitanin	y memorie maneys

	IL-36a	IL-36β	IL-36γ	IL-36Ra	IL-38
TEC	Ι	-	-	Ι	-
PEC	Ι	-	-	Ι	-
Plasma cell	-	Ι	-	-	Ι
Sympathetic axon	-	-	С	-	-
Smooth muscle cell	-	-	-	С	-

2 I: Inducible expression in autoimmune nephritis. C: Constitutive expression. TEC: Tubular epithelial cell. PEC: Parietal epithelial cell.

Supplemental table 1. Antibodies used in this study

Antibody		Host Dil	Dilution	Courses	Antigon notrioyol	Blocking serum	
	Anubody	Antibody Host Dilution Source		Anugen reuteval	IHC	IF	
	anti-B220	Rat	1:1600	Cedarlane, Burlington, Canada	Tris 110°C 15min	10% NGS	
	anti-CD3	Rabbit	1:200	Nichirei, Tokyo, Japan	Tris 110°C 15min	10% NGS	
	anti-Iba-1	Rabbit	1:1200	Wako, Tokyo, Japan	Tris 110°C 15min	10% NGS	
	anti-Gr-1	Rat	1:800	R and D system, Minneapolis, MN, USA	Pepsin 37°C 5min	10% NGS	
Primary antibody	anti-CD138	Rat	1:300	Biolegend, San Diego, CA, USA	Tris 110°C 15min	10% NGS	5% NDS
	anti-CD44	Rat	1:800	BD Biosciences, Franklin Lakes, NJ, USA	Tris 110°C 15min		5% NDS
	anti-α-SMA	Rabbit	1:3000	Abcam, Cambridge, UK	Tris 110°C 15min		5% NDS
	anti-Tyrosine hydroxylase	Rabbit	1:1000	Abcam, Cambridge, UK	Tris 110°C 15min		5% NDS
	anti-Calbindin-D28k	Rabbit	1:1000	Proteintech, Rosemont, IL, USA	Tris 110°C 15min		5% NDS
	anti-HNF-4α	Rabbit	1:1000	Cell signaling, Danvers, MA, USA	Tris 110°C 15min		5% NDS
	anti-IL-36a	Goat	1:400	R and D system, Minneapolis, MN, USA	CB 110°C 15min	5% NDS	5% NDS
	anti-IL-36β	Goat	1:2000	R and D system, Minneapolis, MN, USA	Tris 110°C 15min	5% NDS	5% NDS
	anti-IL-36γ	Mouse	1:1600	Abcam, Cambridge, UK	Tris 110°C 15min	Mouse stain Kit	5% NDS
	anti-IL-36Ra	Rat	1:200	R and D system, Minneapolis, MN, USA	Pepsin 37°C 5min	10% NGS	5% NDS
	anti-IL-38	Rat	1:1500	R and D system, Minneapolis, MN, USA	Pepsin 37°C 5min	10% NGS	5% NDS
	Rat IgG-biotin	Goat	1:400	Biolegend, San Diego, CA, USA			
	Rabbit IgG-biotin	Goat	Undiluted	SABPO(R)Kit, Nichirei, Tokyo, Japan			
	Goat IgG-biotin	Donkey	1:200	Santa Cruz Biotechnology, Santa Cruz, CA, USA	Biotechnology, Santa Cruz, CA, USA		
Secondary	Mouse IgG-biotin	Goat	Undiluted	Mouse stain Kit, Nichirei, Tokyo, Japan			
antibody	Rabbit IgG-Alexa Fluor 488/546	Donkey	1:500	Thermo Fisher Scientific, Waltham, MA, USA			
	Rat IgG-Alexa Fluor 488/546	Donkey	1:500	Thermo Fisher Scientific, Waltham, MA, USA			
	Goat IgG-Alexa Fluor 488/546	Donkey	1:500	Thermo Fisher Scientific, Waltham, MA, USA			
	Mouse IgG-Alexa Fluor 488	Donkey	1:500	Thermo Fisher Scientific, Waltham, MA, USA			

Tris: 20mM Tris-HCl buffer (pH9.0). CB: 10mM citrate buffer (pH6.0). Pepsin: 0.1% pepsin. NDS: Normal donkey serum NGS: Normal goat serum α -SMA: Alpha-smooth muscle actin. IgG: Immunoglobulin G.

Gene symbol	Primer sequence (5'-3')	Product size		
(Accession)	F: Forward, R: Reverse	(bp)		
Actb	F: TGTTACCAACTGGGACGACA	165		
(NM_007393)	R: GGGGTGTTGAAGGTCTCAAA	105		
111f6	F: TCCTGCAGAACAATATCCTCAC	104		
(NM_019450.3)	R: GTTCGTCTCAAGAGTGTCCAGA	104		
<i>Il1f</i> 8	F: GTTCCTGCTAGCAACAATGTCA	142		
(NM_027163.4)	R: CCATCTCAACACAGCAGAAGC	142		
Il1f9	F: CCAGTCAGCGTGACTATCCTC	193		
(NM_153511.3)	R: ATGGCTTCATTGGCTCAGG	193		
Il1f5	F: GAAGGATTCAGCCTTGAAGGTA	110		
(NM_001146087.1)	R: CCGATTTGGGACAACACTG	112		
Il1f10	F: TGGGAGACCCTGATTCAGACA	122		
(NM_153077)	R: TCTTTACACACGCCAGGCAG	132		
Il1rl2	F: AGACACCTTAGAGTTCACCAGGAC	162		
(NM_133193.3)	R: CCATGGAAGAGTCACACCAG	163		
Illa	AGATGACCTGCAGTCCATAACC	101		
(NM_010554.4)	GACAAACTTCTGCCTGACGAG	121		
Il1b	TTCCAGGATGAGGACATGAGC			
(NM_008361.4)	AATGGGAACGTCACACACCAG	111		
Il1rn	TTGTGCCAAGTCTGGAGATG	111		
(NM_031167.5)	TTCTCAGAGCGGATGAAGGTA	111		
1118	AGTAAGAGGACTGGCTGTGACC	174		
(NM_009360.2)	AACTCCATCTTGTTGTGTCCTG	1/4		
1133	GCTGATGGTGAACATGAGTCC	188		
(NIM 0.011(4724.2))	CTCCTATGTAACTGCCAGGAAG			

Supplemental table 2. Primers used in this study

M

F

Late

Μ

□ MRL/+ ■ MRL/lpr

CD44-

IL-36Ra

GA

InA

α-SMA

Merge

IL-36Ra

InA

MLR/lpr, M, Late

b

MRL/lpr, M, Late

IL-36Ra

IL-36Ra

Calbindin-D28k

Merge

MLR/lpr, M, Late

IL-36Ra

HNF4α

IL-36Ra

IL-36α

MLR/lpr, F, Late

Supplemental Figure 1. Immunostaining for IL-36 subfamily members and *in situ* hybridization for positive control in the murine kidneys

(a-e) Representative immunostaining images for IL-36 α , IL-36 β , IL-36 γ , IL-36Ra, and IL-38 in male and female MRL/lpr mice at the late stage of autoimmune nephritis. Insets indicate immunostaining using normal immunoglobulin G as a control corresponding to each primary antibody (Con. IgG). Arrowheads represent immuno-positive reactions. The yellow dotted line indicates the renal tubule. The white dotted line indicates the renal corpuscle. Bars= 50 mm. (f) Representative *in situ* hybridization (ISH) images for the positive control (*Polr2a*) in female MRL/lpr mice at the late stage. The inset indicates the images of the ISH image for the negative control (*DapB*). Bars= 50 μ m. F: Female. M: Male. Late: Late stage autoimmune nephritis (6-7 months).

Supplemental Figure 2. Histopathology of glomeruli in the murine kidneys

(a-b''') Periodic acid Schiff hematoxylin (PAS-H) staining images for all groups. Glomerular hypercellularity and hypertrophy and mesangial matrix expansion are clearly observed in both sexes of MRL/lpr mice at the late stage of autoimmune nephritis. Bars= 50 µm. F: Female. M: Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage autoimmune nephritis (6-7 months).

Supplemental Figure 3. Infiltration of B-cells and T-cells in the murine kidneys (a-d''') Immunohistochemistry images for B220 (B-cell marker, panel a-b''') and CD3 (T-cell marker, panel c-d'''), respectively. Both B220⁺ B cells and CD3⁺ T-cells were abundant in the glomeruli and tubulointerstitium of both sexes of MRL/lpr mice at the late stage of autoimmune nephritis. Arrowheads indicate immune-positive cells. Insets indicate high magnification images of the areas marked by the black squares. Bars= 50 µm. F: Female. M: Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage autoimmune nephritis (6-7 months).

Supplemental Figure 4. Infiltration of macrophages and neutrophils in the murine kidneys (a-d''') Immunohistochemistry images for Iba-1 (macrophage marker, panel a-b''') and Gr-1 (neutrophil marker, panel c-d'''), respectively, for all groups. Iba-1⁺ macrophages and Gr-1⁺ neutrophils are abundant in the glomeruli and tubulointerstitium of both sexes of MRL/lpr mice at the late stage of autoimmune nephritis. Arrowheads indicate immune-positive cells. Insets indicate high magnification images of the areas marked by the black squares. Bars= 50 μ m. F: Female. M: Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage autoimmune nephritis (6-7 months).

	Early				Late				
	F		М		F		М		
	MRL/+	MRL/lpr	MRL/+	MRL/lpr	MRL/+	MRL/lpr	MRL/+	MRL/lpr	
ll1a	1.431	0.742	0.923	0.728	0.840	0.760	0.591	0.677	
ll1b	1.037†	1.554	0.619	0.922	0.932 [†]	2.282*	0.511	1.098*	
ll1rn	1.217	1.079	0.778	1.966	1.112	11.323 ^{** §}	0.682	5.569 [*]	
<i>ll1</i> 8	1.124	1.414	1.178	0.870	0.905	1.758	1.203	1.382	
1133	1.099	0.948	0.550	0.782	1.139 [†]	1.842	0.624	0.537	

Max

Min

Supplemental Figure 5. mRNA expression of IL-1 family members in the murine kidneys Relative mRNA expression levels of *Il1a*, *Il1b*, *Il1rn*, *Il18*, and *Il33* in the kidneys. The expression levels were normalized to the values of beta-actin (*Actb*) of female MRL/+ mice at the early stage of autoimmune nephritis. Each value represents the mean (n= 4-11). *: Significant difference in MRL/lpr mice against MRL/+ mice of the same sex at the same stage (*: P < 0.05, **: P < 0.01). † Significant difference in female versus male mice of the same strain at the same stage (†: P < 0.05). #: Significant difference at the late stage against the early stage in the same mouse strains of the same sex (#: P < 0.05). Mann-Whitney *U*-test. F: Female. M: Male. Early: Early stage of autoimmune nephritis (3 months). Late: Late stage autoimmune nephritis (6-7 months).

Supplemental Figure 6. Localization of IL-36 α , IL-36 γ , and IL-36Ra in other strains or other tissues (a) Immunohistochemistry (IHC) image of IL-36 α in the kidneys of male BXSB/MpJ-*Yaa* (BXSB/Yaa) mice at the late stage of autoimmune nephritis. The IL-36 α ⁺ reaction (arrowhead) is observed in male BXSB/Yaa mice at the late stage of autoimmune nephritis. Bars= 50 µm. (b) IHC image of IL-36 γ in the jejunum of male MRL/+ mice at the late stage. The IL-36 γ ⁺ reactions (arrowheads) are observed in the myenteric nerve plexus. Bars= 50 µm. (c) IHC image of IL-36Ra in the lungs of male MRL/+ mice at the late stage. The IL-36Ra⁺ reactions (arrowheads) are observed in the smooth muscle layers of arteries and bronchioles. Insets indicate high magnification images of the areas marked by the black squares. Insets indicate high magnification images of the areas marked by the black squares. Late: Late stage of autoimmune nephritis (6-7 months).

Supplemental Figure 7. Localization of phosphorylated nuclear factor kappa B (p-NF- κ B) in the murine kidneys

(a-a''') Representative immunohistochemistry (IHC) images for p-NF- κ B. p-NF- κ B⁺ nuclei (arrowheads) are observed in renal tubular and parietal epithelial cells, and infiltrated cells of all groups at the late stage of autoimmune nephritis, and that number is abundant in both sexes of MRL/lpr mice compared to MRL/+. Insets indicate high magnification images of the areas marked by the black squares. Bars= 50 µm. F: Female. M: Male. Late: Late stage of autoimmune nephritis (6-7 months).