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Abstract

Breast cancer is one of the most common malignancies in females. It is an etiologically complex disease driven by a multitude
of cellular pathways. The proliferation and spread of breast cancer is intimately linked to cellular glucose metabolism, given
that glucose is an essential cellular metabolic substrate and that insulin signalling has mitogenic effects. Growing interest has
focused on anti-diabetic agents in the management of breast cancer. Epidemiologic studies show that metformin reduces
cancer incidence and mortality among type 2 diabetic patients. Preclinical in vitro and in vivo research provides intriguing
insight into the cellular mechanisms behind the oncostatic effects of metformin. This article aims to provide an overview of
the mechanisms in which metformin may elicit its anti-cancerous effects and discuss its potential role as an adjuvant in the

management of breast cancer.
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Introduction

Breast cancer (BC) is one of the most frequently occurring
cancers in females and represents a significant public health
concern. The American Cancer Society estimates that one in
eight females will develop BC at some point in their lives,
with the incidence increasing with age.! Significant geo-
graphic and ethnic-specific differences in both incidence and
mortality rates are reported. This is in part attributed to soci-
odemographic factors which influence adherence to recom-
mendations for early screening for BC, as well as the likelihood
of seeking appropriate medical advice upon detection of a
breast mass.>? The actiology behind BC is equally complex
and involves interactions between environmental, lifestyle
and genetic factors that collectively determine cancer risk.
BC typically arises when cells lose the ability to halt the
process of proliferation, coupled to resistance or reduction in
the process of cell death by apoptosis. BC cells express high
levels of phosphatidylinositol-3-kinase (PI3K)/Akt and
mammalian target of rapamycin (mTOR) signalling mole-
cules, which impairs their ability to undergo apoptosis.*
Pathologically, BC is classified either as invasive or non-
invasive type. The non-invasive subtypes include ductal and
lobular carcinoma in situ, whereas, ductal and lobular carci-
nomas are considered as invasive subtypes. On average,

ductal carcinoma accounts for 80% of reported cases in
females, whereas lobular carcinoma accounts for only 5%-—
10% of the cases.’ Currently, BCs are treated either surgi-
cally or via chemoradiotherapy, in addition to the use of
Trastuzumab (Herceptin®) for HER2* tumours.°

Some cases of BC do not respond well to traditional treat-
ment, particularly in diabetics. Recent studies have shown
that metformin, a primary anti-diabetic agent, confers anti-
tumorigenic effects on cancer cells and can be considered as
a potential adjuvant in the management of BC.” A number of
population-based observational studies had initially sug-
gested that metformin reduces cancer incidence and/or mor-
tality among type 2 diabetic patients, however, no causal
relationship can be established from epidemiologic data
alone.® Preclinical research using both BC cell lines and
mouse models subsequently showed that metformin represses
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cancer cell and xenograft growth.>!! These effects are
achieved through various mechanisms, including cell cycle
arrest, apoptosis, AMP-activated protein kinase (AMPK)
activation and mTOR inhibition. In addition, metformin
exerts in vitro chemo preventive effects through modulation
of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon recep-
tor (AhR) pathways.!? The anti-tumour effects of oral anti-
diabetic therapy are not restricted to metformin, as
thiazolidinediones (synthetic ligands of peroxisome prolifer-
ator-activated receptors y — PPAR<y) possess similar proper-
ties. Animal studies have shown that pioglitazone inhibits
chemical carcinogenesis in rats.!> Human studies demon-
strate that rosiglitazone reduces BC risk in females with type
2 diabetes, and that this effect is enhanced by metformin.!4
The pleiotropic oncostatic effects of oral anti-diabetic drugs
is reinforced by meta-analysis showing that thiazolidinedi-
ones are associated with a lower incidence of cancer, particu-
larly colorectal and breast tumours.

Furthermore, metformin also decreases the development
of resistance in BC cells, thereby allowing current chemo-
therapy agents to work synergistically with metformin.!¢ It
also blocks the two cellular pathways for nicotinamide ade-
nine dinucleotide (NAD™) regeneration, which then results in
a complete loss of cells” NAD* recycling capacity. The
resulting depletion of NAD", in turn, leads to cell death.!”
This article aims to provide an overview of the pathomolecu-
lar mechanisms in which metformin may elicit its anti-can-
cerous effects and discuss its potential role as an adjuvant in
the management of BC.

Pathophysiology of BC

Inflammation and neoplastic transformation in BC

The importance of the immune response in BC development
and progression has been well documented. DeNardo and
Coussens'® highlight a possible immunological connection
between BC and Th2 inflammatory cells that results in the
promotion of tumour development and disease progression,
whereas acute anti-tumour responses involving cytolytic T
lymphocytes appear to protect against tumour development.
Physiologically, injured tissues or cells exposed to chemical
irritants are eliminated by apoptosis. This is followed by
enhanced cell proliferation to facilitate tissue regeneration
and re-establish tissue function. Moreover, proliferation and
inflammation may persist until the insulting agent is
removed, allowing the tissue to heal completely. If the
inflammation persists, cells may undergo dysplastic changes,
which then increases the risk of neoplasia.!?

The role of leukocytes, especially the cytotoxic T lym-
phocytes in tumorigenesis, has been explored extensively.
These cells are believed to assist in the eradication process of
neoplastic cells with the help of natural killer (NK) cells.?0
Nevertheless, T-cell infiltration in invasive BC has been
reported, especially the activated CD4* Thl polarised cells

that secrete several inflammatory cytokines — including
IFNvy, transforming growth factor beta (TGF-B), tumour
necrosis factor alpha (TNFa) and interleukin-2 (IL-2). These
cytokines then interact with other cytotoxic T-cells and
upregulate the MHC class I and II molecules, as well as other
antigen display co-factors in neoplastic cells.!820 This pro-
cess is an essential part of immune-mediated anti-tumori-
genic effects. Conversely, activation of Th2-polarised CD4*
T-helper cells results in expression of inflammatory cytokines
(IL-4, IL-5, IL-6, IL-10, and IL-13), which then enhances
humoral immunity and downregulates cell-mediated anti-
tumour immunity; thereby, promoting the pro-tumour
humoral response.!8:21-24

Neoplastic transformation is a complex
multistage event

BC originates in the undifferentiated lobules type 1, which
are composed of three cell types: the highly proliferating
cells (ER"), non-proliferating cells (ER*) and very few ER*
cells that proliferate. Endogenous 17 beta-oestradiol (E2),
when metabolised by cytochrome P450 enzymes may also
act as a carcinogen which ultimately leads to genomic
changes and transformation phenotypes observed in sponta-
neously developing primary BCs. Endogenous E2 is metabo-
lised by P450 cytochromes that also activate benzo[a]pyrene
BJ[a] a carcinogen present in cigarette smoke.?* The genomic
alterations induced by E2 and B[a]P in vitro are also observed
in ductal hyperplasia DCIS and invasive ductal carcinoma.

Transcriptional repressors, such as Polycomb Group
Protein (EZH2), which traditionally controls the cellular
memory have been linked to cancer cell invasion and BC
progression. Kleer et al.2® demonstrated that EZH2 protein
levels were strongly associated with BC aggressiveness.
Moreover, EZH2 overexpression promoted anchorage-inde-
pendent growth and cell invasion through the SET domain
and histone deacetylase activity. Dysregulated cellular mem-
ory, transcriptional repression and neoplastic transformation
are interlinked, and EZH2 may be a marker for aggressive
BC and neoplastic transformation. The actual neoplastic
transformation process involved in BC is more complex than
previously thought and warrants more long-term molecular
studies to better understand the actual transformation pro-
cess and ways to halt such process.

Type 2 diabetes mellitus and cancer

Type 2 diabetes mellitus (T2DM) is a metabolic disorder
which is associated with several cancers. It is characterised
by hyperglycaemia, insulin resistance and hyperinsuline-
mia. These factors interact to promote cell proliferation
through the mitogenic effect of the insulin receptor and
insulin-like growth factors (IGFs), while hyperglycaemia
provides the metabolic substrate for cell proliferation.?’
Overexpression of the insulin growth factor receptor-1R
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(IGF-1R) or insulin receptors leads to mitogenic signalling,
which increases activation of phosphoinositide 3-kinase
(PI3)-Akt-mTOR signalling pathways. Excess adiposity
increases local production of oestrogen via the enhanced
activity of aromatase, which augments oestrogen receptor
alpha signalling (ER-a) in tumour cells. The inflammatory
effect of hyperinsulinemia, in addition to increasing produc-
tion of local cytokines, may lead to an increased susceptibil-
ity to cancer development in diabetes.?®

A number of large-scale epidemiological studies and meta-
analyses have reported an increase in the incidence of several
cancers in T2DM.2%30 A population-based cohort study by
Ballotari et al.3! showed a higher cancer incidence in subjects
with diabetes. This relationship was only observed in those
with T2DM, but not in Type 1 diabetes mellitus (T1DM) and
was attributed to obesity. Notably, the risk was higher among
insulin users. An increased risk of cancer at several tissues,
including liver, pancreas, endometrium, colorectum, breast
and bladder has been described in multiple similar studies.
Notably, these observations could be either causal — driven by
the metabolic disturbances in diabetes or else due to the con-
founding effects of the underlying excess adiposity in diabe-
tes. Tsilidis et al.2® show that individual studies are, however,
characterised by substantial heterogeneity, small study effects
and excess significance, with 28% (135/474) of studies
adjusting risk estimates either for age or gender. Despite the
evidence from epidemiological studies linking diabetes to
cancer incidence, the specific mechanisms driving this asso-
ciation are not fully understood.

T2DM and BC
Mechanisms behind T2DM and BC

Studies have shown that BC in women with diabetes is often
diagnosed at an advanced stage compared with women with-
out diabetes.’>33 Furthermore, the overall mortality follow-
ing BC diagnosis is 30%—60% higher in women with diabetes
compared with women without diabetes after adjusting for
tumour stage.3*35 A cross-sectional study by Bronsveld
et al.** also showed no relation between diabetic status and
tumour morphology and grade. However, premenopausal
diabetic women tended to develop breast tumours that do not
express progesterone receptor and HER2, which are typi-
cally associated with poor prognosis. No association between
insulin therapy and clinicopathological subtypes was noted,
even though insulin use in T2DM may induce oestrogen
(ER) and progesterone receptors expression.>¢ Conversely, a
systematic review of in vitro, animal and human studies
found no evidence of increased BC risk with commercially
available insulin analogues and human insulin.’” Conflicting
findings were reported by other investigators. Tseng,3®
showed that prolonged use of insulin carries a significantly
higher BC risk. A recent study by Overbeek et al.?* showed
that females with T2DM were at an increased risk of being

diagnosed with a more aggressive type of BC than non-
T2DM females. Interestingly, exogenous insulin administra-
tion was not associated with the development of more
advanced BC tumours in this study. These findings suggest
that insulin may not be involved directly in the development
of BC. Instead, it may promote BC progression by upregulat-
ing mitogenic signalling pathways.?’

The precise mechanisms linking T2DM to BC progres-
sion remains uncertain, but is believed to involve insulin-
like growth factor-1 (IGF-1). IGF-1 pathways are activated
by a high concentration of insulin, which then goes on to
promote cancer development via the insulin/IGF-1 hybrid
receptors. These have a higher affinity for IGF-1 than for
insulin and are overexpressed in BC tissues of T2DM
patients.*-42 Nevertheless, due to insufficient evidence on
the specific oncogenic pathways connecting hyperinsuline-
mia to BC, it is difficult to ascertain the role of insulin in the
development of BC in premenopausal and postmenopausal
diabetic females.

Oestrogen, diabetes and BC

Epidemiological and clinical studies have shown that T2DM
is a risk factor for BC and is consequently associated with
poor prognosis.*> Wairagu et al.* investigated the effects of
oestradiol on MCF-7 BC cells primed with and without insu-
lin chronically. The study found that insulin priming was a
prerequisite for oestradiol-induced growth in BC cells. The
authors demonstrate that oestradiol exposure increases
expression of cyclins A and B, which are both involved in
cell cycle progression and leads to the activation of genes in
the pentose phosphate and serine biosynthesis pathways.
Oestradiol also increased anti-apoptotic Bel-xL expression
in the insulin-primed cells. In addition, metformin sup-
presses oestradiol-induced growth in the insulin-primed
cells. Critically, this study showed that insulin priming dra-
matically sensitises BC growth to 100 pmol of oestradiol.

Conversely, other studies have shown that at least 10—
100nM of oestradiol concentration is required before maxi-
mum cell growth is attainable in BC cells.*¢ These findings
suggest that insulin priming happens readily in diabetics as a
result of the chronic hyperinsulinemic state even at physiolog-
ical levels of oestradiol, thus exposing diabetics to an elevated
risk of developing BC. Oestradiol modulates cell cycle and
apoptotic processes in insulin-primed cells, which then further
promotes cancer cell growth. Wairagu et al.** also showed that
both insulin-primed and unprimed MCF-7 cells exposed to
dihydrotestosterone (DHT) exhibit no growth response, which
further indicates that there is crosstalk between insulin prim-
ing and ER-induced BC cell growth.

In the insulin resistant state, suppression of sex hormone
binding globulin (SHBG) increases the bioavailability of free
oestrogen, leading to elevated levels of serum oestrogen.*’
Moreover, IGF-1 is known to increase the production of
androgens, which may then subsequently displace oestrogen
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binding from SHBG.*$4 Furthermore, IGF-1 can interact with
17-beta-oestradiol leading to increased proliferation of BC
cells.>® Therefore, altered levels of endogenous oestrogen may
contribute to the proliferation of ER-positive BC in T2DM.#
Since the prevalence of obesity is high in T2DM, elevated lev-
els of oestradiol and oestrone can result from increased adi-
pose tissues aromatase activity.’! Also, hyperinsulinemia in
T2DM may induce the expression and binding capacity of ER,
which can subsequently enhance insulin mitogenic properties
by promoting IRS-1 function, and through activation of PI3K
and Ras/MAPK signalling.>? The production of inflammatory
mediators in T2DM, mainly TNF-« and interleukin-6 (IL-06),
which are both associated with insulin resistance in diabetics,
secondarily enhances the oestrogen synthesis in normal and
BC cells. This further potentiates BC development.>3-54

Oxidative stress, diabetes mellitus and BC

Hyperglycaemia induces oxidative stress through direct or
indirect pathways in BC cells by increasing levels of insulin/
IGF-1 and inflammatory cytokines, particularly IL-6 and
TNF-a.3> Together, they activate nuclear factor kappa
(NFkB), signal transducer activator of transcription 3
(STAT3) and the hypoxia-inducible factor 1-alpha (HIF1t).5¢
These factors result in increased free radical production,
leading to damage to DNA, lipids and further amplification
of the inflammatory processes [27]. The reactive oxidative
species derived may then initiate carcinogenesis by modify-
ing the apoptotic responses, as well as disrupting cell anchor-
ing sites and increasing angiogenesis.>’® In addition, studies
have shown that hyperglycaemia also indirectly activates
endothelial growth factor receptor (EGFR) via the Rho fam-
ily GTPase Rac1 and cell division control protein 42 homolog
(Cdc42), which then stimulates the cell proliferation, thus
providing another mechanistic link between hyperglycaemia
and tumorigenesis.>

Hyperglycaemia leads to the modulation of various path-
ways that control cell proliferation, migration and invasion.®
Cancer cells demonstrate enhanced glucose uptake and
metabolism, a process referred to as the ‘Warburg effect’.
Hyperglycaemia thus provides the necessary fuel which the
cancer cells require, and this then allows cancer cells to pro-
liferate rapidly.®! Hyperglycaemia also stimulates upregula-
tion of protein kinase C (PKC), PPARs and proliferation in
MCF-7 BC cell lines.5?

Hyperglycaemia also promotes BC cell migration via zinc
and its transporters (ZRT/IRT-like protein 6, ZRT/IRT-like
protein 10). High serum glucose leads to increased expres-
sion of zinc transporters (ZIP6 and ZIP10), which are essen-
tial for promoting cell migration and motility in BC cells.3-64
These findings emphasise the importance of stringent con-
trol of glucose levels in both T2DM and BC in order to
reduce cancer cell proliferation.

The pharmacologic management of hyperglycaemia
hinges on the use of sulphonylureas, metformin and insulin.

Therapy that leads to hyperinsulinemia, such as sulphonylu-
reas and exogenous insulin, are thought to increase the risk
of cancer, while treatment that reduces insulin resistance,
such as metformin, are thought to reduce the risk of cancer
development. A meta-analysis investigating cancer risk asso-
ciated with metformin and sulphonylureas in T2DM showed
that use of metformin was associated with significantly
decreased risk of all cancers. However, no evidence that use
of metformin is associated with the risk of BC was derived.®
This meta-analysis was characterised by extensive between-
study heterogeneity and evidence of publication bias with
regard to metformin. Hence long-term randomised double-
blinded clinical trials are required to substantiate the benefit
and efficacy of using anti-diabetic agents in BC treatment.

Metformin and BC

Mechanisms of metformin action in normal cells

Metformin (1,1-dimethyl biguanide) is a biguanide which acts
by reducing hepatic glucose output and increasing insulin sen-
sitivity. This results in a reduction in serum glucose levels
without the risks of either hypoglycaemia or weight gain.
Metformin also modulates multiple components of incretin
pathways. It increases the plasma levels of glucagon-like pep-
tide 1 (GLP-1) and induces islet incretin receptor gene expres-
sion via PPAR-a.% Metformin is taken up by hepatocytes via
the organic cation transporter 1 (OCT1) and inhibits hepatic
gluconeogenesis by modulating enzymes and substrate which
are involved in the gluconeogenic pathways.®”-7° The decrease
in hepatic glucose production results in the activation of
AMPK, which is a cellular metabolic sensor responsible for
protecting cellular functions under low energy conditions.”!2
AMPK is normally activated by an increase in the intracellular
AMP: ratio, which results from an imbalance between the ATP
production and consumption.”!

Upon activation, phosphorylation of AMPK by tumour
suppressor serine/threonine kinase 11 (STK11/LKB1) and
calcium/calmodulin-dependent protein kinase kinase-2
(caMKK-2) causes AMPK to switch cells from an anabolic
to the catabolic state. In doing so, it shuts down the ATP-
consuming pathways by inhibiting glucose, lipid, protein
synthesis and cellular growth, whereas fatty acid oxidation,
as well as glucose uptake, is stimulated to restore the
AMP:ATP ratio.”! Metformin primarily acts on the mito-
chondria by inducing mild and specific inhibition of mito-
chondrial respiratory-chain complex 1 (MRCC1), which is
present in hepatocytes, skeletal muscles, endothelial cells,
pancreatic beta-cells and neurons.”>7 In addition, met-
formin also reduces mitochondrial reactive oxygen species
(ROS) production by selectively inhibiting reverse electron
flow through MRCC1.80:81

ROS are important mediators of cell and genomic damage
and play essential roles in the pathophysiology of both T2DM
and BC. Inhibition of ROS generation through metformin may
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thus have benefits that extend beyond its traditional use as an
oral hypoglycaemic agent. In this context, several studies have
shown that metformin exhibits anti-cancer effects in BC
patients with diabetes. Conversely, the efficacy of metformin
and its use in non-diabetic BC patients is not widely studied,
with conflicting effects being reported. A summary of the
findings from studies involving metformin therapy in BC
patients without DM is provided in Table 1.

Mechanism of metformin action in BC

Insight into the anti-tumour role of metformin in BC has been
provided by Dowling etal.?? in a clinical trial (NCT00897884).
Non-diabetic females with untreated BC were trialled on neo-
adjuvant metformin from biopsy till surgery for BC.
Immunohistochemical analysis of tumour specimens showed
a significant reduction in expression of insulin receptors,
phosphorylation of protein kinase B (PKB)/Akt, AMPK,
extracellular signal-regulated kinase1/2 and acetyl coenzyme
A carboxylase. These insulin-dependent effects are consistent
with the beneficial anti-cancer effects of metformin.

Metformin indirectly activates AMPK, leading to the
inhibition of protein synthesis and gluconeogenesis. Thus, it
may act to limit the availability of nutritional substrates that
are mandatory for cancer cell proliferation.”> An overview of
these effects is provided in Figure 1. Furthermore, AMPK
also inhibits mTOR, which is a downstream activator of
growth factors in malignant cells and is associated with
resistance to anti-cancer drugs.®> The role of metformin is
not limited to AMPK pathways. It induces cell cycle arrest,
thereby inducing sub-G, populations and activating apop-
totic pathways through downregulation of p53 and differen-
tiated embryo chondrocyte 1 (DEC1) proteins.”® Metformin
administration also leads to an increase in intracellular ROS
by disrupting the mitochondrial electron transport chain and
collapsing the mitochondrial membrane potential. Queiroz
et al.?7 showed that metformin has time- and concentration-
dependent anti-proliferative properties on MCF-7 cells.
Metformin exhibits pro-apoptotic effects and promotes cell
cycle arrest via increased oxidative stress, as well as AMPK
and FOXO3a activation.

The proliferation and migration of BC cells is suppressed
by metformin via the dysregulation of the matrix metallopro-
teinases MMP-2 and MMP-9, in addition to downregulation
of oncogenic microRNAs miR-21 and miR-155.%% Giles
et al.”? demonstrated that metformin can decrease the size of
mammary tumours and inhibit tumour formation in ovariecto-
mised rats with 1-methyl-1-nitrosoureca (MNU)-induced
mammary tumours. Furthermore, metformin promotes a
decrease in the number of aromatase-positive, CD68-positive
macrophages within the tumour microenvironment, as well as
decreased lipid accumulation in the livers of treated rats. This
study showed that metformin targets both whole-body metab-
olism and the tumour microenvironment and that the perimen-
opausal period may represent a window of opportunity where

metformin may be highly effective in women at risk for or
with established BC. Other investigators have produced simi-
lar findings, demonstrating decreased tumour volumes and
reduced proliferation in in vivo animal models of BC.!00.101
Recently, Bojkova et al. showed that administration of met-
formin in a rat model with MNU-induced mammary tumours
resulted in an increased proportion of low-grade tumours.!02 A
significant positive correlation between histological grade and
Ki67 expression was noted. However, no differences in
tumour incidence and frequency were observed. The improved
tumour histopathological profile was accompanied by a reduc-
tion in serum IGF-1 levels.

Metformin also exhibits cytostatic effects analogous to
antifolate chemotherapeutic agents. In vitro metabolomic
studies have shown that metformin has mitochondrial-inde-
pendent AMPK-activating effects that cause defects in de
novo purine/pyrimidine biosynthesis and homocysteine
accumulation.!03

Metformin also exerts anti-inflammatory effects in cell
models by inhibiting the NF«kB pathways necessary for
transformation and cancer stem cell formation. It inhibits
nuclear translocation of NFkB and phosphorylation of
STAT3 in cancer stem cells compared with non-stem cancer
cells in the same population, thus suppressing the early
stages of the inflammatory pathway that is associated with
cancer.104-106

In light of these findings from cell and animal models, it
is natural to question whether metformin is a suitable adju-
vant and if it should be implemented in current clinical prac-
tice guidelines for the treatment of BC. Clinical data extracted
from drug trials have shown that metformin does show syn-
ergistic apoptotic effects when used with chemotherapeutic
agents in BC.5%107 Furthermore, when metformin is used as a
single-agent, it may trigger cell cycle arrest in both oestrogen
receptor positive (ER') and ER-negative (ER") BCs
cells. 108109 Metformin also elicits toxic effects on cancer
stem cells, but not on normal stem cells. This property of
metformin is valuable since cancer stem cells play a critical
role in cancer recurrence.'%110 A number of systematic
reviews and meta-analyses highlighting metformin’s role in
BC and their limitations are summarised in Table 2.

Triple-negative BC (TNBC) carries the poorest prognosis
of all BC subtypes. In vitro studies have shown that met-
formin administration enhances the sensitivity of TNBC cell
lines to TRAIL receptor agonists.!?! TRAIL agonists (TNF-
related apoptosis-inducing ligand (TRAIL) are tumour-spe-
cific inducers of apoptosis that have strong anti-tumour
effects in preclinical models.!?> Metformin reduces the lev-
els of XIAP, a negative regulator of TRAIL-induced apopto-
sis, and provides evidence supporting the combined
administration of these drugs. Other in vitro studies have
demonstrated that metformin reduces the percentage of
TNBC stem cells through mechanisms that downregulate
Kriippel-like factor 5 (KLF5) and target its degradation.!??
The downregulation of KLF5 is mediated by glycogen
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Figure 1. Metformin inhibits the inflammatory pathways which are induced by hyperglycaemia and insulin resistance. This indirectly
acts by deactivating AMPK pathways, thereby allowing the anti-cancer effects of metformin to be exhibited. Metformin also works
synergistically with chemotherapy agents and reduces the development of resistance of BC to these agents, thereby maximising their

effects on BC cells.

synthase kinase-33 (GSK3[3) and inhibition of protein kinase
A activity in TNBC cells. KLF5 is a crucial stem cell tran-
scription factor in basal-type TNBC cells, and it promotes
TNBC cell proliferation, survival, migration, invasiveness
and stemness.'?*126 The reduced TNBC stem cell viability
observed in vitro has significant consequences which need to
be evaluated further in in vivo animal models. Metformin
also has been shown to downregulate fatty acid synthase
(FASN) levels via miR-193b in TNBC cells. FASN is an
essential component of de novo fatty acid synthesis and is
thus necessary for the survival of TNBC cells.!?’

Despite the beneficial anti-tumour potential of metformin
in TNBC, other studies have suggested that this effect is
reduced by higher glucose concentrations.!28-130 Recently,
Varghese et al. show that TNBC cell lines exposed to glucose
levels in the diabetic range significantly abolished the effect
of metformin on cell proliferation, cell death and cell cycle
arrest. This study also showed that metformin was most effec-
tive and inhibited the mTOR pathway under glucose starva-
tion conditions; suggesting that it should be combined with
inhibitors of the glycolytic pathway for more beneficial treat-
ment of TNBC in diabetic patients.!?® In view of the mecha-
nistic evidence linking the anti-proliferative effect of
metformin to glucose concentration in TNBC, it is natural to
advocate stringent glucose level monitoring in BC patients
with diabetes, particularly as the hyperglycaemic state may
further fuel malignant cell proliferation. The anti-cancer
effects of metformin are not limited to triple-negative and
ER* BC subtypes. Metformin is also effective against HER2*
BC since it confers anti-proliferative effects in females with

HER2* BC co-expressed with ER" with ductal carcinoma in
situ (DCIS).13" Nonetheless, the molecular mechanisms
behind these findings are inadequately explained.

Clearly, the use of metformin in the management of BC
requires further evaluation. Preliminary population-based
studies have shown that metformin does not affect BC stag-
ing in older women with long-standing diabetes.!3? These
findings contrast with both the short-term window of oppor-
tunity studies and with functional research highlighted ear-
lier that show an effect of metformin on tumour growth
characteristics.

Non-specific effects and limitations of metformin
in BC

Like many other chemotherapy agents currently in use, the
development of multidrug resistance by cancer cells proves to
be a considerable challenge for clinicians. Interestingly, some
studies have suggested that metformin may prevent multiple
drug resistance (MDR) and may even re-sensitise cancer cells
to standard chemotherapy agents to which they were once sen-
sitive. In vitro and in vivo animal studies show that metformin
reduces the expression of several proteins that cause MDR.!33
Metformin also has MDR reversing properties in BC cell lines
and re-sensitises cells to 5-fluorouracil (5-FU), adriamycin
and paclitaxel through the activation of AMPL and mTOR
pathways.!34135 In addition, it has been shown to modulate the
metabolic and miRNA profile of chemoresistant cells, render-
ing them similar to chemosensitive BC cell populations.!3¢
Other investigators have demonstrated that co-treatment of
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BC cells with metformin and flavone inhibits cell viability and
increases apoptosis of cancer cells more effectively compared
with metformin or flavone alone.!37 This potentiation of apop-
tosis is achieved by the modulation of MDMX/p53 proteins
through PI3K/AKT pathways.

Conversely, chronic exposure to metformin has been
shown to lead to the development of resistance in BC cell
lines. Acquired resistance to metformin is accompanied by
transcriptomic changes that generate a metastatic stem-cell
like phenotype.'?® In addition, it has been shown that long-
term treatment with metformin can lead to the development
of cross-resistance to both metformin and tamoxifen in
MCE-7 cells.!3 Scherbakov et al.!!” show that the acquired
resistance to both drugs is based on the constitutive activa-
tion of Akt/Snaill/E-cadherin signalling pathways.

Why metformin confers anti-tumour effects in some, but
not all BC cases is not clear. The AMPK-activating ability of
metformin is central to its metabolic function in cells. Buac
et al.!% show that breast cancer-associated gene 2 (BCA2) is
an endogenous inhibitor of AMPK activation in BC cells.
BCA2 encodes a RING-finger-containing ubiquitin E3
ligase that is expressed in about 50% of breast tumours. This
gene has been associated with both in vitro BC cell prolifera-
tion and clinical outcome.!4? Inhibition of BCA2 enhances
the growth inhibitory effect of metformin in cell models,
thus suggesting that metformin co-administration with a
BCAZ2 inhibitor can be a more powerful strategy than met-
formin therapy in isolation.'#!

The dose of metformin required to achieve a therapeutic
effect is similarly controversial. Several doses have been
used in studies with varying clinical effects. In fact,
Schexnayder et al.'4? showed that metformin at pharmaco-
logically achievable concentrations does not significantly
improve the viability of BC cells. Instead, it inhibits inflam-
matory signalling and metastatic progression of the disease
through reduced ICAM1, COX2, PGE2 and ROS levels.
Cell cycle arrest and decreased cell viability were only
reported at higher concentrations of metformin.

The mechanistic findings from preclinical in vitro
research are not directly translatable to clinical practice. A
recent meta-analysis of observational studies on the effect of
metformin on the incidence and all-cause mortality of BC in
patients with type 2 diabetes failed to identify a significant
association between metformin exposure and incidence of
BC, while a 45% risk reduction for all-cause mortality was
observed.!? The uncertainty regarding the optimal dosage,
duration of therapy and whether additional drugs should be
co-administered with metformin to achieve synergistic effect
further limits its clinical use. An ongoing phase II ran-
domised clinical trial (NCT01589367) aims to investigate
the effect of the aromatase inhibitor letrozole with metformin
in postmenopausal patients with ER *BC.!** Further such
studies are required in order to formulate guidelines to advise
clinicians on the possible therapeutic implementation of
metformin in BC.

This review on metformin therapy in BC has several limi-
tations. Primarily, it does not aim to provide a systematic
review of all mechanistic and epidemiologic evidence on the
subject. Several authors have compiled evidence from indi-
vidual studies in an attempt to resolve discrepancies and
inconsistencies between different investigations, and selected
key publications are summarised in Tables 1 and 2. The extent
of heterogeneity and discordant findings among individual
studies is significant and serves to highlight the complexity of
the subject. Second, the link between metformin exposure
and BC is unlikely to be a simple cause—effect relation. BC,
glucose metabolism and the pharmacodynamics of metformin
represent cellular events that are intrinsically heterogeneous
and multidimensional and that are not fully elucidated. The
interplay between each element of this complex interaction
depends on various genetic, epigenetic and lifestyle factors
that cannot be fully quantified and might not be faithfully
reproduced in invitro preclinical studies. In the era of preci-
sion medicine and single-cell tumour biology, it is essential
for researchers to acknowledge disease heterogeneity and
functional diversity within solid tumours as this can signifi-
cantly impact on clinical outcomes.

Conclusion and future directions

BC is an etiologically complex devastating disease driven by
a combination of genetic, reproductive, hormonal and envi-
ronmental factors. The epidemiologic link between BC and
disordered glucose metabolism is mechanistically interest-
ing, given that glucose is an essential cellular metabolic sub-
strate and that insulin signalling has mitogenic effects. The
common underlying mechanism uniting T2DM and BC
involves hyperinsulinemia, which activates several molecu-
lar pathways driving cell proliferation.'** BC has been tradi-
tionally treated with a combination of chemotherapy, surgery
and targeted hormonal therapy; however, growing interest
lies in the use of metformin. Metformin activates AMP-
activated protein kinase and inhibits mTOR pathways,
thereby decreasing insulin levels in the circulation. In addi-
tion, it also inhibits the proliferation and invasion of cancer
cells, which could limit metastatic spread. Studies have also
demonstrated that metformin may enable cancer cells to
overcome the development of resistance to chemotherapy,
hormone therapy and trastuzumab treatment.

The use of metformin in the management of both T2DM
and BC may seem practical considering that metformin is one
of the most commonly prescribed oral anti-diabetic agents. It
accounts for 40% of all anti-diabetic drugs dispensed in
England over the past few decades, but only 7% of the
costs.!* The recent ALTTO trial on metformin use in HER2*
BC showed that metformin may improve the worse prognosis
that is associated with diabetes and insulin treatment in
patients with HER2™ and hormone receptor positive BC.146
Furthermore, promising in vivo studies suggest that met-
formin can have beneficial synergistic effects with natural
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anti-tumour compounds such as curcumin.!4’” Meta-analysis
of large cohorts have demonstrated that metformin use is
associated with improved survival and decreased all-cause
mortality in diabetic patients with BC.!48:14% Conversely, con-
flicting clinical findings with regard to the efficacy and anti-
tumour role of metformin have been reported in the literature,
thus strengthening the need for further research. 132150

The potential for therapeutic benefits of metformin in dia-
betics with BC is rapidly becoming an area of interest in both
clinical oncology and endocrinology. However, more long-
term double blinded-randomised trials are needed to explore
the precise role which metformin may play and its possible
use as an adjuvant in clinical practice. Most current studies
that examine metformin’s use in BC have reported a mixed
picture on its efficacy, which could be due to the different
doses of metformin as well as varying periods of follow-up
used in these studies. It is clear that metformin holds consid-
erable promise with regard to a potential anti-tumour role.
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