UNIVERSIDAD NACIONAL AGRARIA

LA MOLINA

FACULTAD DE CIENCIAS

DETECCIÓN BACTERIANA EN CULTIVOS *IN VITRO* DE *Ipomoea batatas* "CAMOTE" MEDIANTE MÉTODOS MOLECULARES

Presentado por:

MYRIAM LORENA IZARRA BECERRA

TESIS PARA OPTAR EL TÍTULO DE BIÓLOGO

> Lima - Perú 2013

I.	Introducción	1
II.	Revisión de literatura	4
2.1	Camote	4
2.1.1	Posición taxonómica	4
2.1.2	Origen del camote	4
2.1.3	Nutrición y consumo	5
2.2	Bancos de germoplasma	6
2.3	Cultivo in vitro	6
2.4	Contaminación en cultivos in vitro	7
2.5	Método microbiológico mara detección bacteriana	8
2.6	Métodos moleculares	9
2.6.1	Reacción en cadena de la polimerasa (PCR)	9
2.6.2	Usos del PCR	10
2.6.3	Secuenciamiento con el método de Sanger	11
2.6.4	Secuencia ARNr 16S	13
2.6.5	Diseño de cebadores	14
III.	Materiales y Métodos	15
3.1	Materiales	15
3.1.1	Material biológico	15
3.1.2	Materiales y reactivos de laboratorio	15
3.1.3	Equipos	17
3.2	Métodos	18
3.2.1	Detección de contaminantes bacterianos	18
3.2.2	Caracterización morfológica de los contaminantes bacterianos	19
3.2.3	Caracterización bioquímica de los contaminantes bacterianos	19
3.2.4	Caracterización e identificación molecular	20
3.2.5	Diseño de cebadores	21

ÍNDICE GENERAL

3.2.6	Determinación de la temperatura de alineamiento de los cebadores	22
3.2.7	Prueba con ADN de planta sana como control	22
3.2.8	Prueba de especificidad entre los grupos bacterianos	23
3.2.9	Determinación del límite de detección de los cebadores	23
3.2.10	Comparación de la eficiencia de la agrupación por métodos	25
	convencionales mediante métodos moleculares	
3.2.11	Determinación del par de cebadores específicos para todas las cepas	25
3.3	Análisis de Datos	25
IV.	Resultados y Discusiones	27
4.1	Detección de contaminantes bacterianos	27
4.2	Caracterización morfológica de los contaminantes bacterianos	32
4.3	Caracterización bioquímica de los contaminantes bacterianos	41
4.4	Caracterización e identificación molecular	44
4.5	Diseño de cebadores específicos para confirmación de identificación molecular	47
4.6	Prueba de PCR con ADN control de planta limpia (PL) no contaminada	52
4.7	Prueba de especificidad entre los grupos bacterianos	54
4.8	Determinación del límite de detección de los cebadores de los cebadores	58
	ARNr 16s seleccionados	
4.9	Determinación del límite de detección mediante extracción de	61
	ADN de planta contaminada por diluciones sucesivas	
4.10	Determinación de la eficiencia de la agrupación por métodos	64
	convencionales mediante método molecular	
4.11	Determinación del par de cebadores específicos para identificación	73
	molecular de todas las cepas	
4.12	Análisis Estadístico de Datos	76

V.	Conclusiones	78
VI.	Recomendaciones	80

VII.	Referencias bibliográficas	81

VIII. Anexos

ÍNDICE DE CUADROS

Cuadro 1: Condiciones de la reacción en cadena de la polimerasa (PCR) para 1 tubo de reacción (componentes, cantidades y concentraciones)	20
Cuadro 2: Programa de Amplificación de la reacción en cadena de la polimerasa (PCR)	21
Cuadro 3: Relación de accesiones de cultivo <i>in vitro</i> de camote analizadas por contaminación bacteriana	28
Cuadro 4: Caracterización morfológica y bioquímica de 185 cepas aisladas	33
Cuadro 5: Caracterización bioquímica de agrupamientos morfológicos de 185 cepas aisladas de accesiones contaminadas de cultivos <i>in vitro</i> de camote del Banco de germoplasma del CIP.	41
Cuadro 6: Porcentaje de identidades de los aislamientos bacterianos obtenidos a partir de las bases de datos de Ribsomal Data Base Project (RBP) y National Center for Biotechnology Information (NCBI).	45
Cuadro 7: Secuencia de los cebadores ARNr 16S diseñados para los	48
micoorganismos identificados molecularmente con el tamaño (pb) de amplicón esperado y temperatura de alineamiento (Ta).	
Cuadro 8: Resultado de la PCR del gen ARNr 16S con todos los cebadores seleccionados para cada microorganismo	55
Cuadro 9: Resultado de la PCR del gen ARNr 16S con los otros cebadores diseñados que amplificaban su cepa con respecto a los demás microorganismos identificados molecularmente.	57
Cuadro 10: Límite de detección de los cebadores ARNr 16S específicos seleccionados para cada microorganismo	59
Cuadro 11: Ensayo de amplificaciones con cebadores ARNr 16S específicos para	60
cada microorganismo de la mezcla de la dilución bacteriana con ADN de planta	
limpia (no contaminada)	

Cuadro 12: Detección directa de contaminación bacteriana mediante extracción de	63
ADN de planta contaminada por diluciones sucesivas sin cultivo bacteriano previo	
Cuadro 13: Identificación, agrupamiento molecular y reagrupamiento morfológico	65
de cepas contaminantes de cultivos in vitro de camote conservados en el Banco de	
germoplasma del CIP.	
Cuadro 14: Comparación de la agrupación morfológica y bioquímica respecto	71
a la agrupación molecular total de aislamientos bacterianos de cultivo in vitro de	
camote.	
Cuadro 15: Confirmación de agrupación morfológica y bioquímica con respecto	72
a la agrupación molecular de aislamientos bacterianos de cultivos in vitro de camote.	
Cuadro 16: Cebadores del gen ARNr 16S específicos diseñados para	75

amplificación universal de las cepas aisladas de cultivos in vitro de camote.

INDICE DE FIGURAS

Figura 1: Esquema general de la Reacción en Cadena de la Polimerasa (PCR)	10
(Forbes <i>et al.</i> , 2009)	
Figura 2: El método didesoxi de secuenciación puede realizarse en forma	13
automatizada (Pierce, 2010).	
Figura 3: Detección visual de accesión de cultivo in vitro de camote	27
(N°CIP 420278) con signos de presencia bacteriana	
Figura 4: Aislamientos de cepas contaminantes de accesiones de cultivos <i>in vitro</i> de camote y sus respectivas tinciones gram (1000X).	37
Figura 5: Tinción de Endosporas perteneciente a la accesión N°CIP 421426	40
del grupo C.	
Figura 6: Prueba cualitativa de oxido fermentación realizada para la	43
caracterización bioquímica de agrupamientos morfológicos de cepas	
contaminantes de accesiones de cultivos in vitro de camote del banco de	
germoplasma del CIP.	
Figura 7: Reacción de hidrólisis de almidón realizada para la caracterización	44
bioquímica de agrupamientos morfológicos de cepas contaminantes de	
accesiones de cultivos in vitro de camote del banco de germoplasma del CIP.	
Figura 8: Amplificación mediante PCP del gen APNr 168 de la cena aislada	11
de la accesión Nº CIP 420613 utilizando cebadores universales nA y nE	
de la accesion i v en 420015 utilizando ecoadores universares pA y pr.	
Figura 9: Diseño de cebador ARNr 16S específico para Sphingomonas sp	52
mediante alineamiento de secuencias consenso obtenidas de los 15 grupos	
identificados molecularmente.	
Figura 10: Amplificación del gen ARNr 16S con cebadores específicos	53
F1 y R1 (712 pb) de Paenibacillus illinoisensis.	

Figura 11: Ensayo de especificidad para Paenibacillus taichungensis con	56
todos los cebadores y con su específico F2 y R1 (622pb).	
Figura 12: Electroforesis de productos de PCR del gen ARNr 16S mostrando	61
la sensibilidad de cebadores <i>P.taichungensis</i> _F2 y <i>P.taichungensis</i> _R1 (622 pb).	
Figura 13: Detección de contaminación bacteriana mediante extracción de ADN	64
de planta contaminada por diluciones sucesivas de Bacillus firmus con sus	
cebadores F1 y R1 (667 pb).	
Figura 14: Características culturales de los aislamientos bacterianos a partir de	70
accesiones de camote cultivados in vitro.	
Figura 15: Amplificación del gen ARNr 16S de planta contaminada (bacterial) y	74
de planta limpia (cloroplastídica) con cebadores pA y pF (1066pb) de ADN	
de planta limpia (900ng* μ L ⁻¹).	
Figura 16: Amplificación del gen ARNr 16S con cebadores 799f y 1492r (694 pb).	74
Figura 17: Alineamiento de las 17 secuencias de contaminantes bacterianos de	75
cultivos <i>in vitro</i> de camote, para el diseño de cebadores pMF2 y pMR1 que	
ampinican ei gen AKNr 168.	
Figura 18: Electroforesis de productos obtenidos mediante PCR con	76
gradiente de temperatura de 42.5-52.5 °C, con cebadores pMF2 y pMR1 (469 pb).	

INDICE DE ANEXOS

Anexo 1: Composición de medios microbiológicos utilizados	92
Anexo 2: Tampones para extracción de ADN genómico de planta según método de Doyle (Tsay et al., 2012)	93
Anexo 3. Análisis estadístico mediante la prueba de proporciones comparando el método convencional con el molecular para <i>Bacillus pumilus</i> y <i>Paenibacillus taichungensis</i> mediante programa estadístico R [®] .	94
Anexo 4. Protocolo sugerido para la detección de accesiones contaminadas e identificación microbiana.	96

RESUMEN

La existencia de microorganismos bacterianos capaces de co-existir con los cultivos in vitro limitan su eficiencia para la conservación de recursos genéticos. El objetivo del presente estudio fue desarrollar un método molecular para la detección bacteriana en cultivos in vitro de Ipomoea batatas "camote". Se analizaron 2377 accesiones procedentes del banco de germoplasma de camote conservado en el CIP. Segmentos del tejido caulinar y radicular fueron cultivados en caldo nutritivo e incubados por tres días a temperatura ambiente (Ta), tres días a 28°C y catorce días a Ta. Los aislamientos fueron agrupados convencionalmente (microbiológica y bioquímicamente). Molecularmente, se secuenció la región ARNr 16S, se diseñaron cebadores de ADN, y se determinó su límite de detección en UFC*mL⁻¹. Se aislaron 185 cepas bacterianas; se identificaron 15 grupos [Sphingomonas sp., Bacillus pumilus (tres cepas), Bacillus cereus, Paenibacillus illinoisensis, Paenibacillus taichungensis, Methylobacterium extorquens, Brevibacterium casei, Acinetobacter sp., Microbacterium sp., Streptomyces parvulus, Bacillus firmus, Staphylococcus pasteuri, Bacillus licheniformis, Janibacter sp. y uno no definido]. Los cebadores resultaron altamente específicos para identificar a las diez primeras cepas. El límite de detección bacteriana se realizó con dos métodos: directo de cepas a las 48 horas, excepto en Janibacter sp que fue a las 96 horas, y de ADN de planta contaminada. Para Paenibacillus taichungensis su par de cebadores presentaron altos niveles de detección para los dos métodos de $5*10^{0}$ y de $5*10^{1}$ UFC*mL⁻¹ respectivamente y se detectó como el principal contaminante (41.4%). Además, se identificaron molecularmente a Pseudomonas oryzihabitans y Staphylococcus sp. que no fueron identificados convencionalmente. Los resultados indican que este método es eficiente para la identificación y detección de estos microorganismos sin la necesidad de su previo cultivo. Así como de gran utilidad para la implementación de medidas preventivas y correctivas en los procedimientos de conservación in vitro de germoplasma de camote.

Palabras claves: Bacteria, ARNr 16S, in vitro culture, Ipomoea batatas

ABSTRACT

The existence of bacterial microorganisms able to co-exist with the *in vitro* cultures limits the efficiency for conservation of genetic resources. The aim of this study was to develop a molecular method for detecting bacteria in in vitro cultures of Ipomoea batatas "sweet potato". 2377 accessions were analyzed from the sweetpotato germplasm collection conserved at CIP. Stem segments and root tissue were cultured in nutrient broth and incubated for three days at room temperature (RT), three days at 28 °C and fourteen days at RT. The isolates were grouped conventionally (microbiological and biochemically). Molecularly, the 16S rRNA region was sequenced based on which specific DNA primers were designed, and the detection limit in CFU*mL⁻¹ determined for each set of primers. 185 bacterial strains were isolated, identified 15 groups [Sphingomonas sp., Bacillus pumilus (three isolates), Bacillus cereus, Paenibacillus illinoisensis, Paenibacillus taichungensis, Methylobacterium extorquens, Brevibacterium casei, Acinetobacter sp., Microbacterium sp., Streptomyces parvulus, Bacillus firmus, Staphylococcus pasteuri, Bacillus licheniformis, Janibacter sp. and one unknown]. The primers were highly specific for identifying the first ten strains. The limit of detection of bacteria by PCR was determinated using two methods: directly from bacterial broth cultivated 48 hours, except Janibacter sp after 96 hours, or directly from contaminated plants after DNA extraction. The primer pair for detection of the most common contaminant bacterial species (representing 41.4% of all contaminants), Paenibacillus taichungensis, was the most sensitive with both methods detecting as few as $5*10^{0}$ and $5*10^{1}$ CFU*mL⁻¹ respectively. Pseudomonas oryzihabitans and Staphylococcus sp. which we could not identify conventionally were identified molecularly based on the 16S rRNA sequence. The results indicate this method is efficient for the identification and detection of these microorganisms without the need of the bacterial culturing. The developed method may therefore be useful for the implementation of preventive and corrective practices in the procedures for the *in vitro* conservation of sweet potato germplasm.

Key words: Bacteria, 16S rRNA, in vitro culture, Ipomoea batatas.

I. INTRODUCCIÓN

El camote o batata (Ipomoea batatas (L.) Lam.) es una planta perenne, cultivada anualmente y es el sexto cultivo en importancia para la seguridad alimentaria mundial (FAOSTAT, 2009), siendo China el principal productor en el mundo con 85 millones de toneladas (CIP, 2010). El cultivo produce una raíz reservante y es de alta productividad, bajos costos de producción, bastante rústico y generalmente está en el campo de forma rústica. Tiene múltiples aplicaciones; además de la raíz reservante también se utiliza toda la planta, sea como medio de propagación (Moulin *et al.*, 2012), alimento, forraje, o como materia prima para diferentes productos industriales (Jata *et al.*, 2011).

El Centro Internacional de la Papa (CIP) mantiene la colección de germoplasma de camote mas grande del mundo, que contiene 8026 accesiones de las cuales 1171 son silvestres (CIP, 2011). Las accesiones cultivadas requieren su mantenimiento clonal en el campo, el cual es muy costoso y conlleva riesgos de pérdida por enfermedades infecciosas o condiciones climáticas desfavorables (Benson, 2003).

Una de las formas actuales de conservación ex-situ del germoplasma es mediante el cultivo de tejidos *in vitro*. La conservación *in vitro* se realiza con el objetivo de garantizar la disponibilidad del recurso cuando se le necesite y para mantener la diversidad y variabilidad genética de éste con fines de mejoramiento (Maza, 2006).

El mantenimiento *in vitro* ofrece las siguientes ventajas: menores costos de mano de obra, ausencia de infecciones de campo, protección contra condiciones ambientales desfavorables, acceso oportuno al material en conservación, así como también la eliminación de patógenos y disponibilidad permanente de material para propagación y exportación. El cultivo de tejidos también permite la propagación clonal rápida de un gran número de plántulas en un período breve, bajo condiciones controladas, y en espacios pequeños (Benson, 2003).

La prevención de contaminación de cultivo de tejido de planta es fundamental para una exitosa micropropagación. Las células de la planta creciendo en *in vitro* están consideradas bajo un cierto estrés y pueden estar predispuestas a infección directa, aún por bacterias no patogénicas (Habiba *et al.*, 2002).

El medio de cultivo en el cual el tejido vegetal es cultivado es un buen recurso nutritivo para el crecimiento microbiano. Estos microbios compiten con el cultivo de plantas por el nutriente (Odutayo *et al.*, 2007a), cambian el pH y producen sustancias tóxicas (Brimeta *et al.*, 2004). La presencia de estos microbios en estos cultivos de plantas usualmente trae como consecuencia infecciones latentes que pueden generar un crecimiento variable, muerte del tejido, reducción en la proliferación de brotes, y reducción de enraizamiento (Odutayo *et al.*, 2007a). Durante la micropropagación, la contaminación puede permanecer sin detección porque la concentración de sales, concentración de sacarosa, pH y temperatura no son óptimas para el crecimiento bacteriano. Cuando las condiciones de cultivo son cambiadas, y resultan favorables al desarrollo microbiano, contaminantes bacterianos, que estaban presentes en forma imperceptible pueden multiplicarse activamente y dañar el cultivo de plantas (Wojtania *et al.*, 2005).

En el Centro Internacional de la Papa (CIP), las técnicas de cultivo *in vitro* aplicadas al mantenimiento de cultivares de camote que presentan signos de contaminantes bacterianos, implican tratamientos para controlar el desarrollo microbiano sin afectar la planta. Así, se tratan a las plantas con desinfectantes químicos (Odutayo *et al.*, 2007a), y con antibióticos. Además, se ha probado la técnica de cultivo de meristemos, que ha mostrado un bajo porcentaje de sobrevivencia. Adicionalmente, la técnica de la reintroducción *in vitro* en combinación con la aplicación de Dimanin®, han dado mejores resultados positivos en la eliminación bacteriana (Maza, 2006).

Los métodos que se aplican en la conservación *in vitro* de recursos genéticos deben ser lo suficientemente eficientes para que garanticen la perpetuidad de estos. Así, existen factores que limitan la conservación *in vitro* de germoplasma de camote. Un ejemplo es la existencia de microorganismos bacterianos capaces de co-existir con los cultivos *in vitro* de manera inconspicua (Leifert y Cassells, 2001), haciendo difícil su detección y afectando su sanidad. En el CIP se mantiene y conserva la colección de germoplasma *in vitro* de camote más grande del mundo, existiendo reportes anteriores (Maza, 2006) de detección de contaminación bacteriana en un 3.7 % de la colección. En la presente investigación, se sospechaba de su incremento, y se planteó evidenciar que el método de detección bacteriana aplicado en el Banco de Germoplasma del CIP tenía limitaciones "escapes" en la detección de contaminantes bacterianos en cultivos *in vitro* de *Ipomoea batatas* "camote" y necesitaba la aplicación de métodos más eficientes.

Es por esto, que surge la necesidad de implementar métodos moleculares que permitan la identificación rápida y eficaz de los microorganismos bacterianos difíciles de detectar por métodos convencionales (Kirk *et al.*, 2004). Los métodos de detección molecular basados en la reacción en cadena de de la polimerasa (PCR) tienen la ventaja de ser rápidos, sensitivos y específicos (Budowle *et al.*, 2010). En los últimos años, el uso de la secuencia del gen ARNr 16S es un importante criterio en la taxonomía microbiana (Rodicio y Mendoza, 2004 y Kreuze *et al.*, 1999).

La presente investigación propuso aplicar herramientas moleculares, que incluyan pruebas de amplificación de regiones ARNr 16S bacteriano; secuenciamiento y desarrollo de cebadores específicos, a fin de estandarizar un método que facilite la detección e identificación eficiente de las bacterias presentes en las muestras de la colección *in vitro* de camote mantenido en el Banco de germoplasma del CIP.

II. REVISIÓN DE LITERATURA

2.1 CAMOTE

2.1.1 POSICIÓN TAXONÓMICA

(NCBI, 2011) Reino: Viridiplantae SubReino: Embryophyta División: Magnoliophyta SubDivisón: Angiospermae Clase: Magnoliopsida SubClase: Asteridae Orden: Solanales Familia: Convolvulaceae Género: Ipomoea Sección: batatas Especie: *Ipomoea batatas* (L.) Lam

2.1.2 ORIGEN DEL CAMOTE

Existen varias teorías sobre el área geográfica de su domesticación; algunos investigadores defienden el origen mesoamericano y otros el polinesio. Austin (1988) propuso que surgió en el área geográfica ubicada entre Yucatán y la desembocadura del río Orinoco, que es donde se distribuye *I. trifida*, planta silvestre que se ha emparentado con *I. batatas*. Esta región geográfica está cercana al actual área de mayor diversidad de camotes, en Perú. Como puede verse, los hechos históricos e información arqueológica no habían sido concluyentes para dilucidar el origen de *I. batatas*, hasta que estudios citogenéticos (Srisuwan *et al.* 2006) demostraron que el pariente silvestre más relacionado es *I. trifida* y que tal vez sea su progenitor (Zhang *et al.*, 2000a).

Basado en 69 cultivares de *I. batatas* de cuatro regiones geográficas latinoamericanas, el análisis desarrollado con marcadores moleculares por medio de la técnica AFLP (polimorfismo en la longitud de los fragmentos del ADN amplificado) mostró un patrón geográfico, revelando la mayor diversidad genética en América Central y menor diversidad en Perú y Ecuador (Zhang *et al.*, 2000a).

Por otro lado, los estudios de Rajapakse y colaboradores (2004), demostraron con la variación de la secuencia de nucleótidos para el gen ß-amilasa, que *I. trifida* e *I. batatas* forman un grupo monofilético, es decir, que descienden del mismo ancestro.

La vía de llegada del camote al Suroeste del Pacífico es un debate que sigue abierto. Estudios de diversidad genética del germoplasma de Oceanía, Filipinas, México, Perú y Ecuador, evidenciaron una amplia diversidad genética en Oceanía mayormente relacionada con México pero no con el germoplasma de Perú-Ecuador, lo que sugeriría que el camote proveniente de Oceanía probablemente deriva de Mesoamérica a través de una dispersión no humana (Zhang *et al.*, 2000b).

2.1.3 NUTRICIÓN Y CONSUMO

El camote es un alimento de alta energía, sus raíces tienen un contenido de carbohidratos totales de 25 a 30%, de los cuales el 98% es considerado fácilmente digestible. Es una fuente excelente de carotenoides de provitamina A. Recientes estudios del papel de la vitamina A y la fibra sobre la salud humana puede realzar aún más los beneficios del camote. También es una fuente de vitamina C, potasio, hierro y calcio. El contenido de aminoácidos es bien balanceado, con un mayor porcentaje de lisina que el arroz o el trigo, pero un contenido limitado de leucina. (FAO, 2006).

Las raíces del camote se utilizan para el consumo humano, como hortaliza y en sopas, industrialmente se usa para elaborar dulces, obtener almidón, el cual a su vez es materia prima para la obtención de alcohol; la raíz es también una fuente saludable y barata de alimento para animales (FAO, 2006). Estudios recientes sugieren que los animales alimentados con hojas de camote con alto contenido de proteínas, producen menos gas metano que consumiendo otros alimentos; esto contribuye potencialmente a una importante reducción de las emisiones dañinas en el mundo (CIP, 2010).

2.2 BANCOS DE GERMOPLASMA

Los bancos de germoplasma son centros orientados al almacenamiento de propágulos de una parte representativa de la variabilidad genética correspondiente a una determinada especie. Dentro de esta categoría podemos distinguir los bancos de semillas, los bancos de cultivo *in vitro*, los bancos de polen y los bancos de genes o bancos de ADN (Iriondo, 2001).

El CIP cuenta con el banco de germoplasma *in vitro* más grande del mundo. Alberga aproximadamente 8,026 variedades de camote. Este banco conserva muestras vivas de la inmensa diversidad mundial de variedades del cultivo y sus parientes silvestres. También asegura los recursos genéticos para el largo plazo y su disposición para los agricultores, fitomejoradores e investigadores (CIP, 2011).

2.3 CULTIVO IN VITRO

En su amplia acepción, el cultivo *in vitro* comprende a un grupo de técnicas mediante las cuales un explante (parte separada de un vegetal, por ejemplo: protoplasto, célula, tejido, órgano) se cultiva asépticamente en un medio de composición química definida y se incuba en condiciones ambientales controladas (Roca y Mroginski, 1991).

El cultivo de tejidos permite la propagación clonal rápida de un gran número de plántulas en un periodo breve, y la conservación del germoplasma bajo condiciones controladas, en espacios pequeños y con poca mano de obra (Espinoza *et al.*, 1992).

Estos cultivos pueden ser utilizados para: a) estudios básicos de fisiología, genética, bioquímica y ciencias afines, b) bioconversión y producción de compuestos útiles, c) incremento de la variabilidad genética, d) obtención de plantas libres de patógenos e) propagación de plantas y f) conservación e intercambio de germoplasma (Roca y Mroginski, 1991).

Entre las ventajas que presenta la mantención *in vitro* destacan la conservación de un gran número de plantas en espacios reducidos, un mayor control sobre el estado fitosanitario de las colecciones, la reducción de los tiempos de multiplicación, la facilidad de intercambio de material genético, e incremento de la tasa de multiplicación clonal de germoplasma valioso. Las desventajas de esta técnica es que requiere de subcultivos periódicos ("repiques"), actividad que dificulta en muchos casos su aplicación (Engelmann, 1997) y que entre estos subcultivos periódicos y/o desde el establecimiento *in vitro* de los explantes estos puedan presentar contaminación. Las contaminaciones pueden causar pérdidas económicas muy importantes en la micropropagación (Cassells, 1991).

2.4 CONTAMINACIÓN EN CULTIVOS IN VITRO

La contaminación microbiana es un problema universal que afecta el trabajo del cultivo de tejido de plantas (Panicker, 2007). Puede estar presente por microorganismos epifíticos y endofíticos que pueden causar severas pérdidas en la micropropagación de plantas en cada etapa de crecimiento. Las bacterias epifíticas pueden alojarse en estructuras de plantas donde desinfectantes no pueden llegar y las bacterias endofíticas pueden estar localizadas en las uniones celulares y los espacios intercelulares del parénquima cortical de la planta (Reed y Tanprasert, 1995). Estas últimas son las más difíciles de controlar porque no causan algún síntoma visible en el cultivo contaminado (Wojtania *et al*, 2005), manifestándose sólo cuando las condiciones ambientales y nutritivas varían (Reed y Tanprasert, 1995).

Los daños que pueden causar en los cultivos *in vitro* pueden ser localizados o sistémicos (Leifert y Cassells 2001), reduciendo la tasa de multiplicación y enraizamiento, y llegando a causar la muerte (Reed y Tanprasert, 1995).

Entre las bacterias reportadas como contaminantes de los cultivos de tejidos vegetales in vitro tenemos a Bacillus subtilis, Bacillus pumilus, Bacillus circulans, Lactobacillus plantarum, Lactobacillus acidophilus, Erwinia carotovora, Micrococcus kristinae. Staphylococcus saprophyticus, *Staphylococcus* Enterobacter warneri. Enterobacter cloacae, Serratia plymuthica oxytoca, agglomerans, Klebsiella maltophila, Pseudomonas fluorescens, Pseudomonas putida, *Stenotrophomonas* Sphingomonas paucimobilis, Alcaligenes denitrificans, Acinetobacter calcoaceticus iwoffi, Acinetobacter calcoaceticus anitratus y Agrobacterium radiobacter (Leifert y Woodward, 1998).

Los procedimientos estándar de esterilización de tejidos y adición de antibióticos, no controlan eficientemente la contaminación microbiana, sugiriendo la naturaleza endofítica y resistente a los antibióticos de estos contaminantes (Birmeta *et al.*, 2004). El uso de antibióticos sin embargo, es el método más ampliamente usado para contrarrestar el desarrollo bacteriano; siendo bactericidas, bacteriostáticos, algunas veces fitotóxicos para los tejidos vegetales (Reed y Tanprasert, 1995). Así mismo, tratamientos alternativos como el uso de compuestos preservantes como el "Plant Preservative Mixture (PPMTM)" mostraron cierta efectividad en algunos cultivos pero no en el caso del camote (Maza, 2006). Otra técnica es el cultivo de meristemos que logra la eliminación efectiva de microorganismos restringidos al sistema vascular pero existe la posibilidad de presencia de bacterias en los meristemos (Cassells y Tahmatsidou, 1996).

2.5 MÉTODO MICROBIOLÓGICO PARA DETECCIÓN BACTERIANA

La identificación bacteriana, implica el estudio de las características morfológicas, culturales, microscópicas, metabólicas, su resistencia a antibióticos, y el uso de medios con requerimientos nutricionales. Esto último puede tener limitaciones, por no cumplir las exigencias nutricionales de los microorganismos presentes o debido a que la técnica no fue la adecuada en el caso de tratarse de microorganismos no cultivables (Holdgate y Zandvoort, 1997).

Así, Egúsquiza (1996) logró identificar a *Pseudomonas cepacia*, *Erwinia herbicola* y *Bacillus circulans*, y Maza (2006) logró identificar a *Bacillus* sp., *Bacillus pumilus*, *Stenotrophomonas malthophilia* y *Sphingomonas paucimobilis* en cultivos *in vitro* de camote.

En el 2011, Chandra y Chandra han logrado identificar a una bacteria gram positiva *Corynebaterium* y a dos gram negativas *Klebsiella* sp. y *Pseudomonas* sp. El material que utilizaron para el aislamiento fue la base del tallo, así como, alrededores de los explantes de cultivo *in vitro* de camote.

2.6 MÉTODOS MOLECULARES

2.6.1 REACCIÓN EN CADENA DE LA POLIMERASA (PCR)

La reacción en cadena de la polimerasa (PCR), fue desarrollada en 1983 por Kary Mullis (Bartlett y Shrling, 2003). La PCR amplifica el ADN por medio de ciclos repetidos de duplicación *in vitro*. La PCR utiliza la enzima ADN polimerasa que dirige la síntesis de ADN a partir de sustratos de desoxinucleótidos y actúa sobre una plantilla de ADN monocatenaria. La ADN polimerasa sintetiza ADN en dirección 5' a 3' y puede agregar nucleótidos en el extremo 3' de un oligonucletido llamado cebador diseñado a medida (Watson *et al.*, 2006).

La PCR convencional comprende 25 a 50 ciclos repetitivos cada uno de los cuales incluye tres reacciones secuenciales: desnaturalización del ácido nucleico diana, apareamiento (hibridación) del cebador con el ácido nucleico diana de cadena simple y extensión del dúplex cebador-diana. La desnaturalización se logra a la temperatura de 94°C, en la que el ADN de doble cadena es desnaturaliza a una cadena de ADN. El apareamiento, se logra cuando el par de cebadores se hibridan con el ADN diana desnaturalizado, un cebador se aparea con un sitio específico en un extremo de la secuencia de una cadena diana mientras que el otro cebador lo hace con un sitio especifico en el extremo opuesto de la otra cadena complementaria. Este proceso se lleva a cabo a 50-58°C o más, dependiendo del tipo y cantidad de nucleótidos del cebador. La extensión del dúplex cebador-diana se da por la ADN polimerasa que agrega nucleótidos a los extremos 3' de cada cebador y se produce por extensión una secuencia complementaria del molde diana. La enzima Taq polimerasa de Thermus aquaticus es la que suele usarse para la extensión del cebador, que se produce a 72°C. Al terminar cada ciclo hay una duplicación del ácido nucleico diana y después de 30 a 40 ciclos habrá 10^7 a 10^8 copias diana en la mezcla de reacción. Los tres pasos de la reacción de PCR (Figura 1) tienen lugar en el mismo tubo, que contiene una mezcla de ácido nucleico diana, cebadores, componentes para optimizar la actividad de la polimerasa (buffer, catión [MgCl₂], sales) y desoxinucleótidos. Para mantener ciclos de reacción continuos se usan termocicladores programables (Forbes et al., 2009).

2.6.2 USOS DEL PCR

La PCR tiene numerosas aplicaciones generales. Entre ellas se encuentran: la caracterización mediante marcadores genéticos, detección de mutaciones puntuales, clonamiento de DNA copia (cDNA), clonamiento de ADN genómico, secuenciamiento de DNA, mutagenesis *in vitro*, estudios de expresión de genes, entre otros (Strachan y Read, 1999)

También ha sido probada para la detección de contaminantes microbianos en cultivo de tejido de plantas. Esta es una técnica precisa, rápida y sensitiva (Isenegger *et al.*, 2003)

2.6.3 SECUENCIAMIENTO CON EL MÉTODO SANGER

Este método fue desarrollado a mediados de 1970 por Frederick Sanger y colaboradores, que crearon el método de secuenciación didesoxi, que se basa en la elongación del ADN, y que pronto se convirtió en el procedimiento estándar para secuenciar cualquier fragmento purificado de ADN (Pierce, 2010).

El método molecular de identificación bacteriana mediante secuenciación incluye tres etapas: a) Amplificación del gen a partir de la muestra apropiada; b) determinación de la secuencia de nucleótidos del amplicón, y c) análisis de la secuencia (Rodicio y Mendoza, 2004).

Un cebador sintético de oligonucleótidos es apareado a una cadena molde de ADN. Cuatro diferentes reacciones de secuenciamiento son establecidas cada una conteniendo una ADN polimerasa y los cuatro dNTPs normales. Uno de los precursores o en algunos casos el cebador es marcado radiactivamente con ³²P, ³³P, o ³⁵S o con una marca no radiactiva fluorescente. Las cuatro reacciones también contienen una pequeña porción de un 2',3'-ddNTP que lleva el átomo 3'H en la molécula desoxirribosa en vez del convencional grupo 3'OH. Si una molécula ddNTP es incorporada dentro una cadena creciente ADN, la ausencia de un grupo 3'OH previene la formación de un enlace fosfodiester con los subsiguientes dNTPs en una mezcla de reacción para la síntesis de ADN. Los productos de la reacción son una población de cadenas de oligonucleótidos cuyas longitudes son determinadas por la distancia entre el terminal 5'del cebador utilizado para iniciar la síntesis de ADN y los sitios de la terminación de la cadena. Usando los cuatro diferentes ddNTPs en reacciones enzimáticas separadas, se generan poblaciones de oligonucleótidos terminando en posiciones ocupadas por A, C, G o T en la cadena molde. Estas poblaciones de oligonucleótidos pueden ser separados por electroforesis y la localización de cada banda puede ser cerciorada por autoradiografia. Cuando las cuatro poblaciones son cargadas dentro líneas adyacentes de un gel de secuenciamiento, la

secuencia de la nueva hebra sintetizada puede ser leída en la orientación 5' a 3' desde el inicio al final del gel. (Sambrook y Russel, 2001)

En la actualidad esta reacción se realiza con máquinas automáticas que utilizan marcas fluorescentes y escáneres con láser para secuenciar cientos de pares de bases en unas pocas horas. En ellas también se utiliza la reacción de didesoxi, pero los ddNTP utilizados se marcan con un pigmento fluorescente, y se utiliza un color diferente para cada tipo de didesoxinucleótido. En este caso, las cuatro reacciones de secuenciación pueden realizarse en el mismo tubo, y colocarse en el mismo pocillo para la electroforesis. La máquina para secuenciación desarrollada recientemente contiene tubos capilares con gel para electroforesis. Los fragmentos de distintas longitudes producidas en la reacción de secuenciación se separan dentro del gel y migran pasando por un rayo láser y un detector. A medida que los fragmentos pasan por el láser, sus marcas fluorescentes se activan y la fluorescencia producida se detecta en un lector óptico. Cada pigmento emite fluorescencia de una longitud de onda característica, que es registrada por el lector. Esta información se introduce en un ordenador para su interpretación, y los resultados se imprimen como una serie de picos en un gráfico (Pierce, 2010). (Figura 2)

Figura 2: El método didesoxi de secuenciación puede realizarse en forma automatizada (Pierce, 2010)

2.6.4 SECUENCIA ARNr 16S

El ribosoma bacteriano está formado por dos subunidades, la grande 50S y la pequeña 30 S, cada una de éstas se encuentra compuesta por proteínas ribosómicas y moléculas de ARN ribosomoal (ARNr) específicas. La subunidad 30S contiene el ARNr 16S y 21 proteínas numeradas desde S1 hasta S21, mientras que la subunidad 50S contiene los ARNr 5S y 23S así como las 34 proteínas designadas con la letra L. Los genes que codifican estos ARN ribosomales están organizados en operones, que corresponden a un conjunto de genes que se transcriben a partir de la misma región promotora: Así, cada operón contiene genes para los ARNr 23 S (rrl), 16S (rrs) y 5S (rrf), que están separados

por regiones intergénicas o separadoras que poseen genes para ARN de transferencia (ARNt) (Gutiérrez *et al.*, 2009).

El ARNr 16S está codificado por el gen rrs, denominado también ADNr 16S. Es considerado un buen marcador molecular (Gutiérrez *et al.*, 2009). Es un polirribonucleótido de aproximadamente 1.500 nucleótidos, a partir de cuya secuencia se puede obtener información filogenética y taxonómica. Como cualquier secuencia de nucleótidos de cadena sencilla, el ARNr 16S se pliega en una estructura secundaria, caracterizada por la presencia de segmentos de doble cadena, alternando con regiones de cadena sencilla (Rodicio y Mendoza, 2004).

El análisis de la secuencia de los ARNr 16S de distintos grupos filogenéticos reveló un hecho adicional de gran importancia práctica: la presencia de una o más secuencias características que se denominan oligonucleótidos firma o "signature". Se trata de secuencias específicas cortas que aparecen en todos (o en la mayor parte de) los miembros de un determinado grupo filogenético, y nunca (o sólo raramente) están presentes en otros grupos, incluidos los más próximos. Por ello, los oligonucleótidos firma pueden utilizarse para ubicar a cada bacteria dentro de su propio grupo (Rodicio y Mendoza, 2004).

2.6.5 DISEÑO DE CEBADORES

La abundancia de datos de secuencias génicas disponibles permite el diseño de cebadores específicos para diversos patógenos microbianos y para sus genes de factores de virulencia o resistencia a los antibióticos. Así, el diseño de su secuencia de nucleótidos depende del ácido nucleico diana que se busque (Forbes, 2009).

En el diseño de cebadores se busca su especificidad como su eficiencia. Para que esto sea logrado se debe tener en cuenta los siguientes parámetros: Longitud del cebador, el nucleótido terminal 3' en el cebador de la PCR, contenido de guanina (G)-citosina(C) y temperatura de fusión (Dieffenbach *et al.*, 1993).

El uso de estos parámetros y el manejo de programas de bioinformática, facilitará la producción de cebadores de calidad (Dieffenbach *et al*.1993).

III. MATERIALES Y MÉTODOS

3.1 MATERIALES

3.1.1 Material Biológico

Se utilizaron plántulas de *Ipomoea batatas* "camote" libre de virus, de 2 meses de cultivo *in vitro*, conservadas en el Banco de germoplasma *in vitro* del CIP, almacenadas en cámara, bajo las siguientes condiciones controladas: temperatura a 20 \pm 1° C, intensidad luminosa a 50µmol/m²/s, fotoperiodo de 16 h de luz y 8 h de oscuridad.

3.1.2 Materiales y reactivos de laboratorio

a. Materiales

- Fluorescentes de Fluorescente Cool daylight 36W.
- Tubos de ensayo de 18 mm
- Hojas de bisturís Nº 10.
- Pinzas y Mango de bisturí.
- Mechero.
- Microtubos de 1.5 ml.
- Láminas porta objeto.
- Papel impregnado filtro con 1% de tetrametil-para-difenilamina.
- Asas de Kölle.
- Placas Petri.
- Regla milimetrada
- Soporte y peines de electroforesis
- Puntas de 1-10 μl, 10-200 μl, 100-1000 μl.
- Pipetores de 1-10 μl, 10-200 μl, 100-1000 μl.
- Cinta masking tape

- Vasos de Precipitado
- Probeta
- Matraces de erlenmeyer
- Guantes de latex
- Papel Toalla
- Morteros
- Espátulas

b. Reactivos

- Alcohol 70%.
- Medio de Conservación Batatas (MCB) (Anexo 1)
- Caldo Nutritivo enriquecido (CNe). (Anexo 1)
- Agar Nutritivo enriquecido (ANe). (Anexo 1)
- Agar Nutritivo modificado (ANm). (Anexo 1)
- Agar Kelman. (Anexo 1)
- Medio de Hugh-Leifson. (Anexo 1)
- Agar Tripticasa de Soya (Anexo 1)
- Agar Almidón (Anexo 1).
- Reactivos de tinción Gram con los colorantes cristal violeta y safranina.
- Reactivos tinción de endosporas con los colorantes carbofucsina y tinta china.
- Peróxido de hidrógeno 30V.
- Glicerol al 80 %.
- Parafina líquida estéril.
- Dinucleotidos trifosfatados (dNTPS): dATP, dGTP, dCTP y dTTP (Promega, USA).
- Tampón Tris Borato EDTA (TBE) 1X.
- Taq Polimerasa 5u/ μ (Promega)
- Tampón de reacción GoTaq® (Promega, USA)
- Agua Libre de Nucleasas
- Kit Wizard® SV Gel y PCR.
- Agarosa
- Tampón de carga de ADN (Salb) 10X.

- Gel Red1/1
- Marcador de corrida (Lambda Pst1)
- Nitrógeno liquido
- Cebadores universales ARNr 16S pA, pF 5mM

Cebadores	Secuencia	Tamaño Amplicón (pb)	Referencia
pA : sentido	5' – AGAGTTTGATCCTGGCTCAG – 3'	1066	(Kreuze <i>et</i>
pF : antisentido	5' –ACGAGCTGACGACAGCCATG – 3'		al., 1999)

- Tampón bromuro de cetil–trimetil amonio (CTAB) 2X y 10X (Anexo2).
- β mercaptoetanol
- Cloroformo: Alcohol Isoamílico 24:1
- Etanol helado al 70% y al 95%
- Isopropanol helado

3.1.3 Equipos

- Cámaras de incubación para cultivo in vitro de Material Vegetal a 20±1°C
- Dispensador de Medios automático (Watson[®])
- Balanza(Mettler Toledo[®])
- Autoclave (Market Forge[®])
- Potenciómetro (Orion Research[®])
- Incubadora a 28°C (Thermo Scientific[®] y Sanyo[®]).
- Incubadora a 28 °C con Agitador (New Brunswick Scientific[®])
- Microscopio óptico (Olympus[®])
- Cámara digital (Nykon[®])
- Cámara (Moticam[®])
- Refrigeradora a -20°C (Frigidaire[®])
- Cámara de Flujo Laminar (The Baker Co[®])

- Termociclador (Applied Biosystems[®])
- Vortex(Scientific Industries[®])
- Centrifuga (Eppendorf 5415D[®])
- Captador digital de imágenes (BioRad[®])
- Espectrofotómetro (Spectronic 20 Bausch & Lomb[®])
- Computador con los siguientes programas bioinformaticos: DNASTAR: SeqMan[®],
 Bioedit[®], Vector NTI[®]y Mega 5[®]: ClustalW.

3.2 MÉTODOS

3.2.1 Detección de contaminantes bacterianos

a. Detección visual

Se basó en la detección de signos de crecimiento microbiano en todos los clones de una accesión, mediante la inspección visual directa de los cultivos *in vitro* del Banco de Germoplasma de *Ipomoea Batatas* (camote) en la colección libre de virus del CIP. Las plántulas contenidas en los tubos de ensayo fueron examinadas con ayuda de luz blanca-día artificial, para la detección de algún signo microbiano (película con alguna coloración, halos blanquesinos o incoloros, mucosidad) sobre la planta, la base del tallo, paralelo a la raíz, sobre medio y/o en el medio.

b. Aislamiento bacteriano

Cultivo en medio líquido en Caldo Nutritivo enriquecido (CNe)

En condiciones de esterilidad las muestras se procesaron de la siguiente manera: Se realizó cortes transversales entre 1-2 mm del tejido caulinar y de 0.5 cm de tejido radicular, que fueron colocados en tubos 16x150mm con 3ml de CNe. Cada accesión fue incubada 3 días temperatura ambiente, luego incubada por 3 días a 28°C y finalmente 3 semanas en temperatura ambiente.

- Cultivo en Medio Sólido

Se consideraron CNe positivos aquellos que presentaron turbidez visual en el medio líquido. Estos fueron luego sembrados en ANe por duplicado. Se incubó a 28°C en incubadora por 2 días y fueron dejados a temperatura ambiente por 15 -20 días.

El resultado visual de CNe negativo fue confirmado posteriormente mediante su siembra por estrías de una alícuota en ANm y en Agar Kelman (15ml por placa estéril). Las placas con ANm fueron incubadas a temperatura ambiente por 20 días y las de Agar Kelman fueron incubadas por 2 días a 28°C y luego 18 días a temperatura ambiente.

3.2.2 Caracterización morfológica de los contaminantes bacterianos

Las colonias aisladas en placa, se agruparon por caracterización morfológica macroscópica y microscópica. En la primera, se procedió a realizar la descripción del borde, superficie, brillo, forma, elevación, aspecto, color y se midió el diámetro de las colonias. Y en la segunda, se procedió a realizar la tinción gram por el método modificado de Hucker (Gerhardt *et al.*, 2008) a las 24 horas, y se realizó observación microscópica a 1000X. Para las gram positivas se realizó tinción de endosporas por el método de Dorner (Flint *et al.*, 2005).

3.2.3 Caracterización bioquímica de los contaminantes bacterianos

Se realizaron pruebas bioquímicas: de Oxidasa según el método de Steel (Naz *et al.*, 2012), Catalasa (Mac Faddin, 2000) y Oxidación-Fermentación (O/F) por el método de Hugh y Leifson (Hijnen *et al.*, 1995), a fin de asegurar la no repetición de los grupos formados por diferencias morfológicas, se realizó la hidrolisis de almidón en el caso de *Bacillus* sp. parecidos (Okanlawon *et al.* 2010).

Las cepas se mantuvieron en microtubos con CNe a -20 °C con glicerol al 80 % para posteriores estudios.

3.2.4 Caracterización e Identificación Molecular

Se realizaron los siguientes pasos:

a. Amplificación por Reacción en Cadena de la Polimerasa (PCR).

La secuencia codificante ARNr 16S se amplificó utilizando el par de cebadores pA-pF' (Kreuze *et al.*, 1999). Se realizó todo a un volumen final de 25 μ L. El inóculo bacteriano utilizado fue cultivado en microtubos en el agitador orbital a 124rpm, de 2 a 5 días, a 28 °C y a temperatura ambiente respectivamente, dependiendo de las características de crecimiento de cada microorganismo. En el cuadro 1 se aprecia las condiones del PCR por reacción.

Ciclo	Reacción	Temperatura (°C)	Tiempo (minutos)	Número de ciclos
1°	Desnaturalización inicial	95	3.0	1
	Desnaturalización	95	0.30	
2°	Alineamiento	55	0.30	35
	Extensión	72	1.20	
3°	Extensión final	72	3.00	1
4°	-	4	œ	-

Cuadro 1: Condiciones de la reacción en cadena de la polimerasa (PCR) para 1 tubo de reacción (componentes, cantidades y concentraciones)

La amplificación mediante reacción en cadena de la polimerasa se realizó usando el siguiente programa según Kreuze *et al*, 1999 (cuadro 2).

Solución stock	Volumen(µL)	Concentración final
Tampón de reacción Gotaq®	5	1 X
dNTPs	1	200 µM
рА	0.625	125 pM
pF	0.625	125 pM
Go taq [®] DNA polimerasa	0.125	0.625 U
Inóculo bacteriano	1	
Agua libre de nucleasas	16.63	-
Total	25	

Cuadro 2: Programa de Amplificación de la reaccion en cadena de la polimerasa (PCR)

b. Purificación de los amplicones. El producto del PCR fue purificado utilizando el Kit Wizard[®] SV Gel and PCR según especificaciones del proveedor (www.promega.com/tbs).

c. El secuenciamiento fue realizado por Macrogen Inc., Seul, Korea del Sur (http://www.macrogen.com).

d. El ensamblaje y el análisis computacional de las secuencias de ADN se realizó, utilizando el programa DNASTAR: SeqMan[®]. Las similaridades de las secuencias ARNr 16S fueron comparadas con las secuencias de la base de datos del NCBI Genbank (<u>http://www.ncbi.nlm.nih.gov/</u>) utilizando la búsqueda BLASTn y con Ribosomal DataBase (<u>http://rdp.cme.msu.edu/</u>). Considerando sólo aquellos con un 99 % de similaridad de preferencia.

3.2.5 Diseño de cebadores

Según los resultados anteriores, se buscaron secuencias específicas para los géneros encontrados, mediante un alineamiento de las secuencias utilizando el programa Mega

5.05[®] y la aplicación del Clustal W. Se analizaron sus propiedades termodinámicas y la no formación de dúplex mediante el programa Vector NTI[®].

Los cebadores fueron sintetizados por Invitrogen™ (<u>http://www.invitrogen.com</u>).

3.2.6 Determinación de la temperatura de alineamiento de los cebadores

Se determinó el rango teórico para las pruebas de gradiente de temperatura, a fin de escoger una temperatura óptima de alineamiento (Espinoza, 2007).

3.2.7 Prueba con ADN de planta sana como control

Se seleccionó una planta que dió resultado CNe negativo para el presente análisis, siendo considerada esta una planta limpia (no contaminada).

Se realizó la extracción de ADN de planta según método modificado de Doyle (Tsay *et al.*, 2012) mostrado a continuación, cuyos tampones usados se encuentran detallados en el Anexo 2.

a. Se pulverizó con nitrógeno líquido el tejido radicular colectado, aproximadamente
 200 mg.

b. En un microtubo de 1,5 ml se colocó material vegetal pulverizado hasta la marca de 500 μ l y se resuspendió con 700 μ l de tampón CTAB (2X), se adicionó 2 μ l de β mercaptoetanol. Se agitó suavemente e incubó por 30 minutos a 65 °C.

c. Se retiró de la incubadora y se dejó reposar por espacio de 2 minutos a temperatura ambiente.

d. Se agregó 700 μ l cloroformo: alcohol isoamílico (24:1) y se mezcló suavemente el microtubo, se centrifugó 5 min a 14 000 rpm para ser luego transferido el sobrenadante a otro microtubo.

e. Se adicionó 50 μl de CTAB (10X), se mezcló suavemente para homogenizar todo el líquido.

f. Se adicionó 700 μl de cloroformo: alcohol isoamílico (24:1), se mezcló suavemente y se centrifugó 5 min a 14 000 rpm, luego se transferió el sobrenadante a otro tubo.

g. Se agregó ³/₄ partes del volumen final (500 μl aprox.) de isopropanol helado para precipitar el ADN. Se incubó a -20 °C durante 40 min.

h. Se centrifugó por 20 min a 12 000 rpm y se descartó el sobrenadante cuidando de no perder el pellet.

i. Se lavó el pellet con 500 μ l de etanol al 70% helado y se centrifugó 20 min a 12000 rpm y luego se descartó el etanol.

j. Se lavó el pellet con 500 μl de etanol al 95% helado y se centrifugó 20 min a 12000 rpm y luego se descartó el etanol.

k. Se permitió que el ADN (pellet) seque al aire libre por 2 horas invertiendo el tubo y luego se resuspendió el ADN en 80 μ l de agua libre de nucleasas estéril (aproximadamente) y se almacenó a -20 °C.

Los cebadores seleccionados fueron aquellos que no presentaron amplificación con muestra de ADN de planta limpia.

3.2.8 Prueba de especificidad entre los grupos bacterianos

A fin de obtener el mejor juego de cebadores específicos para cada grupo bacteriano, se probó cada microorganismo con los pares de cebadores diseñados para los otros microorganismos, estos últimos fueron seleccionados por su buena amplificación y por su no amplificaron con ADN del control.

Además, contrario a lo anteriormente nombrado, las otras opciones de cebadores fueron probados por la amplificación de cada cebador versus todos los microorganímos.

3.2.9 Determinación del límite de detección de los cebadores

Para determinar el límite de detección de los cebadores se siguieron dos métodos:

a. Detección directa de inóculo microbiano

a.1 Crecimiento microbiano. Se cultivaron los microrganismos representativos de cada grupo por dos días a 28 °C en el agitador orbital a 124rpm, en microtubos con 700ul CNe a

fin de obtener un inóculo adecuado. Los que tenían crecimiento lento fueron cultivados en matraces con 10ml de CNe.

a.2 Se estandarizó la concentración de todos los microorganismos a una densidad óptica de 0.1, con la ayuda del espectrofotómetro a una longitud de onda de 620nm.

a.3 Se hicieron diluciones sucesivas, sembrando 50μ L en placas de ANe, a fin de determinar las Unidades Formadoras de Colonia (U.F.C.) por dilución. Se escogió la dilución en el rango de 20-250 UFC, con la que se pudo determinar el volumen de inóculo (μ L) que fue necesario para 1*10⁶ UFC*mL⁻¹.

a.4 Se hicieron 6 diluciones 10^5 - 10^0 UFC*mL⁻¹, con la finalidad de determinar a partir de que concentración es posible la detección y de las que no eran detectadas se amplió el rango hasta 10^9 UFC*mL⁻¹.

a.5 Se realizó la PCR con los cebadores seleccionados para cada dilución probada. En la cual se realizó con las condiciones mostradas en los cuadro 1 y cuadro 2, variando la temperatura de alineamiento según cebador utilizado. Utilizando 1 μ l de la dilución bacteriana.

a.6 Se utilizaron controles negativos y positivos. Este último mediante extracción de ADN de planta contaminada que fueron utilizadas para el secuenciamiento (2 meses de su propagación), utilizando el protocolo de acuerdo a lo descrito en el punto 3.2.7.

b. Detección de ADN de planta contaminada

b.1 Se trabajó con tejido radicular y caulinar pulverizado con nitrógeno líquido de plantas sanas, sin contaminación bacteriana, (0.1g) para cada dilución probada, que fue colocado en microtubos.

b.2 Se utilizaron diluciones (10 μ L) de los microrganismos del punto 3.2.9.a, que fueron inculadas en los microtubos que contenían las pulverizaciones.

b.3 Se procedió a realizar la extracción de ADN de planta contaminada con CTAB, según método de Doyle (Tsay *et al.*, 2012) protocolo de acuerdo a lo descrito en el punto 3.2.7.

b.4 Se realizó la PCR con los cebadores seleccionados para cada dilución probada. En la cual se realizó con las condiciones mostradas en los cuadro 1 y cuadro 2, variando la

temperatura de alineamiento según cebador utilizado. Se utilizó 1 µl de ADN de planta contaminada.

3.2.10 Comparación de la eficiencia de la agrupación por métodos convencionales mediante métodos moleculares

Se realizaron pruebas de los cebadores diseñados mediante PCR con cepas secuenciadas y con cepas caracterizadas morfológica y bioquímicamente diferentes a fin de comprobar la eficiencia de los cebadores diseñados, como de los grupos formados con los métodos convencionales.

3.2.11 Determinación del par de cebadores específicos para todas las cepas

a. Se realizaron pruebas con los cebadores pA, pF utilizados en la identificación molecular, con ADN de planta limpia utilizado en la prueba 3.2.7.

b. Se efectuó pruebas con cebadores que excluían la interferencia de ADN del cloroplasto y de la mitocondria en arroz, 799f, 1492r (Sun *et al.*, 2008) y también con combinaciones de cebadores 895f, 902r, 904r y 1185mR con universales 1492r (Hodkinson y Lutzoni, 2009) y pC (Kreuze, *et al*, 1999).

c. Se procedió al alineamiento de todas las secuencias para la elección del par de cebadores que abarquen a todos los microorganismos estudiados para posteriores trabajos.
Y se probaron estos con ADN bacteriano, con ADN de planta contaminada y con cultivo microbiano puro.

3.3 ANÁLISIS DE DATOS

Los datos obtenidos de la agrupación a nivel molecular y convencional se analizaron mediante una prueba de proporciones, con el programa estadístico R[®]. Esta función comprueba si dos o más muestras divididas por una variable dicotómica (sólo tiene dos formas de presentarse) tienen las mismas proporciones de cada valor (Chi, 2012), para así determinar la eficiencia del método molecular, y descartar que es independiente del uso de cualquier método.
Se trabajó con las siguientes hipótesis:

H_o: Los métodos de agrupación convencional y molecular son iguales (no hay diferencia significativa p>0.05)

Ha: Los métodos de agrupación convencional y molecular son diferentes (si hay diferencia significativa p<0.05).

También se halló el margen de error de las agrupaciones.

IV. RESULTADOS Y DISCUSIONES

4.1 DETECCIÓN DE CONTAMINANTES BACTERIANOS

De un total de 2377 accesiones de camote conservadas *in vitro* en el Banco de germoplasma del CIP que fueron evaluadas tanto visualmente, como en cultivo líquido, se obtuvieron los siguientes resultados: 141 accesiones positivas a presencia de contaminantes bacterianos (5. 93%) y 2236 fueron diagnosticadas limpias. Estas fueron reanalizadas en medio sólido, encontrándose 103 accesiones positivas (4.33%) y 2133 accesiones limpias. Con lo cual, el total de contaminación bacteriana presente en la colección fue de 244 accesiones (10.27%).

Solamente se trabajaron 178 accesiones consideradas contaminadas, debido a que 66 aislamientos bacterianos no pudieron ser reactivados. De las que 139 fueron cultivares antigüos, 33 cultivados, 5 mejoradas y 1 cultivar avanzando (Cuadro 3). Cinco de estas accesiones al ser aisladas en medio sólido presentaron contaminación múltiple: doble (N° CIP: 441159, 400256, 421135, 422556 y 440699) y triple (N°CIP: 440473). Siendo en total 185 aislamientos de bacterias. Este resultado es concordante con el aumento en 5.77% de detección de contaminación bacteriana detectado en el 2006 por Carmen Maza, determinándose que mediante el empleo del medio de cultivo bacteriano se puede tener un mejor control en la detección respecto a la detección visual (Holdgate & Zandvoort, 1997). Un ejemplo de accesión contaminada se observa en la Figura 3.

Figura 3: Detección visual de accesión de cultivo *in vitro* de camote (N°CIP 420278) con signos de presencia bacteriana

Nº CIP	Status biologico	País de origen
400982	Cultivar antigüo	ECU
440844	Cultivar antigüo	PNG
188005.1	Cultivado	PER
421103	Cultivar antigüo	PER
401042	Cultivar antigüo	ECU
400090	Cultivar antigüo	ARG
440008	Cultivado	USA
420830	Cultivar antigüo	PER
402789	Cultivar antigüo	ARG
400182	Cultivar antigüo	BOL
421136	Cultivar antigüo	PER
420246	Cultivar antigüo	PER
400291	Cultivar antigüo	BRA
401538	Cultivar antigüo	BOL
400213	Cultivar antigüo	BOL
400277	Cultivar antigüo	BRA
401522	Cultivar antigüo	VEN
400308	Cultivar antigüo	BRA
400274	Cultivar antigüo	BRA
400848	Cultivar antigüo	DOM
401043	Cultivar antigüo	ECU
420580	Cultivar antigüo	PER
420603	Cultivar antigüo	PER
420619	Cultivar antigüo	PER
420177	Cultivar antigüo	PER
420285	Cultivar antigüo	PER
420456	Cultivar antigüo	PER
442928	Cultivado	NGA
442802	Cultivado	NGA
442768	Cultivado	NGA
442797	Cultivado	NGA
442616	Cultivado	NGA
441580	Mejorado	USA
422584	Cultivar antigüo	PER
440922	Cultivar antigüo	PNG
440026	Mejorado	CHN
403043	Cultivar antigüo	ARG
421593	Cultivar antigüo	PER
402749	Cultivar antigüo	PRY

Cuadro 3: Relación de accesiones de cultivo *in vitro* de camote analizadas por contaminación <u>bacteriana</u>

441752	Cultivar antigüo	COG
441624	Cultivado	USA
440099	Cultivado	NGA
440326	Cultivado	TWN
440347	Cultivar antigüo	THA
189148.65	cultivar avanzado	CIPHQ
400194	Cultivar antigüo	BOL
400902	Cultivar antigüo	ECU
440214	Cultivar antigüo	IDN
440699	Cultivar antigüo	PNG
440473	Cultivar antigüo	IDN
420760	Cultivar antigüo	PER
420933	Cultivar antigüo	PER
440765	Cultivar antigüo	PNG
422060	Cultivar antigüo	PER
401031	Cultivar antigüo	ECU
401030	Cultivar antigüo	ECU
441259	Cultivar antigüo	TWN
440801	Cultivar antigüo	PNG
420538	Cultivar antigüo	PER
402751	Cultivar antigüo	PRY
400074	Cultivar antigüo	ARG
441168	Cultivar antigüo	SLB
401320	Cultivar antigüo	PRY
400390	Cultivar antigüo	COL
440771	Cultivar antigüo	PNG
440266	Mejorado	KOR
440142	Cultivado	USA
422505	Cultivar antigüo	PER
422503	Cultivar antigüo	PER
441017	Cultivar antigüo	PNG
402915	Cultivar antigüo	ARG
403021	Cultivar antigüo	ARG
403009	Cultivar antigüo	ARG
402897	Cultivar antigüo	ARG
401322	Cultivar antigüo	PRY
440157	Cultivado	CHN
440189	Cultivado	TWN
400293	Cultivar antigüo	BRA
441609	Cultivado	USA
400426	Cultivar antigüo	COL
401014	Cultivar antigüo	ECU
	20	

401211	Cultivar antigüo	MEX
400838	Cultivar antigüo	DOM
400148	Cultivar antigüo	BOL
400189	Cultivar antigüo	BOL
440717	Cultivar antigüo	PNG
400270	Cultivar antigüo	BRA
442748	Cultivado	NGA
441036	Cultivar antigüo	PNG
441615	Cultivado	USA
441159	Cultivar antigüo	SLB
400895	Cultivar antigüo	ECU
400874	Cultivar antigüo	DOM
441422	Cultivar antigüo	TWN
400317	Cultivar antigüo	BRA
422540	Cultivar antigüo	PER
400399	Cultivar antigüo	COL
400514	Cultivar antigüo	COL
400256	Cultivar antigüo	BRA
440188	Cultivado	JPN
420086	Cultivar antigüo	PER
199014.2	Cultivado	CIPHQ
400154	Cultivar antigüo	BOL
441194	Cultivar antigüo	THA
400997	Cultivar antigüo	ECU
441177	Cultivar antigüo	THA
442379	Cultivado	NGA
440236	Cultivado	TWN
440792	Cultivar antigüo	PNG
400192	Cultivar antigüo	BOL
400609	Cultivar antigüo	CUB
420341	Cultivar antigüo	PER
420345	Cultivar antigüo	PER
400371	Cultivar antigüo	COL
441473	Cultivar antigüo	TWN
440762	Cultivar antigüo	PNG
442198	Cultivado	NGA
441715	Mejorado	USA
422642	Cultivar antigüo	PER
400131	Cultivar antigüo	ARG
441787	Cultivar antigüo	JAM
400359	Cultivar antigüo	COL

420353	Cultivar antigüo	PER
422558	Cultivar antigüo	PER
440712	Cultivar antigüo	PNG
440309	Cultivar antigüo	PNG
422557	Cultivar antigüo	PER
422567	Cultivar antigüo	PER
401197	Cultivar antigüo	JAM
421034	Cultivar antigüo	PER
441280	Cultivado	TWN
401326	Cultivar antigüo	PRY
440786	Cultivar antigüo	PNG
400106	Cultivar antigüo	ARG
400483	Cultivar antigüo	COL
400441	Cultivar antigüo	COL
441777	Cultivar antigüo	JAM
401084	Cultivar antigüo	GTM
401400	Cultivar antigüo	VEN
440141	Mejorado	USA
440298	Cultivar antigüo	PNG
401549	Cultivar antigüo	COL
441548	Cultivado	USA
422556	Cultivar antigüo	PER
421135	Cultivar antigüo	PER
421092	Cultivar antigüo	PER
421099	Cultivar antigüo	PER
420326	Cultivar antigüo	PER
442775	Cultivado	NGA
401533	Cultivar antigüo	ECU
440023	Cultivado	USA
430394	Cultivado	NGA
440616	Cultivar antigüo	MYS
422534	Cultivar antigüo	PER
440314	Cultivado	TWN
441516	Cultivar antigüo	TWN
420621	Cultivar antigüo	PER
421133	Cultivar antigüo	PER
440020	Cultivado	USA
400547	Cultivar antigüo	CRI
441711	Cultivado	USA
400311	Cultivar antigüo	BRA
420251	Cultivar antigüo	PER
400280	Cultivar antigiio	BRA
100200	Calify an antiguo	

400062	Cultivar antigüo	ARG
402715	Cultivar antigüo	CUB
441180	Cultivar antigüo	THA
420278	Cultivar antigüo	PER
421426	Cultivar antigüo	PER
400108	Cultivar antigüo	ARG
442368	Cultivado	NGA
442536	Cultivado	NGA
420613	Cultivar antigüo	PER
442507	Cultivado	NGA
440199	Cultivar antigüo	THA
421115	Cultivar antigüo	PER
187002.1	Cultivado	PER
420405	Cultivar antigüo	PER

4.2 CARACTERIZACIÓN MORFOLÓGICA DE LOS CONTAMINANTES BACTERIANOS

Se realizó la caracterización morfológica a cultivos en medio sólido y mediante tinciones diferenciales de gram y de endosporas, obtenidos a partir de las accesiones contaminadas. En el Cuadro 4 se reporta el agrupamiento inicial basado en características culurales como forma, tamaño, borde, etc., de las colonias, así como su tinción gram y tinción de endosporas. Se obtuvieron 17 grupos identificados desde A hasta Q.

En la Figura 4 se muestran los cultivos en placa, así como la tinción gram de los aislamientos por cada grupo. Asimismo, en la Figura 5 se muestra la tinción de endosporas del aislamiento obtenido de la accesión N°CIP 421426.

Grupo	N° CIP	Borde	Brillo ^(a)	Forma	Elevación	Aspecto	Color	Diámetro (mm) promedio	Gram ^(b)	Forma celular	Endospora ^(b)
A	420278 - 420933	entero	+	cir- cular	convexa	mucoso	amarillo fuerte	0.5	-	bacilar	-
В	400311 - 421103 - 440699 - 401538 - 421034 - 420285 - 400270 - 422567	entero	+	cir- cular	convexa	mucoso	crema	1.8	+	estafilo- coco	-
С	421426 - 440765 - 422060 - 401031 - 401030 - 441259 -440473 -440801 - 420538 - 402751 - 400074 - 441168 - 441159 - 401320 - 400256 - 400390 - 440771 - 440266 - 440142 - 422505 - 422503 -441017 - 402915 - 403021 - 403009 - 402897 - 401322 - 440157 - 440189	entero	-	cir- cular	plana	mucoso	crema blanque- sino	8	+	bacilar	+

Cuadro 4. Caracterización morfológica y bioquímica de 185 cepas aisladas

A 1 4	/ ^ •	• • • •
I 'modro /	contini	IOMIAN
Vuauro 🕈		астонт
	(

Grupo	N° CIP	Borde	Brillo ^(a)	Forma	Elevación	Aspecto	Color	Diámetro (mm) promedio	Gram ^(b)	Forma celular	Endospora ^(b)
D	$\begin{array}{c} 420251 - 400293 - 441609 - 400426 - \\ 401014 - 401211 - 440008 - 402789 - \\ 421136 - 400838 - 400148 - 400189 - \\ 440717 - 442748 - 441036 - 440026 - \\ 441615 - 441159 - 400895 - 400874 - \\ 441422 - 400317 - 422540 - 400399 - \\ 440188 - 420086 - 199014.2 - 400154 - \\ 441194 - 400997 - 441177 - 442379 - \\ 440236 - 440792 - 400192 - 400609 - \\ 420341 - 420345 - 421135 - 400371 - \\ 441473 - 440762 - 422556 - 442198 - \\ 441715 - 422642 - 400131 - 441787 - \\ 400359 - 420353 - 422558 - 440712 - \\ 440309 - 420580 - 400277 - 401522 - \\ 422557 - 440473 - 420619 - 420177 - \\ 401043 - 400848 - 400274 - 400182 - \\ 188005.1 - 422584 - 442797 - 442802 - \\ 420456 - 420830 - 440922 - 441624 - \\ 400982 - 442928 - 401042 - 440347 - \\ 189148.65 - 400308 - 420246 - 400291 - \\ 400213 - 441580 - 400514 - 400256 - \\ 442768\end{array}$	ondulado	+	irregular	plana	mucoso	blanco- plomizo	2.5	+/-	bacilar	+

Grupo	N° CIP	Borde	Brillo ^(a)	Forma	Elevación	Aspecto	Color	Diámetro (mm) promedio	Gram ^(b)	Forma celular	Endospora ^(b)
E	400108	entero	-	circular	plana	mucoso	rosado	0.2	-	coco– bacilar	-
F	442368	ondulado	+	irregular	plana	mucoso	amarillo oscuro	3	+	bacilar	+
G	442536	entero	+	circular	convexa	mucoso	amarillo cremoso	1.1	+	bacilar	-
Н	420613 - 401197 - 420760 - 400902 - 440214 - 440844 - 441280 - 401326 - 440099 - 421593 - 402749 - 440786	entero	+	circular	convexa	mucoso	amarillo- cremoso	2.5	+	bacilar	+
I	442507 - 400106 - 400483 - 440326	entero	+	circular	plana	mucoso	mostaza	2	+	bacilar	+
J	402715 - 400090 - 400441 - 441777 - 401084 - 401400 - 400194 - 440141 - 440298 - 401549 - 403043 - 441548 - 422556 - 421135 - 421092 - 421099 - 420326 - 442775 - 401533 - 440023 - 430394 - 440616 - 422534 - 420603	entero	+	circular	convexa	mucoso	amarillo pálido	0.5	+	bacilar	+

Grupo	N° CIP	Borde	Brillo ^(a)	Forma	Elevación	Aspecto	Color	Diámetro (mm) promedio	Gram ^(b)	Forma celular	Endospora ^(b)
K	441180	entero	+	circular	convexa	mucoso	blanco	2	+	bacilar	+
L	400062 - 440314 - 441516 - 440699 - 420621 - 441752 - 440473	entero	-	circular	convexa	seco	amarillo	1.5	+	bacilar	-
Μ	400280 - 442616	ondulado	+	irregula r	plana	mucoso	blanco plomizo	0.8	+	bacilar	+
Ν	440199	entero	+	circular	convexa	mucoso	amarillo pálido	1.2	+	bacilar	-
0	421115 - 421133	entero	+	circular	convexa	mucoso	amarillo pálido	2.3	+/ -	coco- bacilar	-
Р	440020 - 187002.1 - 400547 - 441711	entero	+	circular	convexa	mucoso	blanco amarillo	0.3	+	cocoide	-
Q	420405	entero	-	circular	convexa	seco	amarillo pálido	2	+	filamen- tosa	+

^{a.} Presencia de Brillo (+), Ausencia de Brillo (-)

^{b.} Reacción positiva (+), reacción negativa (-), reacción variable (+/-).

A, B, C, D, E, F, G, H, I, J, K, M, N, O, P y Q a las 48 horas pertenecientes a las accessiones N°CIP 420278, 400311, 421426, 420251, 400108, 442368, 442536, 420613, 442507, 402715, 441180, 400280, 440199, 421115, 187002.1 y 420405 respectivamente y L a las 120 horas perteneciente a la accessión N°CIP 400062.

Figura 5: Tinción de Endosporas perteneciente a la accesión N°CIP 421426 del grupo C

Micrografía óptica a un aumento de 1000X. La flecha indica la endospora.

4.3 CARACTERIZACIÓN BIOQUÍMICA DE LOS CONTAMINANTES BACTERIANOS

La caracterización bioquímica se realizó mediante las pruebas catalasa, oxidasa y óxido fermentación a cada grupo morfológico. Los resultados se detallan en el cuadro 5. Asimismo, en la figura 6 se muestran las reacciones de oxidación y fermentación, se consideraron anaerobios facultativos los que viran a color amarillo en los dos tubos(A), aerobios estrictos los que no viran en el tubo cubierto con parafina estéril(B), y los que no viran en ninguno no utilizan a la glucosa como sustrato de energía (C).

Cuadro 5: Caracterización bioquímica de agrupamientos morfológicos de 185 cepas aisladas de accesiones contaminadas de cultivos *in vitro* de camote del banco de germoplasma del CIP

Grupo Morfológico	N° CIP	Catalasa	Oxidasa	O/F*
Α	420278 -420933	+	-	+/+
В	400311 - 421103 - 440699 - 401538 - 421034 - 420285 - 400270 - 422567	+	-	+/+
С	421426 - 440765 - 422060 - 401031 - 401030 - 441259 - 440473 -440801 - 420538 - 402751 - 400074 - 441168 - 441159 - 401320 - 400256 - 400390 - 440771 - 440266 - 440142 - 422505 - 422503 - 441017 - 402915 - 403021 - 403009 - 402897 - 401322 - 440157 - 440189	+	+	+/+

Cuadro	5	(contin	uación)
Cuauro	0	(comm	uacion

Grupo Morfológico	N° CIP	Catalasa	Oxidasa	O/F*
D	$\begin{array}{r} 420251 - 400293 - 441609 - 400426\\ -401014 - 401211 - 440008 -\\ 402789 - 421136 - 400838 -400148\\ - 400189 - 440717 - 442748 -\\ 441036 - 440026 - 441615 - 441159\\ - 400895 - 400874 - 441422 -\\ 400317 - 422540 - 400399 -\\ 440188 - 420086 - 199014.2 -\\ 400154 - 441194 - 400997 - 441177\\ - 442379 - 440236 - 440792 -\\ 400192 - 400609 - 420341 - 420345\\ - 421135 - 400371 - 441473 -\\ 440762 - 422556 - 442198 -\\ 441715 - 422642 - 400131 - 441787\\ - 400359 - 420353 - 422558 -\\ 440712 - 440309 - 420580 - 400277\\ - 401522 - 422557 - 440473 -\\ 420619 - 420177 - 401043 - 400848\\ - 400274 - 400182 - 188005.1 -\\ 422584 - 442797 - 442802 - 420456\\ - 420830 - 440922 - 441624 -\\ 400982 - 442928 - 401042 - 440347\\ - 189148.65 - 400308 - 420246 -\\ 400291 - 400213 - 441580 -\\ 400514 - 400256 - 442768\end{array}$	÷	+	+/+
Ε	400108	+	+	-/-
F	442368	+	+	+/+
G	442536	+	-	+/-
Н	420613 - 401197 - 420760 - 400902 - 440214 - 440844 - 441280 - 401326 - 440099 - 421593 - 402749 - 440786) +	+	+/+
Ι	442507 - 400106 - 400483 - 440326	õ +	+	+/+
J	402715 - 400090 - 400441 - 441777 - 401084 - 401400 - 400194 - 440141 - 440298 - 401549 - 403043 - 441548 - 422556 - 421135 - 421092 - 421099 - 420326 - 442775 - 401533 - 440023 - 430394 - 440616 - 422534 - 420603	7 3 5 +	+	+/+

Grupo	N° CIP	Catalasa	Oxidasa	O/F*
K	441180	+	+/-	+/+
L	400062 - 440314 - 441516 - 440699 - 420621 - 441752 - 440473	+	+	+/+
Μ	400280 - 442616	+	+	+/+
Ν	440199	+	+	+/-
0	421115 - 421133	+	-	+/-
Р	440020 - 187002.1 - 400547 - 441711	+	-	-/-
Q	420405	+	+	+/+

*O/F: O: Oxidación, F: Fermentación

Figura 6: Prueba cualitativa de oxido fermentación realizada para la caracterización bioquímica de agrupamientos morfológicos de cepas contaminantes de accesiones de cultivos *in vitro* de camote del banco de germoplasma del CIP

Reacción de Oxido Fermentación (O/F).

A. Reacción de oxidación +/+, B. Reacción de fermentación + /-, C. Reacción negativa -/-.

En el caso de los grupos morfológicos C y H, se realizó la hidrólisis de almidón a fin de diferenciarlos entre sí, debido a su parecido morfológico a los 2 días de crecimiento encontrando que el grupo C si hidroliza almidón mientras que el grupo H no (Figura7).

Figura 7: Reacción de hidrólisis de almidón realizada para la caracterización bioquímica de agrupamientos morfológicos de cepas contaminantes de accesiones de cultivos *in vitro* de camote del banco de germoplasma del CIP

A. Grupo morfológico C (Nº CIP 421426), B. Grupo morfológico H (Nº CIP 420613)

4.4 CARACTERIZACIÓN E IDENTIFICACIÓN MOLECULAR

Se realizó la caracterización molecular mediante la amplificación por PCR del gen ARNr 16S utilizando cebadores universales.

En la Figura 8 se aprecia un ejemplo de amplificación de una cepa aislada de la accesión N° CIP 420613, perteneciente al grupo morfológico H, mediante los cebadores universales pA, pF con un amplicón único de tamaño 1066pb.

Figura 8: Amplificación mediante PCR del gen ARNr 16S de la cepa aislada de la accesión N° CIP 420613 utilizando cebadores universales pA y pF.

Carril H: Amplicón de 1066 pb obtenido a partir de la amplificación de la cepa aislada de la accesión N° CIP 420613, del grupo morfológico H. M: Marcador λ Pst1

Los productos de PCR fueron purificados y enviados para secuenciamiento a Macrogen (http://www.macrogen.com). Las secuencias de ARNr 16S parciales obtenidas

fueron alineadas para conseguir la secuencia consenso mediante el programa DNAStar[®] y se analizó su identidad en las bases de datos (RBP y NCBI). Los resultados para cada grupo morfológico se resumen en el cuadro 6.

Cuadro 6: Porcentaje de identidades de los aislamientos bacterianos obtenidos a partir de las bases de datos de Ribsomal Data Base Project (RBP) y National Center for Biotechnology Information (NCBI).

Grupo Morfológico	Nº CIP	Microorganismo	%id RBP	%id NCBI
А	420278	Sphingomonas sp.	89.3	98.0
В	400311	Staphylococcus pasteuri	99.4	99
С	421426	Bacillus cereus	97.2	99
D	420251	Paenibacillus taichungensis	98.1	99
Е	400108	Methylobacterium extorquens	99	99
F	442368	Bacillus firmus	99.5	99
G	442536	Brevibacterium casei	98.6	99
Н	420613	Bacillus Pumilus	98.7	99
Ι	442507	Bacillus Pumilus	96.8	99
J	402715	Bacillus Pumilus	100	100
K	441180	Bacillus licheniformis	98	99
L	400062	Janibacter sp	-	98
М	400280	Paenibacillus illinoisensis	97.3	99
Ν	440199	Microbacterium sp.	89.8	99
0	421115	Acinetobacter sp.	95.4	99
Р	187002.1	Uncultured	97	99
Q	420405	Streptomyces parvulus	95.9	99

%id: Porcentaje de identidad u homología.

Las identidades moleculares fueron concordantes con las características morfológicas y bioquímicas de cada grupo, para el caso de *Sphingomonas* sp (Li *et al.*, 2004), *Staphylococcus pasteuri* (Savini *et al.* 2009 y, Hendricks y Boone, 2009), *Bacillus cereus* (Hendricks y Boone, 2009), *Paenibacillus taichungensis* (Lee *et al.*, 2008), *Methylobacterium extorquens* (Bourque *et al.*, 1992), *Bacillus firmus* (Hendricks y Boone, 2009), *Brevibacterium casei* (Collins, 2006 y Gruner *et al.*, 1994), *Bacillus pumilus, Bacillus licheniformis* (Hendricks *et al.*, 2009), *Janibacter* sp (Shivaji *et al.*, 2009), *Paenibacillus illinoisensis* (Doukyu *et al.*, 2003), *Microbacterium* sp (Laffineur *et al.*, 2003), *Acinetobacter* sp. (Constantiniu *et al.*, 2004) y *Streptomyces parvulus* (Usha, 2011).

Los microorganismos bacterianos identificados han sido encontrados en diversos cultivos vegetales. Así, fueron encontrados: *Sphingomonas* sp en raíces de papaya cultivada *in vitro* (Thomas *et al.*, 2007), *Staphylococcus pasteuri*, en orquídeas, rosas, entre otras cultivados *in vitro* (Zawadzka *et al.*, 2009). En el caso de *Bacillus cereus* se encontró contaminación asociada con el cultivo de tejido de plantas *in vitro* de mandioca, yuca y banana (Odutayo *et al.*, 2007b). En el caso de *Paenibacillus* sp se encontró contaminación asociada al cultivo *in vitro* de banana (Thomas y Soly, 2009b). Para *Methylobacterium* sp existen reportes de contaminación presente en *Chrysanthemum* (Thomas *et al.*, 2009a) y en papaya (Thomas *et al.*, 2007) *in vitro*. Para *Bacillus firmus* en plantas de eucalipto cultivadas en invernadero (Diaz *et al.*, 2009). Para *Brevibacterium* sp en cultivo *in vitro* de maristemo de plátano (Thomas *et al.*, 2008). *Bacillus pumilus* se ha encontrado en cultivos *in vitro* de uvas (Thomas, 2004) y de plátano (Thomas *et al.*, 2007). En el caso de *Acinetobacter* sp en plátano (Thomas y Soly, 2009b) y para *Streptomyces parvulus* en suelos de manglares (Usha *et al.*, 2010).

El hábitat de estos microorganismos es ubicuo. En el caso de Sphingomonas, están ampliamente distribuidos en la naturaleza, pudiendo ser aislados de diferentes hábitats acuáticos y terrestres, como de sistema radicular de la planta, muestras clínicas entre otros (Balkwill et al., 2006). En el caso de Staphylococcus pasteuri hay estudios en los que se ha detectado en humanos, animales y muestras de alimentos (Chesneau et al., 1993). Bacillus cereus es un microorganismo que vive en la tierra, basura, sedimentos y plantas (Logan y De Vos, 2011). Paenibacillus sp puede ser detectado en los suelos y en la rizósfera (McSpadden, 2004). Methylobacterium sp es común en suelos y superficies de las hojas y otras partes de la planta (Lidstrom y Chistoserdova, 2002), está ampliamente distribuido colonizando diversos ecosistemas acuáticos y terrestres, ha sido aislado de lagos, ríos, sistemas marinos, aguas subterráneas, piel humana, aire, etc (Schmidt, 2010). Bacillus firmus ha sido aislado de estiércol (Berić et al., 2009), de ambientes en los que sobreviven a altas temperaturas por sus esporas, como cenizas sepultadas y en los suelos que recubren los bosques (Mandic-Mulec y Prosser, 2011). Brevibacterium spp, han sido encontrados en el suelo (Fernández et al., 2011), en piel y sangre humana (Winn et al., 2006). Bacillus pumilus se ha encontrado en ambientes costeros y marinos, es altamente resistente a condiciones ambientales extremas como la no disponibilidad de nutrientes, desecación, irradiación, H₂O₂ y desinfecciones químicas (Parvathi et al., 2009),

Microbacterium sp ha sido aislado del ambiente (Funke *et al.*, 1997) como también de muestras clínicas humanas (Gneiding *et al.*, 2008). El hábitat natural de *Acinetobacter* sp es la tierra y el agua, y ha sido aislado de alimentos, artrópodos y el ambiente. En humanos puede colonizar piel, heridas, tracto respiratorio y gastrointestinal (Muñoz-Price y Weinstein, 2008) y *Streptomyces* sp que se encuentra ampliamente distribuido en el suelo, agua y colonizando plantas (Usha *et al.*, 2010, 2011).

Existen efectos positivos en la planta a través de la contaminación. En el caso de Sphingomonas sp., ejercen un efecto positivo en plantas hospederas por la prevención en de la proliferación de patógenos bacterianos invasores (Innerebner et al., 2011), en el caso de Bacillus cereus las plantas se benefician ya que es capaz de inhibir las enfermedades causadas por protistas patógenos y también de aumentar el crecimiento de las plantas (Jensen et al., 2003). Produce naturalmente los antibióticos zwittermicin A y Kanosamina que inhiben el crecimiento de los patógenos de plantas, ciertos hongos y algunas bacterias (Silo-Suh et al., 1994). Especies de Paenibacillus sp. promueven el crecimiento de las plantas y suprimen pestes (McSpadden, 2004), Methylobacterium sp producen hormonas de plantas como citoquininas y auxinas, vitamina B₁₂ la cual estimula el desarrollo de la planta (Abanda-Nkpwatt et al., 2006), Bacillus firmus y Bacillus pumilus son promotores del crecimiento de la planta (Khan y Patel, 2007, Thomas, 2004). Microbacterium sp. este fija N₂ a la planta (Lin et al., 2012), y Acinetobacter sp. también es promotor del crecimiento (Rokhbakhsh-Zamin et al., 2011). Algunas especies de Streptomyces son conocidas por su acción contraria a los fitopatógenos, otorgando protección a la planta (Zahar et al., 2008).

4.5 DISEÑO DE CEBADORES ESPECÍFICOS PARA CONFIRMACIÓN DE IDENTIFICACIÓN MOLECULAR

Se diseñaron los cebadores sentido y antisentido, mediante el alineamiento de las secuencias consenso de los 15 grupos bacterianos diferentes utilizando el programa Mega 5[®] y la aplicación Clustal W, escogiendo regiones que se diferenciaron de las demás secuencias, para la amplificación del microorganismo de interés.

En el cuadro 7 se detallan las secuencias de los cebadores diseñados con los tamaños de amplicón esperado y la temperatura de alineamiento.

Cuadro 7: Secuencia de los cebadores ARNr 16S diseñados para los micoorganismos identificados molecularmente con el tamaño (pb) de amplicón esperado y temperatura de alineamiento (Ta).

Microorganismo	Secuencia (5'-3')	Amplicón (pb)	Ta (°C)
Sphingomonas_F2	TACCGGATGATGACGAATGTCC	F2_R1:	47.5
Sphingomonas_R1	GGCGGCTGACTGGACTGGTAT	- 559	
Sphingomonas_F1	AATAACCGCTGGAAACGGCT	F1_R1: 564	60
Sphingomonas_F3	AGAGGATGAGCCCGCTTTGG	F3_R1: 503	52.5
Staphylococcus_ pasteuri_F2	GGTTCAATAGTGAAAGACGGCCTTGC	F2_R1:	47
Staphylococcus_ pasteuri_R1	AACCTTACCAAATCTTGAG	807	
Staphylococcus_ pasteuri_F1	CCTACCTATAAGACTGGGATAACTT	F1_R1: 874	55.4
Staphylococcus_ pasteuri_F3	TTTGAACCGCATGGTTCAATAG	F3_R1: 819	55.4
Staphylococcus_ pasteuri_F4	ACGTGTAAGTAACTGTGCA	F4_R1: 541	55.4

A 1			• / \
(ugdro	1	(confinit	9010N)
Cuauro		Comunu	acioni
		\ \	

Microorganismo	Secuencia (5'-3')	Amplicón (pb)	Ta (°C)
B.cereus_F1	ACGTGGGTAACCTGCCCA	F1_R1:	57
B.cereus_R1	GGTTTCCGCCCTTTAGTGCTGA	- 750	07
B.cereus_F2	AATTGAAAGGCGGCTTCGG	F2_R1: 666	57
B.cereus_F3	GCGGCTTCGGCTGTCACTTATG	F3_R1: 657	57
P.taichungensis_F2	CGCTTGGGAGAGTAACTGCTCTC	F2_R1:	58
P.taichungensis_R1	CCGTAAACGATGAGTGCTAG	- 376	
P.taichungensis_F1	GGAGCAATCTGTCACTTGG	F1_R1: 622	55
M.extorquens_F2	GGAATAACTCAGGGAAACTT	F2_R1:	52
M.extorquens_R1	CCGTTGGCCTGCTTGCAGGTCAG	- 668	-
M.extorquens_R2	CGGCTGTCTGGTCCGGTT	F2_R2: 565	52
<i>M.extorquens</i> _F1	ACCTTCGGGTGTCAGTGGCAG	F1_R2: 623	52
M.extorquens_F3	AGCTAATACCGGATACGCCCTTT	F3_R2: 544	52
<i>B.firmus</i> _F1	AAAGCTGAAAGATGGTTTCGGCTA	F1_R1:	59
B.firmus_R1	TTTCCGCCCTTTAGTGCTGC	- 667	
B.pumilus_F2	ATGGTTCAAGGATGAAAGACGGTTT	F2_R2:	43
B.pumilus_R2	GGTCATTGGAAACTGGGAAA	464	
B.pumilus_F1	GGGTAACCTGCCTGTAAGACT	F1_R1:	51
B.pumilus_R1	GGGAGGGTCATTGGAAACTGGGAAA	- 535	

Cuadra	7	(continue	nnián)
Cuauro	1	(commu	acion

Microorganismo	Secuencia (5'-3')	Amplicón (pb)	Ta (°C)
B.casei_F3	GTCTAATACCGGATACGACTG	F3_R1: 668	55
B.casei_R1	GGGCATTCCACGTTCTC		
B.casei_F1	TGGGTCTAATACCGGATACGACTG	F1_R1: 67	55
B.casei_F2	ACGCATGTCTGGTGGTGGAAAGTT	F2_R1: 643	55
B.casei_F4	ATGTCTGGTGGTGGAAAGTT	F4_R1: 639	51
B.licheniformis_F1	GTAAGGTTCTTCGCGTTGCTTCG	F1 R2: 857	63
B.licheniformis_R2	AGACTGGGATAACTCCGGGAAA		
B.licheniformis_F2	ATGCTCCACCGCTTGTGC	F2_R1: 843	63
B.licheniformis_F3	CGTCAATTCCTTTGAGTTTCAGTC	F3 R1: 823	51
B.licheniformis_R1	CTTACAGGCAGGTTACCCACGT		
Janibacter_F4	TCTTTCAGCAGGGAAGAAGCGAAA	F4 R4: 555	52.5
Janibacter_R4	TTTCCGGTATATGTCAAGCC		0210
Janibacter_F1	TGGAGTGGATCAGTGGCGAA	F1 R3 553	47
Janibacter_R3	CACACTCTAGTCTGCCCGTACCC	<u> </u>	17
P.illinoisensis_F1	GCTTTCTTCGCCTGAAGGAAG	F1 R1.712	65
P.illinoisensis_R1	ACACATTAAGCATTCCGCCTGGG		00
Acinetobacter_F3	AGCTGCGCCACTAAAGCCTC	F3 R2: 742	52.5
Acinetobacter_R2	GCGGTATTAGCATCCCTTTCGAGAT		02.0
Acinetobacter_F4	ATGCTTTCGCACCTCAGTGTCAGTATT	F4_R2: 636	55
Acinetobacter_R1	CCACTAATAGGCAGATTCCTAAGCA	F3_R1: 760	50

Cuaulo / (continuación	Cuadro	7	(continu	ación)
------------------------	--------	---	----------	-------	---

Microorganismo	Secuencia (5'-3')	Amplicón (pb)	Ta (°C)
Microbacterium_F1	GGCGTCTAATACTGGATATGTGACGTG	F1_R1:	62.5
Microbacterium_R1	TCCTTTCCACGGATTCCGTGA	- 625	
Microbacterium_R2	GCTTAGATACCCTGGTAGTCCACCC	F1_R2: 577	57.5
No_definido_F2	ACACTCTAGTCTGCCCGTACCCAC	F2_R2:	65
No_definido_R2	GCTTAGATACCCTGGTAGTCCACCC	488	03
<i>No_definido_</i> F1	GGCGTCTAATACTGGATATGTGACGTG	F1_R2: 577	67
No_definido_R1	GGAGTGGATCAGTGGCGAA	F2_R1: 551	50
Streptomyces_F3	TCAGTATCGGCCCAGAGAT	F3_R1:	52
Streptomyces_R1	GCTTGTCCCAGAGTGC	- 597	
Streptomyces_F1	ACGGACAACGTGGAATGTTG	F1_R2:	56
Streptomyces_R2	TCACAGATGCCCGTGAAGGTCA	020	
Streptomyces R3	ACCGCCGGAGCTTTCGA	F1_R3: 631	56
1 7 -		F3_R3: 528	56
Streptomyces F2	TTGCCCACACCTAGTGCCCACC	F2_R1: 683	52
		F2_R2: 638	56

Un ejemplo de la elección del cebador específico para Sphingomonas sp se muestra

en la Figura 9.

Figura 9: Diseño de cebador ARNr 16S específico para *Sphingomonas* sp mediante alineamiento de secuencias consenso obtenidas de los 15 grupos identificados molecularmente.

Sphingomona_F2	TGACGAATGTCC	22
Sphingomonas sp.	GGAAACGGCTGCTAATACCGGATGATGACGAATGTCCAAAG-	137
Methylobacterium_extorquens	GGAAACTTGAGCTAATAGCGGATAGTTTTTGGCGGAAAG-	137
Acinetobacter sp.	CGAAAGGGATGCTAATACCGCATACGTCCTACGGGAGAAAGC	171
Bacillus_firmus	GGAAACCGGGGCTAATACCGGATAA-CTCTTTTCCTCACATGAGGAAAAG	147
Bacillus_licheniformis	GGAAACCGGGGCTAATACCGGATGC-TTGATTGAACCGCATGGTTCAATC	133
Bacillus pumilus	GGAAACCGGAGCTAATACCGGATAG-TTCCTTGAACCGCATGGTTCAAGG	155
Staphylococcus pasteuri	GGAAACCGGAGCTAATACCGGATAA-GATTTTGAACCGCATGGTTCAATA	118
Bacillus_cereus	GGAAACCGGGGCTAATACCGGATAA-CATTTTGAACCGCATGGTTCGAAA	119
Paenibacillus_illinoisensis	GGAAACGGTAGCTAATACCGAATAC-TTGCTTTCTTCGCCTGAAGGAAGC	144
Paenibacillus_taichungensis	GGAAACGGTAGCTAATACCGAATAG-TTGTTTTCTTCTCCTGAAGGAAAC	123
No definido	GGAAACGGCGTCTAATACTGGATAC-GAGATCGAGCCGCATGGTTATGGT	187
Janibacter_sp.	GGAAACGGCGTCTAATACTGGATAC-GAGATCGAGCCGCATGGTTATGGT	138
Microbacterium_sp.	GGAAACGGCGTCTAATACTGGATAT-GTGACGTGACCGCATGGTCTGCGT	222
Brevibacterium casei	GGAAACTGGGTCTAATACCGGATAC-GACTGCCGGACGCATGTCTGGTGG	157
Streptomyces_parvulus	GGAAACGGGGTCTAATACCGGATACTGACCTTCACGGGCATCTGTGAGGG	182
	* * * * * *	

F: Cebador sentido

4.6 PRUEBA DE PCR CON ADN CONTROL DE PLANTA LIMPIA (PL) NO CONTAMINADA

Como control negativo para la PCR; se utilizó ADN extraído de una planta limplia (PL) no contaminada. Los cebadores diseñados fueron analizados con este ADN (500-940ng* μ L⁻¹). Para el caso de *Paenibacillus illinoisensis* no hubo amplificación de ADN control (Figura 10). Cada microorganismo tuvo al menos un par de cebadores que no detectaron esta amplificación no deseada.

Figura 10: Amplificación del gen ARNr 16S con cebadores específicos F1 y R1 (712 pb) de *Paenibacillus illinoisensis*.

B: Blanco (sin ADN), PL: Planta Limpia (no contaminada), PC: Planta Contaminada, M: Marcador λ Pst 1.

Esta prueba permitió descartar los siguientes cebadores: *Sphingomonas*_F3R1, *B.cereus*_F2R1, *M.extorquens*_F2R2, _F3R2, *Janibacter*_F1R3, *Acinetobacter*_F3R1, F4R2, *Microbacterium*_F1R2, No_definido_F2R1 y *Streptomyces*_F2R1, por presentar amplificación en ADN de planta limpia.

De esta prueba se descartaron también los siguientes cebadores por su inespecificidad: *Sphingomonas_*F1R1, *Staphylococcus_pasteuri_*F1R1, _F3R1, _F4R1, *B.casei_*F4R1, No_definido_F1R2 y *Streptomyces_*F1R2.

4.7 PRUEBA DE ESPECIFICIDAD ENTRE LOS GRUPOS BACTERIANOS

La especificidad de los cebadores fue analizada por cada microorganismo, utilizando todos los pares de cebadores seleccionados anteriormente,

En el cuadro 8 se muestran los resultados de los cebadores con mejor especificidad en la PCR, obteniéndose 10 pares de cebadores específicos. Los cebadores seleccionados fueron los siguientes: *Sphingomonas_*F2R1, *B.cereus_*F1R1, *P.taichungensis_*F2R1, *M. extorquens_*F2R1, *B.pumilus_*F2R2, *B.casei_F3R1, P.illinoisensis_*F1R1, *Acinetobacter_*F3R2, *Microbacterium_*F1R1 y *Streptomyces_*F3R1. En la figura 11 se muestra un ejemplo de la PCR con el microorganismo *Paenibacillus taichungensis.*

Se probaron los demás cebadores diseñados que amplificaban correctamente para su cepa mediante la PCR, para todos los microorganismos estudiados. Sin embargo, éstos no contaron con la especificidad requerida. Estos resultados se detallan en el cuadro 9. Con ello se descartaron a los siguientes cebadores: *B.licheniformis_*F3R1, F2R1, *B.pumilus_*F1R1 y *B.cereus_*F3R1. El cebador No_definido_F1R2 se descartó porque no se obtuvo una buena amplificación.

Finalmente se seleccionaron los siguientes cebadores: *P.taichungensis*_F1R1, *M.extorquens*_F1R2, *B.casei*_F1R1, _F2R1 y *Streptomyces*_F1R3, _F3R3 y _F2R2, los cuales pueden ser utilizados como alternativa ya que no demuestran problemas en la detección y son específicos.

Mic Par	croorganismos / es de cebadores	<i>B.pumilus</i> : f2r2~ 464pb 43°C	S. <i>Pasteuri f</i> 2r1~ 807pb 47 °C	Sphingomonas f2r1~539pb 47.5 °C	<i>M.extorquens:</i> f2r1~668pb 52 °C	<i>B.casei:</i> f3r1~ 668pb 55°C	<i>B.cereus</i> : f1r1~ 750pb 57°C	<i>P.taichungensis</i> f2r1~ 376pb 58°C	<i>B.firmus</i> : f1r1~ 667pb 59°C	<i>B.Licheniformis</i> f1r2~ 857pb 63°C	<i>P.illinoisensis</i> f1r1~ 712pb 65°C	<i>Microbacterium</i> f1r1~ 625pb 62.5°C	Acinetobacter f3r2~ 742pb 52.5 °C	Janibacter f4r4~ 555pb 52.5°C	No definido f2r2~ 577pb 67°C	S. Parvulus f3r1~597 pb 52°C
1	Sphingomonas	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-
2	P.taichungensis	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-
3	M.extorquens	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-
4	P.illinoisensis	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-
5	Janibacter	-	-	-	-	-	-	-	-	+	-	-	-	+	-	-
6	B.casei	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-
7	S. pasteuri	-	+	-	-	-	-	-	-	+	-	-	-	-	-	-
8	B.cereus	-	-	-	-	-	+	-	-	+	-	-	-	-	-	-
9	B.firmus	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-
10	B. pumilus	+	+	-	-	-	-	-	-	-	-	-	-	-	-	-
11	B.licheniformis	-	-	-	-	-	-	-	+	+	-	-	-	-	-	-
12	Acinetobacter	-	-	-	-	-	-	-	-	+	-	-	+	-	-	-
13	No definido	-	-	-	-	-	-	-	-	+	-	-	-	-	+	-
14	Microbacterium	-	-	-	-	_	-	-	-	+	-	+	-	-	-	-
15	S. parvulus	-	-	-	-	-	-	-	+	+	-	-	-	+	-	+

Cuadro 8: Resultado de la PCR del gen ARNr 16S con todos los cebadores seleccionados para cada microorganismo

(+): Amplificación, (-): No amplifica

Figura 11: Ensayo de especificidad para Paenibacillus taichungensis con todos los cebadores y con su específico F2 y R1 (622pb).

B: Blanco *P.taichungensis*_F2R1 (sin ADN), C:Cebador, 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15: *P.taichungensis*_F2R1, *B. pumilus*_F2R2, *S.pasteuri*_F2R1, *Sphingomonas*_F2R1, *M.extorquens*_F2R1, *B.casei*_F3R1, *B.cereus*_F1R1, *B.firmus*_F1R1, *B.licheniformis*_F1R2, *P.illinoisensis*_F1R1, *Microbacterium*_F1R1, *Acinetobacter*_F3R2, *Janibacter*_F4R4, No definido_F2R2, *S.parvulus*_F3R1, M: Marcador λ Pst 1.

Cuadro 9: Resultado de la PCR del gen ARNr 16S con los otros cebadores diseñados que amplificaban su cepa con respecto a los demás microorganismos identificados molecularmente

Otros cebadores	Sphingomonas	S.passteuri	B.cereus	P.taichungensis	B.firmus	B.casei	B.pumilus	B. licheniformis	P.illinoisensis	M.extorquens	Janibacter	Microbacterium	Acinetobacter	No definido	S.parvulus
No definido F1R2 Ta 67°C	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-
<i>B. licheniformis</i> F3R1 Ta 51°C	-	+	+	+	+	-	+	+	-	-	-	-	-	-	-
<i>B. licheniformis</i> F2R1 Ta 63°C	-	-	+	-	+	-	+	+	+	-	-	-	-	-	-
<i>B.pumilus</i> F1R1 Ta 51ºC	-	+	+	+	+	-	+	+	-	-	-	-	-	-	-
<i>B.cereus</i> F3R1 Ta 57	-	-	+	+	-	-	+	-	-	-	-	-	-	-	-

(+): Amplificación, (-): No amplifica

4.8 DETERMINACIÓN DEL LÍMITE DE DETECCIÓN DE LOS CEBADORES ARNr 16S SELECCIONADOS

Los resultados de las amplificaciones con diferentes concentraciones bacterianas (N° UFC μ L⁻¹) bacterianas revelaron considerables diferencias en los niveles de detección de los cebadores usados, utilizando la dilución bacteriana para la realización de la PCR.

En el Cuadro 10 se muestran los niveles de detección de los cebadores específicos seleccionados de cada microorganismo. Se obtuvo la amplificación del ADN de los controles positivos de 12 accesiones contaminadas que fueron cultivados por dos meses, (*Paenibacillus taichungensis, Paenibacillus illinoisensis, Sphingomonas sp, Acinetobacter sp, Brevibacterium casei, Methylobacterium extorquens, Streptomyces parvulus, Staphylococcus pasteuri, Janibacter sp, Microbacterium sp, Bacillus licheniformis y uno no definido) que fueron detectadas sin necesidad de ser cultivadas en medio microbiológico previamente. En el caso de <i>Bacillus pumilus, Bacillus cereus* y en *Bacillus firmus* se tuvo limitación en la detección.

En el límite de detección se observa una sensibilidad variada entre cepas, teniendo a *P.taichungensis*_F2R1 como el par de cebadores que tiene la más alta sensibilidad, siendo detectable desde $0.5*10^1$ UFC*mL⁻¹. Seguido de *Paenibacillus illinoisensis*, *Sphingomonas* sp y *Bacillus pumilus* a $4.4*10^1$, $5*10^1$ y $5*10^1$ UFC* mL⁻¹respectivamente. *Bacillus firmus* y *Acinetobacter* sp. a $5*10^2$ UFC*mL⁻¹, *Brevibacterium casei*, *Streptomyces parvulus* y *Bacillus cereus* a $4.8*10^3$, $1.7*10^3$ y $3.1*10^3$ UFC*mL⁻¹ respectivamente, *Bacillus licheniformis* y *Staphylococcus pasteuri* a $4.6*10^4$ UFC*mL⁻¹, *Methylobacterium extorquens*, *Microbacterium* sp a $4.6*10^5$ UFC*mL⁻¹ y la cepa no definida a $3.3*10^7$ UFC*mL⁻¹. Como resultado negativo se tiene a *Janibacter* sp. que no amplificó en el rango 10^0-10^9 UFC*mL⁻¹.

Asimismo en el Cuadro 11, se observan los resultados de las amplificaciones de la mezcla del cultivo bacteriano con ADN de planta limpia, que se realizó con el fin de detectar si había alguna interacción negativa en la detección. Los resultados presentados muestra que no hubo diferencia significativa en los rangos de sensibilidad respectivos.

En la Figura 12 se muestra lo expuesto para el caso de *Paenibacillus taichungensis*, con seis diluciones con detección directa de PCR de las diluciones bacterianas para cultivo puro y para cultivo con ADN de planta limpia (no contaminada).

	Microorganismo	Par de cebadores	РС	ADN PC (ng*µL ⁻¹)	C5 (10 ⁵ * UFC*mL ⁻¹)	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
1	Paenibacillus taichungensis	F2R1	+	1496	5	ND	ND	ND	ND	+	+	+	+	+	+
2	Paenibacillus illinoisensis	F1R1	+	2178	4.35	ND	ND	ND	ND	+	+	+	+	+	-
3	Sphingomonas sp	F2R1	+	2136	5	ND	ND	ND	ND	+	+	+	+	+	-
4	Acinetobacter sp	F3R2	+	436	5	ND	ND	ND	ND	+	+	+	+	-	-
5	Brevibacterium casei	F3R1	+	442	4	ND	ND	ND	ND	+	+	+	-	-	-
6	Streptomyces parvulus	F3R1	+	3972	1.67	ND	ND	ND	ND	+	+	+	-	-	-
7	Staphylococcus pasteuri	F2R1	+	1621	4.55	ND	ND	ND	ND	+	+	-	-	-	-
8	Bacillus licheniformis	F1R2	+	2723	4.55	ND	ND	ND	ND	+	+	-	-	-	-
9	Microbacterium sp	F1R1	+	3143	4.55	+	+	+	+	+	-	-	_	-	-
10	Methylobacterium extorquens	F2R1	+	1252	4.55	-	-	+	+	+	-	-	_	-	-
11	No definido	F2R2	+	830	3.33	+	+	+	-	-	-	-	-	-	-
12	Janibacter sp	F4R4	+	1020	2.86	-	-	-	-	-	-	-	-	-	-
13	Bacillus pumilus	F2R2	-	701	5	ND	ND	ND	ND	+	+	+	+	+	-
14	Bacillus firmus	F1R1	-	588	5	ND	ND	ND	ND	+	+	+	+	-	-
15	Bacillus cereus	F1R1	-	701	3.13	ND	ND	ND	ND	+	+	+	_	-	-

Cuadro 10: Límite de detección de los cebadores ARNr 16S específicos seleccionados para cada microorganismo

PC: Planta contaminada, ADN PC: Concentración ADN de planta contaminada, C5: Concentración bacteriana (UFC*mL⁻¹) en la dilución 5. D1, D2, D3, D4, D5, D6, D7, D8, D9, D10: Diluciones sucesivas de 10^9 a 10^0 UFC*mL⁻¹. Amplificación positiva (+), amplificación negativa (-). ND: No Determinado

Cuadro 11: Ensayo de amplificaciones con cebadores ARNr 16S específicos para cada microorganismo de la mezcla de la dilución bacteriana con ADN de planta limpia (no contaminada)

	Microorganismo	D1+ PL	D2 + PL	D3+ PL	D4+ PL	D5+ PL	D6+ PL	D7+ PL	D8+ PL	D9+ PL	D10+ PL
1	Paenibacillus taichungensis	ND	ND	ND	ND	+	+	+	+	+	+
2	Paenibacillus illinoisensis	ND	ND	ND	ND	+	+	+	+	+	-
3	Sphingomonas sp	ND	ND	ND	ND	+	+	+	+	+	+
4	Acinetobacter sp	ND	ND	ND	ND	+	+	+	+	+	-
5	Brevibacterium casei	ND	ND	ND	ND	+	+	+	-	-	-
6	Methylobacterium extorquens	-	-	+	+	+	-	-	-	-	-
7	Streptomyces parvulus	ND	ND	ND	ND	+	+	+	-	-	-
8	Staphylococcus pasteuri	ND	ND	ND	ND	+	-	-	-	-	-
9	Janibacter sp	-	-	-	-	-	-	-	-	-	-
10	No definido	+	+	+	-	-	-	-	-	-	-
11	Microbacterium sp	+	+	+	+	-	-	-	-	-	-
12	Bacillus licheniformis	ND	ND	ND	ND	+	-	-	-	-	-
13	Bacillus pumilus	ND	ND	ND	ND	+	+	+	+	+	-
14	Bacillus firmus	ND	ND	ND	ND	+	+	+	+	-	-
15	Bacillus cereus	ND	ND	ND	ND	+	-	-	-	-	-

PL: ADN Planta Limpia (no contaminada), D1, D2, D3, D4, D5, D6, D7, D8, D9, D10: Diluciones sucesivas de 10⁹ a 10⁰ UFC*mL⁻¹. Amplificación positiva (+), amplificación negativa (-). ND: No Determinado

Figura 12: Electroforesis de productos de PCR del gen ARNr 16S mostrando la sensibilidad de cebadores *P.taichungensis*_F2 y *P.taichungensis*_R1 (622pb).

B: Blanco (sin ADN), PL: ADN Planta limpia no contaminada (500 ng* μ L⁻¹), PC: ADN de planta contaminada (1496 ng* μ L⁻¹). Líneas 1-6 son amplificaciones de PCRs de 5*10⁵-10⁰ UFC*mL⁻¹, líneas 7-12 de 0.5*10⁵-10⁰ UFC*mL⁻¹ y ADN de planta limpia no contaminada. M: Marcador λ Pst 1.

4.9 DETERMINACIÓN DEL LÍMITE DE DETECCIÓN MEDIANTE EXTRACCIÓN DE ADN DE PLANTA CONTAMINADA POR DILUCIONES SUCESIVAS

Se evaluó el límite de detección de los cebadores seleccionados para cada microorganismo mediante diluciones sucesivas según lo detallado en Métodos (sección 3.2.9). Los resultados de detección se muestran en el cuadro 12, evidenciando que es posible la detección bacteriana a partir de la planta contaminada de un previo cultivo microbiológico. Se detectaron 14 microorganismos, analizados en diferentes concentraciones. Incluyendo a *Bacillus pumilus, Bacillus cereus y Bacillus firmus*, que en el punto 4.9 no presentaron detección, debido probablemente a que estaba muy concentrado el ADN bacteriano (Weigner *et al.*, 2007). Se observa que los cebadores que presentan mayor sensibilidad son los que amplifican a *Bacillus pumilus, Bacillus cereus y Sphingomona* sp a una concentración $5*10^{0}$, $3.1*10^{0}$ y $5*10^{0}$ UFC*mL⁻¹ respectivamente.
Seguidos los cebadores para *Paenibacillus taichungensis* y *Bacillus licheniformis* a 5*10¹ y 4.6*10¹ UFC*mL⁻¹respectivamente, para *Bacillus firmus* y *Streptomyces parvulus* a 5*10³ y 1.7*10³ UFC*mL⁻¹ respectivamente, para *Paenibacillus illinoisensis* y *Brevibacterium casei* a 4.4*10⁴ y 4.8*10⁴ UFC*mL⁻¹ respectivamente, para *Staphylococcus pasteuri* y *Acinetobacter* sp. a 4.6*10⁵ y 5*10⁵ UFC*mL⁻¹ respectivamente, para *Methylobacterium extorquens* a 4.6*10⁷ UFC*mL⁻¹, para *Microbacterium* sp. y la cepa no definida a 4.6*10⁸ y 3.3*10⁸ UFC*mL⁻¹. Para *Janibacter* sp. no se detectó amplificaciones.

Un ejemplo de detección de contaminación en diluciones sucesivas por medio de la extracción de ADN de la planta contaminada se observa en la Figura 13 para el caso de *Bacillus firmus*.

Comparando con otras referencias que han trabajado con extracciones de ADN, el límite hallado para *Bacillus pumilus* es 200 veces más sensible que el determinado por Isenegger *et al.*, 2003 (10^3 UFC*mL⁻¹). Para *Bacillus cereus* es 32.3 veces más sensible que el determinado por Medina-Martínez *et al*, 2007 (100 UFC*mL⁻¹).

	Microorganismos	Par de cebadores	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
1	וי ווי מ	E3D3	ND	ND	ND	ND						
1	Bacillus pumilus	F2K2	ND	ND	ND	ND	+	+	+	+	+	+
2	Bacillus cereus	F1R1	ND	ND	ND	ND	+	+	+	+	+	+
3	Sphingomonas sp	F2R1	ND	ND	ND	ND	+	+	+	+	+	+
4	Paenibacillus taichungensis	F2R1	ND	ND	ND	ND	+	+	+	+	+	-
5	Bacillus licheniformis	F1R2	ND	ND	ND	ND	+	+	+	+	+	-
6	Bacillus firmus	F1R1	ND	ND	ND	ND	+	+	+	-	-	-
7	Streptomyces parvulus	F3R1	ND	ND	ND	ND	+	+	+	-	-	-
8	Paenibacillus illinoisensis	F1R1	ND	ND	ND	ND	+	+	-	-	-	-
9	Brevibacterium casei	F3R1	ND	ND	ND	ND	+	+	-	-	-	-
10	Staphylococcus pasteuri	F2R1	ND	ND	ND	ND	+	-	-	-	-	-
11	Acinetobacter sp	F3R2	ND	ND	ND	ND	+	-	-	-	-	-
12	Methylobacterium extorquens	F2R1	+	+	+	-	-	-	-	-	-	-
13	No definido	F2R2	+	+	-	-	-	-	-	-	-	-
14	Microbacterium sp	F1R1	+	+	-	-	-	-	-	-	-	-
15	Janibacter sp	F4R4	_	_	_	-	_	_	_	_	_	_

Cuadro 12: Detección directa de contaminación bacteriana mediante extracción de ADN de planta contaminada por diluciones sucesivas sin cultivo bacteriano previo

D1, D2, D3, D4, D5, D6, D7, D8, D9, D10: Diluciones sucesivas de 10⁹ a 10⁰ UFC*mL⁻¹.

Amplificación positiva (+), amplificación negativa (-). ND: No Determinado

Figura 13: Detección de contaminación bacteriana mediante extracción de ADN de planta contaminada por diluciones sucesivas de *Bacillus firmus* con sus cebadores F1 y R1 (667pb).

B: Blanco (sin ADN), Líneas 1-6 son amplificaciones de PCRs de $5*10^5-5*10^0$ UFC*mL⁻¹. M: Marcador λ Pst 1.

4.10 DETERMINACIÓN DE LA EFICIENCIA DE LA AGRUPACIÓN POR MÉTODOS CONVENCIONALES MEDIANTE MÉTODO MOLECULAR

Para el análisis de las muestras, se tomaron en cuenta las cepas agrupadas morfológicamente y conservadas a -20°C, de acuerdo a lo descrito en el punto 3.2.3.

De las 185 cepas aisladas y agrupadas morfológica y bioquímicamente, se pudo analizar molecularmente a 181, debido a que 4 no volvieron a crecer (N° CIP: 421133, 400514, 400256 y 442768). En el Cuadro 13 se muestra la identificación de la agrupación molecular y el reagrupamiento definitivo de las cepas aisladas.

Cuadro 13: Identificación, agrupamiento molecular y reagrupamiento morfológico de												
cepas	contaminantes	de	cultivos	in	vitro	de	camote	conservados	en	el	Banco	de
germo	plasma del CIP											

NºCIP	Medio de Detección Microbiológico	Identificación molecular	Agrupación definitiva
420278	Líquido	Sphingomonas sp	А
421103	Líquido	Staphylococcus pasteuri	В
401538	Sólido	Staphylococcus pasteuri	В
400270	Líquido	Staphylococcus pasteuri	В
400311	Sólido	Staphylococcus pasteuri	В
420285	Sólido	Staphylococcus pasteuri	В
440699	Líquido	Staphylococcus pasteuri	В
421034	Líquido	Staphylococcus pasteuri	В
422503	Líquido	Bacillus cereus	С
422505	Líquido	Bacillus cereus	С
401030	Líquido	Bacillus cereus	С
401031	Líquido	Bacillus cereus	С
400895	Líquido	Bacillus cereus	С
400256	Líquido	Bacillus cereus	С
400390	Líquido	Bacillus cereus	С
400074	Líquido	Bacillus cereus	С
402751	Líquido	Bacillus cereus	С
441259	Líquido	Bacillus cereus	С
441280	Líquido	Bacillus cereus	С
440765	Líquido	Bacillus cereus	С
440844	Líquido	Bacillus cereus	С
441159	Líquido	Bacillus cereus	С
440786	Líquido	Bacillus cereus	С
440801	Líquido	Bacillus cereus	С
441168	Líquido	Bacillus cereus	С
440473	Líquido	Bacillus cereus	С
440771	Líquido	Bacillus cereus	С
441017	Líquido	Bacillus cereus	С
420760	Líquido	Bacillus cereus	С
401320	Líquido	Bacillus cereus	С
401322	Líquido	Bacillus cereus	С
401326	Líquido	Bacillus cereus	С
402749	Líquido	Bacillus cereus	С
402897	Líquido	Bacillus cereus	С

402915	Líquido	Bacillus cereus	С
403009	Líquido	Bacillus cereus	С
403021	Líquido	Bacillus cereus	С
420538	Líquido	Bacillus cereus	С
421593	Líquido	Bacillus cereus	С
422060	Líquido	Bacillus cereus	С
440099	Líquido	Bacillus cereus	С
440214	Líquido	Bacillus cereus	С
440189	Líquido	Bacillus cereus	С
440157	Líquido	Bacillus cereus	С
440142	Líquido	Bacillus cereus	С
440266	Líquido	Bacillus cereus	С
421426	Líquido	Bacillus cereus	С
400192	Líquido	Bacillus cereus	С
420086	Líquido	Paenibacillus taichungensis	D
422540	Líquido	Paenibacillus taichungensis	D
420341	Líquido	Paenibacillus taichungensis	D
422556	Líquido	Paenibacillus taichungensis	D
422557	Líquido	Paenibacillus taichungensis	D
422558	Líquido	Paenibacillus taichungensis	D
420345	Líquido	Paenibacillus taichungensis	D
421135	Líquido	Paenibacillus taichungensis	D
421136	Sólido	Paenibacillus taichungensis	D
420353	Líquido	Paenibacillus taichungensis	D
422584	Sólido	Paenibacillus taichungensis	D
400359	Líquido	Paenibacillus taichungensis	D
400371	Líquido	Paenibacillus taichungensis	D
440026	Líquido	Paenibacillus taichungensis	D
422642	Líquido	Paenibacillus taichungensis	D
420246	Sólido	Paenibacillus taichungensis	D
420251	Sólido	Paenibacillus taichungensis	D
441715	Líquido	Paenibacillus taichungensis	D
401014	Líquido	Paenibacillus taichungensis	D
441787	Líquido	Paenibacillus taichungensis	D
400291	Líquido	Paenibacillus taichungensis	D
400131	Líquido	Paenibacillus taichungensis	D
400154	Líquido	Paenibacillus taichungensis	D
400148	Líquido	Paenibacillus taichungensis	D
400189	Líquido	Paenibacillus taichungensis	D
400213	Sólido	Paenibacillus taichungensis	D
400277	Sólido	Paenibacillus taichungensis	D
400399	Líquido	Paenibacillus taichungensis	D

400426	Líquido	Paenibacillus taichungensis	D
400838	Líquido	Paenibacillus taichungensis	D
401522	Sólido	Paenibacillus taichungensis	D
400317	Líquido	Paenibacillus taichungensis	D
400256	Líquido	Muerto	
400182	Líquido	Paenibacillus taichungensis	D
400308	Sólido	Paenibacillus taichungensis	D
400514	Líquido	Muerto	
400274	Líquido	Paenibacillus taichungensis	D
400848	Sólido	Paenibacillus taichungensis	D
400874	Líquido	Paenibacillus taichungensis	D
400982	Sólido	Paenibacillus taichungensis	D
401042	Sólido	Paenibacillus taichungensis	D
401043	Sólido	Paenibacillus taichungensis	D
401211	Líquido	Paenibacillus taichungensis	D
400609	Líquido	Paenibacillus taichungensis	D
420580	Sólido	Paenibacillus taichungensis	D
420619	Sólido	Paenibacillus taichungensis	D
420177	Sólido	Paenibacillus taichungensis	D
420830	Sólido	Paenibacillus taichungensis	D
420456	Sólido	Paenibacillus taichungensis	D
442928	Sólido	Paenibacillus taichungensis	D
442802	Sólido	Paenibacillus taichungensis	D
442768	Sólido	Muerto	
442198	Líquido	Paenibacillus taichungensis	D
442379	Líquido	Paenibacillus taichungensis	D
442797	Sólido	Paenibacillus taichungensis	D
442748	Líquido	Paenibacillus taichungensis	D
441580	Sólido	Paenibacillus taichungensis	D
441609	Líquido	Paenibacillus taichungensis	D
440922	Sólido	Paenibacillus taichungensis	D
441615	Líquido	Paenibacillus taichungensis	D
441036	Líquido	Paenibacillus taichungensis	D
441624	Sólido	Paenibacillus taichungensis	D
441159	Líquido	Paenibacillus taichungensis	D
440712	Líquido	Paenibacillus taichungensis	D
440717	Líquido	Paenibacillus taichungensis	D
440792	Líquido	Paenibacillus taichungensis	D
441422	Líquido	Paenibacillus taichungensis	D
441194	Líquido	Paenibacillus taichungensis	D
441177	Líquido	Paenibacillus taichungensis	D
402789	Sólido	Paenibacillus taichungensis	D

440008	Sólido	Paenibacillus taichungensis	D	
440309	Líquido	Paenibacillus taichungensis	D	
440347	Sólido	Paenibacillus taichungensis	D	
188005.1	Sólido	Paenibacillus taichungensis	D	
440188	Líquido	Paenibacillus taichungensis	D	
440236	Líquido	Paenibacillus taichungensis	D	
199014.2	Líquido	Paenibacillus taichungensis	D	
189149	Sólido	Paenibacillus taichungensis	D	
400108	Líquido	Methylobacterium extorquens	Е	
442368	Líquido	Bacillus firmus	F	
442536	Líquido	Brevibacterium casei	G	
400902	Líquido	Bacillus pumilus	Н	
401197	Líquido	Bacillus pumilus	Н	
420613	Líquido	Bacillus pumilus	Н	
400106	Líquido	Bacillus pumilus	Ι	
400483	Líquido	Bacillus pumilus	Ι	
440326	Sólido	Bacillus pumilus	Ι	
442507	Líquido	Bacillus pumilus	Ι	
421092	Líquido	Bacillus pumilus	J	
421099	Líquido	Bacillus pumilus	J	
420326	Líquido	Bacillus pumilus	J	
422534	Líquido	Bacillus pumilus	J	
422556	Líquido	Bacillus pumilus	J	
421135	Líquido	Bacillus pumilus	J	_
401549	Líquido	Bacillus pumilus	J	_
400441	Líquido	Bacillus pumilus	J	
441548	Líquido	Bacillus pumilus	J	
441777	Líquido	Bacillus pumilus	J	
400194	Líquido	Bacillus pumilus	J	
401084	Líquido	Bacillus pumilus	J	
400090	Líquido	Bacillus pumilus	J	
402715	Sólido	Bacillus pumilus	J	
401400	Líquido	Bacillus pumilus	J	
420603	Sólido	Bacillus pumilus	J	
442775	Líquido	Bacillus pumilus	J	
440616	Líquido	Bacillus pumilus	J	
430394	Líquido	Bacillus pumilus	J	
401533	Líquido	Bacillus pumilus	J	
403043	Líquido	Bacillus pumilus	J	
440023	Líquido	Bacillus pumilus	J	
440141	Líquido	Bacillus pumilus	J	
440298	Líquido	Bacillus pumilus	J	

400293	Líquido	Bacillus licheniformis	K
441180	Líquido	Bacillus licheniformis	K
440473	Líquido	Bacillus licheniformis	Κ
420621	Líquido	Janibacter sp	L
400062	Sólido	Janibacter sp	L
440699	Líquido	Janibacter sp	L
441516	Líquido	Janibacter sp	L
440473	Líquido	Janibacter sp	L
440314	Líquido	Janibacter sp	L
441752	Líquido	Janibacter sp	L
400997	Líquido	Paenibacillus illinoisensis	М
400280	Sólido	Paenibacillus illinoisensis	М
442616	Sólido	Paenibacillus illinoisensis	М
440762	Líquido	Paenibacillus illinoisensis	М
441473	Líquido	Paenibacillus illinoisensis	М
440199	Líquido	Microbacterium sp.	Ν
421115	Líquido	Acinetobacter sp.	0
421133	Líquido	Muerto	0
400547	Líquido	No definido	Р
441711	Líquido	No definido	Р
440020	Líquido	No definido	Р
187002.1	Líquido	No definido	Р
420405	Sólido	Streptomyces parvulus	Q
422567	Líquido	Staphylococcus epidermidis	R
420933	Líquido	Pseudomonas oryzihabitans	S

En el cuadro 14 se observa la comparación total de la muestra, obteniendo dos cepas diferentes a todos los grupos, debido a que no amplificaron con los cebadores diseñados, por lo cual se procedió a secuenciarlos, obteniendo dos nuevos aislamientos: *Staphylococcus epidermidis* (grupo R) y *Pseudomonas oryzihabitans* (grupo S), con N° CIP 422567 y 420933 respectivamente (al 93% y 99% de identidad en el NCBI respectivamente). El primer valor de homología (93%) es bajo debido a que se encuentran reportados muy pocos genes en la base de datos (Gutiérrez et al., 2009), limitándonos a nombrarla sólo como *Staphylococcus* sp (Grupo R). *Pseudomonas oryzihabitans* es en particular nativo de la rizósfera del guisante (*Pisum sativum* L.), la mostaza india (*Brassica juncea* L.) y Galega orientalis. Se encuentra también en plantaciones de arroz, agua estancada, desagües, acuíferos y en agua embotellada mineral no carbonatada (Gutiérrez et al., 2009), en cambio, el hábitat natural de *S. epidermidis* es la piel de los humanos (Vuong

et al., 2004) también ha sido encontrados en cultivos de Bananas (Thomas y Soli, 2009b). Estas cepas presentaron características morfológicas y bioquímicas iguales a *Sphingomona* sp. (Grupo A) y a *Staphylococcus pasteuri* (Grupo B) (Gutierrez *et al.*, 2009 y Savini *et al.*, 2009). Por ello fueron erróneamente agrupadas. La figura 14 muestra las fotos de los dos nuevos aislamientos.

Figura 14: Características culturales de los aislamientos bacterianos a partir de accesiones de camote cultivados *in vitro*.

A. *Staphylococcus* sp. (N° CIP 422567) y **B.** *Pseudomonas oryzihabitans* (N° CIP 420933). La barra representa 10 mm.

Además en el cuadro 14 se presenta la reagrupación de cepas. En el caso del grupo C (*Bacillus cereus*) hubo una reagrupación debido a su parecido con el grupo H (*Bacillus pumilus*) ya que la variable bioquímica que los diferenciaba, la hidrólisis de almidón en el primero, no fue muy evidente (Okanlawon *et al.* 2010). Se confirmaron 29 cepas en el grupo C. Los restantes 11 aislamientos fueron añadidos al grupo H (9) y al grupo D (2).

En el caso del grupo D (*Paenibacillus taichungensis* sp.) se confirmaron molecularmente a setenta y cinco aislamientos. No fueron añadidos aislamientos al grupo los siete aislamientos restantes, que fueron reagrupados: añadidos dos al grupo K (*Bacillus licheniformis*), dos al grupo C (*Bacillus cereus*), tres al grupo M (*Paenibacillus illinoisensis*).

En los casos de los grupos E (Methylobacterium extorquens), F (Bacillus firmus), G (Brevibacterium casei), I, J (Bacillus pumilus), L (Janibacter sp.), N (Microbacterium sp.),

O (*Acinetobacter* sp.), P (No definido) y Q (*Streptomyces parvulus*) no hubieron problema confirmándose sus representantes.

En el caso del grupo H (*Bacillus pumilus*), se encontró molecularmente que sólo tres de doce pertenecieron a este grupo; siendo los restantes nueve del grupo C (*Bacillus cereus*).

Cuadro 14: Comparación de la agrupación morfológica y bioquímica respecto a la agrupación molecular total de aislamientos bacterianos de cultivo *in vitro* de camote

Grupo	Microorganismos	Número de aislamientos obtenidos			
morfológico	identificados molecularmente	Caracterización morfólogica y bioquímica	Caracterización molecular		
Α	Sphingomonas sp.	2	1		
В	Staphylococcus pasteuri	8	7		
С	Bacillus cereus	29	40		
D	Paenibacillus taichungensis	82	75		
Ε	Methylobacterium extorquens	1	1		
F	Bacillus firmus	1	1		
G	Brevibacterium casei	1	1		
Н	Bacillus pumilus	12			
Ι	Bacillus pumilus	4	31		
J	Bacillus pumilus	24			
K	Bacillus licheniformis	1	3		
L	Janibacter sp.	7	7		
Μ	Paenibacillus illinoisensis	2	5		
Ν	Microbacterium sp.	1	1		
0	Acinetobacter sp.	1	1		
Р	No definido	4	4		
Q	Streptomyces parvulus	1	1		
R*	Staphylococcus sp.	0	1		
S*	Pseudomonas oryzihabitans	0	1		
	Total	181	181		

* Los grupos R y S no fueron detectados por caracterización morfológica.

En el cuadro 15 se observan sólo los que se mantuvieron en el mismo grupo, de un total de 181 cepas: 163 reconfirmaron su agrupamiento morfológico y bioquímico, mediante el análisis molecular y 18 cepas fueron reagrupadas.

	Microorganismos	Número de aislamiento obtenidos			
Grupo morfológico	identificados molecularmente	Caracterización morfólogica y bioquímica	Caracterización molecular		
Α	Sphingomonas sp.	2	1		
В	Staphylococcus pasteuri	8	7		
С	Bacillus cereus	29	29		
D	Paenibacillus taichungensis	82	75		
Ε	Methylobacterium extorquens	1	1		
F	Bacillus firmus	1	1		
G	Brevibacterium casei	1	1		
Н	Bacillus pumilus	12			
Ι	Bacillus pumilus	4	31		
J	Bacillus pumilus	24			
K	Bacillus licheniformis	1	1		
L	Janibacter sp.	7	7		
Μ	Paenibacillus illinoisensis	2	2		
Ν	Microbacterium sp.	1	1		
0	Acinetobacter sp.	1	1		
Р	No definido	4	4		
Q	Streptomyces parvulus	1	1		
	Total	181	163		

Cuadro 15: Confirmación de agrupación morfológica y bioquímica con respecto a la agrupación molecular de aislamientos bacterianos de cultivos *in vitro* de camote.

En el Cuadro 13 también se muestra en detalle, las contaminaciones detectadas en medio sólido, en líquido y que fueron posteriormente identificadas molecularmente por PCR. Pudiendo identificar en el caso del primero a 38 aislamientos, siendo *Paenibacillus taichungensis* (73.7%), *Staphylococcus pasteuri* (7.9%), *Bacillus pumilus* (7.9%),

Paenibacillus illinoisensis (5.3%), Janibacter sp (2.6%) y Streptomyces parvulus (2.6%). Siendo esto de importancia ya que corresponden a los que no se han detectado en el medio líquido de cultivo microbiano. En el caso del segundo, se identificó molecularmente a 143 aislamientos, siendo Paenibacillus taichugensis (32.9%), Bacillus cereus (27.9%), Bacillus pumilus (19.6%), Janibacter sp (4.2%), No definido (2.8%), Staphylococcus pasteuri (2.8%), Paenibacillus illinoisensis (2.1%), Bacillus licheniformis (2.1%), Microbacterium sp. (0.7%), Brevibacterium casei (0.7%), Acinetobacter sp. (0.7%), Bacillus firmus (0.7%), Sphingomonas sp. (0.7%), Methylobacterium extorquens (0.7%), Staphylococcus sp. (0.7%) y Pseudomona oryzihabitans (0.7%).

4.11 DETERMINACIÓN DEL PAR DE CEBADORES ESPECÍFICOS PARA IDENTIFICACIÓN MOLECULAR DE TODAS LAS CEPAS

Mediante este ensayo se probaron los cebadores universales pA, pF, a fin de comprobar si este par de cebadores podría servir, además de amplificar el gen ARNr 16S de todas las cepas bacterianas, para garantizar que en el control negativo (ADN de la planta limpia) no se obtenga amplificación.

Los resultados no fueron favorables mostrando amplificación en ambos (Figura 15). Por este motivo, se procedió a probar cebadores reportados como satisfactorios (Hodkinson y Lutzoni, 2009) que sin embargo no dieron resultado favorable. Luego, se probó con los cebadores 799f y 1492r reportados Sun *et al.*, 2008, que excluían la interferencia de ADN del cloroplasto y de la mitocondria en arroz, el cual dió resultado favorable cuando se probó con ADN de planta limpia, pero cuando se probó con las muestras bacterianas, sólo amplificaron *Paenibacillus illinoisensis* y *Acinetobacter* sp., por lo cual no resultó (Figura 16). **Figura 15:** Amplificación del gen ARNr 16S de planta contaminada (bacterial) y de planta limpia (cloroplastídica) con cebadores pA y pF (1066pb) de ADN de planta limpia (900ng* μ L⁻¹).

B: Blanco (sin ADN), PL: ADN Planta Limpia, PC: Planta contaminada. M: Marcador λ Pst 1.

Figura 16: Amplificación del gen ARNr 16S con cebadores 799f y 1492r (694pb).

B: Blanco, PL: ADN Planta Limpia (900ng* μ L⁻¹), M*: *P.illinoisensis*, O*: *Acinetobacter* sp.M: Marcador λ Pst 1.

Debido a los resultados obtenidos, se procedió a diseñar cebadores universales para todas las cepas, para ello se realizó el alineamiento de las 17 secuencias (Figura 17) incluyendo los dos nuevos aislamientos identificados molecularmente. Los cebadores obtenidos fueron pMF2 y pMR1, cuyas secuencias y características se detallan en el Cuadro 16.

Figura 17: Alineamiento de las 17 secuencias de contaminantes bacterianos de cultivos *in vitro* de camote, para el diseño de cebadores pMF2 y pMR1 que amplifican el gen ARNr 16S.

Cuadro 16: Cebadores del gen ARNr 16S específicos diseñados para amplificación universal de las cepas aisladas de cultivos *in vitro* de camote.

Nombre	Secuencia (5'-3')	Amplicón (pb)	Ta (°C)
pMF2	GGCGTCTAATACTGGATATGTGACGTG	160	17 5
pMR1	GGACTACCAGGGTATCTAA	409	47.5

Mediante el ensayo de PCR con gradiente de temperatura, de acuerdo a lo descrito en el punto 3.2.6, se obtuvieron bandas débilmente amplificadas (Figura 18) con el ADN de *Bacillus pumilus* (113.8ng*uL⁻¹) su temperatura de alineamiento fue de 47.5 °C como se señala en el Cuadro 16.

Pero cuando se probó con todas las cepas bacterianas (inóculo puro), como con ADN de planta contaminada no se obtuvo amplificación, siendo poco eficientes.

Figura 18: Electroforesis de productos obtenidos mediante PCR con gradiente de temperatura de 42.5-52.5 °C, con cebadores pMF2 y pMR1 (469pb).

M: Marcador λ Pst1, B: Blanco, PL: ADN Planta limpia (426ng* μ L⁻¹), T: Temperatura, 1, 2, 3, 4, 5, 6: 40, 42.5, 45, 47.5, 50 y 52.5 °C respectivamente.

4.12 ANÁLISIS ESTADÍSTICO DE DATOS

El cuadro 15 muestra los agrupamientos hechos tanto por el metodo convencional como por el método molecular de manera independiente. De estos, sólo se analizó al grupo de *Bacillus pumilus* y *Paenibacillus taichungensis* por tener mayor diferencia entre los dos agrupamientos, haciendo posible su análisis estadístico por la prueba de proporciones. Para el caso de *Bacillus pumilus*, se observó a 40 aislamientos caracterizados morfológica y bioquimicamente, contrastados con 31 confirmados molecularmente. Así mismo, para el caso de *Paenibacillus taichungensis* se observó a 82, contrastados con 75.

Mediante su análisis estadístico, se obtuvo para los dos casos, *Bacillus pumilus* y *Paenibacillus taichungensis*, la hipótesis de que no hay diferencias sifgnificativas entre los dos métodos, para un α = 0.05 se rechaza, debido a que el valor del p es 0.005 y 0.02 respectivamente, siendo valedera la hipótesis alterna de que los dos métodos resultaron diferentes significativamente. El análisis realizado se puede observar en el Anexo 3.

Este resultado confirma que en estos dos casos es difícil una certera agrupación por el método convencional, ya que sus diferencias morfológicas y bioquímicas fueron difíciles de detectar. Así, se agruparon en un comienzo a 9 aislamientos como *Bacillus pumilus*, y 7 en el caso de *Paenibacillus taichungensis* resultados que no concordaron molecularmente, los detalles se encuentra en el punto 4.10.

El margen de error hallado en la agrupación convencional de los 181 aislamientos comparado con el molecular fue de 11%.

V. CONCLUSIONES

Se detectó contaminación bacteriana en un 10.27% de cultivos *in vitro* de *Ipomoea batatas* "camote" conservados en el Banco de germoplasma mantenido en el Centro Internacional de la Papa.

La agrupación de 185 aislamientos bacterianos determinó morfológica y bioquímicamente a 17 grupos. Mientras que molecularmente a 15: Sphingomonas sp., Bacillus pumilus (tres cepas), Bacillus cereus, Paenibacillus illinoisensis, Paenibacillus taichungensis, Methylobacterium extorquens, Brevibacterium casei, Acinetobacter sp., Microbacterium sp., Streptomyces parvulus, Bacillus firmus, Staphylococcus pasteuri, Bacillus licheniformis, Janibacter sp. y uno no definido.

Para la identificación molecular de cada grupo bacteriano, se obtuvieron cebadores específicos que no amplificaron con el ADN de planta limpia (no contaminada) de *Ipomoea batatas* evitando amplificaciones no deseadas.

Se obtuvieron 11 pares de cebadores específicos para los siguientes microorganismos: Sphingomonas sp., Bacillus cereus, Paenibacillus taichungensis, Methylobacterium extorquens, Bacillus pumilus, Brevibacterium casei, Paenibacillus illinoisensis, Acinetobacter sp., Microbacterium sp., Streptomyces parvulus y para el no definido.

El límite de detección de los cebadores determinado directamente de cada cultivo microbiano fue variable para cada microorganismo, presentando detección desde $5*10^{0}$ UFC*mL⁻¹ para *Paenibacillus taichungensis*. El límite de detección determinado mediante la extracción de ADN de planta contaminada también fue variable encontrándose a *Bacillus pumilus, Bacilus cereus* y a *Sphingomona* sp, como los detectables a partir de la concentración de $5*10^{0}$, $3.1*10^{0}$ y $5*10^{0}$ UFC*mL⁻¹ respectivamente; y para *Janibacter* sp. no presentó detección en las diluciones desde $2.86*10^{0}$ a $2.86*10^{9}$ UFC*mL⁻¹.

Se determinó molecularmente que *Paenibacillus taichungensis* sp. estuvo presente en un 41.4% de las muestras, siendo el microorganismo predominante, seguido de *Bacillus cereus* y *Bacillus pumilus* con 22.1 y 17.1% respectivamente.

La agrupación por el método convencional (morfológico y bioquímico) tuvo un margen de error de 11%, teniendo que reagruparse 18 cepas. Dos de estas no amplificaron con ningún cebador diseñado perteneciendo a dos nuevos aislamientos *Pseudomonas oryzihabitans* y *Staphylococcus* sp.

La identificación a nivel molecular ha demostrado tener mayor confiabilidad estadísticamente (α =0.05), demostrándose en el caso de la agrupación de *Bacillus pumilus* y *Paenibacillus taichungensis*.

Así mismo, el método de detección directa a partir de planta contaminada, posibilita detectar presencia bacteriana sin necesidad de un previo cultivo bacteriano.

VI. RECOMENDACIONES

Se recomienda realizar un antibiograma de todas las especies identificadas, con el fin de determinar el tipo de antibiótico a utilizar en la prevención de contaminación

Se recomienda evaluar la colección de cultivos contaminados con bacteria, conservados en el Banco de germoplasma, mediante métodos moleculares para identificar que especie microbiana está presente y así suministrarle el tratamiento adecuado.

Para la detección molecular de contaminantes bacterianos, se recomienda mejorar los cebadores pMF2 y pMR1, ampliando su tamaño y/o mediante inclusión de nucleótidos degenerados a fin de mejorar su eficiencia.

Se recomienda diseñar nuevos cebadores para confrmar la presencia de los dos nuevos aislamientos detectados (*Pseudomonas oryzihabitans* y *Staphylococcus* sp.) en cultivos *in vitro* de camote.

Se recomienda validar el método planteado de detección de contaminantes en plantas *in vitro* de camote por extracción de ADN en la colección libre de contaminantes del banco *in vitro* de camote.

Se recomienda analizar las interacciones planta-microorganismo de las especies identificadas para verificar presencia de endófitos.

Se plantea en el Anexo 4 el protocolo sugerido a seguir para la detección de accesiones contaminadas.

VII. REFERENCIAS BIBLIOGRAFICAS

- ABANDA-NKPWATT, D. MÜSCH, M. TSCHIERSCH, J. BOETTNER, M. y SCHWAB, W. 2006. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J. Exp. Bot. 57(15): 4025–4032.
- AUSTIN, D. 1988. The taxonomy, evolution and genetic diversity of sweetpotatoes and related wild species. En: Gregory P. (ed.). Exploration, maintenance, and utilization of sweetpotato genetic resources. Lima, Peru. CIP Publication. p 27-60.
- BALKWILL, D; FREDRICKSON, J y ROMINE, M. 2006. Sphingomonas and related genera. Prokaryotes. 7:605-629.
- BARTLETT, J.M.S y STIRLING, D. 2003. A short history of the Polymerase Chain Reaction. Methods. Mol. Biol. 226(1): 3-6, DOI: 10.1385/1-59259-384-4:3.
- BENSON, E. 2003. An introduction to plant conservation biotechnology. En: Plant conservation biotechnology. Francis y Taylor. USA. p 6, 251.
- BERIĆ,T; URDACI, M; STANKOVIĆ, S y KNEŽEVIĆ-VUKČEVIĆ, J. 2009.
 RAPD Analysis of genetic diversity and qualitative assessment of hydrolytic activities in a collection of *Bacillus* sp. isolate, *Arch. Biol. Sci.* 61 (4): 645-652.
- BIRMETA, G; PASSOTH, V; ROOS, S y WELANDER, M. 2004. Identification of bacteria and yeasts from *in vitro* and surface-sterilized field samples of *Ensete ventricosum* by rDNA analysis, *Biotechnol. Lett.* 26: 1867–1872.
- BOURQUE, D; OUELLETTE, B; ANDRÉ, G y GROLEAU, D. 1992. Production of poly-β-hydroxybutyrate from methanol: Characterization of a new isolate of *Methylobacterium extorquens. Appl. Microbiol. Biotechnol.* 37(1): 7-12. DOI: 10.1007/BF00174194.

- BUDOWLE, B; SCHUTZER, S y BREEZE, R. 2010. Microbial Forensics. Academic Press. USA. p.281.
- CASSELLS, A y TAHMATSIDOU, V. 1996. The influence of local plant growth conditions on non-fastidious bacterial contamination of meristem-tips of *Hydrangea* cultured *in vitro*, *Plant. Cell. Tiss. Org.* 47:15-26.
- CASSELLS, A. 1991. Problems in tissue culture En: Micropropagation: Technology and application. Dordrecht Ed. H.DPC y ZR. The Netherlands. Kluwer Academic Publishers, p 31-44.
- CENTRO INTERNACIONAL DE LA PAPA (CIP, PE). 2011. Banco de Germoplasma del CIP el futuro de la papa y el camote. Lima. Perú. CIP Publication. p 1. Disponible en: http://www.cipotato.org/resources/ publications/ fact-sheets-flyer-leaflet/banco-de-germoplasma-del-cip-el-futuro-de-la-papa-y-elcamote [Consultado: el 1 de setiembre del 2011]
- CENTRO INTERNACIONAL DE LA PAPA (CIP, PE). 2010. Datos y Cifras sobre el Camote. Lima. Perú. CIP Publication. Disponible en http://cipotato.org/publications/ pdf/005519.pdf [Consultado: el 1 de setiembre del 2011].
- CHANDRA, R y CHANDRA, K. 2011. Endogenous microbial contamination during *in vitro* culture of sweet potato [*Ipomoea batatas* (L.) Lam]: Identification and prevention. *J. Agric. Tech.*, 7(6): 1725-1731.
- CHESNEAU, O; MORVAN, A; GRIMONT, F; LABISCHINSKI, H y EL SOLH,
 N. 1993. *Staphylococcus pasteuri* sp. nov., Isolated from Human, Animal, and
 Food Specimens. *Int. J. Syst. Bacteriol* 43(2): 237-244.
- CHI, Y. 2012. R Tutorial with Bayesian Statistics Using OpenBUGS. USA. Amazon. p 50.
- COLLINS, M. 2006. The Genus Brevibacterium. Prokaryotes. 3:1013-1019.
- CONSTANTINIU, S; ROMANIUC, A; SMARANDA, L; FILIMON, R y TARAŞI, I. 2004. Cultural and biochemical characteristics of *Acinetobacter* spp. strains isolated from hospital units. *Am. J. Prev. Med.* 12 (3-4): 35-42.

- DIAZ, K; VALIENTE, C; MARTINEZ, M; CASTILLO, M y SANFUENTES, E.
 2009. Root-promoting rhizobacteria in *Eucalyptus globulus* cuttings. *World J Microb Biot*. 25(5): 867-873.
- DIEFFENBACH, C; LOWE, T y DVEKSLER, G. 1993. General concepts for PCR primer design. *Genome. Res.* 3: S30-S37.
- DOUKYU, N; KUWAHARA, H y AONO, R. 2003. Isolation of *Paenibacillus illinoisensis* that produces cyclodextrin glucanotransferase resistant to organic solvents, *Biosci. Biotechno. Biochem.* 67(2):334-340.
- EGÚSQUIZA, V. 1996. Erradicación bacteriana del germoplasma de camote Ipomoea batatas L(Lam). Tesis para optar el título profesional de Biólogo. Universidad Ricardo Palma. Lima-Perú.
- ENGELMANN, F. 1997. *In vitro* conservation methods. En: Biotechnology and plant genetic resources conservation and use. J Callow; B Ford-Lloyd y H Newbury (Eds.). Wallingford. Oxon. CAB International. p 119-161.
- ESPINOZA, L. 2007. Ecología Molecular, En: Guía práctica sobre la técnica de PCR. México. Instituto Nacional de Ecología. p 528.
- ESPINOZA, N; LIZÁRRAGA, R; SIGÜEÑA, S; BUITRÓN, F; BRYAN, J y DODDS, J. 1992. Cultivo de Tejidos: Micropropagación, conservación y exportación de germoplasma de papa. En: Guía de investigación Centro Internacional de la Papa. Lima Perú. CIP Publication. p 3.
- FERNÁNDEZ, F. VALENZUELA, C. MARSCH, R. MARTÍNEZ, C. VÁZQUEZ, E y DENDOOVEN, L. 2011. Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. *Environ. Sci. Pollut. Res.* 18:12-30.
- FLINT, J; DRZYMALSKI, D; MONTGOMERY, W; SOUTHAM, G y ANGERT,
 E. 2005. Nocturnal production of endospores in natural populations of epulopiscium-like surgeonfish symbionts. *J. Bacteriol.* 187(21): 7460–7470.
- FOOD AGRICULTURAL ORGANIZATION STATISTICS (FAOSTAT, IT).
 2009. Disponible en http://faostat.fao.org [Consultado: el 1 de setiembre del 2011].

- FOOD AGRICULTURAL ORGANIZATION (FAO, IT). 2006. Ficha Técnica FAO. Disponible en http://www.fao.org/inpho_archive/ content/documents/ vlibrary/AE620s/Pfrescos/CAMOTE.HTM [Consultado: el 1 de setiembre del 2011].
- FORBES, B; SAHM, D y WEISSFELD, S. 2009. Diagnóstico microbiológico. 12^a
 edición. España. Editorial Medica Panamerica. p 127-129.
- FUNKE, G; HAASE, G; SCHNITZLER, N; SCHRAGE, N y REINERT, R. 1997.
 Endophthalmitis due to Microbacterium species: Case Report and Review of Microbacterium Infections. *Clin. Infect. Dis.* 24 (4): 713-716.
- GERHARDT, P; MURRAY, R.G.E.; WOOD, W. A. y KRIEG, N.R. 2008. Methods for general and molecular bacteriology. Washington DC. American Society for Microbiology. p.56.
- GNEIDING, K, FRODL, R Y FUNKE, G. 2008. Identities of *Microbacterium* spp. encountered in human clinical specimens. *J. Clin. Microbiol.* 46 (11): 3646-3652.
- GRUNER, E; STEIGERWALT, A; HOLLIS, D; WEYANT, R; WEAVER, R; MOSS, W; DANESHVAR, M; BROWN, J y BRENNER, J. 1994. Human infections caused by *Brevibacterium casei* formerly CDC Groups B-1 and B-3, *J. Clin. Microbiol.* 32(6): 1511-1518.
- GUTIÉRREZ, D; HERNÁNDEZ, A y CORRALES, L. 2009. Pseudomonas oryzihabitans: un microorganismo de creciente interés científico. N O V A, 7(11): 103-112.
- HABIBA, U; REZA, S; LAL, S; KHAN, M y HADIUZZAMAN, S. 2002.
 Endogenous bacterial contamination during *in vitro* culture of table banana: Identification and prevention. *Plant. Tissue. Organ. Cult.* 12(2):117-124.
- HENDRICKS, D y BOONE, R. 2009. Bergey's manual of systematic bacteriology.
 2ed vol 3. Springer. p 99-412.

- HIJNEN, W; VOOGT, R; VEENENDAAL, R; JAGT, H y KOOIJ, D. 1995.
 Bromate reduction by denitrifying bacteria. *Appl. Environ. Microbiol.* 61(1): 239-244.
- HODKINSON, B y LUTZONI, F. 2009. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. *Symbiosis*. 49:163-180.
- HOLDGATE, D y ZANDVOORT, E. 1997. Pathogen and microbial contamination management in micropropagation. Netherlands. Dordrecht: Kluwer Academic publishers. p 15-22.
- INNEREBNER, G; KNIEF, C y VORHOLT, A. 2011. Protection of *Arabidopsis thaliana* against leaf-pathogenic *Pseudomonas syringae* by *Sphingomonas* strains in a controlled model system. *Appl. Environ. Microbiol.* 77(10): 3202-3210.
- IRIONDO, J. 2001. Conservación de germoplasma de especies raras y amenazadas.
 Invest. Agr. Prod. Prot. Veg. 16 (1): 1-20.
- ISENEGGER, D; TAYLOR, P; MULLINS, K; MCGREGOR, G, BARLASS y HUTCHINSON, J. 2003. Molecular detection of a bacterial contaminant *Bacillus pumilus* in symptomless potato plant tissue cultures. *Plant. Cell. Rep.* 21(8): 814-820. DOI: 10.1007/s00299-003-0583-z.
- JATA, S; NEDUNCHEZHIAN, M Y MISRA, R. 2011. The triple 'f' (food, fodder and fuel) crop sweet potato [Ipomoea batatas (L.) Lam.]. *Orissa. Review*. 68(5): 82-92.
- JENSEN, G; HANSEN, B; EILENBERG, J y MAHILLON, J. 2003. The hidden lifestyles of *Bacillus cereus* and relatives. *Environ Microbiol*. 5(8): 631–640.
- KHAN, M y PATEL, C. 2007. Plant growth promoting effect of *Bacillus firmus* strain NARS1 isolated from Central Himalayan region of India on *Cicer arientnum* at low temperature. *Afr. Crop Sci.* 8: 1179-1181.
- KIRK, J; BEAUDETTEA, L; HARTB, M; MOUTOGLISC, P; KLIRONOMOSB,
 J; LEEA, H y TREVORS, J. 2004. Methods of studying soil microbial diversity. J.
 Microbiol. Methods. 58: 169–188.

- KREUZE, J; SUOMALAINEN, S; PAULIN, L y VALKONEN, J. 1999.
 Phylogenetic analysis of 16S rRNA genes and PCR analysis of the nec1 gene from *Streptomyces* spp. causing common scab, pitted scab, and netted scab in Finland. *Phytopathology*. 89:462-469.
- LAFFINEUR, K; AVESANI, V; CORNU, G; CHARLIER, J; JANSSENS, M; WAUTERS, G y DELMÉE, M. 2003. Bacteremia due to a novel *Microbacterium* species in a Patient with leukemia and description of *Microbacterium paraoxydans* sp. nov. *J. Clin. Microbiol.* 41(5): 2242.
- LEE, F; TIEN, C; TAI, C; WANG, L; LIU, Y. CHERN, L. 2008. Paenibacillus taichungensis sp. nov., from soil in Taiwan. Int. J. Syst. Evol. Microbiol. 58(11): 2640-2645.
- LEIFERT, C y CASSELLS, A. 2001. Microbial hazards in plant tissue and cell cultures. *In Vitro. Cell. Dev-Pl.* 37:133-138.
- LEIFERT, C y WOODWARD, S. 1998. Laboratory contamination management, the requirement for microbiological quality assurance. *Plant. Cell. Tiss. Organ. Cult.* 52: 85-88.
- LI, Y; KAWAMURA, Y; FUJIWARA, N; NAKA, T; LIU, H; HUANG, X; KOBAYASHI, K y EZAKI, T. 2004. *Sphingomonas yabuuchiae* sp. nov. and *Brevundimonas nasdae* sp. nov., isolatedfrom the Russian space laboratory Mir. *Int. J. Syst. Evol. Microbiol.* 54: 819–825.
- LIDSTROM, M y CHISTOSERDOVA, L. 2002. Plants in the pink: Cytokinin production by *Methylobacterium*. J. Bacteriol. 184 (7):1818.
- LIN, L; GUO, W; XING,Y y ZHANG, X; LI, Z; HU, C; LI, S; LI, Y y AN, Q. 2012. The actinobacterium *Microbacterium* sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N₂ associated with micropropagated sugarcane plants. *Appl. Microbiol. Biotechnol.* 93(3):1185-95.
- LOGAN, N y DE VOS, P. 2011. Endospore-forming soil bacteria. USA. Springer. p 136.

- MACFADDIN. 2000. Biochemical tests for identification of medical bacteria. 3era edición. Baltimore. USA. Lippincott Williams & Wilkins. p 78.
- MANDIC-MULEC, I y PROSSER, J. 2011. Endospore-forming soil bacteria. En: Chapter 2: Diversity of endospore-forming bacteria in soil: Characterization and driving mechanisms. Berlin. Springer. p 43.
- MAZA CÓRDOVA, CARMEN. 2006. Control de bacterias presentes en los cultivos *in vitro* del germoplasma del camote (*Ipomoea batatas* (L)). Tesis para optar el Título Profesional de Biólogo .Universidad Nacional Mayor de San Marcos. Lima-Perú.
- MCSPADDEN GARDENER BB, 2004. Ecology of *Bacillus* and *Paenibacillus* spp. in agricultural systems. *Phytopathology*. 94: 1252-1258.
- MEDINA-MARTÍNEZ, M; UYTTENDAELE, M; RAJKOVIC, A; NADAL, P y DEBEVERE, J. 2007. Degradation of N-Acyl-l-Homoserine Lactones by *Bacillus cereus* in culture media and pork extract. *Appl. Environ. Microbiol.* 73(7): 2329-2332.
- MOULIN, M; RODRIGUES, R; GONÇALVES, L; SUDRÉ, C; SANTOS, M; SILVA, J. 2012. Collection and morphological characterization of sweet potato landraces in north of Rio de Janeiro state. *Hortic. Bras.* 30: 286-292.
- MUÑOZ-PRICE L y WEINSTEIN, R. 2008. Acinetobacter infection. N. Engl. J. Med. 358:1271-81.
- NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION (NCBI, USA), Disponible en http://www.ncbi.nlm.nih.gov/Taxonomy/ [Consultado: el 1 de setiembre del 2011]
- NAZ, I; BANO, A; REHMAN, B; PERVAIZ, S; IQBAL, M; SARWAR, A y YASMIN, F. 2012. Potential of *Azotobacter vinelandii* Khsr1 as bio-inoculant. *Afr. J. Biotechnol.* 11(45), pp. 10368-10372.
- ODUTAYO, O; AMUSA, N; OKUTADE, O y OGUNSANWO, Y. 2007a, Determination of microbial contaminats of cultured plant tissues. *Plant Pathol*. 6(1):77-81

- ODUTAYO, O; AMUSA, N; OKUTADE, O y OGUNSANWO, Y. 2007b. Sources of microbial contamination in tissue culture laboratories in southwestern Nigeria, *Afr. J. Agr. Res.* 2(3): 67-72.
- OKANLAWON, B; OGUNBANWO, S y OKUNLOLA, A. 2010. Growth of Bacillus cereus isolated from some traditional condiments under different regimens. Afr. J. Biotechnol. 8(14): 2129-2135.
- PANICKER, B; THOMA, P; JANAKIRAM, T; VENUGOPALAN, R y NARAYANAPPA, S. 2007. Influence of cytokinin levels on *in vitro* propagation of shy suckering chrysanthemum "Arka Swarna" and activation of endophytic bacteria. *In Vitro. Cell. Dev-Pl.*, 43:614-622.
- PARVATHI, A; KRISHNA, K; JOSE, J; JOSEPH, N y NAIR, S. 2009.
 Biochemical and molecular characterization of *Bacillus pumilus* isolated from coastal environment in Cochin, India. *Braz. J. Microbiol.* 40: 269-275.
- PIERCE, B. 2010. Genética: Un enfoque conceptual. 3era Edición. Editorial Médica Panamericana. p 524,527.
- RAJAPAKSE, S; NILMALGODA, S; MOLNAR M; BALLARD, R; AUSTIN D; BOHAC J. 2004. Phylogenetic relationships of the sweetpotato in *Ipomoea* series Batatas (Convolvulaceae) based on nuclear beta-amylase gene sequences. *Mol. Phylogenet. Evol.* 30(3): 623-32.
- REED, B y TANPRASERT, P. 1995. Detection and control of bacterial contaminants of plant tissue cultures. A review of recent literature. *Plant. Tissue. Cult. Biotech.* 1(3):137-142.
- ROCA, W y MROGINSKI, L. 1991. Cultivo de tejidos en la agricultura: Fundamentos y aplicaciones. Colombia. Centro Internacional de Agricultura Tropical. p 20.
- RODICIO, M y MENDOZA, M. 2004. Identificación bacteriana mediante secuenciación del ARNr 16S: fundamento, metodología y aplicaciones en microbiología clínica. *Enferm. Infecc. Microbiol. Clin.* 22: 238-45.

- ROKHBAKHSH-ZAMIN, F; SACHDEV, D; KAZEMI-POUR, N; ENGINEER, A; PARDESI, KR; ZINJARDE, S; DHAKEPHALKAR, PK; CHOPADE, B. 2011.
 Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of *Pennisetum glaucumK*, J. Microbiol. Biotechnol. 21(6):556-66.
- SAMBROOK, J y RUSSELL, D. 2001. Molecular cloning: A laboratory manual.
 Vol 2.USA.CSHL Press. p 126.
- SAVINI, V; CATAVITELLO, C; CARLINO, D; BIANCO, A; POMPILIO, A; BALBINOT, A; PICCOLOMINI, R; DI BONAVENTURA, G y D'ANTONIO, D.
 2009. *Staphylococcus pasteuri* bacteraemia in a patient with leukaemia. *J. Clin. Pathol.* 62(10):957-958.
- SCHMIDT, S. 2010. Functional investigation of methanol dehydrogenase-like protein XoxF in *Methylobacterium extorquens* AM1. Tesis para el grado de doctor de ETH Zurich.
- SHIVAJI, S; CHATURVEDI, P; BEGUM, Z; KUMAR, P; MANORAMA, R; PADMANABAN, A; SHOUCHE,Y; PAWAR, S; VAISHAMPAYAN, P; DUTT, S; DATTA, G; MANCHANDA, R; RAO, U; BHARGAVA, P y NARLIKAR, J. 2009. Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere, Int. J. Syst. Evol. Microbiol. 59: 2977-2986.
- SILO-SUH, L; LETHBRIDGE, B; RAFFEL, S J; HE, H; CLARDY, J y HANDELSMAN, J. 1994. Biological activities of two fungistatic antibiotics produced by *Bacillus cereus* UW85. *Appl. Environ. Microbiol.* 60 (6): 2023–2030.
- SRISUWAN,S; SIHACHAKR, D y SILJAK-YAKOVLEV,S. 2006. The origin and evolution of sweet potato (*Ipomoea batatas* Lam.) and its wild relatives through the cytogenetic approaches. *Plant. Sci.* 171:424-433.
- STRACHAN, T y READ, A. 1999. Human Molecular Genetics. En: Chapter 6: PCR, DNA sequencing and *in vitro* mutagenesis. 2da Edición. Bios Scientific Publishers. Disponible en http://www.ncbi.nlm.nih.gov/books/NBK7571/ [Consulta 1 de setiembre 2011].

- SUN, L; QIU, F; ZHANG, X; DAI, X; DONG, X y SONG, W. 2008, Endophytic bacterial diversity in rice (*Oryza sativa* L.) roots estimated by 16S rDNA sequence analysis, *Microb Ecol* 55(3):415-24.
- THOMAS, B; PANICKER, B; JANAKIRAM, T y SATHYANARAYANA, B.
 2009a. *In vitro* propagation of 'Arka Ravi' chrysanthemum on growth regulatorfree medium harbouring endophytic bacteria. *J. Hortic. Sci. Biotech.* 84(6): 653– 659.
- THOMAS, P y SOLY, T. 2009b. Endophytic bacteria associated with growing shoot tips of banana (*Musa* sp.) cv. Grand Naine and the affinity of endophytes to the host. *Microbial. Ecol.* 58(4): 952-964.
- THOMAS, P; SWARNA, G; ROY, P y PATIL, P. 2008. Identification of culturable and originally non-culturable endophytic bacteria isolated from shoot tip cultures of banana cv. Grand Naine. *Plant. Cell. Tiss. Organ. Cult.* 93:55–63.
- THOMAS, P; KUMARI, S; SWARNA, G y GOWDA, T. 2007. Papaya shoot tip associated endophytic bacteria isolated from *in vitro* cultures and host-endophyte interaction *in vitro* and *in vivo*. *Can. J. Microbiol*. 53(3): 380-390.
- THOMAS, P. 2004. Isolation of *Bacillus pumilus* from *in vitro* grapes as a long-term alcohol-surviving and rhizogenesis inducing covert endophyte. J. Appl. Microbiol. 97:114-123.
- TSAY, H; HO, H; GUPTA, S; WANG, C; CHEN, P y CHEN, E. 2012.
 Development of pollen mediated activation tagging system for *Phalaenopsis* and *Doritaenopsis*. *Electron. J. Biotechn.* 15(4):717-721.
- USHA, R. 2011. Antibiotic production, purification, characterization and biological activity of newly isolated *Streptomyces parvulus* KUAP106. Tesis para optar el título de doctor of philosophy in microbioology en la universidad de Karpagam.
- USHA, R; ANANTHASELVI, P; VENIL, C y PALANISWAMY, M. 2010.
 Antimicrobial and antiangiogenesis activity of *Streptomyces parvulus* KUAP106 from mangrove soil. *Eur. J. Biol. Sci.* 2(4): 77-83.

- VUONG, C; VOYICH, J; FISCHER, E; BRAUGHTON, K; WHITNEY,A; DELEO, F y OTTO, M. 2004. Polysaccharide intercellular adhesin (PIA) protects *Staphylococcus epidermidis* against major components of the human innate immune system. *Cell. Microbiol.*6(3):269-275.
- WATSON, J; BAKER, T; BELL, S; GANN, A; LEVINE, M y LOSICK, R. 2006.
 Biología molecular del gen. 5ta Edición. España. Editorial Médica Panamericana. p 701-703.
- WEIGNER, M. GABRIEL, S y STEPHENS, J. 2007. Genetic variation: A laboratory manual. USA. Cold Spring Harbor Laboratory Press. p 151.
- WINN, W; ALLEN, S; JANDA, W; KONEMAN, E; PROCOP, G; SCHRECKENBERGER, P y WOODS, G. 2006. Color atlas and text book of diagnostic microbiology. En: Chapter 14: Aerobic and facultative gram-positive bacilli. 6ta edición. USA. Lippincott Williams & Wilkins. p 823-825.
- WOJTANIA, A; PULAWSKA, J y GABRYSZEWSKA, E. 2005. Identification and elimination of bacterial contaminants from *Pelargonium* tissue cultures. *J. Fruit. Ornam. Plant. Res.* 13:101-108.
- ZAHAR, F; MAROL, C; BERGE, O; RANGEL, J; POSSER, J; BALESDENT, J; HEULIN, T y ACHOUAK, W. 2008. Plant host habitat and root exudates shape soil bacterial community structure. *The. ISME. Journal.* 2: 1221–1230.
- ZAWADZKA, M; ORLIKOWSKA, T; SOBICZEWSKI, P; MIKICIŃSKI, A; SULIKOWSKA, M y ZENKTELER, E. 2009. The control of bacterial contaminations during *in vitro* shoot multiplication. *Acta. Biol. Cracov. Ser. Bot.* 51(1):28.
- ZHANG, D.P; CARBAJULCA, D; OJEDA, L; ROSSEL, G; MILLA, S; HERRERA, C y GHISLAIN, M. 2000a. Microsatellite analysis of genetic diversity in sweetpotato varieties from Latin America. Lima. Peru. CIP Program Report. p 295-301.

 ZHANG, D.P; ROSSEL, G y KRIEGNER, A. 2000b. From Latin America to Oceania: the historic dispersal of sweetpotato re-examined using AFLP. Lima. Perú. CIP Program Report. p 315-321.

VIII. ANEXOS

Anexo 1.

Composición de medios microbiológicos utilizados

- Medio de Conservación de Batatas (MCB): Composición por litro: Pantontenato de calcio 2 mg, nitrato de calcio 100mg, l-arginina 100 mg, ácido ascórbico 200mg, putrescina HCl 20 mg, sacarosa 30g, phytagel 2.8 g y sales basales de murashige y skoog; a pH 5.7.
- **Caldo Nutritivo enriquecido (CNe):** Composición por litro: Peptona 5.0 g, extracto de levadura 2.0 g, NaCl5.0 g, extracto de carne 1.0g y dextrosa 10g; a pH 7.
- Agar Nutritivo enriquecido (ANe): Composición por litro: Peptona 5.0 g, extracto de levadura 2.0 g, cloruro de sodio 5.0 g, extracto de carne 1.0g, dextrosa 10g y agar 15g; a pH 7.
- Agar Nutritivo modificado (ANm): Con la siguiente composición por litro: Peptona
 5g, extracto de carne 3g, dextrosa 2.5g y agar 15g; a pH 7.
- Agar Kelman: Con la siguiente composición por litro: Peptona 10g, dextrosa 2.5g, casaminoácidos 1g y agar 15g; a pH 7.
- Medio de Hugh-Leifson: Con la siguiente composición por litro: Peptona 2,00 g, glucosa 10,00 g, azul de bromotimol 0,03 g, NaCl 5g, K₂HPO₄ 0,30 g y agar 3 g; a pH 7.
- **Agar Almidón:** Con la siguiente composición por litro: Peptona 10g, NaCl 5g, extracto de carne 5g, almidón soluble 2g, agar 20g; a pH 7.
- Agar Tripticasa de Soya: Con la siguiente composición por litro: Peptona de caseína 15g, peptona de Carne de Soya 5g, NaCl 5g y Agar 15g; a pH 7.

Anexo 2

Tampones para extracción de ADN genómico de planta según método de Doyle (Tsay *et al.*, 2012)

- CTAB 2X: Con la siguiente composición por litro: CTAB 20 g, NaCl 81.81g, EDTA
 0.5M pH 8 40ml, Tris HCl 1M pH 8 100ml y Polivinilpirrolidona 10g.
- **CTAB 10X**: Con la siguiente composición por litro: CTAB 100g, NaCl 40.9g, EDTA 0.5M pH 8 40ml y Tris HCl 1M pH 8 100ml.
- **EDTA 0.5M** pH 8: Con la siguiente composición por litro: EDTA 186.1g, NaOH 100 pastillas.
- **Tris HCl 1M** pH 8: Con la siguiente composición por litro: 121g Tris base y ajustar pH con HCl concentrado.

Anexo 3. Análisis estadístico mediante la prueba de proporciones comparando el método convencional con el molecular para *Bacillus pumilus* y *Bacillus taichungensis* mediante programa estadístico R[®].

- a. Prueba de proporciones mediante la comparación del método convencional con respecto del molecular para *Bacillus pumilus* para confirmar la necesidad del uso del método molecular.
 - H_o: Los métodos de agrupación para *Bacillus pumilus* convencional y molecularmente son iguales (no hay diferencia significativa p>0.05)
 - Ha: Los métodos de agrupación para *Bacillus pumilus* convencional y molecularmente son diferentes (si hay diferencia significativa p<0.05).

> prop.test(c(40,31),c(40,40))

2-sample test for equality of proportions with continuity correction

data: c(40, 31) out of c(40, 40)

X-squared = 8.0125, df = 1, **p-value = 0.004646**

alternative hypothesis: two.sided

95 percent confidence interval:

 $0.07059227 \ 0.37940773$

sample estimates:

prop 1 prop 2

1.000 0.775

Conclusión: Los métodos de agrupación para *Bacillus pumilus* convencional y molecularmente presentan diferencias significativas, por lo tanto son diferentes.

 b. Prueba de proporciones mediante la comparación del método convencional con respecto del molecular para *Paenibacillus taichungensis* para confirmar la necesidad del uso del método molecular.

.

- H_o: Los métodos de agrupación para *Paenibacillus taichungensis* convencional y molecularmente son iguales (no hay diferencia significativa p>0.05)
- Ha: Los métodos de agrupación para *Paenibacillus taichungensis* convencional y molecularmente son diferentes (si hay diferencia significativa p<0.05).

> prop.test(c(82,75),c(82,82))
2- sample test for equality of proportions with continuity correction
data: c(82, 75) out of c(82, 82)
X-squared = 5.3722, df = 1, p-value = 0.02046
alternative hypothesis: two.sided
95 percent confidence interval:
0.0126914 0.1580403
sample estimates:
prop 1 prop 2
1.000000 0.9146341

Conclusión: Los métodos de agrupación para *Paenibacillus taichungensis* convencional y molecularmente presentan diferencias significativas; por lo tanto son diferentes.

Anexo 4. Protocolo sugerido para la detección de accesiones contaminadas e identificación microbiana.

- 1. En el banco de germoplasma *in vitro* de camote del CIP se seleccionarán las accesiones que necesiten ser determinadas su sanidad.
- 2. Se llevarán las accesiones al laboratorio de molecular.
- 3. Se limpiará el area de trabajo, como los materiales a utilizar con alcohol al 70%.
- 4. El material vegetal será cortado con bisturí Nº10, a fin de utilizar la parte basal del tallo y las raíces.
- 5. Se utilizarán morteró y nitrógeno liquido para pulverizar la muestra. Así como, eppendorfs de 1.5mL, tips 0.1-10 μ L y 20-200 μ L, espátulas y pinzas, todos previamente autoclavados.
- Se realizarán las extracciones de ADN de planta mediante el método de Doyle de acuerdo a lo descrito en el punto 3.2.7.
- Se verificará calidad de ADN en gel de agarosa al 1%, añadiendo por 1 µLde ADN a cuantificar: 2 µL de SALB10X y 0.13µL de gel red1/1. Y si presentase ARN, se aplicará 1µl de RNasa por muestra de ADN.
- Se preparará el master mix con la siguiente composición para una reacción: 16.63μL de agua libre de nucleasa, 0.63μL de cada cebador de 5μM, 1μL de 5μM dNTPs (Promega[®]), 1μL de ADN, 0.13μL GoTaq[®] DNA Polymerase y 5μL tampón de reacción GoTaq[®] (M3005-Promega[®]).
- La reacción de cadena de la polimerasa(PCR) se realizará mediante la preparación de un master mix para 17 reacciones a fin de tener una como blanco y otra como control negativo(ADN de planta limpia), las otras 15 reacciones serán con los siguientes cebadores: *P.taichungensis*_F2R1, *B.pumilus*_F2R2, *S.pasteuri*_F2R1, *Sphingomonas*_F2R1, *M.extorquens*_F2R1, *B.casei*_F3R1, *B.cereus*_F1R1, *B.firmus*_F1R1, *B.licheniformis*_F1R2, *P.illinoisensis*_F1R1, *Microbacterium*_F1R1, *Acinetobacter*_F3R2, *Janibacter*_F4R4, No definido_F2R2 y *S.parvulus*_F3R1, mencionados en detalle en el Cuadro 4.
- Si el objetivo es sólo detectar contaminación, se puede trabajar solo con los siguientes 7 cebadores: *B.licheniformis*_F1R2 (reacción positiva para *Janibacter* sp, *Bacillus cereus*, *Bacillus firmus*, *Staphylococcus pasteuri*, *Bacillus licheniformis*, *Acinetobacter* sp, No definido, *Microbacterium* sp y *Streptomyces parvulus*), *Sphingomonas*_F2R1, *P.taichungensis*_F2R1, *P.illinoisensis*_F1R1, *M.extorquens*_F2R1, *B.pumilus*_F2R2 y *B.casei*_F3R1.
- 11. Se realizará con el siguiente programa de PCR: 3 min a 95°C, seguido por 30 seg a 95 °C, alineamiento por 30s a temperatura de alineamiento (Ta) de cada cebador, y síntesis DNA por 80s a 72°C. Una extensión final de 3 min a 72°C fue adicionado al final de los 35 ciclos. La Ta se encuentra en el Cuadro 4.
- Para la corrida electroforética, se añadirá 1 μL de la siguiente preparación: 0.031μL de gel red 1/1, 0.125μL agua libre de nucleasas y 1.84μL de SALB10X. Utilizando el marcador de peso molecular λ Pst 1.
- Se correrán los geles de agarosa al 1% en cámaras de electroforesis con el tampón de corrida TBE1X. Y se le tomará la foto respectiva.
- 14. Las amplificaciones con ADN de la accesión analizada, se considerará como una accesión contaminada. Para ser reportada al banco de germoplasma *in vitro* de camote.