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A B S T R A C T

When properly calibrated and evaluated, dynamic crop simulation models can provide insights into the different
components of genotype by environment interactions (GEIs). Modelled outputs could be used to complement
data from multi-environment trials. Field experiments were conducted in the rainy and dry seasons of 2015 and
2016 across four locations in maize growing regions of Northern Nigeria using 16 maize varieties planted under
near-optimal conditions of moisture and soil nitrogen. The CERES-Maize model was calibrated using data from
three locations and two seasons (rainy and dry) and evaluated using data from one location and two seasons all
in 2015. Observed data from the four locations and two seasons in 2016 was used to create eight different
environments. Two profile pits were dug in each location and were used separately in the simulations for each
environment to provide replicated data for stability analysis in a combined ANOVA. The effects of the en-
vironment, genotype and GEI were highly significant (p=0.001) for both observed and simulated grain yields.
The environment explained 67 % and 64 % of the variations in observed and simulated grain yields respectively.
The variance component of GEI (13 % for observed and 15 % for simulated) were lower but still considerable
when compared to that of genotypes (19 % for observed and 21 % for simulated). From the stability analysis of
the observed and simulated grain yields using six different stability models, three models (ASV, Ecovalence, and
Sigma) ranked Ife Hybrid as the most stable variety. The slope of the regression (bi) model ranked Sammaz 11 as
the most stable variety, while the Shukla model ranked Sammaz 28 as the most stable variety. Long-term sea-
sonal analysis with the CERES-Maize model revealed that early and intermediate maturing varieties produce
high yields in both wet and dry savannas, early and extra-early varieties produce high yields only in the dry
savannas, while late maturing varieties produce high yields only in the wet savannas. When properly calibrated
and evaluated, the CERES-Maize model can be used to generate data for GEI and stability studies of maize
genotype in the absence of observed field data.

1. Introduction

In the savannas of Nigeria, including the semi-arid Sudan savanna
zone, maize production has increased greatly in the past three decades
(IITA, 2017). Maize has evolved from a backyard crop, produced
mainly by women and children, to a major commercial crop providing
food, animal feed, and industrial raw materials (Badu-Apraku and
Fakorede, 2017). The total annual national production in Nigeria in-
creased from 1.06M tons in 1976, to about 11.6M tons in 2016 (FAO,
2018). The annual increase in production output is majorly attributed

to the increase in the production area and not the much-needed in-
tensification. Average yields per hectare have been below 2Mg ha−1

since 1965 except for 2009 where a national average of 2.2 Mg ha-1 was
reported (FAO, 2018). The national average figures are quite low due to
a large number of farmers having yields below 1.4Mg ha−1, but yields
of> 7Mg ha−1 have been reported in research stations and across best-
farmer fields (IITA, 2017). The high yields in research stations and best-
farmer fields are mainly due to the selection of appropriate maturity
groups, high yielding varieties and adoption of best agronomic prac-
tices (Kamara et al., 2009).
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Over the years, many maize varieties of contrasting characteristics
that are adapted to the different regions of Nigeria have been developed
by the International Institute of Tropical Agriculture (IITA) and part-
ners (Badu-Apraku et al., 2011). These varieties have high yield po-
tentials and additional characteristics such as tolerance to drought and
low nitrogen as well as biotic stresses including the parasitic weed,
Striga hermonthica (Ifie et al., 2015). The selection of such varieties by
smallholder farmers is largely dependent on grain yields because they
are always the traits of economic relevance. Changes in the relative
grain yield output and other traits of genotypes in different production
environments are usually observed via a phenomenon called genotype
by environment interaction (GEI) (Badu-Apraku et al., 2003). For a
variety to be selected and utilized in a large group of environments,
evaluating the stability of performance and range of adaptation has
become increasingly important. The GEI makes it difficult for breeders
and growers to select high yielding varieties that are stable across dif-
ferent environments thereby reducing the effectiveness of the selection
process (Yan and Hunt, 2010). Furthermore, determining the magni-
tude of GEI and the stability of varieties can be challenging, as such,
crop models can be employed to complement this process.

Dynamic models that can simulate the response of growth and de-
velopment of crops to varying abiotic environmental factors such as
temperature, solar radiation, and daylength have the potential to ex-
plain yield differences due to temporal and spatial variability (Sadras
et al., 2003). These models can also be used to explain yield variability
for different varieties across varying environments and management
conditions thereby quantifying the GEI (Bustos-Korts et al., 2016). The
models become more useful when they integrate a plant-soil-weather-
management continuum which gives them the potential to provide a
site and variety-specific agronomic recommendations for practices like
optimum sowing dates/density and appropriate fertilization require-
ments (Magaia et al., 2017). Several efforts by researchers to integrate
breeding and crop modelling have been well documented (Chapman,
2008; Chapman et al., 2002b). Crop growth models used in plant
breeding are centered on explaining resource capture, utilization and
allocation among plant organs (Cooper et al., 2009; Hammer et al.,
2006). They have also been used to characterize growing environments
(Chapman et al., 2000; Seyoum et al., 2017), to predict the influence of
trait variation on yield within the context of genotype by environment
by management interaction (Löffler et al., 2005; Seyoum et al., 2018),
for evaluation of breeding strategies (Chapman et al., 2003) and to
assess hybrid performance (Cooper et al., 2014). However, very few
studies have reported a comparison between simulated and observed
values on GEI and stability analysis (Chapman, 2008). Several kinds of
research have shown that models can be used to simulate GEI
(Salmerόn et al., 2017; Mavromatis et al., 2002; van Eeuwijk et al.,
2019; Chapman et al., 2002a; Seyoum et al., 2018). However, all the
studies were done in controlled experiments under the close supervision
of scientists. None of the studies were conducted in farmer fields under
partial supervision of scientists. Additionally, none of the model based
GEI studies were evaluated using different stability parameters espe-
cially for maize. In Africa, studies have been conducted using APSIM to
characterize production environments and simulate GEI for maize,

however, we could not find any available literature for comparisons
between model-based and field observed GEI as well as the evaluation
of the stability of varieties using different stability models.

The CERES-Maize model which was used in this study is a dynamic
crop simulation model that estimates maize phenology, dry matter
production/partitioning, and yield in daily time steps (Jones et al.,
1986). Over the years, the use of the CERES-maize model in making
management decisions has been increasing in Africa. For instance, it
was used to; evaluate climate-sensitive farm management practices in
the Northern Regions of Ghana (MacCarthy et al., 2017); identify ap-
propriate sowing dates and nitrogen rates in Zambia (Chisanga et al.,
2014); simulate nitrogen and phosphorus uptakes and soil moisture
dynamics in West Africa (Amouzou et al., 2018); and recently used in
Benin Republic to provide support decision making regarding fertilizer
micro-dosing for maize production (Tovihoudji et al., 2019). In Nigeria,
the model has been used for the determination of the nitrogen fertili-
zation requirements and optimum planting dates of maize (Adnan et al.,
2017a, 2017b). Considering the increased use of the model in Africa,
there is need to test the capacity of the model in predicting GEI in field
trials and breeders’ program. There is also a need to test the stability of
the model simulated grain yields for different maize varieties across
varying environments. Therefore, the objectives of the present research
were to (i) evaluate the applicability of the CERES-Maize model in
predicting genotype-by-environment interaction and (ii) compare the
stability of observed and simulated grain yields of 16 maize varieties
across diverse environments.

2. Materials and methods

2.1. Experimental conditions

Field experiments were conducted during the rainy and dry seasons
of 2015 and 2016 across four locations in northern Nigeria (Table 1).
The experimental locations include: Kano (BUK) (N11.516 E8.516
466m asl), Dambatta (DBT) (N12.333 E8.517 442m asl), Samaru
(SMR) (N11.187 E7.147 702m asl) and Lere (LER) (N10.52 E8.472 786
asl). In 2015, the trials in BUK were sown on 20th March and 14th July
in BUK, 21st March and 15th July in DBT, 23rd March and 17th July in
SMR and LER. In 2016 however, sowing was done for the two seasons
on 16th March and 20th July in BUK, 19th March and 21st July in DBT,
22nd March and 22nd July in SMR and 17th March and 24th July in
LER. The experiments were conducted near irrigation facilities to
maintain optimum moisture by irrigating when the soil moisture is
below field capacity for both the dry and rainy season trials. Moisture
conditions were monitored using a Time Domain Reflectometry (TDR)
Meter 6050× 1 TRASE SYSTEM (Soil moisture Equipment Corpora-
tion). Mineral fertilizers were applied at the rate of
120N:60P2O5:60K2O kg ha−1); potassium (K) was applied in form of
Muriate of Potash, phosphorus in the form of Single Super Phosphate,
and Nitrogen was applied in the form of Urea. While all the P and K
fertilizers were applied at sowing only half of the N fertilizer was ap-
plied at the time of sowing and the other half applied 21 days later.
Also, poultry manure (approximately NPK 1.1:0.8:0.5) was added to the

Table 1
Description of environments in the study.

Environment Environment Code Season Location Soil Type

E1 DSBUK Dry Bayero University Typic Kandiustalf
E2 DSDBT Dry Dambatta Typic Kanhaplustalf
E3 DSLERE Dry Lere Plinthic Kandihumult
E4 DSSMR Dry Samaru Plinthic Haplustult
E5 RSBUK Rainy Bayero University Typic Kandiustalf
E6 RSDBT Rainy Dambatta Typic Kanhaplustalf
E7 RSLERE Rainy Lere Plinthic Kandihumult
E8 RSSMR Rainy Samaru Plinthic Haplustult
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fields at the rate of 5Mg ha−1 to maintain optimum nutrient status. The
experimental fields were cleared, harrowed, ridged and thereafter
sprayed with a pre-emergence herbicide, Primextra (Atrazine+Meto-
lachlor) at the rate of 4lha−1 before planting. The maize was sown at an
intra-row spacing of 0.25m at two seeds per hole and later thinned to
one plant giving a population of 53,333 plants ha−1. The experiments
were laid out in a Randomized Complete Block Design (RCBD) with
four replications. The gross plot consisted of six rows 0.75m apart and
3m long (plot area= 13.5m2). The two innermost rows were used as
the net plot for yield assessment and sampling purposes. A space of
0.5 m was used between plots and 1m between replications.

2.2. Plant data measurements

Detailed data for growth, phenology and yield were collected and
used for model calibration and evaluation, while only grain yield data
was used for GEI and stability analysis. Evaluation of crop development
was done by observing the phenology of the different maize varieties
and recording the length of time (days) it takes to attain each pheno-
logical phase. The measurements were then converted to growing de-
gree days (GDD) using a base temperature of 8 °C and adopting the
relationship:
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Where, GDD is the growing degree days, Tmaxi is the maximum tem-
perature for the ith day, Tmini is the minimum temperature for the ith
variety and Tbase is the base temperature for maize.

Ten plants were tagged from the center of each plot in each re-
plication for phenological observations. The end of the juvenile stage
(i.e. panicle initiation) was determined through destructive sampling
and dissection of three plants, followed by observation of apical mer-
istem to check for floral bud development at two days intervals starting
from 14 days after emergence. The end of the juvenile stage was re-
corded when the male flower primordial was visible in 50 % of plants
examined. Days to 50 % tasselling was recorded when tassels were
observed on 50 % of the tagged plants. Physiological maturity ob-
servations were conducted as follows: kernels were removed from the
base, middle and distal end of each sampled ear daily, starting when
husks began to show signs of drying. Days to physiological maturity was
recorded when 50 % of the kernels in each tagged ear had formed a
black layer, indicating physiological maturity. Plant biomass was taken
at four different stages: vegetative, anthesis, grain filling and physio-
logical maturity. Five plants within a one-meter strip in a row were cut
at the ground, leaves were separated from the stem, chopped and dried
in the shade for three days. Both stems and leaves were oven-dried at
70 °C for 36–48 hours until the sample had attained constant weight.
Yield and yield component measurements were taken at harvest ma-
turity. Other variables measured included: the number of seeds per unit
area (seed # m−2), dry seed weight (g m−2), dry cob weight (g m−2),
dry husks weight (g m−2), grain yield (kg ha-1) and stover weight at
harvest (kg ha-1). All yield and yield component measurements were
done using procedures and formulae described by Ogoshi et al. (1999).

2.3. Initialization of soil and weather parameters

Two soil profile pits were dug in each location before planting, and
soil samples were taken from each layer for detailed studies. The two
profile pits used separately in the simulations for each environment to
provide replicated data for stability analysis. The samples from each
layer were analyzed for pH (in H20), texture, moisture, bulk density,
exchangeable potassium (K), organic matter, available phosphorus
(Bray II), total nitrogen and CEC. The soil data tool (SBuild) of DSSAT
was used to create the soil database which was used for general simu-
lation purposes. The parameterization of SBuild for calibration and

simulation experiments were done as previously reported (Adnan et al.,
2019).

Daily weather data was collected from weather stations (Watchdog
2000 Series, Spectrum Technologies) adjacent to all experimental sites.
All the weather stations were less than 2 km away from the experi-
mental sites. The Weatherman utility in DSSAT was used to input the
weather data to create the weather file used by the CERES- Maize model
(Adnan et al., 2019).

For other simulation options, initial conditions were as reported for
each year and location, the Priestly-Taylor/Ritchie method was selected
for simulation of evapotranspiration while the Soil Conservation
Service (SCS) method was selected for simulation of infiltration.
Photosynthesis was simulated using the radiation use efficiency
method, while hydrology and soil evaporation were simulated using the
Ritchie Water Balance and Suleiman-Ritchie methods respectively.
Phosphorus and Potassium were not simulated, while Nitrogen was
added according to experimental conditions.

2.4. CERES maize model evaluation

The 2015 field experiments were used for model calibration. Rainy
and dry season data from BUK, SMR and LER were used for model
calibration, while rainy and dry season data from DBT were used for
model evaluation. The three locations selected for calibration were
optimum sites and thereby deliberately selected for calibrating the
model, while the last location was not optimal and thereby deliberately
selected for model evaluation. The model was calibrated and evaluated
following the procedures of Adnan et al. (2019). Genotype specific
parameters (GSPs) for the 16 maize varieties were calibrated and
evaluated previously by Adnan et al. (2019) and were used in this study
(Table 2). The cultivar coefficients were fixed in the calibration and
validation exercise, while soil and weather of the different environ-
ments were inputted. The records of soil and weather data for in-
dividual locations that were already initialized into the SBuild and
Weatherman utilities were used for calibrations. The actual dates of
planting, fertilizer application, and harvest were also inputted into the
model.

Statistics used for model evaluation includes index of agreement (d-

Table 2
Calibrated genotype specific parameters of the 16 maize varieties used in the
study.

Variety P1* P2 P5 G2 G3 PHINT

(oC days) (days) (o C days) Kernel
plant−1

(mg day−1) (oC day
tip−1)

Sammaz 54 227.4 0.01 518.3 523.3 6.91 42.10
Sammaz 28 192.3 0.01 527.8 514.3 6.99 36.90
Ife Hybrid 5 213.7 0.01 511.6 518.7 7.09 40.00
Ife Hybrid 6 223.6 0.01 520.7 606.7 7.47 35.70
Early White 270.0 0.01 614.3 713.4 6.58 45.00
Sammaz 32 282.0 0.01 601.0 822.0 6.55 45.04
Sammaz 34 287.0 0.01 596.0 827.0 6.77 40.00
Sammaz 41 283.6 0.01 550.7 806.9 7.76 37.00
M1026−10 288.1 0.01 683.4 819.3 7.80 45.50
M1227−12 288.6 0.01 679.2 816.4 7.72 45.50
IWDC2 290.2 0.01 692.7 829.6 8.51 42.90
M0926−8 289.8 0.01 781.8 834.1 8.42 41.20
Oba Super 9 293.1 0.01 768.1 828.7 7.83 45.00
Sammaz 11 298.6 0.01 772.9 830.7 7.80 45.00
TZL-COMP4 293.7 0.01 769.2 786.7 7.59 39.98
TZBSR 294.1 0.01 789.3 846.9 7.17 45.00

P2 = Delay in development for each hour that day-length is above 12.5 h.
P5 = Thermal time from silking to time of physiological maturity.
G2 = Maximum kernel number per plant.
G3 = Kernel growth rate during linear grain filling stage under optimum
conditions.
PHINT=Thermal time between successive leaf tip appearances.
* P1 = Thermal time from seedling emergence to the end of juvenile phase.
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index), root means square error (RMSE), and Nash-Sutcliffe model ef-
ficiency (ME). The d-statistic (Eq. 2) was used because it gives a single
index of model performance, which covers bias and variability; it also
indicates 1:1 prediction better than R2 (Willmott and Willmott, 1982).
The ME is the most common method of assessing the power of simu-
lation models (Nash and Sutcliffe, 1970). ME (Eq. 3) have values ran-
ging from -∞ to 1, with a value of 1 indicating perfect prediction, a ME
value of 0 indicates that model predictions are as accurate as observed
mean, while negative ME values indicate that the observed mean is a
better predictor than the model (Ritter and Muñoz-Carpena, 2013).
RMSE (Eq. 4) varies with growth over time as the magnitude of the
growth variables increase, it takes the unit of the variable and an RMSE
value that is below 10 % of the mean of compared values is desirable
(Hyndman and Koehler, 2006). RMSE was used because it provides a
good estimate of comparisons between observed and simulated single
measured data (Loague and Green, 1991).
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Where n is the number of observations, Si is the simulated data, mi is the
measured data, and m is the mean of the measured data.

2.5. Seasonal analysis (model application)

The seasonal analysis tool of DSSAT 4.7 was used to conduct long
term sensitivity analysis of the response of the 16 maize varieties in the
wet and dry savannas of northern Nigeria. The seasonal analysis was
conducted only for the rainy seasons without simulating supplementary
irrigation. Long term daily weather data (1992–2017) for Kano (re-
presenting dry savanna) and Zaria (representing wet savanna) was
collected from the Nigerian Meteorological Agency (NIMET). Box plots
showing the rainfall data are depicted in Fig. 1. In the seasonal analysis
tool, the model was set to plant automatically when moisture is at
optimal and set to harvest at full harvest maturity each year. Optimum
recommended nitrogen fertilizer rates (120 Kg N ha−1) were applied in
two splits, half at planting and the remaining half at 2 weeks after
planting (considering moisture availability), both phosphorus and po-
tassium were set at optimum and not simulated.

The weather records indicated that the dry savannas had a shorter
growing season with a mean rainfall of 825mm and a growing season of
3.5 months. The average rainfall in the wet savannas is 1125mm with a
growing period of 5months. The rains establish earlier in the wet sa-
vannas and end later with better distribution than in the dry savannas
where rainfall establishes late and ceases early with more than 50 % of
the rain received in July and August in most years. Cumulative fre-
quency plots were used to present the results of simulated yields over
26 years.

2.6. Estimating GEI and stability analysis

To evaluate the potential of using simulated data in determining the
magnitude of GEI and stability of maize varieties, data from separate
experiments conducted across all four locations and two seasons in
2016 were used. Each location and season combinations were con-
sidered as a unique environment giving a total of eight environments
(Table 1). Among the 16 maize varieties used in the present study, four
varieties were early, four were extra early, four were intermediate and
four were late maturing. Simulations were done separately for the two
profile pits in each location to get simulated grain yield with two

replications. Observed grain yield data from detailed experiments and
simulated grain yields from the calibrated model were subjected to
analysis of variance using JMP version 14 software (SAS, 2018). After
testing for variance homogeneity, a combined analysis of variance was
performed to separate the total variation into components due to gen-
otype/variety (G), environment (E) and genotype× environment in-
teraction (GEI) effects. Genotype was treated as a fixed effect while
replication, environment and GEI were regarded as random effects.

Because GEI was found to be statistically significant, additional
statistics were calculated to determine the stability of each genotype
over the eight environments for both observed and simulated data. To
adequately evaluate the potential of using simulated data in de-
termining stability, different stability models were used. Univariate
stability models based on regression and variance estimates were first
considered. According to the regression model, stability is measured
based on mean grain yield, the slope of the regression line (bi) and the
sum of squares for deviation from regression (S2d). A variety with a bi
value that is not significantly different from unity indicates that the
variety is adapted to all environments. A variety with a bi value greater
than unity indicates a higher sensitivity to environmental change
meaning the variety has below average stability and is more responsive
to higher-yielding environments. A variety with bi values less than unity
indicates a measure of greater resistance to environmental change,
meaning the variety has above-average stability and therefore more
responsive and adaptable to low yielding environments (Dia et al.,
2017). Other stability parameters were calculated including three
multivariate parametric and one non-parametric stability measures.
The parametric measures include Wricke’s stability ecovalence (Wricke,
1966), Shukla’s stability variance (Shukla, 1972), and an index that
uses both stability variance and ecovalence (SIGMA) (Kang et al.,
1987). The Kang yield stability index (Kang YSi) (Kang, 1993) was the

Fig. 1. Boxplots showing variation of monthly rainfall over 26 years (1992-
2017) for dry savannas (Kano, A) and wet savannas (Zaria, B).
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non-parametric index adopted, it considers both mean yield and sta-
bility variance. Also, AMMI stability value (ASV) was calculated fol-
lowing methods described by Purchase et al. (2000). Varieties with the
lowest values were considered to be the most stable for comparisons
using ecovalence, stability variance, ASV and SIGMA, (Temesgen et al.,
2015). For Kang YSi however, only varieties with stability values
greater than the mean stability are considered stable. All the stability
parameters (except ASV) were estimated using the R-software through
an R-language program (RG×E) developed by Dia et al. (2017). The
corrected Akaike Information Criterion (AICc) was used to select the
best fitting stability model. The smaller the AICc value, the better the
model performance, and the varietal ranking of the selected model was
given the highest relevance.

3. Results

3.1. Model calibration and evaluation

The result of the model calibration of grain yield for the 16 maize
varieties across three locations is shown in Fig. 2 A. All the varieties had
RMSE values that were less than 10 % of the mean and d-index va-
lues> 0.8 except for OBA SUPER 9 with a value of 0.79. For model
evaluation using a separate environment (Fig. 2B), there were good
agreements between observed and simulated grain yields as shown by
high model statistics. All the varieties recorded d-index values> 0.7
except for Sammaz 54. For the calibration dataset, the model was less
efficient in simulating the number of days to anthesis (DTA). One extra

Fig. 2. A: Agreements between observed and simulated grain yields of the 16 maize varieties for the model calibration. RMSE=Root Mean Square Error (Mg ha−1),
d= index of agreement. B: Agreements between observed and simulated grain yields of the 16 maize varieties for the model evaluation. RMSE=Root Mean Square
Error (Mg ha−1), d= index of agreement.

Table 3
Result of calibration and evaluation of number of days to anthesis for 16 maize
varieties across multiple locations.

Varieties Calibration dataset Evaluation dataset

Obs bias ME RMSE Obs bias ME RMSE
Extra Early
Sammaz 54 49 −0.2 0.79 0.54 50 0.4 0.58 0.67
Sammaz 28 48 0.3 0.41 0.58 49 0.3 0.49 0.66
Ife Hybrid 5 50 0.4 0.60 0.77 50 0.2 0.32 0.83
Ife Hybrid 6 48 0.2 0.66 1.07 50 −0.3 0.52 1.12

Early Varieties
Early White 52 −0.8 0.51 1.01 53 0.9 0.52 0.88
Sammaz 32 53 −0.3 0.47 0.88 53 0.2 0.51 0.73
Sammaz 34 52 −0.2 0.79 0.80 53 0.0 0.67 0.76
Sammaz 41 53 −0.4 0.46 0.79 54 0.6 0.43 0.81

Intermediate
M1026−10 56 0.2 0.84 0.99 57 −0.4 0.66 1.01
M1227−12 55 0.3 0.67 0.52 56 −0.6 0.53 0.69
IWDC2 57 0.2 0.50 0.38 57 −0.3 0.47 1.02
M0926−8 58 −0.4 0.42 0.90 57 −0.5 0.51 0.78

Late
Oba Super 9 60 0.4 0.89 0.77 60 0.0 0.73 0.84
Sammaz 11 61 0.2 0.57 1.22 60 0.0 0.49 0.98
TZL-COMP4 62 0.0 0.65 0.56 61 0.2 0.52 0.62
TZBSR 61 0.2 0.44 0.73 61 0.0 0.43 1.01
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early, two early, one intermediate and one late variety had model ef-
ficiency values below 0.5 (Table 3). Generally, there was an over-esti-
mation of the DTA for all the early varieties, while for extra early and
intermediate varieties only one variety each was over-estimated. For
the model evaluation data set, a similar trend was observed, although,
the overall model calibration and evaluation statistics were all within
acceptable ranges for all the varieties (Table 3). The model was more
efficient in estimating biomass at harvest as shown by small RMSE (0.16
– 0.84), lower average bias (0.17 – 0.61Mg ha−1) and high ME that are
close to 1 (0.41 – 0.85) (Table 4).

3.2. Observed and simulated grain yields

The effects of variety, environment and the GEI were highly sig-
nificant (P≤ 0.001) for both observed and simulated grain yields
(Table 5). The environmental effect explained 67 % of the total variance
for the observed grain yield and 64 % for simulated grain yield. The
main effect of variety explained 19 % of the observed variation and 21
% of the simulated variation for grain yield. The GEI effect explained 13
% and 15 % of the observed variation in observed and simulated grain
yields, respectively. This result shows that the variance components of
observed and simulated yields are very similar and the variance com-
ponent of GEI is considerable when compared to the variance compo-
nent of the variety.

The average observed and simulated grain yields of the varieties

ranged from 2.36 to 2.51Mg ha−1 in RSDBT and from 5.41 to 5.56Mg
ha−1 in DSSMR (Fig. 3). Among the varieties, M-0926 produced the
highest observed and simulated grain yields in all locations except at
DSDBT and RSDBT where the highest observed grain yields were re-
corded for Sammaz 32 and the highest simulated grain yield was re-
corded for OBA Super 9. Sammaz 54 and Early white variety produced
the lowest grain yields in all the environments except in DSDBT and
RSDBT where the two varieties produced higher yields than M-0926.
Yields were higher in the dry season environments than in the rainy
season across all locations, while the simulated yields were higher than
observed yields in 97 % of the data presented. The highest yielding
varieties produced consistently highest grain yields across all environ-
ments for both observed and simulated grain yields except in the non-
optimal environments in Dambatta rainy and dry seasons.

3.3. Stability analysis

The best fitting models based on the lowest AICc value for both
observed and simulated grain yield (Table 6) were the slope of re-
gression (372.7 for observed and 381.6 for simulated) and the ASV
model (392.3 for observed and 394.7 for simulated). The parameters of
all the stability models are presented in Table 7. Based on bi, the most
stable variety using both observed and simulated grain yield was
Sammaz 11 (slope=1.06 for observed and 0.84 for simulated), while
the least stable variety was IWDC2 (slope=3.51 for observed and 3.45
for simulated). Varietal rankings were different for the multivariate
parametric models (ASV, Ecovalence, and SIGMA) when both observed
and simulated grain yields were considered. For all the three multi-
variate parametric models, Ife hybrid 6 (ASV=0.57 and 0.69; Ecova-
lence=687.2 and 932.9, SIGMA=77.8 and 109.1) was the most
stable variety for both observed and simulated grain yields, while the
least stable variety was M0926−8. Generally, lower ASV, Ecovalence
and SIGMA values were recorded for the simulated grain yields than for
the observed grain yields across all the varieties. Ranking of the vari-
eties was different for observed and simulated grain yields according to
Shukla. The most stable variety was Sammaz 28 for both observed and
simulated yields, while the least stable variety was Sammaz 41 for
observed yields and M0926−8 for simulated yields. Varietal stability
ranking according to Kang YSi identified nine stable varieties for ob-
served grain yields and eight stable varieties for simulated grain yield.
Ife hybrid 6 and Sammaz 32 have the highest stability ranking for ob-
served grain yields according to Kang YSi, while the highest-ranking
variety for simulated grain yield was Ife hybrid 6. The lowest ranking
variety according to Kang YSi was M0926−8 for observed grain yield,
while M1026−10 was the lowest ranking variety for simulated grain
yields.

3.4. Long-term varietal simulations

The maximum, minimum and mean simulated grain yields for 26
years in the wet and dry Savannas using the seasonal analysis tool of
DSSAT version 4.6 is shown in Table 8. Varieties IWDC2 and M0926−8
produced maximum yields that are> 5Mg ha−1 in the dry savanna
and> 7.5Mg ha-1 in the wet savanna. For some varieties, minimum
yields were below 3Mg ha−1 in the dry savanna and above 4.5Mg in
the wet savanna. The highest mean grain yield in the dry savanna was
simulated for IWDC2, while in the wet savanna the highest yield was
recorded for M0926−8. Sammaz 54 recorded the lowest mean grain
yield in the dry and wet savannas. All the late-maturing varieties (OBA
SUPER 9, TZBSR, Sammaz 11, and TZLCOMP4) recorded mean grain
yields below 3Mg ha−1 in the dry savannas and above 5.5 Mg ha−1 in
the wet savannas. A 58 % mean yield difference was observed between
dry and wet savannas for Sammaz 11, while for Sammaz 54 a mean
yield difference of only 8% was observed between the dry and wet
savannas. For the highest yielding variety (M0926−8), a yield increase
of 39.5 % was observed when planting was done in the dry savannas

Table 4
Result of calibration and evaluation of biomass yield at anthesis for 16 maize
varieties across multiple locations.

Varieties Calibration dataset Evaluation dataset

Obs bias ME RMSE Obs bias ME RMSE
Extra Early
Sammaz 54 6.55 0.49 0.67 0.28 6.19 0.62 0.59 0.39
Sammaz 28 6.88 0.35 0.79 0.34 6.73 0.47 0.62 0.42
Ife Hybrid 5 7.30 0.44 0.57 0.49 7.41 0.61 0.49 0.52
Ife Hybrid 6 6.92 0.51 0.51 0.29 7.16 0.73 0.53 0.22

Early Varieties
Early White 6.99 0.37 0.85 0.37 6.59 0.19 0.73 0.41
Sammaz 32 7.62 0.18 0.64 0.45 8.11 0.22 0.67 0.39
Sammaz 34 7.68 0.61 0.80 0.54 8.02 0.37 0.72 0.57
Sammaz 41 8.83 0.44 0.66 0.75 8.93 0.21 0.58 0.67

Intermediate
M1026−10 8.48 0.38 0.84 0.34 9.03 0.28 0.76 0.28
M1227−12 8.56 0.44 0.67 0.36 8.96 0.37 0.52 0.19
IWDC2 9.13 0.24 0.50 0.37 9.19 0.33 0.42 0.47
M0926−8 11.17 0.43 0.42 0.84 11.31 0.28 0.39 0.92

Late
Oba Super 9 8.61 0.33 0.41 0.16 8.31 0.41 −0.51 0.37
Sammaz 11 9.73 0.17 0.57 0.36 8.97 0.28 0.36 0.49
TZL-COMP4 8.41 0.17 0.58 0.20 8.32 0.32 0.49 0.37
TZBSR 10.08 0.63 0.80 0.36 9.19 0.31 0.61 0.32

Table 5
ANOVA results with variance components for observed (Obs) and Simulated
(Sim) grain yields of 16 maize varieties across 8 environments.

Source Sum of Squares Mean Squares % Variance
estimate

Obs Sim Obs Sim Obs Sim
Variety 75.41 85.57 5.03*** 5.70*** 19.2 20.6
Environment 261.73 265.27 37.39*** 37.90*** 66.7 64.0
Variety*Environment 50.89 63.49 0.48*** 0.60*** 13.0 15.3
Rep 0.02 0.27 0.02ns 0.27ns 0.0 0.1
Error 4.58 0.08 0.04 0.00 1.2 0.0
Total 392.63 414.68 100 100

*** Significant at the 0.001 probability level, ns= non-significant.
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compared to that of the wet season.
Fig. 4 shows the cumulative function (CF) plots of 26-years simu-

lated grain yield for the 16 varieties in the dry and wet savannas. In the
dry savannas, the highest yielding varieties were IWD C2 and

M0926−8. Yields were always below 6Mg ha−1 for all the varieties
except the two high yielding varieties where yields exceeding 6Mg
ha−1 were simulated in 20 % of the years. The difference in yield
among the varieties in the dry savannas was not very high. Both extra
early, early and intermediate maturing varieties produced similar grain
yields (largely< 4Mg ha−1) in about 75 % of the years simulated. The
late maturing varieties produced lower grain yields than the early
varieties in all the simulated years and produced equal or more grain
yields than the extra-early varieties in only five of the 25 years simu-
lated in the dry savannas. In the wet Savannas, nine out of the 16
varieties produced yields> 5Mg ha−1 in 19 out of the 25 years si-
mulated, while yields below 2Mg ha−1 were recorded for only 6
varieties in 2 out of the 25 years simulated. The intermediate and late
varieties produced the highest yields in the wet savannas, with all the

Fig. 3. Observed and simulated grain yields of different varieties across locations in the rainy and dry seasons of 2016.
V1 = Early WhiteV9 = M0926−8
V2 = Sammaz 41V10 = Oba Super 9
V3 = Sammaz 28V11=TZBSR
V4 = M1026−10V12 = Ife Hybrid 5
V5 = M1227−12V13 = Ife Hybrid 6
V6 = Sammaz 32V14 = Sammaz 54
V7 = Sammaz 34V15 = Sammaz 11
V8 = IWDC2V16 = TZL−COMP4

Table 6
Corrected Akaike Information Criterion for the parametric stability models.

Model Observed Simulated

Slope (bi) 372.7 381.6
ASV 392.3 394.7
Ecovalence 398.6 404.3
SIGMA 617.2 609.8
Shukla 401.6 411.9
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intermediate varieties producing yields> 5Mg ha−1 in all the years
and the late varieties producing yields< 4Mg ha−1 in 18 out of the 25
years simulated.

4. Discussion

Selection of appropriate maize varieties that can withstand both
biotic and abiotic site-specific problems is one of the major agronomic
decisions that could lead to significant maize yield increases in the
Nigerian Savannas. The conduct of multi-environmental trials (METs)
by breeders and agronomists to assess varietal stability and maximum
adaptability to target environments before release has been a long
practice (Becker and Leon, 1988; Badu-Apraku et al., 2003, 2012;
Seyoum et al., 2019). When properly calibrated and evaluated crop
models could complement these METs and provide robust data for
improved stability analysis and provide insights into existing genotype
by environment interactions.

The outcomes of model calibrations and evaluation from the current
study between observed and simulated data show the efficiency and
robustness of the model. The accurate prediction of phenology (days to
anthesis and days to physiological maturity) were indications that the

calculated P1 and P5 values for the varieties used in the genotype file
were close to the actual values for all the varieties. Accurate prediction
of phenology is a major step in the modelling process (Archontoulis
et al., 2014), this is because accurate phenology prediction results in
the proper estimation of all genotypic variations that affect the leaf area
development, biomass production, and grain yield (Robertson et al.,
2002). Two environments (DSDBT and RSDBT) were non-optimal en-
vironments due to very high temperatures (above 40 °C) during the
growing period for DSDBT and the evidence of moisture stress for
RSDBT. However, the model was able to reproduce the varietal re-
sponses in these environments. The early varieties had short vegetative
and reproductive stages while the intermediate and late varieties had
relatively longer vegetative and reproductive stages. In the optimal
environments, the late and intermediate maturing varieties produced
higher grain yields because they took a long time to grow and mature
and therefore had longer grain-fill durations. In the stressed environ-
ments, the early and extra-early varieties produced higher yields be-
cause they took a shorter time to complete vegetative and reproductive
developments and escaped most of the stress periods.

Prediction of grain yields for the calibration and evaluation dataset
was highly accurate for 15 out of the 16 varieties, with only one variety
(Sammaz 54) had values that are slightly above average (Fig. 2). In the
CERES-Maize model, grain yield is mostly affected by canopy inter-
ception of incident radiation, radiation use efficiency (RUE) and harvest
index (Tollenaar and Lee, 2006). Accurate grain yield prediction in a
crop modelling exercise is the most important step needed for the im-
provement of crop management, measuring GEI and varietal stability
(Pantazi et al., 2016). Observed and simulated grain yields in each
environment were quite variable with two major varieties (M0926−8
and IWDC2) having the highest grain yields in six out of the eight en-
vironments. The variation in the environments influenced the final
grain yields recorded for all the varieties. Only varieties with tolerance
to drought and heat stress were able to produce reasonable yields in
poor environments. The rooting parameter which differentiates culti-
vars due to their ability to tolerate drought and heat stress was cali-
brated together with the GSPs. This gave the model the ability to cap-
ture well, the performance of the drought tolerant varieties in poor
locations like Dambatta. In all the environments and for all the varietal
groups, the hybrid varieties produced the highest grain yields, however,
IWDC2 which is an open pollinated variety (OPV) produced yields si-
milar to the highest yielding hybrid. In the high yielding environments,
higher grain yields were recorded in the dry season than in the wet
season, this is because of the clear skies which lead to high irradiance

Table 7
Mean grain yield and stability parameters for slope of regression, ASV, Ecovalence, SIGMA, Shukla and Kang YSi for observed and simulated grain yields of 16 maize
varieties across the environments.

Genotype GY* Slope (bi) ASV Ecovalence SIGMA Shukla Kang YSi

Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim Obs Sim
Sammaz 54 3.0 3.1 0.20 0.27 3.17 2.71 3612.3 6001.5 555.1 936.6 176.1 277.7 −10 −10
Sammaz 28 3.2 3.4 1.62 1.64 2.82 1.04 3034.1 1021.8 460.8 123.6 70.6a 54.6a −8 1
Ife Hybrid 5 3.4 3.6 1.92 0.71 0.98 0.72 839.9 2129.8 102.5 304.5 120.2 362.3 −5 5+

Ife Hybrid 6 3.5 3.6 −0.4 1.23 0.57a 0.69a 687.2a 932.9a 77.8a 109.1a 116.7 124.4 1a+ 4a+

Early White 3.1 3.4 1.2 1.53 2.31 1.15 2496.1 2419.7 372.9 351.9 111.7 173.2 −9 −9
Sammaz 32 3.7 3.7 2.8 2.98 2.23 0.9 1881.0 1156.2 272.5 145.6 110.9 71.7 1a+ 7+

Sammaz 34 3.6 3.6 −0.55 −0.54 2.36 1.68 2019.9 2964.9 295.2 440.9 92.7 352.5 −2 −4
Sammaz 41 3.8 4.1 −0.12 −0.63 0.97 0.98 2658.8 3665.1 399.5 555.2 483.6b 639.2 4+ 6+

M1026−10 4.2 4.2 0.15 0.23 1.96 1.04 1559.7 1699.9 220.2 234.4 150.1 247.1 9+ 13b+

M1227−12 4.0 4.1 2.69 2.74 2.01 1.03 2259.1 1706.3 334.2 235.4 156.6 104.8 8+ 11+

IWDC2 4.9 4.9 3.51b 3.45b 4.89 3.59 7240.0 9775.2 1147.4 1552.8 168.6 526.9 10+ 10+

M0926−8 5.0 5.4 2.63 3.09 6.41b 4.73b 12593.9b 17327.9b 2021.5b 2785.9b 474.6 1139.5b 11b+ 11+

Oba Super 9 3.5 3.7 1.63 1.71 2.75 1.93 3083.2 5999.5 468.8 936.3 161.5 593.2 −3 1
Sammaz 11 3.6 3.7 1.06a 0.94a 0.78 0.79 1405.9 1223.2 194.9 156.5 171.9 187.9 6+ 5+

TZL-COMP4 3.4 3.4 2.04 1.83 1.68 0.71 2349.4 3102.7 348.9 463.4 253.6 367.9 −7 −8
TZBSR 3.9 3.8 0.14 0.23 2.16 1.18 3170.5 2359.8 483.0 342.0 319.1 179.9 6+ 2

* GY=Grain Yield averaged across environments (Mg ha−1). Boldened entries with parenthesis indicate most stable variety (a) and least stable variety (b) across
all environments. Varieties having a cross as superscript are the only stable varieties according to Kang YSi.

Table 8
Maximum, minimum, and mean grain yields for 26-year seasonal analysis of 16
maize varieties using CERES-Maize model.

Varieties Dry Savanna Wet Savanna

Max. Min. Mean Std. Dev Max. Min. Mean Std. Dev

Sammaz 54 3.8 1.4 2.3 0.47 3.6 1.0 2.5 0.69
Sammaz 28 3.6 0.9 2.6 0.66 3.8 1.8 2.6 0.77
Ife Hybrid 5 3.6 1.1 2.4 0.72 3.1 1.4 2.5 0.44
Ife Hybrid 6 4.3 1.3 2.8 0.87 4.4 1.6 2.9 0.62
Early White 4.4 2.0 3.1 0.69 5.2 1.0 3.3 1.05
Sammaz 32 4.8 2.1 3.4 0.78 5.1 2.2 3.6 0.91
Sammaz 34 4.4 2.0 3.3 0.79 4.9 2.7 3.8 0.71
Sammaz 41 4.1 2.0 3.2 0.53 5.7 2.9 4.1 0.76
IWDC2 5.1 2.9 4.0 0.94 7.5 4.8 5.8 0.69
M0926−8 5.4 2.8 4.1 1.02 7.8 4.9 6.2 0.87
M1026−10 4.6 2.4 3.4 2.98 7.7 4.8 6.1 0.76
M1227−12 4.7 2.4 3.5 0.53 6.9 4.4 5.5 0.58
OBA SUPER 9 3.5 1.6 2.7 0.78 7.0 3.5 5.6 0.83
TZBSR 3.5 1.8 2.8 0.78 7.7 4.0 6.1 0.85
Sammaz 11 3.3 1.3 2.3 0.47 6.9 3.4 5.5 0.84
TZLCOMP4 3.7 1.4 2.6 0.73 7.3 3.8 5.6 0.90
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and subsequently high RUE (Lindquist et al., 2005). Also, during the dry
season, temperatures were optimal for photosynthesis and dry matter
allocation. Another reason for the high yields is that during the dry
season, all the water requirements were met by irrigation with minimal
run-off, while in the rainy season, the high amount of rainfall during
July and August could facilitate leaching of a lot of the applied ferti-
lizers thereby affecting growth and yield. The model was able to re-
produce these observed anomalies because, in the ecotype files, RUE
and canopy light extinction coefficient for daily PAR (KCAN) were
adjusted to capture the seasonal variations and effect of supra-optimal
temperatures (Lindquist et al., 2005; Zhang et al., 2014). In the specie
file, coefficients that represent the effect of temperature on photo-
synthesis (PRFTC) and relative grain fill duration (RGFIL) were
manually adjusted for the tolerant and susceptible varieties to capture
the effects of high temperatures on grain yield.

Only a few studies have reported the applicability of crop models in
simulating GEI and even fewer have reported using stability analysis
techniques in ranking/analyzing model simulated grain yields
(Chapman et al., 2003, 2002a; Cooper et al., 2014; Hammer et al.,
2006; Salmerόn et al., 2017; Seyoum et al., 2018). Many studies have
reported the wide variation of maize producing environments in Ni-
geria (Badu-Apraku et al., 2015, 2012; Oyekunle et al., 2017). This is
the reason why varietal recommendations must be location-specific. In
the current study, the environments accounted for more than 60 % of
the variations in observed and simulated grain yields, followed by the

genotype (variety) and GEI. Seyoum et al. (2019) reported a high in-
fluence of management and environment on maize yield and this con-
founds yield performances thereby minimizing the utility of genotypes
in several environments. Thus, the in-depth study of the yield levels,
adaptation patterns and stability of both observed and model simulated
yields of maize genotypes in multiple environments become imperative.
It becomes more important when ranking varieties using simulated
grain yields since the models make many assumptions and general-
izations.

The results of stability analysis using the slope of regression (bi)
show an inconsistent ranking of the varieties for observed and simu-
lated grain yields. All the varieties showed bi values that were different
from unity signifying that they all had an average response to en-
vironments, irrespective of the data type. According to Eberhart and
Russell (1966) and Becker and Leon (1988), varieties with bi values
close to unity and high mean grain yields have a good response to
changing environments, hence, they are better adapted and more stable
across environments. Based on both observed and simulated grain
yields, two varieties (Sammaz 11 and Early White) with high mean
grain yields and bi values close to unity were found to be more stable
than all other varieties. Based on the observed grain yield alone, only
Oba Super 9 was stable, while based on simulated grain yield alone, Ife
Hybrid 5, Ife Hybrid 6 and Sammaz 28 were stable.

For all the three multivariate parametric models, Ife hybrid 6 was
the most stable variety based on both observed and simulated grain

Fig. 4. Cumulative probability plot for 26 years seasonal analysis of maize grain yield in the dry and wet savannas.
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yields, while the least stable variety was M0926−8. Stability analysis
using variance parameter tests did not rank varieties according to high
yield, unlike the regression-based stability analysis. This variation be-
tween the regression-based stability ranking and the multivariate
parametric stability ranking is due to the difference in the methodology
for ranking the different varieties. While the regression methodology
considers high mean as a precondition for the varietal stability, the
multivariate parametric methods do not consider means for calculation
of stability (Dia et al., 2017). All the stability models used were con-
sistent in their stability rankings for both observed and simulated yield
of the varieties except for Kang Ysi, a non-parametric model that
identified different least stable varieties based on the observed and si-
mulated grain yields. This indicates that the simulated data obtained
using the CERES-maize model can be used in determining the magni-
tude of GEI and stability of maize varieties where field data are not
available.

In the long-term simulation studies, a high variation in simulated
grain yields was observed for the 16 varieties using long term seasonal
analysis in the dry and wet savannas. Yields of the early and extra-early
varieties were not significantly different between the two savannas.
This is because they are early maturing and were able to complete grain
filling before the early cessation of rains that is prevalent in the dry
savannas. Excessive rains after maize have reached physiological and
harvest maturity could lead to significant reductions in harvested grains
(Badu-Apraku and Fakorede, 2017). As this is a common occurrence
when early varieties are planted in the wet savannas, lower grain yields
were expected from the seasonal analysis, but the model did not si-
mulate low yields for early and extra-early varieties in the wet savanna.
This is because the model was not able to simulate yield losses due to
continuous rainfall after the crop has reached maturity. Yield loss fac-
tors like lodging and fungal attack on grains were not captured in the
model simulations. The model simulated high grain yields for the in-
termediate varieties in both dry and wet savannas, although higher
yields were produced in the wet savannas than in the dry savannas. The
model simulated very low yields for all the late-maturing varieties in
the dry savannas because these varieties take a very long time to reach
physiological maturity and the period of their active grain filling co-
incides with the end of the rainy seasons in the dry savanna. The same
varieties produced very high grain yields in the wet savannas, in-
dicating that the length of growing season and amount/distribution of
rainfall is adequate for proper growth and performance of the late
varieties in this zone.

5. Conclusion

Crop simulation models are becoming increasingly important tools
for explaining the components of GEI that are observed in plant
breeding and evaluation trials. Models are used to provide additional
environmental indices or ‘virtual’ entries that could be used in pro-
viding robust analysis of varietal performance across multiple observed
and simulated environments. This is possible when the calibration and
model evaluation are robust enough to capture most of the observed
varietal performance across multiple environments. Most of the varia-
tions observed for both observed and simulated grain yield in the cur-
rent study were attributed to differences in environments that play a
key role in determining crop performance. All the stability models used
gave a similar trend for both observed and simulated grain yields and
the bi model with the lowest AICc value ranked Sammaz 11 as the most
stable variety irrespective of the data source. The analysis showed the
reliability of simulated data generated using the CERES-maize model in
determining the stability of maize varieties. The long-term stability
analysis in the dry and wet savannas showed that the late-maturing
varieties produce high yields only in seasons where rainfall distribution
is long, the intermediate varieties are good in both long and short
seasons, while the early and extra-early varieties are more suitable in
seasons with short rainfall distribution. Currently, the Intermediate and

late varieties are recommended to the wet savannas, while the early and
extra-early varieties are recommended for the dry savannas. Findings
from our experiments have shown that intermediate varieties could also
be planted in the dry savannas in seasons where early rainfall estab-
lishment of rainfall was observed, and when seasonal rainfall advice
agencies predict long rainy season with good rainfall distribution.

Taken together, the results from the current study have shown that
the CERES-Maize model can correctly predict the GEI and stability of
maize varieties. Therefore, the model can be used to predict how
varieties will behave in locations and seasons where trial data is un-
available and can complement METs with a view of minimizing cost
and time expended during such evaluations.
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