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Chapter 9
Innovative Digital Technologies to Monitor 
and Control Pest and Disease Threats 
in Root, Tuber, and Banana (RT&B) 
Cropping Systems: Progress and Prospects

Jan Kreuze , Julius Adewopo , Michael Selvaraj ,  
Leroy Mwanzia , P. Lava Kumar , Wilmer J. Cuellar , James P. Legg ,  
David P. Hughes , and Guy Blomme 

Abstract  This chapter provides the first comprehensive review of digital tools and 
technologies available for the identification, monitoring, and control of pests and 
diseases, with an emphasis on root, tuber, and banana (RT&B) crops. These tools 
include systems based on identification keys, human and artificial intelligence-
based identification based on smart applications, web interfaces, short messages 
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services (SMS), or combinations thereof. We also present ideas on the use of image 
recognition from smartphones or unmanned aerial vehicles (UAVs) for pest and 
disease monitoring and data processing for modeling, predictions, and forecasting 
regarding climate change. These topics will be presented in the context of their cur-
rent development and future potential but also the challenges, limitations, and inno-
vative approaches taken to reach end users, particularly smallholder farmers, and 
achieve impacts at scale. Finally, the scope and limitation of private sector involve-
ment demonstrates the need of publicly funded initiatives to maximize sharing of 
data and resources to ensure sustainability of unbiased advice to farmers through 
information and communication technology (ICT) systems.

9.1  �Introduction

Globalization and climate change are exacerbating condition under which we lose 
20–40% of global crop production to pests and diseases annually, especially in 
food-deficit regions with fast-growing populations. Weak existing pest and disease 
surveillance systems in developing countries have resulted in slow responses to 
large-scale outbreaks and epidemics in Africa and Asia, e.g.:

•	 Various cassava (Manihot esculenta Crantz) virus diseases.
•	 Desert locust (Schistocerca gregaria Forskål).
•	 Fall armyworm (Spodoptera frugiperda J.E. Smith) in maize (Zea mays L.) and 

many other crops.
•	 Fusarium wilt (Fusarium oxysporum f. sp. cubense (E.F. Sm.) W.C. Snyder & 

H.N. Hansen) in banana (Musa sp.)
•	 Maize lethal necrosis disease (MLND; coinfection with maize chlorotic mottle 

virus (MCMV) and one of several viruses from the Potyviridae group).
•	 Wheat (Triticum aestivum L.) rust (Puccinia triticina Erikss).

All of these have had devastating impacts on food security. Pests and diseases 
continue to devastate agricultural production and are expected to intensify with 
ever-increasing movement of people and planting material, disruption of natural 
habitats by encroachment through human activities, and climate change. As we 
write, the COVID-19 pandemic reminds us that the keys to controlling these threats 
are early detection, rapid and reliable diagnosis, and efficient tracking of spread – 
all of which can be enhanced with evolving digital technologies.

9.2  �Digital Disease Identification Tools

Crop diseases are responsible for significant economic losses in agriculture world-
wide. Monitoring of crop health and early detection of new diseases are essential to 
reduce disease spread and facilitate effective field management practices. Crop 
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disease detection, generally carried out through scouting or field inspections, is 
often supplemented by diagnostic tools based on serological methods and poly-
merase chain reaction (PCR) tests. Field inspection for early disease detection is 
assessed as prevalence (present or not) at the field, farm, village, and/or landscape 
levels. This process is large scale, challenging, and time-consuming (Johansen et al. 
2014). These limitations on direct field inspection methods have led scientists to 
investigate advanced and novel techniques that could rapidly and economically 
obtain crop health information (Heim et  al. 2019; Steward et  al. 2019). Several 
novel and noninvasive methods have been developed in the last decade, which are 
sensitive, reliable, standardized, high throughput, rapid, and cost-effective (Golhani 
et al. 2018). Frontline remote sensing (RS) methods coupled with machine learning 
(ML) is one of the emerging approaches to provide reliable and precise technical 
support for real-time and large-scale crop disease detection and monitoring. Remote 
sensing permits the noninvasive measurement of crops’ biophysical and biochemi-
cal parameters and thus allows for nondestructive monitoring of crop health status 
(Ramcharan et al. 2017; Lu et al. 2015). Various imaging sensors – visible, thermal, 
multispectral, and hyperspectral  – have been studied for crop disease detection 
(Mishra et  al. 2020). The applications of these techniques have been gradually 
developed from novel sensor development, high-throughput image acquisition, pro-
cessing, and computing, leading to image segmentation and disease classification 
with algorithm development. In the following sections, examples of these tech-
niques will be described with a focus on root, tuber, and banana (RT&B) crops.

9.2.1  �Smartphone Image-Based Disease Detection 
and Classification

Deep learning is an innovative method for image processing and object detection 
providing high accuracy in the classification of various crop diseases (Kamilaris and 
Prenafeta-Boldú 2018). Smartphone-based AI-powered apps could alert farmers 
and expedite disease diagnosis, potentially preventing or limiting pest and disease 
outbreaks. Even though many developing countries’ farmers do not have access to 
these advanced tools, increased Internet infiltration, smartphone penetration, and 
offline models offer new outfits for infield crop disease detection.

Cassava provides food for more than 500 million African people every single 
day. Several diseases affect cassava, causing larger yield losses. Farmers (and even 
extension workers) struggle to correctly identify the various diseases. To that end, 
scientists at Penn State University have created an innovative solution that uses AI 
through Google’s open-source TensorFlow technology. In collaboration with the 
International Institute of Tropical Agriculture (IITA), and working through the 
CGIAR Research Program on Roots, Tubers and Bananas (RTB) and the CGIAR 
Platform for Big Data in Agriculture, the team developed PlantVillage Nuru, an 
application built by annotating over 200,000 images of diseased cassava plants to 
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train a machine to recognize various diseases and make predictions about a farmer’s 
crop’s health in less than one second (Fig. 9.1). It can identify symptoms of the cas-
sava mosaic disease (CMD; caused by different species of plant pathogenic viruses), 
cassava brown streak virus disease (CBSD), and the feeding damage of mites (e.g., 
the green mite, Mononychellus tanajoa (Bondar)). With PlantVillage Nuru, an 
extension worker or farmer can point their phone over a specific cassava leaf, and a 
box will pop around any areas with symptoms with the diagnosis. In some cases, it 
will guide the farmer to scan several leaves from different parts of the plant to arrive 
to a more reliable result (Mrisho et al. 2020; Ramcharan et al. 2017; Ramcharan 
et  al. 2019). Once a disease is diagnosed, farmers can simply push a button to 
request advice on how to respond.

Collaborations with other research centers and organizations have helped extend 
the power of PlantVillage Nuru to other crops:

•	 International Potato Center (CIP) for potato: (Solanum tuberosum L.) diseases 
(late blight, Phytophthora infestans (Mont.) de Bary; early blight, Alternaria 
solani Sorauer) and various viral diseases.

•	 United Nations Food and Agricultural Organization (FAO) and the International 
Maize and Wheat Improvement Center (CIMMYT) for maize: fall armyworm 
infestations.

The app is available for android mobile phones through the Play Store and for 
Apple phones through its App Store. The same AI technology is also being used 
extensively in support of the FAO’s surveillance of desert locust using the 
PlantVillage-developed app eLocust3m and FAMEWS (Fall Armyworm Monitoring 
and Early Warning System).

For many years, banana disease surveillance and mapping has relied on in-person 
field surveys by knowledgeable scientists and trained field staff. This approach is 
restricted by high cost, limited human capacity, and inability to access more remote 
locations. In addition, the lack of capacity for farmers and some local extension 
workers to identify and/or differentiate between the different biotic diseases and 
constraints often hampers timely intervention efforts. Scientists from the Alliance of 

Fig. 9.1  Using PlantVillage Nuru to identify plant diseases with a cellphone
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Bioversity International and CIAT developed an AI-powered smartphone app called 
Tumaini (“hope” in the Swahili language) that is capable of identifying and differ-
entiating symptoms of six banana diseases:

•	 Xanthomonas wilt of banana (BXW) caused by the bacterium Xanthomonas 
vasicola pv. musacearum.

•	 Banana bunchy top disease (BBTD) caused by the banana bunchy top 
virus (BBTV).

•	 The soilborne fungal disease Fusarium wilt caused by Fusarium oxysporum f. 
sp. cubense (E.F. Sm.)

•	 Banana blood disease caused by the blood disease bacterium (Pseudomonas 
celebensis) of banana.

•	 Black leaf streak disease (BLSD) or black sigatoka caused by the fungus 
Pseudocercospora fijiensis, formerly known as Mycosphaerella fijiensis

•	 Banana weevil (Cosmopolites sordidus Germar).

The Tumaini AI app was developed using a dataset of over 18,000 field images 
collected by banana experts. The app is freely available on Google Play Store.

The integration of these AI-powered apps in a multilevel sensing system for dis-
ease surveillance (e.g., comprising satellites, UAVs, AI apps, and ground truthing; 
covered below) is necessary to monitor crop health at different scales. Data col-
lected through the smartphone app and obtained from drone and satellite image 
analysis is expected to be fed into the PestDisPlace (Sect. 9.2.5) surveillance and 
mapping platform, to create an early warning system, and advise research, exten-
sions and advisory services, and National Plant Protection Organizations (NPPOs) 
of ongoing banana disease spread, linked risks, and priority zones for surveillance. 
See, for example, the PlantVillage warning maps for locust1 or dedicated ArcGIS 
boards where the data from smartphone-derived observations is integrated with 
NASA soil moisture data and NOAA HYSPLIT wind models and soil maps 
from ISRIC.2

9.2.2  �Aerial (UAV or Satellite) Image-Based Disease Detection 
and Classification Tools

Rapid technology development in unmanned aerial vehicles (UAVs) and the avail-
ability of low-cost UAVs carrying sensors provide the opening to capture high spa-
tial and spectral resolution data, especially for disease detection across fields and 
landscapes. The ability to capture the crop phenotypic differences in this complex 
multidimensional system is necessary to better understand host-pathogen interac-
tions (Steward et  al. 2019). The combination of aerial image information and 

1 https://plantvillage.psu.edu/panel/analytics/locust_surveys
2 https://arcg.is/0aHGHi
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AI-based approaches can provide an accurate, high-throughput method for crop dis-
ease detection under real-world conditions (Boulent et  al. 2019; Selvaraj et  al. 
2020). Working Benin and the Democratic Republic of the Congo, Selvaraj et al. 
(2020) demonstrated that banana fields and production zones can be mapped 
through both drone and satellite image analysis. In addition, these authors devel-
oped algorithms to detect BXW- and BBTD-infected plants or mats on drone 
images. These outputs will contribute to health status mapping in banana production 
zones (Kamilaris and Prenafeta-Boldú 2018; Selvaraj et al. 2019; Ramcharan et al. 
2017; Selvaraj et al. 2020).

In potato research, detection of diseases through remote sensing has been 
advanced for late blight (Gold et al. 2020; Ray et al. 2011; Duarte-Carvajalino et al. 
2018) and viruses (Chávez et al. 2009; Chávez et al. 2010; Griffel et al. 2018; Polder 
et al. 2019). Whereas there are clear challenges to implementing such technologies 
routinely at a landscape or regional level, obvious direct application could be avail-
able through automated screening for resistance in breeding trials and rapid screen-
ing for diseases in seed multiplication plots. Indeed, CIP is currently validating the 
use of airborne multispectral and high-resolution RGB (red, green, and blue) multi-
temporal imagery acquired by UAV to monitor late blight infection in breeding 
plots, potentially reducing disease scoring time from several days to hours.

To our knowledge, current disease detection systems focus on single sensor-
based solutions and often lack the integration of multiple information sources. 
Moreover, using UAV to monitor larger landscapes is often challenging; thus, at 
larger geographic scales, satellite-based machine learning (ML) models could help 
classify overall crop health. Such general crop health information could then be 
further assessed using UAVs and AI-powered smartphone-based sensors to detect 
the specific reason(s) of an observed poor plant health status. Therefore, it is essen-
tial to combine high-resolution imagery data with advanced ML algorithms to 
acquire ground truths through mobile apps. UAVs and high-resolution satellites can 
capture a large number of high-quality spectral-temporal aerial images, becoming 
the ultimate technology for classifying crop yield for purposes of monitoring plant 
health and determining economic value (Burke and Lobell 2017; Ji et al. 2018). The 
real-time tracking of crop disease spread and impact at the regional, national, and 
global scales can be realized if large-scale data integration analysis is achieved. 
With the development of multisource remote sensing data, the fusion of multisource 
data may be a future development trend.

9.2.3  �Tools for Modeling, Including Backcasting 
and Forecasting of Pest and Disease Incidence to Deliver 
Decision Support Intelligence to Smallholder Farmers

The application of models can be a powerful tool to understand pest and disease 
epidemiology. Simulations and forecasts with these models can provide advice to 
farmers and other actors in the agricultural sector to manage crop protection. 

J. Kreuze et al.
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Different agroclimatic modeling approaches have been developed that range from 
simple analytical to complex simulation models and use actual and/or predicted 
climate data such as temperature, precipitation, humidity, and, in the case of atmo-
spheric transport models, wind currents (Orlandini et al. 2020). Their applications 
can be roughly divided into two categories: risk assessment and forecasting.

Risk assessment tools, typically including maps and longer time scales (sea-
sonal/annual), can be used to predict the potential distribution and damage of non-
indigenous or indigenous pests due to climate change. They can also support farmers 
and decision-makers in preseason planning for pest and disease management and/or 
advise on timing and location for monitoring and surveillance. Forecasting tools, on 
the other hand, generate predictions within the growing season to provide farmers 
with information for daily or weekly decision-making.

Under RTB, the Insect Life Cycle Modeling (ILCYM) software was further 
developed as a generic open-source software platform that enables the development 
of phenology models and linked to geographic information systems (GIS) to gener-
ate risk maps at different geographic scales (Tonnang et  al. 2013). The ILCYM 
software facilitates the selection and compilation of temperature functions for 
development, survival, and reproduction of different life stages of insects of interest, 
including parameters for variability in these processes. This information is used to 
generate life table parameters for a given range of constant and fluctuating tempera-
tures as input data. The software can then simulate pest population development 
with their specific age-stage structure that allows temporal and special simulations 
of population parameters according to real or interpolated temperature data. ILCYM 
has been applied to understand pest potential spread and impacts under current and 
future climates for a wide range of crops including potato and cassava (Kroschel 
et al. 2013; Sporleder et al. 2008; Mwalusepo et al. 2015; Aregbesola et al. 2020; 
Khadioli et al. 2014; Rao and Prasad 2020; Mujica et al. 2017; Azrag et al. 2017; 
Soh et al. 2018; Fand et al. 2014; Fand et al. 2015; Rebaudo et al. 2016). It was also 
used to compile a Pest Distribution and Risk Atlas for Africa3 for several crops to 
support the preparedness of policymakers and farmers to implement timely adapta-
tion strategies (Kroschel et al. 2016). Models have also been developed with ILCYM 
for biocontrol agents (such as parasitoids) of invasive pests to provide advice on the 
probable success of establishment in pest-invaded regions and control efficiency 
under varying climatic conditions (Kroschel et  al. 2016). Researchers have also 
used these models to study the effect of different biocontrol application intervals 
and rates (e.g., for Phthorimaea operculella granulovirus) for controlling the potato 
tuber moth, Phthorimaea operculella (Zeller) (Sporleder and Kroschel 2008). 
Recently, the approach was expanded to include risk assessment and guide surveil-
lance for insect-transmitted viruses as demonstrated for the potato yellow vein virus 
(PYVV) (Gamarra et al. 2020a; Gamarra et al. 2020b).

The use of risk maps to guide surveillance can be further refined by combining 
establishment risks as modeled (e.g., by ILCYM) with geographic cropland patterns 

3 http://cipotato.org/riskatlasforafrica/
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which represent an important factor contributing to risk of pest entry. The cropland 
connectivity risk patterns were modeled for RT&B crops globally by Xing et al. 
(2020), and the approach of combining these maps with establishment, activity, and 
generation risk indices modeled by ILCYM is currently being tested to monitor the 
possible spread of the North American potato psyllid (Bactericera cockerelli (Sulc)) 
into Colombia and Peru, which moved through Ecuador in recent years, causing 
significant crop losses and environmental impacts (Douthwaite 2020). Local in-
country spreading pathways can be further analyzed by studying seed networks, as 
was done for potato in Ecuador (Buddenhagen et al. 2017). Although ILCYM is 
currently geared for risk assessment through generating complete life cycle models, 
these models can be also used to simulate in-season population development based 
on prevailing weather data – thus appropriate for forecasting as well (Kroschel et al. 
2013). Initial steps to implement and validate such forecasts have been initiated in 
the central Andes by CIP and its partners for a number of important potato pests in 
the region.

Models for plant diseases have been developed primarily for airborne diseases. 
Among RT&B crops, late blight of potato has received much attention with at least 
16 different models4 developed to predict onset and progress of the disease. These 
models have been implemented with relative success in Europe and North America, 
providing farmers with alerts and recommendations about when to start and how 
frequently to use control measures based on prevailing weather conditions and cul-
tivars planted.

The LATEBLIGHT model, originally developed to simulate late blight epidem-
ics in the Andes (Andrade-Piedra et al. 2005b; Andrade-Piedra et al. 2005c), was 
later shown to perform quite well over a range of tropical environments (Andrade-
Piedra et  al. 2005a; Blandón-Díaz et  al. 2011). More recently, BLIGHTSIM, a 
mechanistic model that accounts for diurnal oscillating temperatures, was devel-
oped to predict changes in severity that might be expected due to climate change 
(Narouei-Khandan et al. 2020).

Temperature, humidity, and rainfall (and leaf wetness) are the main drivers of 
these models, and they work well when reliable weather data are available in the 
relevant geographies. Unfortunately, this is rarely the case in most low-income 
countries. Although this limitation may be alleviated soon by using downscaled 
weather information modeled from satellite-acquired remote sensing data, simple 
models based on farmers’ weather observations may provide a low-tech solution 
that still can provide meaningful advice for control. With that in mind, a simple 
handheld tool for late blight management was developed consisting of three concen-
tric circles: the two outer circles can be moved to select options for answers to two 
questions and the inner third circle provides the recommendation (Fig. 9.2) (Pérez 
et al. 2020). The answers to each question provide a number. The individual num-
bers should be added, and if the sum is above a certain threshold, the advice is to 
apply control measures. The three different circles are used depending on the 

4 http://ipm.ucanr.edu/DISEASE/DATABASE/potatolateblight.html
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susceptibility and resistance of the potato cultivars planted, which are classified as 
low, medium, and high. Cultivars will have to be categorized for each country and 
geographic region depending on what varieties are grown. During validation experi-
ments, handheld tool for late blight management gave relatively good disease con-
trol in all cases, but was more effective among highly susceptible cultivars compared 
to traditional local spraying regimes in Ecuador and Peru. The application of the 
tool resulted in equal or lower numbers of fungicide sprayings per season and 
reduced the environmental impact (Pérez et al. 2020).

9.2.4  �Nucleic Acid (NA) Sequence-Based Digital Surveillance 
Systems for Pathogens and Pests

There is high potential for the use of genetic data of pests and pathogens to strengthen 
current conventional approaches for surveillance. High-throughput sequencing 
(HTS) technologies applied to field diagnostics are increasing the amounts of 
nucleic acid sequences that become available as data. The availability of genetic 
data will turn out to be most relevant for early warning detection of the introduction 
and potential spread of different strains of pests and pathogens. These technologies 
were adapted early for plant virus research and discovery with sweetpotato and a 
few other crops (Kreuze et al. 2009; Adams et al. 2009).

Since its inception, many new viruses and variants in RT&B crops have been 
discovered and characterized, contributing to the rapid identification of novel dis-
eases or pathogen variants and subsequent to the design of specific diagnostic assays 
(De Souza et  al. 2013; Wang et  al. 2013; Abad et  al. 2013; Fuentes et  al. 2012; 
Cuellar et al. 2011a; Cuellar et al. 2011b; Souza Richards et al. 2014; Kreuze et al. 
2013; Kreuze et al. 2009; Monger et al. 2010; Carvajal-Yepes et al. 2014; Hanafi 
et al. 2020; Kreuze et al. 2020; Kutnjak et al. 2014; Leiva et al. 2020). HTS tech-
nologies have also been used to evaluate, e.g., the diversity and evolution of CBSD 

Fig. 9.2  Handheld decision support tool discs help determine pest and disease control measures 
for (a) susceptible, (b) moderately resistant, and (c) resistant potato varieties (Pérez et al. 2020)

9  Innovative Digital Technologies to Monitor and Control Pest and Disease Threats…



270

in East Africa (Alicai et al. 2016), a countrywide mapping of potato viruses in Peru5 
(Fuentes et al. 2020; Fuentes et al. 2019a; Silvestre et al. 2020; Fuentes et al. 2019b), 
regional characterization of cassava viruses in Southeast Asia (Siriwan et al. 2020), 
and a continent-wide mapping of sweetpotato viruses in Africa6. This work has 
enabled the identification of new viruses, but also indicated prevalence of known 
but understudied viruses. For example, the analysis of the African sweetpotato 
virome revealed that begomoviruses are the third most common viruses of sweetpo-
tato in Africa, meriting further study, which showed they could cause significant 
yield impacts despite being almost symptomless, thus requiring clear attention in 
clean seed production as well as setting breeding targets (Wanjala et  al. 2020). 
Conversely, badnaviruses were found to be almost ubiquitous in sweetpotato but 
lacked any detectable effect on sweetpotato, and thus were ruled out as a matter of 
concern for production (Kreuze et al. 2020).

The recent Ebola virus and SARS-CoV-2 epidemics have revealed the potential 
of HTS technologies to track the evolution of virus epidemics in near real time and 
have provided the scientific community with novel tools and platforms that can be 
applied to any other pathogen. One can foresee that massive sequence information 
will continue accumulating and be made available through different public data-
bases. One excellent example is the International Nucleotide Sequence Database 
Collaboration, which comprises the DNA DataBank of Japan (DDBJ), the European 
Nucleotide Archive (ENA), and GenBank (Arita et al. 2021). These three organiza-
tions curate and exchange DNA sequence data daily and, at present, host more than 
70 million sequences corresponding to bacteria, fungi, and viruses. Even so, affected 
countries still hesitate to share data because these are public domain databases, 
through which data can be accessed and used anonymously, which can create policy 
and/or intellectual property issues. However, there is hope as evidenced by the 
GISAID-Initiative,7 developed for near-real-time reporting of viruses related to the 
bird flu virus (H5N1) and SARS-CoV-2.

The availability of large amounts of DNA sequences requires robust bioinfor-
matic pipelines that can analyze the data in real time (preferably open source). With 
that in mind, the Nextstrain system was developed (Hadfield et al. 2018), which is 
currently heavily used to track the evolution of SARS-CoV-2, but can be applied to 
any virus of interest. So far, only a few examples of the use of such tools in surveil-
lance of crop pathogens have been published (Siriwan et al. 2020; van de Vossenberg 
et al. 2020; Leiva et al. 2020). As more novel, portable, and affordable next genera-
tion sequencing (NGS) technologies take over classic time-consuming diagnostic 
tools based on biological isolation, PCR-based approaches, and phenotypic evalua-
tion of disease response in specific host genotypes (Boonham et al. 2013), their use 
and applications will expand to the surveillance of other major crop pests and patho-
gens. Recent efforts to integrate such information with field data (incidence of 

5 http://potpathodiv.org/index.html
6 http://bioinfo.bti.cornell.edu/virome/
7 www.gisaid.org
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symptoms and pests) are currently implemented in the platform PestDisPlace 
(Cuellar et al. 2018).

9.2.5  �Data Management and Open Data

Efforts have been made to aggregate data and monitor the spread of crop disease by 
integrating data into one platform that combines different surveillance methods, 
such as field inspections, PCR test results, published literature, and ML diagnosis 
using mobile applications. One such effort is PestDisPlace8 (Cuellar et al. 2018), an 
online database, surveillance, and visualization platform, used to standardize the 
collection, analysis, and sharing of surveillance data acquired by multiple research 
teams. The platform uses these disparate data sources to create user-friendly geolo-
cated visualizations of longitudinal pest and disease data from different spatial loca-
tions. The data visualization has enabled scientists working in the field to use 
PestDisPlace to understand trends and use the platform as an easy-to-understand 
communication tool for engaging with decision-makers and scientists in disease-
affected countries. PestDisPlace is currently crowdsourcing disease monitoring data 
from CGIAR researchers and their partners, including national plant protection 
institutions mandated with crop protection.

PlantVillage has a similar database that visualizes pest and disease reports col-
lected by its AI-powered apps (Nuru, FAMEWS, eLocust3m).

The tools described in the previous sections all generate huge amounts of data 
that can be used further as input for more extensive analysis and other kinds of 
modeling. Good data management and open access are crucial components of 
knowledge discovery and innovation (Wilkinson et al. 2016). However, in academia 
and research, only peer-reviewed publications have traditionally been considered 
outputs of science. But that tendency is changing a bit now as data are earning rec-
ognition as a legitimate research product that can be validated, preserved, cited, and 
credited (Kratz and Strasser 2015a; Kratz and Strasser 2015b; Data Citation 
Synthesis Group: Joint Declaration of Data Citation Principles. 2014).

Even though agriculture trails most sectors in terms of digitalization (Manyika 
et  al. 2015), more and more data are being produced by research organizations, 
academia, governments, and farmers through mobile phones and social media. The 
management, dissemination, and reuse of data can contribute to building resilience 
to food system shocks. The CGIAR Big Data Platform has shown that organizing 
and disseminating open data on agriculture, applying analytics on this data, and 
working with agricultural stakeholders, such as farmer organizations, can help 
building resilience to pest and disease outbreaks, climate impacts, and land degrada-
tion (Jimenez and Ramirez-Villegas 2018).

8 https://pestdisplace.org/
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9.3  �Decision Support Systems (DSS)

The fourth global evolution of agriculture will be causally linked to the emergence 
and use of technologies including smartphones and smart applications, Internet of 
Things (IoTs), artificial intelligence, cloud computing, remote sensing, and others 
(Zhai et al. 2020). These technologies are progressively evolving, increasingly used 
under various agricultural production contexts, and generating unprecedented vol-
ume of data. However, stakeholders and farmers often find it challenging to access, 
process, and digest these data into practical knowledge that can guide decision-
making (Taechatanasat and Armstrong 2014).

In many smallholder farming systems where RT&B crops are cultivated, exten-
sion and advisory services are often overwhelmed or nonfunctional (Fabregas et al. 
2019). Thus, to manage and mitigate threats of pests and diseases, farmers require 
reliable information to guide timely action. Digital DSS platforms that support and 
complement existing extension systems hold promise for sustainable RT&B crop 
production. These digital DSS vary in their overall function, content, and sophisti-
cation, but they can meet user needs in ways that transcend the capabilities of tradi-
tional extension systems and advisory services.

It should be noted that DSS tools are not exclusively Internet dependent and 
often built with the intent of democratizing information access across age, educa-
tion, gender, and socioeconomic classes. Experience with smallholder RT&B farm-
ing systems suggests that male and female farmers face similar constraints in 
accessing DSS tools that are smartphone based due to limited or lacking Internet 
access and capability to use such devices. Yet, recent evidence suggests that dispar-
ity exists in access to (and ownership of) basic phones relative to gender and age 
class among farmers (Adewopo et al. 2021). Equitable capacity building of target 
tool users can accelerate adoption as these various tools are deployed across diverse 
geographies.

9.3.1  �Short Messaging Service Systems

Short messaging service (SMS) systems have been adapted for rapid delivery of 
agricultural advisory services, including specific recommendations on best prac-
tices to tackle biotic threats on farm, information on specific precautions to mitigate 
incidence, or timely alerts for risks of pest outbreaks or disease infection and spread. 
SMS systems have proven to be an effective entry point to empower smallholder 
farmers because they are easy to deploy on basic cellphones and do not cost addi-
tional investment to receive information. Depending on use contexts and goals, 
farmers can informally exchange messages with each other, or respond to messages 
promptly to engage the sender, within a DSS setup. Several SMS-based DSS have 
been successfully tested and deployed to support data collection and information 
exchange on RT&B pests and diseases. In coastal Tanzania, the Commonwealth 
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Agricultural Bureau International (CABI) and other extension and advisory part-
ners have facilitated SMS messaging among farmers to share information about 
cassava whiteflies (Bemisia spp.), a major pest in the region, and how to identify and 
remove infected cassava plants9. Project-based pilots of SMS for decision support, 
social enterprises, and private businesses  – like Esoko10 and EcoFarmer11  – are 
advancing the frontiers of SMS application for other purposes, such as exchange of 
information on prices and market information on potato in Zimbabwe (Ifeoma and 
Mthitwa 2015). While there are limited examples of SMS-based DSS that are exclu-
sively focused on RT&B pest or disease surveillance, vendors or service providers 
have the flexibility to configure their systems to meet emerging demands for basic 
surveillance information at village or farm level. Therefore, RT&B-focused SMS 
systems can be enriched with periodic information on pest and disease threats, 
enhanced as a bidirectional information exchange tool, or integrated with more 
robust systems to offer the recipients direct access to further information or 
resources.

Despite its potential advantages, SMS deployment for surveillance and control 
of RT&B pests and diseases can be constrained by some factors. Although SMS is 
a low-cost pathway to reach a vast number of farmers and enables quick dissemina-
tion of information, user response to the message can be passive because the SMS 
nudge does not suffice as an incentive for immediate action. Similarly, the literacy 
levels of recipient can limit the interpretation of the message; therefore, smallholder 
RT&B farmers who have little or no formal education are often at a disadvantage. 
Furthermore, it is easy for recipients to ignore SMS-based DSS (e.g., incident alerts, 
control measures, preventive practices) when the risk or threat is not considered 
imminent.

Recently, the Bill & Melinda Gates Foundation has invested funds in PlantVillage 
to test the hypothesis that data on important diseases can be collected from 
SMS. This experiment will take advantage of a collaboration between PlantVillage, 
iShamba (which sends messages to farmers), and the TV show Shamba Shape Up, 
a popular show watched by over nine million farmers in Kenya. Using USSD 
(Unstructured Supplementary Service Data), the project will ask farmers what they 
grow and what pests they observe among their crops.

9.3.2  �Interactive Voice Response (IVR) Advisory

Interactive voice response (IVR) technology allows users to interact with a pre-
programmed host computer system through a telephone keypad or by speech recog-
nition. Generally, the IVR-based DSS for farmers has a major advantage over 

9 https://cabi-uptake.netlify.app/
10 www.esoko.com
11 www.ecofarmer.co.zw
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SMS-based systems because it does not require basic literacy for effective use – 
only the ability to listen, select numbers on phone, or verbally respond to voice 
prompts. However, developing and operationalizing IVR systems is more complex 
because it requires voice coding and algorithms that route user selection through the 
system and return relevant content. In addition to the complexity of the back-end 
system, higher costs of connectivity are associated with IVR-based DSS because 
users often need to dial into the system to initiate information exchange, which 
often accrue mobile connection fees by the service provider.

Despite the promising aspects of IVR systems and their compatibility with the 
contexts of smallholder farmers, it is rare to find real-world application of IVR for 
reporting or monitoring of RT&B pests and diseases. One of the earliest assess-
ments of IVR to support agricultural decision-making (Patel et al. 2010) reported a 
significant improvement in information sharing among smallholder farmers in rural 
India. It is noteworthy that prior to the testing of IVR within agricultural systems, 
this technology has been successfully used to curate timely information on chronic 
health problems (Piette 2000), and this success could be adapted for agriculture 
contexts, especially for pest and disease surveillance. Recently, digital agriculture 
enthusiasts have begun exploring entry points to introduce DSS directly to farmers 
or to support adoption and integration into extension and advisory services.12 As 
these initial efforts mature, it is likely that vendors and service providers will have 
compelling information to design IVR systems as versatile DSS that offer broad 
information services and products to the target end users.

9.3.3  �Smart Applications (Smart Apps)

The growing use of smart devices (primarily tablets and phones) in smallholder 
farming systems is creating unprecedented opportunity to engage farmers with 
robust and content-rich DSS for RT&B pest and disease monitoring and control. 
Smart devices have unique functions that allow users to access and exchange digital 
contents in various formats, either separately or complementarily to achieve desired 
user engagement and experience. In addition to the multi-format functions, smart 
devices are generally built with capacity to record actual locations (geocoordinates) 
of user inputs and observations, thereby facilitating rapid acquisition of georefer-
enced datasets, a critical input for spatially explicit near-real-time assessment of 
status and risks of pests and diseases at local, regional, or national scales.

12 For instance, in 2020, a project funded by Bill & Melinda Gates Foundation to develop an IVR 
system for plant pest and disease surveillance in Ghana, where farmers are engaged to ensure 
timely reporting and control (https://www.ausvet.com.au/ivr-for-plant-health/). Similarly, in 2017, 
the CGIAR supported Viamo and Voto Mobile to develop an IVR system that connects farmers to 
market intelligence among farmers in Nepal (https://bigdata.cgiar.org/inspire/inspire-chal-
lenge-2017/using-ivr-to-connect-farmers-to-market/)
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In most smallholder farming systems, the use of smart devices remains relatively 
low, but the high interest in smart digital tools constitutes a viable entry point for 
innovation among stakeholders, including farmers (McCampbell et  al. 2018). 
Therefore, various smart apps are emerging for the diagnosis, surveillance, and con-
trol of pests and diseases in RT&B crops. These include:

•	 The Plantix app,13 developed by PEAT GmbH (Germany), which supports rapid 
diagnosis for detection of pests, diseases, and nutritional deficiencies in banana, 
cassava, potato, sweetpotato (Ipomoea batatas (L.) Lam.), and other crops.

•	 The BXW app14 (Fig. 9.3), developed by a consortium of partners (led by IITA), 
supports monitoring of banana Xanthomonas wilt (BXW) disease with combined 
functionality of awareness messaging, diagnosis, control, and agronomic 
recommendations.

•	 The Crop Disease Surveillance (CDS) app, developed by IITA, is designed for 
cost-effective surveillance for cassava virus diseases in Nigeria; it facilitates 
rapid diagnosis through digital image-based analysis, communication among the 
quarantine officials, notification of pest risk, and facilitation of emergency 
response. This app was later expanded for use against banana bunchy top virus 
(BBTV) surveillance in Nigeria.

13 www.plantix.net
14 www.ict4bxw.com

Introductory module
that provides user with 
information on BXW and 
how to detect.

Diagnosis module that
guides the user and 
generates data about BXW 
among banana stands. The 
location is recorded.

Module that provides 
proven and state-of-the-
art management 
methods for prevention 
and control of BXW

Module that provides 
proven and state-of-
the-art agronomic 
methods for prevention 
and control of BXW .

Fig. 9.3  The homepage interface of the smartphone-based BXW app, an example of a smart deci-
sion support system (DSS) for the surveillance and control of banana Xanthomonas wilt 
(BXW) disease
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•	 The PlantVillage Nuru app (Fig. 9.1) was collaboratively developed by several 
researchers from Penn State University, FAO, IITA, CIP, and CIMMYT for the 
diagnosis of plant diseases, including cassava and potato (Ramcharan et al. 2017; 
Ramcharan et al. 2019; Mrisho et al. 2020).

•	 Others (including Tumaini and PestDisPlace apps) that are highlighted in the 
next section.

Most of these smart apps have been tested in the field, are available through the 
Android Play Store, and are being evaluated or tweaked to optimize user experience.

The sustainability of smart applications depends somewhat on various technical 
and contextual factors. For example, scaling up the use of apps across geographies 
depends on the proliferation of smart devices among smallholder farmers or last-
mile extension delivery agents. Similarly, although some of the apps work in offline 
mode, the availability of Internet coverage is critical for initial downloads, data 
exchange with back-end servers, and synchronization of the app and content 
updates. The commitment of vendors and/or institutional hosts is indispensable to 
progressively iterate over the core and ancillary functionalities of these smart apps 
in response to user demands.

Several systems are already having impact in improving production of RT&B 
crops at the community level:

•	 PlantVillage Nuru has been available for free download since June 2018, and 
since that time, more than 15,000 reports have been generated in 32 cassava-
growing countries of the tropics, using the cassava pest and disease identification 
component. An important feature of this work has been the promotion of the role 
of “lead farmers” who are equipped with the basic smartphones required to 
download and use the app and work with their communities to help farmers to 
learn about the symptoms and damages caused by the main pests and diseases of 
cassava, as well as guiding them in the application of appropriate control prac-
tices. Users in Tanzania and Nigeria are also invited to check on the availability 
of certified planting material through using the SeedTracker app15, which is a 
system for the registration and certification of farmers producing high-quality 
planting material. The widespread use of the PlantVillage Nuru app has made an 
important contribution to improving the health of cassava production systems in 
western Kenya, and farmers have given testimony to the value that these changes 
are making to their livelihoods16,.17 PlantVillage Nuru is also being expanded for 
application to other RT&B crops, notably potato and sweetpotato, and this 
development will extend the benefits being realized by producers to other parts 
of the world.

•	 The Tumaini AI-powered app, which detects various diseases and a pest of 
banana, is free available for download on Google Play Store since June 2019; 

15 www.seedtracker.org
16 https://bigdata.cgiar.org/blog-post/success-story-from-cassava-farmers-in-busia-county-kenya/
17 https://plantvillage.psu.edu/blogposts
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since that time, the app has been downloaded over 2000 times, mostly by users 
in Asia. For example, in India, the Tumaini app was discussed and demonstrated 
on two famous radio and TV channels of Tamil Nadu where banana cultivation 
is omnipresent. In addition, the Tumaini app utility and functions are being pro-
moted at farmer’s exhibitions in Tamil Nadu, while in collaboration with Indian 
state agricultural universities, farmers and growers are being trained in the app 
use through agricultural college students in the framework of village stay 
programs.

•	 The BXW app is being co-validated in the field with a network of 65 village-
level extension agents (known as farmer promoters) who have successfully 
reached over 4200 farmers (Fig. 9.4), and independently completed over 2500 
diagnosis within banana farms, across 8 districts in Rwanda. Based on the data 
flow, robust georeferenced data on BXW incidence is being generated, through 
farm-level usage of the app, to assess spread and potential factors that impact the 
dynamics of the disease. Further, the agronomic information and BXW control 
methods were disseminated through an IVR-based system, under the auspices of 
Viamo18, to circumvent the constraints associated with low smartphone usage 
among smallholder farmers. The information on banana was accessed by over 
10,000 unique callers (mainly farmers) over a period of 8 weeks, with 87% of 
randomly surveyed users reporting their knowledge of agronomic and control 
practices improved after accessing the digital platform.

18 https://viamo.io

Fig. 9.4  Enthusiastic Rwandan banana farmers who are interacting with beta version of ICT4BXW 
app during field testing. (Photo credits: IITA)
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Despite what is described in the examples above, assumptions about the impact of 
the innovations have to be tested over time and relevant M&E frameworks can help 
to build up evidence while identifying the limitations of assessing direct impact 
(e.g., lagged effect and indirect impacts).

9.4  �Future Perspectives

9.4.1  �Development of Integrated and Interoperable Systems 
and Major Challenges to Overcome

Many different databases and apps have been developed to track and identify dis-
eases globally, but are generally used only for a single crop or disease or promoted 
by a single research center, thus limiting the use of the data to a specific community 
of practice. Once developed, these communities become vested in their systems and 
unlikely to change to another platform, because their home platforms have been 
tailored to their needs. However, if the data captured by these different platforms 
could be shared more broadly, it would benefit all involved and could be reused to 
support many specific use cases, including the tracking of epidemics, modeling, 
providing farmers with advice, and supporting seed systems.

Within RTB collaborating organizations and the broader CGIAR collaborating 
partners, several such databases and apps have been developed. To enable the shar-
ing of data between these platforms, the concept of an AgDx alliance was proposed 
between platforms of the CGIAR and other publicly funded, nonprofit organiza-
tions dedicated to research for development and education in agriculture with the 
aim to improve plant health globally through ICT tools. As an alliance of individual 
platforms, tools and databases are aimed at supporting agricultural health in differ-
ent aspects AgDx commits to address former shortcomings through the develop-
ment of application program interfaces (APIs) to facilitate data sharing between 
platforms and/or by providing links between complementary ICT tools where 
appropriate.

The AgDx alliance is taking steps to create data interoperability among plat-
forms, starting with data harmonization. Through a collaborative and community-
based process, AgDx standardized a core set of data elements that form the first data 
interoperability step. This standardization process ensures that data elements will 
have the same semantic meaning by agreeing on definitions and scale and enable 
effective exchange of data.19

19 The AgDx community created a cross-reference of all common data fields and the standardiza-
tion process divided the data fields into two groups: one for pests and one for disease data. 
Examples of basic shared data fields include the affected crop, the location, severity, incidence, and 
scale data. Disease data fields include the disease name, pathogen type, and pathogen name. In 
comparison, pest name, pest origin, and pest type are pest-specific examples. The dataset includes 
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An application program interface (API) will facilitate data exchange and interop-
erability between various data systems and platforms of the AgDx alliance. An API 
is a set of protocols and definitions that work as an intermediary that allows comput-
ing units to communicate, exchange, or retrieve information or perform a function. 
Specifically, the AgDxAPI will be a Web Service API. Web services allow comput-
ing systems to communicate with each other over a network. The AgDx database or 
platform exposing a web service will define resources in the form of computer files 
such as images and audio files or outputs of a computing function as standard com-
puter formats such as JSON (Ecma International 2017) and XML (W3C 2009). 
Using the REST API architecture style, a de facto standard for creating Web Service 
APIs (Fielding et al. 2017), AgDxAPI will allow implementing systems to commu-
nicate which services and resources are available and how to request these resources. 
Using APIs has been proven successful in creating interoperability across agricul-
tural research, such as in the plant breeding community (Selby et al. 2019).

All participating databases and platforms will implement the AgDxAPI specifi-
cation into their systems. Each database will customize the API so that service calls 
will retrieve data in the agreed format and scale. Harmonizing the core exchange 
dataset with existing ontologies such as the Crop Ontology (Shrestha et al. 2010) 
and the in-development Plant Crop Stress Ontology20 will be the next step to enhance 
data standardization. To this end, AgDx is engaging with the Ontology Community 
of Practice of the CGIAR Big Data Platform (Arnaud et al. 2020). This community 
has experience in creating and integrating ontologies with platforms and APIs in 
agricultural research. Another next step for the AgDxAPI specification will be to 
include an expanded list of data elements for specific domains. For example, 
AgDxAPI imaging could be an extension to allow for more detailed retrieval of 
images stored in different databases. This feature is critical for machine learning.

9.4.2  �Approaches to Scaling (Opportunities, Packaging, 
Strategies, Public and Private Partnerships, Expected 
End Users, and Impacts)

Digital tools for pest and disease identification and surveillance have become a busy 
“space” in recent years, with rapid developments in several component technology 
areas, such as high-throughput sequencing, remote sensing, artificial intelligence, 
and the development of web platforms and phone apps. These changes are being 
built on rapidly expanding communications architecture that is making it increas-
ingly easy to share digital technologies and associated information with rural 

both the common names and scientific names for crops, pathogens, pests, and linkages to other 
related computer systems such as the GenBank (Sayers et al. 2021).
20 https://github.com/Planteome/plant-stress-ontology
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farmers. According to the GSM Association21, some of the most rapid gains are 
being made in sub-Saharan Africa, where mobile Internet users are expected to 
increase from 272 million (26%) in 2019 to 475 million (39%) by 2025, and smart-
phone connections are expected to increase from 44% to 65% over the same period. 
Meanwhile, the interoperability of tools will likely be a major factor for effectively 
scaling applications among smallholder RT&B farmers. This has been an important 
feature of the work of the CGIAR’s RTB research program, where significant efforts 
have been undertaken to foster links and information exchange among a range of 
digital surveillance tools.

Efforts are underway to incorporate this approach into plans for the new 
OneCGIAR, which would aim to bring together the majority of the digital surveil-
lance tools being used throughout the CGIAR at present. Promoting the use of this 
anticipated platform of applications at farm level will require a diverse set of inno-
vative partnerships with the public and private sectors. Recent experience with the 
rollout of test and trace digital tools for SARS-CoV-2 has demonstrated that specific 
solutions may need to be tailored for different countries and geographies and that 
applications will achieve greatest impact where there are strong partnerships 
between private technology providers and public institutions. Ultimately, the likeli-
hood of any individual farmer using a specific digital tool will depend on the per-
ceived benefit that the tool delivers. This highlights the importance of ensuring that 
disease surveillance tools are packaged with business development tools for the 
same crop. Many commercial digital platforms have been set up in recent years to 
provide a range of e-extension services, including a growing number established by 
phone providers as well as others set up by dedicated electronic agro-support ser-
vices, such as Esoko in Africa and ImpactTerra in Southeast Asia. Building coali-
tions with these types of providers and national extension systems appears to be the 
best opportunity for scaling digital surveillance solutions and meeting the needs of 
farmers down to the last mile.

9.4.3  �911 For Planet Earth

In 1937, England established the world’s first emergency number: 999. By calling 
this number, any person could access the emergency services. All countries now 
have such numbers, allowing persons to make phone calls for help without coins or 
credits.

African farmers, and smallholder farmers around the world, need extension advi-
sory support to cope and adapt to climate change. There are a lot of advices avail-
able such as planting drought-tolerant crops, promoting soil moisture conservation, 
engaging in water harvesting, tree planting, and other activities that are known to 
increase resiliency to climate shocks. As more pest data becomes available, we can 

21 https://www.gsma.com/mobileeconomy/sub-saharan-africa/
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integrate them with weather forecasts and satellite observations as demonstrated by 
the response to desert locust crisis of 2020/2021 (discussed above, https://arcg.
is/0aHGHi). Available advices from various public sources (including scientific 
inputs from CGIAR, NASA, FAO, NOAA) are considered as public good, and they 
are often synthesized by organizations like the United Nations, who readily draw 
from the global community of scientists (CGIAR, universities, federal agencies). 
But because of very high data costs in places like Africa, smallholder farmers, or the 
communities to which they belong, cannot afford to access this “free advice.”

Millions of smallholder farmers are unable to access digital information as pub-
lic goods because they cannot afford airtime for basic or smartphone usage. 
Considering extant global-scale emergency and crises, it will be relevant to deploy 
an emergency response system, similar to 911. Such a system can be developed to 
function in a way that it provides science-based advice and coping strategies to 
farmers through free and accessible platforms. Such platforms offer contents in 
various forms and formats, including well-illustrated videos on proven farming 
practices, advice on climate-resilient crops, and strategies to combat pests.

9.5  �Conclusions and Ways Forward

Digital tools and systems for monitoring and controlling pest and disease threats in 
smallholder farming systems are crucial for ensuring food and nutrition security 
around the world and into the future. However, achieving and sustaining this goal 
requires cohesive engagement between digital tool developers, researchers, exten-
sion and advisory services, and farmers to define specific problems and opportuni-
ties and develop suitable digital solutions. Despite the array of digital DSS tools and 
platforms that have been developed and deployed for other use cases within and 
beyond agriculture, their adaption or use is still in its infancy with RT&B cropping 
systems. This suggests wide opportunity to innovate for impacts in RT&B farming 
systems, leveraging existing knowledge and experiences, and rapidly integrating 
tools and methods for efficient mitigation of pest and disease risks at scale.

Smartphone penetration and usage is expected to increase globally, especially in 
developing countries, while Internet coverage will improve, reaching even the most 
remote regions through new satellite systems (GSMA Intelligence, 2020). Consumer 
smartphone capabilities, including image capture and integration with other sen-
sors, are also expected to evolve, thus creating new opportunities for innovative 
applications to advance plant health, including major RT&B crops. Machine learn-
ing algorithms are likely to improve simultaneously with new generation satellite-
derived remote sensing data on various agrometeorological variables (including 
precipitation, soil moisture, temperature), which can be accessed and used for deci-
sion support in near real time. Combining these assets with improved analytical 
methods for image processing, downscaling data, and crowdsourcing of informa-
tion, the prospects are good for accurate forecasting and prediction of pest and dis-
ease risks at global and local scales to support timely decision-making and action.
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Despite the gains in coverage and use of ICT tools across developing countries 
described in this chapter, there is a considerable gender gap, especially in regard to 
Internet use. This gender gap is significantly larger in most developing countries 
and even more so in rural settings. To date, we lack studies analyzing the digital 
gender divide in the agricultural sector or how ICT tools may influence gender dis-
parities in agricultural settings. Such studies are urgently needed in this era when 
digital agriculture is rising; we must take care not to inadvertently fuel more gender 
inequality.

The vision of a dynamic and robust pest and disease surveillance system that 
allows for reflexive learning and inclusive iteration of tools can be achieved with 
proper consideration of user needs, contextual realities, and aspirational thinking 
for technology development and deployment. For instance, efficient information 
exchange from different data sources is indispensable for scalable analytics on pest 
and disease dynamics in RT&B cropping systems, and this aspect requires common 
data definition standards – an effort which has been initiated by CGIAR researchers 
through the AgDx alliance initiative. An initial version of AgDxAPI has been devel-
oped based on a similar approach implemented by crop breeders (named BrAPI; 
Selby et  al. 2019). The AgDxAPI is currently in its pilot stage, leveraging 
PestDisPlace and PlantVillage tools under field conditions. As an agricultural 
research for development organization, the OneCGIAR may have an important role 
to play as a trusted broker for harnessing and disseminating data streams across 
diverse sources and institutions.

In conclusion, the impact of monitoring and controlling RT&B pests and dis-
eases can be quite nuanced, especially when accounting for direct net impacts on 
yield. However, the cost of inaction would be perilous. Assessing returns on invest-
ment in DSS for RTBs should include various ancillary benefits, including gender-
sensitive equitable access to information, youth empowerment for last-mile service 
delivery, and ease of resource demand on national extension advisory systems.
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