1 PLANT DISEASE NOTES

First report of potato cyst nematode, *Globodera rostochiensis* (Wollenweber, 1923), infecting potato (Solanum tuberosum L.) in Uganda.

4

5 L. Cortada, International Institute of Tropical Agriculture (IITA), Kasarani, P. O. Box 30772-6 00100, Nairobi, Kenya; Department of Biology, Section Nematology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium, J. Omagwa, International Institute of Tropical 7 8 Agriculture (IITA), Kasarani, P. O. Box 30772-00100, Nairobi, Kenya; J. Kisitu, International Institute of Tropical Agriculture (IITA), Naguru, P.O. Box 7878, Kampala, Uganda; M. 9 Adhiambo, S. Haukeland, International Centre for Insect Physiology and Ecology (ICIPE), 10 Kasarani, P. O. Box 30772-00100, Nairobi, Kenya; H. Mburu, International Institute of Tropical 11 Agriculture (IITA), Kasarani, P. O. Box 30772-00100, Nairobi, Kenya; J. Orr, J. T Jones, Cell 12 & Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA 13 and School of Biology, University of St Andrews, KY16 9TZ, UK; A. Wasukira, National 14 Agricultural Research Organization (NARO), P. O. Box 1356, Mbale, Uganda; J. B. Kisingiri, J. 15 Tugume Ministry of Agriculture Animal Industry and Fisheries of Uganda (MAAIF), P.O. Box 16 102, Entebbe, Uganda; J. B. Birenge, International Fertilizer Development Centre (IFDC), Eastern 17 Regional Office, P.O. Box 75391, Mbale, Uganda; J. S. Okonya, International Potato Centre 18 (CIP), P.O. Box 22274, Kampala, Uganda; D. Coyne, International Institute of Tropical 19 Agriculture (IITA), Kasarani, P. O. Box 30772-00100, Nairobi, Kenya; Department of Biology, 20 Section Nematology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium 21

22

Potato cyst nematodes (PCN; Globodera rostochiensis and G. pallida) are quarantine pests (EPPO 23 2013) and have recently been reported from Kenya (Mburu et al. 2018) and Rwanda (Niragire et 24 25 al. 2019). In East Africa, potato is an important staple food crop for millions of people, although current yields (10 t/ha) are far below potential (40 t/ha). A survey was conducted in Uganda to 26 assess the incidence of PCN in farmers' potato fields. Soil samples were collected from 124 fields 27 in areas neighboring Kenva and Rwanda (November 2018 - April 2019). Within each field a bulk 28 29 sample of 2 kg using 20 cores was collected following a zigzag transects. Soil was thoroughly mixed, air-dried and sieved (1 mm mesh). Nematode cysts were extracted by taking three sub-30 samples of 200 cm³ per field, using a Fenwick can (EPPO, 2013). Cysts were found in 17 fields 31 (13.7%) with mean cyst counts of 2.6 cyst/ 200 cm³ soil. One cyst each from two randomly selected 32 fields; MBL 03 and MBL 07 (Table 1) were dissected under a stereo-microscope and 20 eggs/cyst 33 were inoculated separately onto 3 potato plants of cv. 'Shangi' grown in 1 kg pots containing steam 34 sterilized loam soil. Plants were maintained in the greenhouse and harvested after three months. 35 Using a Fenwick can, a mean of 12 cyst per pot ($\overline{\chi}$ = 83 eggs/ cyst) were extracted, of which 15 36

females and 31 second-stage juveniles (J2s) were used for morphometric analyses. Female length 37 (L) ranged from 280.5 – 446.3 μ m ($\overline{\gamma}$ = 365.1 ± 45.0 μ m), width (W) from 200.3 – 440.5 μ m ($\overline{\gamma}$ = 38 $319.3 \pm 63.4 \,\mu\text{m}$) and the L/W ratio was 1.2 ± 0.2 ; Granek's ratio (n = 7) varied from 1.57 - 3.5239 μ m, ($\overline{\gamma} = 2.7 \pm 0.6 \mu$ m); the distance from anus to vulval basin was $26.31 - 62.73 \mu$ m ($\overline{\gamma} = 50.1$ 40 \pm 11.7 µm). The J2 stylet length ranged from 14.93 – 22.59 µm ($\overline{\chi} = 19.37 \pm 1.86$) with round-41 shape stylet knobs. Length of the hyaline tail was $12.64 - 27.63 \ \mu m \ (\overline{\chi} = 23.05 \pm 3.80)$ and the 42 true tail ranged from $30.06 - 54.48 \ \mu m$ ($\overline{\gamma} = 43.33 \pm 4.87 \ \mu m$); body length of J2 varied from 43 44 $332.02 - 427.29 \,\mu m$ ($\overline{\chi} = 394.00 \pm 19.30$); all morphometric parameters matched those described for G. rostochiensis (Subbotin & Franco, 2012). DNA was extracted (Qiagen DNeasy® Blood & 45 Tissue kit; Qiagen Group; USA) and amplified using candidate ITSF/R primers targeting the ITS1-46 5.8S-ITS2 regions (modified from Mburu et al. 2018). One PCR reaction contained 0.5 µM of 47 each primer (forward and reverse), 5 µl of 5X GoTaq[®] Buffer (Promega), 2 mM MgCl₂, 200 µM 48 DNTPs, 0.125 μ l GoTaq[®] DNA polymerase (5 u/ μ l), 1 μ l DNA template (final volume = 25 μ l). 49 PCR cycling included 2 min initial denaturation phase and 40 PCR-cycles. The PCR amplicons 50 51 (500 bp) were sequenced and edited using BioEdit Sequence Alignment Editor. DNA sequences were analyzed using the NCBI-BLAST tool: sequences MN450308 and MN450309 showed 52 similarity to the 5.8S ($E=4e^{-140}$; 97.64% identity) and 18S ($E=5e^{-139}$; 98.61% identity) ribosomal 53 RNA gene of non-African G. rostochiensis isolates. A phylogenetic analysis showed that Ugandan 54 populations cluster with Kenyan G. rostochiensis isolates but are less closely related to Rwandan 55 populations or other Globodera species. Our findings highlight the need to conduct a 56 comprehensive epidemiologic survey for developing a regional PCN-management strategy. 57 58

- 59 EPPO. 2013. Bull. OEPP. 43:119. DOI: 10.1111/epp.12025.
- 60 Mburu, H., et al. 2018. Plant Dis.102:8. e-ISSN: 1943-7692
- 61 Niragire, I., et al. 2019. Plant Dis. First Look. e-ISSN: 1943-7692
- Subbotin, S., and Franco, J. 2012. Pages 337-353 in: Practical Plant Nematology. ISBN 978-607 715-078-7

PLANT DISEASE NOTES

Cortada et al., 2019. First report of potato cyst nematode, <i>Globodera rostochiensis</i> (Wollenweber, 1923), infecting potato (Solanum
<i>tuberosum</i> L.) in Uganda.

Sample ID	District	Regions	Altitude (m.a.s.l)	GPS North	GPS East	Generalized wilting of potato crop	Patchiness observed in the crop	Stunted growth observed in potato crop	Potato variety planted	Cysts per 200 cm ³ soil
KPR 04	Kapchorwa	North East	2048	01º20.304'	034º24.519'	Yes	Yes	Yes	Rwangume	1
KPR 19	Kapchorwa	North East	2113	01º04.290'	034º15.997'	Yes	Yes	No	Unknown	1
KPR 26	Kapchorwa	North East	2072	01º22.865'	034º28.038'	No crop	No crop	No crop	N/A	1
KWN 51	Kween	North East	2222	01º22.180'	034º26.996'	No crop	No crop	No crop	N/A	1
MBL 03	Mbale	North East	1966	01º02.128'	034º14.307'	Yes	No	No	Rwangume	4
MBL 04	Mbale	North East	1894	01º02.395'	034º14.810'	Yes	Yes	Yes	Rwangume	6
MBL 07	Mbale	North East	2037	01º04.565'	034º15.652'	Yes	Yes	No	Rwangume	5
MBL 10	Mbale	North East	1929	01º04.415'	034º14.719'	No	Yes	Yes	Rwangume	4
MBL 13	Mbale	North East	1952	01º03.780'	034º15.322'	Yes	No	Yes	Rwangume	2
MBL 62	Mbale	North East	2078	01º21.981'	034º28.841'	No	No	No	Rwangume	2
KBL 28	Kabale	South West	2332	01º23.130'	029056.908'	No crop	No crop	No crop	N/A	1
KBL 33	Kabale	South West	2241	01º26.646'	029057.864'	No crop	No crop	No crop	N/A	1
KSR 01	Kisoro	South West	2028	01º19.226'	029º40.556'	No	Yes	Yes	Kinigi	2
KSR 11	Kisoro	South West	2246	01º12.260'	029º44.490'	No	Yes	Yes	Kinigi	1
KSR 03	Kisoro	South West	2219	01º20.692'	029º40.835'	No	Yes	Yes	Rangume	10
KSR 08	Kisoro	South West	1996	01º18.912'	029º43.111'	No crop	No crop	No crop	N/A	1
RBD 20	Rubanda	South West	2019	01º16.101'	029051.450'	No crop	No crop	No crop	N/A	2

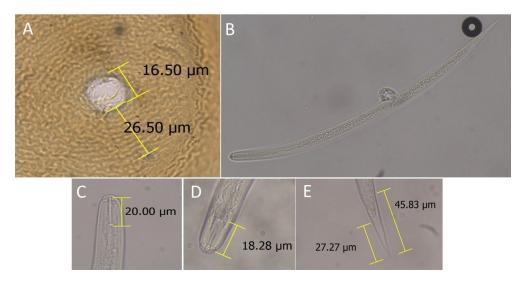


Figure 1. Morphometric analysis of Globodera rostochiensis isolate from Uganda. (A) females' vulval cones showing the measurement of the vulva diameter (16.50 μ m) and the distance from the vulva to the anus (26.50 μ m); (B) Body habitus of a J2; (C & D) Pharyngeal region of a second-stage juvenile (J2), presenting stylet measurements from the base of the stylet to the tip and displaying rounded stylet-knobs (D); (E) J2's true tail (47.82 μ m) and hyaline tail (25.07 μ m).

261x135mm (120 x 120 DPI)

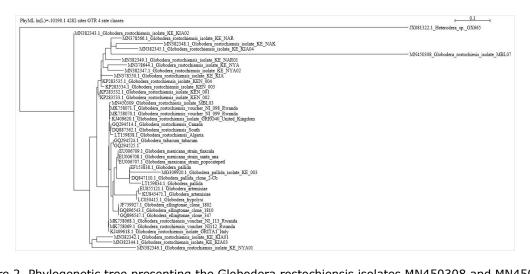


Figure 2. Phylogenetic tree presenting the Globodera rostochiensis isolates MN450308 and MN450309 aligned with isolates of seven Globodera spp., including isolates from Kenya and Rwanda. Phylogenetic tree was done using Tree Figure Drawing Tool Version 1.4.3 to Edit the Tree. 2006-2016, Andrew Rambaut Institute of Evolutionary Biology, University of Edinburgh.

223x105mm (144 x 144 DPI)