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ABSTRACT 102 

Modern breeding methods integrate next-generation sequencing (NGS) and phenomics 103 

to identify plants with the best characteristics and greatest genetic merit for use as 104 

parents in subsequent breeding cycles to ultimately create improved cultivars able to 105 

sustain high adoption rates by farmers. This data-driven approach hinges on strong 106 

foundations in data management, quality control, and analytics. Of crucial importance is 107 

a central database able to 1) track breeding materials, 2) store experimental 108 

evaluations, 3) record phenotypic measurements using consistent ontologies, 4) store 109 

genotypic information, and 5) implement algorithms for analysis, prediction and 110 

selection decisions. Because of the complexity of the breeding process, breeding 111 

databases also tend to be complex, difficult, and expensive to implement and maintain. 112 

Here, we present a breeding database system, Breedbase (https://breedbase.org/). 113 

Originally initiated as Cassavabase (https://cassavabase.org/)  with the NextGen 114 

Cassava project (https://www.nextgencassava.org/), and later developed into a crop-115 

agnostic system, it is presently used by dozens of different crops and projects. The 116 

system is web-based and is available as open source software. It is available on GitHub 117 

(https://github.com/solgenomics/) and packaged in a Docker image for deployment 118 

(https://dockerhub.com/breedbase/). The Breedbase system enables breeding 119 

programs to better manage and leverage their data for decision making within a fully 120 

integrated digital ecosystem. 121 

 122 

Availability 123 

https://github.com/solgenomics 124 

https://hub.docker.com/r/breedbase/breedbase 125 

 126 

License - MIT License. 127 
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 128 

 129 

 130 

INTRODUCTION 131 

Modern plant breeding is a data intensive process requiring multiple diverse datasets to 132 

be integrated and assessed in decision making. In classical plant breeding, promising 133 

individuals are intentionally interbred to generate a diverse population of progeny, from 134 

which individuals with the best phenotypic characteristics are selected to be used as 135 

elite parents in subsequent breeding cycles or released as improved cultivars 136 

(Breseghello and Coelho 2013). Modern plant breeding extends classical breeding with 137 

the use of marker assisted selection (MAS) and genomic selections (GS) to augment 138 

phenotypic selection (Ribaut and Hoisington 1998). Furthermore, with the emergence of 139 

high-throughput phenotyping technologies as tools for breeding, the number of potential 140 

phenotypes to be tracked has vastly increased (Andrade-Sanchez et al. 2014; White et 141 

al. 2012).  142 

 143 

The development of inexpensive genotyping technologies allow even small breeding 144 

programs to acquire high-density genotyping data for a large portion of their germplasm. 145 

The availability of this genomic data has enabled more efficient approaches to evaluate 146 

important and complex traits in the breeding process (VanRaden 2008). One such 147 

approach is genomic selection (GS), which combines genomic and phenomic data to 148 

develop a predictive model that can be used to estimate genotypic or breeding values 149 

(Meuwissen and Goddard 2001). Since genotyping is both less expensive and faster 150 

than phenotypic selection, genomic selection can result in significant acceleration of the 151 

breeding cycle with concomitant faster increases in gain. A challenge for genome-based 152 

breeding methods is the establishment of an adequate data management infrastructure 153 
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to integrate the complex datasets spanning the breeding process (Volk et al. 2021). This 154 

represents a severe constraint to mainstreaming predictive breeding to small breeding 155 

programs, particularly in developing countries. 156 

 157 

To address these data management challenges, we initiated a system called 158 

Cassavabase (https://cassavabase.org/) for the NextGen Cassava project building on a 159 

genomics codebase developed for many years for the Solanaceae called SGN 160 

(https://solgenomics.net/) (Mueller et al. 2005a; Menda et al. 2008; Bombarely et al. 161 

2011; Fernandez-Pozo et al. 2015a). With an initial focus on tomato and sequencing its 162 

genome (Mueller et al. 2005b; Tomato Genome Consortium 2012), SGN already 163 

contained a comprehensive genomics database with a strong phenotype management 164 

component (Menda et al. 2008), a number of genomics-centric tools (Mueller et al. 165 

2008; Tecle et al. 2010; Fernandez-Pozo et al. 2015b), and a rudimentary version of a 166 

genotyping storage backend (Fernandez-Pozo et al. 2015a). Cassavabase is an open-167 

source, web-based breeding data management and analysis system built with the ability 168 

to manage the genomic selection process (Tecle et al. 2014). As more instances of the 169 

software were deployed for other crops, the system expanded to better meet each 170 

project’s needs by adding further breeding-related tools, such as image-based or near-171 

infrared spectroscopy (NIRS)-based phenotyping tools (Hershberger et al. 2021).. To 172 

reflect that the underlying software and database are amenable to any crop and to 173 

promote adoption by new communities, we named the system “Breedbase” 174 

(https://breedbase.org/). Major clonal crops using Breedbase currently are cassava 175 

(https://cassavabase.org/), yam (https://yambase.org/), banana (https://musabase.org/), 176 

and sweetpotato (https://sweetpotatobase.org/), collectively known as the RTBbases 177 

(https://rtbbase.org/); however, major non-clonal crops using Breedbase include wheat 178 

(https://wheat.triticeaetoolbox.org/) and rice (https://ricebase.org/). Breeding and 179 
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research groups have adopted the system as well, such as the Gore Lab at Cornell 180 

University (https://gorelabbase.sgn.cornell.edu/). 181 

 182 

The purpose of Breedbase is to enable a 'digital ecosystem' that contains an integrated 183 

breeding workflow. Processes and data comprising germplasm banks, parental 184 

selection, crossing design, experimental design, data collection, analyses, and decision 185 

making tools are aggregated into a single system. This improves efficiency and reduces 186 

data errors that can happen when using disjointed informatics tools, for instance when 187 

transferring and restructuring data for analyses (Cobb et al. 2019). When data are 188 

loaded into a database, many checks can be performed to make sure the data are 189 

consistent and in line with specified quality control criteria.  190 

 191 

Many breeders, especially in smaller programs that cannot allocate resources to data 192 

management tools, maintain their data in spreadsheets. While spreadsheets provide a 193 

straightforward way to manage data and analyses, they suffer from a number of 194 

drawbacks, even with relatively small volumes of data. For example, it is difficult to 195 

precisely merge data across different spreadsheets, often resulting in errors and data 196 

quality issues, or to visualize or analyze data across spreadsheets. Data in 197 

spreadsheets are typically not normalized, resulting in typographical issues, inconsistent 198 

identifiers, liberal use of synonyms, and similar issues that make the data hard to 199 

aggregate. Nevertheless, the largest problem with spreadsheets is that their storage is 200 

not centralized; in fact, they are often stored on personal computers and laptops, often 201 

in multiple inconsistent versions, with potentially limited backup strategies and little 202 

recourse if accidental data loss occurs or if a person leaves the breeding program, 203 

taking all the breeding data with them. Breeding programs can be very large, 204 

encompassing many locations with many collaborators; as such, spreadsheets hinder 205 
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collaboration because data cannot be accessed in a consistent state by many people at 206 

once. Furthermore, with genome-based breeding, spreadsheets become unworkable, 207 

as it is difficult to maintain and analyze potentially very large genotypic data sets in 208 

spreadsheets in any useful way. It is important to note that using a database is not 209 

sufficient for managing a modern breeding cycle - the entire breeding process needs to 210 

be integrated around the database to create an efficient digital ecosystem. 211 

  212 

Breedbase implements a robust system of breeding workflows, data management 213 

procedures and analysis tools to address breeder informatics problems. Here we 214 

present the rationale, design, implementation and major use cases for Breedbase. 215 

MATERIALS AND METHODS 216 

 217 

Implementation 218 

The Breedbase data architecture is built around a Postgres (https://postgresql.org/) 219 

relational database with a schema that is mainly derived from Chado (Jung et al. 2011), 220 

with some historic, pre-Chado tables from SGN, as well as minor customizations 221 

(Fernandez-Pozo, Menda, et al. 2015) (Figure 1a). In relational databases, information 222 

is systematically structured into concepts represented as tables (“normalization”), a 223 

format that facilitates many aspects of data management. The information in the 224 

different tables can be joined based on primary and foreign keys, which are usually 225 

numeric values assigned to every row in a table. For some data types, such as 226 

genotypic data, Breedbase uses non-SQL extensions built into Postgres, such as 227 

JSONb-based data structures (Morales, Bauchet, et al. 2020). The application layer is 228 

implemented in Perl, using the Moose object system, based on the Model-View-229 

Controller (MVC) Catalyst web framework (http://www.catalystframework.org/), with 230 
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Mason as the templating toolkit (https://metacpan.org/pod/Mason). The system uses an 231 

object-relational layer based on DBIx::Class, with the main Chado classes organized in 232 

the Bio::Chado::Schema namespace. For statistical analyses and some of the data 233 

visualizations, the R language and add-on R packages (https://r-project.org/) are used. 234 

Image analyses and machine learning models are implemented in Python TensorFlow 235 

(https://www.tensorflow.org/) and OpenCV (https://opencv.org/) (Morales, Kaczmar, et 236 

al. 2020). The frontend graphical user interface (GUI) development has recently 237 

transitioned away from Mason components to JavaScript, with a heavy reliance on 238 

asynchronous JavaScript requests. Almost all functionalities are implemented as 239 

RESTful services, allowing for a more interactive user experience and reusable 240 

codebase. JavaScript frameworks used for the GUI include JQuery (https://jquery.org/), 241 

D3.js (https://d3js.org/), Bootstrap (https://getbootstrap.com/) and Brapi.js 242 

(https://brapi.org/). The entire Breedbase system is built on open source software and is 243 

packaged in a Docker image for deployment (https://docker.com/). For interoperability 244 

with other breeding database and tools, Breedbase implements the BrAPI 2.0 245 

specification (Selby et al. 2019).  246 

 247 

In terms of user interface, the goal of Breedbase is to provide a standard, modern web 248 

interface for all breeding tools. Breedbase is essentially a cloud-based app, obviating 249 

the need for the user to install any software. For anyone with web-browsing experience, 250 

the interface should be intuitive and straightforward, and it is continuously improved 251 

based on user driven feedback. In Breedbase, processes are presented in an 252 

interactive workflow system, providing step-by-step guidance to breeders and users in 253 

accomplishing specific tasks. A few of the widely-used interfaces include the Wizard, 254 

Lists, and Datasets tools, which will be described in more detail later. 255 

 256 
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Use cases 257 

The initial development of BreedBase focused on addressing the data collection and 258 

management stages necessary to facilitate genomic selection within a breeding 259 

program, including: 260 

 261 

 Manage accessions and pedigrees in the database, with ontology-based 262 

descriptions and support for rich metadata including images 263 

 Design field layouts and track all field metadata  264 

 Load historical data from breeding programs 265 

 Collect phenotypic data on tablets in the field and upload the subsequent 266 

phenotypes 267 

 Manage genotypic data associated with the accessions 268 

 Enable genome-based predictive breeding by calculating correlations between 269 

phenotypes and genotypes, and predict phenotypes from genotypes [the solGS 270 

tool (Tecle et al. 2014), https://cassavabase.org/solgs/search] 271 

 Support controlled crossing using customized tracking tools 272 

 273 

More recently, a number of other use cases were pursued: 274 

 275 

 Advanced statistical analyses including Principal Component Analysis (PCA), 276 

stability analysis (AMMI) (Duarte and Pinto 2002) heritability calculations 277 

(Holland, Nyquist, and Cervantes-Martínez 2010), mixed model analysis, and 278 

genome-wide association studies (GWAS)  279 

 Marker-assisted breeding 280 

 Processing and analysis of unoccupied aerial vehicle (UAV) image data 281 

 Image analysis 282 
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 NIRS data storage and analysis 283 

 284 

Plant breeding operations requiring decision support within a growing season include 285 

three broad activities: crossing, evaluations, and selections. These activities typically 286 

include setup of crossing and trial experiments (design, labeling), data and seed 287 

collection, genotyping, and subsequent statistical analysis. Breedbase offers support for 288 

each of these components through online tools. To streamline accessibility and usage 289 

for key routine activities, Breedbase has established workflow components. Each 290 

workflow offers the user a guided process for a targeted activity. For example, the trial 291 

creation workflow comprises trial creation, planting material and checklist creation, 292 

randomization and statistical design selection, field visualization and storage. During 293 

this process, field trial experiment parameters (see Phenotyping Trials section) are input 294 

into Breedbase and the relevant experimental design is calculated using open source R 295 

libraries such as Agricolae (Mendiburu et al.) or Digger (Coombes 2009). The 296 

experimental layout is calculated and displayed, and can be reviewed and potentially 297 

improved by re-running randomization before the trial design is stored in Breedbase. 298 

Additional parameters such as field management factors (ie: agronomic management or 299 

fertilizer application) can also be entered. Similar workflows exist for other activities, 300 

such as phenotyping and genotyping. 301 

Development Process 302 

The development process can be broadly described as agile (Shore, Chromatic, and 303 

Warden 2008; Beck and Andres 2004), in which shorter-term goals are defined and 304 

implemented, and subsequently further refined based on new feedback from users; 305 

agile teams provide for short release cycles and continuous improvement to the 306 

software (Figure 1b). Progress is tracked using a version control system with built-in 307 

issue tracking software (GitHub, https://github.com/). New features are discussed with 308 
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breeders and other stakeholders. Issues and bugs discovered in Breedbase are tracked 309 

on the public GitHub issue tracker. A programmer is then assigned to a ticket, and will 310 

create an issue-specific topical git branch in the relevant code repositories, and 311 

implements the required changes in the branch, including tests and edits to the user 312 

documentation. When the implementation is ready for release, a pull request is 313 

generated on GitHub and a reviewer is assigned. In the review, the code is verified for 314 

errors, programming style, tests, and documentation. If the reviewer approves the pull 315 

request, the code is merged into the master branch. The test-driven software 316 

development approach is tightly integrated with our development process, consisting of 317 

unit and integration tests. A ticket meeting is held once a week and all open pull 318 

requests and important tickets are discussed. If all the pull requests were merged 319 

successfully, and no issues are discovered with tests or other checks, a new release tag 320 

is created, the new version is deployed in production, and a new Docker image is 321 

released. Since Breedbase is open source, programmers outside of the core 322 

development team are able to make contributions to the code base via the same 323 

process. The Breedbase project has had 40+ contributors addressing various issues 324 

and improvements (https://github.com/solgenomics/sgn/graphs/contributors). 325 

Ontologies 326 

A key aspect of data integration is the necessity of standardization. Breedbase is based 327 

on the Chado database schema, which relies heavily on controlled vocabularies and 328 

ontologies to describe its data, and requires numerous ontologies for its internal 329 

functioning. In many ways, it can be described as an ontology-based database. For the 330 

breeding application, data standardization in the form of trait catalogs is especially 331 

important when several sites or breeding programs share data in the database. Without 332 

standardization, the data would not be comparable, limiting the utility of an integrated 333 

database. The creation and maintenance of trait ontologies is a considerable task. The 334 
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Crop Ontology (CO) project was developed by CGIAR to define and maintain relevant 335 

breeding ontologies (Shrestha et al. 2012). All the RTBbases use the Crop Ontology 336 

vocabularies and collaborate with Crop Ontology and breeders to improve and expand 337 

these vocabularies (Arnaud et al. 2020). If no ontologies are available, they have to be 338 

created, which can be a lengthy and arduous task. The Protégé tool 339 

(https://protege.stanford.edu/) (Musen 2015) is commonly used by curators for editing 340 

ontologies before upload to Crop Ontology and Breedbase. The Trait Dictionary 341 

Template along with the Guidelines (Pietragalla et al, 2020), available in the CO 342 

website, remain useful to collect the trait details from the research community and reach 343 

consensus. Each species is allocated a code by the CO coordination team to identify 344 

the ontology and crop repositories are created in the Planteome Github to secure the 345 

ontology version management. An online term submission form is accessible in 346 

Breedbase for users wishing to suggest missing traits or modifications to the Crop 347 

Ontology (https://submit.rtbbase.org). 348 

Interoperability and BrAPPs 349 

Databases must interoperate with a variety of tools to perform their functions in data 350 

acquisition, analysis, and data export. Recently, a standard called the Breeding 351 

Application Programming Interface (BrAPI; https://brapi.org/) was developed to 352 

exchange breeding data (Selby et al. 2019), which breeding databases can implement 353 

to provide a standard interoperability layer. Standardized application programming 354 

interfaces (APIs) allow Breedbase to integrate and interface with a broader set of BrAPI 355 

enabled applications, or BrAPPs, that can be written across diverse programming 356 

languages including Android, R, and Javascript. The BrAPI R package allows data 357 

retrieval from Breedbase for further statistical processing within the R environment. 358 

Javascript based BrAPPs provide dynamic visualization of plant breeding data, such as 359 

pedigrees exploration, experimental field maps, and data from multiple trials. BrAPPs 360 
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can interact with data from any BrAPI compliant database, such as Breedbase or the 361 

Breeding Management System (BMS) (Figure 1a). Activities such as dynamic data 362 

filtering, trial comparison, box plotting, and a comparative genetic map viewer are also 363 

implemented with BrAPPs on Breedbase. Breedbase fully supports BrAPI version 2.0 364 

and is committed to updating the system for future versions of this essential 365 

infrastructure.  366 

Querying Breedbase 367 

Breedbase has a number of query options, which are grouped in the “Search” menu. 368 

The most important data types each have a search (“Accessions and plots”, “Trials”, 369 

“Organisms”, “Crosses”, etc). A powerful combined search is available in the form of the 370 

Search Wizard (Figure 2). 371 

The Search Wizard and Datasets 372 

The Search Wizard allows users to slice their data in different dimensions, such as 373 

breeding programs, locations, years, and so forth. The data in the database can be 374 

thought of as a multi-dimensional cube which is cut along different dimensions, 375 

providing an intersection that represents the data of interest. This approach is 376 

conceptually related to a query method called Online Analytical Processing (OLAP) 377 

(Celko 2006). The current Wizard presents four boxes, for four different dimensions, 378 

which can be selected using pull down menus (Figure 2). For example, a user who is 379 

interested in the performance of cassava clones evaluated by IITA in 2017 and 2018 at 380 

the Mokwa station in Nigeria can use the wizard to find this information. Working from 381 

left to right, the user selects as the first dimension “Breeding Programs”, which displays 382 

all the breeding programs in the database in the first box. The user then selects "IITA" 383 

from the individual breeding programs listed in the box. When the user selects “Years” 384 

in the second box, all the years for which data for IITA exist are listed. In this example, 385 

the user selects 2017 and 2018. Finally, after selecting locations in the third box, the 386 
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user specifies "Mokwa". When trials or accessions are selected, phenotypic and 387 

genotypic data corresponding to the selection can be downloaded using buttons below 388 

the Wizard boxes. The Wizard also allows the combination of current selections to be 389 

stored in the database under a user-given name, representing an intersect of data of 390 

interest in the database. This stored selection is called a “dataset”. Datasets are used 391 

across Breedbase to efficiently reference a complex query with a simple, assigned 392 

name. Tools that support the dataset concept in Breedbase include solGS, GWAS, the 393 

heritability tool, the stability analysis, and the general mixed model tool.  394 

 395 

Quick Search 396 

A quick search is provided in the upper right corner of the menu bar that searches a 397 

keyword across all data types in the database, and is a fast way to retrieve named 398 

objects such as stocks and genes.  399 

Special searches 400 

Topic specific searches are available from the Search menu, including a trial search, a 401 

trait search, searches for genotyping data (including genotyping protocols, projects and 402 

plates), an image search that searches image descriptions and associated tags, and a 403 

user search that searches the users of the database. All these searches work in a 404 

straightforward and consistent way: a search form is filled in with search criteria, and the 405 

search is submitted to the database. A list with matched search results is displayed, 406 

from which links are provided to the corresponding detail pages.  407 

Analysis Tools 408 

Breedbase is more than a static collection of data, as it enables users to explore and 409 

analyze data in the database. Once data is uploaded to the database, users can view 410 

summary statistics, evaluate phenotypic variances, and identify observations with 411 

missing or outlier data. They can filter observations in a trial based on a range of trait or 412 
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traits values. For an experiment phenotyped in multiple environments, they can evaluate 413 

trait performance across environments using pairwise comparison scatter plots and 414 

histograms.   415 

 416 

Breedbase also has tools for ANOVA, correlation, principal component analysis, data 417 

partitioning using K-means clustering, genomic prediction, genome wide association 418 

study, selection index calculation, genetic gain visualization, and linear mixed models. 419 

With the Search Wizard, as explained above, users can construct datasets that can be 420 

used as inputs to various tools. Most tools follow a similar blueprint in terms of user 421 

interface: (1) select the dataset of interest from a drop-down menu of all available 422 

datasets, (2) adjust parameters for the tool, (3) submit the calculation for analysis, and 423 

(4) display the results. For some tools that require heavy computation, an email can be 424 

optionally sent to the user with a link to the results. Query implementation is a relatively 425 

complex task in the programming of a tool, but the Wizard enables the modularization of 426 

algorithms into Breedbase with relatively little glue-code, facilitating tool coverage 427 

expansion. Results such as predictions from solGS and adjusted means from mixed 428 

models can be saved in the database as analysis results. These results can be used 429 

like primary data in downstream analyses such as the selection index tool to help 430 

identify favorable germplasm.  431 

 432 
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 433 

 434 

Managing a Breeding Program Using Breedbase - Accessions, 435 

Phenotyping, Crossing, and Genotyping data 436 

General principles 437 

Plant breeding involves the collection of a wide variety of data types at different time 438 

points and locations, and across different scenarios (e.g., field, laboratory, seed 439 

storage). To give users flexibility and mobility in data collection, smartphone-based 440 

applications are often required. Android applications, such as PhenoApps 441 

(http://phenoapps.org/), are developed with this perspective (Rife and Poland 2014). 442 

Breedbase has adopted the PhenoApps tool suite created by Kansas State University 443 

(KSU).  444 

 445 

PhenoApps include applications for phenotyping (Field Book), cross management 446 

(Intercross), sample collection (Coordinate), and inventory management (Inventory). 447 

Breedbase has worked to build in native support for these applications and integrate 448 

them into best practices workflows. Since internet access is not available at all field 449 

sites, the functionality has been developed to allow configuration of these applications 450 

prior to field data collection. Field layouts, plant accessions, and traits to be measured 451 

can be loaded onto mobile devices through special interfaces in Breedbase. Following 452 

collection, data is imported back into Breedbase. Because all the trial information in the 453 

collection device was initially downloaded from Breedbase, required identifiers can 454 

easily be matched with the existing data in the database. This process is called “round-455 

tripping”, and is a crucially important concept for high quality data management. 456 
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List management 457 

Breeding activities often require the maintenance of lists of various types - for example, 458 

a list of accessions to plant, traits to measure, or trials to evaluate - and, consistent with 459 

digital ecosystem principles, these lists should be managed entirely through the 460 

database. Accordingly, Breedbase implements comprehensive list management 461 

functions. By default, lists are associated with the user that creates the list. The main list 462 

interface can be reached by clicking on the Lists link on the top right of the toolbar, 463 

which appears when logged in. A dialog appears that allows users to view, create and 464 

edit new lists. Each list has a data type from an internal ontology called ‘list_type’, which 465 

includes terms for ‘accessions’, ‘trials’, ‘traits’, ‘years’, etc. Lists are collections of text 466 

elements that correspond to names of database objects. Lists can be validated against 467 

names that are already present in the database. A validated list can then be used to 468 

submit data to various tools, including the Wizard, right on the website. Sometimes, it 469 

can be useful to share a list with other users, and this can be achieved by making a list 470 

public by clicking the appropriate checkbox in the list detail view. Public lists are shown 471 

in a separate section, and become visible to all users. They can be “unshared” if 472 

needed. 473 

 474 

Germplasm management 475 

Germplasm is the foundation of a breeding program and plays a similarly important role 476 

in a database such as Breedbase. In plant breeding programs, tracking and 477 

characterization of germplasm is a major challenge. Germplasm in this context includes 478 

accessions, stocks, varieties, or, in clonal crops, clones. Breedbase commonly uses the 479 

term “accession”. Breedbase is pre-populated with the complete plant section of the 480 

NCBI taxonomy database, defining all known species with their associated genus, 481 

abbreviation, common name, and GenBank taxon identifier. Researchers using 482 
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Breedbase can usually find their crops of interest within the 100,000+ organisms 483 

available. Accessions are always created in association with one of these organisms. 484 

 485 

Some instances of Breedbase, such as Cassavabase and Sweetpotatobase, are 486 

designed to only contain germplasm of their respective species; however, it is possible 487 

for a single instance of Breedbase to be used for a variety of crop species. Combining 488 

many crop species into a single instance can complicate the search interfaces and lead 489 

to bloated databases; however, aggregating all data allows for more consistent and 490 

queryable data. Alternatively, separating instances can lead to potentially duplicated 491 

and inconsistent data, but can be beneficial for fostering communities. 492 

 493 

In Breedbase, there are two distinct concepts that describe accessions: (1) an 494 

accession that can be ordered from a seed bank, which may have been selfed and 495 

could be genetically quite pure, or landraces. These are “long-term use” accessions (ie: 496 

historical germplasm, parental inbred lines) , which may be actively maintained and can 497 

be obtained easily; whereas (2), are “short-term use” accessions (ie: intermediate 498 

generations) that are produced in a breeding program and may go through a few rounds 499 

of selection, but most of which will be discarded in the process. These accessions may 500 

also not be genetically pure, as they may result from crosses between relatively distant 501 

parents. 502 

 503 

To create an accession in Breedbase, only a unique name and the organism species 504 

name are required. As with all objects stored in a relational database, Postgres will 505 

create a primary key identifier for each object, using a data structure called a sequence, 506 

which is used to link the accession to other objects in the database using a foreign key. 507 

This means that even if the accession name is modified, it will still retain all the 508 
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connections to other objects of the original entry. Germplasm can be further annotated 509 

with configurable properties from the Multi-Crop Passport Descriptors (MCPD) 510 

standards (Food and Agriculture Organization of the United Nations 2018) and BrAPI 511 

standards (Selby et al. 2019); these properties include ‘variety’, ‘donor’, ‘donor institute’, 512 

‘donor PUI’, ‘country of origin’, ‘institute code’, ‘institute name’, ‘notes’, ‘accession 513 

number’, and ‘PUI’. Germplasm can be added to the database using the interactive list 514 

tool (see previous section) or an Excel file upload; the Excel file upload also allows for 515 

storing and updating of all attributes listed above. The first step in the initiation of a 516 

breeding program is to load relevant accessions into the database. This is critical, as 517 

the naming of accessions is often not uniform between breeding programs and the 518 

community at large. In some cases, a single name can refer to several different 519 

accessions or a single accession may have many different names or synonyms, often 520 

the result of historical transcription error or case inconsistency. Before the first upload it 521 

is therefore essential to define a standard unique name and set of possible synonyms 522 

for each accession. Though Breedbase allows for synonyms of accession names, they 523 

should also be unique. It is best practice to use synonyms only to find accessions and 524 

not when performing routine tasks with the database during the breeding 525 

process. Whenever new accession names are encountered, Breedbase provides a 526 

workflow to compare new names to all existing accessions in the database. In this 527 

workflow, a user can consolidate synonyms, for instance to add ‘Tx 303’ as a synonym 528 

of ‘TX303’. 529 

 530 

After initial accession upload, it is often necessary to add more accessions, increasing 531 

the chance of generating duplicated accessions in the database, or other upload issues. 532 

As is the case with synonyms, many of these problems result from poorly defined 533 

accession identifiers with capitalization inconsistencies and special characters such as 534 
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slashes, dots, dashes, underlines, and spaces. Although we recommend avoiding such 535 

special characters, especially in primary identifiers, it is not always feasible, notably with 536 

legacy data. To ease upload and tracking of such cases, Breedbase has a fuzzy search 537 

(also called approximate string matching search) component, enabling an accurate 538 

quality control of existing similar germplasm names in the database.  539 

 540 

Phenotyping Trials 541 

Phenotyping trials are a core activity of plant breeding programs, and must be carefully 542 

designed. Trial designs can either be generated directly in Breedbase using the 543 

integrated, comprehensive trial design tool or uploaded using Excel files formatted with 544 

a Breedbase-provided template. Trial metadata fields include breeding program, 545 

location, name, trial type, year, plot dimensions, field size, and trial design type. 546 

Supported statistical trial design types currently include alpha lattice, lattice, augmented, 547 

split plot, partially replicated, and Wescott designs. Designs should also include the 548 

ordinal row and column positions of each plot as it is planted in the field, so Breedbase 549 

allows this information to be added either during or after design storage. Once a trial 550 

design is finalized, it is stored in the Breedbase schema. Within Breedbase, a field trial 551 

links phenotypic observations to the experimental layout under a specific statistical 552 

design. 553 

 554 

Row crops usually use the concept of plot as the minimal entity for data collection, but 555 

many specialty crops (i.e., vegetables) require data collection on a per plant or per 556 

tissue basis. Breedbase allows plant- and tissue-level entry creation for each plot in a 557 

trial, resulting in database entries and identifiers at each level, which can also be 558 

encoded in barcode labels for data collection. 559 
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Crossing 560 

To collect data from crosses, Breedbase requires the creation of a top-level crossing 561 

experiment; the crossing experiment is defined with a unique name, a breeding 562 

program, a location, a year, and a description. The individual crosses performed are 563 

then stored under the crossing experiment and defined by a cross unique id, parents, 564 

and a cross type. The cross type can be one of the following: biparental, self, sib, open-565 

pollinated, bulk, bulk selfed, bulk and open-pollinated, doubled haploid, polycross, 566 

reciprocal, or multicross. Depending on the type of cross performed, different metadata 567 

must be provided; for example, in a biparental cross, information from both the male 568 

and female parent is required, whereas in an open-pollinated cross, information on only 569 

the female is required. In the case of an open-pollinated cross, a population name 570 

representing a group of male germplasm can be given as the male parent. In addition to 571 

cross unique id, which captures specific details of each cross, users have the option to 572 

group crosses having the same parental genotypes via family name for downstream 573 

progeny analysis. 574 

 575 

Breedbase tracks parental information from crosses in two ways: (1) through the 576 

accession names of the female and male parents, allowing for simple ancestry tracking 577 

of AxB pedigrees for the progeny from a cross. When a cross is created in Breedbase, 578 

the pedigree between progeny and parental germplasm is automatically created as well. 579 

This first form of parental tracking is applied in all cases when a cross is created in 580 

Breedbase. (2) through the plot or plant names of the male and female parents. The plot 581 

or plant names of the parents are related to the field trial in which they are planted, as is 582 

described in the above field trial section. This approach allows detailed tracking of 583 

female and male parents used in crossing, but is optional in Breedbase because of the 584 

difficulty in recording this information in many cases. 585 
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 586 

Recording information on parental plots is facilitated by mobile data collection platforms. 587 

Of note are customized Open Data Kit (ODK) Android applications, such as BTract and 588 

the PhenoApps app Intercross. BTract assigns and prints a unique cross barcode label 589 

after scanning barcodes to track the precise male and female plots or plants involved in 590 

the pollination. Through ODK data synchronization, the cross information can be 591 

uploaded into Breedbase. Intercross can be used to scan parental barcodes and 592 

associate a unique cross id to the performed cross. The output from Intercross can also 593 

be uploaded directly into Breedbase. 594 

 595 

In crossing experiments that include evaluation of crosses, Breedbase can store 596 

annotations regarding properties of the cross. Default properties include pollination 597 

date, tag number, number of flowers, number of bags, number of fruits, and number of 598 

seeds; however, these properties are set in the configuration file for the Breedbase 599 

instance, allowing researchers flexibility in defining these terms. Breedbase also 600 

supports tracking of tissue culture samples.  601 

 602 

Crosses can be created individually using an interactive interface on Breedbase or can 603 

be uploaded in bulk using an Excel spreadsheet by providing cross unique ids, cross 604 

types, and parents involved. Once each cross unique id is saved in Breedbase, 605 

additional data can be added or uploaded using the cross unique id as an identifier. 606 

Progeny of the cross can be saved as new germplasm in the database, automatically 607 

creating pedigrees for the new germplasm. 608 

 609 

Genotyping Data 610 

  611 
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High-density genotyping data are a complex data type that have become an important 612 

resource in modern breeding programs due to the advent of low-cost next-generation 613 

sequencing (NGS) and genotyping technologies (Thomson 2014). Breedbase offers 614 

simple laboratory information management functionalities from field tissue sampling to 615 

SNP data storage. Functions include tissue samples collection and tracking via plot 616 

barcodes and PCR plate formats (ie: 96 or 384 wells), genotyping protocol definition, 617 

data storage and subsequent analytics (Morales, Bauchet, et al. 2020; Tecle et al. 618 

2014). 619 

 620 

The primary means of organizing genotyping data between sequencing events is the 621 

‘genotyping protocol’ in Breedbase. A ‘genotyping protocol’ consists of a specific set of 622 

genotypic markers and records all metadata about how the genotypes were produced, 623 

including the reference genome and specifics about, analytical platform and related 624 

variant calling software. The ‘genotyping protocols’ can be grouped in Breedbase under 625 

a ‘genotyping project’ which displays all relevant genotyping data and provides an 626 

overview, which is especially useful for very active genotyping programs. 627 

 628 

Multiple genotyping technologies can be stored in Breedbase from low density 629 

genotyping  (ie: Kompetitive allele-specific PCR,KASP) to high density genotyping such 630 

as Genotyping-by-sequencing (GBS) or DArT-seq (Elshire et al. 2011; Semagn et al. 631 

2014; Kilian et al. 2012). The preferred method for uploading high-density genotyping 632 

data to Breedbase is through variant call format (VCF) files. VCF provides for compact 633 

representation of genotypic scores for large numbers of samples and markers (Danecek 634 

et al. 2011). PostgreSQL non-relational functionalities allow Breedbase to store high-635 

density genotyping data in JavaScript Object Notation (JSON) structures within the 636 

larger relational database schema (“ISO/IEC TR 19075-6:2017” 2018). Breedbase 637 
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particularly relies on the binary JSON (JSONb) data type for compressed data storage 638 

and faster retrieval (Morales, Bauchet, et al. 2020). 639 

  640 

Genotyping data can be queried alongside relationally stored phenotypic and 641 

experimental information for analyses, including computation of a genomic relationship 642 

matrix (GRM) for user specified germplasm and computation of a genome-wide 643 

association study (GWAS) for user specified germplasm and phenotypic traits 644 

(VanRaden 2008). Queries spanning specific markers or marker sets and experimental 645 

information can be readily constructed. Genotyping data results can be downloaded as 646 

VCF files from the Search Wizard web-interface. The genotyping data are also used in 647 

the Genomic Selection tool, solGS, to predict GEBVs of genotyped lines. 648 

Authentication and Authorization 649 

During breeding processes, a potentially large number of people will need to access the 650 

database to download, upload, modify or delete data. This requires a fine-tuned layer of 651 

authentication and authorization management in the database. Breedbase requires a 652 

user to login for most functionalities (authentication). Every user account is associated 653 

with “roles” that determine what the user will be allowed to do in the system 654 

(authorization). Currently, there are three major roles: user, submitter and curator. The 655 

user role allows read-only access. With the submitter role, a user can upload data, and 656 

can modify or delete data that they themselves uploaded. The curator role allows a user 657 

to modify any type of data. In addition, every breeding program in the database has a 658 

corresponding role that controls authorization over specific breeding program activities, 659 

such as creating and uploading trial data.  660 

 661 
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Cassavabase, the flagship Breedbase database 662 

Cassavabase (https://cassavabase.org/) is the breeding database for the NextGen 663 

Cassava project (https://nextgencassava.org/). The NextGen Cassava partners, IITA 664 

(Ibadan, Nigeria), NRCRI (Umudike, Nigeria), NaCRRI (Namulonge, Uganda), TARI 665 

(Ukiriguru, Tanzania), Embrapa (Cruz das Almas, Brazil) and CIAT (Cali, Colombia) use 666 

Cassavabase for their breeding programs, starting as early as 2014. To date, 667 

Cassavabase has accumulated an immense amount of cassava breeding data (Figure 668 

1c), consisting of information on more than 500,000 cassava accessions, characterized 669 

by over 19 million phenotypic measurements in over 4,000 trials, and nearly 35,000 670 

genotyping experiments. This shows that the Breedbase system can scale to fairly large 671 

datasets and large, multi-institute and multi-national programs. 672 

Other instances of Breedbase 673 

In addition to Cassavabase, Breedbase has been deployed for various crops, notably 674 

for other Roots, Tuber and Banana (RTB) crops (https://rtbbase.org/) in the CGIAR: 675 

banana, (https://musabase.org/), sweetpotato (https://sweetpotatobase.org/) and yam 676 

(https://yambase.org/). In addition, several dozen Breedbase instances are currently 677 

deployed for other crops, such as rice (https://ricebase.org/), wheat 678 

(https://wheat.triticeaetoolbox.org), oat (https://oat.triticeaetoolbox.org), kelp 679 

(https://sugarkelpbase.org/), potato and maize. While the afore-mentioned projects use 680 

Breedbase for mainly breeding informatics purposes, other Breedbase instances focus 681 

on genomics. These include SGN (https://solgenomics.net/, (Fernandez-Pozo, Menda, 682 

et al. 2015), which focuses on tomato and other Solanaceae, fern 683 

(https://fernabase.org/, (Li et al. 2018), Erysimum (https://erysimum.org/, (Züst et al. 684 

2020)) and milkweed (https://milkweedbase.org/). In addition, a Breedbase instance has 685 

been deployed to characterize a tritrophic vector-borne disease system, the citrus 686 

greening disease (https://citrusgreening.org/) (Saha et al. 2017). An instance named 687 
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ImageBreed has been deployed for high-throughput imaging of maize and alfalfa field 688 

experiments (https://imagebreed.org/) (Morales, Kaczmar, et al. 2020). A number of 689 

academic labs and breeding companies also use Breedbase for data management 690 

within their programs. The Breeding Insight project (https://breedinginsight.org/), which 691 

creates breeding databases for USDA breeding programs, has also adopted the 692 

Breedbase system as a foundation for their breeding solutions. 693 

 694 

 695 

Box 1. 696 

 697 

Providing data management tools for small grains breeders: The Triticeae 698 

Toolbox adaptation of Breedbase 699 

 700 

As documented in this article, Breedbase provides many features for working breeding 701 

programs. The mission of The Triticeae Toolbox (T3) is to provide these features to a 702 

diverse audience of small grains breeding programs, by mandate in the United States, 703 

and by extension globally. 704 

 705 

The development of T3 is motivated by the belief that larger datasets provide greater 706 

power to identify genetic effects that are relevant to all breeders. Across wheat, oat, and 707 

barley, T3 stores 5,600 trials, comprising over 1,800,000 phenotypic data points on over 708 

30,000 lines with genotype data. From there, T3 seeks to provide breeders with results 709 

from analyses that tap into these data, in the hope that this will help breeders gain 710 

insights from their own data. The primary example we have in this area is a function to 711 

show marker trait associations identified among all trials submitted to T3 with adequate 712 

marker density, and meta-analyzed to determine robust associations across trials. The 713 
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next milestone on the roadmap of this function is to develop marker imputation 714 

functionality on T3 that will present genotype trials with uniform high-density marker 715 

scores, enabling meta-analysis over more trials. Indeed, marker data are a critical 716 

rationale for T3's mission: the database contains data on many lines that now are 717 

connected to current populations primarily through the marker alleles segregating. 718 

 719 

An important advantage of a web-based data management platform is that it links the 720 

data to the world of knowledge available on the web. T3 provides that connectivity by 721 

providing links to external information on markers, traits, and germplasm. Our primary 722 

partners in that regard are GrainGenes, Wheat Expression Browser, and the Wheat 723 

KnetMiner (Hassani-Pak et al. 2021). For example, a marker trait association close to a 724 

gene can be used to connect that trait to JBrowse (https://jbrowse.org/), to gene 725 

expression data (expVIP and EMBL-EBI) or to a knowledge network, KnetMiner. Traits 726 

in Breedbase are defined using collaborative ontologies crucial to forging these links: 727 

the ontologies represent agreements on naming traits and gene functions that enable 728 

meaningful bridges across knowledge platforms. 729 

 730 

The diversity of T3 users means that they will not operate together as an integrated 731 

breeding organization. Rather each breeding program submitting data to T3 will want 732 

data privacy and ease in determining what data becomes incorporated into the public 733 

production database. Currently, all data on the production database is available to 734 

anyone. We plan on implementing privacy settings specifying data visibility as public or 735 

restricted. Absent this feature, we now work with a few users by providing them with 736 

separate instances of T3 that are not publicly visible but can easily transmit datasets to 737 

the T3 production database when ready. 738 

 739 
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The wide range of T3 users also means that we expect them to have varying degrees of 740 

familiarity with the Breedbase platform. To allow users to test the addition and 741 

modification of datasets without modifying curated data by mistake, T3 has created 742 

sandbox instances for each crop. Users can freely upload data to the sandbox, ensure 743 

that the uploaded data added to the database is correct, and then easily publish the 744 

data to the production instance. A data curator checks the submitted data before adding 745 

it to the production database. The Breedbase system was crucial in establishing these 746 

features and reduced duplication of effort. 747 

 748 

 749 

 750 

Box 2. Usage Example 751 

 752 

Recently, Obgonna and colleagues leveraged legacy breeding data to investigate the 753 

genetic architecture of cyanide content in cassava, a key trait in food safety (Ogbonna 754 

et al. 2020). Authors performed a retrospective analysis, mining historical cyanide data 755 

from the African IITA breeding program (18 locations, 23 years and 393 trials) and 756 

Colombian CIAT (41 locations, 11 years and 155 trials) program from the Breedbase 757 

instance cassavabase.org. Recycling open source, standardized, breeding data in 758 

conjunction with novel genotypic data provided a high statistical power and allowed the 759 

detection of key loci controlling cassava root  cyanide content using GWAS. Such loci 760 

would otherwise have gone undetected, and was identified only because of the 761 

availability of the Breedbase digital ecosystem. 762 

 763 

 764 
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DISCUSSION 765 

Breeding is a complex process involving many different types of data, especially 766 

considering genome-based breeding methods at the current state of the art. Creating 767 

and maintaining breeding databases is therefore generally considered to be time-768 

consuming and expensive. Many large breeding companies maintain their own 769 

databases and software for managing breeding processes and selection, but this is not 770 

an option for smaller programs. The lack of bespoke databases is especially true in 771 

resource poor areas of the world, where the need for plant improvement is often the 772 

greatest. A free, user-driven and open source platform such as Breedbase that 773 

integrates a complete digital ecosystem for breeding will help close the gap for these 774 

programs as well as many smaller to mid-sized organizations. Still, Breedbase 775 

databases can scale significantly to large breeding programs with hundreds of 776 

thousands of accessions and millions of phenotypic scores. 777 

Integration in breeding programs 778 

Even the best breeding data management tools will fail to deliver if breeding programs 779 

do not use them or use them incorrectly. A significant effort is required to integrate a 780 

breeding database into the workflow of a breeding organization, as data management is 781 

central to the work of modern breeding programs but remains a shortcoming. Breeding 782 

activities need to be closely tracked; to ensure complete integration, all materials, 783 

operations, and operators need to be systematically recorded and reviewed throughout 784 

the process. This is important to enable analyses, improve data quality, and to identify 785 

sources of errors in real time and post hoc. 786 

 787 

It is important for breeding programs to work closely with groups that have significant 788 

experience in data management, which can also help the breeding programs to 789 

understand their needs, and to train staff better in the use of the database. In the RTB 790 
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breeding programs, we found it to be helpful to designate specific staff as Data 791 

Managers, who receive extensive database training. Data Managers have spent time at 792 

the BTI to learn more about the database developments, and can provide additional 793 

training and help on the ground in the breeding programs. They also provide timely 794 

feedback on the tools and features based on their first hand experiences, which is vital 795 

for the improvement of the database. We have put a significant effort in user training 796 

through in-person workshops, reciprocal visits, and training materials, such as a 797 

complete on-line manual, slideshows, and most recently a youtube channel with 798 

recorded workshops.  799 

 800 

In our experience, one of the bottlenecks in implementing a breeding database is the 801 

availability of standardized trait ontologies for the crop in question. Especially in larger 802 

projects, it can be difficult for all breeders to agree on a common ontology, including 803 

common sample preparation and measurement protocols, as well as measurement 804 

units. Without this standardization, a database loses much of its appeal as it becomes 805 

impossible to aggregate and reconcile  disparate data. This challenge cannot be 806 

understated as it is a major obstacle especially when phenotypic data is collected 807 

across different locations for a variety of crops and has to be stored in a single 808 

integrated system. We have focused on developing ontologies and common 809 

vocabularies to address this issue but it can be harder than expected, as there are often 810 

diverging and strong opinions on these matters. In addition, breeding programs 811 

introduce new traits to be measured, for example, quality traits, and there needs to be a 812 

process to integrate such new terms into the ontology. Fortunately, the Crop Ontology 813 

project (Shrestha et al. 2012) has created trait ontologies for a wide range of crops, 814 

which we contribute to and many Breedbase instances rely on. Crop Ontology has also 815 
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defined processes for updating and developing the ontologies, which allows new traits 816 

and methods to be introduced to breeding programs with relative ease.  817 

Future developments 818 

Progress in the last few years in digital agriculture has been enormous and will continue 819 

to be so in the foreseeable future. New genotyping and  phenotyping technologies, such 820 

as near-infrared spectroscopy, are constantly being developed or improved. Breeding 821 

databases must co-evolve with the technological advances to remain relevant, requiring 822 

significant effort in refactoring and implementation. Systems that easily adapt to new 823 

technologies will have a distinct advantage; in terms of software development 824 

strategies, agile software development will be more efficient than older waterfall type 825 

models. Another area of improvement is that of algorithms and other aspects of 826 

methodology. With a strong connection to the R programming language, it is relatively 827 

easy to implement new algorithms in Breedbase, as they often require little modification 828 

from standalone scripts to work within Breedbase. At its core, Breedbase uses a 829 

relational database with integrated JSON data storage, which provides a healthy 830 

balance between highly structured, normalized data and flexibility. However, other 831 

systems, such as graph databases and highly parallelized solutions like Hadoop, or a 832 

combination thereof, are becoming popular and may be integrated into Breedbase in the 833 

future. 834 

 835 

All of the Breedbase code is open source and readily available on the code sharing site 836 

GitHub (https://github.com/solgenomics).  837 

 838 

Conclusions 839 

Breedbase provides a fully open-source, scalable and feature-rich breeding digital 840 

ecosystem that has been in use at the RTB crops breeding centers of the CGIAR for 841 
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many years, starting with the NextGen Cassava database, Cassavabase 842 

(https://cassavabase.org/). The system has now been adopted by various breeding 843 

programs including vegetable and grain crops and maintains an open and collaborative 844 

approach to software development, allowing database customization for each research 845 

community while sustaining a common framework. Our hope is that Breedbase, and the 846 

digital ecosystem that it provides, can contribute, in a small way, to solving the world's 847 

big problems with food scarcity and food quality, and thus contribute to improving 848 

subsistence farmers' lives around the world. 849 

Web Resources 850 

https://github.com/solgenomics/   Github repositories for Breedbase code 851 

https://hub.docker.com/r/breedbase/breedbase#  Docker image for Breedbase server 852 

https://breedbase.org/  Breedbase demo site 853 

https://cassavabase.org/  Cassavabase, the flagship Breedbase site 854 

https://musabase.org/  Breedbase site for banana breeding 855 

https://yambase.org/   Breedbase site for yam breeding 856 

https://sweetpotatobase.org/  Breedbase site for sweet potato breeding 857 

https://www.youtube.com/channel/UC3jrvvzGKKEHzOriDBgnj0A  YouTube channel for 858 

Breedbase 859 

 860 
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All code is available from Github (https://github.com/solgenomics) and docker hub 862 

(https://hub.docker.com/r/breedbase/breedbase#). 863 
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Figure 1a: Breedbase platform architecture.  1042 

User interface: 1043 

To offer a dynamic, highly interactive user interface, several Javascript libraries are 1044 

implemented including D3, JQuery and Bootstrap. RESTful APIs, including a full BrAPI 1045 

2.0 implementation, handle the communication between the front and back end, 1046 

allowing fast calculations without reloading the website. HTML5 for interactive graphical 1047 

display, allowing instant reorganisation of visual elements.The Bootstrap framework is 1048 

used for modern and dynamic page templating. 1049 

 1050 

Middleware layer: 1051 

A Perl software stack including Mason components to connect to the user interface, a 1052 

Catalyst a web application framework, Moose an object oriented perl library and 1053 

DBIX::Class an object-relational mapper to connect to SQL code. In addition, BrAPI 1054 

libraries are used. Finally a job cluster scheduler, Slurm is implemented to allocate 1055 

server resources and ensure scalability. 1056 

 1057 

Data source layer: 1058 

Breedbase operates on a relational database using Postgres. Postgres 12.0 offers “Big 1059 

data” solutions including parallel query execution and optimized binary javascript object 1060 

notation data type (JSON) handling. Binary JSON (JSONB) is a simple data structure 1061 

designed to be storage space and scan-speed efficient. In Breedbase, JSONB is used 1062 

in various data types including genotypic (marker) information. In addition to the 1063 

relational database a standard file system space is available for flat files. Finally, other 1064 

databases can communicate to a Breedbase instance to provide additional back-end for 1065 

marker data (ie: Genomic Open Source Informatic Initiative (GOBii)) or to exchange 1066 

germplasm information for example. 1067 
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  1068 

Figure 1b: Breedbase co-development process.  1069 

User-developers interactions are promoted using various media. Users have online 1070 

access to documentation (https://solgenomics.github.io/sgn/), video tutorials or through 1071 

onsite training. Software development goals are extensively discussed between 1072 

developers, data managers, breeders and other appropriate stakeholders. Agile 1073 

development allows short term product release. Suggested improvements, issues and 1074 

bugs discovered in Breedbase are submitted and tracked on the public GitHub issue 1075 

tracking software (https://github.com/). Software development progress is tracked using 1076 

a version control system and Docker releases. 1077 

 1078 

Figure 1c: Cassavabase, a breedbase instance: data content overview.  1079 

Cassavabase involves national and international breeding programs (22) from various 1080 

African and South American countries (15) and currently has 1131 registered users. 1081 

Cassavabase hosts various data types including high density and low density 1082 

genotyping assays (35,000), plot based phenotypic data points (near 15 million), images 1083 

from plants and plots from, trials (5107) and locations (435). 1084 

 1085 

 1086 

Figure 2: Screenshot of the “Search Wizard” interface, a central query function on 1087 

Breedbase. With the Search Wizard, the data in the database can be intersected by 1088 

dimensions, such as locations, years, breeding programs, and traits. For each 1089 

dimension, a number of elements can be selected. The individual selected dimensions 1090 

can be stored in lists, and the combined selections can be saved as a dataset. Both lists 1091 

and datasets can be used to feed data into various tools on Breedbase. 1092 
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