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Abstract

Bread wheat (Triticum aestivum L.) is one of humanity’s most important staple crops,
characterized by a large and complex genome with a high level of gene presence—
absence variation (PAV) between cultivars, hampering genomic approaches for crop
improvement. With the growing global population and the increasing impact of cli-
mate change on crop yield, there is an urgent need to apply genomic approaches to
accelerate wheat breeding. With recent advances in DNA sequencing technology, a
growing number of high-quality reference genomes are becoming available, reflect-
ing the genetic content of a diverse range of cultivars. However, information on the
presence or absence of genomic regions has been hard to visualize and interrogate
because of the size of these genomes and the lack of suitable bioinformatics tools.
To address this limitation, we have produced a wheat pangenome graph maintained
within an online database to facilitate interrogation and comparison of wheat cultivar
genomes. The database allows users to visualize regions of the pangenome to assess

PAV between bread wheat genomes.

1 | INTRODUCTION

Bread wheat (Triticum aestivum L.) is one of the most widely

Abbreviations: IWGSC, The International Wheat Genome Sequencing
Consortium; PAV, presence—absence variation.

grown crops, yet there is a significant challenge to increase
yield to meet the projected demands of a growing world
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population. With predictions of climate-change-related yield
losses ranging from 17 to 31% by the middle of the 21st cen-
tury (Obembe et al., 2021), improved genomics-based breed-
ing approaches are required to produce climate change-ready
wheat cultivars.

Wheat genomics has made rapid advances in recent years
with the first draft genome assembly produced in 2014
(The International Wheat Genome Sequencing Consortium
[TWGSC], 2014) based on the shotgun sequencing of isolated
chromosome arms (Berkman et al., 2011, 2012; Lai et al.,
2015). A first near-complete assembly of the ‘Chinese Spring’
was produced in 2017 (Zimin et al., 2017) with a final ref-
erence genome assembly available in 2018 (IWGSC, 2018).
This reference assembly was rapidly followed by assemblies
of 15 additional cultivars from global breeding programs
(Walkowiak et al., 2020).

The increasing availability of reference genome assemblies
made it clear that there is significant presence—absence vari-
ation (PAV) between individuals (Bayer et al., 2020; Golicz
et al., 2016, 2020; Hurgobin & Edwards, 2017). This insight
has led to the production of pangenomes that reflect the gene
content of a species rather than an individual (Bayer et al.,
2021; Franco et al., 2020; Golicz et al., 2016; Jensen et al.,
2020; Montenegro et al., 2017; Rijzaani et al., 2021; Ruperao
etal.,2021; Song et al., 2020; Zhao et al., 2020). Pangenomes
are now available for several plant species; the first bread
wheat pangenome representing the gene content of 16 bread
wheat cultivars was published in 2017 (Montenegro et al.,
2017). This wheat pangenome was assembled using an itera-
tive mapping approach, which efficiently identified new gene
space and called gene presence or absence between individ-
uals. This kind of pangenome is, however, limited in that the
physical location of the new gene space can be difficult to
determine with accuracy. With the availability of multiple
whole-genome references, this limitation may be addressed
through the production of a graph-based pangenome. Graph-
based pangenomes have recently become popular thanks to
the graph data structure, which can accurately represent the
physical locations of genomic and structural variants with
minimal reference bias with tools such as vg (Hickey et al.,
2020), seqwish (Garrison & Guarracino, 2022), minigraph
(Li et al., 2020), and PHG (Jensen et al., 2020) being suc-
cessfully applied to build variation, sequence, or haplotype
graphs.

A major limitation of pangenome graphs is that few tools
are available to visualize these complex graph structures.
Genome visualization tools, such as GBrowse (Donlin, 2009),
JBrowse2 (Buels et al., 2016), or Circos (Krzywinski et al.,
2009), are designed to display information relative to a lin-
ear reference genome, not a graph of several genomes, while
graph viewers, such as Bandage (Wick et al., 2015), or
pangenome viewers, such as ODGI (Guarracino et al., 2021),

Core Ideas

* Graph pangenomes represent more genomic vari-
ants than reference genomes.

* We present a wheat graph pangenome based on 16
public assemblies.

* We present Wheat Panache, an online visual repre-
sentation of this graph.

* Wheat Panache lets users search the graph for
presence—absence variants.

* We also distribute the graph preindexed for Giraffe
utilization.

focus on visualizing the graph itself but display little other
information such as genome annotations.

Panache is a recent pangenome visualization tool that can
process linearized assembly graphs and display shared regions
as a web-based dynamic heatmap (Durant et al., 2021).
Panache has so far only been applied to visualize PAV in the
banana (Musa acuminata Colla) pangenome (Rijzaani et al.,
2021) but has the potential to be expanded to other species
even for crop genomes as large as wheat. Here, we present
a graph pangenome representing 16 bread wheat cultivars
hosted within a public Wheat Panache database with a new
web-based browser for visualizing genomic regions across the
wheat pangenome along with the graph formatted for min-
imap2 (Li, 2018) and Giraffe (Jouni et al., 2021). This tool
offers researchers and breeders the ability to assess genome
variation between these cultivars, mining the diversity present
in this large and complex genome.

2 | MATERIALS AND METHODS

We used publicly available genome assemblies including 15
high-quality bread wheat genome assemblies (Walkowiak
et al., 2020) and the IWGSC v1 Chinese Spring assembly
(IWGSC, 2018) to assemble a graph using minigraph v0.14
(Li et al., 2020). To optimize assembly, we used k-mers that
appear <100 times (-f.1) for the graph assembly and assem-
bled the graph genome by genome starting with IWGSC vl
followed by alphabetical order of cultivar names and ending
with the spelt [Triticum aestivum L. subsp. spelta (L.) Thell.]
PI190962 assembly.

All assemblies were aligned with the final graph using min-
imap2 v2.18 (Li, 2018) and alignments were converted to
BED format. The main graph was linearized using gfatools
gfa2bed v0.4 with default parameters (https://github.com/Ih3/
gfatools/releases) and merged with all minimap2 alignments
using bedtools v2.30.0 multiinter (Quinlan & Hall, 2010). The
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(a) Bar chart showing the distribution of the size of all assembly graph segments (log scale). (b) Total size of unique segments per

cultivar in megabase pairs (Mbp). PI190962 is a line of species Triticum spelta, Chinese Spring is the reference cultivar of T. aestivum

resulting blocks were intersected with the IWGSC gene anno-
tation using bedtools v2.30.0 intersect.

The data was converted to Panache JSON format and a
Panache instance was set up to serve the data (Durant et al.,
2021). To make the display feasible on a regular worksta-
tion, we retained only blocks overlapping with Chinese Spring
genes and then merged adjacent blocks if they showed identi-
cal PAV behavior across all individuals.

3 | RESULTS AND DISCUSSION

3.1 | A wheat graph pangenome

We constructed a graph pangenome using 16 high-quality
wheat genome assemblies representing the global variation
of modern bread wheat cultivars. The assembled graph had
a total size of 15.8 Gbp compared with the founder genome
assembly sizes of 13.9-14.2 Gbp (Walkowiak et al., 2020).
After aligning all genomes back to the graph, these 15.8
Gbp were split up into 2,791,482 segments present in at
least one individual. The segments had an average size of
5.6 Mbp (median, 498 bp) ranging from 2 bp to 37.6 Mbp
(Figure la). Realignment of the 16 genome assemblies to
the graph revealed that out of the 2.7 million segments,
542,711 (19%) segments were present in all individuals (total
size, 10.2 Gbp (65%) ranging from 2 bp to 4.9 Mbp; aver-
age size, 19 Kbp) with the remaining 2,248,771 segments

(total size, 5.6 Gbp) being present in a median of eight
individuals with an average size of 2 Kbp (Supplemental
Figure 1). The 10,437 segments (0.4% of all segments) with
a total length of 19.9 Mbp (average length, 1.9 Kbp) were
not covered by any genome assembly during the realignment
step, probably because these segments were too small or too
repetitive.

Interestingly, the cultivar with the most unique segments
was the reference cultivar Chinese Spring, with 158,503 (7%)
of segments with a total size of 140.5 Mbp being only present
in Chinese Spring (Figure 1b). These 158,503 segments con-
tain 2,216 genes present only in the Chinese Spring reference
assembly. We searched for these genes in the IWGSC func-
tional annotation (IWGSC, 2018). We compared the 2,216
genes present only in Chinese Spring with the IWGSC func-
tional annotation and found genes known to be highly variable
such as transposable elements or transposable element candi-
dates (235 genes [10.6%]; P < .05 Chi-squared test) and dis-
ease resistance genes carrying an NB-ARC domain (PF00931,
107 [5%]; P < .05 Chi-squared test). These results indicate
that these genes have been lost in modern cultivars relative to
Chinese Spring.

This may be due to the genomic distance between Chinese
Spring and the other cultivars, consistent with previous obser-
vations (Montenegro et al., 2017), and reflecting Chinese
Spring’s age (collected around 1900) and its lack of agro-
nomic characters that were selected for in modern cultivars
(Sears & Miller, 1985). The distance between the Chinese
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FIGURE 2 Wheat Panache screenshot showing an Aegilops ventricosa introgression at the beginning of chromosome 2 in cultivars Stanley,

Jagger, Mace, and SY Mattis (Gao et al., 2021; Keilwagen et al., 2022). Black boxes were added to show the region missing in cultivars where the

introgression replaced parts of chromosome 2A. The graph assembly started with the IWGSC v1 assembly leading to linearized regions following

the same naming scheme as the IWGSC v1.0 assembly (chrlA_partl, chrlA_part2, chr2A_partl, ...

). CS, ‘Chinese Spring’. Shown here is the

beginning of the first part of chr2A. Black blocks are gene models. White regions correspond to regions that are present in the graph but contain no

genes

Spring assembly and the 15 other assemblies is also sup-
ported by 1.2 Gbp of the graph in 901,475 segments not being
present in Chinese Spring but in at least one other cultivar,
reflecting the complex history of introgressions in modern
bread wheat (Keilwagen et al., 2022; Walkowiak et al., 2020).
We aligned the IWGSC vl gene annotation for Chinese
Spring (IWGSC, 2018) back to the graph by intersecting the
linearized graph with gene positions. We found a position
in the graph for 110,790 (100%) genes confirming that the
graph assembly contains all gene models of the IWGSC
assembly.

We compared the wheat graph pangenome with the earlier
published iterative-mapping-based wheat pangenome (Mon-
tenegro et al., 2017); this wheat pangenome contains 51,460
(32%) genes lost in at least one individual and 109,071
(68%) genes present in all individuals. We intersected the
graph pangenome with the IWGSC annotation to count which
IWGSC genes are lost in at least one of the assemblies. Within
the 16 individuals, 47,454 (31%) genes are lost in at least one
individual and 104,270 (69%) genes are present in all indi-
viduals. Even though our graph pangenome contains differ-
ent accessions than the Montenegro et al. (2017) pangenome,
the wheat graph pangenome gene numbers are remarkably
similar, indicating general patterns of gene variation occur-

ring in both sets of cultivars relative to the Chinese Spring
reference.

3.2 | The Wheat Panache web portal

Using this graph, we built a web-based Panache instance
(Durant et al., 2021), allowing users to visualize regions or
genes of interest for presence or absence across the cho-
sen wheat cultivars. The webserver is online (http:/www.
appliedbioinformatics.com.au/wheat_panache).

Wheat Panache displays a linear version of the pangenome
graph subdivided into blocks based on the presence or absence
of the selected individuals. A block is defined to have no inter-
nal PAV and to contain at least one gene. Blocks are named
based on the pseudomolecule they originated in, and, as we
started the assembly with the IWGSC assembly, most blocks
(1,890,035 out of 2,791,483 blocks, 67%) are named after
their position in the IWGSC assembly.

The interface displays the linearized pangenome as a chain
of such graph segments with one horizontal track per cultivar
(Figure 2). Coordinates are based on the pangenome graph
assembly. Genes are represented as black dots above blocks,
and hovering over a gene reveals its coordinates within the
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assembly and exon structure. Three summary tracks below
the cultivar tracks show which blocks are core or variable
based on a user-definable threshold, how long the block is,
and how often the block is repeated within Panache. Users
can zoom into blocks or search for ‘hollow areas’ (areas of
consecutive absence based on a user-defined threshold) using
the Hollow Area Finder, which is a convenient way to auto-
matically focus on large PAV areas. Users can sort the cul-
tivars alphanumerically, by gene presence or absence status,
or by a phylogeny based on Mash v2.3 (Ondov et al., 2016).
The graph assembly displayed in Wheat Panache, including a
version preindexed for vg v1.37.0 Giraffe (Jouni et al., 2021)
is available online (https://doi.org/10.5281/zenodo.6085239)
(Bayer et al., 2022), allowing for downstream analyses of the
population graph.

In summary, we present the first wheat graph pangenome
assembly based on 16 cultivars with an online visual represen-
tation of the graph within the Panache visualization tool. The
graph assembly will be a valuable tool for wheat genomics
researchers looking for a more accurate reference assembly.
The web platform Panache allows users to interrogate this
graph and search for structural variants around regions of
interest. We plan to incorporate new wheat genome assem-
blies into Wheat Panache as they are being released and
to update the Wheat Panache instance as new versions of
Panache are being released.
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