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Abstract

Precision of medical image registration is very important in clinical diagnosis and

treatments. It is usually assessed by visual inspection or by referring to other methods

that require special expertise and extensive experience. In this study, we proposed a

novel automatic approach based on statistical theory to estimate confidence intervals

of the registration parameters, which allows the precision of registration results to be

objectively assessed.

Under the assumption of local linearity, statistical confidence intervals of model

fitting (regression) can be used to evaluate registration precision. Monte Carlo

simulations using the Hoffman brain phantom with various amounts of displacement,

noise and spatial filtering were conducted to evaluate the formula for estimating the

confidence intervals in 2D image registrations. Monte Carlo simulation results are

consistent with the calculated confidence intervals, and the agreement is applicable to

different amounts of translation, angular rotation and spatial smoothing. The

estimated parameter values fall within the predicted 90%, 95% and 99% confidence

intervals in most cases. The present results indicate that the use of statistical

confidence intervals can provide an objective assessment of individual image

registration results.
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1. Introduction

1.1 Medical Image Registration

Medical imaging is a vital part of a large number of applications in clinical setting.

The applications do not only limit to diagnosis setting but treatment planning, and

evaluation of surgical and radiotherapeutical procedures as well. The medical imaging

modalities can be divided into two categories — anatomical modalities and functional

modalities. Anatomical imaging modalities depict morphological structures. They

include, for example, computed tomography (CT), magnetic resonance (MR) and

ultrasound (US). Conversely, functional imaging modalities depict information on the

physiological functioning of the underlying anatomy. They include planar

scintigraphy, single-photon emission computed tomography (SPECT), and positron

emission tomography (PET).

It is of interest to scan the same subject using different imaging modalities for clinical

diagnosis. Due to the complementary nature of different imaging modalities, proper

integration of the data obtained from different scans is required. The integration

process that brings the modalities involved into spatial alignment is referred to as

image registration. In simple wording, image registration matches an image to

another usually of different modalities on the same subject through rigid

transformation, for instance, three-dimensional (3D) rotation and translation.

Image registration plays a major role in at least two types of applications - data fusion

and data comparison. In the former case, one takes advantage of the availability of

multiple instances of supposedly identical data. The registration of these instances
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with one another allows the extraction of common features, for example by averaging

or by more refined processes (Irani and Peleg, 1991). In the latter case, however, a

new problem arises as the registration process tries to align data that are possibly

dissimilar. This class of problem leads to robust registration methods using an internal

criterion that is not sensitive to outliers (Herbin et al., 1989; Chiang and Sullivan,

1993). After registration, the tasks usually proceed by the detection of dissimilar

regions given a statistically significant level of confidence.

A good example that demonstrates the use of registering different modalities is in the

area of epilepsy surgery. Patients may undergo various MR and CT for anatomical

reference, and fluorodeoxyglucose (FDG) PET studies for functional imaging.

Registration of the images obtained from any combination of the above modalities can

benefit the surgeon a lot in locating the foci and deciding whether surgical operations

can be done or not.

1.2 A Challenging Issue

Most of the medical image registration methods (Maurer and Fitzpatrick, 1993; van

den Elsen et al., 1993; Maintz and Viergever, 1998) minimise or maximise values of

certain cost functions to achieve the global optimised matching of the images. These

functions are usually the sum of squares of the distances between certain

homogeneous features in the two image sets. The sum of distances between

homogeneous point pairs of the two image sets (Evans et al., 1989), distances

between skin surfaces of CT, MR and PET images of the head in the "head-hat"

method (Pelizzari et al., 1989), the absolute difference between pixel values of PET



image and pixel values of image simulated by MR image (Lin et al., 1994), and the

ratio between pixel values and their means in the same tissue class (Woods et al.,

1993, Ardekani et al., 1995) are examples of these cost functions. However, most of

these cost functions do not directly reflect the distance between the actual and

estimated positions of targets — the target registration error (TRE). Most medical

registration applications require accuracy and precision assessment methods to justify

their results. Woods et al. (1998) used the so-called internal consistency measures to

replace limits on registration accuracy for MRI data. Almost all other registration

accuracy assessment methods fall into two broad categories: qualitative evaluations

by visual inspection and quantitative evaluation by reference to results from a gold

standard registration method. The former methods require special expertise and

extensive experience, while the latter methods require an extremely accurate gold

standard that cannot be easily achieved. Different methods may not always be

comparable to each other under identical criteria. Thus, it is desirable if we could

estimate statistical confidence intervals of the registration parameters, which allow the

precision of registration results to be objectively assessed.

A novel automatic method to estimate statistical confidence intervals of the resulting

registration parameters is proposed in this work. It is based on the assumption of local

linearity, which holds when the cost function is near the neighbourhood of the

minimum. The method allows the precision of registration results to be objectively

assessed for 2D and 3D images. We evaluate its performance by Monte Carlo

simulations.
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1.3 Organisation of this thesis

This thesis will be organised in the following manner. Chapter 1 (i.e. this chapter)

gives a general overview of this work. Chapter 2 presents the general background and

literature review of image registration. Chapter 3 presents the theory of the proposed

approach for the objective assessment of registration results using statistical

confidence interval and its application in 2D image registration. Chapter 4 extends the

proposed approach to 3D image registration. Chapter 5 summarises and concludes the

work present in this thesis.

1]



2. Image Registration — An Overview

Classification of image registration techniques has been formulated by van den Elsen

et al. (1993) and a considerably augmented and detailed discussion can be found

elsewhere (Maintz and Viergever, 1998). In this chapter, an overview of different

image registration methods and their natures are given. Basically, image registration

methods can be divided into two classes - image based and non—image-based. In the

following sections, we will discuss them in more detail.

2.1 Image-based Methods

Image-based registration can be divided into extrinsic, i.e. based on foreign objects

introduced into the imaged space, and intrinsic, i.e. based on the image information as

generated by the subjects.

2. 1.1 Extrinsic Registration

Extrinsic methods rely on artificial objects attached to the subjects. The objects are

designed to be well visible and detectable in all pertinent imaging modalities. The

registration of the acquired images is comparatively easy and fast and can usually be

automated since the registration parameters can often be computed explicitly without

the need for complicated optimisation algorithms. However the major drawback of

these methods are the prospective character must be made in the image acquisition

and often it involves the use of invasive markers for references. Although non-

invasive markers can be used, the registration results are less accurate. A commonly

used fiducial object is a stereotactic frame (Lunsford, 1988) that screwed to the

subject's outer skull table, a device which has been regarded as the gold standard for
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registration accuracy.

It is apparent that extrinsic methods cannot include subject-related image information,

the nature of the registration transformation is often restricted to rigid, i.e. rotations

and translations only. Because of such limitation and various other practical issues,

use of extrinsic 3D to 3D methods is largely restrained to brain and orthopedic

imaging (Simon et al., 1995; Ellis et al., 1996), although markers can be used in

projective imaging of any body area.

2.1.2 Intrinsic Registration

Intrinsic methods only rely on the image content generated from the subject.

Registration can be based on a limited set of identified salient points (points /

landmarks) on the alignment of segmented binary structures (regional / structural-

based), most commonly object surfaces, or directly onto measures computed from the

image grey values (voxel property-based).

2.1.2.1 Point / Landmark-based Methods

Using anatomical landmarks such as morphological salient or visible points identified

by the users (Evans et al., 1989), or points or curves located by automatic

segmentation algorithms. Landmark-based methods usually require subjectively

recognized landmark points, and, to achieve accurate registration by high dimensional

transforms, a large number of landmark point pairs are desirable. As a result, expertise

and experience is the fundamental factor deciding the precision of the registration

results. On the other hand, automatic segmentation usually cannot achieve high

13



precision due to lack of highly reliable segmentation method for medical images,

especially for low-resolution and non-anatomical images like PET.

Precision of landmark or point based methods is usually depending on fiducial

localization error (FLE), and evaluated by mentally comparison with other methods,

or by calculation of average FLE by simulations made on phantoms or previous

patients (Fitzpatrick et al., 1998).

2.1.2.2 Regional / Structural-based Methods

These methods register corresponding region pairs by segmenting of structures or

regions of human body, most of them are based on anatomical interpretations of the

structures. These parts extracted from both image modalities are then used as sole

input for the alignment procedures. The segmentation results are usually adjusted by

human experts, due to the limitations of segmentation algorithms and poor quality of

current CT, MR and PET images. The most famous example of the primitive methods

is the “head-hat” method introduced by Pelizari et al. (1989), this method is based on

the surface extracted from different image modalities of human head.

An obvious drawback of this kind of methods is that the registration accuracy is

limited to the accuracy of the segmentation process. Most of the regional/structural-

based methods are based on elastically deformation of structures from one image into

the same corresponding structures of the second images. The optimization criterion is

always locally defined and computed and the deformation is constrained by elastic

modeling constraints imposed onto the segmented curve or surface. Deformation
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curves often appear as snakes or active contours. Deformation methods are in theory

very well suited for inter-subject and atlas registration. They often need a good initial

position in order to converge properly, which is generally realized by rigid pre-

registration of the images involved. Also, they still suffer the in-accuracy of

segmentation methods.

2.1.2.3 Voxel Property-based Methods

Voxel property-based methods using the full image content are the most interesting

methods of current research. Theoretically, these are the most flexible of the

registration methods, since, unlike all other methods, they do not start by reducing the

grey-level image to relatively sparse extracted information, but use all of the available

information throughout the registration process. These methods have been pushing to

be used in clinical practice due to the increasing clinical call for accurate and

retrospective registration.

Principal axes and moment based methods compute image center of gravity and its

principal orientations from zeroth and first order moments. Registration is then

performed by aligning the center of gravity and the principal orientations (Alpert et

al., 1990). Examples of other full content based methods include: cross-correlation of

original images or extracted feature images (Junck et al., 1990); Fourier-domain-

based cross-correlation (Leclerc and Benchimol, 1987); histogram based methods

(Hill, 1993); mutual information (Colligon et al., 1995); zero crossing in difference

images (Venot et al., 1983); and absolute or squared intensity differences (Hoh et al.,

1993), etc.
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The methods having most important influence and having the potential to dominant

future research is variance minimization methods. They make use of full image

content of both images to be registered, utilize the anatomic information of pixels, and

at the mean times, focus on minimization of the difference (variance) between the two

image sets. These methods include minimization of variance of intensity ratios

(Woods et al., 1993, 1998) and minimization of variance of grey values within

segments (Ardekani et al., 1995).

The intensity ratio variance minimization algorithm calculates the ratio of one image

to the other on a voxel-by-voxel basis and then iteratively moves the images relative

to one another to minimize the variance of this ratio across voxels. The technique is

fully automated and is independent of the specific anatomic structures being imaged.

It is also retrospective, so that the head position can vary markedly from one image

set to another. The alignment technique is based on the idealized assumption that if

two images sets are accurately aligned, the value of any voxel in one image set is

related to the value of the corresponding voxel in the other image set by a single

multiplicative factor. If the image sets are misaligned, the multiplicative factor is no

longer constant but varies from voxel to voxel throughout the image. The alignment

algorithm systematically moves the two image sets relative to one another until this

voxel-to-voxel variation is minimized.

The method using grey value minimization within segments achieves registration by

optimizing the segmentation induced on the second image. For example, the head

contour is detected on the MR image using a gradient threshold method. The head
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region in the MR image is then segmented into a set of connected components using

K—means clustering algorithm. When the two image sets are registered, the

segmentation of the MR image indirectly generates a segmentation of the PET image.

The best registration parameters are calculated to be the one that optimizes the

segmentation induced on the PET image. This method is an improvement of the

method based on intensity ratio variance in the way that it utilizes anatomical

information of the image. It has the potential to achieve clinically satisfied quality

without user interaction and can be applied to a wide range of registration problems.

Further research can be applied to this direction by retrospective segmentation, based

on intermediate registration results, and by minimize the variance inside segmented

regions.

2.2 Non-image-based Methods

Registration of multimodal images can also be non-image-based. This seems

paradoxical but it is possible that if the imaging coordinate systems of the two

imaging modalities cross calibrated to each other in a certain extent. This requires the

scanners to be brought into the same physical location and the assumption that the

patient remains still between the acquisitions. These are prohibitive pre-requisites in

nearly all applications but they can be met in certain applications such as ultrasound

systems (Hata et al., 1994; Erbe et al., 1996), which can come as hand-held devices

that are equipped with a spatial localisation system. The ultrasound systems are easily

calibrated and can be used while the subject is immobilised on the CT, MR or

operating gantry. This technique of calibrated coordinate systems is also often used in

17



registering the position of surgical tools mounted on a robot arm to images.

2.3 Optimisation Methods for Registration

The parameters that made up for registration transformation can either be computed

directly from the available data, or searched for by finding an optimum of some

function defined on the parameter space. In the former case, the manner of

computation is completely determined by the paradigm. In the case of searching the

parameters in the parameter space, most registration methods are able to formulate the

paradigm in a standard mathematical function of the transformation parameters to be

optimised. This function attempts to quantify the similarity as dictated by the

paradigm between two images based on certain transformation. Such functions are

generally less complicated in monomodal registration applications since the similarity

is straightforward to be defined. Standard optimisation techniques can be used if the

similarity function is well behaved. Popular optimisation techniques include the

Powell's method (Powell, 1964), downhill simplex method (Nelder and Mead, 1965),

the Marquardt's method (Marquardt, 1963), and simulated annealing (Kirkpatrick et

al., 1983). These methods and their computer implementations are well documented

in Press et al. (1992).

18



3. Statistical Confidence Intervals —

Application to Assessment of 2D Image

Registration

In this chapter, a novel approach for the objective assessment of the registration

results is presented. Under the assumption of local linearity, statistical confidence

intervals of model fitting (regression) is used to evaluate registration precision. Monte

Carlo simulations using the Hoffman brain phantom with various amounts of

displacement, noise and spatial filtering were conducted to evaluate the formula for

estimating the confidence intervals in 2D image registrations.

3.1 Nonlinear Estimation and Confidence Interval

Image registration can be regarded as a nonlinear estimation problem for finding an

optimal set of transformation parameters in one set of image (function) that can best

fit another set of image (data) in some sense. For least-squares criterion, the cost

function to be minimised is given by:

. 2
ggfw) = |!I(9)-Ill (3.1)

where frepresents the cost function, I is the image to be_registered, 1(9) is an image

function that is used to register to I, 9 is a solution vector that yields minimumf, andp

is the number of parameters to be estimated. The parameters in 9 are dependent on the

registration problem. In this study, three parameters including translation in x and y

directions and rotation are to be estimated.
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For least square estimation methods, the cost function could be assumed to be linear

around the neighborhood of the current estimates as the cost function can be expanded

into a Taylor series about the current estimates 90 as (Draper, 1981):

N9) Hmong (9 —90) (3.2)

and the confidence intervals (or regions) of the parameter estimates can be calculated

using the following equation (Draper, 1981):

2

S

 

(G—GOY -Z(f')s -F(p,n—p,1—a) (3.3)
n - 1

where F is the F-test value of the corresponding confidence level, s2 is the residual

sum of squares (value of the registration cost function at the location of the estimated

parameters), 2(f') represents the sum of the derivatives of the reference model

image with respect to the transformation parameters, n is the number of data points,

and 0t is the level of significance.

3.2 Data and Monte Carlo Simulations

Monte Carlo studies to simulate 2D PET images and subsequent registrations of the

simulated images were conducted. The resulting distributions of the estimated

transformation parameters were used to assess the consistency of 90%, 95% and 99%

confidence intervals with the distributions in parameter space. Two-dimensional gray

matter and white matter sinograms of the segmented 2D Hoffman brain phantom

(Hoffman et al., 1991) were combined with the gray-to-white ratios of 2:1, 3:1 and

4:1 before reconstruction to see whether the discrepancies of the ratios in two images
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can affect the confidence intervals. Then, filtered back-projection reconstruction with

various filters (i.e., Hanning, Ramp, Butterworth (fifth order), Ham, Parzen and

Shepp-Logan filters) (all with cutoff at the Nyquist frequency) were employed to

reconstruct images of size 128x128. Various amounts of spatial displacements (i.e.,

rotations of 0.3, 0.8, 1.2 and 3.3 degrees, and translations of 0.16, 0.8, 1.6 and 2.4

mm) were introduced. Various levels of Poisson noise (i.e., total counts of 5x105,

1x106 and 2x106) were simulated. A Gaussian smoothing filter with a FWHM of 5

mm was applied to both sets of images before registration. Powell’s algorithm

(Powell, 1964) was used to optimize the parameter 0 in (3.1). This algorithm was

used because it has been found to be effective for image registration and is used by

many image co-registration programs. Furthermore, the confidence interval results

are not expected to be dependent on the particular algorithm used.

3.3 Effective Number of Independent Data Points

Since all the data points involved in the calculation of (3.3) should be statistically

independent from each other, and the data points in the images are correlated, the total

number of points in the image could not be used directly as n and the effective

number of independent data points needs to be estimated.

To determine the effective number of independent data points involved in the

estimation of confidence intervals, we first used one Monte Carlo simulation study

based on normal condition where there is no discrepancy in gray-to—white matter ratio.

A pair of images was tested with different values of n in order to determine the

optimum value of n that best fits (3.3) for 95% confidence interval in which we
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expected that there are about 5% of data points falling outside of it. The same number

n selected according to this simulation result was also found to be consistent for both

the 95% and 90% confidence levels. We have further investigated the validity of the

selected number n in various simulated conditions in other parts of the study.

3.4 Adjustments of the RSS

In cases of extreme noise conditions and large contrast discrepancies, the residual sum

of squares (RSS) consists of two parts: the systematic error and the error due to

statistical noise:

RSS = RSS + RSSsystem noise (3.4)

The contributing factors to the systematic error include the innate difference between

the two images, inappropriate registration method, and precision error of the program.

Such errors are independent of the initial displacements and noise. The second part of

the residual sum of squares is due to statistical noise. If the systematic error is

relatively large compared to the noise term, i.e., for cases with very low noise levels

and high gray—to-white ratio discrepancies, the estimated residual sum of squares

needs to be adjusted for systematic error.

Since the systematic component in the RSS is much less sensitive to the spatial

resolution of the images than the other component in (3.4), it can be estimated by

applying smoothing filters to both sets of images with relatively large FWHMs when

the parameters are found. By removing the systematic component, the resulting RSS

provides the estimation of the noise component in (3.4).
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3.5 Results and Discussion

3. 5. I The Number ofIndependent Data Points

To determine the actual number of independent data points, n, in the calculation of

(3.3) for the case of matched image contrast, the estimated value of n is plotted

against the average percentage of data points falling outside of the 90% and 95%

confidence intervals for every 100 realizations, as shown in Figure 3.1.
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Figure 3.1 Percentage of data falling outside of the 90% and 95% confidence

intervals as a function of the estimated number of independent data points in 2D
simulations. At n=768, the 90% curve has a value of 10.33 and the 95% curve has

a value of 6.0.

23



It can be seen that when n is chosen as 768, the percentage of data points falling ~

outside of the confidence intervals are 6 and 10.33 for the 95% and 90% confidence

intervals, which are close to the expected percentage of data points falling outside of

the corresponding confidence intervals. Hence, the effective number n is set to 768 for

all of the remaining calculations in this study.

3.5.2 Low Correlation Between Parameters

To illustrate the low correlation between the parameter estimates, the estimated

rotation and x-translation parameter distribution of a Monte Carlo simulation were

plotted in Figure 3.2. The 95% confidence region calculated based on (3.3) was also

shown. No strong inter-dependency of parameters is seen, as the axes of the elliptical

distribution are parallel to the coordinate axes (i.e., the ellipse is not rotated at an

angle with respect to the coordinate axes).
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Figure 3.2 Distribution of registration results in the parameter space together with the

calculated 95% confidence region. It shows that around 95% of the parameters distribute
in the confidence region in normal noise condition (total counts of 5x105). The x- and y-
axes represent the amount of translation (in mm) and rotation (in degree), respectively.

Approximately 95% of the result points fall in the region and no apparent correlation is
found between the two-parameter estimates.

3. 5. 3 Displacement Invariant

The accuracy of the confidence intervals was found to be invariant to displacements

as shown in Figure 3.3. For example, the percentages of data points falling outside of

95% confidence intervals are approximately constant (5%, 5.5%, 5% and 4.3%, for

various rotation angles). When larger ranges of spatial displacement and translation

(e.g. rotation of 10 degrees and translate of 5 mm) were used, the maximum percent

data points falling outside of the 95% confidence intervals was approximately 6%,

which is also close to what one would expect.
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Figure 3.3 Percentages of data points falling outside of the 90%, 95% and 99%
confidence intervals for various cases when the two sets of images to be
registered have different amounts of rotation or translation between them. (* Only

95% confidence interval data is available for 10-degree rotation and 0.5cm
translation)
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3.5.4 Different Reconstruction Filters

The confidence intervals obtained from the Monte Carlo simulation did not change

much when different reconstruction filters were used (Figure 3.4). The average

numbers of data points falling outside of the 95% confidence intervals are nearly

constant (4.3%, 4%, 4%, 4.5%, 5% and 4%).
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3.5.5 RSS Versus Spatial Smoothing

Gaussian smoothing filters with various FWHM kernels were applied prior to

registration. Two noise-free PET image sets with difl‘erent gray-white contrast in the

distributions were reconstructed and registered to study the systematic errors. Noise

was then added to these two sets of image data and the same registration process was

applied to study the shape of the RSS as a function of spatial smoothing. Both terms

in (3.4) responded to smoothing changes, but the RSS due to noise changes much

more rapidly than the RSS due to systematic errors at small FWHMs, but approaches

zero at large FWHMs (i.e., the RSS of the noisy case

noise-free case) (Figure 3.5).

gradually approaches that of the
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Figure 3.5 Responses of RSS and RSSsys to s atia1 smoothing for normal PET
image contrast condition (total counts of 5x10 ). The curve of the RSS for the

noisy case changes much faster than the curve of the noise-free case at low

FWHMs but the two curves are nearly equal at high FWHMs. Similar results are
found for various image contrast conditions.
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3.5. 6 Effects ofNoise Levels and Grey-to-White Ratio Discrepancies

Without adjustment for the systematic component of th_e RSS, the numbers of data

points falling outside the confidence intervals are not always constant at different

noise levels. The numbers of data points falling outside of the calculated confidence

increases for higher noise levels. At high noise levels (5x105 total counts), the average

percentage of data points falling outside of the 90% confidence interval is 11.78,

while at a low noise level (2x106 total counts), the average percentage of data points

falling outside of the 90% confidence interval is 8.27 (Figure 3.6). This implies that

when the noise level is low, the RSS is dominated by systematic errors, making the

estimated confidence intervals relatively larger than they should be.
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Figure 3.6 Percentages of data points falling outside of the confidence intervals

for difi‘erent levels of noise in the images to be registered. The numbers of outside

data points are inversely related to noise levels.
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When the ratios of the gray-to-white matters were not the same in the two images, the

confidence intervals calculated without adjustment for the systematic component of

the RSS did not always agree with simulation results. If discrepancies between gray

scale ratios in the two image sets are present, the calculated confidence intervals will

increase (Figure 3.7). This implies that when the RSS due to systematic error is large,

the estimated confidence intervals could be in error.
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Figure 3.7 Percentages of data points falling outside of the confidence intervals
for registration of images having difierent gray-to-white ratios and images having
the ratio of 4: 1. The munber is lower when the discrepancy is large.
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3. 5. 7 Effects ofRemoving the Systematic Errors

Figure 3.8 shows the percentage of data points falling outside of the confidence

intervals for different noise levels after the estimated systematic component of RSS

was removed before applying (3.4) as described in Section 3.4. Figure 3.9 shows the

results after removing the estimated systematic component of RSS but for different

gray-to-white matter ratio discrepancies in the image pairs. It can be seen that the

predicted confidence intervals again do not vary much for different image contrast

discrepancies.
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Figure 3.8 Percentages of data points falling outside of the confidence intervals
for different noise levels after adjustment of RSS for the systematic component.
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Figure 3.9 Percentages of data points falling outside of the confidence intervals

for different image contract discrepancies in the image pairs after adjustment of

RSS for the systematic component.
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3.6 Summary

We have shown in this chapter that for image co-registration, the confidence intervals

of the estimated transformation parameters can be calculated based on statistical

regression, and the results are consistent with the simulation results. Varying the

amount of displacement, reconstruction processes, noise levels, or tracer distributions

have little impact on the validity of the calculated confidence intervals. After adjusted

for systematic errors in the estimated residual sum of squares, confidence intervals

can be calculated accurately even for very high noise conditions and with large

distribution discrepancies between the two sets of images.

Since multi-modality registration can be viewed as intra—modality registration of one

image set with another one simulated from the other image modality, the method

proposed in the study is also expected to be applicable to multi-modality registration.

Hence, visual inspection and validations by experts are not necessary to assess the

precision of the registration results. The present results indicate that the use of

statistical confidence intervals has a high potential to be used to provide an automatic

and objective assessment of individual image registration result.
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4. Statistical Confidence Intervals —

Application to Assessment of 3D Image

Registration

In previous chapter, we proposed a novel automatic method to estimate confidence

intervals of the registration parameters and allow the precision of registration results

to be objectively assessed for 2-D images. However, most of the registration

applications are conducted in 3-D and the computational complexity of 3-D

registration is remarkably higher. In this work, we extend the proposed automatic

approach to 3-D cases and we evaluate its performance by Monte Carlo simulations.

4.1 Theory and Monte Carlo Simulations

The problem of image registration can be regarded as finding a set of transformation

parameters that gives an optimal fitting/matching of one set of image to the reference

image. For least-squares problem, the confidence intervals or regions can be

calculated using the following modified equation:

k1(9 ~90)2-Z (f')S (4.1)
((SZ- 5;, )/(k2(n-1))) -F(Psn- pal-a)

where F is a chosen F-test value of the corresponding confidence level, s2 is the

residual sum of squares (registration cost function) value at the location of the

estimated parameters, 5.3” is the systematic error present in 52-20") represents the sum

of the derivatives of the reference image to the transformation parameters. 9 and 60

are the parameters corresponding to the confidence level and the optimal parameters
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found by the registration procedure, respectively. The parameter k1 reflects the

difference in units between translation (pixel) and rotation (degree). k2 represents the

portion of independent data points in all of the data points available in the reference

image. The residual sum of squares (RSS) between two images consists of two parts:

the systematic error and the error due to statistical noise. Since the systematic

component in RSS is much less sensitive to spatial smoothing than the other

component, it can be estimated by applying Gaussian smoothing filters to both sets of

images with relatively larger FWHMs.

Monte Carlo studies to simulate 3D PET images and subsequent registrations of the

simulated images were conducted. The resultant distributions of the estimated

transformation parameters were used to assess the consistency of the 95% confidence

intervals with the distributions in parameter space. Three-dimensional grey matter and

white matter sinograms of the segmented 3D Hoffman brain phantom [Hoffman et al.

1991] were combined with the grey-to-white ratios of 2:1, 3:1 and 4:1 before

reconstruction to see whether the discrepancies of the ratios in two images can affect

the confidence intervals. Filtered back-projection reconstruction algorithm with

different filters (i.e., Hanning, Ramp, Butterworth, Ham, Parzen and Shepp-Logan

filters) was then employed to reconstruct images of size 128x128x128. Various

amounts of spatial displacements were introduced. Various levels of Poisson noise

(total counts of 5x105, 1x106 and 2x106 per slice) were simulated. A 3-D Gaussian

smoothing filter with a FWHM of 5 mm is applied to both sets of images before

registration. The Powell’s algorithm [Powel, 1964] was selected as the optimization

procedure.

4.2 Results

To determine the effective number of independent data points in the calculation of Eq.
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(4.1), we have drawn curves of the average numbers of data points falling outside of

the 95% confidence intervals for every 100 simulations. It shows that k2 should be

chosen as 4.7x10’4.

To illustrate the low correlation among the parameter estimates, the estimated rotation

and translation parameters of 100 simulations were plotted with the 95% confidence

region calculated based on Eq. (4.1). No strong inter-dependency of parameters is

seen and the displacement parameter estimates concentrate at the center of the

confidence region. The relative independence of the parameter estimates indicates that

the confidence intervals could be calculated without considering the covariance terms

and thus can be easily extended to higher dimensional parameter spaces.
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Figure 4.1: The calculated confidence intervals for rotation (in degree) and their

errors. X-axis: degree of rotation displacements. Y—axis: mean and variance of the

calculated confidence intervals.

36



 

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

 

0.275 0.315 0.416 0.785 0.875 2.38  
 

Figure 4.2: The calculated confidence intervals for translation (in pixel) and their

errors. X-axis: pixel of translational displacements. Y-axis: mean and variance of the

calculated confidence intervals.

The accuracy of the confidence intervals was found to be invariant to displacements

and reconstruction filters from the simulation results. The confidence intervals

obtained from the Monte Carlo simulations conform to the calculated intervals. The

calculated confidence intervals need less than 20% adjustment of their values, as

shown in Figures 4.1 and 4.2.
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5. Conclusions

5.1 Significance

We have shown in this thesis that for image co-registration, confidence intervals can

provide significant statistical information about the precision of results. The

confidence intervals of the estimated transformation parameters can be calculated

based on statistical regression, and the results are consistent with the simulation

results. Varying the amount of displacement, reconstruction processes, noise levels, or

tracer distributions have little impact on the validity of the calculated confidence

intervals. After adjusted for systematic errors in the estimated residual sum of squares,

confidence intervals can be calculated accurately even for very high noise conditions

and with large distribution discrepancies between the two sets of images.

5.2 Applications to multi—modality registration and

future works

Multi-modality image registration can be viewed as the process of finding the

optimised transformation parameters by comparing image of one modality and

another simulated image of another modality, or minimisation of pixel value variance

between the two modality images. Thus, the confidence interval proposed by this

thesis has the potential of being applied to multi-modality registration result

assessments.

Based on this assumption, future studies can be proposed on new registration method,

and the same precision analyse method can be applied the new method. Woods'

method minimises variance in histogram domain. The assumption is pixels having the

same gray value belong to the same tissue type, and, they will have similar gray
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values in another image modality. But pixels having same values in one image

modality do not necessarily belong to one same tissue. For example, pixels having

gray value of 100 may not all belong to white matter in PET. Brighter pixels in PET

may have darker values in MRI. As a consequence, the corresponding pixels in MRI

image in the same locations may have various values, depending on the tissue type of

those pixels. The variances of these pixels may not be minimised when registered.

So if we can register the two images sets base on local groups of pixels, ie, minimise

the variance inside each of these groups, that will overcome Woods problem. There

are plenty of methods to do local grouping, one of the simplest is to minimise the

variance within each local groups. The precision analyse method proposed in this

thesis is based on minimisation of variance, so it can by applied to both Woods

method and the proposed new registration method without significant modifications.
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