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Abstract

A multidimensional radiative transfer code is presented, using the short

characteristics scheme and the ALI method. The code uses the 2-level atom

formulation, appropriate for strong resonance lines, and can operate with

Cartesian, cylindrical and spherical coordinate systems, the last two assum-

ing rotational symmetry about the z-axis.

The emphasis of the code is on accurately treating large, three-dimensional

velocity fields on a large number of spatial points and with high angular res-

olution, in order to deal with complete objects.

To keep the code fast and reduce memory requirements, the code was

parallelized for use on a cluster of networked PCs by using a spatial paral-

lelization method, where the computational domain is divided spatially in

independent subdomains. It is shown that such a method is both efficient

and reliable.
The accuracy of the code was tested at length and was found to be ~ 5%

in most cases of interest.

A spectrum synthesis code is then presented, using the long character-

istics method and an Adaptive Mesh Refinement technique. The code can

accurately calculate the emergent line profile for a specified inclination angle

on a two-dimensional structure with a specified source function assuming

rotational symmetry, in cylindrical and spherical coordinate systems. The

accuracy of the code was determined to be of the order of 1%, given the

structure and line source function.

Both codes were then applied to the problem of rotation in expanding

stellar winds. The spectroscopic effects of rotation were found to be sig-

nificant for large inclination angles only, with the largest differences with

respect to non-rotating of ~ 20%. The direction of the radiation volume

force was found to change at most by a similar amount.

Finally, the codes were applied to calculate line profiles for the disks

in cataclysmic variables. The differences due to rotation were found to be

significant, with the cores of strong resonance lines brightened by about

50% for small inclination angles. The radiation force was not found to be

strongly affected.
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Chapter 1

Introduction

Radiative transfer is a fundamental ingredient of modern astronomy. The

reason for this is simple: the vast majority of the information that we receive

from astrophysical objects comes to us in the form of electromagnetic radi-

ation of some sort. Moreover, in many astrophysical objects, the structures

are not merely probed by the radiation field, they are in fact determined

by it. Understanding the interplay between the radiation field and the ma-

terial of the structure, can tell us something about the processes that are

important and the conditions under which they occur.

As many situations that are common in astrophysics cannot be recreated

in a laboratory, much of the information we derive from radiation necessarily

comes from analytical and numerical modeling of the object under consid-

eration. A rough analysis of this type is usually sufficient to understand

the basic configuration of an object, but to understand more precisely the

physical processes giving rise to the observed radiation field, one needs to

model the object in more detail.

Unfortunately, the radiative transfer equation, although seemingly sim-

ple, is a very complicated, non-linear equation for which few analytical

solutions exist. The numerical effort involved in solving it for even modest

problems is considerable, so that large scale detailed calculations have not

been possible until recent advances in computer technology and numerical

techniques.

For the most part, this increase in numerical capacity has been used to

increase the level of detail in the atomic data, needed to accurately calculate

the opacity, electron density and the temperature and density structures.

Currently, in 1 dimension (hereafter 1-D) it is possible to calculate the
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structure of an object by comparing it to the observed spectrum, with great

detail, including hundreds of atomic energy levels explicitly, and millions

of Spectral lines implicitly using opacity sampling (Anderson 1989), in a

matter of hours.

For the vast majority of astrophysical objects, the 1-D plane-parallel

approximation, where the object is considered to be infinite and flat, is a

good one, and very detailed calculations yielding information about the local

structure, gravity, chemical composition, and velocity fields are carried out

routinely. Many codes exist that can perform detailed calculations of plane—

parallel atmospheres involving many atomic species containing hundreds of

levels and millions of lines (for instance TLUSTY (Hubeny 1988), MULTI

(Carlsson 1986), PHOENIX (Hauschildt 1992), etc.).

Although few astrophysical objects are actually plane-parallel, there are

a few seemingly obviously multidimensional objects that can nonetheless be

approximated using a so-called 1%-D method, that is: a series of indepen-

dent 1-D plane-parallel solutions. For this to be possible, it is necessary that

the optical thickness of the object in the direction of the multidimensional

variations is much larger than the thickness of the atmosphere, such as in

optically thick accretion disks (Hubeny, 1990).

Many objects have been successfully modeled using the methods de-

scribed above, however, there are limits to their applicability, and there are

many objects that are not well described by the 1-D plane-parallel approxi-

mation. The most obvious class of objects for which this is true are objects

with geometrically extended regions that are neither optically very thick

nor thin. The way we interpret the radiation coming from these objects

is directly related to the level of realism we use to model them, including

the dimensionality of the model. In many cases, the extended nature of the

envelope can be appropriately treated by assuming spherical symmetry, in

which case the problem can still be treated in 1-D in a spherical coordinate

system, although the increase in numerical effort of this approach is appre-

ciable, as the angular dependence of the intensity requires significantly more

angular points than the 3 needed in the 1—D plane parallel approximation

(Chapman 1966).

Many of the difficulties in dealing with expanding envelopes, high ve-

locities, spherical geometry, etc., were solved in the 2-level atom formalism

in the 1970’s (Hummer & Rybicky 1971, Castor 1972, Mihalas, Kunanz

& Hummer 1975, and many others), enabeling the use of strong spectral

lines for diagnostic purposes in stellar winds, supernovae, etc.. Over the

years, more detail has been added, so that currently spherically symmet-

ric atmospheric structures including detailed multilevel atomic data can be
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accurately calculated (Hillier 1990, Koesterke 2002).

There are, however, situations, where the geometrical configuration sim-

ply does not allow for a 1-D treatment. It has been long known from obser-

vations of the line spectra of massive stars, that they rotate at a significant

fraction of their breakup rotation rate (Slettebak 1948). Even if their struc-

tures are assumed to be spherically symmetric (and this is not likely, see for

instance Tassoul 2000), the velocity field itself is not spherically symmetric

and warrants a multidimensional treatment of the radiation transfer. Addi-

tionally, the turbulent velocities in the extended outflows of massive stars,

needed to explain the observed line profiles, exceed the sound speed in the

wind (Mihalas 1964) and are therefore likely to result in multidimensional

density fluctuations due to shocks (Owocki & Puls 2002).

There are astrophysical objects emitting high energy radiation (X, 'y),

the thermal and geometrical properties of which can only be explained by

material being accreted onto a massive object, thus converting gravitational

energy into heat (see e.g. Frank, King & Raine 2002 or Hilditch 2001 for an

overview). As accretion processes are rarely spherically symmetric due to

conservation of angular momentum, the radiation fields of these flows can

only be modeled in 2 or 3 dimensions.

The unprecedented increase in the resolution and sensitivity of tele-

scopes, both earth— and space-based, over the last few decades, has lead

to an enormous increase in the level of detail in observations of extended

astrophysical structures, much of which cannot be properly analysed using

diagnostic tools based on a 1-D structure.

However, the increase in the numerical effort needed to go beyond l-D

are enormous and, apart from several isolated studies, have not been widely

used to calculate line profiles or atmospheric structures in detail.

1.1 Multidimensional radiative transfer

Multidimensional radiative transfer is not fundamentally different from 1-D

radiative transfer. Although the transfer equation itself is fundamentally 1-

D, what we classify as a 1-D problem in fact consists of 1 spatial, 1 angular

and 1 frequency dimension, and so in fact is 3-D. The large complications

in going from l-D to 2-D or 3-D is the increase in the required amount

of work. The step from 1~D to 2-D adds not only the spatial dimension,

but also an angular dimension, as rotational symmetry about the spatial

dimension, as is the case for 1-D, does no longer exist. In addition, the

convenient situation that, in 1-D plane-parallel, every ray intersecting one
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point also intersects all other points (or, for 1-D spherical coordinates, that

a subset of rays going through one gridpoint intersects a subset of all other

gridpoints), does not exist, so that the amount of work scales much less

favorably.

Monte—Carlo methods have been in existence for decades and may be

favoured due to its close resemblence to the actual process of radiation trans-

fer. It has been successfully applied to many optically thin astrophysical

problems and it remains the method of choice for high energy continuum

scattering. It is, however, not particularly well suited for problems with

large optical depths and strong resonance scattering, such as resonance line

formation in stellar outflows, due to the large number of scatterings per

photon (Hummer 1964), and the large number of photons needed to get the

statistical error down to an acceptable level.

Once the choice has been made to treat the radiation field as a contin-

uum, the main effort is to minimise the amount of work somehow, by solving

the radiation field in ways that scale as favorably as possible. Many codes

based on various methods have been developed (Mihalas, Auer 85 Mihalas,

1978; Adam, 1990; Auer, Fabiani Bendicho & Trujillo-Bueno 1994; Fabi-

ani Bendicho, ’I‘rujillo-Bueno & Auer, 1997; Papkalla 1996; Botnen 1997;

Busche & Hillier 2000; Dullemond & ’I‘urolla 2000; to name just a few), that

have been shown to be efficient and robust.

Although most of them were extensively tested, an extensive survey of

multidimensional effects in astrophysically realistic problems was in many

cases left for later, usually due to the limitations in numerical resources.

The potential applications for a multidimensional radiative transfer code

can be roughly divided in two types of applications: local and global.

For local applications, the main interest has been on the (time depen-

dent) modeling of complex 3-D structures, such as the convective cells ob-

served on the surface of late type stars like the sun. This is done by con-

sidering a small patch of a larger structure, and applying periodic bound-

ary conditions in the horizontal directions (see for instance Skartlien 2000,

Dorch & Nordlund 2001), with the aim of understanding line formation

and coronal heating found in stars with surface convection. Although the

multidimensional character of the problem is undeniable, the impact of this

on the radiation field has thus far proved to be limited, although Fabiano

(1998) reports important changes for individual lines.

For global applications, the situation looks less promising. Instead of

modeling a small patch of a periodic structure, the object needs to be mod-

eled as a whole, introducing a wide range of length scales in the problem.

Also the velocity fields involved can range from a few km s—1 to a significant
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fraction of the speed of light, so that great care has to be taken to treat

them accurately.

Most of the work on this type of objects has been done on disks in

1%-D (Hubeny 1990), to produce reliable diagnostic tools for reproducing

observations, and in 2—D, in conjunction with structures generated by MHD

codes (for instance Stone, Mihalas & Norman 1992), to understand the

nature of the turbulent viscosity in accretion disks, the formation of polar

outflows in accreting systems, and to investigate Non-LTE spectral line

formation in these structures (Proga, Kallman, Drew & Hartley 2002).

However, routinely applying a multidimensional radiative transfer code

as a diagnostic tool is far from being realised.

In the following, we will concentrate mainly on the global type of objects,

to be specific: massive stars and disks. The multidimensional character of

these objects is obvious, yet in many cases their properties have been studied

with 1-D or semi-l-D methods only. When, however, multidimensional

velocity fields are considered, as is manifestly appropriate for many of these

objects, the applicability of the 1-D methods needs to be reconsidered. To

deal with this type of object, a fast, efficient code is needed, capable of

treating large velocities accurately and able to deal with a large number of

points and angles, to resolve the entire object adequately, in a reasonable

amount of time.

1.2 Thesis outline

This thesis sets out to investigate multidimensional radiative transfer effects

in extended structures with large velocities. The aim is to investigate how

important multidimensional effects are in these structures and what the

qualitative nature is of the error made by the approximate 1-D methods

available.

In chapter 2, a new numerical code is described, that can solve the radia-

tive transfer equation in 2 dimensions in Cartesian, cylindrical and spherical

coordinate systems, the latter two under the assumption of rotational sym-

metry, while treating large velocity fields accurately. A new method of

parallelization is outlined and tested and the performance of this method is

tested on a cluster of networked PCs. The parallelized code is then tested

for accuracy by applying it to structures that are 1-D in one coordinate

system, but 2-D with rotational symmetry in another.

In chapter 3, a new code is described that can calculate the emergent

line profile from a 2-D structure with rotational symmetry using the long
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characteristics method. The resolution is automatically managed with an

adaptive mesh refinement technique, to ensure accurate results.

In chapter 4 the codes developed in chapters 2 and 3 are applied to the

astrophysically interesting problem of the effect of rotation on the radiation

field in a differentially rotating stellar wind. The difi'erences between the

emergent line profiles and the radiation forces between the non-rotating 1-D

and the rotating 2-D methods are discussed for several rotation rates and

line strengths.

In chapter 5 the codes developed in chapters 2 and 3 are used to calculate

the line profiles of some important diagnostic spectral lines in the disks of

cataclysmic variables on detailed LTE structures.

Finally, in chapter 6, some general results from the 2-D calculations are

discussed.
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Chapter 2

A Universal 2-D

Short-Characteristics

Scheme for Cartesian,

Spherical, and Cylindrical

Coordinate Systems

An efficient and robust 2-dimensional non-LTE radiation trans-

fer solver appropriate for line transfer in the equivalent-two-level

atom formalism was developed. The numerical method applies the

Accelerated Lambda Iteration technique, together with the short

characteristics scheme. The code presented here incorporates all

three standard geometries (Cartesian, cylindrical and spherical)

in a transparent way, while allowing for arbitrary (3-dimensional)

velocity fields. The geometry-specific parts of the radiative trans-

fer solver are modularized, so that a change of geometry is accom-

plished by simply setting the appropriate switch. The code was

parallelized in spatial sub-domains, and it was shown that such

a scheme is sufficiently robust. A number of tests of the perfor-

mance of the solver in all three geometries were performed and

the internal accuracy of the transfer solutions depending on the

spatial, angular, and frequency resolution is discussed.
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2.1 Introduction

In the past, astronomers were forced, by the lack of adequate computer

resources, to model observed objects by assuming a simple 1-dimensional

(1-D) geometry. For instance, stellar atmospheres were typically treated

as 1-D plane-parallel slabs, or, in some cases, as spherically symmetric me-

dia, which are still 1-D. Even circumstellar and interstellar structures were

routinely treated by approximating them by means of 1-D structures.

This simplification is quite understandable, and was justified in view

of the enormous complexity of modeling multidimensional systems by us-

ing numerical simulations. However, many structures in the Universe are

complex 3-D, highly dynamical structures, and should be treated as such.

Modeling using a simplified geometry of course served its role in the histor-

ical development of the field, but one has to always strive to achieve as high

a degree of realism as possible. One of the most important features which

determines the degree of realism is the adopted geometrical formulation

(dimensionality) of the problem.

Detailed 2-D and 3-D hydrodynamic simulations have now become more

routine in many branches of applied physics. The progress was spurred by

an enormous development of computer technology and fast and ingenious

numerical methods. However, in astrophysics we face an additional com-

plication which arises from the special role played by the radiation field.

For most astronomical objects (e.g., stellar atmospheres, accretion disks,

H II regions), radiation is not only a probe of the physical state, but also

an important constituent. Radiation in fact determines the structure of the

medium, yet the medium is analyzed only by this radiation. Modeling of

these astronomical objects has to be done using radiation hydrodynamics,

or, if the magnetic fields are important, radiation magneto hydrodynamics.

Several efficient and successful codes of this sort exist, one of them being

ZEUS-2D (Stone & Norman, 1992a,b; Stone, Mihalas, & Norman 1992).

Other codes are ALTAIR (Dykema, Klein, & Castor 1996) which can solve

the time—dependent non-LTE radiative transfer equation for a 2—D axisym-

metric geometry; radiation hydrodynamic codes of Kley (1989); Eggum,

Coroniti, & Katz (1987); Nordlund & Stein (1991 and references therein),

to name just a few.

Most of the above mentioned codes (with the exception of ALTAIR)

do not treat the radiation adequately. Rather, they employ various ap-

proximations to describe the radiation field, e.g., the diffusion approxima-

tion, flux-limiters, the escape probability approach. A review of various

approaches may be found in the textbook by Mihalas & Mihalas (1984).
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The ZEUS-2D code is able to treat the radiation transfer self-consistently,

by solving the radiative transfer equation simultaneously with the hydro-

dynamical equations. However, there are still significant approximations

involved. The most important one is that of local thermodynamic equilib-

rium (LTE), which assumes that the source function in the radiative transfer

equation is given by the Planck function.

We have thus begun a long-term study whose final goal is to develop

a methodology for self-consistent 3-D, non—LTE, radiation hydrodynamic

modeling. The most important intermediate goal is to develop an efficient

and robust radiation transfer solver which will calculate the emergent spec-

trum of already existing MHD models.

Such an effort is by no means new. Multi-dimensional radiative transfer

has a long history in astrophysics. We are interested here in numerical

methods that are able to provide essentially exact solutions under a wide

range of conditions, so we leave aside a vast literature on Monte Carlo

methods, as well as on the approximate methods based on the diffusion

approximation.

A review of early efforts together with an extensive bibliography is pre-

sented by Cram, Durrant, and Kneer (1977). One of the most important

papers in the early history of this field is that of Cannon (1970; see also

Cannon & Rees 1971), which aimed at essentially exact 2-D, NLTE ra-

diative transfer in a spectral line in the context of a two-level atom. The

method represents an extension of the well-known Feautrier (1964) method

to two dimensions; it is, however, computationally very demanding which

precludes its application to any realistic cases.

An important step further was taken by Mihalas, Auer, & Mihalas

(1978; hereafter referred to as MAM), who have introduced the method

of short characteristics. The authors used the Rybicki (1971) instead of

the Feautrier elimination technique, which led to a considerable saving of

computer time with respect to Cannon’s method. The MAM approach was

essentially an explicit scheme, and was based on difference approximations

of the second-order differential equations. Consequently, it was still compu—

tationally rather intensive. The use of the difference equation scheme was

motivated by a need to achieve a second-order accuracy of the scheme.

In an extremely important paper, Kunasz & Auer (1988) showed that

one can achieve a second-order accuracy by using a formulation of the short-

characteristics scheme based on a direct integration of the transfer equation

over a cell, by using a parabolic interpolation in the optical depth. Kunasz

& Auer (1988) considered a formal solution (i.e. a solution with a specified

source function), and demonstrated that their scheme yields a significantly



12
2.1 Introduction

faster numerical scheme for treating radiative transfer in several dimensions

than any other existing method. The method was subsequently extended by

Kunasz & Olson (1988) to treat 2-D NLTE transfer for 2-level atoms. They

were the first who applied the idea of Accelerated Lambda Iteration (ALI);

in the context of multi-D radiative transfer. More specifically, Kunasz &

Olson applied the idea of a diagonal (local) approximate operator, suggested

earlier in the context of 1-D transfer in a seminal paper by Olson, Auer, &

Buchler (1986).

A further improvement on the above approaches was developed by Auer

& Paletou (1994), who introduced monotonic upwind interpolations that

lead to an improved stability of the numerical scheme. The method was

further upgraded by Auer, Fabiani-Bendicho, & ’I‘rujillo-Bueno (1994) who

generalized the short-characteristics method to the astrophysically interest-

ing case of horizontal periodic boundary conditions and developed an effi-

cient multilevel 2-D code based on the MALI scheme of Rybicki & Hummer

(1991, 1992).

A different approach was adopted by Trujillo-Bueno & Kneer (1990),

based on an earlier paper by Kneer (1981), who consider a direct method for

solving 2-D and even 3-D radiative transfer in two-level atom problems. It

assumes that the horizontal fluctuations of the physical quantities are small

perturbations of the underlying, unperturbed 1-D atmosphere. This allows

one to linearize the transfer problem, and thus to end up with a system

of equations which is practically as easy to solve as a. 1-D problem. An

important point is that interpolations are not needed here because one only

needs to find the variations of the amplitude of the sinusoidally fluctuating

line source function with height.

All the above mentioned papers consider Cartesian geometry. This ge-

ometry is very convenient to formulate the short-characteristics scheme in.

However, in many cases of interest it is advantageous to consider other ge-

ometrical coordinates, that are dictated by the geometrical shape of the

objects (essentially spherical stars; cylindrical disks, etc.). Kunasz (quoted

e.g. by Steiner 1991) has developed a code, CYL2D, which uses ALI for solv-

ing the two-level atom problem in cylindrical coordinates. Unfortunately, a

description of the code may be found only as an internal report of the Los

Alamos National Laboratory. Recently, Dullemond & Turolla (2000) devel-

oped a short-characteristics scheme in spherical coordinates to treat axisym-

metric media. Similarly, Busche 8; Hillier (2000), and Koesterke, Hamann,

& Graefener (2001), developed a spherical short-characteristics scheme for

solving the transfer equation in spherically expanding atmospheres.

Finally, we mention that fully 3-D NLTE radiative transfer solvers are
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rapidly becoming available. Recently, Fabiani-Fendicho & and Trujillo-
Bueno (1999) generalized the short-characteristics formal solver of Auer,
Fabiani-Bendicho & 'I‘rujilo-Bueno (1994) to 3-D Cartesian coordinates, im-
posing horizontal periodic boundary conditions in two dimensions, with a
generalized and improved monotonic upwind interpolation strategy. They
incorporated not only the MALI scheme of Rybicky & and Hummer, but also
the MUGA (multilevel Gauss—Seidel) scheme of Trujillo-Bueno &. Fabiani-
Bendicho (1995) that provides a considerably higher convergence rate than
the approach based on a local approximate operator. Finally, Fabiani-
Bendicho, 'I‘rujillo-Bueno, 85 Auer (1997) developed a non-linear multigrid
method (which extends the previously developed linear multigrid method by
Steiner 1991), which is of particular interest for the solution of very complex
2—D and 3-D problems because its convergence rate does not deteriorate as
the grid size is reduced.

In this chapter, we describe our variant of the 2—D radiative transfer
solver. Analogously to most of the above-mentioned techniques, it uses the
two usual ingredients, the short-characteristics scheme together with the
ALI approach. Our solver differs from the previous ones essentially in two
respects; it is formulated in a universal way so that it can be used in all
three basic geometrical systems (Cartesian, cylindrical, and spherical), and
we have developed a parallel version of the code that uses a parallelization
over spatial sub-domains.

In this chapter we outline the general numerical scheme; it is thus in-
evitably largely technical. In § 2 we outline the general method of treating
multi-D radiative transfer using the ALI method; in § 3 we summarize the
numerical scheme for the formal solver of the radiative transfer, namely the
short-characteristics method. In § 4 we describe the implementation of the
method in the three standard coordinate systems, Cartesian, cylindrical,

and spherical. § 5 outlines a parallel implementation of the code, and § 6
presents a number of tests and illustrative examples of the actual radiative
transfer solutions.

2.2 Method

2.2.1 Non-LTE radiation transfer in several dimension

In this section we explain how we reduce the numerical complexity of the
problem to a manageable size without compromising the underlying physics.
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The general radiative transfer equation may be written as (Mihalas 1978)

(331,. n - v) I(x, n, u, t) = n<x. n. mt) — x(x. n, u, t) I(x. n. u. t). (2.1)

where I, x and n are the specific intensity of radiation and the absorption

and emission coefficients, respectively, which are functions of position, x,

direction of propagation, n, frequency, V, and time, t. In the following, we

will assume that any material time scales in the medium under study are

large compared to the photon free-flight time; we may then drop the time

derivative from the transfer equation. Along any given ray, the radiative

transfer equation is written simply as (dropping the explicit indication of

functional dependences)

52—: = —x(I — S), (2.2)

where s is a path length along the ray measured in the direction of propaga-

tion, and S E n/x is the source function. The problem is fully specified by

the knowledge of the absorption coefficient (monochromatic opacity) and

the source function.

In exact LTE, both the opacity and the source function are expressed as a

function of basic state parameters; the source function is equal to the Planck

function, (a function of the local temperature T only), while the opacity is a

function of T and one additional thermodynamic parameter, taken usually

as the electron density, ne. The solution of the transfer equation is then

almost trivial in 1-D, where the only problem is to devise an efficient and fast

numerical scheme for solving an ordinary differential equation; this scheme

may depend on the nature of boundary conditions in each specific case.

In a 2-D or 3-D case, the problem is non-trivial, because a given ray does

not have to intersect the grid points in which the hydrodynamic solution

was obtained, and therefore one has to be very careful about the necessary

interpolations.

In a general situation, where the approximation of LTE does not apply,

neither the opacity nor the source function are specified functions of the

state parameters. They generally depend on individual occupation num-

bers (populations) of energy levels of atoms/ions whose level transitions

contribute to the total opacity/emissivity at a given frequency. These are

in turn determined by the set of statistical equilibrium equations which,

through the radiative transition rates, depend on integrals over the radia-

tion field itself. The integrals are carried over both frequency and direction.
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In other words, one is faced with an intricately coupled problem. The cou-
pling is highly non-linear and, because of the very large mean free path of
photons compared to that of massive particles, highly non-local.

Let us take the case of an equivalent two-level atom. Its origins can
be traced back to the 1920s and 19308 in the work of Rosseland (1926),
Stromgren (1935) and Wooley (1934) in an attempt to explain the core
intensity of resonance lines. The approximation is fairly good for strong
resonance lines and it represents the simplest example of a non-LTE situa-
tion. The source function is given by (i.e. Mihalas 1978)

5(X) = [1 - 6(JON—(X) + 6(X) B(x)a (23)

where

j(x) = fem duf(dn/41r)I(1/,n,x)¢(u — un - v/c) , (2.4)

and where ¢(u) is the absorption profile coefficient, normalized so that
f0°° du ¢(u) = 1; v is the velocity vector of the absorbing atom, and e
and the Planck function B are the sink and the source terms. Notice that
in the strict two-level atom approximation, 6 is the destruction parameter,
c z Cut/(Cu; + A”), where Cu; is the collisional de-excitation rate and Au,
the spontaneous emission rate from upper level u to lower level I. In the
present context, we view 6 and B as given parameters of the problem.

2.2.2 Accelerated Lambda Iteration

The high degree of non-linearity and non-locality of the problem is the
reason why multidimensional, self-consistent, non-LTE radiation hydrody-
namics was viewed until recently as a virtually impossible task. The situa-
tion has however changed dramatically with the advent of the Accelerated
Lambda Iteration (ALI) method (for reviews, see Rybicki 1991; Hubeny
1992). This is essentially an application of the method of deferred correc-
tions (or operator splitting) long known in numerical analysis.

The formal solution of equation (2.1) may be written as

IV (11) = Av (n)[S], (25)

where A operates on the quantity within brackets. We also introduce an
integrated operator that gives the mean intensity, JV, and the frequency-
averaged mean intensity, J, viz.

J., = A45], where A, = f Au(n)(dn/47r), (2.6)
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and

.7 = A[S], where A=/Ay¢ydu, (2.7)

where we call A, and A the mean and frequency-averaged lambda operator,

respectively. In the following, we will omit the bar in A and simply write

A.
The ALI method consists of splitting the A Operator into two parts,

A = A* + (A — A*), where A* is an appropriately chosen approximate opera—

tor. Determination of the mean intensity is then understood as an iterative

process,
J(n+1) = A*[S(n+1)] + (A _ A*)[Sm], (2.8)

i.e. the approximate operator is acting on the new iterate of the source func-

tion, while the correction is applied on the previous (i.e. known) iterate of

the source function. The latter term is determined by a set of formal solu-

tions of the transfer equation, in other words solving the transfer equation

with fully specified source function, i.e. solving a single linear differential

equation at a time.

The ALI method is efficient if the A* operator incorporates all the es-

sential pr0perties of the exact A operator, but at the same time is easy

(and cheap!) to invert. As was rigorously demonstrated by Olson, Auer,

& Buchler (1986) in the case of 1-D radiation transfer, a nearly optimum

approximate operator is the diagonal (i.e. local) part of the exact A. In the

case of multidimensional radiative transfer, the choice of local approximate

operator is in fact more or less mandatory, as even a first order approxi-

mation of the non-local part of A results in inverting a large matrix. The

first application of the ALI technique to 2-D radiative transfer was done

by Kunasz 8: Olson (1988), using the short characteristics method for the

formal solution developed by Kunasz & Auer (1988). Later, the method

was upgraded by Auer & Paletou (1994) and Auer et al. (1994).

The crucial feature of the ALI method is that the coupled problem is

numerically reduced to a set of formal solutions of the transfer equations.

The coupling itself is treated iteratively. This makes the method ideally

suited for a modular application in any radiation hydrodynamic code. This

also shows that the formal solution routine is an absolutely crucial ingredient

of the whole approach, because the speed of an individual formal solution

determines the overall time consumption.

The A operator, which plays the central role in the theory, has in fact

never to be constructed explicitly; we may think of A operator as a pro—

cess of obtaining a formal solution of the transfer equation by any method.

However, since we take the approximate A* as the diagonal (i.e. local) part
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of the exact A, we have to be able to evaluate the local part explicitly. In

the 1-D case, a very efficient method was suggested by Rybicki & Hum—
mer (1991). A generalization of this idea to multidimensional transport was
outlined by Auer & Paletou (1994). It is based on the observation that

Add = A[6d,d:] , (2.9)

i.e. the diagonal part of A operator is equal to its action on the source
function having a non-zero value in only one single grid point. So, it can
be evaluated by the exactly same procedure as the formal solution, and the
actual coding may always be done in such a way that the evaluation of A* is
done along any individual formal solution with a negligible increase of the
total computer time.

The iteration proceeds as follows

(a) For a given 5"") (with the initial estimate 8“” = B, or some other
suitable value), we perform a formal solution of the transfer equation
by the method of short characteristics, described in the next section.
We obtain new values of the specific intensity I.,(n), and also new
values of the frequency- and angle-dependent elementary A*-operator.

(b) We calculate a new source function 5‘"3 using the new values of the
specific intensity (superscript FS stands for formal solution), using
equations (2.3) and (2.4), and also the integrated A*-operator — equa-
tions (2.6) and (2.7).

(c) We then calculate a new iterate of the source function, 5(n+1) from

st _ 5(n)
(n+1): (n) __

S S +1—(1—5)A*’ (2.10)

which follows from equations (2.3) and (2.8), and from the fact that
we are using a diagonal (local) A* -operator.

(d) Because the source function found in step (c) differs from that used
in step (a), we iterate steps (a) through (c) to convergence.

Finally, to increase the speed of convergence, we use the Ng acceleration
(Auer 1989, 1991), typically after every fourth iteration. The approach
consists of constructing an accelerated estimate of the source function based
on its values in several previous iterates.
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2.3 Short Characteristics

As we have shown in the previous section, the ALI method allows us to

reduce a general non-linear coupled problem essentially to a set of formal

solutions of the transfer equation. Therefore, the formal solution is in a

sense a critical component of the overall scheme, because it is done typically

thousands to millions of times, and thus has to be as efficient and fast as

possible.

2.3.1 Basic Principles

Let us first consider the formal solution of the radiative transfer equation

along a ray in the absence of velocities. The intensity Iy(s) at any position

3 on the ray is given by the formal solution

An,

I,,(s)=I,,(so)e—A*v + / S.(t)e—(ATv-t>dt, (2.11)
0

where u is the frequency, 3,, (t) the source function, and A73, is the optical

depth difference between so and s, viz.

8

Ar, = / xu(s’)ds' . (2.12)
80

The intensity at any point in space, angle, and frequency can be calculated

from equation (2.11), provided 3,, is known everywhere.

Equation (2.11) can be applied globally to the whole medium under in-

terest. That is, for every grid point one sets up a number of rays that

is sufficiently large to reproduce the angular variation of the specific in-

tensity with desired accuracy. Every ray connects the grid point with the

boundary, and the intensity in the given grid point is found from equation

(2.11). This method is known as the long characteristics method; it is quite

straightforward, but numerically very costly.

As shown by Mihalas, Auer, & Mihalas (1978 — MAM) and Kunasz

& Auer (1988), a significantly more efficient scheme is provided by the

short characteristics method. Essentially, the method consists ofterminating

each ray at the closest intersection with a cell boundary. One has thus to

solve the transfer equation (i.e., use equation 2.11) only within a given cell.

This method clearly involves less work, as the source function needs to be

evaluated only in a few points and the integration is simple.

We illustrate the method in the simple case of a Cartesian grid in Fig-

ure 2.1. To evaluate the radiation intensity in point 2, we need to know the
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D’

9-----------Q----------G----------9
5 § ' . Boundary point

I . Regular grid point----- -------A,G’=

G

  

1, Q Non-grid point  
Figure 2.1: Grid for a sweep over the grid from right to the left (fast loop)
and then from top to the bottom (slow loop); or from top to the bottom (fast
loop) and then from right to the left (slow loop).

specific intensity in point 1 (called the upwind end of the short character-
istic), after which equation (2.11) can be used, where the spatial variation
of the source function between the grid points is assumed to be represented
by a simple polynomial.

Since point 1 is in general not a grid point, the intensity needs to be
interpolated from values in the closest grid points. If we choose a linear
interpolation, the intensities in points B and C are sufficient. However,
a linear interpolation is generally not very accurate, so that a large num-
ber of spatial points would be required to achieve a sufficient accuracy. A
parabolic interpolation is therefore preferable. MAM used an interpolation
using the specific intensities in points B, C, and A. This leads to an implicit
scheme, because if we follow the prescription that intensities are evaluated
in the order which follows the direction of propagation of the radiation, the
intensity at point A is not yet known. In the present case, we use the in—
tensity in the next upwind point D, which leads to an explicit scheme, as
first suggested by Kunasz & Auer (1988).

Solving equation (2.11) requires the knowledge of the source function S
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and the opacity x at all points along the ray 1 —-) 2. As mentioned above,

they are assumed to be given by simple polynomials. A linear case would

require the knowledge of S and x at points 1 and 2 only; however such

a scheme is not sufficiently accurate. Therefore, we represent the source

function on the ray within the cell by a second-order Taylor expansion in 7‘

around point 2,

BS 1 62.3

S(T) = 32 + El, AT+ 5E3-

where subscript 2 indicates quantities in point 2, and AT is the optical

depth difference between the given point and point 2. The source function

S and the opacity X in points 1 and 3 need also to be interpolated from the

surrounding points to evaluate the appropriate derivatives.

Substituting this in equation (2.11), we obtain

I2 (A7)”, (2-13)

_ as 1 325

[2 = [1 6 A71“ + 1.0052 + MAE-I2 +w2§513|2, (2.14)

where

we = 1 — e‘A’“,2 ,

wl = we — A113 e-Ah'2 ,

wz = 2w1 — (A712)2 e‘Arl’2 ,

are the integration weights and A713 is the optical depth difference between

points 1 and 2. The derivatives of S in (2.13) can be approximated by 2nd-

order finite difference approximations,

 

 
 

13' = (52 - 53)(AT1,2/A7’2,3) — (52 — Si)(ATz,3/AT1,2) (2 15)

61' ’ AT1,2 + A7'2,3 , .

£62S| = ($3 - Sz)/A‘T2,3 + (31 — Sz)/AT1,2 (2 16)

2 6T2 2 A71; + A1153 , .

where A723 is the optical depth difference between points 2 and 3.

Equation (2.14) may also be written as

12 = Ii VAT” + 051 + 532 + 733 , (2-17)

where (cf. Kunasz & Auer 1988)

2 — y(AT2,3 + 2An,2)

a=w+

AT1,2(AT1,2 + A7‘23) ,
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= y(AT1,2 + A713) — z

AT1,2AT2,3
fl

_ z — yA‘Tlg

7 ‘ A72,3(A7-1,2 + Arm) ’

where

a: = 1 — exp(—A11,2),

y = A113 — a),

z = (A71,2)2 — 2y.

As follows from equation (2.9), the diagonal part of the (frequency-
and angle-dependent) elementary A*-operator is given by the coefficient fl.
The integrated A* operator corresponding to the mean intensity, JV, or
the frequency-averaged mean intensity, .7, is evaluated by integrating the
individual coefficients ,6 (that depend on frequency and angle) over angles
and frequencies, respectively.

Strictly speaking, in order to get the exact diagonal elements it does not
suffice to take only the ,6-coeflicient of equation (2.17). This is because if we
take a unit pulse at point 2, then the ensuing 11 intensity (which should be
taken into account in order to end up with the exact diagonal) is negative. If
this negative contribution is neglected, one ends up with an overestimation
of the diagonal elements which could potentially be numerically unstable
(we are indebted to the referee for pointing this out to us). Nevertheless,
in practice it turns out to be quite safe to neglect this negative contribu—
tion to the A*-operator. This may be because the contribution decreases
exponentially with increasing Arm, so that it is always small compared to
the other contributions in optically thick situations, where acceleration is
important. In fact, for A112 > 25, the contribution is generally smaller
than the numerical accuracy of a double precision floating point number.
Moreover, neglecting this contribution only introduces an error in a quan-
tity that amplifies corrections to the source function and not in the source
function itself, so that the final solution is not affected by it. We therefore
use the approximate operator given by the ,B-coefiicient.

The optical depth increments Arm and A113 are evaluated by integrat-
ing exp(lnx(s)) along the path 8, where 1n x(s) is a linear approximation
to the natural logarithm of the opacity along 3.

2.3.2 Treatment of Velocity Fields

In the previous section, we have assumed a static medium. This simplifies
the integration and interpolation processes considerably, since all quantities
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can be evaluated at a single frequency. However, in most actual situa-

tions velocities cannot be neglected. In principle, the short-characteristics

method described above may be used even in the presence of velocity fields.

However, if significant velocity gradients are present, it is quite possible that

a straightforward application of the method may miss a significant fraction

of the opacity at a given frequency. For instance, if the frequency under con-

sideration is just outside a strong Spectral line, and the velocity difference

between points 1 and 2 in Figure 2.1 is large enough that this frequency is

Doppler shifted to the other side of the line in point 1, a straightforward

interpolation may underestimate the opacity along the ray by several orders

of magnitude.

It is therefore important to implement an efficient method that will

detect these cases and treat velocities correctly, regardless of the magnitude

of the velocity gradient. A straightforward way to handle this problem is

to put additional, “subgrid”, points on the ray within the cell so that the

velocity difference between any two subgrid points is always small compared

to the thermal velocity. However, this means that we face additional spatial

interpolations to obtain values of S”, Xu, and the projected relative velocity,

at all the subgrid points on the ray. The costs of calculating the formal

solution thus increases considerably. Once the points are set up on the

ray and the values in the points are calculated, integration of all quantities

proceeds as in a 1-D problem.

2.4 Implementation: Description of the Code

The code presented in this paper aims to provide an eficient 2-dimensional,

two—level atom solver to be used as the central engine in a more sophis-

ticated Spectral synthesis context. It incorporates all three standard ge-

ometries (Cartesian, cylindrical and spherical) in a transparent way, while

allowing for arbitrary (3-dimensional) velocity fields, as required for general

applicability in realistic astrophysical situations.

2.4.1 General Approach

The code uses a locally-comoving—frame approach, where the velocity at the

grid point under consideration is taken to be zero. This is not equivalent

to adopting the standard comoving-frame formulation (e.g., Mihalas 1978).

In the present formulation, only the central point of a current short char-

acteristic (point 2 in Figure 2.1) is at rest; all the other points on the short

characteristic have generally a non-zero velocity.
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To ensure a correct treatment of all three standard geometries, we have

modularized the geometry-specific parts of the radiative transfer solver.

This has the distinct advantage that it takes no more than changing an

appropriate switch to change the geometry. To accomplish this, the calcu-

lations were split up in four separate stages; three of which involve geometry-

specific details:

1. Finding the point where a short characteristic intersects with a grid

boundary at the upwind side.

2. Setting a sampling of additional points along a short characteristic to

ensure an accurate representation of variations of all quantities along

the characteristic.

3. Calculating the intensity at the upwind end of the short character-

istic. In the case of curved coordinates with velocities, this involves

spatial as well as angular and frequency interpolations. This has to

be done as accurately as possible, because in optically thin situations

the accuracy of the code depends almost exclusively on the accuracy

with which the intensity is interpolated.

After these three steps, the problem is reduced to one-dimensional integra-

tions that are identical for all geometries.

Along the set of formal solutions that yield the specific intensity, an

elementary A* operator is also evaluated, and all the needed partial integrals

over frequencies and angles (to obtain the mean intensity, and the integrated

A*) are evaluated and stored. We note that in the case of an equivalent-

two-level atom with a background continuum, which is the case we consider

here, equations (2.6) and (2.7) for the integrated approximate A*-operator

have to be generalized to read

00 2

Il*(x) = f(dn/41r)/0‘ dVJTyssEE-Aflmnfi). (2.18)

where r is the ratio of the continuum opacity to the frequency-averaged line

opacity [see also equations (2.39) and (2.40)].

2.4.2 Cartesian Coordinates

Cartesian coordinates are by far the easiest to treat. Since photons (in the

absence of general relativistic effects) move along straight lines, this is also

a “natur ” coordinate system for the radiation. Nevertheless, this model,
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although being two-dimensional, is still not very realistic, as it implies an

infinitely stretched structure along one coordinate. This coordinate system

is included essentially for completeness and for testing purposes. There are

several existing codes for 2-D radiative transfer in planar geometry (MAM;

Kunasz & Auer 1988); we have performed a comparison of our results with

selected test cases computed by MAM — see §2.6.

However, Cartesian coordinates are very advantageous and useful in a

general 3-D geometry.

2.4.2.1 Finding the upwind endpoint

Finding the location of the first intersection of a short characteristic with

a cell boundary is trivial. Since all coordinates are flat, there are only two

possible cell boundaries to intersect for every quadrant of (p, as shown in

Figure 2.2, right panel; the angles are defined in the left panel of Figure 2.2.

Although the direction in which to spatially interpolate S”, Xu and I,,(<p, 0)

 

Figure 2.2: Left panel: Definition of angles in Cartesian coordinates.

Right panel: Different types of characteristics in Cartesian coordinates.

In a projection to the (32,2) plane, the type—1 characteristic corresponds to

1’ —) 2' characteristic in Figure 2.1; and analogously type 2 corresponds to

1 ——> 2.

to the upwind endpoint of the characteristic is dictated by the side with

which the characteristic intersects (i.e., the type of the characteristic), the

direction of computation across the grid is only dependent on the quadrant
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of (p. This means that the only requirement for the grid is to be rectangular,
but not necessarily regular.

2.4.2.2 Interpolating the intensity

Typically, the angles at which the intensities are evaluated are chosen glob-
ally; i.e., the angles at all grid points are the same, and thus there is no need
to interpolate in angle. However, in some applications it may be advanta-
geous to choose different sets of angle points for different grid points. In such
a case, it is necessary to interpolate in angles as well. In the present code, we

have implemented a possibility of having different sets of angles at different
grid points. However, setting angles by hand is extremely cumbersome; one
thus needs some kind of adaptive-mesh treatment to automatically select
angles. We postpone such a refinement to the future; in present applica-
tions we place angles where they are most likely needed based on simple
assumptions regarding the radiation field.

2.4.3 Cylindrical Coordinates

Many astronomical objects have an essentially axially-symmetric structure.
Typical examples are accretion disks, rotating stars, and other objects. For
these applications, a 3-D Cartesian rectangular grid can be used but is rather
inefficient, while 2—D cylindrical coordinates are more natural coordinates
to the problem.

We have therefore implemented a radiative transfer solver that applies
the method of short characteristics in cylindrical coordinates. This is non-
trivial because the characteristics projected on the (1',z) plane are not
straight lines. Although the material properties can still be adequately
represented by a 2-D rectangular grid, the radiative transfer has now a fully
3-D structure which has to be taken into account explicitly. An additional
complication is that the velocity vector can now have a meaningful, non-
negligible, third component. This requires that at every spatial point the
integral of the intensity over angles has to be carried out over the full (41r)
solid angle, and with a sufficient resolution to represent all possible intensity
variations accurately.

Additional complications arise from the curvature of the characteristics.
This in turn leads to complications when calculating the intensity at the
upwind end of the characteristic, as well as in determining the variation of
quantities along the characteristic. The angles that specify the direction
of a given characteristic at a given grid point may be quite different from
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the angles with which the characteristic intersects the cell boundary; this

feature makes the angular interpolations inevitable. Moreover, the value of

any quantity along a ray that is strongly curved when projected onto the

(r, 2) plane can be very different from that obtained by an interpolation

that assumes a straight line.

2.4.3.1 Curved Characteristics

The z—axis is assumed to be the axis of symmetry, the angle ¢ in the coor-

Z Z

  

 

     

 

 
 

     

 

Figure 2.3: Left panel: Projection of the (z,y,z) value of a straight line

on the (1:, 2) plane in Cartesian coordinates is still a straight line. In curved

coordinates the projection of the (r, <13, 2) value of a straight line on the (r, 2)

plane is curved. Right panel: Illustration of the tangent-ray method. The

solid lines are the rays in which radiative transfer is calculated in plane

geometry. By choosing a ray tangent to each cylinder going through any two

points on the original my, a substantial number of angles (dashed lines) can

be calculated in plane geometry. The intensity never needs to be interpolated

in angle.

dinate system is defined counter-clockwise going from 0 to 21r. There are

several ways to take into account the curvature of a characteristic. One

way is to use a “rotating-plane” method (e.g., Dullemond 8: Turolla 2000)

— see Figure 2.3, left panel. Consider a point moving along a straight line

in 3-D space. At every position of the point, construct a plane that goes

through the point and the z-axis; when the point moves, the plane rotates

about the z-axis. The curved characteristic is now a trajectory of the point

in this plane. However, when general velocity fields are assumed, a poly-

nomial approximation of several quantities has to be integrated along this
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path, resulting in very complicated expressions.

Another way to solve the problem is to use the “tangent-plane” method,
a 2-dimensional analogue of the tangent-ray method developed by Hummer
& Rybicky (1971) — see Figure 2.3, right panel. In this case, all charac-
teristics can be treated in plane geometry. The angular resolution is now
determined by the number of radial grid points between any point and the
z—axis. This results either in a poor angular resolution of the radiation in-
tensity close to the z-axis, or necessitates the use of many angles where only
a few angles would suffice. Furthermore, in the presence of velocities, the
angles are determined by the spatial distribution of grid points and may
thus be inappropriate for the problem at hand. Consequently, the most
efficient choice of angles is impossible without altering the spatial distribu-
tion of grid points. However, perhaps the most serious problem is that the

average radius of a ray tangent to a cylinder intersecting a larger cylinder is
considerably smaller than the average of the two radii. This means that if
the quantities along a tangent ray are assumed to vary from point to point

as a function of the distance on the ray in the same way they vary as a
function of radius, systematic interpolation errors are introduced.

Due to the above problems, there is no universally convenient way to
formulate the short characteristic scheme in cylindrical coordinates. A prac-
tical way is to choose a method that provides the best compromise between
computational speed and numerical accuracy. We have adopted the follow-
ing procedure: To avoid complicated path integrals, the short characteristics
are treated in Cartesian (flat) space, as in the tangent-ray method. In this
case, all expressions remain simple, and their evaluation is fast. However,

unlike the tangent-ray method, the angular sphere can be sampled arbitrar-

ily, so that angles can be placed where they are needed. To integrate along
the characteristics, we first evaluate the values of the curved coordinates for
all the subgrid points. Then, we interpolate the values of all needed quanti-
ties along the characteristic in the curved coordinates, where all quantities
are assumed to vary smoothly. This is essentially the same as integrating
along a curved characteristic, but the complicated path-integral is replaced
by a simple quadrature along a straight path.

2.4.3.2 Finding the Upwind Endpoint

Before proceeding to calculating the endpoint of a ray it is practical to
transform the angles as they are defined in the problem (Figure 2.4, left
panel), to angles as they are defined in the cylindrical coordinate system.
This can be most conveniently done by looking at Figure 2.4, right panel.
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Figure 2.4: Left panel: Definition of the “problem” angles in cylindri-

cal coordinates. Right panel: Transforming the “problem” angles to the

cylindrical coordinate angles (see the teat for explanation).

Expressing l/A in terms of (p and 0, and in terms of (15, we obtain

 

 

tanqb = fi = :Z’slz, (2.19)

so that tend?

(b = arctan (coscp) , (2.20)

and similarly

7 = arcsin(cos0sin (p) , (p = arctan (gig—g) , 0 = arcsin(cos'ysin 45) .

(2.21)
All angles can thus be easily expressed through one another.

The maximum length of the characteristic projected onto the x-y plane,

ARmax, can now easily be found for a given angle (45, 7) from the projection

of the situation on the m-y plane - see Figure 2.5 - left panel. By taking the

radius of arrival Ran, the radius of departure Rdep, the arrival angle (1), and

applying the cosine rule we get

Rdep = Rin- + ARE-Lax — ZRNIARmax COS(7|' — ¢) , (2.22)

so that ARMm may be expressed as

ARM = —Rarr cos¢ a: MR1“, — R3,, sin2 4». (2.23)
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Figure 2.5: Left panel: ARK“,x can be calculated from this projected sit-
uation in the :c-y plane. Right panel: Determining the minimum radius
reached by a characteristic.

For “inward” characteristics (0 5 ¢ 3 1r/2 and 31r/2 5 43 < 21r), the root is
always real as Ra" _<_ Rdep, and the positive root solution clearly needs to

be taken, as AR has to be positive. The negative root solution refers to the
downwind intersection point with the cylinder with R = Rdep.

For “outward” characteristics (7r/2 < d) < 37r/2), either both the positive
and negative root give positive solutions, or the root is imaginary as Rdep 3
Ram. | sin¢ |. If the root is real the characteristic reaches R = Rdep twice,
where the “plus” solution refers to the distance where the characteristic
enters, and the “minus” solution refers to the distance where it leaves the

interior of the cylinder with R = Rdep (the latter is the value of interest). If
the root is imaginary, the characteristic never reaches the radius R = Rdep

and in fact intersects the cylinder with R = R8,, — see Figure 2.5, right
panel. In that case the value of AR can be calculated from

ARmax = 2R“, cos(7r — ¢) = —2Ra,, cos¢, (2.24)

corresponding to case 3 in Figure 2.6. Once ARmax is known, Aznmx can

be calculated from

Azmu = AR,“x tan'y, (2.25)

corresponding to case 1 in Figure 2.6. In case the cell we are considering
has a vertical extent Az < Azmax, the ray is terminated before it reaches

ARmax and the length of the projection in the m-y plane can be calculated
from

ARmax = tam , (2.26)

corresponding to case 2 in Figure 2.6.
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Figure 2.6: Dz'fi'erent types of characteristics in cylindrical coordinates.

2.4.3.3 Integration along the Short Characteristic

Once the upwind endpoint is found, the rest of the process is straightfor-

ward. The middle position on the ray between the beginning and endpoints

is found by taking the average of the Cartesian coordinates of the two points.

From these the cylindrical coordinates of this point are then derived at which

the value of all quantities is subsequently calculated. All values except that

of the projected relative velocity are taken to be independent of 45 (because

of Cylindrical symmetry).

If the interpolated values of all quantities differ from the values derived

from interpolating between the points already on the ray by less than a small

fraction (typically 5%), the resolution is considered adequate. Otherwise,

another point is added to the ray between the new point and the previous

one and the process is repeated. In addition, it is mandatory to require that

the difference in the projected relative velocity between any two points on

the characteristic is significantly smaller than one thermal Doppler width,

otherwise, one can easily introduce large errors in the opacity, as explained

in § 2.3.2.

2.4.3.4 Interpolation of the Intensity

We now need to calculate the intensity at the upwind end of the charac-

teristic in order to evaluate the intensity from equation (2.11). The easiest

way to obtain this information is by interpolating the intensity from grid

points closest to the upwind end of the characteristic.
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In the case of cylindrical coordinates, the angle at which the character-
istic intersects the grid cell boundary is different from the angle at which
it intersects the point of origin. In the method presented here, this angle
generally differs from the angles at which the intensity is computed in the
spatial points between which we are going to interpolate. This means that
in order to guarantee that we can interpolate to the required angle, not only
the spatial order, but also the angular order in which the solution is carried

out, needs to be restricted.

Because the most convenient angles to treat the 2—D problem are not
necessarily convenient for the problem in 3-D, the definition of angles is
such that 0 S 50 < 21r, whereas —1r/2 5 9 g 7r/2 (see also Figure 2.4 - left
panel). Unfortunately this is not the best choice of angles for a cylindrical
coordinate system, because in general they both change. However, once we
transform our angles to a local cylindrical coordinate system by means of
equations (2.20) and (2.21), it becomes immediately clear — see Figure 2.7,
that only one angle, :13, changes. Moreover, (,6 changes in such a way that the

3’
ll ‘~

‘3’
>x

(I)  
Figure 2.7: Change of angle ¢ in cylindrical coordinates. 7 is in the r-z

plane only and therefore does not change.

angle at which we need to know the intensity is always smaller than the one
we are calculating. Indeed, by calculating the intensity in a fixed angular
order, the intensity is guaranteed to be calculated before it is needed and
there are no causality problems, such as those reported by Dullemond &
’I‘urolla (2000) for spherical geometry.

Even in case 3 in Figure 2.6, where interpolating the intensity in the
point of intersection involves intensities at the same spatial point we are
calculating the intensity at, we are guaranteed that the angle is smaller
than the one we are calculating, so that we can interpolate it from values
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that have been calculated previously, provided we include 0 = 1r/2.

The unavoidable result of the angular interpolations is increased numer-

ical diffusion of the intensity. Although the effects in astrophysical appli—

cations are generally speaking relatively small, in extreme situations the

effects on the solution can be clearly seen.

2.4.4 Spherical Coordinates

Spherical coordinates are obviously suitable for spherical or near-spherical

objects. However, the fact that two out of three coordinates are curved

makes this system rather awkward for solving the transfer problem. Since

the grid itself is now curved, special situations, like symmetric boundary

conditions, become more difficult to handle. The definition of the angles in

spherical coordinates was chosen to be local, i.e. the angle (cp, 0) = (0,0) is

set up to point radially inward — see Figure 2.8. This was found preferable

over a global definition adopted for the Cartesian and the cylindrical coor-

dinates, because most problems treated in this coordinate system have an

essentially radial radiation field.

Z

 

Figure 2.8: Definition of angles in spherical coordinates.

2.4.4.1 Finding the Upwind Endpoint

Finding the endpoint of a characteristic in spherical coordinates involves

not only the arrival angles, the size of the grid box, and the radii of the grid

points, it is now also necessary to consider the grid coordinate angle, (9 (in

the global coordinate system) of the grid points under consideration.
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To determine which of the grid cell boundaries the given characteristic
intersects is now more complicated than in cylindrical coordinates, as there
are now two curved coordinates instead of only one. This means that where
the angles (cp, 0 = 1r/2) only needed to be considered “inward” in cylindrical
coordinates, (,0 now needs to be considered in quadrant 4 for 6 > 0 and in

quadrant 1 for G < 0 due to the curvature of the second coordinate. Since
the code is currently limited to handle 6 > 0, all angles (90,0 = 7r/2) are
always considered to have (,0 in quadrant 4. The grid points (7', G = 7r/2)
are a special case that needs to be treated separately, as all characteristics
with angles (45,7) map onto the same angle for all values of (1) due to the
rotational symmetry around the z-axis.

 

Figure 2.9: Situation sketch for determining a.

The process of calculating the coordinates at which the short character-
istic terminates can be split in several steps. First a useful auxiliary angle,
a, is calculated. Given a generic situation as in Figure 2.9 with given values
of (p and 0, we can express A in terms of AR, (p and 0, viz.

A = AR cosOcosgo, (2.27)

and in terms of a,

A = AR cos(1r — a) = —AR cos(a) , (2.28)

so that

a = arccos(— cos (p cos 0) . (2.29)
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Analogously to the case of cylindrical coordinates, the spherical radial co-

ordinate, r, can now be calculated as a function of the length of the char-

acteristic, AR, using the cosine rule — see Figure 2.10,

r(AR) = $122 + R2,, — 2AR Rm. cosa

= \/AR2 + R3,, + 2ARR£m cosrpcosfl,

where only the positive root needs to be considered since 1' must be posi-

tive. Inversely we can solve for AR as a function of 1' which gives the two

 

 
(2.30)

 

Figure 2.10: Situation sketch for determining the global angle 9(AR).

solutions,

AR(r) = Rm cos a i Rf," cos2 a + r2 — R3”. (2.31)

It is now trivial to calculate the smallest positive value of AR(Rdep) as

in cylindrical coordinates, giving three different types of characteristics ac-

cording to where they originate.

To determine whether the characteristic is limited by a cell boundary in

{-3 is less trivial than to determine whether it is limited by a cell boundary

in 2, since merely determining that the 6-) value of the endpoint for a given

ARM,x is within the G) limits of the cell is not sufficient to exclude an earlier

intersection with a cell boundary, since 6 is a curved coordinate. For this

we need to calculate the smallest positive value of AR(®) as was necessary

for AR('r).

From Figure 2.10 we see that the z-coordinate of the endpoint of the

given characteristic as a function of AR is given by

2(AR) = 20 + dZ = Z0 + AR sin7, (2.32)
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where 7 is the angle between the ray and the :c-y plane, which is indeed equal
to the transformed angle 7 from (2.20) and (2.21), but with (p —-) (p + Gm,
where Gm is the grid coordinate angle of the grid point under consideration.

We can therefore write

z(AR) = Z0 + AR sin (cp + 69,") cos0. (2.33)

The coordinate angle 6(AR) as a function of AR can now be expressed
in terms of z(AR) from equation (2.33), and r(AR) [from equation (2.30)],

given 0, (p, Ran- and 63",

z(AR) _ Rm sin 6,“, + AR sin (cp + Our) c050
s' 6 AR = ._
m ( ) NAB) \/AR2 + R3,, + 2ARRaurlr coszpcosfi

, (2.34)

where Z0 is expressed in terms of the arrival radius, Rm, and the grid

coordinate angle, 03".

This can be rewritten into a quadratic equation for AR(G),

a AR2 + 2 b123,, AR + c123,, = 0 , (2.35)

where
a = sin2 (9 — cos2 08in2 (cp + Gm) .

b = cos0 [coscpsin2 G — sinGm sin ((p + Gm)] ,

c=sin2@—sin26m,

which has the explicit solution

 

AR(6) = R2" [—b :l: sin2 6 [(sin2 (pcos2 0m - ccos2 cp) cos2 0 + c]] .

(2.36)
For the characteristics limited by the value of 6 they arrive on (i.e.

the characteristics limited by the cell boundary 8 = Gm, case 3 and 4 in
Figure 2.11), this expression can be written as a linear equation for AR,

[sin2 6”, — cos2 0 sin2 (cp + Gard] AR+
2Rm [cos 0 cos (p sin2 Gut — cos 0 sinGm sin (y; + em” = 0:, , (237)

since the solution AR = 0 is trivial. This can be simplified to

_ 0i 9." ' 9."— 'n +93"AR—-2Rm°°“ Zinefi‘l‘c‘ifz’issvw’leSZ.) J (2.38)_ R cos 0 sin sin 26...-

_ sin1 6.“... —cos§ 0 sin”? <p+9url '
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Figure 2.11: Difl'erent types of characteristics in spherical coordinates.

Using equations (2.36) and (2.38), we can now calculate the smallest positive

AR(®deP), i.e. the smallest positive, nonzero value for AR limited by Odep

and Gm.

From the four solutions calculated above, the smallest, positive, nonzero

AR larger than 0 indicates the first upwind point of intersection with a

cell boundary. Given AR, cp and 0 it is now straightforward to calculate

the Cartesian displacements Am, Ag and A2 and from these the system

coordinates r, (9 and <I>.

In general, it is not only necessary to store the coordinate values of

the endpoint, but also the type of characteristic that it belongs to. This

information is vital in determining the grid points to be used in the spatial

interpolation of the intensity.

2.4.4.2 Interpolation of the Intensity

To calculate the angles at which we need to calculate the incoming intensity

at the end of the characteristic, we start by computing the transformed

angles ()3 and 7 from (2.20) and (2.21) with (p —) (p + 9m at the point of

arrival — see Figures 2.12 and 2.4, right. By rotating the grid—plane around

the z-axis to the departure angle (Pdep, (1: changes to ¢’ = ¢ — ‘bdep while 7

does not change. We can now convert back to local coordinates using (2.20)

and (2.21) and cp’ + Gdep —> (p’ to arrive at (ga’fl’), the desired local angles
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at which to interpolate the intensity. The angle (<p’,9’) obtained in this way

is strictly local, so that there are two ways to proceed.

The first one is to blindly use this angle to interpolate the intensity in

angle in the closest spatial points — see Figure 2.13, middle. This seems

 

Figure 2.12: Angle conversion from departure angles to arrival angles.

to be reasonable in spherical coordinates, as all quantities are assumed to

behave in a more or less “spherical” way. There is, however, no guarantee

that the radiation will behave similarly, as its natural coordinate system is

Cartesian. If the radiation field is strongly non-spherical, as in disk or jet

problems, this method is therefore not the best one to use. One advantage of

the “spherical” interpolation method is that it is never necessary to include

the intensity being calculated in the intensity interpolation, as long as the

angle (cp, 1r/2) is included in the angular grid. In that case the intensity on

an outward ray will always need to be computed at an inward angle if it

curves back on itself, so that there are no complications.

The second one is to interpolate in the Cartesian coordinates, by ad-

justing the angles in which to interpolate so that the angles in all spatial

points used for interpolation are parallel (see Figure 2.13, left). Although

for general radiation fields this may be the correct solution, for radiation

fields in central object problems, where the radiation field becomes more

radially peaked with distance from the central object, this method can give

very large interpolation errors. This can be easily understood, as in the

spherical coordinates the geometrical distance between grid points with the

same radius increases with radius. The distance between two parallel char-

acteristics going through neighboring grid points therefore also increases

with radius, so that there is always a radius where the separation between
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the two is larger than the size of the source object. This means the smooth

variation condition needed to interpolate accurately may break down when

one characteristic probes a source region but the next one does not. Al-

though the characteristics are short, and are thus unlikely to actually probe

the source region themselves, the properties of the radiation field are prop-

agated accurately enough for this problem to occur in many situations of

 

Figure 2.13: Interpolation problems in spherical geometry: Left: “Carte-

sian” interpolation; Middle: “spherical” interpolation; Right: “Carte-

sian” interpolation location error.

interest. This problem does not exist in rectangular coordinate systems

(Cartesian, cylindrical), since the coordinates do not converge and the an-

gular separation of two grid points as seen from the origin decreases with

distance to the origin.

Since in the spherical coordinate system some characteristics curve back

toward their point of origin (cases 3 and 4 in Figure 2.11), a “Cartesian”

interpolation introduces the possibility that the interpolation of the inten-

sity at the upwind endpoint involves the intensity we are trying to calculate

in the first place. To avoid undefined values in this process, the angular

order in which the intensities are calculated should be such that all inten-

sity values but the one that is being calculated are calculated before. If

this can be done, even in the case the intensity being calculated is needed

in the interpolation, it can still be solved explicitly. A close look at the

formal solution of the radiative transfer equation reveals that as the only

contribution of the intensity calculated is in Io, we can simply calculate the

contribution of this intensity to Io and bring that term to the left hand

side. The system is then fully determined and can be solved without any

problems, provided that r > 0. Although this method can result in poorly

determined intensities in optically thin regions, it does not require the Ex-

tended Short Characteristics method developed by Dullemond & Turolla

(2000). This means that we do not need an extra row of cells on the bound-

aries to complete the extended part of the characteristic, which is helpful
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when adopting a spatial parallelization. Since general velocities are allowed,

not only the angular order in which the intensities are calculated needs to be
fixed, also the frequency order may need to be restricted. This can actually
be helpful when interpolating, since many cases that needed to be treated
specially as outlined above without velocities can be considered “normally”
in the presence of velocities.

Another problem introduced by Cartesian interpolation is related to the
curvature of the grid lines 1' = const. As the sides of the grid cell are
curved, and the intensity is interpolated in a “flat” way, the location for
which the spatial interpolation returns a value (Figure 2.13, right, point a)
does not coincide with the intersection point of the characteristic with the
cell boundary (Figure 2.13, right, point b). This is not a real problem in
most cases, as the true intersection point will differ from the assumed one
only by a very small fraction of the length of the characteristic. However,
when the step size in radius becomes very small compared to the angular
separation of two radial grid lines, this effect can become important. In this

case it is necessary to use surface interpolations of four or more points to
calculate the intensity value in the correct location.

In general, the problem at hand dictates which one of these possibilities
to use, but there will be cases where a choice is difficult to make. A general
solution would involve tracing the origin of the intensity at a specific angle
and matching it up with intensity from the same region in the other spatial
points (for instance by means of a least squares comparison of the intensity
in the two points). From this, a dependence of the intensity on angle as
a function of grid coordinate can be estimated, and from that the correct
angles to interpolate at can be deduced.

2.5 Parallel Implementation

To enhance the performance of the code, it is desirable to parallelize it in
some way so that a large number of processors can be used to solve the
problem. The parallelization is not only useful as it increases the speed of
the solver, but becomes absolutely necessary for very large problems (many
spatial, frequency, and/or angular grid points), which would otherwise re-

quire excessive amounts of memory per processor.

However, there is no obvious way of splitting the tasks, as the radia-
tive transfer is non—local and all the grid points in principle communicate
with all other grid points. Furthermore, since multi-CPU supercomputers
are expensive, while networked PC clusters are becoming more commonly
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available, an ideal method of parallelization should not rely heavily on fast

communications. This last requirement limits the type of quantity that is

to be exchanged. Communicating any quantity that depends on all vari-

ables (space, angle, and frequency) will generate very large data streams,

and will thus dominate the total execution time. Therefore, communicating

appropriately selected integrated quantities is much more efficient

In this light, parallelizing1n frequency does not seem to be a practical

choice. To calculate the frequency-averaged mean intensity, J(x) for a

single line, the individual frequency-dependent mean intensities, J(x), need

to be collected in one or several central places, where the integration to

obtain J(x) is performed. This can easily result1n one or a few overloaded

processors that dominate the execution time. Furthermore, J(x) has then

to be redistributed among all processors. A similar problem occurs when

parallelizing in angle, because in order to compute J(x) we now need to

communicate Iy(x, n) from all processors to all other processors.

We are thus left with a spatial parallelization, which promises to reduce

the amount of communication because 1.,(x, n) needs to be communicated

only between spatial points that are shared by more than one processor. The

relatively low cost of communication is due to the fact that communication

is now only required between processors calculating spatially adjacent parts

of the problem, and is thus essentially local.

2.5.1 Spatial parallelization

Spatial parallelization1s done by dividing the total computational domain

in a number of sub-domains, each of which contains a significant number of

individual grid points — see Figure 2.14. The boundary of each sub-domain

is shared with another sub-domain, so that for all points the intensity across

the whole angular sphere can either be calculated or is specified by boundary

conditions. Sharing a. single point between two or more sub-domains was

chosen over having an extra row of inactive grid points around all sub-

domains, since the latter requires more memory.

Because communication among sub-domains is now local, the non-local

nature of the radiation field has to be taken into account iteratively. Starting

with an initial guess for the incoming intensities on these boundaries, a

formal solution in the sub-domains is calculated completely independently.

The resulting intensities in the boundary points are then communicated,

resulting in improved boundary conditions in the next formal solution.

Even though at first glance it may seem to be a very poor approxima-

tion to regard subproblems of a non-local problem as local, the method
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converges almost as fast as the fully non-local problem in a single com-

putational domain. This surprising behavior can be explained as follows.

Roughly speaking, in a typical astrophysical problem there are two fun-

damental regions, the source region, and an optically thin envelope. The

source region is usually optically thick, and thus the local approximation

holds. The radiation in the optically thin regions primarily originates in the

source region, and so only a few iterations are required to propagate the in-

formation through all the optically thin sub-domains once the source region

 

 

 

 

 

 

 

Figure 2.14: Schematic example of a division of the total domain into

sub-domains. The parts with different filling pattern indicate different sub-

domains.

has converged. This is illustrated in Figure 2.15, where the source fimction

for an expanding cylinder is plotted after progressively larger number of

iterations.

2.5.2 Acceleration

To accelerate the iteration process, the usual Ng acceleration is applied.

However, one needs to be careful about the boundaries of the sub-domains.

All the global features of the problem are essentially stored in the sub-

domain boundaries. Therefore, accelerating only the local source function

and not the boundary intensities would be inefficient, because in the next
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iteration all the non-locally dominated sub-domains would return to the

situation of the previous ALI iteration. Instead, it is most effective to

create acceleration coefficients not only from the convergence record of the

source function, but also from that of the boundary intensities.

As usual, there is a price to be paid. In this case the boundary inten-

sities need to be stored up to three iterations back to enable acceleration.

This increases the memory requirements considerably, especially if the sub-

domains that are used are very small so that a large fraction of the points

 

 
 

 

  

 
  
 

 

Figure 2.15: Example of the convergence of a solution on 6'4 sub-domains.

Four panels on the left display the source function as a surface plot, from left

to right and from top to bottom, starting at the upper left, for iterations 1,

4, 8, and 29 (final); the two panels on the right display the source function

as a 2-D plot after the 5th iteration (top), and 29th iteration (bottom).

The adopted physical model is a line formation in a two-level atom with

e = 10—4, B = 1, in an expanding cylinder in Cartesian coordinates — see

also § 2.6.1.4.

lie on the boundaries. Also, once the source function is determined, it is

not easily possible to resume the calculations from that point on, since

the matching boundary conditions are no longer available and need to be

calculated again.
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2.5.3 Efficiency

The efficiency of the method is defined here as the time it takes to calculate
the problem on a single CPU divided by N times the time it takes to
calculate it on N CPUs. This is almost never equal to 1, but it can be
close to 1 for well parallelized problems. In general, however, it depends

on N as well as on the problem under consideration. The efficiency of a
spatially parallelized radiative transfer solver must obviously be lower than
1, because not only the communication of boundary intensities takes extra
time, but also extra iterations are needed for global communication of the
radiation field.

To determine the efficiency as a function of N, an expanding cylinder
problem with 64 x 64 spatial points was solved on different numbers of com-
puters. It is instructive to differentiate between the time per iteration and
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Figure 2.16: Top left: Time per iteration as a function of the number of
sub-domains (or processors). Top right: Number of iterations needed to
converge the problem. Bottom left: Total time needed to solve the problem.
Bottom right: Efl‘iciency.

the total convergence time, as the two quantities describe different limita-
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tions of the method. Differences in the time per iteration are dominated by

the communication of the sub-domains, whereas the total execution time

is determined by both the communication, and a slower convergence of the

iteration method. The former is constant for all problems and can be im—

proved by increasing the communication speed, while the latter is inherent

to the method and can only be improved by either choosing different sub-

domains (i.e. different shape and/or location), or by reducing the number

of sub-domains.

In Figure 2.16, top left, the time per iteration is plotted as a function of

the number of processors. Since we use spatial parallelization, the number

of processors is equal to the number of spatial sub-domains. The dotted line

shows the theoretical limit of an efficiency of 1. The time per iteration as a

function of the number of sub-domains does not deviate strongly from the

1/N theoretical limit, which shows that the scheme of spatial parallelization

is a reasonably efficient one. This is also illustrated in Figure 2.16, top right,

which shows that the number of iterations needed to converge the problem is

not strongly affected by the number of sub-domains, at least up to 64 sub-

domains. After that it increases dramatically, indicating that the spatial

parallelization is not very efficient for a large number of sub-domains.

The number of iterations can be seen to give the largest contribution

to the total execution time. Figure 2.16, bottom left, shows that the time

to solve the problem with 256 sub-domains is only half of that with 64

sub-domains, even though the time per iteration is almost 4 times smaller.

The efficiency is shown in the bottom-left panel of Figure 2.16. It steadily

decreases from more than 0.9 for 4 sub-domains, to around 0.6 for 64 sub-

domains, after which it falls to 0.2 for 256 sub-domains.

2.6 Tests

Numerous tests were done to ensure that the code is working properly. Since

the code can operate with periodic boundary conditions, one-dimensional

situations can be treated with the two-dimensional code. The periodic

boundary conditions were implemented by iteratively updating the bound—

ary conditions on the periodic boundaries with the intensity values calcu-

lated in the previous iteration. Although this can converge very slowly

in optically thin situations, convergence is greatly helped by applying Ng

acceleration to the boundaries. A very convenient property of changing co-

ordinate systems is that certain problems that are one-dimensional in one

coordinate system become two-dimensional in another. This enables us to
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efficiently test the implementation of the code in all geometries.

To test the Cartesian code, simulating a 1-D plane-parallel situation

can be conveniently done by applying periodic boundary conditions to a

2-D slab with zero gradients in the periodic direction. The results can

then easily be compared with the results from an existing, well-tested 1-D

code. Furthermore, the case of an infinite cylinder, a true 2-D problem in

Cartesian coordinates, can be compared to the solution obtained with a

cylindrical 1-D solver.

The cylindrical code can then be tested by calculating the source func-

tion in an infinite cylinder, using both a 2-D solver (again, with periodic

boundary conditions in the z-direction), and with a 1-D cylindrical solver.

Similarly, a solution of a sphere, a true 2-D problem in cylindrical coordi-

nates, can be compared to that of a spherical 1-D solver.

The spherical code can be tested by using a sphere as the test structure,

and solve it by means of both the 2-D and 1-D solvers. Unfortunately there

is no obvious 2-D problem to be solved in spherical coordinates that is a

1-D problem in another coordinate system, so that the results cannot be

compared to a reliable 1-D solution.

For the tests, we consider a two-level atom source function with contin-

uum. The opacity is given by

x(% x, n) = x:(X)[¢(V, x, n) + 1‘(X)], (2-39)

with

1'(X) = Xc(x)/Xl(x) (2-40)

where x is the position, x; is the frequency-averaged line opacity, Xc is the

continuum opacity (assumed to be independent of frequency in the narrow

frequency range spanned by a line), and «75 is the normalized absorption

profile coefficient, f0°° ¢(u)du = 1.

If the frequency in the observer’s frame is denoted V, then the frequency

in the co-moving frame, in which a photon traveling in direction 11 was

emitted or absorbed, is V’ = 1/ — un - v(x, n). The profile coefficient thus

generally depends on the frequency, position, and direction.

For all the following tests, we assume a depth-independent Doppler pro-

file,

, 1 11’ — V 2

¢(V) 2‘m exp [— (fi) :| , (2.41)

where Aug = youth/c is the Doppler width, with nth being the thermal

velocity, and no the frequency of the line center. As usual, we will use a
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dimensionless frequency

a: = (11' — u0)/Aup , (2.42)

so the profile coefficient becomes

¢(-’v) = exp(—z2)/fi - (2-43)

Analogously, the velocity is expressed in units of the thermal velocity.

The total source function is given by

r — r
s: fiswma = fi—r[(1—6)J+GB]+ W5" (2.44)

where S; and Sc are the line and the continuum source function, respec-

tively (we drop here an explicit indication of a dependence of quantities on

frequency, position, and angle).

Although our formalism allows for a general positional dependence of

5(x), B(x), and v(x, n), we take here for simplicity constant e, chosen as a

free parameter of the problem, and constant B, set up for convenience to

B = 1. We also set the continuum source function 36 = B = 1 and when

we refer to an optical depth, we always mean the one corresponding to the

frequency-averaged line opacity,

d7 = x; ds, (2.45)

where d3 it the element of path length in a given direction.

When an angular resolution is quoted, this is always done in the form

N4, x N9, where N¢ is the total number of angles in the 4) direction but N9 is

the number of angles in one quadrant of 0 only, since the second quadrant of

0 does not need to be considered if the velocity vector has a zero tangential

component (e.g., in the case of no rotation). Also when angles are said to be

distributed homogeneously, this means that the values of <1: and 0 are each

distributed homogeneously, and thus the angular points projected onto a

sphere are not.

Finally, all test problems are converged until the maximum relative

change in the line source function per iteration anywhere on the grid is

less than 10'3.

2.6.1 Tests of the Cartesian Solver

We have performed the following six individual tests: (i) box test, i.e., a nu-

merical evaluation of the emergent radiation from a homogeneous Cartesian
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box, compared to the analytical solution; (ii) a horizontally-homogeneous
plane-parallel slab infinite in the x-direction (recall that in our 2-D solver

the y-direction is always infinite), solved by the 2-D solver (with periodic
boundary conditions in the x-direction), and by a 1-D plane-parallel solver;
(iii) a static cylinder, infinite in y-direction, solved by the 2-D Cartesian
solver and by a 1-D cylindrical solver; (iv) the same, but for radially ex-
panding cylinder; (1)) the same, but for a cylinder with a differential rotation
about the axis of symmetry; (vi) finally, a comparison with two test cases
from the Mihalas, Auer, & Mihalas (1978) study.

2.6.1.1 Box test

The simplest test of the Cartesian solver is a homogeneous-box test: we
assume opacity and the source function constant within the computational
box (set for convenience to unity, x = S = 1), so that one can easily obtain
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Figure 2.17: Relative error of the emergent intensity from a homogeneous
Cartesian boa: as a function of w. The lower and upper curves are for the
20 x 20 and 40 x 40 spatial grid points.

an analytical solution for the emergent mean intensity. Comparing the
analytical results with the numerical results using our 2—D Cartesian solver,
we can assess the magnitude of spatial and angular interpolation errors.

The result for a box with the total optical thickness in the x- and z-

direction set to r2 = T2 = 2, is displayed in Figure 2.17, where we plot
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the error of the numerical solution as a function of m, for two spatial res-

olutions, 20 x 20 and 40 x 40 spatial grid points. In both cases, we have

used 60 x 16 homogeneously distributed angles. The error in the emergent

mean intensity obviously depends on the number of a: and 2 grid points;

for 20 x 20 points the error reaches 3%, while for 40 x 40 points the max-

imum error decreases to about 1%. The solution for 40 x 40 spatial points

was also computed with 80 x 21 homogeneously distributed angles, giving

an essentially identical result to the solution with 60 x 16 homogeneously

distributed angles, indicating that the remaining error is primarily due to

the spatial resolution.

2.6.1.2 Comparison to a 1-D plane-parallel static solution

As mentioned above, one can test a 2-D solver by considering a problem

which is homogeneous in one of the two directions by using periodic bound-

ary conditions in this direction, and comparing the results to those from a

1-D solver.

We have considered the standard test case of the line formation of a

two-level atom with depth-independent Doppler profile in a static, plane-

parallel, horizontally homogeneous atmosphere; with B = 1, no continuum

(r = 0), and four values of e = 10'2,10‘4,10‘6, 10—8. In the 1-D code, we

have considered 500 depth points, equidistant in logT between T = 10‘5

and 1012. We have considered 8 angle points, with u = c080 given by the

abscissae of an 8-point Gaussian integration — see Abramowitz & Stegun

(1973), and 50 frequency points equidistantly spaced between —6 and +6

Doppler widths.

To discuss the accuracy of the angular quadrature in more detail it is

instructive to consider first how the angles in the 2-D case differ from those

in the 1-D situation.

It is customary to take only 3 angles in the 1-D case, and to use Gaussian

quadrature to integrate over angles, as the error in the result is typically

only about 1%. This is due to the fact that in static 1-D the points on the

grid actually represent infinite planes with angular size 21r. The angular

variation of the intensity within this 21r is therefore due only to angular

variation of the monochromatic optical depth Ty /p and is thus predictable.

It is therefore possible to choose quadrature points that always describe this

variation accurately, such as Gaussian quadrature points.

In a true 2—D problem with rotational symmetry, like a cylinder or a

sphere, the angular variation of the intensity can be due to variations of the

angular size of the source object as a function of distance to the object as
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Figure 2.18: Efl'ects of angular resolution. Left panel: Relative error of the

1-D plane-parallel solution with trapezoidal integration in angles for various
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solution (with periodic boundary conditions in one direction) for several

angular resolutions. In all cases, the reference (”exact”) solution is a 1-D

plane-parallel model with 8-point Gaussian quadrature in angles.
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Figure 2.19: Relative differences of the source function of a 1-D plane-

parallel problem computed by the 2-D Cartesian solver (with periodic bound-

ary conditions in one direction), and by the 1-D solver, are displayed as a

function of the line optical depth in the z-direction for several spatial reso-

lutions (with 65, 97, and 145 points in the z-direction, and 5 points in the

(it-direction). Clock-wise from the upper left panel: 6 = 10—8, 10—6, 10—2,

10-4.
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well as frequency, so that the best choice of angular points in general also

depends on location and frequency. An integration method that prescribes

which angles to use, such as Gaussian quadrature, is therefore not an obvious

choice, except when the problem at hand is close to a static 1-D situation,

in which case using a 2-D code to solve the problem is arguably not the

most efficient approach.

Trapezoidal integration thus seems to be the safest, the simplest, and the

most flexible way to integrate, as it allows for arbitrary placement of angles,

in accordance with the needs of the problem. However, such a choice implies

that one inevitably needs more angular points to achieve an accuracy similar

to that obtained with Gaussian quadrature. We have found that in the 1-D

case, the accuracy of the solution with trapezoidal angular integration (for

6 = 10—4) is typically 1.5% for 6 angle points, 0.8% for 8 points, and 0.4%
for 16 points, as shown in Figure 2.18, left.

For a 2-D problem, this means that to achieve a similar accuracy, each

quadrant in 45 and 0 needs the same number of angles as in 1-D, as each

angle is used only in one direction, and not in two directions as in 1-D. This

results in 4 x 8 x 8 = 32 x 8 angles if only one quadrant of 9 is considered

(no rotation). Moreover, the above stated accuracies for 1-D are for long

characteristics, so that the error in each angle, which apparently corresponds

to an independent error of about 3.7% is not propagated by interpolation.

This is, however, fundamental to the 2-D short characteristics scheme, and

propagation of the error is unavoidable. To what extent this error will grow

and how much it will affect JV is not easily determined. It is clear, though,

that one needs higher accuracy per angle in 2-D than in 1-D to obtain

an accurate value for J. In Figure 2.18 the difference between the source

function and a very accurate 1-D solution is plotted for a plane-parallel

problem with different angular resolutions in 1-D (left) and 2-D (right),

illustrating this point.

The relative difference of the line source function computed by the 2—D

code with respect to the results of the 1-D code are displayed in Figure 2.19.

Each panel contains results for one value of 6, while the individual curves

correspond to three different spatial resolutions. In the 2-D code, we have

considered 5 points in the w-direction, and 65, 97, and 145 points points in

the z direction, 72 angles in the mz plane, and 32 angles out of the $2 plane;

for simplicity the angles were equidistantly spaced. The frequency points

were the same as in the 1-D case.
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2.6.1.3 Static cylinder

For this, and the two following tests, we consider line formation for a two-
level atom with depth-independent Doppler profile, B = 1, r = 10‘4, and
e = 10—4, in a cylinder that is infinite in the z-direction. The opacity
structure of the cylinder is taken to be

 x(r) = 104 [tanh (r01; r) + 1] , (2.46)

where m = 0.2 and w = 0.06, so that the total optical thickness of the
structure is roughly 108 in the line and 104 in the continuum. The structure
is calculated in the region 0 S a: S 1 and 0 g z s 1 with the 2-D Cartesian

solver and in the region 0 S r S 1.5 with a 1-D cylindrical solver, which we
have specifically written for this purpose. We will describe this code, and
the sensitivity of the results on the number of radial and frequency points,
in § 2.6.2.1.

For the problem solved with the 2-D Cartesian code, we used 65 x 65
spatial points, 50 frequencies and 80 x 30 angles. Some simple angle place-
ment routines were used to concentrate angles in the direction toward the
rotation axis to decrease the number of angles needed (see also § 2.6.2.2).
The 1-D solution was calculated with the highest precision as specified in
§ 2.6.2.1.

The relative difference between the 2-D solution and the 1-D solution,

expressed as [S(2-D) — S(1-D)]/S(1-D), where S(l-D) and S(2-D) denote
the line source function followed from the 1-D and 2-D solvers, respectively,
is displayed in Figure 2.20. The differences between the 2-D and 1-D results
are very small, typically below 2%, which shows that the accuracy of the
2-D solver is excellent, at least for static problems.

2.6.1.4 Expanding cylinder

An analogous test as before, but for a radially expanding cylinder, with
1),.(1‘) = 10 r (in units of thermal velocity), and with 1),, = w, = 0, is displayed
in Figure 2.21. This problem was solved with 65 x 65 spatial points, 80
frequencies distributed between -5 and +20 Doppler widths, and 80 x 30
angles. The difference between the 1-D and the 2-D solutions is substantially
larger than in the static case, which can be attributed both to the 1-D and
the 2-D solution (see also § 2.6.2.1). Nevertheless, the solutions still agree to
within 4%, which is quite reasonable given the limited resolution, especially

in frequency.
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2.6.1.5 Rotating cylinder

An analogous test, but for a cylinder rotating about the axis of symmetry
is displayed in Figure 2.22. The rotational velocity is a smoothly varying

combination of rigid and Keplerian rotation,

v¢(r) = E [tanh (rev—r) + 1] + E [1 —tanh (”v—TH , (2.47)  

2 2r

where Q = 10, r0 = 0.2, and v = 10—1.
The problem was solved with 127 x 127 spatial points, 70 frequencies

distributed between -9 and +9 Doppler widths, and 70 x 20 angles. The
difference compared with a 1-D cylindrical solution is not much larger that
that for the static cylinder test (see § 2.6.1.3), indicating that velocities are
treated accurately when they are relatively small compared to the thermal
velocity.

2.6.1.6 Comparison to the Mihalas-Auer-Mihalas results

Finally, we have computed several representative models with the same
parameters as analogous models computed by MAM. We show the results
of two of these models in Figure 2.23. The first is the MAM test case I,
with e = 10-3, 1' = ro/[l — 0.5 cos(21r:c/X)] with r0 = 1; X being the total
extent of the slab in the :c-direction. The MAM solution is displayed in
their Figure 3a; notice that there is likely a numerical typo in their caption:
their [30, which is our 1 /r0, is stated to be 102, whereas our models agree

with theirs only for fig = 1. The second model is the MAM test case IIIc

(their Figure 5c) with e = 10—3, 1- = 10—4, and a velocity of the form
vz(:c,z) = 1120 exp(0.001z) cos(21rx/X), with 'vzo = 2.

The adopted spatial resolution for case 1 could not be found in MAM,
so we took it to be 20 x 20. We used 50 frequencies and 24 x 6 angles, which
is more than MAM did (they used Carlsson angular quadrature set B with
only 6 points per quadrant), but homogeneously (and thus less favorably)
distributed in both angles and with trapezoidal (and thus less accurate)
integration weights. The spatial resolution for case 3c is taken to be 19 x 28,
identical to that of MAM; the frequency and angular resolution were again
taken to be 50 and 24 x 6, respectively. A visual inspection of their figures
and ours indicates that the agreement is quite reasonable. Our curves are
somewhat smoother which may be the result of the larger number of angles
and/or frequencies.
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Figure 2.22: Relative difi‘erence of the source function for a rotating cylinder,

infinite in the z-direction, computed by the 2—D and 1-D solvers.
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Figure 2.23: Two representative models computed for the same parameters

as in Mihalas, Auer, E! Mihalas (1.978) as specified in the text. The left

panel is to be compared to their Figure 3a; the right panel to their Figure

5c.
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2.6.2 Tests of 2-D Cylindrical Solver

We have performed the following five tests: (1') line transfer in a static

cylinder, infinite in the z—direction, computed with the 2-D solver (with a

periodic boundary condition in the z-direction), and with a 1-D cylindrical

solver; (ii) the same, but for radially expanding cylinder; (iii) the same,

but for a cylinder with a differential rotation about the axis of symmetry;

(iv) line transfer in a static sphere, computed by the 2-D cylindrical solver,

and by a 1-D spherical solver; (v) the same as before, but for a radially

expanding sphere.

2.6.2.1 1-D cylindrical solver

In order to be able to perform the above outlined tests, we first had to

develop a 1-D cylindrical solver. We have used the ALI method, analo-

gously as for 1-D plane-parallel solver. The individual formal solutions of

the transfer equation were accomplished by the tangent-ray method. To in-

clude velocities easily, we use the short characteristic method. The program

considers an arbitrary number of radial points, frequencies, and out-of-plane

(that is, out of the plane perpendicular to the z-axis) angles, which are the

only three free parameters of the Specification of the computational grid.

As the aim of the 1-D code, in the present context, was to provide an

essentially “exact” solution, we have extensively studied the accuracy of the

solution, and its dependence on the number of radial points, out-of-plane

angles, and frequency points. Recall that in the tangent ray method, the

in-plane angles are determined by the choice of radial points, so that they

cannot be chosen independently. For the present tests, the radial points

were set up equidistantly between 1‘ = 0 and 1.5. The frequency points

were placed equidistantly between the corresponding frequency limits, which

were chosen to be -6 to 6 Doppler widths for the static cylinder, -26 to +6

Doppler widths for the expanding cylinder, and -12 to +12 Doppler widths

for the rotating cylinder.

Some representative results are displayed in Figure 2.24, which shows

that the maximum error of the source function for the static cylinder is

quite small for a reasonable number of points, but decreases rather slowly

with increasing number of radial points (and thus the number of angles)

for an expanding cylinder. This can be attributed both to the unsatisfac-

tory selection of angles that is provided by the tangent-ray method, and

consequently large projected velocity differences for the individual rays. In-

terestingly, even a model with 500 radial points differs from the reference

solution of 1000 radial points by several tenths of a percent, indicating that
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Figure 2.24: Relative dz'fi’erences of the solution of a static cylinder (left),

and an expanding cylinder (right) solved in 1-D cylindrical coordinates with

difierent spatial resolutions.

the reference solution may still contain a significant error (see also §2.6.3.1).

The main source of this error can be attributed to the actual tangent angles

in each point. This is because the angular bin for these angles is largest —

see Figure 2.3, right - and the projected relative velocity difference between

the tangent point and the next point on the tangent ray is also largest.

2.6.2.2 Static cylinder

The models adopted here have the same radial opacity structure as the

cylinder taken in the tests of the 2-D Cartesian code (§ 2.6.1.3 - 2.6.1.5), and

are taken to be infinitely stretched in the z-direction by applying periodic

boundary conditions. All computed models are calculated with 97 radial

points and 5 points in the z-direction.

First, we investigate a dependence of the accuracy of the solution on

different angular resolutions in the out-of-plane angle for a given angular

positioning. The difference between the 1-D cylindrical solution of a static

cylinder and the 2-D solutions is displayed in Figure 2.25 left, for models

with 60 in-plane angles, and 10, 20, 30 and 40 out-of-plane angles. The

results are not very sensitive to the number of angles; even for only 60 x 10

angles, the accuracy is still better than about 1%.

The accuracy of the solution for a fixed number of 60 x 20 in-plane

angles. but positioned differently, was tested for several different angular

distributions in the out-of plane angle 0. These distributions were calculated
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following an angle density distribution of the form:

2

p(0a 1‘) = exp [— (002?:0) ] a (248)

where 0 is the current angle, 00 is the angle corresponding to the direction
to the axis of symmetry, and a is the estimated angular size of the “source
region”. The latter is understood here as the region that provides most of
the incoming radiation as seen from the current position 1'.
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Figure 2.25: Relative difl'erence of the solution of a static cylinder solved
in 2-D cylindrical coordinates with periodic boundary conditions, and in 1-
D cylindrical coordinates as a function of the angular resolution (left) and
the angular positioning (right). The annotation refers to the number and
positioning of angles defined in § 2.6.2.2. Model b would lie very close to
model a, and is thus not displayed.

Five different distributions were calculated this way, distribution a, with
0(1‘) 2 oo (homogeneous distribution), and distributions b—e with

a={ frro/(r—ro),forr>ro,
00, for r 5 r0 , (2'49)

where re, the distance where the radiation field is expected to become

anisotropic, was taken to be 0.6, and f = 10, 1, 0.5 and 0.25 for distributions
b-e, respectively.

The sensitivity to the positioning of the angles gives a very different
picture from varying the angular resolution, as can be seen in Figure 2.25,
right. The accuracy of the solution deteriorates rapidly with distance to
the cylinder if the angles are not aimed at the source object. Concentrating
the angles toward the source region proves to be a very efficient method of
increasing the accuracy of the solution at no additional computational cost.
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2.6.2.3 Expanding cylinder

Analogous tests were done for a radially expanding cylinder, with a velocity
and opacity structure as in Cartesian test case (iv) (§2.6.1.4). The accuracy
of the solution of an expanding cylinder by the 2-D cylindrical solver is
much more sensitive to the munber of angles than in the case of a static
cylinder. The accuracy of the case with the fewest angles now has an error
of about 12%, where the static model gave an error of only 1%. Even with
the largest number of angles (60 x 40), the error remains around 5%, as can
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Figure 2.26: Relative difi'erence of the solution of a radially expanding cylin-
der in 2—D cylindrical coordinates with periodic boundary conditions and in
1-D cylindrical coordinates as a function of the angular resolution (left) and
the angular positioning (right). The annotation refers to the number and
positioning of angles defined in § 2.6.2.3. Model b would lie very close to
model a, and is thus not displayed.

bee seen in Figure 2.26, left panel.
For the test of accuracy of the angle positioning accuracy, the same

positioning was taken as for the static cylinder tests. The right panel of
Figure 2.26 shows that a selective placement of angles improves dramat-
ically the accuracy of the solution at no additional computational cost,

analogously to the case for the static cylinder.

2.6.2.4 Rotating cylinder

Due to the additional computational cost of including rotation, only one
model was calculated with the best estimated angle positioning, distribution
d above, and with 60 x 20 angles. Since the velocity has now a non-zero
tangential component, both quadrants of 0 need to be considered, so the
intensity is actually evaluated at 60 x 39 angles. The difference between the
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Figure 2.27: Relative difi'erence of the solution of a rotating cylinder in
2-D cylindrical coordinates with periodic boundary conditions and in 1-D

cylindrical coordinates.

2-D and the 1-D solution is displayed in Figure 2.27. The accuracy of the
2-D solver is about 5%, which is comparable to the solution of an expanding
cylinder with a similar angular resolution and positioning.

2.6.2.5 Static sphere

Here we present a comparison of the results of the line transfer in a static
sphere, computed with the 2-D cylindrical solver, and with a 1-D spherical
solver (see § 2.6.3.1 for more details). The opacity structure is given by
equation (2.46), where r now denotes the spherical radius rather than the
cylindrical radial coordinate. The computational domain of the 2-D solution
is taken to be 0 g r g 1 and 0 g z 5 1, and that of the 1-D spherical solution

0 < r < 1.5.

The test case was calculated with 65 x 65 spatial points, 50 frequencies
distributed homogeneously between -6 and +6 Doppler widths, and 80 x 30
angles. The difference between the 2-D cylindrical and the 1-D spherical
solutions is displayed in Figure 2.28. The differences are very small, which
again demonstrates an excellent accuracy of our 2-D cylindrical code.
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Figure 2.28: Relative difference of the source function for a static sphere
computed by the 2—D cylindrical and the 1-D spherical solvers.
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Figure 2.29: Relative difference of the source function for an expanding
sphere computed by the 2—D cylindrical and the 1-D spherical solvers.
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2.6.2.6 Expanding sphere

An analogous test as before, but for a radially expanding sphere, with

2),.(1') = 10 r, (with m; = 04, = 0), is displayed in Figure 2.29. The grid

parameters were again 65 x 65 spatial points, 80 frequencies distributed

homogeneously between -5 and +20 Doppler widths, and 72 x 32 angles.

The accuracy, albeit lower than in the case of a static sphere, is still very

reasonable — the maximum error of the source function is about 4%.

2.6.3 Tests of 2-D Spherical Solver

As pointed out above, there is no obvious 2—D problem to be solved in

spherical coordinates that is a 1-D problem in another coordinate system.

The best we can do is to consider a spherically-symmetric structure, and

solve it with both 2-D and 1-D solvers.

2.6.3.1 l-D Spherical solver

As in the case of cylindrical coordinates, we have first developed a 1-D

spherical code. This code is very similar to the 1-D cylindrical code de-

scribed above; in fact the only difference is to drop any reference to the

out-of-plane angles. Consequently, the spherical solver is much faster than

the analogous 1-D cylindrical solver.

We have performed a number of tests in order to study the sensitivity of

the results on the number of radial points. Some representative results are

displayed in Figure 2.30, which is analogous to Figure 2.24. Again, as in the

case of the 1-D cylindrical solver, the maximum error of the source function

decreases only slowly with increasing number of radial points, especially if

velocities are present.

The maximum number of radial points considered for an expanding

sphere was 4000; however the difference from the solution with 2000 points

was still around 1%. This means that it is likely that even more points are

needed to achieve a converge to an almost “exact” solution, which may still

differ from the 4000-point solution by as much as a few percent.

2.6.3.2 Static sphere

In Figure 2.31, we present a comparison of the results of the line transfer in

a static sphere, computed with the 2-D spherical solver, and with the 1-D

spherical solver. The structure is again calculated from equation (2.46),

with r being the spherical radius. The computational domain is taken to be
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Figure 2.31: Relative difi'erence of the source function for a static sphere

computed by the 2-D and the 1-D spherical solvers.
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10‘2 S r 5 1.5 and 0 S G) 5 1r/2. Since the problem is spherically symmet-

ric, a substantially smaller number of 6-points than radial points is needed.

The solution was calculated with 97 radial and 33 6-points, 50 frequen-

cies distributed homogeneously between from -6 and +6 Doppler widths,

and 80 x 30 angles. The differences are very small, which demonstrates an

excellent accuracy of our 2—D spherical code.

2.6.3.3 Expanding sphere

Finally, we consider an analogous test as before, but for a radially expanding

sphere with v,(r) = 10 r (in the units of thermal velocity) - see Figure 2.32.

The grid parameters are 97 radial and 33 6-points, 100 frequencies dis-

 

0.0 0.2 0.4 0.6 0.8 1.0

x

Figure 2.32: Relative difi'erence of the source function for an expanding

sphere computed by the 2-D and the 1-D spherical solvers.

tributed homogeneously between -5 and +20 Doppler widths, and 72 x 32

angles. Again, the accuracy, albeit lower than in the case of static sphere,

is still very reasonable - the maximum error of the source function is about

4%.

2.7 Conclusion

We have developed an efficient and robust 2-dimensional radiative transfer

solver appropriate for line transfer in the equivalent-two—level atom formal-
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ism. The numerical method is based on application of the short character-
istics scheme, together with the Accelerated Lambda Iteration technique.
To increase the speed of convergence, we use stande Ng acceleration.

Our computer code presented in this paper incorporates all three stan-

dard geometries (Cartesian, cylindrical and spherical) in a transparent way,
while allowing for arbitrary (3-dimensional) velocity fields. The geometry-
specific parts of the radiative transfer solver are modularized, so that the
change of geometry can be accomplished by simply setting the appropri—
ate switch. We have also developed a parallel version of the code. We have

shown that the only practical way is a parallelization in spatial sub-domains,
and showed that such a scheme is surprisingly robust and efficient.

The code is written in C/C++, and has been successfully tested on
Alpha, SUN, PC-Linux and NetBSD platforms.

We have performed a number of tests of the performance of the solver
in all three geometries. In all cases, we have solved a symmetric structure
by an appropriate 1-D solver, and by a 2-D solver, with periodic boundary
conditions in one direction, and compared the results. In the cases of cylin-
drical and spherical geometry, we have developed appropriate 1-D codes just

for the purposes of testing the 2-D code. We have addressed at length the
issue of internal accuracy of the transfer solutions depending on the number
of spatial, angular, and frequency grid points.

The basic limitation of the present code is obviously the restriction to the
equivalent two-level atom source function. We plan to lift this restriction by
considering a more realistic multi-level atom formulation. Another planned
extension of the present code is considering a general 3—D geometry.

However, already with the present two-level atom formalism, we can
address a number of astrophysically important issues. For instance, in the

predicted line profiles from rotating stellar winds, an important diagnostic
issue is the differences between the predicted line profiles when calculated
by a 2-D code, and by a 1-D code which computes line profiles from a non-
rotating stellar wind, and convolved with a rotational broadening kernel
(i.e., with no influence of rotation on the line source function, nor with the
effects of differential rotation). Similarly, we will address the importance of
2-D effects in predicting line profiles from accretion disks.
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Chapter 3

Line profile synthesis with

Long Characteristics and

Adaptive Mesh

Refinement

A code is presented that can generate a line profile or a monochro-

matic image of a multidimensional object with rotational symme-

try, given the source function and opacity. It uses the Long Char-

acteristics method to accurately solve the emergent intensity on

a ”screen” at a specified distance. Features in the image are au-

tomatically resolved by employing an adaptive mesh refinement

technique. The agreement between the line profile calculated for

a one-dimensional source function and atmospheric structure and

that calculated with a 1-D long characteristics code is ~ 1%.

67
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3.1 Introduction

In the previous chapter, a code was presented that can calculate the source
function, given an underlying density, temperature and velocity structure, in
2—dimensions assuming rotational symmetry, using the short characteristics
scheme and the Accelerated Lambda Iteration (ALI) technique (van Noort,

Hubeny & Lanz, 2002).
Although this code efl‘ectively solves the 2-leve1 atom radiative transfer

problem under the stated conditions, one needs to process this information
further to arrive at observable quantities.

The most significant observable in most astrophysical objects is the line
profile of the spectral line for which the transfer problem has been solved.
Although the code itself needs to compute the specific intensity Iy,l_‘,¢, the
main interest ultimately is the angular averaged, line profile averaged in-

tensity
00

.7: / feta,” dndu, (3.1)
0

which does not require accurate representation of IN”; everywhere, but
only where the contribution of Law» to .7 is largest. Furthermore, the
propagation of interpolation errors in the optically thin envelope of an object
can result in considerable errors in [WW and therefore in .7. Although this
can result in a similar error in the line source function 5;, the effect on the
line profile is usually small, as the envelope is optically thin and contributes
little to the emergent intensity.

This means that a line profile calculated from IWW at the surface di-
rectly from the code is not likely to be very accurate. In fact, to calculate
the emergent line profile, it is better to calculate the emergent intensity at

the surface by applying the long characteristics scheme for a single angle at

a sufficient number of points at the surface.

3.2 Long characteristics

In the long characteristics scheme, the intensity at a point in a given di-

rection is calculated by integrating the transfer equation along a photon

path, a characteristic of the transfer equation, from the boundary of the

computational grid to the point under consideration.

The long characteristics scheme does not suffer from the numerical dif-

fusion that the short characteristics scheme does. It also has no need for the

interpolation of the intensity for every grid cell the characteristic crosses,



3 Line profile synthesis with LC and AMR 69

so that accumulation of interpolation errors, which can easily grow to large
values while propagating through the grid, can be avoided. There is ob-
viously still the need to interpolate local quantities, such as the opacity,
source function, velocity, etc., but the errors in these interpolates do not
grow by propagation, but rather they average out.

Although these are all advantageous properties, the price to be paid for
them is unattractive scaling with the number of grid points, which makes
this method slow. The characteristic may intersect many grid lines and the
value of the various quantities can vary by many orders of magnitude along
the path. For an accurate value of the intensity to be calculated, these
variations need to be properly sampled by a sufficient number of points, in

each of which the value of several local quantities needs to be interpolated.

Moreover, it is easy to “miss” a compact source with a small angular
size, so that adequate measures need to be taken to ensure that the intensity
is accurately resolved.

Fortunately, in generating a line profile we only need to consider a single
angle and much fewer spatial points than there are grid points, so that
the extra cost may be reduced considerably. Nevertheless, this is a costly
method and calculations of this type are orders of magnitude slower than
equivalent 1-D methods.

3.3 Adaptive Mesh Refinement

In 1-D, the adaptive placement of points where they are needed most is an
almost trivial affair. The points can be places at arbitrary positions, and

the variation of the quantities that need to be described can be very large
without generating any difficulties.

In multi—D, accurate representation of strongly varying quantities is not

as easy, as placing many points on a localized object will unavoidably in-
crease the resolution in other places where this is not needed. This is not
only a waste of computer time, it may also lead to very inhomogeneous grid
cells in some locations, which may cause numerical errors due to changes in
numerical diffusion coefficients, etc.

Berger & Oliger (1984) developed a method, adaptive mesh refinement
(AMR), that attempts to address this problem by assuming square cells
everywhere. Instead of moving grid lines in one dimension to suit the quan-
tities to be represented best, the grid lines remain fixed and the cells in
which some quantity is not represented accurately enough is divided in a
certain number of sub-cells, i.e. refined. If some quantity is then still not
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Figure 3.1: Single grid (left) and AMR grid (right) methods of adaptive
resolution management. The AMR method reaches twice the resolution of
the single grid method with only half the total number of points.

accurately represented, each of these new cells is refined again, etc., until
all quantities are accurately represented everywhere.

It is obvious that fewer points are wasted where they are not needed,
but the grid now has a new kind of inhomogeneity. The AMR grid has
several refinement levels, in each of which there is an arbitrary number of
grid points with an irregular spatial distribution. A given grid point may or
may not have neighbours in the same refinement level, so that to maintain
the hierarchy and to assess the accuracy of representation of a variable on
the grid becomes more complicated.

To reduce the complexity of these tasks, an additional requirement is

imposed on the grid structure, that the difference in refinement level between
two adjacent grid cells can be no larger than 1, so that the resolution changes
smoothly. In this way one can assume that even though a neighbour may
not exist, it’s parent does exist and can be used as a substitute.

The AMR method is particularly well suited to resolve structures that
scale similarly in all dimensions. If the variation of a quantity in one dimen-
sion is very different from that in another, the method will automatically
apply the same resolution to all dimensions, thereby overresolving the slowly
varying direction and wasting points. To avoid this problem, however, the

use of non-rectangular methods is needed, which introduces many compli-
cations and will not be dealt with here.
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In astrophysics, the AMR method was pioneered by Klein, McKee &
Colella (1994) for resolving interstellar shocks and graviationally collaps-
ing clouds. A large amount of work has taken place in the past decade,
mostly focusing on solving the MHD equations on an adaptively refined
mesh, however, in the current context, the AMR technique will be regarded
and applied as an established numerical concept, indepedent of this work.

3.4 The code

To generate a line profile, a series of monochromatic images is calculated
and integrated across the image. The images are generated by projecting
the emergent intensity onto a virtual ”screen” with initially fixed size and
square cells. Depending on the wavelength, the image then needs to be

  

   
              

  

 

Figure 3.2: Grid hierarchy in AMR: each block represents a grid cell. There
are horizontal levels of cells of the same size, and a vertical tree structure
of positional inheritance.

resolved further in some of the cells. This was done by using the AMR
technique.

The code was written in C++, so that full advantage could be taken of
the ease with which hierarchical structures can be maintained with object
oriented programming. Figure 3.2 illustrates the structure of the AMR part
of the code, each of the blocks indicating an object representing a “pixel”
in the image. Function calls on the objects are automatically passed on to
the highest refinement level, so that the grid can be dealt with as if it is a

simple matrix.
The dimensions and distance of the screen are first specified, then the

intensity is calculated on the base grid. The accuracy is then assessed by
interpolating the intensity in a cell from the intensity in the neighbouring
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cells and requiring the relative difference between the interpolated value and
the true value to be smaller than a specified accuracy goal. The cells that
do not meet this requirement are found to be inaccurately represented and
flagged for refinement.

In the next step all flagged cells are refined by a factor 3 x 3. The
refinement factor was chosen to be odd, so that the central intensity does
not need to be calculated again and no results need to be discarded.

This procedure is repeated a fixed number of times for a single image, or
until no more cells need to be added. Since we integrate across the image,
very sharp gradients do not need to be resolved completely, as the exact
position of a feature is unlikely to change the integral by more than a small
fraction, and an upper limit to the refinement level can safely be imposed
to reduce the work load.

The integration of the image to a flux value is simple, due to the hierar-
chical structure of the grid. Each cell can easily calculate the flux contained
by the cells directly above it by recursively calling the same routine until
the top level is reached.

3.5 Tests

To test the accuracy of the line profile synthesis code, a detailed 1-D model
was used to calculate a 1-D line source function for the C-IV resonance lines
at 1551 and 1548A. The line profile was then calculated with a 1-D line pro-
file synthesis code and the multi-D long characteristics line profile synthesis
code. For the multi-D code, the line and continuum source functions and the

model atmosphere structure were first converted to spherically symmetric
2-D versions, to ensure that identical values for all variables were used.

The maximum level of refinement was chosen by calculating line profiles
with increasing maximum refinement level, until relative change in the flux
levels is less than 0.01 from one level to the next. The model was taken to
be an 8.2 MG star with radius 8.4 Re, 751: 3 - 10‘7 MO y‘l, Tefi=30000K
and V00 = 1960kms‘1.

Grey scale images of the logarithm of the monochromatic intensity are
shown in Figure 3.3, together with the grid used in the calculations. It can
be clearly seen that the mesh appropriate for the continuum image is quite
different from that appropriate for the image around flux maximum.

The relative difference between the line profile calculated with a 1-D
code and that calculated with the multi-D code is plotted in Figure 3.4.
The difference is very small and changes very little for increased maximum
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Figure 3.3: Adaptive Mesh Refinement for the same stellar structure and
source function (see text), in the continuum (top) and at flux maximum
(bottom). The left column shows the grid cells used in the calculation, the
right column is an image of the log of the monochromatic intensity of the
object at the specified frequency, normalized to the maximum intensity in
the continuum.
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refinement levels or accuracy goal. The large difference around the line
centre is due to the large gradient in the line profile and corresponds to
only a small difference in frequency space. The difference may well be from
the 1-D code, which had an accuracy goal of ~ 2%, which is similar to
most of the difference observed. The number of points per image needed to
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Figure 3.4: Relative difi’erence between the line profile calculated with a 1-
D code and with the multi-D line profile synthesis code. The difi’erence is
clearly small and may in fact be due to the accuracy of the 1-D code, the
accuracy goal of which was set to ~ 1%. The large local difl'erence of ~15%
is due to the large gradient in the line profile and corresponds to only a small
error in frequency.

reach this accuracy, however, was found to exceed 10000 in most cases. This
contrasts sharply with the 50 points required in the 1-D case for a similar

accuracy, and indicates that for steep gradients surrounding a slowly varying
plateau, as is the case in the continuum, the AMR technique is not very

efficient.

As no effort has been made to optimize the code, the numerical load is
substantial, as can easily be inferred from the large number of points needed
per image. The time it takes to render one image obviously depends strongly
on the contrast within the image and the accuracy required. On average, a
single monochromatic image of around 10000 points takes approximately 1
minute on a 1.7 GHz Pentium 4, so that several hours are needed to generate
a single line profile of a few hundred frequency points.
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3.6 Conclusion

The code presented here is able to very accurately calculate the emergent
profile of a spectral line at a specified inclination angle, given the source
function and the atmospheric structure. The code uses the long charac-
teristics scheme and AMR technique to generate monochromatic images of
the structure. These images are then integrated to calculate the emitted
monochromatic flux. Comparison with 1-D models indicates an excellent
accuracy of the emergent line profile for identical given source function and
atmospheric structure.

This code will be used to calculate line profiles of 2-D and 3-D objects
with source functions calculated with the 2-D short characteristics code
developed earlier. By combining them, we can generate reliable line profiles
and investigate the importance of multi-D effects on extended structures,
such as rotating stellar winds and irradiated accretion/excretion disks.
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Chapter 4

NLTE Radiative Transfer

in Rotating Winds

We apply the 2D Short Characteristics and the line profile synthe-
sis codes, presented in chapters 2 and 3, to the problem of rotating
stellar winds. We use the codes to calculate the line profiles of a
set of resonance lines of different strengths for a star representa-
tive of stellar type B0 and investigate the direct effect of rotation
on the line profile and radiation force. We then investigate the
effect of deformation of the wind structure due to rotation on the

line profile and the radiation force. The deformation of the stel-

lar surface was found to change the results qualitatively and was
therefore included in the models. The changes in the normalized
line profiles were found to be surprisingly small, with a maximum
change at 90% of the breakup rotation rate of ~ 20%. The effect
of the rotation on the non-radial radiation force were found to
be of a similar magnitude, with maxima in the latitudinal and
tangential radiation forces of ~ 0.17 and ~ 0.05 times the radial
radiation force respectively.
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4. 1 Introduction

The first reported realization of the rotation of the sun were inferred from

observations of the movement of sunspots across the solar disk on July 13,

1611 by Fabricius (Germany, 1587-c.1617). The rotation of stars other than

the sun was subsequently the subject of many studies and discussions, but

the actual detection of rotation in stars other than the sun was not possible

until the arrival of modern astronomical observing techniques in the early

parts of the 20th century (Tassoul, 2000).

Thanks to a vast body of work dedicated to stellar rotation, spanning

many decades, we now know that in fact many stars rotate at appreciable

velocities (see Tassoul, 2000, for a nice review of the history of the field).

The average rotation rate peaks in late A type stars at a period of ~ 1.3 -

10‘4 rad s‘1 or about 14 hours, whereas the average equatorial velocity

peaks at early B type stars at around 200 kms‘1 (McNally, 1965), however,

individual stars have been observed to rotate at velocities up to 400 km s‘l.

The theory of the stellar evolution of rotating stars was developed over

a period of many decades by a large group of individuals, although the ob-

servational consequences of many theoretical models were difficult to verify

due to observational limitations. A significant step forward was made by

the development of helioseismology in the 1980s (Bonnet, 1983; Deubner &

Gough, 1984), which provided the first look into the interior of the sun. It

is now possible to measure the velocity distribution inside a star, making

direct comparison with theoretical models possible.

Measurements of the angular velocity inside the sun are consistent with

rigid rotation (Tassoul, 2000), which is perhaps not surprising, as the man-

tle of the sun is convective and quickly levels velocity gradients. Although

the distance prohibits spatially resolving most stars other than the sun,

and the flux levels are still a limiting factor, stellar seismology is now be-

ing developed as a new tool to derive information about the interiors of

stars other than the sun. Observational data of more massive stars with

radiative envelopes are also consistent with rigid rotation, and several in-

stability mechanisms have been proposed by which sufficient mixing could

be generated to explain this, of most of which the time scale is still quite

uncertain.

Observationally, it is difficult or, in most cases, impossible, to determine

the true rotation rate of a star from the spectrum alone, as the rotational

velocity is projected onto the line of sight, i.e. VP = Vw sinz', which depends

on the unknown inclination angle 2'. Even if a star is observed to be slowly

rotating, it may in fact be rotating at a significant rotation rate, but viewed
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pole-on (i.e. i = 0). It is, however, not clear how this “unseen” rotation

affects other properties determined from the line profiles in the spectrum,

such as mass loss rate, surface gravity, etc.

The way one historically included rotational effects in emergent line

profiles, was to convolve the emergent flux with a rotational broadening

kernel (Mihalas & Auer, 1970). Although this is a good approximation for

1-D plane-parallel atmospheres, in extended atmospheres with differential

rotation this may be far from correct for strong lines. In order to quantify

the error introduced, the radiative transfer in the stellar atmosphere needs

to be calculated in 2-D with rotational symmetry, or in 3-D.

In chapter 2 we presented a code that can solve the transfer equation

for a 2-level atom in 2 dimensions under rotational symmetry in Carte-

sian, cylindrical and spherical coordinates. It uses the short characteristics

scheme and was specifically designed to treat large velocities, such as those

occurring in stellar winds, accurately. We set out to calculate the proper-

ties of the radiation field in rotating stellar winds with this code, and to

calculate the emergent line profiles as a function of inclination angle. In

section 4.3 the assumptions and methods we use to construct the structure

of a rotating stellar wind are explained, in section 4.4.1 we test the accuracy

of the code for the conditions we encounter in our model atmospheres, and

we discuss the results in section 4.4.

4.2 Line formation in stellar winds

Before dealing with rotation effects in stellar winds, it is perhaps appropriate

to examine the physics of a non-rotating stellar wind.

The atmospheres of massive stars are fundamentally different from those

of less massive stars in that the radiation pressure at the surface is large

enough to lift material off the surface and accelerate it beyond the escape

velocity. This creates a stellar “wind”, which can extend the atmosphere

of the star by several times the stellar radius (i.e. the radius of the base of

the wind). The acceleration of the wind results mainly from the radiative

driving of a large number of weak lines (Lucy &: Solomon 1970, Castor,

Abbott & Klein, 1975; Abbott 1982; Pauldrach, Puls & Kudritzki 1986), of

all ion species present in the wind.

The formation of spectral lines in extended atmospheres is fundamen-

tally different from that in plane-parallel atmospheres. Where the formation

of a spectral line profile in the plane-parallel case is usually the result of

radiative transfer effects only, the emergent line profile from an extended
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atmosphere can be determined by geometrical projection effects as well as
radiative transfer effects.

The classical way to describe the formation of a strong spectral line in
an extended stellar wind, is by regarding the star and the wind as separate
entities (see Figure 4.1). The star radiates as normal in the continuum,
providing a central source of radiation for the wind. The wind is optically
thick in the line, and therefore blocks radiation at the line frequency coming
from the star. However, since the material is moving outward, the frequency
at which the continuum radiation is blocked is Doppler-shifted to higher
frequency in the observers frame. As the wind is gradually accelerated
from low velocities to V00, the absorption from the wind cuts out a wide
absorption trough in the observers frame from v = 0 to v = V00 with respect
to the line frequency.

At the same time, the wind radiates at the line frequency, but at a much

lower intensity level than the continuum. Since the wind is much more ex-
tended than the star, this intensity is scaled up by the geometrical projected

surface area, thus providing a significant or even dominant contribution to
the line profile. This contribution is spread in frequency due to Doppler
shifting of the local line profile, between —V°° and V00 in the observers

frame with respect to the line frequency.

The addition of these two contributions results in the classical P-Cygni
profile (see Figure 4.1, left).

To get a good reference solution for the results from the 2-D code, a 1-D
spherical, 2-level atom, long characteristics, ALI, AMR code, was specifi—
cally written for this purpose. As the code was developed to provide an es-
sentially “exact” solution, an adaptive mesh refinement technique was used
along the long characteristics, as well as for the angular grid. This ensures
good control over the error in the solution, which was set to approximately

1%.

The normalized line profiles, calculated with the spherical 1-D code,

are plotted for a number of line strengths in Figure 4.2. The strongest lines
clearly show the classical P-Cygni line shape, but for weaker lines, transition

forms between the classical profile shape and the usual absorption profile
can be seen.

4.3 Rotating stellar winds

To calculate the structure of a rotating star, requires the modeling of the
entire star, not just the atmosphere, as the star deforms as it rotates. This
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is a complex undertaking, even when treating the radiation transport only
approximately, as the interior structure of the star develops complex circu-
lation patterns. Additionally, the radiative acceleration of material at the
surface is unstable, resulting in an inhomogeneous, time dependent, 3-D
structure (see for instance Owocki & Puls, 2002). Needless to say, we are
currently not able to deal with this, and we will therefore use approximate
model atmospheres, based on a stationary, time-independent model.

Much work has been done on modelling the time-independent structure
of stellar winds, with varying degrees of sophistication. Although the line
driving mechanism of the wind as described by Castor, Abbott & Klein
(1975) and Abbott (1982) is 1-D and therefore cannot include rotation ef-
fects, a modified 1-D formulation approximately including the effect of ro-
tation, but excluding deformation of the star has been developed by Friend
& Abbott (1986).

Although this method appears to be in good agreement with obser-
vations, it underestimates the mass loss and wind properties of the most
massive stars. Much work has been done by Pauldrach (1985), Friend, Poe
& Cassinelli (1987) and Cassinelli (1991), among others, to improve this
situation, but rotation in massive stars has a great influence on the wind
structure (see for instance Bjorkman & Cassinelly 1993, Owocki, Cranmer
& Blondin 1994, Owocki, Cranmer & Gayley 1998 Maeder 1999 and Maeder

& Meynet 2000) and requires a multidimensional treatment.

In the following, we will try to construct an approximate analytic 2-
D model of the stellar wind of a rotating massive star. The aim is to
generate a structure, suitable for solving the radiative transfer equation

and derive theoretical line profiles, but without simultaneously solving the

MHD equations and the radiation transfer self-consistently.

The most obvious change in a star when it rotates is that it becomes
oblate. Due to the change in the effective gravity caused by the rotation,
more material is needed to generate the same pressure at the equator than
at the poles. We can assume that surfaces of equal gravitational potential
have equal pressure, as otherwise the pressure gradient would accelerate
material along equipotential surfaces until the pressure is constant. If we

assume that the surface of the star is defined approximately by a surface of
equal pressure, the radius of the star can be calculated by equating the cen-
trifugally reduced gravitational potential at colatitude 0 to the gravitational
potential at radius of the star at the pole, RP, at which location we assume

that the effect of the rotation on the star is negligible, i.e. RP = const.,
which seems to be a good approximation from more sophisticated models
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(Papaloizou & Whelan 1973, Maeder & Meynet 2000). We thus have

GM _ GM 1 , 2
RP — R 2(0Rs1n 0) , (4.1)

where we neglect the reduction in the gravity by the radial component of

the radiation force.

From the structure of (4.1), we can infer that there are two types of
solution: one where the first term on the right hand side dominates the
second term, and another where the second term on the right hand side
dominates the first. Physically it is evident that the first type of solution is
bound, the gravitational term dominates, whereas the second type is not,

the centrifugal term dominates. In the latter case, there must be a positive
and a negative solution, as only the square of the centrifugal term enters
the dominant part of the equation. Moreover, since the gravitational term
decreases with radius, whereas the centrifugal term increases with radius,

for a given value of Q sin0 the bound solution will be the one having the
smallest positive value of R.

The general theory of cubic equations tells us (see Numerical Recipes in
C, p184) that if for the cubic equation:

x3+ax2+bm+c=0 (4.2)

the quantities

_ 2a3 — 9ab + 27c

U 54
(4.3)

and
_ a2 — 3b

_ 9

are computed, for U2 < V3, there are three real roots, otherwise only one
real and two complex roots. From the above reasoning, the real radius of
the star is thus given by the real solution with the smallest positive value.

At the critical point U2 = V3, bound and unbound solutions are indis-
tinguishable, i.e. the bound solution itself becomes unbound. This occurs
first at the equator (0 = 1r/2), at the lowest value of a for which this can
happen, the breakup rotation rate (25,. For (4.1), since a = 0, U = c/2 and
V = -b/3, this gives

V  (4.4)

8GM
9b,. = fiR—g. (4.5)
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Figure 4.3: Stellar surface for different rotation rates (from inside out:

0,0.5,0.75,0.90,0.97 and 0.999 05,.) for a M = 15 MG), R1, = 16 R9 star.

The corresponding breakup velocity at the equator is easily found by sub-

stitution of the above in (4.1):

3 30M
Vbr — Earn-R,» — 4B,, - (4.6)

The radius of a M = 15 Me, R1’ = 16 Re rotating star (see §4.4) is plotted

in Figure 4.3 for a number of rotation rates. Due to the deformation of the

surface, the rotation velocity is not simply proportional to QR,“ but instead

increases faster. This effect is shown in Figure 4.4, where the equatorial

rotation velocity is plotted as a. function of (1/0». It is clear that from

around 0.5 01,, the linear relation breaks down, and the rotation velocity

is no longer adequately described by V.,,(0) = QR... sin 9. At 0 = 05,, the

rotation velocity is 1% times larger than if the deformation is not taken into

account.

If the effect of radiation is included, the value of the breakup rotation

rate is not so easily found, and in fact depends on many factors (see Maeder

2000 for a discussion). The main reason for this is that the deformation of

the stellar surface is not the only effect the rotation has on the star. Due

to the rotation, the effective gravity at the surface decreases toward the



4 NLTE Radiative Transfer in rotating winds 85

 

   

, . . . I 1 . . , . , . I .

- -I
300 '—

250 r -_

,2 I

200 — _

E : ’ .-

"‘ 150 — ’ -
>'

100 — ’ —

50 — —

o ' . . . I_ . . . I . . . I . . . I . I .

0.0 0.2 0.4 0.6 0.8 1.0

0/0..

Figure 4.4: Equatorial rotational speed as a function of rotation rate for

a M = 15 Me, R1,, = 16 Re star. The dotted line is the limit without

deformation, V.) = Q R.

equator as

GM* 92
gc (0) = —(1 — sin20) (4.7)
” R2 0%.

 

if the effect of radiative acceleration is neglected.
There are several wind properties that are affected by this and change

as a function of lattitude:

1. According to the theory of line driven winds (CAK 1975), observa-
tionally confirmed by Abbott in 1978 and later improved by Abbott
(1982) and Pauldrach, Puls & Kudritzki (1986), V.,o scales as Va“
(and thus with gaff). V0° therefore decreases towards the equator;

2. The decrease in gaff leads to an increase in m towards the equator
(Friend & Abbott, 1986);

3. Owocki & Gayley (1997) and Owocki, Cranmer & Gayley (1998) found
that the increase in gravity darkening (von Zeipel, 1924) at the equator
leads to a decrease in m.

Although effects 2 and 3 are competing, a recent analysis by Maeder (1999)
indicates that 3 will dominate 152, unless a strong increase in opacity, due to

the bi-stability jump (Lamers, Snow & Lindholm 1995), occurs.
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For simplicity, we assume that V“, depends only on the escape velocity,
so that the dependence on latitude is proportional to gaff:

 V049) = Voo(0)(1 — sin2 0) (4.8)

Assuming gravity darkening dominates the mass loss, the radiative flux
is also proportional to geff, so that the variation of the mass flux, which is
assumed to be proportional to the radiative flux, follows that of V00

m (0) =m (0)(1 — sin2 0) (4.9) 

The effective temperature, Tefi(0), can now be derived from the flux:

 1163(0) = T.E(0)(1 — sin2 60% (4.10)

With these assumptions, we generated the 2-D model atmospheres for our
radiatively driven, rotating stellar winds. However, the parameterizations
are clearly only approximately valid. For a detailed, quantitative deter-
mination of the structure of a rotating star, a detailed evaluation of the
structural equations for the whole star is needed.

4.3.1 Generating a model atmosphere

We want to investigate the effect of rotation on the line spectra of and
radiation forces in a rotating stellar wind. Although we can calculate the
line transfer on a fixed structure, this structure is not explicitly known
but depends on the radiation field itself. Since calculating a self-consistent
solution is beyond the scope of this work, we will instead assume in the

following that the influence of the line on the structure is negligible and
that all the relevant properties of the structure are known and fixed during
the calculations.

In the inner atmosphere, we assume hydrostatic equilibrium, where the
velocity of the outflow is determined by the density and the mass loss rate:

P(7') = p(R*)e—(r—R.)/H(Ten) (4.11)

Mr) = #5 (4.12)
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In the outer atmosphere we assume a fl—law like velocity structure and a

density structure determined by the radial velocity field and the mass loss

rate:

v,(r) = v,(oo) (1 — "ff (4.13)

in

p(r) — 47rr2'v (r) (4'14)

These two structures are joined in the point r = 1'c the value of which is

determined by adjusting 1'0 and p(R*) such that 'rc (R...) = 1 and the velocity

structure is continuous and continuously differentiable at r = re.

Although a hydrostatic approximation is appropriate at large depth,

the influence of the temperature on the scale height H already becomes

important at modest values of the optical depth, so that it needs to be

included in the structure to obtain even an only remotely realistic model.

We therefore numerically integrate a simple system of hydrostatic equations

from r 2 re, at which point we also know ap/Br, to the inner boundary:

 

2’; = —p/H(r), (4.15)

_ 4kT(r)

H(r) — 3%” (4.16)

and

3 3:

Tm = Terr (3mm + ammo») (4.17)

repeatedly until the system is internally consistent. Since T(r) is dependent

on the radiation field and therefore not known, we parameterized it with an

LTE temperature (Mihalas, 1978). The Rosseland opacity or}; is calculated

from OPAL tables (Iglesias & Rogers, 1991) and the local density for a

solar metalicity stellar atmosphere. The factor 4 increase in the Rosseland

optical depth that was used to calculate the temperature was determined

by fitting the temperature to that of a 1-D stellar wind model calculated

with the stellar wind code CMFGEN (Hillier & Lanz, 2001).

To generate a 2-D atmosphere, a series of 1-D atmospheres were calcu-

lated for different latitudes, i.e. all effects of latitudinal gradients on the

structure are neglected. Each atmosphere is calculated with the appropriate

value for R..., V00 and in, according to the latitudinal dependence of these

quantities as described in the previous section.
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For the rotation velocity, a Keplerian velocity law was taken, assuming
rigid rotation of the star:

v¢(r,0) = (LR... cos(0)%5- (4.18)

where the lattitude 0 = 0 at the equator.
For the line opacity, the ionization structure was not considered, but

rather the line strength was calculated from a fixed value for the oscillator
strength f = 0.25 and by taking the population of the lower level of the line
to be a specified fraction of the total ion number density.

A Voigt function (Mihalas, 1978) was taken for the line profile

__ H(a,v)

 

Ma, 12) - Tm”) (4.19)

with + N
a = _——7’“ZWA7;;‘6, (4.20)

1/ — U

= An)", (4.21)

AVD is the Doppler width of the line, N6 the electron density and the usual
radiative and electron collisional damping factors 7,“; = 2.6 - 108 s‘1 and

7601 = 7.6 . 10‘7 cm3 5'1, appropriate values for strong resonance lines.
In realistic problems, however, the line strength is unlikely to be uniform,

even in a 1-D atmospheric structure, and detailed calculations are needed
to determine the correct occupation numbers of the upper and lower energy

levels of the atomic transition.
For the continuum opacity, we included only electron scattering, H and

He bound-free opacity (Kramers formula) and electron-ion free-free opacity
using (Rybicky & Lightman, 1979)

Zz

a” = 3.7- 108N3Nion—gff, (4.22)
Tgu3

in c.g.s. units, where N, and Ngon are the electron and ion densities, Z is

the ionization stage, and gff is a Gaunt factor of order unity.
Although the model atmospheres resulting from this procedure are not

consistent with the radiation field, the structures are qualitatively similar to
those from detailed 1-D calculations of winds of non-rotating massive stars
(Hillier & Miller, 1998, Aufdenberg 2001). The results can therefore not be
used for a quantitative comparison with observations, but rather they have
to be regarded as a qualitative indicator of the changes in the radiation field
and line profiles resulting from rotation.
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4.4 Results

The results of the calculations can be divided in two main parts. The first is
the importance of rotation for the emergent line profile for different viewing
angles, i.e. how much does the line profile change as a function of rotation
rate. This is important for the determination of the mass loss rate directly
from the line profile assuming no rotation, and for the determination of the

rotation velocity itself.

The second is the dependence of the radiation force in a rotating wind
on the rotation rate. To this end we calculated the radiation force per unit

volume directly from the intensity itself. We can only hope to verify the
validity of the assumptions made in generating our models, as the aim of this
qualitative study is not to generate fully self-consistent model atmospheres.
The results will, however, give us a good indication of the behavior of the
radiative forces driving the wind and the changes on it due to rotation

effects.

We repeated the calculations for several line strengths, to investigate the
importance of rotation for weak lines, important for the wind dynamics, as
well as for strong lines, important for observations. Due to the decreasing

effectiveness of the differential rotation with increasing distance to the stellar
surface, the effects of the rotation on spectral lines is likely to be dependent

on the line strength.

We have calculated the emergent line profiles and radiative acceleration
for a 2-D atmospheric structure corresponding to a 15 MO, 16 Re star
with m (0) = 10‘6 MO y‘l, Teg(0) = 35000K, Voo(0) = 1500kms‘1 and
fl = 1.0. We also adopted a constant turbulent velocity broadening of the

line of 25kms“1, to reduce the number of frequency points needed in the

calculations.

This relatively massive star, which can be thought of as representative
for spectral type B0, was chosen as the most likely candidate for large spec~
troscopic effects, as the observed rotational surface velocity peaks around
this spectral type, and the stellar atmosphere is already quite extended,

even for moderately strong lines.

The mass was taken representative for spectral type B0 (McNally, 1965)

The radius corresponding to this mass for main sequence type stars is about
8 R0. However, the gravity at the surface with this radius results in a
large density gradient, which could not be resolved on a spherical grid for
rotationally deformed stars (see also §4.4.3). For this reason, the radius was
taken to be twice as large.
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The line opacity was calculated for 4 representative line strengths by

taking the population of the lower energy level of the line to be 104, 10‘s,

10'7 and 10‘6 of the total number density (the yellow, green, cyan and blue

profiles from Figure 4.2), hereafter line strength a, b, c and (1 respectively.

They correspond to a continuum to line opacity ratio, rd, of approximately

5- 101, 5 - 102, 5 - 103 and 5 - 104 respectively.

The calculations were carried out on 24 2 GHz PCs, taking about 24

hours (20 minutes per ALI for approximately 70 iterations) to convergence.

We used a spherical grid with No x N, = 25 x 60, 31 x 75 and 35 x 90 points

for (2 = 0.5, 0.75 and > 0.85 times (25, respectively. The angular points

were automatically selected by the program at startup, dedicating half the

total number of points to sample the radius of the star in the continuum,

the other half is distributed homogeneously over the 411' solid angle. The

stopping criterion is set to be a maximum relative change of any quantity

anywhere on the grid less than 10'3 between two consecutive ALI.

4.4.1 Accuracy of the short characteristics method

Before proceeding to actual calculations, it is important to verify that the

short characteristics method can be used in situations where very large ve-

locity differences exist between adjacent points on the grid. Although great

care has been taken to ensure accurate resolution of all relevant quantities

within a cell, no such guarantee can be made regarding the intensity inter-

polations, needed at the intersection of each ray with the grid cell, under

these circumstances.

Therefore, the line source function for our model, without rotation, was

calculated in 1-D with a spherical long characteristics code, specifically writ—

ten for this purpose, and in 2-D with the 2-D short characteristics code. As

the long characteristics method does not suffer from intensity interpolation

related numerical effects, this is a good test for determining the error in-

troduced by the intensity interpolations needed by the short characteristics

method. A comparison of the relative difference of the 1-D and 2-D source

functions for line strength b is shown in Figure 4.5.

Although the difference may seem excessive, with errors of 30% or more,

a closer inspection of the problem itself reveals that the errors are only

significant in regions that are very optically thin for the line under con-

sideration. The resulting error in the emergent line profiles is therefore

significantly smaller, and has not been observed to exceed 5% in our tests.

The errors are mainly due to the accumulation of interpolation errors

and numerical diffusion due to limitations in the resolution. Although the
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Figure 4.5: Relative difi'erence between the 1-D and 2-D line source functions
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rotation.
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Figure 4.6: Comparison between the 1-D (dotted) and 2-D (solid) line pro-

files for line strength b for identical, spherically symmetric structures with-

out rotation.
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angular resolutions used in these calculations can be considered more than
sufficient to accurately integrate the intensity, one needs to keep in mind

that

1. as all angles are shared between all frequencies, the state of resolution
of the intensity depends strongly on the frequency, and can be quite

bad; and

2. small errors can easily grow to become large errors by propagation

across the grid.

In particular the first item can result in significant errors, as is demonstrated
in Figure 3.3, but it is currently not feasible to adaptively determine the
Optimum distribution of angular points for each frequency, due to limitations
in CPU time and memory.

4.4.2 1D structure

In this section, we investigate the direct effect of rotation on the source
function in a spherically symmetric underlying atmosphere and wind. This
is mainly of academic interest, as the structure of the stellar wind is unlikely
to remain spherically symmetric at the rotation rates where significant ef-
fects can be expected. However, it is useful to separate the pure radiative
transfer effects from those resulting from the structure, in order to get some
understanding of the importance of both for the solution in a more realistic

model atmosphere.

For line strength b, the source function was calculated on the spherically
symmetric model atmosphere from the previous section, but with a rotation

velocity corresponding to 0.9 times the breakup rotation rate (corresponding
to an equatorial rotation speed of ~ 250 km s‘l), although the radius of a
star rotating at this rate would in reality be about 20% larger at the equator

than at the pole.
The difference between the non-rotating source function and the rotating

one is plotted in Figure 4.7. The differences are clearly concentrated close
to the star, where the gradient of the rotation velocity is the largest, so that
it is likely weak lines are strongest affected. The maximum difference is an
increase in the source function of about 10%, so that small differences in
the line profile are expected, depending on where they are formed.

The line profiles for 0°, 30° and 90° inclination are plotted in Figure 4.8.
The differences between the non-rotating and 0° inclination profiles is fairly
small, as expected from the small difference between the line source func-
tions. The direct broadening effect of the rotation on the 30° and 90°
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Figure 4.7: Relative difl’erence, for a spherically symmetric wind (see teat),

between the 1-D and 2-D line source functions for line strength b. The 2-D

source function was computed with a rotation rate of 0.9 times (2b,.
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Figure 4.8: Comparison between the 1-D (dotted) and 2-D line profiles, for

a spherically symmetric wind (see text), for line strength b but with the 2-D

rotating at 0.9 times 9b,, for 0°, 300 and 90° inclination.
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inclination profiles can clearly be seen to be much larger than the effect of
the change in St.

A similar comparison for line strength c gives a similar result, with only
small changes to the line profile at 0° inclination. The direct effect of the
rotation on the line source function is not found to be very important in the
formation of most spectral lines, with maximum changes in the line profiles
of only a few percent. The effect of the increase of the upper level population
can, however, result in important changes in other lines in multi-level atoms,
and it still needs to be considered in those cases.

4.4.3 2D structure

As it would be a great reduction in the numerical load if we can assume a
latitudinal variation of the density structure, but neglect the actual oblate-
ness of the star, we will first try to establish the actual need to include the
deformation of the surface of the star in our calculations. We therefore cal-

culate the emergent line profile for our model with line strength c, rotating
at 90% of the breakup rotation rate, both with and without including the
deformation of the stellar surface.

The resulting source functions cannot be compared directly, as the radii

of both differ significantly, but the emergent line profiles, shown in Fig—
ure 4.9, give a good indication of the importance of deformation for the
whole wind.

It can clearly be seen that including the deformation of the stellar surface
is quite significant for the line profile. At 90° inclination, including the

deformation results in a brightening of the entire profile by ~10% with
respect to the 1-D solution, while not including the deformation results in

a darkening of the profile by a similar amount. A similar effect, although
somewhat smaller, can be seen at 0° inclination, predominantly in the high

velocity regions of the line profile.
It is clear that for reliable results, the deformation needs to be included

in the calculations.

The need to include the deformation of the stellar surface in the atmo—
spheric structure means that the choice of spherical coordinates for rapidly
rotating stars is not very appropriate. Since including a more appropriate

new coordinate system in the code is currently not feasible (but will be
included in a future version of the code) the problems were calculated in
spherical coordinates with increased resolution. To verify that the numeri-
cal error introduced by the new griddings is small, the same test as in the
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Figure 4.9: Line profiles for line strength c, for a rotation rate of 0.85 times
95,, without defamation (red) and including the deformation (blue) of the
stellar surface, for 90° (top) and 0° (bottom) inclination.
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previous section was done for the same non-rotating model atmosphere, but

with the new gridding.

The atmospheres with oblate stellar surface were found to be appropri-

ately resolved, with the differences in the line profile not exceeding ~ 2%.

4.4.4 Line profiles

The line profiles for line strengths 3., b and c were calculated, for rota—

tion rates 0, 0.5, 0.75 and 0.9 times the breakup rotation rate, for several

inclination angles. The results are displayed in Figures 4.10-4.11.

The effect of rotation when viewed pole-on (0° inclination) is quite sub-

tle. Although the change in the continuum flux is quite significant and for

0.9 times the breakup rotation rate amounts to an increase by a factor of

about 1.5, the changes in the normalized line profile are surprisingly small.

There is a slight depression of the central parts of the line profile, but this

effect could easily be explained by errors in the line profile due to changes

in the resolution. However, the recurrence of the effect for all calculated

line strengths, makes this explanation somewhat unlikely. It is, however,

very likely that changes resulting from a detailed calculation of the density,

temperature and opacity of the atmosphere can even qualitatively change

this result.

The effect of the rotation on the profiles viewed equator on (90° incli-

nation) is not as subtle as for 0° inclination. Firstly the sharp separation

between the absorption and emission parts of the profile is smoothed, as

expected, due to a direct rotation effect. Secondly, there is a significant

brightening of the absorption trough, clearly not due to a direct rotation

effect, but rather to the rotationally changed atmospheric structure and

source function. Finally there is a noticeable reduction in the blue-ward

extent of the absorption trough, due to the centrifugally reduced V00. Note

that the transition between the continuum and the absorption trough at

— 00 is not significantly broadened, even for 90° inclination. The reason

for this is that the material with the largest radial velocity between the star

and the observer is already several stellar radii away from the star. The

maximum projection angle between the line of sight and the radial vector is

therefore relatively small for all material between the star and the observer,

so that the rotational velocity projected onto the line of sight, and thus the

rotational broadening, is also small.

The influence of the rotation depends noticeably on the line strength.

The effect of rotation on the weaker lines is mostly to brighten the absorp—

tion region of the profiles. For stronger lines, the brightening of the absorp-
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tion becomes negligible, instead the emission region of the line brightens
significantly. The reason is most likely that the weaker lines are formed
close to the stellar surface, and therefore are strongest influenced by the
direct radiative transfer effect of the differential rotation itself (i.e. 7&1 is
large). The large scale atmospheric distortions due to rotation are not very
important, as they are mostly blocked by the star itself. Strong lines, on
the other hand, are formed at an appreciable distance from the star, where
87V} has reduced considerably, therefore the direct radiative transfer effect
of the velocity on the source function is much smaller. The deformation of
the atmospheric structure, however, is more likely to be seen by these lines,
as the star blocks only a small fraction of the structure from view.

The magnitude of the changes in the case of strongest lines appears
to be in agreement with the results of Petrenz & Puls (2000) for H0, in
rotating stellar winds of massive stars. Their results, obtained from using
the Sobolev approximation, indicate an underestimate of the mass loss rate
derived from Ha emission of around 10%.

Especially at high rotation rates, the line profiles at moderate inclina-

tion angles behave somewhat as expected given the extremes. The rotational
broadening of the absorption-emission transition is smoothed seemingly ap-
propriate for the lower projected rotational velocity, and the absorption
region is roughly in between the 0° and 90° inclination profiles. Due to the
quadratic dependence of Voo(0) on 0, the extent of the absorption is not an
average of the 0° and 90° profiles, but is much closer to the 90° value.

4.4.5 Comparison with broadened 1-D lines

It is interesting to examine the differences between the line profiles calcu-
lated with our 2-D code and those calculated from rotationally broadened
1-D line profiles. We will assume that since our models have differential
rotation, the 1-D lines will need to be broadened with a rotational veloc-
ity somewhat lower than the equatorial rotation velocity, depending on the
height of formation of the line. This velocity is adjusted to get the best fit
to the 2-D line profiles.

We use the approximate formula of Mihalas and Auer (1970),

1

F,(.\) a: g f 1 F(,\ + Exam/1 — :02 dm, (4.23)

where F,()\) is the rotationally broadened flux and F(A) the unbroadened
flux, to broaden the line profiles, as the 2% error level they quote is sufli-
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Figure 4.12: Plots of the 2-D line profile and the corresponding 1-D ro-

tationally broadened line profile at a rotation rate of 0.9 times 05, for line

strength b (top), c (middle) and d (bottom), together with the corresponding

1-D line profiles (dotted) for 90° (left) and 30° (right) inclination.
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ciently small compared to the estimated errors in our profiles for a mean—

ingful comparison.

The 1-D line profiles rotationally broadened in this way for a rotation

rate of 0.9 times 05, are plotted in Figure 4.12, together with the unbroad-

ened profiles and the corresponding 2-D profiles, for line strengths b, c and

d. In most cases, the best fit (whenever that could be determined in a

meaningful way) was for a velocity of 230 km s‘l, about 10% lower than the

true surface rotational velocity at the equator. The comparison for all the

lines displayed is better than the error for an inclination angle of 30°, but

quickly deteriorates for larger values.

The largest difference between the rotationally broadened 1-D profiles

and the 2-D profiles follows from the brightening of the line profile reported

in the previous section. Also, the broadening of the continuum-absorption

transition is grossly overestimated, which is not seen in the 2-D profiles.

The qualitative difference between the broadened 1-D and the 2-D profiles

is, however, surprisingly small, with the most important feature being a shift

in some absorption and emission features of at most a few krns”1 between

the 1-D and 2-D profiles.

Quantitatively, the differences are typically of order 10-20%, even at 0.9

times the breakup velocity. This is surprising given the large amount of

deformation of the stellar surface and the wind structure at this rotation

rate. Larger effects seem possible for stronger lines, but given the accuracy

of the code it seems likely that the errors would dominate the solution, and

we leave this for a future study.

4.4.6 Radiation force

One of the important issues in stellar rotation is the effect of the rotation on

the radiation force. This is important for the dynamics of the wind, which in

turn affect the radiation field itself. However, since we only solve the transfer

equation for a single resonance line on a fixed atmospheric structure, any

forces derived from the calculation can only be checked against the input

for consistency, as the total force on the material is an accumulation of all

spectral lines in the atmosphere.
The radiation volume force per unit frequency was computed from the

first moment of the transfer equation, the flux, times the local opacity (Mi-

halas, 1978)

fydu = i—ayFudu = éay / I,, n - d9 (11/ (4.24)

where F” is the monochromatic flux and n is the direction of propagation
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of 0.9 times 05,. and for line a (top left), b (top right), c (bottom left) and
(1 (bottom right).
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of the intensity I”.

The radiation force, integrated across the frequency band affected by
the line, is plotted in Figures 4.13-4.15 for 0.9 times the breakup rotation
rate. The radial radiation force, plotted in Figure 4.13 for line strengths
a-c, appears to increase roughly proportional to the square root of the

line strength. For an increase of one order of magnitude between the line
strengths considered, the contours, with a spacing of half an order of mag-
nitude, are in similar positions in all three plots, shifted by half an order
of magnitude between any two line strengths. As the dependence is weak,
the usual approximation of constant radiation force as a function of line
strength is probably not very bad.

In Figure 4.14, the tangential radiation force is plotted as a fraction of
the radial radiation force for line strengths a—d. Except for the weakest line
(strength a), the maximum fractional value seems to be only weakly related
to the line strength, and peaks at around 5—6%. Only for the weakest line, is
the importance at least one order of magnitude smaller. The extent of the
region in which this component of the radiation force is important, however,
seems to be directly related to the line strength, so that the total influence
on the wind is still more significant for strong lines than for weak lines.

The tangential radiation force is found to be negative, that is: directed
against the direction of rotation. This means the radiation field in the wind
transports angular momentum towards the star, and deposits it close to the
stellar surface. Although the tangential radiation force is indeed positive
and equal in magnitude close to the stellar surface, the radial radiation force
is much larger in this region, so that it is not visible in the plots.

In Figure 4.15, the latitudinal radiation force is plotted as a fraction of
the radial radiation force for line strengths a—d. The maximum fractional
value does not appear to be related to the line strength, as for the tangential

component, but the extent of the region where the force is significant is
clearly dependent on the line strength. The position of the maximum in the
fractional importance of the latitudinal component of the radiation force
seems to correspond to the formation height of the line.

The direction of the force is from the equator to the pole, so that the
assumption of a denser wind at the poles than on the equator appears to
be consistent.

The origin of the latitudinal and tangential components of the radiation
force is clearly different, as is demonstrated by Figure 4.16-4.17.

Figure 4.16 shows the tangential radiation force for 4 different rotation
rates, 0.5, 0.75, 0.85 and 0.9 times the breakup rotation rate, normalized

to the radial radiation force. The maximum fractional value of the tangen-
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tial radiation force increases approximately linearly with increasing rotation
rate, indicating that this component is mainly the result of a direct radiative
transfer effect.

In Figure 4.16, the latitudinal radiation force for the same 4 rotation
rates is plotted, again normalized to the radial radiation force. The max-
imum fractional value of the latitudinal radiation force increases quadrat-

ically with increasing rotation rate, which is likely due to the influence of
the deformation of the atmosphere on the radiation force in this direction.

In the plots of the latitudinal and tangential components of the radiation
force, a clear indication of a “plateau” region can be seen in the region
just above the pole near the stellar surface, decreasing toward the equator.
This is likely the result of numerical diffusion of the intensity due to the
interpolations needed by the short characteristics method. Since the radial
step size here is much smaller than the latitudinal step size, the intensity is
diffused latitudinally, thus ”leaking” radiation away to the poles. The effect
seems to be larger for the tangential than for the latitudinal radiation force,
possibly due to differences in the intensity interpolations in both directions.

The above results indicate a typical deviation of the radiation force from
radial of about 5 — 10%. If we assume that the beta-law radial velocity
profile, as is assumed in our model, is an accurate description of the velocity

field, we can estimate the importance of the gravitational acceleration in the
wind in the spherically symmetric case.

Given the beta-law dependence from (4.13) we can find an expression
for the radial acceleration

_avrg_
_ 61' at—

an
61‘

 

2

s = V, V, = stflmza — my“, (4.25)
o

where a: = r0 /r and [3 w 1. Comparing this with the gravitational acceler-
ation

_ GM...
1.2
 (4.26)

gives us some idea of the importance of gravitational acceleration. Expres-
sions (4.25) and (4.26) are plotted in Figure 4.18; the gravitational accel-
eration term is seen to be about one order of magnitude smaller than the
acceleration of the wind.

Since gravity is of only minor importance, the magnitude of the ratio of
latitudinal to radial and tangential to radial radiation forces is indicative
for the order of magnitude of the changes to the wind structure due to
differential rotation.
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panding stellar wind.

4.5 Conclusion

We have applied the 2-D radiative transfer code to the problem of rotation
in stellar winds. The short characteristics method used in the 2-D code
proved to be reasonably reliable, even in the presence of large velocities.
Numerical diffusion effects, although clearly present in the solution, do not

seem to dominate the problem.

The results presented here are a qualitative study of the changes in the
radiation field in rotating expanding winds of massive stars. The observed
changes to the line profiles indicate that the influence of rotation on weak
up to moderately strong lines is small, with maximum relative changes of
the order of 20% or less. For low projected rotation velocities (Vm <

150 kms‘l), the widely used method of rotationally broadening the line,
appears to be in good agreement with the results from the 2-D code, with

most changes smaller than the typical error of the 2-D code (~ 5%). Only for
the highest rotation rates and viewing the star equator-on are the changes
in the line profiles significant.

The radiation force is affected at a similar level, with typical maximum
departures from radial of 10-20%. There is a small tangential force, tend-
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ing to slow the wind down while accelerating material at the base of the

atmosphere. The latitudinal force found from the calculations is directed

towards the pole and seems to support the assumption of a denser wind

at the poles than at the equator, in agreement with the gravity darkening

assumed in the model atmosphere.

Although the latitudinal radiation force is significantly smaller than the

radial radiation force, the velocities in the latitudinal direction may be able

to grow to 10-20% of the terminal velocity, which can be important for

details in the line transfer.

The impact of rotation on the line profiles viewed pole-on was found to

be very small. The profiles showed a slight depression of the central region

of the line profile at high rotation rates, but given the uncertainties in the

model atmosphere itself, this is unlikely to be detectable.

It needs to be stressed here, that although the accuracy of the solutions

presented here has been tested at length, and appears to be significantly

better than the most important changes observed, care has to be taken

in interpreting these results. The reliability of the results is, as always,

not better than the model atmosphere from which they are derived. For a

complete treatment of the transfer problem in 2-D atmospheres, a significant

increase in the level of detail of the atomic data is needed, which is at present

beyond our numerical capabilities.
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Chapter 5

NLTE Radiative Transfer

in CV Disks.

We apply the 2D Short Characteristics code, presented in chapter
2, to the problem of line transfer in accretion disks in cataclysmic
variables. The aim is to calculate line profiles and radiation pres-
sure to qualitatively investigate the effect of the radiation field on
the disk structure. We observed significant NLTE effects only at
very small inclination angles (< 10°), since the rotational broad-
ening dominates all other effects at larger angles. The effect of
the differential rotation on the NLTE effects was found to be as
important as the NLTE effects themselves.
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5. 1 Introduction

Since almost all objects in the universe acquire angular momentum during

their formation (Catelan & Theuns, 1996a, 1996b), it is usually not possible

for material to flow directly from one object to another. Instead the mate-

rial will orbit the receiving object, until it can lose its angular momentum

somehow. If the loss of angular momentum is gradual, a steady flow of ma-

terial will slowly approach the receiving object, forming an accretion disk.

The gradual loss of angular momentum usually occurs through a viscous

process of some sort, due to which the material in the disk is heated.

Some well studied objects in which radiation from an accretion disk is im-

portant vary from Active Galactic Nuclei (AGN) (Robson, 1999), to disks in

T-Tauri stars (Bertout, 1989), to accreting binary systems (Hilditch, 2001).

In some cases, the disk contributes only partly to the emitted radiation,

making direct interpretation of the observed spectrum difficult. To test our

understanding of the physics of accretion disks, it is helpful to find objects

for which the disk is the dominant source of the radiation emitted.

Although manifestly astrophysically important, calculating the radiation

field in a disk structure is not a simple 1-D problem, unlike the case for

stellar atmospheres, since the disk has two very different length scales in

the radial and vertical directions. In addition there may be a wind driven

by the disk or the central object, resulting in an extended atmosphere that

needs a true 3-D treatment (Pereyra, Kallman & Blondin, 1997).

An approximate way to deal with this problem, is to approximate the

disk as a geometrically thin object, i.e. the radial length scale is much larger

than the vertical one, so that the transfer equation may be solved by a series

of vertical 1-D solutions (Hubeny, 1994). The advantage of this approach is

that the radiative transfer can be calculated with a great level of detail, so

that the vertical structure of the disk can be accurately determined.

However, Wehrsche, Bascheck & Shaviv (1994) claim that for disks in

cataclysmic variable stars (hereafter CV), this approximation is not valid

and a multidimensional solution cannot be avoided. 3—D calculations of

resonance lines in CV disks have been carried out (Adam, 1990; Papkalla,

1994), but the enormous numerical effort needed to solve the transfer equa-

tion in 3-D has precluded the inclusion of any level of detail beyond the

2-level atom formulation.

We apply the 2-D short characteristics radiative transfer code, presented

in chapter 2 (van Noort, Hubeny 85 Lanz, 2002), to the problem of the line

transfer of resonance lines in CV disks. The assumption of a 2-D cylindrical

computational grid with rotational symmetry significantly reduces the nu-
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merical effort, so that the line profile and rotational velocity can be treated

accurately. Since we are currently only able to calculate a radiative transfer

solution on a specified density, temperature and velocity structure, we cal-

culate a 2-D disk structure from a series of 1-D solutions (Wade & Hubeny,

1998).

Although for detailed calculations of the emergent spectrum, the simul-

taneous self-consistent calculation of the disk structure and the radiation

field are needed, which is beyond our current capabilities, the current study

should give us insight in what differences to expect from such calculations

with respect to the currently used 1-D approach. The emphasis will be on

the diagnostic value of a multidimensional as opposed to a 1-D treatment

of the radiation field, as well as on the radiation forces that are likely to be

important in the dynamics of the disk.

5.2 Cataclysmic Variables

Cataclysmic variables (CV’s) are a class of objects that is characterised by

their very large variability of up to 6 orders of magnitude and the very short

timescale on which they can vary.

Observations of them have been reported for over a century, and models

of them have been developed based on their characteristics. The very short

timescale of their variability suggests a very compact object of at most a

few AU, the temperature of their spectra, however, is typically between 104

and 105K (Warner, 1995).

Since fusion-based explanations cannot produce the energy radiated away

from such a small region, these objects can only be associated with accre-

tion flows onto compact objects, such as white dwarfs or neutron stars. The

kinetic energy, acquired by falling into the gravitational well of the compact

object, is able to account for the observed luminosity and temperatures.

The binary nature of CV’s was first suggested by Kraft (1962), who

noted that all the CV systems he observed were spectroscopic binaries that

consisted of a white dwarf primary and an approximately 1M9 secondary

star. He suggested a model whereby the primary star accreted material

from the secondary.

This model was developed further by Shakura & Sunyaev (1973), who

calculated the structure of the disk, asuming a simple parameterisation of

the disk viscosity. Although many people have refined their original model,

the exact physical nature of the disk viscosity remains a topic of debate.

The disk geometry, however, was verified by Home (1985) and Marshe &
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Home (1988), who were able to map the intensity distribution of the disk
for some eclipsing CV binaries.

The evolution of a CV consists of a complex sequence of events (see also
Patterson 1984). The initial state of the binary is that of a low mass dwarf,
typically 0.1-0.2 M9, orbiting a more massive primary with a long period.
The primary evolves past the red giant stage and ejects a planetary neb-
ula, causing the secondary component to spiral in, the common envelope
phase. The primary then evolves further into a white dwarf. The magne-
tized wind of the secondary slowly reduces the orbital separation (Patterson
1984), until the low-mass secondary fills its Roche lobe and starts to trans-
fer mass to the primary, by which time the binary system that is left has
a period of only a few hours and a separation ~ 1 R5,. The mass transfer
from the secondary to the primary results in an accretion disk (Patterson
1984) in non-magnetically dominated systems, or an accretion column in

the magnetically dominated case.

As the spiral-in phase takes a long time, the white dwarf is generally
already quite cool by the time the accretion phase starts. The system now
consists of two low luminosity components, so that the luminosity of the sys-
tem is easily dominated by the radiation emitted by the disk. CVs therefore
provide a good test case for our understanding of plasma physics and ac-
cretion processes in general. For this reason, they have been extensively
studied, revealing many subclasses of magnetic and non-magnetic CVs, de-
pending on the accretion rate and the properties of the primary (an exten-
sive survey of many properties and subtypes of CVs is given by Warner,

1995).

In magnetically dominated systems, the dynamics of material is par-
tially or completely determined by the magnetic field of the white dwarf.
The resulting changes in the density, temperature and velocity structure
with respect to the non-magnetically dominated case can vary from trun-
cation of the inner part of the disk for relatively weak magnetic fields to
complicated, 3-D structures for strong magnetic fields. Here we will be
concerned only with non-magnetically dominated systems. These can be
roughly subdivided in two categories.

In nova systems, the accretion rate is constant over long periods of time
(years to decades), while mass accumulates on the surface of the white
dwarf. When the pressure and temperature are sufficient to start nuclear
fusion, a nuclear runaway in the envelope triggers an explosion, the nova,
which can increase the luminosity by some 2-6 orders of magnitude. The
disk is completely disrupted and has to re-form, after which the normal
accretion state is resumed. As the period between outbursts is long, and the
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luminosity of the system can be dominated by the disk luminosity during

these periods, these are the most interesting systems for studying steady

state disks.

Sub-nova or dwarf nova systems are less extreme, with the outbursts

being related to periods of increased accretion rather than thermonuclear

runaway, and the variation of the luminosity is consequently less spectacu-

lar. The occurrence of sub-novae is, however, much more frequent (days or

weeks), and during the outbursts several interesting phenomena have been

observed, related to the configuration and dynamics of the accretion disk.

These are therefore interesting systems for studying the time dependent

behavior of the disk.

The variability of CVs seems to be an essential part of their behavior,

and during outbursts variability on many time scales has been observed.

Some of these are associated with inhomogeneities in the disk (clumping),

and instabilities in the dynamics of the disk (i.e. superhumps, etc., see

Warner 1995), indicating that these disks are not always homogeneous and

cylindrically symmetric.

In addition, P-Cygni profiles have been observed coming from CV sys-

tems, suggesting there is a substantial wind coming from the disk (Heap et.

a1 1978, Greenstein & Oke 1982, Cérdova & Mason 1982) with a terminal

velocity corresponding to the escape velocity of the white dwarf. The forma-

tion of the emission lines is not yet fully understood and requires detailed,

self-consistent modelling of the entire system.

For simplicity, however, we will concentrate on a time averaged disk

structure of a nova system only, which is assumed to be in a steady state,

cylindrically symmetric, non-magnetically dominated, have a constant ac-

cretion rate and does not have a wind.

5.2.1 CV disk structure

Although the vertical structure of a disk is usually very important from an

observational and diagnostic point of view, if the vertical height of the disk

is much less than the inner radius of the disk, the radial structure can be

conveniently derived by vertically integrating the density. The density of

the disk can then be expressed as a surface density, p, so that the continuity

equation, expressing conservation of mass, becomes

6p -> _6p 13 _

in polar coordinates, assuming cylindrical symmetry.
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Similarly we can write the conservation of angular momentum, l = r x

(W), as
2

6;;th + %%r (pr2flvr)) i = Q i (5.2)
61 —+
a+V-(l®v)—(

where 2 is the unit vector in the z-direction and Q is a viscous torque term

(Frank, King & Raine, 2002)

 

_ 1 a 3m
0—;51’107' 5; (5-3)

The time independent simultaneous solution of (5.1)-(5.3) can be found by
setting B/at = 0, so that (5.2) becomes

1‘ (przflvr) = uprsg—i‘z + C. (5.4)

The value of C can be found by assuming that the Keplerian velocity at
R* is greater than the rotation velocity of the star, and that the boundary
layer at which the velocity departs from Keplerian is thin compared to R...
We can then assume that there is a point where

anE |,=R_ = 0 and n z agar.) (5.5)

so that

0 = —%\/GMR*. (5.6)

with m: —21r1-pvr is the accretion rate. Substitution of a Keplerian value
for Q in (5.4) gives

  

P _ 31w 3m/GMr _ 31w 1‘ '

All we need now is a description for the disk viscosity, :1, to derive the ver-
tically integrated mass density for a thin disk. A famous parameterization,
by Shakura 85 Sunyaev (1973), is the a-parameterization

u = ac,H (5.8)

where c, is the local sound speed and H the height of the disk. Assuming
a simple parameterization for the opacity, the structure of the Shakura-
Sunyaev solution to the disk problem can be analytically determined.
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Another approach (Lynden-Bell & Pringle, 1974) is to regard the viscos-

ity as resulting from turbulence of some sort. Given the molecular viscosity,

the value of the Reynolds number for typical disks assuming molecular vis-

cosity only is
0R2 3

Re = >> Rec z 10 , (5.9)
Vmol

where Rec is the critical Reynolds number beyond which the flow will be-
come turbulent. The critical value of around 103 is found from experience

with laboratory fluid dynamics.
We can thus safely assume that the disk is turbulent and that the tur-

bulent viscosity dominates all other sources of viscosity. If we assume that
the turbulence can somehow gain energy fi'om the shear in the disk flow, it
will grow until the turbulent viscosity is large enough for the viscous energy
dissipation to balance the energy input. This is exactly the case for the
critical Reynolds number, Rec, so that the viscosity can be found from

9R2

Rec

Although given the viscosity the radial structure of the disk is known,
the vertical structure still needs to be calculated. This cannot be done in a
similar Way to calculating a stellar atmosphere for two important reasons.
Firstly the optical thickness of the disk is not infinite, and secondly energy
is generated inside the disk structure, whereas in the stellar case it is only
flowing through the atmosphere.

The result is that, since energy is released throughout the disk structure,
the surface layers of the disk are heated and a hot corona and an outflow
are formed. The dynamics and structure of the wind are an active field of
research, and much progress has recently been made. Pereyra, Kallman &

Blondin (1997) and more recently Perreyra & Kallman (2003) made time-
dependent models of CV disk structures and their winds and concluded that
there was a supersonic outflow from the central regions of the disk colliding
with the wind from the disk, producing a shock front above the disk.

However, line profiles calculated from these structures are currently not
able to reproduce observed line profiles (Proga, Kallman, Drew & Hartley
2002). Clearly, the structure is multidimensional and to model it a detailed
multidimensional treatment of the radiation transfer is needed. This is
presently not possible due to limitations in numerical resources, so that

alternative methods are employed here.
We will adopt the commonly made approximation for disks, that the

radial optical thickness of the disk is much larger than the vertical one and
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that there is no wind. The disk can then simply be approximated by a series
of 1-D solutions, each of which can be calculated in great detail.

For simplicity we neglect the boundary layer, connecting the disk to the
star. This is not necessarily appropriate, as about half of all the gravi-

tational potential energy of the material originally falling into the disk is
converted to kinetic energy at the inner boundary and a substantial portion
of this energy is radiated away in the boundary layer. Due to the large dif-
ference in the disk temperature and the temperature of the boundary layer,
the two contributions can usually be separated easily, so that we do not
consider its contribution here, but we concentrate on the disk itself instead.

5.3 CV Disk model atmospheres

For the present calculations, CV disk models were taken from the grid of
models calculated by Wade & Hubeny (1998), computed with the program
TLUSDISK (Hubeny, 1990).

In these models, the radial density structure was calculated from (5.7)
and (5.10), assuming a critical Reynolds number of 5000, and an effective
temperature distribution, constraining the total flux at the surface, from

Pringle (1981)

Teff(r) = T*$_% (1 - $—%)i’ (5.11)

where :1: = r/R* and

M,. m R...
T... —64800Kx [(IMO) (10_9M®y_1) (109%)]. (5.12)

On a number of “rings”, sufficient to resolve the radial variations ac-
curately, the vertical density and temperature structure was calculated by
solving the hydrostatic equilibrium equations in a 1-D plane-parallel geom-
etry, assuming LTE. Energy balance was enforced between the radiative
losses at the surface and the viscous heating, distributed throughout the
vertical extent of the disk.

The irradiation by the central star was not included in the model struc-
ture, which is a reasonable approximation for the structure, as the energy
released inside the disk is much larger, provided the central star is not very
hot. There may, however, be a significant irradiation effect of the radiation
of the central star on the source function at the surface of the disk, so that
for calculating the source function it is included.
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The 2-D structure was compiled from a series of 1-D solutions provided
by the TLUSDISK program. Since the points in the z-direction are different
for all models, they need to be interpolated to a rectangular grid. Also,
structural quantities are needed in regions where they are not provided.

To represent a disk of this type on a rectangular grid is not as easy as it
may seem, as all vertical structures for all radii considered must be simulta-
neously resolved accurately by the vertical grid. Moreover, the part of the
atmosphere where the resolution is most crucial, the photosphere, is not in

the same vertical location for all radii. Although most vertical structures
require a minimum of about 50 points, we have no more than about 100

vertical points to resolve the vertical structure for all radii simultaneously,

so that sacrifices have to be made regarding the resolution.

The outer boundary of the disk cannot be taken from the 1-D structures,
as an infinitely extended atmosphere was assumed in the r and (,0 directions
to calculate them. This is obviously not true near the outer edge of the disk,
and some solution for the structure needs to be found here. Since there are
no good descriptions for this, a simple solution was employed, by rotating
the vertical structure of the outermost ring with radius R around the point
(R, 0), thus creating the outer half of a toms with a radial structure equal
to the vertical structure of the outermost ring (Hubeny & Plavec, 1991).
Although this method has no firm theoretical basis, it should be approxi-
mately correct and the contribution of this part of the disk to the emitted
radiation is usually small and will thus not severely affect the results.

Since, on the grid, we are dealing with the disk only, irradiation of the
disk by the central star and boundary layer need to be included by applying
the appropriate boundary conditions. Since the star and the boundary layer
extend above the disk, this needs to be done on two sides of the computa-

tional grid: the inner and the top boundaries. Although the temperature
of the boundary layer is not known, for simplicity, we assume the incom-
ing intensity at the boundaries to be equal to the Planck function, with a

Tefl' = 10° K. The precise temperature is not very important, as the irra-

diation of the disk was found to be unimportant in all the cases presented

here.

The line and continuum opacities were calculated as in §4.3.1, although
the level populations should be calculated from first principles for more

accurate results.

Finally, the rotational velocity was assumed to be Keplerian

Gde

1.
 v¢(r) = (5.13)
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and, for simplicity, a representative radial velocity of 10 krns‘1 was as-
sumed.

5.4 Results

We calculated the 2-D structures for Wade & Hubeny (1998) models p and
m. Although they are LTE models, line transfer can be done in NLTE on
these structures, providing some insight in the NLTE line formation in these
systems and the importance of NLTE effects for the emergent line profiles.

Since the turbulent velocities underlying the disk viscosity and the mech-
anisms generating them have still not been clearly identified, we considered
a constant turbulent velocity of 100 kins—1.

We considered three line strengths, a and b, with lower level population
of 10‘6 and 10‘4 times the total ion number density respectively. These
correspond to continuum to line opacity ratio, rd, of approximately 5 ' 104
and 5 - 106 respectively, which corresponds to the strongest lines, such as H
La and the C-IV resonance lines at 1550 A.

The calculations were carried out on 50 2 GHz PCs, taking about 10
hours (15 minutes per ALI for approximately 40 iterations) to convergence.
We used a cylindrical grid with N. x N, = 80 x 96 spatial points and
No x N, = 13 x 40 angular points, distributed homogeneously over the
41r solid angle. The stopping criterium is set to be a maximum relative

change of any quantity anywhere on the grid less than 10‘3 between two
consecutive ALI.

5.4.1 Model p

As a first choice, we selected model p, in the middle of the parameter space
of the grid of model atmospheres calculated by Wade & Hubeny (1998).
The mass of the white dwarf and the accretion rate are typical for those
found in CV systems, about 0.8 MG and 3.1 - 10‘1°M@y‘1 respectively.
The continuum optical thickness of the central part of the disk is ~ 40, and
the radial optical thickness ~ 2000.

We only considered line strength b, as the NLTE effects for weaker lines
were expected to be qualitatively similar and not very large.

5.4. 1.1 Line formation

For calculating the emergent line profile, the code presented in Chapter 3
was used. Due to the geometry of the structure, the distribution of the
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points in each image was concentrated in rings, so that many points are
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Figure 5.1: Line profiles for model p, with Kurt, = 100 Isms—1, for 0°, 5",

10°, 30°, 60° and 80° inclination. The change in the slope of the continuum

with inclination angle is the result of limb darkening.

needed to obtain an accurate answer. On average, to obtain an accuracy of

around 0.01, 10000-20000 points per monochromatic image were needed.

To accurately take the obscuration of the disk by the star into account,

the primary star was replaced with a non-radiating, absorbing sphere. Al-

though for large inclination angles, the contribution of the star may, become

important, this is not taken into account in the line profiles.

For a large range of inclination angles (210°), the formation of the

line is completely dominated by the effect of the rotation. The projected

rotation velocity is large enough to produce a characteristic double peaked

line profile, as can be seen in Figure 5.1.

The monochromatic snapshots provided by the code, can provide some

insight in the formation of this line profile. In Figure 5.2, monochromatic

snapshots are plotted for several frequencies around the central frequency

of a spectral line with strength b for disk model p.

Apart from the obvious bright central part of the disk, dark bands can be

seen, the position and shape of which clearly depend on the frequency. The

dark bands are regions of the disk where the rotational velocity, projected

onto the line of sight, is such that we see the disk locally at or close to

the line frequency yo, i.e. ”ply-01' = c(u — u0)/uo. The increased opacity,
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Figure 5.2: Monochromatic snapshots of model p, in a spectral line (top),

with Vturb = 100 km 3—1, at 60° inclination. The logarithm of the normalized

monochromatic intensity is plotted as a gray scale. The ‘rings’ visible on

the surface are partly the result of inaccuracies in the solution due to the

limited radial resolution.
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combined with the decreasing source function with decreasing optical depth

in the atmosphere, produces the usual darkening, as we are used to in most

line profiles from optically thick, plane-parallel objects.

From the snapshots, it is clear why the effect of the line becomes weaker

with increasing inclination angle: the fraction of the disk darkened by the

line at any one frequency depends on the spectral width of the line as well

as on the projected velocity gradients across the surface. Although the

former is generally constant, the latter are not, but increase strongly with

inclination angle.

Note that since, at large inclinations, the entire line profile is included

in every monochromatic image, the shape of the emergent static line profile

is not very important in the observed line profile, but only the equivalent

width of the line is. It is therefore likely that NLTE effects that do not alter

the strength of a line much are only observable for low inclination systems.

5.4.1.2 Effect of differential rotation

In Figure 5.3, the emergent line profiles are plotted for line strength b at 0°

and 5° inclination for the same disk structure, but assuming LTE, NLTE

without differential rotation and NLTE including differential rotation, when

calculating the source function. In the line profile synthesis the rotation is

fully taken into account in all three cases.

The effect of differential rotation on the source function is seen to be

quite large, with the core flux of the line increasing by 50% at 0° inclination

with respect to a NLTE treatment without differential rotation. However,

already at 5° inclination, the effect of differential rotation on the line profile

has all but disappeared.

The radiation forces are plotted in Figure 5.4. The dominant force is

clearly in the z direction, dominating the radial force by some 2 orders of

magnitude. This seems to be consistent with a semi l-D approach. The

tangential radiation force is much smaller than the other forces and can be

assumed completely unimportant, at 4 to 5 orders of magnitude below the

radiation force in the z direction.

Apart from a brightening of the inner core of strong resonance lines, no

evidence was found for strong multidimensional effects or strong effects of

differential rotation on the disk structure, probably due to the lack of im-

portant NLTE effects in the atmosphere. The importance of the differential

rotation for the NLTE effects that were found indicates that a multidimen-

sional treatment of the radiation field may be very important for disks with

extended outflows, where NLTE effects can be expected to be much more
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Figure 5.3: Line profiles for model p, line strength b, for 0° (top) and
and 5° (bottom) inclination for a source function calculated in LTE, NLTE
without difl'erential rotation and NLTE including differential rotation. The
rotation is taken into account in all line profile calculations. The influence of
NLTE effects is decreasing strongly with inclination angle and the influence

of rotation deceases even faster.
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important.

5.4.2 Model m

As for model p, the mass of the white dwarf for model m is typical for those
found in CV systems, about 0.8 MG), but the accretion rate is somewhat

lower, at 3.10":l1 MO y‘l. The model is significantly cooler than model p, so
that the density decreases faster in the vertical direction, and subsequently
the total optical thickness of the disk in the continuum is much lower (~ 8).

Although the NLTE effects found for line a were almost as large as for
model p line strength b, at ~40% darker for NLTE than for LTE at 0°

inclination, the brightening due to differential rotation was much smaller,

~2.5% at 0° inclination, and it completely disappeared at 5° inclination, as
can be seen in Figure 5.5.

The source function, displayed in Figure 5.6 (top), shows an anomalous,
strong rise in the inner region, entirely due to the influence of the differ-
ential rotation, of about 2 orders of magnitude. Outside the anomalous
region, the differences between the non-rotating and the differentially ro-
tating source functions is large, with relative differences of more than 100%
in the outermost regions.

Since the anomalous region was found in all calculations attempted for
model m, independent of the grid density or the spatial subdivision, and it
was found to be a stable feature up to a maximum relative change in the
source function of 10‘3 for line strength a, it is likely that it is a real feature
rather than a numerical artifact. If this feature persists in disks with winds,

the effect of it on the emergent line profile could be large. This needs to be
confirmed in future calculations.

Attempts to calculate the source function for line strength b failed to
converge, possibly due to the limited accuracy of the code. This could
result in an overestimate of A* due to the large continuum to line opacity
ratio. This, however, seems unlikely, as a change of grid density and angle
density had no influence on the convergence. Another possibility is that
some intensity depends almost entirely on itself, thus introducing poorly
determined intensities that can take on an arbitrary value.

In both cases, an substantial outflow eminating from the surface of the
disk would probably eliminate the problem by increasing the opacity in the
anomalous region, hence making it easier to converge the source function.
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Figure 5.5: Line profiles for model m, line strength a, for 0° (top) and

and 5° (bottom) inclination for a source function calculated in LTE, NLTE

without difi'erential rotation and NLTE including differential rotation. The

rotation is taken into account in all line profile calculations. As for model p,

the influence of NLTE efi'ects is decreasing strongly with inclination angle.
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Figure 5.6: Line source function in the differentially rotating (top) and
non-rotating (middle) case, for model m, line strength a. The ratio
(31,,“ /S¢,non_mt) — 1 is plotted in the bottom figure, indicating significant

difi'erences in the optically thin regions of the disk, due only to difierential
rotation.
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5.5 Conclusion

We calculated the NLTE line profiles of some strong resonance lines on an

LTE structure in the disks of cataclysmic variables. The NLTE effects on
the line profile were found to darken the core of the line by a factor of about

0.6 at 0° inclination, sharply decreasing with inclination angle. The NLTE

effects disappears completely for inclination angles larger than about 10°.
The effect of differential rotation on the NLTE effects was found to be of

the same order of magnitude as the NLTE effects themselves, significantly

brightening the core of strong lines at low inclination angles. The effect of
differential rotation on weaker lines was found to be much smaller.

Although the effect of treating strong lines in NLTE is negligible for large
inclination angles, the NLTE effects on the structure of the atmosphere have
been found to be quite significant (Hauschildt et. al., 1997). The results
presented here indicate that such calculations need to explicitly include the
effects of the differential rotation of the disk to ensure accurate results,

which in turn leads to a multidimensional treatment.
This is even more true in the case of disks with winds, where the atmo-

sphere is much more extended in the vertical direction, and thus multi-D

and NLTE effects are inherently more important.
The effect of differential rotation on the radiation force was found to

be negligible. The tangential radiation force, fit»: was found to be 4 to

5 orders of magnitude smaller than the radial or vertical radiation force.
Furthermore, the vertical radiation force was found to dominate the radial
force by 2 to 3 orders of magnitude, so that a radiatively accelerated wind

is likely to move perpendicular to the disk.
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Chapter 6

Summary

In this thesis, the multidimensional radiative transfer effects were inves-

tigated for two classes of objects for which multidimensional effects are

expected.

First we developed a 2-D radiative transfer code that can solve the

transfer equation in the 2-level atom formalism in Cartesian, cylindrical

and spherical coordinate systems, the latter two with rotational symmetry.

We used the short characteristics scheme, to reduce the numerical load of

the code, together with accelerated lambda iteration (ALI), while using the

locally comoving frame formulation. The short characteristics scheme was

adapted to handle variations of the various local quantities due to curvature

of the geometry as well as due to large velocities.

The code was parallelized to enable the use of the code for realistic

problems on networked clusters of computers. This was done by spatially

splitting the problem in sub-domains. This method proved to be stable and

efficient for many astrophysically interesting problems.

The accuracy of the short characteristics scheme was tested for a variety

of test problems, by calculating problems in 1-D and in 2-D in different

coordinate systems. The accuracy of the code was shown to be of order

1-2% in static cases, and of order 5% in slowly moving structures.

A code was also developed for generating line profiles on 2-D structures,

given the source function, using the long characteristics method and an

adaptive mesh refinement (AMR) method for maintaining sufficient accu-

racy. This code was found to be very accurate (better than 1%), provided

the source function is accurate.

Both codes were then applied to the problem of differential rotation in

135
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stellar winds. The atmosphere of a typical star of spectral type B was
calculated approximately, after which the source function, line profile and
radiation forces were calculated. The effect of the rotation on the line
profiles was found to be remarkably small, with typical changes over a range
in line strength of 4 orders of magnitude of no more than ~ 20%, even at
90% of the breakup velocity, resulting in an equatorial expansion of the star
of about 25%. Also, the approximate method of broadening a spectral line
for a given rotation velocity was found to be useful up to 90% of the breakup
rotation rate, for modest inclination angles. Only for large inclination angles
are the effects of the rotation on the line profiles significantly different from
rotationally broadened line profiles to justify a more thorough investigation.

The latitudinal radiation force, calculated with the 2-D short character-

istics code, were found to be directed toward the poles. For the strongest
lines calculated here, the force was at most around 20% of the radial radia-

tion force, and must be considered dynamically important for the dynamics
of the wind, as it is not balanced by the gravity as is the case for the
radial radiation force. The latitudinal component of the wind was found
to be mostly due to the physical deformation of the wind structure itself
rather than due to the differential rotation of the structure, and is therefore
likely to be sensitive to a self-consistent treatment of the structure and the
radiation field.

The tangential radiation force was found to be typically of order 2-5% of
the radial force, and was not found to depend strongly on the line strength.
It is directed against the direction of rotation, and thus works to decrease
the rotation velocity of the wind. This force is unlikely to be dynamically
important,as it is relatively small compared to the dominant forces in the
wind.

6. 1 Conclusion

The results from chapters 4 and 5 show that a multidimensional treatment
of the radiation field is needed in order to calculate accurate spectra for some

extended objects. The small changes for the line formation in rotating winds
is surprising, and should serve as a warning that things may not be what
they appear at first sight. Although the flux levels are 1.5 times higher
for a fast rotating star than for a non-rotating star, when viewed pole-on,
the differences in the observed line profiles are unlikely to be unambiguously
attributable to the rotation alone. However, by increasing the level of detail,

it may be possible to constrain the configuration further.
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The precise effects of rotation on the structure of these winds is diffi-

cult to estimate without a more self-consistent approach to calculate the

wind structure, but given the magnitude of the non-radial radiation forces,

significant structural changes are likely.

The NLTE effects in disks are clearly larger, although the effect of them

on the line profiles is largely lost due to the large rotational broadening in

all but systems observed at low inclination. Significant changes in the line

profiles of strong lines can be expected when vertical outflows are included,

and this will be investigated in future work.

6.2 Future work

The development and subsequent application of the 2—D radiative transfer

code, presented in chapter 2, has shown that there is a wide gap between

the development of this type of code and the application of it to realistic as-

trophysical problems. Resolution is the key aspect prohibiting a widespread

application of the code to many problems of interest.

Future codes may deal with these problems by using

c a more flexible grid (a triangular grid method has been recently im-

plemented by Vinkovic Ivezic & Elitzur 2002) or even no grid at all.

Surfaces of constant value of quantities may be represented by a num-

ber of triangles. If efficient methods can be developed to determine the

optimum position of the points, the number of points may be greatly

reduced.

0 automatic resolution management in all dimensions (spatial, angular

and frequency), for instance based on AMR techniques;

0 optimizing the method for parallelization, i.e. a more expensive method

may be used if it is possible to parallelize more efficiently, depending

on the available CPU time;

Although it is unlikely that any of these properties come at no additional

cost, the reduction of the number of grid points may well lead to a reduction

of the total cost. Implementing them will, however, very likely lead to

improved stability and accuracy of the code.

Finally, a more detailed treatment of atomic data and energy balance is

needed to generate more detailed model atmospheres. This will gradually

improve as the available computer speed improves.
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