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Abstract

Expert forecast combination—the aggregation of individual forecasts from multiple subject-matter experts—

is a proven approach to economic forecasting. To date, research in this area has exclusively concentrated on

local combination methods, which handle separate but related forecasting tasks in isolation. Yet, it has been

known for over two decades in the machine learning community that global methods, which exploit task-

relatedness, can improve on local methods that ignore it. Motivated by the possibility for improvement, this

paper introduces a framework for globally combining expert forecasts. Through our framework, we develop

global versions of several existing forecast combinations. To evaluate the efficacy of these new global forecast

combinations, we conduct extensive comparisons using synthetic and real data. Our real data comparisons,

which involve expert forecasts of core economic indicators in the Eurozone, are the first empirical evidence

that the accuracy of global combinations of expert forecasts can surpass local combinations.

Keywords: Forecast combination, local forecasting, global forecasting, multi-task learning, European

Central Bank, Survey of Professional Forecasters

1. Introduction

Forecast combinations—aggregations of multiple individual forecasts—are one of the most persistently

reported empirical successes in forecasting. As a key economic institution, the European Central Bank elicits

economic forecasts every quarter for the Eurozone from more than one hundred forecasters, an exercise known

as the Survey of Professional Forecasters (SPF). Each forecaster has unique expertise, and some possess

private information, so combining is a means to a more accurate and robust projection of the economy than

any one forecaster could alone produce. For this reason, the Federal Reserve Bank of Philadelphia runs a

similar survey by the same name for the United States. Exactly how to combine forecasts from these surveys

is a long-standing problem.

Bates and Granger (1969) and later Newbold and Granger (1974) and Granger and Ramanathan (1984)

linearly combined forecasts using variance-minimising weights constrained to sum to one—so-called optimal
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weights. When the forecasts are unbiased, these weights are optimal in a mean square error sense. In

practice, however, they are often beaten by equal weights, a curious phenomenon Stock and Watson (2004)

called the ‘forecast combination puzzle’. This puzzle, explained theoretically by Claeskens et al. (2016), has

spurred a formidable research effort to devise improved weighting schemes. Hansen (2008) studied weights

that minimise Mallow’s criterion, which adds a penalty for complexity. To guarantee a convex combination,

Conflitti et al. (2015) added a restriction to prevent negative weights. Matsypura et al. (2018) performed a

combinatorial search for the best subset of forecasts to equally weight, and a similar method was proposed in

Diebold and Shin (2019) using an l1-norm penalty. To handle highly correlated forecasts, Radchenko et al.

(2021) allowed negative weights but subjected them to a trimming threshold. For other examples in this

line of work, see Yang (2004), Aiolfi and Timmermann (2006), Capistrán and Timmermann (2009), Poncela

et al. (2011), Genre et al. (2013), Bürgi and Sinclair (2017), Kourentzes et al. (2019), and Qian et al. (2022).

Common to all of the above papers is a focus on using local information to fit the weights, i.e., information

that only concerns the forecast target. When just one variable needs forecasting, this approach is sensible.

However, it is rare in economics to forecast only a single variable. Instead, forecasts of multiple variables are

needed to paint a detailed picture of the economy, core examples being growth, inflation, and unemployment.

In addition, policymakers often require forecasts of the economy at different time horizons to facilitate

planning. The European Central Bank SPF indeed captures forecasts of multiple variables at multiple

horizons, and each variable-horizon pair constitutes an individual forecasting task. Yet, these tasks are not

independent; rather, they are highly related. For instance, Okun’s law stipulates a strong negative correlation

between growth and unemployment (Okun, 1962). The Phillips curve sets forth a similar relationship

between unemployment and inflation (Phillips, 1958). It is not unrealistic to expect then that a forecaster’s

competence in predicting one variable might contain some signal about their competence in predicting

another. This possibility motivates us to consider forecast combinations derived from global information

shared across related tasks.

The idea of sharing information between prediction tasks emerged during the 1990s in the machine

learning community, where it is known as multi-task learning (Caruana, 1997). A vast literature now exists

on multi-task learning owing to its success; the interested reader is referred to Zhang and Yang (2021) for

a comprehensive survey. Research in the forecasting community itself has lately trended towards multi-task

learning (Laptev et al., 2017; Salinas et al., 2020; Godahewa et al., 2021; Montero-Manso and Hyndman,

2021). In the 2018 M4 competition, global methods that shared information across forecasting tasks took

out the top-three places (Makridakis et al., 2020). Of these three, the second-place method by Montero-

Manso et al. (2020) bears some relation to this work. Their method combined forecasts from a handful of

classic time series models using weights from gradient boosted trees. The trees were grown on thousands of

time series, enabling weights to be learned across tasks. Though similar, their problem is distinct from the

expert forecast combination problem treated in this paper. Whereas Montero-Manso et al. (2020) combined
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a small number of forecasts for a large number of tasks, we combine a large number of forecasts for a small

number of tasks. Elaborate models like boosted trees are not feasible in our setting.

In light of the preceding discussion, this paper proposes a new framework for globally combining expert

forecasts. Our framework minimises a global loss function comprised of individual forecasting tasks. The

framework is adaptable to the degree of relatedness among the different tasks. Specifically, using a task-

coupling penalty, we interpolate between fully local combination, where all tasks are heterogeneous, and

fully global combination, where all tasks are homogeneous. The best interpolation is determined in a data-

driven fashion. Via this framework, we ‘globalise’ the weighting schemes of Bates and Granger (1969),

Conflitti et al. (2015), and Matsypura et al. (2018). We then evaluate the new global combinations in both

simulation and an application to the European Central Bank SPF. The results indicate neither fully local

nor fully global combination uniformly performs best. Instead, combinations that lie somewhere between

these extremes typically lead to the best out-of-sample performance.

The paper is organised into six sections. Section 2 introduces the proposed framework for globally

combining expert forecasts. Section 3 addresses computation of the new combinations. Section 4 presents

numerical experiments that gauge the benefits of globalisation. Section 5 describes empirical comparisons

of the new methods in application. Section 6 closes the paper.

2. Global forecast combinations

2.1. Single-task forecast combination

To set the scene for our framework, we first describe the traditional single-task forecast combination

problem. Let y ∈ R be the forecast target and f = (f1, . . . , fp)
> ∈ Rp be forecasts of y. Denote by

e = y1 − f the forecast errors. It is customary to assume the errors satisfy E(e) = 0 and Var(e) = Σ,

where Σ is a p × p positive-definite matrix. Consider the linear combination forecast f̃ = f>w, where

w = (w1, . . . , wp)
> ∈ Rp are unit sum weights controlling the contribution of individual forecasts to the

combination forecast.

Since the forecasts are unbiased and the weights sum to one, the mean square error minimising forecast

combination is that which minimises the combination forecast error variance Var(e>w) = w>Σw. This

minimisation is performed with respect to a constraint set W:

min
w∈W

w>Σw.

The simplest configuration of the constraint set is Weql = {1/p}, yielding equal weights. Using Wopt =

{w ∈ Rp : 1>w = 1} leads to optimal weights as proposed by Bates and Granger (1969). The constraint

set Woptcvx = {w ∈ Rp : 1>w = 1,w ≥ 0}, as studied by Conflitti et al. (2015), adds a nonnegativity

condition to guarantee a convex combination. The resulting weights are referred to hereafter as optimal
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convex weights. A more elaborate configuration, Wopteql = {w ∈ Rp : 1>w = 1,w = z/(1>z), z ∈ {0, 1}p},

produces equal weights restricted to an optimal subset of forecasts. These weights were investigated by

Matsypura et al. (2018) and are referred to hereafter as optimal equal weights. Here, z is a vector of binary

variables zj (j = 1, . . . , p) which assume the value one if a forecast is selected for inclusion in the combination

and zero otherwise. The constraint w = z/(1>z) guarantees the selected forecasts are equally-weighted.

Other weighting schemes can also be cast in this setup by appropriately choosing W.

When the covariance matrix Σ is large-dimensional and estimated from data, it can be helpful to include

a ridge penalty (Hoerl and Kennard, 1970) in the objective function (Roccazzella et al., 2022):

min
w∈W

w>Σw + λ‖w‖2, (1)

where λ ≥ 0. The objective can be rearranged as w>(Σ+λI)w, so the ridge penalty has the effect of shrink-

ing the covariance matrix towards the diagonal matrix I, thereby stabilising the objective. Though there

exist numerous covariance estimators that explicitly perform shrinkage (Ledoit and Wolf, 2004; Schäfer and

Strimmer, 2005; Touloumis, 2015), these do not accommodate missing data. Missing data is an important

empirical consideration, discussed further in Section 5. On the other hand, it is straightforward to mimic

the effect of shrinkage by plugging a standard missing-data covariance estimator into (1). Under all the

aforementioned configurations of W, the limiting shrinkage case (λ → ∞) leads to equal weights as the

optimal solution.

2.2. Multi-task forecast combination

The problem described above concerns one forecasting task y. Suppose now we have multiple tasks

y = (y(1), . . . , y(m))> ∈ Rm. The m tasks may comprise, e.g., different variables or different forecast

horizons. We index all quantities relating to the kth component by superscript (k). Hence, the combination

forecast f̃ = (f̃ (1), . . . , f̃ (m))> ∈ Rm has elements f̃ (k) = f (k)>w(k), where f (k) = (f
(k)
1 , . . . , f

(k)
p )> and

w(k) = (w
(k)
1 , . . . , w

(k)
p )>. The errors are e(k) = y(k)1− f (k) with Var(e(k)) = Σ(k).

Though the multi-task setup is typical of economics, research to date has treated the tasks in isolation,

using weights fit on a per-task basis:

min
w(1),...,w(m)∈W

m∑
k=1

(
w(k)>Σ(k)w(k) + λ‖w(k)‖2

)
. (2)

This combination is local because the individual tasks are in no way linked, i.e., solving optimisation problem

(1) for each task individually leads to the same weights as solving optimisation problem (2). Information

from one task that might be relevant to other tasks is neglected. Instead, one can consider a single vector

of weights that is a minimiser of the total loss across all tasks:

min
w∈W

m∑
k=1

(
w>Σ(k)w + λ‖w‖2

)
. (3)
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This combination is global insofar as the resulting weights take into account information contained in all

tasks. Since the loss term in the objective can be expressed equivalently as w>(
∑m

k=1 Σ
(k))w, this approach

can be interpreted as averaging over the task-specific covariance matrices. When the covariance matrices are

estimated by the sample covariance matrix, averaging is the same as estimating a single covariance matrix

after aggregating data from different tasks. Unfortunately, an implicit assumption underlies this approach

that the tasks are completely homogeneous. This assumption might be unreasonably strong in practice and

could harm forecast performance.

Rather than committing to a fully local or fully global approach, one can consider bridging the two

approaches using per-task weights that are globally regularised:

min
w(1),...,w(m)∈W

w̄∈Rp

m∑
k=1

(
w(k)>Σ(k)w(k) + λ‖w(k)‖2 + γ‖w̄ −w(k)‖2

)
. (4)

Here, the regulariser γ
∑m

k=1 ‖w̄ −w(k)‖2 with γ ≥ 0 is a device to incorporate global information into the

per-task weights. It achieves this goal by smoothly penalising departures from an auxiliary weight vector

w̄ common to all tasks. Taking γ → ∞ yields global combination (3), while taking γ → 0 yields local

combination (2). Hereafter, we refer to the limiting case γ → ∞ as ‘hard’ global combination, and the case

with finite non-zero values of γ as ‘soft’ global combination. These different cases are depicted in Figure 1.

The value of γ should reflect the degree of relatedness among tasks—larger values encourage homogeneity,

(a) Local combination

f (1) 〈·,w(1)〉 f̃ (1)

f (2) 〈·,w(2)〉 f̃ (2)

...
...

...

f (m) 〈·,w(m)〉 f̃ (m)

(b) Hard global combination

〈·,w〉

f (1) f̃ (1)

f (2) f̃ (2)

...
...

f (m) f̃ (m)

(c) Soft global combination

f (1) 〈·,w(1)〉 f̃ (1)

f (2) 〈·,w(2)〉 f̃ (2)

...
...

...

f (m) 〈·,w(m)〉 f̃ (m)

γ

γ

Figure 1: Global and local forecast combination frameworks. The notation 〈x,y〉 = x>y represents the dot product of two

vectors x ∈ Rp and y ∈ Rp. Local combination learns different weight vectors for each task independently of other tasks. Hard

global combination learns one weight vector for all tasks. Soft global combination learns different weight vectors for each task

while sharing information between tasks.

while smaller values promote heterogeneity. The best value in terms of out-of-sample forecast performance

is usually unknown in application but is estimable from data.
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2.3. Alternative formulations

The optimisation problem (4) can be cast solely in terms of the per-task weights w(1), . . . ,w(m):

min
w(1),...,w(m)∈W

m∑
k=1

(
w(k)>Σ(k)w(k) + λ‖w(k)‖2

)
+Ωγ(w

(1), . . . ,w(m)),

where

Ωγ(w
(1), . . . ,w(m)) = min

w̄∈Rp
γ

m∑
k=1

‖w̄ −w(k)‖2. (5)

Regularisers like Ωγ , which penalise departures from a common parameter vector, first appeared in the con-

text of multi-task kernel learning (Evgeniou and Pontil, 2004; Evgeniou et al., 2005). When the departures

are measured as sums of squared deviations, it is not difficult to obtain a closed-form solution:

Ωγ(w
(1), . . . ,w(m)) = γ

m∑
k=1

∥∥∥∥∥ 1

m

m∑
l=1

w(l) −w(k)

∥∥∥∥∥
2

.

That is, the optimal value of the common parameter vector w̄ is the average of the individual parameter

vectors w(1), . . . ,w(m). One can thus interpret our approach as finding per-task weights within a certain

distance of the average weight vector. Some additional algebra gives an alternative expression for Ωγ :

Ωγ(w
(1), . . . ,w(m)) =

γ

m

m∑
k=1

k∑
l=1

‖w(l) −w(k)‖2.

This expression highlights that our approach explicitly penalises the distance between every weight vector.

Our experience is that formulating soft global combination using either of the above analytical solutions

yields computational performance similar to that of (4), provided the number of tasks m is not large. When

m is large, these closed-form solutions lead to many more quadratic terms in the objective, which can impede

computation.

2.4. Task grouping

Sometimes it can be useful to limit the flow of information between certain tasks, e.g., when one or more

tasks are unrelated. For this purpose, denote by G := {G1, . . . ,Gg} a collection of g groups of tasks, where

Gl ⊆ {1, . . . ,m}, G1 ∪ · · · ∪ Gg = {1, . . . ,m}, and Gl ∩ Gk = ∅ for all l 6= k. Using this notation, one can

modify Ωγ to impose the restriction that only tasks within the same group share information:

Ωγ(w
(1), . . . ,w(m)) = min

w̄(1),...,w̄(g)∈Rp
γ

g∑
l=1

∑
k∈Gl

‖w̄(l) −w(k)‖2,

where w̄(l) is an auxiliary weight vector for the lth group. When G consists of just one group, this grouped

version of the regulariser reduces to (5). Conversely, when G consists of m groups, the grouped regulariser has

no globalisation effect, i.e., it leads to local combination. The grouped version is helpful in our application

to the SPF data in Section 5 where we study different groups of variables and forecast horizons.
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2.5. Task scaling

If the tasks under consideration vary in difficulty, one or more tasks might dominate the objective

function. To prevent this behaviour, we consider a scaled version of global combination:

min
w(1),...,w(m)∈W

m∑
k=1

w(k)>Σ(k)w(k) + λ‖w(k)‖2

τ (k)
+Ωγ(w

(1), . . . ,w(m)),

where τ (1), . . . , τ (m) > 0 are fixed scaling parameters. If the tasks are to be evenly balanced, a suitable value

of τ (k) is the optimal objective value from local combination:

τ (k) = min
w∈W

w>Σ(k)w + λ‖w‖2.

This configuration of τ (k) places all tasks on equal footing.

3. Optimisation

Computation of forecast combinations in our framework varies in complexity according to the weighting

scheme, i.e., the specific configuration of W. We now describe methods for computation for some different

weighting schemes: optimal weights of Bates and Granger (1969), optimal convex weights of Conflitti et al.

(2015), and optimal equal weights of Matsypura et al. (2018).

3.1. Optimal (convex) weights

Optimal weights and optimal convex weights are natural candidates for our framework. The constraint

sets Wopt = {w ∈ Rp : 1>w = 1} and Woptcvx = {w ∈ Rp : 1>w = 1,w ≥ 0} defining these combinations

are convex. All the objective functions described in Section 2 are convex. The resulting convex optimisation

problems are efficiently solvable using most mathematical programming solvers; we use Gurobi.

3.2. Optimal equal weights

The constraint set defining optimal equal weights is less tractable than that for optimal weights or

optimal convex weights. Recall the set is defined by a mix of continuous and discrete variables:

Wopteql = {w ∈ Rp : 1>w = 1,w = z/(1>z), z ∈ {0, 1}p}. (6)

The integrality constraint z ∈ {0, 1}p is nonconvex but is amenable to a mixed-integer programming solver

such as Gurobi. The constraint w = z/(1>z) is also nonconvex but cannot be handled directly by Gurobi.

Matsypura et al. (2018) used the decomposition Wopteql = ∪s=1,...,pWopteql
s , where Wopteql

s = {w ∈ Rp :

1>w = 1,w = z/s, z ∈ {0, 1}p} is the set of all vectors that equally weight s forecasts. Since s is fixed for

Wopteql
s , the constraint w = z/s is linear. The authors sequentially optimise over Wopteql

1 , . . . ,Wopteql
p and

retain a solution with minimal objective value. This decomposition approach is, however, infeasible in our
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framework, because different tasks need not combine the same number of forecasts. To this end, we use a

new one-step approach which directly optimises over Wopteql. Though this new approach is proposed for the

purpose of globally combining forecasts, it may be of independent interest for local forecast combination.

We have found it to be to be uniformly faster than the approach in Matsypura et al. (2018) in the single-task

setting, sometimes by an order of magnitude.

First, we rewrite the constraint w = z/(1>z) as the pair of constraints ws = z and s = 1>z, where

s ∈ {1, . . . , p}. The new constraint ws = z is bilinear in w and s, meaning it is linear for fixed w or fixed s.

Though this bilinear constraint remains nonconvex, it is amenable to spatial branch-and-bound techniques

(Liberti, 2008) which are similar to classic branch-and-bound techniques used for handling integrality con-

straints. As of version 9, released in 2020, Gurobi can solve optimisation problems with bilinear constraints

to global optimality. We now rewrite the constraint set (6) using the new bilinear constraint representation:

Wopteql = {w ∈ Rp : 1>w = 1,ws = z, s = 1>z, s ∈ {1, . . . , p}, z ∈ {0, 1}p}.

The constraint s = 1>z is, in fact, redundant in the above characterisation of Wopteql since it is implied by

the remaining constraints. Our experience is that Gurobi benefits from excluding it.

4. Synthetic data experiments

4.1. Simulation design

We evaluate the possible gains from global forecast combination in simulation. We work directly with

the forecast errors which are sampled from a p-dimensional Gaussian e
(k)
t ∼ N(0,Σ(k)) for t = 1, . . . , T

and k = 1, . . . ,m. We fix p = T = 50, so the number of forecasters is of the same order as the number

of samples. The number of tasks m ∈ {2, 5, 10}. The covariance matrices Σ(1), . . . ,Σ(m) are constructed

element-wise as Σ
(k)
ij = σ

(k)
i σ

(k)
j ρ|i−j|. The correlation parameter ρ = 0.75 to induce high correlations

between forecasters, typical of forecaster surveys. For forecaster j = 1, . . . , p, the standard deviations

σ
(1)
j , . . . , σ

(m)
j are generated by drawing correlated random variates uniformly distributed on [a, b]m with

correlation coefficient α ∈ {0, 1/3, 2/3, 1}. The parameter α dictates the degree of task relatedness. As α

approaches one, a forecaster’s performance on one task is strongly indicative of their performance on other

tasks. The converse is true as α approaches zero—a forecaster’s performance on one task is weakly indicative

of their performance on other tasks. The bounds a = 1 and b = 3 so the accuracy of the worst forecaster is

up to three times poorer than that of the best forecaster.

As a measure of out-of-sample accuracy, we report the mean square forecast error on an infinitely large

testing set relative to that from an oracle:

MSFE relative to oracle :=
(ŵ(1) −w(1))>Σ(1)(ŵ(1) −w(1))

w(1)>Σ(1)w(1)
,
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where ŵ(1) denotes estimated weights for task one fit using an estimate Σ̂(1) of the true covariance matrix

Σ(1), and w(1) denotes oracle weights fit using Σ(1). We restrict our attention to the relative forecast error

of the first task only to measure the marginal effect of adding additional tasks. The covariance matrices are

estimated using the sample covariances Σ̂
(k)
ij = T−1

∑T
t=1 e

(k)
it e

(k)
jt for all (i, j) ∈ {1, . . . , p}2.

The shrinkage parameter λ is swept over a grid of ten values evenly spaced on a logarithmic scale between

103 and 10−3. For every value of λ, the globalisation parameter γ of soft global combination is swept over

the same grid. The best values of λ and γ are chosen on a validation set constructed independently and

identically to the training set, which we remark approximates the precision of leave-one-out cross-validation.

The simulations are run in parallel with Gurobi given a single core of an AMD Ryzen Threadripper

3970x and a 300 second time limit.

4.2. Forecast performance

Figure 2 reports the relative forecast errors from 30 simulations. The first row of plots is where the

estimate ŵ and oracle w are fit under the sum to one constraint that defines optimal weights. The second

and third rows correspond to the cases where ŵ and w are fit under the constraints that define optimal convex

weights and optimal equal weights, respectively. The relative forecast error reported is not comparable across

these three weighting schemes since the oracle is different in each case. Our goal is not to compare weighting

schemes but rather to measure the benefits of globalisation.

Since local combination ignores information in additional tasks, its performance stays fixed as both

the number of tasks and task relatedness increase. In contrast, the relative forecast error of hard global

combination decreases roughly linearly with task relatedness, providing for substantial improvements when

task relatedness is high. Yet, when task relatedness is low, hard global combination can underperform

relative to local combination. This poor performance is made worse by adding additional tasks.

Soft global combination ameliorates the poor performance of hard global combination when the tasks

are unrelated and nearly performs as well as hard global combination when the tasks are identical. There is,

of course, a statistical cost to estimating the best level of globalisation. Between the extremes, soft global

combination successfully adapts to the level of task relatedness to improve over both local and hard global

combination. The greater the number of tasks, the greater the possibility for improvement.

Among the three weighting schemes, optimal weights benefit most from globalisation. The constraint

set that defines optimal weights is unbounded, and thus its relative forecast error can be arbitrarily bad.

Optimal convex weights and optimal equal weights are defined by bounded constraint sets, so there exist

finite upper bounds on their relative forecast errors. Thus, the opportunity to improve these weights is

somewhat less than for optimal weights, yet often still substantial.
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Figure 2: Mean square forecast error as a function of task relatedness parameter α for 30 synthetic datasets. Vertical bars

represent averages and error bars denote one standard errors. All values are relative to oracle weights.

5. Survey of Professional Forecasters

5.1. Data and methodology

The European Central Bank SPF is an ongoing survey eliciting predictions for rates of growth, inflation,

and unemployment from forecasters for the Eurozone. The survey has been conducted quarterly since 1999

Q1. In each round, the survey participants are asked to provide predictions of the three variables at several

time horizons. We focus on the two rolling horizons in this paper, which are one and two years ahead of the

latest available observation of the respective variable. For instance, in the 1999 Q1 survey, one-year forecasts

corresponded to 1999 Q3 for growth, December 1999 for inflation, and November 1999 for unemployment.1

The total number of forecasting tasks m = 6.

1To simplify exposition, forecasts of inflation and unemployment are referred to by the quarter they belong to, e.g., December

1999 inflation and November 1999 unemployment are called forecasts of 1999 Q4.
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The SPF data is publicly available at the European Central Bank Statistical Data Warehouse (SDW).

Actual values of inflation and unemployment are also available at the SDW. Actual values of growth are

available from Eurostat. We access data at the SDW using the R package ecb, and data from Eurostat using

the R package eurostat. The data used in this paper was retrieved on 17 April 2022. After merging the

forecasts and actual values, between T = 85 and T = 90 observations are available. The first observations

are 1999 Q3 (one-year growth), 1999 Q4 (one-year inflation and unemployment), 2000 Q3 (two-year growth),

and 2000 Q4 (two-year inflation and unemployment). The last observation is 2021 Q4.

A notable feature of the SPF is that forecasters enter and exit the survey at different times. This aspect

of the survey, coupled with periodic nonresponse, gives rise to a sizeable portion of missing data. To deal

with this issue, we follow previous works (Matsypura et al., 2018; Radchenko et al., 2021) and filter the data

to only include forecasters who respond for a reasonable number of periods. Specifically, the forecasters who

provide a minimum of 40 forecasts (10 years) for every task over the full training set (1999 Q3 to 2019 Q4)

are retained. This filtering criterion leads to a dataset comprising p = 34 forecasters. Figure 3 plots the

filtered forecasts alongside actual values of the forecast targets.

To handle missing values that remain after filtering, the covariance matrices of forecast errors are

estimated using all complete pairs of observations: Σ̂
(k)
ij = |T (k)

i ∩ T (k)
j |−1

∑
t∈T (k)

i ∩T (k)
j

e
(k)
it e

(k)
jt for all

(i, j) ∈ {1, . . . , p}2. Here, T (k)
i denotes the periods in the training set where forecaster i provided a forecast

for task k. Covariance matrices constructed in this manner are not guaranteed positive-definite. For this

reason, we take the positive-definite matrix nearest to Σ̂(k) using nearPD from the R package Matrix. The

forecast errors are standardised by the standard deviation of the forecast targets as estimated on the training

set prior to estimating the covariance matrices.

5.2. Globalisation path

The first set of experiments study the evolution of out-of-sample forecast performance as the globalisation

parameter γ is swept over its support (the ‘globalisation path’). As a measure of out-of-sample accuracy,

we report the mean square forecast error on a testing set relative to that from local combination:

MSFE relative to local :=
∑T̄−h

t=
¯
T−h(y

(k)
t+h − f̃

(k)(γ)
t+h|t )

2∑T̄−h
t=

¯
T−h(y

(k)
t+h − f̃

(k)(0)
t+h|t )

2
,

where, for a given weighting scheme, f̃ (k)(γ)
t+h|t is a global combination forecast of task k at time t+h produced

using a training set up to time t with γ ∈ [0,∞), and
¯
T and T̄ are the first and last periods in the testing

set. The denominator is the mean square forecast error from setting γ = 0, so this metric is the percentage

improvement due to globalisation. We pick
¯
T and T̄ so the testing set is the last five years to 2019 Q4.

The period after 2019 Q4, covering the COVID-19 recession and 2021–2022 inflation surge, is considered in

separate experiments in Section 5.3.
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Figure 3: Data from the Survey of Professional Forecasters. Points represent forecasts and lines denote actual values of the

forecast target. Forecasts from participants with low response rates are not included.

Figures 4, 5, and 6 report the globalisation paths of optimal weights, optimal convex weights, and optimal

equal weights for fixed shrinkage parameter λ = 10−1. The globalisation paths of optimal equal weights are

step functions in γ due to the weights being discrete. Three ways of grouping the tasks are considered:

grouping variable tasks (group 1: one-year growth, inflation, and unemployment; group 2: two-year growth,

inflation, and unemployment); grouping forecast horizon tasks (group 1: one- and two-year growth; group

2: one- and two-year inflation; group 3: one- and two-year unemployment); and grouping all tasks (group

1: one- and two-year growth, inflation, and unemployment). The reader is reminded information flows only

between tasks belonging to the same group.

Across all weighting schemes and tasks, there is always a globalisation path that attains its minimum

at some positive amount of globalisation. The limiting case γ → ∞, hard global combination, is sometimes

helpful and sometimes harmful. For instance, growth and inflation realise roughly 15% improvement from
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Figure 4: Mean square forecast error of optimal weights as a function of globalisation parameter γ for the Survey of Professional

Forecasters. Testing period is 2015 Q1 to 2019 Q4. Minimum of each curve is marked by a circle. All values are relative to

local combination (γ → 0).

hard global combination (optimal weights, grouped variables) at the two-year horizon while unemployment

deteriorates by about 40% at the same horizon. This behaviour might be attributable to growth and inflation

being difficult tasks at the two-year horizon, thus providing a noisy signal to unemployment. However, for

a suitable choice of γ, any negative effect on unemployment can be mitigated.

The degree to which different groupings produce good global combinations can vary by weighting scheme.

For example, grouped horizons are the most useful grouping when forecasting growth under optimal convex

weights and optimal equal weights. In contrast, grouped horizons are the least useful grouping under optimal

weights. The additional structure imposed by the former weighting schemes (in particular, nonnegativity)

appears critical to disentangling signal from noise here. Overall, no one grouping of the tasks dominates the

other groupings. Though it does not uniformly perform best, grouping all tasks together seems a sensible
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Figure 5: Mean square forecast error of optimal convex weights as a function of globalisation parameter γ for the Survey of

Professional Forecasters. Testing period is 2015 Q1 to 2019 Q4. Minimum of each curve is marked by a circle. All values are

relative to local combination (γ → 0).

default provided γ is chosen judiciously on a task-by-task basis.

5.3. Tuned globalisation

The second set of experiments are broader comparisons that acknowledge the level of globalisation

requires tuning in practice. For this purpose, we use leave-one-out cross-validation—a valid procedure

provided the combination forecast errors are uncorrelated (Bergmeir et al., 2018). The value of γ is tuned

per task, so different tasks need not use the same value. To allow for comparisons of forecast accuracy across

weighting schemes, we report the mean square forecast error relative to that from equal weights, a common

benchmark in practice:

MSFE relative to equal :=
∑T̄−h

t=
¯
T−h(y

(k)
t+h − f̃

(k)
t+h|t)

2∑T̄−h
t=

¯
T−h(y

(k)
t+h − f̄

(k)
t+h|t)

2
,

14



Two-year, Growth Two-year, Inflation Two-year, Unemployment

One-year, Growth One-year, Inflation One-year, Unemployment

1e-02 1e+00 1e+02 1e-02 1e+00 1e+02 1e-02 1e+00 1e+02

1e-02 1e+00 1e+02 1e-02 1e+00 1e+02 1e-02 1e+00 1e+02

0.85

0.90

0.95

1.00

0.95

1.00

1.05

1.10

1.00

1.05

1.10

0.80

0.85

0.90

0.95

1.00

0.96

0.98

1.00

1.02

0.80

0.85

0.90

0.95

1.00

Globalisation

M
SF

E
re

la
tiv

e
to

lo
ca

l

Grouped variables Grouped horizons Grouped all

Figure 6: Mean square forecast error of optimal equal weights as a function of globalisation parameter γ for the Survey of

Professional Forecasters. Testing period is 2015 Q1 to 2019 Q4. Minimum of each curve is marked by a circle. All values are

relative to local combination (γ → 0).

where f̃
(k)
t+h|t is an arbitrary combination forecast and f̄

(k)
t+h|t is the equally-weighted combination forecast.

Values of this metric less than one indicate superior performance to equal weights.

Table 1 reports the average value of the performance metric across the six tasks, with the minimal and

maximal values among the tasks in brackets. The shrinkage parameter λ = 10−1. The last five years of the

data is again studied, but we now include the period 2020 Q1 to 2021 Q4 to evaluate recent performance

during the COVID-19 recession and 2021–2022 inflation surge. Figure 3 highlights how the quarters on and

after 2020 Q1 contain several outliers. To prevent these outliers dominating the performance metric, the

testing set is split before and after 2020 Q1. Likewise, to avoid the outliers contaminating the estimated

covariance matrices and thus the estimated weights, the training set is stopped at 2019 Q4.

With few exceptions, soft global combination improves on local combination. The improvements are
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Local combination Hard global combination Soft global combination

2017 Q1 to 2019 Q4

Optimal weights

Grouped variables 1.059 [0.272, 2.354] 0.909 [0.512, 1.977] 0.907 [0.359, 2.207]

Grouped horizons 1.059 [0.272, 2.354] 0.956 [0.306, 1.830] 0.967 [0.299, 1.933]

Grouped all 1.059 [0.272, 2.354] 0.894 [0.592, 1.669] 0.856 [0.360, 1.720]

Optimal convex weights

Grouped variables 0.991 [0.878, 1.159] 1.033 [0.878, 1.410] 0.968 [0.867, 1.111]

Grouped horizons 0.991 [0.878, 1.159] 0.957 [0.859, 1.178] 0.981 [0.879, 1.177]

Grouped all 0.991 [0.878, 1.159] 1.001 [0.893, 1.237] 0.980 [0.867, 1.183]

Optimal equal weights

Grouped variables 1.005 [0.861, 1.223] 1.016 [0.861, 1.298] 0.959 [0.848, 1.097]

Grouped horizons 1.005 [0.861, 1.223] 0.962 [0.873, 1.188] 0.986 [0.866, 1.181]

Grouped all 1.005 [0.861, 1.223] 1.018 [0.880, 1.384] 0.972 [0.850, 1.146]

2020 Q1 to 2021 Q4

Optimal weights

Grouped variables 1.046 [0.913, 1.269] 1.058 [0.959, 1.210] 1.023 [0.931, 1.189]

Grouped horizons 1.046 [0.913, 1.269] 1.002 [0.784, 1.171] 0.994 [0.718, 1.156]

Grouped all 1.046 [0.913, 1.269] 1.007 [0.959, 1.078] 0.995 [0.858, 1.089]

Optimal convex weights

Grouped variables 1.006 [0.953, 1.072] 0.953 [0.815, 1.032] 0.992 [0.907, 1.044]

Grouped horizons 1.006 [0.953, 1.072] 1.009 [0.947, 1.048] 1.005 [0.957, 1.051]

Grouped all 1.006 [0.953, 1.072] 0.931 [0.764, 1.009] 0.999 [0.947, 1.042]

Optimal equal weights

Grouped variables 1.012 [0.942, 1.112] 0.970 [0.772, 1.082] 1.017 [0.949, 1.112]

Grouped horizons 1.012 [0.942, 1.112] 1.029 [0.959, 1.140] 1.023 [0.954, 1.112]

Grouped all 1.012 [0.942, 1.112] 0.934 [0.681, 1.027] 0.997 [0.920, 1.112]

Table 1: Mean square forecast errors for the Survey of Professional Forecasters. Averages over all tasks are next to minimums

and maximums over all tasks in brackets. All values are relative to equal weights.

generally greatest pre-2020. The more minor improvements post-2020 are possibly a consequence of the

recent period of deteriorated economic conditions during which task relatedness could be less stable. In

some instances, hard global combination outperforms both soft global combination and local combination.

However, as in the previous section, it also sometimes underperforms. On the other hand, the data-driven

determination of the globalisation level for soft global combination produces good combinations that con-

sistently forecast well.

Optimal weights realise the most significant gains from globalisation among the three weighting schemes—

soft global combination (grouped all) places first in terms of average performance across tasks (pre-2020)

compared with local combination, which places last. Moreover, globalisation leads to smaller maximal loss

for optimal weights. Though not always beating optimal weights according to average performance, opti-
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mal convex weights and optimal equal weights have more consistent performance across tasks, especially

pre-2020. With a suitable amount of globalisation, each weighting scheme can beat the notoriously difficult

benchmark of equal weights for one or more task groupings.

6. Concluding remarks

Expert forecasts are an indispensable source of forward-looking information on core economic variables.

To date, the problem of combining these forecasts has been handled on a per-task basis, with the combi-

nation for each variable and forecast horizon learned independently of other variables and horizons. When

the forecasting tasks are related, as economic theory and evidence suggest, this approach of learning the

combinations using only local information is potentially suboptimal. This paper investigates the value of a

global approach, where task-relatedness is directly exploited to improve the quality of combinations. At the

heart of our approach is a principled framework that accounts for the level of homogeneity across tasks by

adaptively interpolating between fully local and fully global combinations. In addition to unifying local and

global approaches under one umbrella, the new framework accommodates many existing weighting schemes.

Empirical evidence from the European Central Bank SPF suggests forecast combinations for rates of growth,

inflation, and unemployment in the Eurozone benefit from some degree of globalisation, as do combinations

of these same variables across one- and two-year horizons. A natural next step in this line of work is to

investigate whether similar findings hold for the other economies. Another direction is to extend the ideas

of this paper to interval and density forecasts, commonly used as measures of economic uncertainty.

An R implementation of the global forecast combinations in this paper is publicly available at

https://github.com/ryan-thompson/global-combinations.
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