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CHAPTER 1

INTRODUCTION
 

Historically pharmacy has been primarily concerned with the forms

in which drugs are administered. Most effort has been directed to making

formulations of drugs physically and chemically stable and acceptable to

the patient with regard to appearance, colour, taste and smell and form

of administration. It has become apparent, however, that other factors are

important in drug formulation as techniques in pharmacology, medicine and

analysis of drugs in the body improved. Emphasis has been directed toward

studying the interactions between drug formulations and the organism and

this resulted in the establishment of biopharmaceutics as a distinct field

within the pharmaceutical sciences.

One of the major biopharmaceutical problems has been absorption

in relation to drug formulation. Many very potent drugs have high lipid/

water partition coefficients which facilitates their penetration through

biological membranes. While this property lowers the biological barrier

and favours absorption, it also paradoxically creates formulation problems

because such drugs are frequently only very slightly soluble in water.

It is generally accepted that limited absorption after oral

intake is frequently the result of slow dissolution. This kind of absorption

problem occurs so frequently that bioavailability testing has become an

important part of modern drug and dosage form design and production control.

Many examples of differences in bioavailability resulting from differences

in dissolution behaviour have been given in the literature (1, 2).

Research into dissolution kinetics of drugs is therefore of great importance.



The numerous reviews published confirm the importance of the field (1-5).

The main purpose of most dissolution tests is to describe or

quantitate the dissolution of a compound or dosage form. The dissolution

process is most frequently described in the form of a dissolution profile.

Although this is the most exact representation it is useful in practice to

summarize and quantitate the dissolution kinetics in terms of one or more

parameters e.g. the so—called dissolution rate constant. In order to do

so, it is necessary to decide on some kind of mathematical description.

If the purpose is just to summarize dissolution data then a great

number of arbitrary approximating functions can be used, e.g. polynomials

and multiexponential expressions. Although the original data may be

regenerated closely from parameters obtained in this way it is generally

not reliable to make predictions or extrapolate on this basis. Furthermore,

in the absence of mechanistic understanding and because of the substantial

number of parameters involved (as in the case of polynomials), it is not

possible to characterize the dissolution in a meaningful way. The use of

arbitrary approximating functions is therefore of limited use. It is thus

more meaningful to use a mathematical model which has some mechanistic

significance at least conceptually and which adequately describes the

dissolution behaviour. The extent to which the true mechanism of the system

should be approximated by the mathematical model is a somewhat philosphic

question, which depends on the purpose of the investigation. For

practicability, the model chosen must involve a compromise between its

correctness and its simplicity.

Dissolution is a heterogeneous process which is virtually

impossible to describe rigorously because of the complexity of the mass

transport phenomenon in an agitated heterogeneous system. It is apparent



from Chapter 4 that even when the dissolution mechanism of a free falling

single spherical particle is analysed, using several simplifying assumptions,

a "rigorous“ mathematical model becomes too complex to be of practical

significance. The description of the kinetics must therefore rely on a

simpler model. As shown in Chapter 4 several such models can be derived

on the basis of various assumptions about the mass-transport mechanism in

the interfacial region.

The model for a multiparticulate system must be based on a model

for the single particle dissolution behaviour together with a model for

the particle size distribution.

Several multiparticulate dissolution models may be postulated.

A decision about the model which best characterises the dissolution behaviour

must be a compromise between the extent of experimental verification, its

simplicity, and whether it is mechanistically meaningful. It may be

possible to postulate very simple models which fit a particular set of

dissolution data very well. However, oversimplification of the dissolution

kinetics may lead to a lack of generality or flexibility. For example

it may be possible to derive simple models for the dissolution of monodisperse

systems. However, these will usually not fit dissolution data from polydisperse

systems adequately; whereas more complex models for polydisperse systems

may describe monodisperse systems as a special case.

The evaluation of how well a model fits dissolution data must

rely on regression analysis. If the model is linear or can be transformed

to linear form then the curve fitting procedure is generally simple. However,

the multiparticulate dissolution models for polydisperse systems derived

in this thesis are of a nonlinear form which can only be fitted and analysed



properly using a nonlinear regression computer program. As described in

Chapter 9 several such programs are available. However, none of these

programs are written for interactive time sharing and dedicated to

mathematical modeling. The program FUNFIT described in Chapter 8 has been

developed with these features. It is a general nonlinear regression program

which can be used in any branch of science.

Methods for Studying Dissolution Behaviour in vitro.

The large number of dissolution rate measurement procedures and

apparatus which have been described indicates that a universally acceptable

method has not yet been developed. The many different techniques have

been well reviewed by Hersey (6), Wagner (5) and Braun & Walker (7) and

more recently by Hersey and Marty (8) and Groves (9).

The objectives of various tests are often very different. One

worker may be interested in the fundamental dissolution behaviour, another

in the effect of agitation and type of vehicle flow, or perhaps in the

thermodynamics of the dissolution process, thus many kinds of dissolution

apparatus are adapted to the study of fundamental principles of the process

as for example the rotating—disc method, where the experimental conditions

are better defined in terms of surface area of drug and agitation. Others

are aimed at investigating dissolution behaviour of dosage forms in vitro

to provide an estimate.of their behaviour in Vivo. The goal in these cases

is to establish an in vitro — in vivo correlation such that a particular

drug can be screened in vitro to provide an index of its expected behaviour

in vivo. This requires that the composition of the drug formulation, the

materials used and the production techniques are constant. Prediction of

in vivo performance from in vitro data cannot be guaranteed but is only



intended to enable screening of dosage forms more readily and economically

than in vivo procedures. Other reasons for performing dissolution tests

include development purposes to guide the pharmaceutical formulator in

the preparation of optimum dosage forms of drugs for clinical trial or

for control purposes to ensure that a given pharmaceutical product is

essentially uniform from lot to lot.

The various apparatus used for dissolution testing have been

reviewed by Hersey (6), who classified them according to the type of

agitation (free and forced convection) and the existence of sink or non-sink

conditions.

In the past, the term sink conditions has most frequently

referred to the situation where the concentration of dissolved drug is

kept small, of the order of about 10% of the solubility, such that re-

deposition of dissolved material onto the dissolving solid is considered

negligible. This is somewhat vague and imprecise. In Chapter 4 of this

work the sink condition is defined in more precise mathematical terms.

The following section of this chapter is not intended to be a

comprehensivereview of apparatus used in dissolution testing, this has

already been done by several authors (5-9), but is an attempt to outline

briefly the basic principles of their design and discuss their advantages

and limitations.

Apparatus with non—sink conditions and constant vehicle volume.

Most apparatus described in the literature belongs to this

group because of the simplicity of design and operation. They are based

on a constant volume and differ only in the shape of the dissolution

container, the way agitation is supplied or in the position of the



dissolving sample. One of the most widely used techniques is the "beaker

method" often credited to Levy & Hayes (11) although it was used earlier

by Parrott & coworkers (12). It has been used widely for fundamental

dissolution rate studies (l3, l4) and in modified form for dissolution

studies by Shefter & Higuchi (15) and other workers.

The rotating disc apparatus consists of a disc holder to which a

tablet or compressed disc of the pure drug is fixed and rotated at suitable

constant speed in a round bottomed flask. The method, proposed by Levy &

Sahli (19), has been used chiefly for studies of intrinsic dissolution rate

and studies concerned with heterogeneous reaction kinetics, diffusion layer

theory, effect of agitation on dissolution rate and other fundamental problems

and has therefore found wide use (20—22). In interpreting the results of

this apparatus it is important to consider that the enormous pressures

(for example 50.000 psi on a 0.5 inch diameter disc) often used to make

these discs from pure drug powder may introduce changes in crystal form

and consequently alter the physical properties of the drug. Clevely &

Williams (23) reported that grinding of crystalline barbituric acid

derivatives may produce changes in polymorphic form.

The static disc technique employs forced convection in the

dissolution liquid and thus has less defined agitation than the rotating

disc. other disc methods include the solvometer technique (24, 25) and

the hanging pellet method (13).

There are several disadvantages of the methods mentioned above.

They will be discussed under following headings: (l) non—sink conditions,

(2) agitation, (3) sampling, (4) introduction of drug sample.



Non—sink conditions

If the object of the dissolution test is to establish an in vitro

— in Vivo correlation or to provide a rough guide to the drug release rate

of a dosage form in vivo then the methods above are of limited value

according to Gibaldi & Feldman (26). These authors stated that unless

sink conditions are maintained, in vitro results will bear little

relationship to in vivo observations, for drugs that show dissolution rate

limited absorption.

Dissolution testing is obviously most relevant for those drugs

which represent the greatest dissolution problems. In general such drugs

are the least soluble, which means it will frequently be necessary to use

exceedingly large volumes of solvent to follow dissolution behaviour for

more than just a small fraction of the drug sample used. For example, to

follow the dissolution of a tablet containing 5 mg glibenclamide to

completion in 0.1 M HCl, it is theoretically necessary to use 500 ml

solvent (solubility of glibenclamide is 0.5 mg/100 ml). Dissolution will

be very slow, however, because the process slow continuously as saturation

is approached. In practice it is usually not convenient to exceed about

20% of saturation. Thus in the example above 2.5 l of solvent would be

necessary. This is a rather inconvenient and unwieldy volume for handling

and maintaining proper agitation and temperature control.

Agitation

The large volume of solvent required for apparatus operating

under non-sink conditions causes problems in the maintenance of suitable

agitation. If the drug is in the form of a powder or disintegrating dosage

form a high degree of agitation will be required to suspend the drug



particles in the solvent so that they are all exposed to similar conditions

of agitation. On the basis of in vivo data Hamlin et.al. (27) indicated

that only low agitation rates could adequately differentiate rates of

release from solid dosage forms. These authors studied the rates of

dissolution of two polymorphic forms of methylprednisolone and found that

sensitivity in distinguishing between the rates decreased at higher agitation

intensities. This confirms the importance of using a dissolution apparatus

where agitation is well defined and can be varied over a wide range.

Sampling.

Several problems are encountered with respect to sampling in the

types of apparatus mentioned above. It is impossible to sample without

disturbing the dissolution process to some extent. Sampling affects solvent

volume, which in turn may affect agitation conditions. Replacement of removed

solvent is not an entirely satisfactory solution to the problem because it

results in a discontinuity or small drop in the concentration of dissolved

drug. The agitation conditions may change during additions of replacement

liquid and affect the homogeneity of the system by creating "pockets" of

fresh solvent which mix only slowly with the bulk. The latter is particularly

important under conditions of low agitation. The most serious problem in

sampling these systems seems to be the fact that the most precise and

detailed characterisation of the dissolution process requires the greatest

frequency of sampling, which compounds the errors due to the sampling

procedure. The time taken for sampling is difficult to define precisely.

In most cases it is considered to be instantaneous rather than a time interval.

Such errors may be quite substantial at the initial stages of the experiment,

where the concentration is changing very rapidly.



Introduction of drug sample

It has been suggested that only a small amount of solid sample

should be used for a complete dissolution test if the solubility is low.

Furthermore, slightly soluble drugs are often ground finely or micronised

which increases their surface-free energy so that particles may adhere and

be difficult to disperse evenly in the solvent. They frequently adhere to

the side of the dissolution container and a significant fraction of the

powder may be washed up the side of the container where it is no longer

exposed to the vehicle. The powder may also aggregate and float on the

surface.

It can thus be seen that the most widely used type of dissolution

apparatus (non-sink, constant, vehicle volume) has several serious design

disadvantages which limits its usefulness in fundamental dissolution kinetics

studies.

Dissolution apparatus with non—sink conditions, constant vehicle volume

 

and automatic recording
 

Schroeter & Wagner (28) appear to be the first to describe an

automatic recording dissolution apparatus. They combined a beaker type

apparatus with a peristaltic pump. Filtered solvent was pumped to an

automatic recording spectrophotometer and returned to the beaker. This

procedure has several advantages. It provides unlimited data points, there

is no discontinuity in the system due to sampling and the number of sources

of error are reduced. Furthermore, it is fast and convenient.

Among the disadvantages are the facts that particles may be

trapped in the filter system, the concentration range is limited by the

spectrophotometer; however variable path length absorption cells can extend



_ 10 _

the range. The system is only useful where there is little background

absorption from solvent or excipients. The problems associated with the

beaker method including introduction of sample, agitation, solvent volume,

non—sink conditions are still present.

The technique described by Baum & Walker (7) represents a

considerable improvement in the method used by Schroeter & Wagner.

Agitation is performed by the solvent as it flows through a colum type

dissolution chamber bounded at both ends by mesh screens. Solvent is

recycled continuously through the column via a beaker or a flask. Sampling

can be done from a collection reservoir or better by passing the filtered

solvent through an automatic recording spectrophotometer. This system

has several advantages compared to that of Schroeter & Wagner. Firstly,

the solvent flow or agitation experienced by the particles is better defined

and more easily adjustable. Entrapment of particles by the screen or filter

should have little effect since they will still be exposed to almost the

same solvent flow. Wetting and dispersion problems are reduced. In

addition much larger solvent volumes can be handled readily so that sink

conditions can be approached without increasing agitation rate. This system

could be improved by altering to a non-recycled open system.

Dissolution apparatus with sink conditions: non-recycled open systems.

These types of apparatus include those most recently developed

and represent the most suitable apparatus available for studies of

dissolution kinetics. They consist essentially of a dissolution vessel

with continuous input of fresh solvent and output of filtered solvent

containing dissolved drug. The concentration of drug can be continuously

monitored by some automated analytical procedure or solution sample may be
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collected in fractions and assayed separately.

The various methods usually differ only in the design of the

dissolution vessel and the mode of agitation, which may be produced either

by the solvent flow or other means. The most common flow—through dissolution

cells are cylindrical, with filters at both ends to enclose the sample and

use the solvent flow as the only source of agitation (29—32).

Lapidus & Lordi (33) described a flow—cell which included a

holder for compressed drug discs or tablets, enabling drug release

measurements under sink conditions from a constant surface area. Their

method represents a valuable alternative to the rotating disc technique

for studying dissolution kinetics of pure drugs.

There are many advantages to using the continuous—flow column type

apparatus. It is a flexible system that permits changes to be made readily,

even within a test run, of important factors such as temperature, flow rate

and vehicle composition including pH, viscosity, drug concentration and

surfactant concentration.

Data obtained using a continuous recording technique with this

system are in differential form. Thus a direct recording is made of the

variation of release rate with time. This is superior to integral data

(cumulative amounts dissolved with time) which tends to obscure small

changes in dissolution rate particularly if only relatively few fractions

are taken. A continuous recording yields unlimited data points which

enable very precise characterisation of the dissolution behaviour. For

this reason, it is also suitable for automatic data processing (34).

Unlike most other systems, in particular the beaker method, sampling does

not influence the dissolution process.

Normally the problem of wetting is minimal. However, when necessary
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wetting can be accomplished by introduction of a surfactant solution for a

short period initially and allowing it to be washed away immediately by

fresh solvent (30).

The dissolution process can be followed to completion provided

sufficient solvent is available and that the analytical method is sufficiently

sensitive. All particles of a powder experience essentially the same

intensity of solvent flow, including those particles which collect on the

filters or screen at the ends of the column, thus agitation conditions are

related to the solvent flow rate in a meaningful way and the latter is easy

to define and control. Complete sink condition can be approximated very

well. Thus results are more reproducible and instantaneous initial drug

release measurements can be made, in contrast to most other methods.

Furthermore, the continuous flow method is fast, convenient and very suitable

for routine dissolution tests.

It is apparent that.thecontinuous flow dissolution cell apparatus

is a powerful and versatile tool in studies of dissolution kinetics.

The high precission dissolution apparatus described in Chapter 2

belongs to this category.
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C H A P T E R 2

EXPERIMENTAL

Dissolution Apparatus
 

A diagram of the continuous-flow recording dissolution apparatus is

shown in Fig. 2.1. R1 and R2 are 20 litre reservoirs containing the

dissolution media. P is a peristaltic pump (MHRE Watson—Marlow Ltd.,

England) transporting the liquid from R1 or R2 through a heat exchanger E,

which adjusts the liquid to the required temperature before it reaches the

dissolution cell D. This is immersed in a water filled, jacketed beaker,

B, maintained at the same temperature as the dissolution liquid leaving E.

Liquid from the dissolution cell, D, passes through a flow-cell, F, in the

spechxphotometer, S, (Perkin—Elmer 124) which was fitted with chartrecorder,

R, and finally accumulates in the container, C. V1 and V2 are two—way valves

which enable by—pass of the dissolution cell, D, for zeroline adjustment of

the specuxphotometer with blank liquid from the reservoir. V3 is a similar

valve by means of which liquid can be drawn from either reservoir R1 or R2.

Flexible polyethylene tubing (i.d., 0.35 cm) was used throughout with the

exceptions of that used in the pump, which was a silicon tubing (silastic,

Dow Corning, i.d., 0.335 cm and o.d., 0.465 cm). L is an open tube type

meter that monitors the pressure governing the flow rate of liquid.

The Dissolution Cell

Figure 2.2 shows a detailed diagram of the dissolution cell

constructed for this work. Powder to be investigated is spread in a thin

evenly distributed layer, c, in a sandwich—like arrangement between two



Figure 2.1
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Diagram of continuous-flow dissolution apparatus: R1 and R2

are reservoirs containing the dissolution liquid; P,

peristallic pump; E, head exchanger (Fig. 2.3); D dissolution

cell (Fig. 2.2); B, water filled jacketed beaker;

F, spectophotometer flow—cell (Fig. 2.5); S, spectophotometer

with reorder R. V1, V2 and V3 are two way valves; C,

collection vessel; T, thermostat; L, pressure meter.
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Figure 2.2 Exploded diagram of dissolution cell: A, stainless steel

jacket; B and C are modified portions of a 1 inch, Gelman

filter holder unit. a and e are filter supports, b and

d filter papers; c, layer of drug powder, 9, coil spring.

D, teflon fitting which screws into A; h, "o-ring".
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paper filters b and d (Whatman quantitative filter paper) supported on both

sides by stainless steel filter supports a and e (Millipore cat. no.

XX 3002503). Filter support, e, and filter, d, have a diameter equal to

the inside diameter of C (2.2 cm) whereas a and b have the same diameter

as the recess f. B and C are modified portions of a 1 inch Gelman, filter

holder, unit (Gelman cat. no. 4320—1). C was modified from the commercial

filter unit by increasing the depth of the recess, f, to contain both a and b.

In addition a hole, 2.2 cm diameter was bored through the centre. A water

tight pressure seal is achieved by means of the "O-ring", h.

The cell is loaded and assembled as follows: Filter paper b is

positioned in the recess f, a is placed on top of it and B and C screwed

together. The unit is placed on a balance pan with portion B as the base.

Powder is weighed directly onto the filter paper and distributed as a thin,

uniform layer. The second filter paper, d, and the support, e, are placed

on top together with the stainless steel coil spring, g. The complete

B — C unit (with B still downward) is placed inside the stainless steel

jacket, A. The Teflon component, D, is then firmly screwed to A to form

a tight seal with C by means of the “O-ring". The assembled unit is placed

upright in a tripod stand with the hoses connected at both ends and the

whole is immersed in the jacketed beaker (B on Fig. 2.1) for thermal

equilibration 10 minutes before any run.

Heat Exchanger

The equipment for temperature regulation was also designed

specially for this work, to overcome the problems of maintaining large volumes

of dissolution fluid at constant temperature. A diagram is shown in Fig.

2.3. It consists of a cylindrical PVC container 40 cm in depth with an
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Figgre 2.3 Diagram of heat exchanger: M, Thermomix thermostat water

circulator; C, connectors.
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inside diameter of 15.5 cm filled with distilled water. A Thermomix

thermostat water circulator M is mounted in this cylinder and connected to

a soft PVC hose which is coiled around the outer surface of the cylinder.

Heated water from the cylinder is continuously recycled through the hose

and returned to the cylinder. Inside the PVC hose, polyethylene tubing is

threaded carrying the dissolution fluid which requires temperature regulation.

The dissolution fluid is transported via the peristaltic pump and flows

counter-current to the recycled water in the inner polyethylene hose.

Special connectors, C, seal the PVC water hose at the point of entry and

exit of the small bore tubing.

The efficiency of the heat exchanger was tested by passing water

of varying initial temperature through the apparatus at two flow rates and

determining the temperature of the outlet. The results are graphed in

Fig. 2.4. These data show that when water in the cylinder is maintained

at 37.7 i 0.10 the temperature of the dissolution liquid leaving the

heat exchanger is 37.5 t 0.10 for inlet temperatures ranging from between

50 and 300 and flow rates 0.24 to 1.9 ml/sec. All experimental work was

carried out within these boundary conditions of temperature and flow rate.

Equilibration of temperature was achieved within 10 minutes irrespective

of starting temperature.

The heat exchanger is a very convenient piece of apparatus

since it is highly efficient and eliminates the practical difficulties

associated with maintaining large volumes of dissolution medium of

constant temperature.

An inexpensive flow-cell for the spectrophotometer was also

designed and is shown in schematic form in Fig. 2.5. It consists of a

standard rectangular quartz cell of 1 cm path length to which is fitted
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Figgre 2.4 The variation in temperature of water, after passage through

the heat exchanger, as a function of inlet temperature.

Thermostat seeling 37.70; key: . , flow rate 0.24 ml/sec

A, and 1.90 ml/sec.
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Figure 2.5 Design of spectophotometer flow-cell.
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a specially designed rectangular teflon stopper with silicon rubber seal.

A narrow bore stainless steel tube passes through the stopper and extends

from one side of the cell. This tube is adjustable in length and does not

obstruct the light path. Dissolution medium containing dissolved solute

is introduced to the bottom of the cell by this means. The solution flows

upward across the light path and exits through a cone shaped outlet which

assists in the removal of gas bubbles.

Analytical

Tolbutamide and glibenclamide were both determined by ultraviolet

spectrophotometry at 220 nm and reference to a Beer—Law curve.

The vehicle used for dissolution of tolbutamide was 0.1 M HCL

containing 10-5 M cetomacrogol to improve wetting. The surface tension of

this solution was found to be 42.8 dynes cm-1 at 370 (mean of 10 measure—

ments with s.d. 5%). It was found by solubility measurements, that no

solubilization occurs at this low surfactant concentration. The dissolution

liquid used for glibenclamide was a pH 7.25 buffer, I = 0.05, containing

10-5 M cetomacrogol.

The operation of the automatic dissolution apparatus (Fig. 2.1)

is self—explanatory from the previous description. Values of absorbance

were read from the chart recording at 2.5 minutes intervals from the

beginning of the experiment. These values together with the volumetric

flow rate, the Beer-law constant, the initial amount used, the amount of

undissolved drug remaining in the dissolution cell at the end of the

experiment and a code for the particular data treatment desired were fed

into a digital computer and processed according to a FORTRAN program.

The amount of undissolved drug remaining was found by disconnecting the
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dissolution cell and transferring the filter paper/drug/filter paper

"sandwich" to a volumetric flask. The drug was then dissolved in 95%

ethanol and the solution assayed. This procedure increases the accuracy of

the dissolution curves generated by the computer because it enables

corrections to be made on the principle of mass balance.

A test of this accuracy was made using 12.5 mg 60/85 mesh fraction

of tolbutamide, a flow rate of 0.149 cm/sec and 0.1 M HCL + 10-.5 M

cetomacrogol as solvent. The dissolution liquid containing dissolved drug

was collected at intervals of exactly 5 minutes as it left the spectrophoto-

meter cell (F in Fig 2.1) and assayed for drug. The cube root of the

calculated amount undissolved was then plotted versus time as seen in Fig.

2.6. On the same figure are plotted values generated by the computer from

the absorbance readings taken from the chart recording. It appears from

the plot that the computer generated points are almost coincidental with

the points obtained from direct analysis. A chi-square test showed no

significant difference between the two methods (P > 0.99).

The accuracy and precision obtained using this experimental

technique have made it possible to examine aspects of the dissolution

kinetics which would be impossible with most other methods.

Dynamic Dialysis

The data used for the evaluation of the new method of obtaining

drug-macromolecule binding parameters described in Chapter 11 was kindly

supplied by Dr. M.J. Crooks (35 ). The dynamic dialysis technique used

was that described by Meyer and Guttman (36 ). Chlorpropamide was dialysed

from 1% bovine serum albumin in 0.067 M phosphale buffer pH 7.4 at 370

in the presence of a fixed pre—concentration of warfarin (1.6 x 10-5 M).



Figure 2.6
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Dissolution of 12.5 mg, 60/85 mesh fraction, tolbutamide

in 0.1 u HCl containing 10-5 u cetomacrogOl using dissolution

cell at solvent flow rate 0.149 cm/sec. Key:‘., values

calculated from intermittent samples collected at 5 min's

intervals; 1L , values generated by digital computer from

continuous chart recording of absorbance versus time.
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Although warfarin displaces some chlorpropamide, the latter still appears

to bind to two classes of sites (37 ). This system was selected so that

such a model of two classes of sites could be appraised by the new method

of data treatment. The starting concentration of chlorpromide was 3.62 x

10-3 M and the external compartment was sampled at 0.5, l, 1.5, 2, 2.5, 3,

4, 5, 6 and 7 hours. Chlorpropamide and warfarin were estimated by

ultraviolet spectrophotometry at 231 and 310 nm.

Glibenclamide was dialysed from 0.67 M phosphale buffer, pH 7.4

14

at 37°. C labelled material was used and assayed by liquid scintillation

counting.

Materials

Tolbutamide (Australian Hoechst Ltd.) m.p. 128.5o was used without

further purification. The pkA was assumed to be 5.39 i 0.05 (35 ).

Glibenclamide (Australian Hoechst Ltd.) m.p. 1720 was used as received.

The pkA was estimated as 6.50 i 0.05 (35 ). Cetomacrogol was obtained

from Glovers Chemicals Ltd. The concentration used the surfactant had

negligible absorbance at 220 nm.

Data Treatment

The dissolution rate data (dw/dt vs. time) used for the accuracy

test of the dissolution apparatus (Fig. 2.6) were integrated by means of

a FORTRAN program (38 ). The dissolution rate data presented in Chapter

10 and the dialysis rate data in Chapter 11 were analysed according to the

respective mathematical models by nonlinear least squares regression

techniques, using the FORTRAN program FUNFIT listed in the appendix. The

subroutine, MODEL, defining the mathematical models are listed in the
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respective chapters.

The calculations and drawings of the theoretical dissolution

curves in chapter 6 was done using a CDC digital computer equipped with

a calcomp plotter installed at the National Standards Laboratory, C.S.I.R.O.,

at Sydney University. All other computer calculations were carried out at

the time-sharing terminal located in the Pharmacy Department and linked to

the CDC digital computer at the Sydney University Computing Centre. Both

computers used have a number representation accurate to approximately 14

decimal digits (48 bits mantissa).

Particle Distribution Analysis

The histogram in Chapter 7 was constructed from eltronmicrographs

30 x 30 cm. Measurements of the particle dimensions were made directly

on the photographs and the equivalent spherical diameters of the particles

were calculated according to Eq. 4.104.

Pharmacokinetic Data
 

The data used for the comparison of NONLIN and FUNFIT in Chapter

9 was kindly supplied by Mr. A. Somogyi. Although artificially generated

data containing random noise just as well could have been used in such a

comparison it was felt that the biological data would give a more realistic

basis for comparison.



C H A P T E R 3

BIOLOGICAL ASPECTS AND METHODS OF ENHANCING DISSOLUTION

Potent drugs very often have a high lipid/water partition

coefficient which facilitates their penetration through biological membranes.

While this property lowers the biological barrier and favours absorption

it also paradoxically creates formulation problems, since these drugs are

frequently only slightly soluble in water, causing them to dissolve slowly.

It is generally accepted that limited absorption after oral intake

of poorly soluble drugs is often the result of slow dissolution. This kind

of absorption problem occurs so frequently that bioavailability and

dissolution testing has become important in evaluation and control of slowly

dissolving drugs. Many examples of differences in bioavailability resulting

from differences in dissolution behaviour have been given in the literature

(1, 39). Research into dissolution kinetics of drugs is therefore of great

importance and a better understanding of the influence of the formulation on

the dissolution process is necessary to overcome these problems. The numerous

reviews published recently confirm the importance of the field (2,3-5).

Dissolution as a step in the pathway to systemic circulation.

 

When a drug is given orally it has to go through a number of steps

before it reaches the systemic circulation. Scheme 3.1 illustrates this

for various oral dosage forms. It is expected from the number of steps,

that the availability of the dosage forms should be of the order solution >

suspension > granulate > capsule > tablet.



Scheme 3.1

Pathways to systemic circulation for oral dosage forms
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Solid dosage forms are often tested in Vitro for their disintegration or

dissolution behaviour. Such tests essentially provide only information

about these processes in relation to the particular experimental conditions.

They are primarily useful in evaluating how the disintegration or dissolution

is influenced by the drug formulation and by factors such as agitation, pH,

vehicle composition etc. and are mainly of value in the development of

better formulations.

The aim has often been to use the tests as a measure or indication

of how the dosage form will perform in vivo. Most conclusions of this nature

will however be unreliable because these in Vitro tests in their very simple
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forms cannot properly reflect the rather complex in vivo system.

The in Vitro tests are only able to tell in some but not all cases

when a dosage form will cause availability problems. They do not guarantee

the availability of the drug. It is therefore irresponsible to make in vitro -

in vivo inferences from such tests.

AVAILABILITY AND RATE OF DISSOLUTION

According to Scheme 3.1, the rate with which the drug reaches the

site of action depends on the rate of all the processes which lead the drug

to the systemic circulation. Usually one of these rates is much slower than

the others and will therefore represent the limiting step in the overall

process. Slightly soluble drugs do often dissolve so slowly that dissolution

is the limiting step. Some authors claim that the availability must be

considered if the solubility of the drug is less than 0.1 mg/ml (40 ) or

less than 1 mg/ml (41 ).

The systemic availability, that is, the fraction of the oral dose

that reaches the systemic circulation, will be affected if the dissolution

rate is too slow. Much more easily affected, however, is the rate of

availability, that is, the rate with which the drug enters the systemic

circulation. This availability for drugs absorbed by passive diffusion will

theoretically be affected in any case where the drug is not completely dissolved

when it reaches the main absorption site. This implies that the dissolution

rate of even relatively rapidly dissolving drugs will affect the rate of

availability.

The stomach is the first place where absorption of a swallowed

dosage form takes place. The absorption rate at this site is rather poor

compared to the intestine due to the relatively small mucosal surface area,



the limited agitation and the longer diffusion pathway. The absorption

rate first becomes substantial when the drug enters the intestine. Studies

have shown that the stomach emptying half—life can vary from 7 to 22 minutes

(42,43). The time for the drug to enter the intestine should be

significantly less. If the drug does not dissolve completely within this

short period of time, any action that results in an increase in the rate of

dissolution will increase the rate of availability. Therefore, it should be

possible to increase the rate of availability for even relatively rapidly

dissolving drugs by a change in the formulation that increases the in vivo

rate of dissolution.

Therapeutic implications of rate of dissolution in dissolution rate limited

absorption.

A slow rate of dissolution results in poor absorption which can cause

several undesirable effects including: (a) changes in the extent of systemic

availability with decreased therapeutic effect, (b) changes in the rate of

availability with delayed onset of activity, (c) increased inter— and intra-

subject variability and unpredictability of response, (d) increased residency

of drug in gastrointestinal tract with increased damage to mucosal tissue

(Aspirin, KCl, steroids) (39 ). It is therefore nearly always advantageous

to formulate both slowly and readily dissolving drugs so they dissolve as

fast as possible in the organism. The only exceptions are drugs with a

short biological half-life where a slow release dosage form is desirable to

avoid the inconvenience of too frequent drug intake. The effect of dissolution

rate on pharmacological activity has been discussed by Levy (44 ).
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Factors affecting drug dissolution from solid dosage forms.

The dissolution of a drug from a solid dosage form is influenced

by several factors that can be summarised as shown in Scheme 3.2.

Scheme 3.2

Factors affecting drug dissolution from solid dosage forms

I Disintegration

II Environmental factors

(1) agitation

(2) Dissolution media

(a) drug concentration and gradient

(b) pH

(c) viscosity

(d) interfacial tension

(e) complexation

(f) solubilization

III Factors related to the drug itself

(a) solubility

(b) polymorphism

(c) solvation

(d) salt form

(e) particle size

(f) particle size distribution

It is possible by proper formulation techniques to influence the majority

of these factors such that a higher in vivo dissolution rate can be achieved.

Disintegration

A rapid disintegration of the dosage form (tablet, capsule) is

necessary in order to achieve fast dissolution. The factors influencing
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disintegration have been reviewed by Wagner (45 ). The aim of disintegration

is to make the drug particles available for dissolution as quickly and

efficiently as possible. Therefore, a disintegration test should include a

test for both disintegration time and disintegration efficiency. This

efficiency is measured in terms of the availability of disintegrated particles

for dissolution. A conventional disintegration (time) test is therefore

actually only useful when it is combined with a dissolution test.

The factors influencing dissolution (Scheme 6.2) can be divided

into environmental factors and intrinsic factors, the latter being factors

related to the drug itself. The environmental factors can be influenced

either by additives in the dosage form or by the administration of the drug

e.g. whether it is given before, or after a meal or with or without liquid

etc. The intrinsic factors can be manipulated by physical or chemical means

only e.g. by change in particle size or by making a salt-form of the drug.

Environmental factors

Agitation

 

It is well known that dissolution rate increases with increasing

agitation (46—48). There does not seem to be any way the in vivo agitation

can be influenced by drug formulation._ It is possibly too drastic to include

other drugs that increase gastric emptying rate and gastrointestinal

motility. It would be more worthwhile to consider the dependence of agitation

on the composition of the food. It has been shown that meals of low viscosity

are emptied more rapidly than meals of high viscosity (49 ) and that fats

and fatty acids inhibit gastric motility (50 ). The physical activity of

the patient also plays a role. Walking generally produces a higher

gastrointestinal motility than lying ( l ).
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Noyes and Whitney have shOWn that the rate of dissolution of a

drug is proportional to its solubility (51 ). Most drugs are weak acids

or bases and their solubility is dependent on the pH of the vehicle. By

use of the Henderson—Hasselbalch equation it can be shown that the

solubility, C, of a weak base having solubility, Co, in unionised form is

dependent on the hydrogen ion concentration as follows:

+

C Co(l + Kb(H )/Kw) (3.1)

where K.W is the ion product of water and Kb is the dissociation constant

of the base. The corresponding expression for a weak acid is:

C c (1 + K /<H+)) (3.2)
O a

The addition of small amounts of alkaline buffer substances to formulations

of weak acids results in a higher pH in the vicinity of the drug particles

which can enhance the dissolution of the drug (52 ). Buffers can in this

way help to increase the dissolution rate, but their effect on drug

absorption should also be considered. It is unfortunate that the effect of

pH on the dissolution rates of acids and bases is opposite to the effect of

pH on the intrinsic absorption rates of these weak electrolytes. The absorption

of a weak acid from solution is optimal at low pH where the rate of

dissolution of the weak acid is lowest. On the other hand, the rapid

dissolution of a weak base in the stomach acid content is not so important

because little absorption occurs in this part of the gastrointestinal tract.

Viscosity

It has been shown by several investigators (53—55) that the

dissolution rate decreases with increasing viscosity of the vehicle. There



does not seem to be any way by which the formulation of a solid drug

(tablet, capsule) can influence significantly the viscosity of the

gastrointestinal contents. The implication of viscosity and viscosity—

enhancing agents used in suspension on drug absorption has been discussed

by Gibaldi (56).

Interfacial tension

It is well recognised that the dissolution rate is proportional

to the effective surface area of the drug, i.e. the surface area available

for dissolution. The effective surface area for hydrophobic drugs is usually

considerably less than the real surface area because the interfacial tension

between the solid and the liquid does not allow complete wetting. The

effective surface area can however be increased by the addition of a surface

active agent that facilitates wetting and hence results in an increase in

the dissolution rate. It was shown by Finholdt and Solvang (57 ) that the

gastric juice in most humans contains surface active agents and has a

surface tension that is considerably less than the 0.1M HCl that is often

used in in Vitro experiments. In Vitro investigations of the effect of

surfactants on the dissolution rate will therefore probably result in overly

optimistic expectations about the in Vivo effect.

Complexation

The effect of complexation on the dissolution rate of drugs has

been extensively investigated (58-60). Most soluble macromolecules such as

high molecular weight polyols, gums and cellulose derivatives that are able

to form complexes with drugs, can increase the water solubility of the drugs.

There will not, however, be a proportional increase in the dissolution rate
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since the drugs have to dissolve before complex formation can take place.

One investigator explains that the increased dissolution rate observed in

the presence of certain complex forming agents is possibly caused by a

lowering of the energy change for transferring drug molecules from crystal

to solution (58 ). The viscosity increasing properties of macromolecular

complex forming agents will, however, reduce the diffusion rate of drugs

and often counteract the former effect, causing a possible decrease in the

dissolution rate. Complexing agents have primarily been used in dosage

forms in order to increase the solubility or stability of a drug rather than

to influence its dissolution behaviour. It is important to consider the

implications of complex formation on drug absorption before any such agents

are used (56,61).

Solubilization

The effect of solubilizing agents on the dissolution process has

been investigated by several authors (62—64)- The increase in the solubility

due to micellar solubilization will usually not result in a proportional

increase in the dissolution rate. The significant increase in the rate

sometimes found is probably caused by the wetting effect rather than the

solubilizing effect. It is therefore apparent considering Finholdt and

Solvangs' investigations (57 ) that these agents are limited in their ability

to increase the in vivo dissolution rate. They are mainly used for technical

reasons in production but are also occasionally used for improving absorption,

although there still seems to be controversy as to whether they actually

enhance or retard drug absorption (56 ).
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FACTORS RELATED TO THE DRUG ITSELF
 

Solubility

It was early recognised that the rate of dissolution in a diffusion—

controlled dissolution process is proportional to the solubility (51).

Several papers have discussed dissolution rate in relation to drug solubility

(65—67). It has been pointed out that the solubility of very small particles

increases with decreasing particle size because of an increase in vapor

pressure of the solid (66 ).

The solubility of a drug is determined by the interaction between

the solid drug and the solvent. There are therefore two ways in which the

solubility and hence the dissolution rate can be manipulated: by changing

the vehicle composition, for example by use of buffering agents to alter pH

in the vicinity of the drug particles, as discussed previously; or by

changing the crystal form.

Polymorphism

Most drugs can exist in at least two crystal forms. In certain

classes of compounds the incidence of polymorphism is even greater. The

metastable crystal forms have a lower melting point and a higher solubility

than the stable forms. The increased solubility generally results in an

increased dissolution rate. The amorphous form represents the highest energy

level of the molecules in solid form. A pronounced difference in therapeutic

activity between the amorphous and crystalline forms of drugs has been

observed in several cases (67,68). This difference can only be due to a

difference in the in vivo dissolution rate of the two forms, because a drug

has to dissolve before it can be absorbed and the properties of the dissolved
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drug do not depend on its original crystal structure. The above observations

therefore strongly confirm the role of the dissolution rate in the absorption

process. The exploitation of polymorphism often provides an effective way

of enhancing the dissolution rate. Polymorphism of drugs has for this reason

been subject to considerable investigations in recent years (17,40,65). The

problem in using the most soluble crystal form of a drug to achieve faster

dissolution is that this form is often metastable and can change to a stable

and less soluble form, possibly producing severe consequences (67). Drugs

in amorphous or other metastable forms should therefore be used only when

it can be ensured that they will not change to less therapeutically

active crystal forms.

Solvation

A more reliable approach for enhancing the dissolution rate may be

to use the drug in a more soluble solvated or non-solvated form. Significant

differences in the dissolution rate of anhydrous and hydrated forms of

caffeine, theophylline and glutethimide have been observed (75). The

anhydrous forms dissolved faster in these three cases. The n—pentanol

and ethylacetate solvates of fluorocortisone dissolved faster, however, than

the non—solvated forms (72). The use of solvated or non—solvated forms of

a drug to increase the dissolution rate can be troublesome, since conversion

between forms sometimes occurs during or subsequent to the formulation of a

product. Such conversions are temperature-dependent and in the case of hydrates,

humidity—dependent as well. Therefore a complete study of the forms should

be done under different temperature and humidity conditions before they

are used in pharmaceutical preparations.



Salt form

Several drugs can exist in the form of salts and it is well

documented that these usually have faster dissolution and absorption rates

than their parent compounds (73—75 ). Sodium salts of weak acids dissolve

much more rapidly than the corresponding acid forms, regardless of the initial

pH. Their fast dissolution in the low pH of the stomach can be explained

in terms of the ability of these salts to increase the pH at the drug—liquid

interface, causing a fast release and high concentration in the diffusion

layer. Some drugs may subsequently re-precipitate in the bulk fluid, but

usually in the form of very fine particles that readily dissolve through

further dilution or absorption in the gastointestinal tract (44). Chemical

stability can in certain cases preclude the use of the drug in salt form.

The sodium salt of aspirin is very unstable in solution and even the solid

form is rather unstable. The sodium or potassium salts may react with

atmospheric carbon dioxide and water to precipitate out poorly soluble

parent compounds. This occurs on the surface and thereby retards the dissolution

and absorption rates (76,77). The alkalinity of some salts may furthermore

cause epigastric distress after oral intake of the drug in a solid form.

Particle size

 

Particle size reduction is undoubtedly the most used and important

method of increasing the dissolution rate. The surface area to weight ratio

of a particle of any shape varies inversely with its diameter. Therefore

the total surface area and hence also the effective surface area of a drug

powder will increase substantially by particle size reduction, in particular

for fine particles. The greater effective surface area of the drug in contact

with the gastrointestinal fluid will result in more rapid dissolution and
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absorption. This has led most drug firms to micronize (particle size<25 u)

very slightly soluble drugs for use in oral dosage forms. There are numerous

reports of the better dissolution and availability of micronised drug

compared to crystalline (78—82. Particle size reduction of a drug does

not always influence its systemic availability. It was found for example

that 50, 200, 400 and 800 u powders of chloramphenicol were absorbed to the

same extent. The 50 u and 200 u powders showed essentially the same absorption

rate or rate of availability with a peak blood level at one hour, while the

400 u and 800 u powders were different with peak blood levels at two and

three hours respectively (83). These findings indicate that the in Vivo

dissolution rate of the 50 u and 200 u powders has been fast enough to enable

both powders to dissolve before they reach the main absorption site. However,

this was not the case for the 400 p and 800 u powders that had different rates

of availability. Therefore, it can be concluded that nothing has been gained

in therapeutic efficacy by reducing the particle size to less than 200 u.

Such findings are of value in situations where it is better to use coarse

rather than fine particles because of production or stability reasons. A

particle size reduction to enhance dissolution should seriously be considered

when the absorption site is in the stomach or upper region of the intestine.

If, on the other hand, the site is in the last section of the intestine, drug

absorption may be nearly independent of particle size. This results when

dissolution occurs before this section is reached, and depends on the stomach

emptying rate and the peristaltic activity (2 ).

Relatively large particle sizes are often needed to give local

action in the terminal part of the gastrointestinal tract (84,85). A

weak organic basic drug will often rapidly dissolve in the form of an

hydrochloride in the acidic content of the stomach. However, when it passes

into the slightly basic content of the intestine, it can precipitate out
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as the un—ionized compound. The precipitation will be in the form of very

fine, rapidly dissolving particles, so the absorption rate of the compound

will be independent of the initial particle size (52). The absorption of a

slightly soluble weak acid drug should, on the other hand, be much more

dependent on particle size. A reduction in particle size will largely

facilitate its dissolution in the acidic gastric juice, where it is only

slightly soluble. It then forms the more soluble salt when it passes into

the duodenum and small intestine. However, the salt is highly ionised and

its absorption rate is decreased, since only a small fraction of the drug

molecules is in the undissociated state.

Such considerations regarding the effect of particle size reduction

in relation to the acidic or basic character of the drug are based on the

pH-partition theory for absorption and should therefore be subject to

discussion and further investigation. Particle size reduction can in

certain cases reduce the therapeutic efficacy of a drug if it is unstable in

gastric juice, as for example penicillin G or erythromycin, fast dissolution

will enhance degradation in the stomach. The effect of particle size in

relationship to absorption and activity has been reviewed by Fincher (2 ).

Particle size reduction can be performed in several ways: (a)

trituration, (b) ball milling, (c) fluid energy micronization or (d)

controlled precipitation including spray drying (86). There are, however,

limitations as to how much the particles can be reduced in size and how

suitable an extreme particle size reduction would be with respect to

formulation and dissolution. Fine particles very often show a strong tendency

to aggregate and agglomerate due to their increased surface energy and the

stronger van der Waals attraction between non—polar molecules. Furthermore,

electrostatic charges in fine hydrophobic powders can cause severe technical
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difficulties in production. The problems associated with the wettability

of fine powders have already been discussed. Drugs with plastic properties

are difficult to subdivide by mechanical means (a—c), since they tend to

stick together, even if produced by controlled precipitation (d).

Lin et a1. (87) found that the in Vitro dissolution rates of

micronized griseofulvin and glutethimide were slower than those of their

coarser particles. The opposite finding was reported by Chiou and Riegelman

for griseofulvin (88). The results of Lin et a1. can be explained by the

strong agglomeration and reduced wettability of the micronized powder. The

previously mentioned investigations of Finholdt and Solvang (57) indicate

that Chiou and Riegelman's results better reflect what is expected in vivo.

Several reports about the better availability of drugs in micronized

form strongly support this (78—80).

Drugs can also be introduced to the gastrointestinal fluids in

the form of very fine particles formed by precipitation in vivo. This can

be done in several ways (52). The drug can be dissolved in a non—aqueous

water-miscible solvent from which it precipitates out by dilution in the

gastrointestinal tract. Solutions of sodium or potassium salts of an acidic

drug will in the same way precipitate out at the low pH existing in the

stomach. Formulations resulting in in Vivo drug precipitation should have

better availability than formulations of drugs in micronized form, because

agglomeration and wettability problems are avoided and the particle size

of the precipitate usually will be smaller than that which can be produced

by micronization. However, the many disadvantages of liquid drug

formulations compared to solid with respect to stability and convenience do

not seem to counteract the advantage of the somewhat better availability.
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Solid Dispersions

Drug formulations based on solid dispersions of slightly soluble

drugs have received considerable attention in recent years. The

pharmaceutical application of these systems has been extensively reviewed

by Chiou and Riegelman (89). Solid dispersions are micro—crystalline or

matrix. The drug either precipitates out in a fine particle form which is

readily available for dissolution or becomes solubilized when the matrix

rapidly dissolves in the gastrointestinal juice. Solid dispersions may be

classified as: (a) simple-eutectic mixtures, (b) solid solutions, (c) glass

solutions and glass suspensions, (d) amorphous dispersion in crystalline

carriers and various combinations of these systems. Several reports indicate

that the availability and dissolution rate of these formulations are superior

to formulations containing micronized drugs (90,91). Solid dispersions

appear to be as available as the liquid formulations from which the drug

precipitates out in vivo, but they do not have the disadvantages of the latter

with respect to their convenience. The stability also seems to be much

better although very little investigation has been done in this field (89).

Solid dispersions appear, therefore, to be a very promising new

approach in the formulation of slightly soluble, slowly dissolving drugs.

The major problem in designing this formulation form lies in finding a

suitable production method and in finding a matrix material with the right

properties such as low toxicity, high water solubility, high solubilizing

capacity for the drug, thermal and chemical stability and suitability for

processing. Possibly the main hindrance to the introduction of this

formulation form is the problem of aging. Solid dispersions often contain

the drug in a high energy, metastable form which, under prolonged storage,
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can be transformed into a stable but less soluble and more slowly dissolving

form. Solid solutions (molecular solid dispersions) often contain the drug

in a supersaturated form which, through the slow diffusion process occurring

in solids, can precipitate out during storage, particularly at elevated

temperatures (90). The aging of solid dispersions should be an important

research subject for the pharmaceutical scientist, hopefully resulting in

the commercial acceptance of this unique dosage form.

Particle size distribution
 

In recent years there has been increasing interest in the effect

of particle size distribution on the dissolution behaviour of drugs (92—96).

The reduced systemic availability observed for certain drug formulations can

possibly be explained in terms of a "size distribution effect“. In most

drug powders there is a considerable difference betWeen the sizes of the

larger and smaller particles, which produces an important difference in

their time for complete dissolution. This time is for a particle, dissolving

according to Hixson—Crowell's cube root law (97), proportional to its initial

diameter. The larger particles can because of their manifold longer

dissolution time in such cases reach the distal part of the intestine and only

be partly dissolved. The further dissolution in this section of the intestine

with its content of increased viscosity, solid matter and low water content

will be rather slow and the drug will possibly get eliminated from the body

by defaecation before completion of its dissolution. Therefore in order to

avoid such availability problems it would be good practice to have standards

for the particle sizes of slightly soluble drugs.

‘OOO-
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C H A P T E R 4

SINGLE PARTICLE DISSOLUTION

There are three dominant models describing the interfacial mass

transport in a dissolving dynamic (agitated) system. These are:

l. Nernst stagnant film theory (98 ).

2. Danckwerts surface renewal theory ( 99 ).

3. Interfacial solvation rate limited dissolution theory (100,101).

NERNST FILM THEORY

The theory of Nernst assumes a stagnant layer of solvent at the

solid—liquid interface. The mass transport of solute through the layer is

accomplished by simple molecular diffusion in a steady state fashion

following Fick's law of diffusion. Once passed the stagnant layer the

solute is then mixed quickly by convection and diffusion in the bulk of the

liquid.

The Nernst model predicts a concentration profile from a plane

surface in two dimensions as shown schematically in Fig. 4.1 , where h

refers to the thickness of the so-called diffusion layer, ci is the interfacial

concentration and Cb the bulk concentration. The concentration gradient in

the stagnant layer, 0 f_x :_h, is then constant because the diffusion flux,
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JD, is constant during steady state:

JD =-Ddc/dx = constant (4.1 )

From geometrical considerations (fig. 4.1 ):

dc/dx -—(ci-cb)/h . (4.2 )

so tha J
t D

(D/h) (Ci—Cb) (4.3 )

If it is assumed that the interfacial reaction rate is large compared to

the rate of diffusion then ci can be considered close to the solubility

concentration CD so 4.3 can be approximated by:

JD W (D/h)(cS—cb) (4.4 )

The dissolution rate from a plane surface of area, A, will then be;

dw/dt = —(DA/h)(cS-cb) (4.5 )

If in 4.5 D/h is assumed constant, the equation reduces to the Noyes-Whitney

equation:

dw/dt = —kA (c —c ) (4.6 )
s b

after the workers who appear to be the first to have verified this equation

experimentally ( 51). They did not attach any mechanistic significance

to the quantity k. Nernst and Brunner (102) extended the Noyes—Whitney

equation to include the concept of diffusion layer thickness and diffusion

coefficient as presented in 4.5.

Over the years there have been several critics of the Nernst—

104
Brunner theory (lO3,/) particularly in relation to the diffusion layer

thickness which has often been found to have values without any physical

meaning. This is not surprising since the model, Fig. 4.1 , would appear

to be a gross oversimplification of the complex heterogeneous process. It

is perhaps more appropriate to adopt the Noyes—Whitney equation recognising
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that the quantity k depends in some way on D, the hydrodynamic conditions

and the geometry of the dissolving object.

It has been shown that k in Eq. 4.6 under fixed experimental

conditions can often be considered constant and the equation has been

successfully applied in several cases.

DANCKWERTS THEORY

Danckwerts (99 ) rejected the idea of a stagnant film and proposed

a model based on the assumption that liquid motion is turbulent and extends

to the surface of the dissolving crystal. The physical interpretation is

that pockets of fresh solvent reach the interface by turbulence and renew

parts of the surface, while 'old' pockets containing solute simultaneously

leave the surfaces. The mathematical description of this system includes a

parameter, Y, known as the mean rate of surface renewal:

dw/dt = A «$5 (cs-Cb) (4.7 )

For the dissolution of small particles Goyan (105) proposed the following

model which combines 4.5 and 4.7

IIdw/dt — A (D/r + ¢VE) (cs-c ) (4.8 )
b

When the radius of the particle, r, diminishes as Y + 0 this equation reduces

to 4.5 (in the case r = h).

LIMITED SOLVATION RATE THEORIES

 

The equations 4.5 and 4.6 based on Nernst film theory assume that

ci W cS which should hold when the interfacial reaction rate is large compared

with the diffusion rate. If this is not the case cs must be replaced by ci

in these equations and the dissolution mechanism becomes significantly more

complex. In general ci < cS always, so it is somewhat difficult to decide
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between diffusion and reaction rate controlled dissolution.

Wurster and Taylor (104) proposed a method based on the temperature

dependence of k. They claim that the process is diffusion-controlled if the

temperature coefficient is approximately 1.3 and interfacial reaction rate

controlled if it is close to 2.0. Higuchi ( 4 ) derived the following

equation for an interfacial reaction rate and diffusion rate controlled

process:

AD
dw/dt = - irjrjifizi (Cs-Cb) (4.9 )

where ki was termed the effective interfacial transport rate constant. This

equation was presented in slightly modified form in a later publication (60 ).

It is seen that when the effective interfacial transport rate constant is

large i.e. when ki >> D/h the equation reduces to 4.5 and the process is

diffusion rate limited. Ifki << D/h equation 4.9 reduces to:

dw/dt = — A k. (c -c ) (4.10 )
1 S b

and the process is truly reaction rate controlled.

SPHERICAL DISSOLUTION

Nernst theory was derived for a plane interface. It is of interest

to apply similar assumptions to a spherical particle, i.e. assume (Fig. 4.2 ):

l. Spherical symmetry in dissolution

2. c = c. N c as r = r
i S t

_ = = +3 c Cb at r rt h

4. Solute transported only by Ficks diffusion (JD = —D8c/3r)

in stagnant layer, rt :_r : rt + h

5. quasi steady state conditions in the sense that the mass

transport rate through a spherical surface in the diffusion
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layer is constant at a fixed time, i.e.

(4flr2D dc/dr)t = constant rtjrjrt+h (4.11 )

or: [d (r2dc/dr) /dr t o (4.12 )

Fig. 4.2

\
/

 

Solving 4.12 under boundary conditions 2 and 3 above leads to:

2
= _ _ < < + .

(dc/dr)t (cS Cb) rt (rt+h)/(hr ) rt r rt h (4 l3 )

From this expression, it is seen that the concentration gradient

in the diffusion layer is not constant as it was in the case for the plane

body (Fig. 4.1 ). The dissolution rate of the spherical particle according

to assumption 4 is thus given by:

2

dw/dt — 4Trrt D(dc/dr)r=rt - — 4fiD(cs-cb)(rt+h)rt/h (4.14 )

The diffusion layer thickness, h, is related to the intensity of

the solvent flow or agitation in the vicinity of the spherical interface.

This agitation will depend in some way on the size, rt, of the particle.

Therefore, some functional relationship must exist between the thickness of

the diffusion layer and the radius of the dissolving particle.

Several functional relationships between h and rt can be assumed.

On this basis, integration of 4.14 will then lead to different models

for single particle dissolution as demonstrated in the following section.
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Constant Diffusion Layer Thickness.

Firstly, it would be of interest to investigate the case where h

is constant independent of particle size, since this assumption has often

been made in the literature. Two cases will be considered:

1. If h<<rt then 4.14 reduces to:

2:- - .15dw/dt 4WD(cS cb)rt /h (4 )

2 2

which since rt2 = (3/4Wp) /3 w /3 can be written:

-2 2

w /3 dw = [-4flD(cs-cb)(3/(4Np)) /3/h]dt (4.16 )

this integrates to the well-known cube root law (97)

1/3 1w =w/3-kt (4.17)
o l

1/ “2/3

with: kl = (4n/3) 3 D(cS—cb)p /h (4.18 )

2. If h>>rt then 4.14 reduces to:

dw/dt = - 4WD(cS-cb)rt (4.19 )

which similarly to above integrates to:

2 2
w /3 = w /3 — kzt (4.20 )

2 _l
where k2 = 2(4n/3) /3 Up /3 (cs-Cb) (4.21 )

It is interesting to note that in this case the diffusion layer thickness,

is not a part of the rate parameter k2.

Variable Diffusion Layer Thickness.
 

It is expected from hydrodynamic considerations that h decreases

with increasing r. Any monotonically decreasing functional relationship

between h and r could be considered. This investigation will be restricted

to simple relationships based on the following power model:

h,
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h = k r kp' P > 0 (4.22 )

where kp and p are some positive constants. Several cases can be

considered depending upon the value of p and the size of h relative to rt.

It should first be noted that in the cases where h>>rt Eq. 4.14 still leads

to Eq. 4.20 independent of the functional relationship between h and rt.

1. If p = l and h<<rt Eq. 4.14 becomes:

3
dw/dt — —4TrD(cs—cb)rt /kp (4.23 )

which integrates to:

w w EXP (-k t) (4.24 )
o 3

where k 3 3D(cS-cb)/kpp (4.25 )

\

2. If p = l and h is not very different in magnitude from rt Eq. 4.14 leads

to the following expression:

2/3 2/3w — (wo + k4) EXP (-k3t) — k4 (4.26 )

_ 2/3where k4 — kp(4flp/3) (4.27 )

and k3 is given by 4.25.

3. If p = 2 and h<<rt the following equation is obtained:

1 _l _
w /3 = (w /3 + k t) l (4.28 )

o 5

where k = 41mm - )(411 /3)4/3/3k (4 27 )5 s Cb p p '

APPROACHES NOT BASED ON DIFFUSION LAYER ASSUMPTIONS
 

The Noyes-Whitney model applied to a spherical particle takes

the form:

dw/dt = - kA (cs-Cb) (4.28 )

where k may or may not be constant or depend on the particle radius.

1. If k = constant 4.28 integrates to yield the model proposed by
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Hixson and Crowell (97 g:

l l
w /3 = w /3o _ k6t (4.29 )

1 _ 1/3 '2/3
where k6 — k(CS-Cb)(4W/3) p (4.30 )

2. If k is inversely proportional to the particle radius, say, k = k7/rt

then 4.28 integrates to:

2/3w = w - k t (4.31 )

/3p'1/3 (4.32 )where k

2
8 2k7(cs-cb) (4fl/3)

3. If k is inversely proportional to the square root of the particle radius,

i.e. k = k9 rt-%, Eq. 4.28 integrates to yield:

a _ t
w — wo klot (4.33 )

_ % ~1/3
klo — k9(2fi) (20/3) (05 ch) (4.34 )

Sink Conditions.

The models for single particle dissolution presented above are

derived for dissolution under sink condition. This condition can best be

explained in a mathematical context to be a condition under which the change

in cb is so small that the errors, introduced by considering (cs—Cb) or (Ci-Cb)

to be constant, are acceptable. This definition is related to the concept

of ignoring any time dependence of the concentration terms in the integration

of the dissolution rate equation.

Comparing Models.

It is interesting to note that several of the dissolution models

above could be derived both on the basis of the diffusion layer theory and

 

1. These workers did not specify the composition of k6 but assumed it did

not vary with the progress of the dissolution.
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on the more simple model 4.28. In both approaches certain assumptions

were made about the relationship between either the diffusion layer thickness,

h, and the particle size or the rate parameter k (4.28 ) and the particle size.

In spite of oversimplification of the dissolution mechanism in

the diffusion layer approach, it is appealing since it has greater conceptual

value than the other approach. The flexibility of models based on a

diffusion layer seems also to be greater.

Of the models considered above the cube root model (4.17 , 4.29 ),

the square root model (4.33) and the 2/3-root model (4.20 , 4.31 ) have all

been proposed in the literature (97,106,107).

There still seems to be some controversy as to which of these

models best describes dissolution of the single particle. This is mainly

because there appears to be no accurate experimental information directly

concerning the dissolution of single particles.

The inferences made have been based on multiparticle dissolution

from which it may be difficult to deduce single particle dissolution

behaviour, particularly when the particle size distribution is not completely

monodisperse (see Chapter 6).

In the experimental evaluation of the l/3,l/2 and 2/3 root models

in Chapter 7, the cube root model appears to be the best although further

investigation is necessary to confirm this finding. It may well be that a

more flexible model applies which is close to the 1/3 root model in the

beginning and approaches the 1/2 and 2/3 root model as the dissolution

process progresses. Such behaviour is expected if the dissolution follows

Eq. 4.14. This equation reduces to the 1/3 model if h<<r , which is likely
t

to be true in the initial stages of dissolution if the particle size then

is relatively large. Later when the particle is reduced in size the

hydrodynamic activity in the vicinity of the interface will be considerably
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smaller resulting in an increased h value so that for h)>rt the dissolution

reaction approaches the 2/3 root model. The intermediate state will result

in a "square—root dissolution". This condition should occur when

3 2

/2 i.e. when h m r /(r
3/ 2 _

t t t rt) ‘
m(rt+h)rt/h r

STATIC DISSOLUTION MODELS

 

Study of single particle dissolution in which there is no agitation

is of interest for dissolution in vehicles of extremely high viscosity in

which the solute mass transport in most cases is completely diffusion—controlled.

If a spherical particle is considered the system is mathematically well

defined. Substantial theoretical studies have been performed in this area

in chemical engineering (108-113). The many different mathematical approaches

presented have been based on different assumptions. For example, the

assumption that the process is wholly diffusion controlled (lééf/) or partly

diffusion controlled (113). Most of the mathematical models have been

described in terms of partial differential equations which for given boundary

conditions can only be solved numerically using a digital computer.

It is interesting to note that the radius vs. time relationship

computed in this way by Cable and Evans (109) and Ready and Cooper ( l2)

is approximately linear except for an initial transient period. This means

that the dissolution of a spherical particle under static conditions can be

approximated (disgregarding the initial phase) by the cube root law. (The

1/3 model implies a linear decrease in radius with time.)

Of the equations presented for static spherical dissolution, the

following equations given by Rosner Q13 are appealing because of their

simplicity:
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dr/dt = (Dd/r) ln ((l—cm)/(l—ci)) (4.35 )

k (cs-ci)p = (D/r) ln ((l-coo)/(l—ci)) (4.36 )

Where a is the ratio of solvent density/solute density, k is the rate

constant governing the interface kinetics, p is the order of the solvation

reaction. It was assumed that this reaction was of the ordinary Berthroud

form, (100), i.e., that p = l. Thé term cm is the concentration infinitely

far from the centre of the particle, which is the same as the initial

concentration. In most cases therefore COD = O.

The above two equations define, in a computationally simple way,

the variation of particle radius with time for given values of D, a, c and

S

r0. For example 4.36 can be solved numerically for ci and this value

substituted into 4.35 which by numerical integration provides the rt—value

for the chosen value of t. Such calculations were performed on a computer

by Ridgway and Peacock ( 11¢ for various simple organic compounds.

The validity of the above two equations depends primarily on the

following extended quasi steady—state assumption: "The instantaneous

concentration field surrounding the dissolving sphere is approximated by

the steady-state concentration field surrounding a hypothetical spherical

solid of the same size, through which solute is being artificially forced

at a mass rate equal to the instantaneous rate of dissolution".

If the interfacial concentration c. is constant and close to the

1

solubility concentration cb the dissolution can be obtained directly by

solving Fick's law:

3c/3t = DV2c (4.37 )

under the following boundary conditions:

B.C.l. c = c r = r t > O (4.38 )

I s t

B.C.2. c = 0 r > ro t = O (4.39 )

B.C.3. c = O r = m (4.40 )
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This yields the following expression for the concentration profile in the

liquid (115) :

 

r
t

r t = c —— erfc (4.41 )

C") sr ME
rt‘

so that the mass flux per unit surface area at the interface is:

-%Ji — —D(ac/ar)r=rt — Dcs[(nnt) + l/rt] (4.42 )

Furthermore:

2= — 4.dw/dt 4flrt Ji ( 43 )

. 3 2
Now Since dw/dt = d (4Trrt p/3)/dt = 41Tprt drt/dt, 4.42

becomes:

drt/dt = -Ji/p (4.44 )

DC
. _ _ s -%1.e. drt/dt — p [(flDt) + l/rt] (4.45 )

This equation can readily be integrated numerically to yield the time

dependence of rt and hence a numerical solution for the single particle

dissolution for given values of p , D and cs.

%
As dissolution proceeds the term (flDt)— in the bracket in 4.45.

decreases while in the same time the term l/rt increases. Thus after the

initial transition period ((flDt)_5 + l/rtlm l/rt and 4.45 integrates to

yield the 2/3—root law:

2 2
w /3 = w /3 — k t (4.46 )

0 ll
—1

where kll = 2(4w/3)2/3Dp /3cs (4.47.)

It is interesting and satisfactory to note that this model was also derived

for the dynamic system (4.20 ), considering the diffusion layer theory for

the case h>>rt i.e. for a system with little agitation. In fact the rate

parameters kll and k2 in 4.47 and 4.21 are identical for Cb = 0.
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A DYNAMIC MODEL FOR A FREE FALLING SPHERICAL PARTICLE

It is very difficult to define, qualitatively or quantitatively,

the agitation in the close vicinity of a particle in a mechanically stirred

liquid. A better defined experimental system would be the examination of a

spherical particle which falls freely through an unstirred liquid. Analysis

of such a system should be particularly valuable in the study of single

particle dissolution.

In the following section an attempt is made to describe this

system in a mathematically rigorous way. In order to do so the following

assumptions are made and will be referred to where necessary in the derivation:

Al. The particle remains spherical during dissolution.

A2. The interfacial concentration, ci, is constant and very close to the

saturation concentration, cs.

A3. The temperature and densities remain constant.

A4. There is no cS/r dependence.

A5. The effect of Brownian motions is negligible.

A6. The particle falls without producing turbulence, i.e. the Reynold's

number, Re, is less than 0.1:

Re = 2rtval/u < 0.1 (4.48 )

(The velocity of the particle in the direction of gravity is denoted Vm,

the viscosity of the liquid u and its density pl.)

A7. The fluid is incompressible.

A8. The fluid flow behaves in a Newtonian way.

A9. Fick's laws of diffusion are obeyed with D=constant.

Spherical symmetry makes it convenient to choose a spherical

coordinate system with the particle centre as origin and the 9 coordinate
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starting counter-clockwise from the direction of the gravity (Fig. 4.3)

Fi . 4.3

(r,6)

 

First it is necessary to derive an extension of Fick's law valid

for incompressible liquids (A7.) in motion: A shell mass balance on an

arbitrary volume element, p, in the bulk of the liquid yields (A9.):

ggac/at dp = gX—anc+DZc°g)ds (4.49 )

where s is the surface of the element and g_is the normal to the surface

directed outward and X is the fluid velocity vector. The divergence theorem

applied on r.h.s. of 4.49 yields:

{gee/at dp = gf(-Z'y_c + DVzc)dp (4.50 )

which also may be written:

Ig ac/Bt dp = gf(-Y_'ZC - c\_7_°x + DV2c)dp (4.51 )

Equating left and right integrand in 4.51, noting Efy_= 0 (A7.) it follows that:

3c/8t = DVZC - 3:29 (4.52 )

This is the extended form of Fick's second law which takes into

account that the liquid in which diffusion takes place is in motion.
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The fluid velocity vector function X above depends on the geometry

of the particle and the velocity vco with which the particle is falling through

the liquid. This velocity can be related through Stokes' equation to the

particle radius rt.

The r and 6 components of X can be found by solving the following

differential equation for the stream function (Al, A3, A5-A8):

 

 

 

2 2

a sine a ( 1 3 fl _

[a 2 + 2 ae sine 39 ‘P ‘ ° (4'53)
r r

subject to the boundary conditions:

1 3T

B.C.l Vr — - 2 . 36 — 0 at r—rt (4.54 )

r Sine

1 3V

B.C.2. vm rsine 3r — 0 at r—rt (4.55 )

2 . 2

B.C.3. W + - %vmr Sln 6 for r+w (4.56 )

The velocity components are then obtained

~ r r

_ a r _t 3
vr — vm [l 2(r ) + %(r ) ] cose Offiffl (4.57 )

r r

_ 2 _E _ _E 3 -
ve - v0° [l-4(r ) %(r ) ] Sine, ofieffi (4.58 )

The r and 6 components of 2c in 4.52 is 3c/3r and r—1 30/39 respectively thus:

X‘ZC = .v0° [1——:—(rt/r) + 32(rt/r)3] 23—:— cose (4.59 )

+1” [.l~%(rt/r) — %(rt/r)€] r_l§§sine

When there is no ¢—dependence the V2 operator in spherical coordinates is:

.§_ 2§_ 1 §_ . 8

(r 3r) + -3————' (Sinegg) (4.60 )

r sine

The velocity vm is related to rt by Stokes' law:

v = (Mpg/91m: (4.61)
00
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where g is the acceleration of gravity and Ap the solid-liquid density

difference. Equations 4.52 and 4.59-61 can then be summarized to give:

3c/3t kiwi) + .D 3_ - 939)
2 Br Br 2. ae 51“ as

r r Sine

3c
5; cosB (4.62 )

fig

3 3 2
(2A99/9U)[1‘§(rt/r) + 5(rt/r) ] rt

3 3 2 .
(2A09/9U)[ldz(rt/r) - %(rt/r) ] rt 39 Sine+

which is the differential equation for the dissolution of spherical particle.

The equation is to be solved for the following boundary conditions:

B.C.l. c(rt, 9, O) = G5 (4.63 )

B.C.2. c(w, e, t) = O (4.64 )

B.C.3. c(r, 9, 0) = O r > r (4.65 )
t

Because 4.62 is a nonlinear partial differential equation, it seems impossible

to solve analytically using conventional techniques. The equation can,

however, be solved numerically using a digital computer. It would then be

convenient first to transform the variables involved to dimensionless

quantities such as:

c* = c/cS O:c*<l (4.66 )

t* = Dt/rO 05t*<w (4.67 )

r* = r/ro l_<_r*<°° (4. 68 )

u = cose —l§p§l (4.69 )

It can then be shown that 4.62 becomes:

3C*/3t* -——§——- <r*2.g%:) + g—u. ((l_u2)%5*) (4.70 )

r* 3r*

*2 Sc Re° [l-%(rt*/r*) +12(rt*/r*)3] rtfl 113.3

+ ;2 SC Reo [l—%(rt*/r*) _lz(rt*/r*)3] rt* (1—112) —23)—1(:-*
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where Sc is the Schmidt number (Sc = u/ApD) and Re0 is the initial Reynold

number (ReO = 2 rovooo pl/u). The transformed equation is then to be solved

under the following conditions:

B.C.l. c*(l, u, 0) = l (4.71 )

B.C.2. c*(w, u, t*) 0 (4.72 )

B.C.3. c*(r*, u, 0) O r* > 1 (4.73 )

The numerical solution obtained by solving 4.70 for various values

0 . . . . . .
of ScRe Will then be general in the sense that it encompasses an infinite

number of combinations of values for the parameters u, 0 A0, D and cs.1!

NONSPHERICAL ISOTROPIC DISSOLUTION
 

The models for single particle dissolution considered previously in

this chapter are all derived for spherical particles. Application of such

models to real particle systems is complicated by the fact that pure drug

particles are not spherical. The usual approach has been to treat the real

particles as if they were spherical having the same surface area or volume.

Such approximations may introduce substantial errors.

The influence of shape factors on dissolution kinetics of drugs

has been discussed for tablets and controlled release tablets (ll:f;), but

little attention has been given to single drug particles (118,119).

This section presents exact isotropic single-particle dissolution

equations for several nonspherical forms and formulas enabling calculation

of the diameters of hypothetical spherical particles which closely approximate

the dissolution of these forms.

Assume that dissolution takes place istropically, that is, that

the rate of dissolution per unit surface area, J, is constant so that the

following equation can be written:
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dw/dt = -JA (4.74.)

where w is the amount undissolved and A is the surface area. This equation

implies that the boundary of a plane interface retreats with constant speed

during dissolution such that:

ds/dt = —J/p (4.75.)

where p is the solid density, and s is the distance perpendicular to the

interface from some fixed reference point in the dissolving solid.

Equation 4.75. integrates to:

s = 50 - Jt/p (4.76.)

where so is the initial (t=o) distance to the reference point. When this

equation is applied to the istropic dissolution of a spherical particle, the

following equation arises:

w/w = (l — Jt/r )3 (4 77 )
0 0p ' ‘

l .

or (w/wo) /3 = l — Jt/rop (4.78.)

where ro is the initial particle radius.

Therefore, when a spherical particle dissolves istropically

(J=constant), it obeys the Hixson and Crowell (97 ) cube root law, that is,

l
a plot of (w/wo) /3 vs. is linear.

Dissolution of Prismatic Particles.
 

Structures I—VI (Fig. 4.4.) are 10 simple forms of the six crystal

.systems and illustrate the dimensional quantities b0, Co' 10, hO and a used

in the following derivations. It is assumed, without loss of generality,

that b < c < l .
o o o
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Figure 4.4 Illustration of the six basic crystalforms for which spherical

approximations to the theoretical isotropic dissolution are

considered.
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Consider a prismatic particle of initial length 10 and having a

regular n-gonal cross—section with side of initial length be. The distance,

5 from the n sides of the polygan to the centre as reference point decreases

during dissolution according to 4.76. The area of the cross—section at any

time is then equal to n (so—Jt/D)2tan(fl/n), and the length of the prism is

equal to lo-(ZJt/p), so that particle weight at time t is:

w = p (lo-2Jt/p)n(so—Jt/p)2tan(Tf/n) (4.79.)

which, since 50 = (ho/2)cot(W/n), can be written as:

n 2J fl 2
w = p (lo-ZJt/D)Z[bO—(-p—tan nu] (4.80.)

at t=0, wo = plO(n/4)b:, so 4.80. can be written:

2J 2J fl 2
= l— l — ———t —— t 4.81.

w/wo ( l—Et )[ (b p ann ) 1 ( )
o 0

Equation 4.81. comprises the exact dissolution equation for the prismatic

forms of the isometric (n=4, bo=lo), tetragonal (n=4, bo=lo)' and hexagonal

(n=6), crystal systems (I—III). The rhombic prism, having a rectangular

cross-section, dissolves according to:

w = p(bO-2Jt/p) (co-ZJt/p) (lo-2Jt/p) (4.82.)

because of the istropic retreat of all surfaces. Similarly to 4.81., this

equation can be written:

w/wo = (l-2Jt/bop) (1-2Jt/cop) (l-ZJt/lop) (4-83-)

The monoclinic prismatic particle, having a parallelogram cross—

section with an acute angle a, at any time has a cross—sectional area equal

to bc sin a, where b=bo- BZJ/p)sind]t and c=co — [K2J/p)sina]t, so it

dissolves according to:

w = p (10—2Jt/p)[bo-(§6sinon)t] [co-(Z—g-sinoc)tJ sinOL (4.84.)

. _ _ 2J . 2J .
or. w/wO — (l Eggt)[l_(B;531na)t][l_(E;ESlna)t] (4.85.)
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Dissolution of Pyramidal Particles.

The regular pyramidal forms of the isometric, tetragonal and

hexagonal systems (I—III) all dissolve like spherical particles, following

the "cube root law": all plane surfaces of the pyramid retreat toward its

centre of symmetry with the same constant speed during istropic dissolution.

Therefore, the shape of the pyramid remains the same while its size diminishes.

For example, it can be shown geometrically that all lengths of the prism

decrease by a factor of (l—Jt/rop), where r0, given by:

r = a h b (h 2 + b 2/4)'15 (4.86.)
o o o o o

is the radius of the largest sphere that can be contained in the pyramid

initially. The weight of the regular n—gonal prism at time t is equal to

2l . .
E-pnhtbt cot (W/n), where the height, ht’ and Side, b , are ht—ho(l—Jt/rop)

t

and bt=bo (l—Jt/rop), respectively, according to the above theory. Thus, its

weight is:

l 2 3
w — 6 pnhobo (l—Jt/rop) cot(fl/n) (4.87.)

from which it follows that:

w/w = (l-Jt/r p)3 (4 88 )
o o ' '

This equation is identical to 4.77. Therefore, a regular pyramidal crystal

form dissolves in identical manner to the largest (hypothetical) spherical

particle that can be contained within its boundaries initially. This is

also approximately true for an irregular pyramidal form such as the rhombic

pyramid when the irregularity is not too extreme. It can be shown, using

a double integration approach, that this crystal form dissolves according to:

w/wo = (l—Jt/prl)2 [1433+ 3:“)% t] (4.89.)
l 2
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where

H II 9h b (h 2 + b 2/4)';5 (4.90.)
00 O O

r en c (h 2 + c 2/4)‘;5 (4.91.)
2 o o o o

The deviation from spherical particle dissolution (4.77.) arises from the

fact bO # co. If bo = co, then 4.89. reduces to the special cases 4.88. as

expected.

To evaluate these single-particle dissolution equations, it is

convenient to present them in a transformed simplified form which better

illustrates their intrinsic dissolution profile ( 96). For example 4.81.

can be transformed to:

w/wo = (l-Ft*) (1-t*)2 (4.92.)

1
or (w/wo) /3 = (l-Ft*)l/3 (l—t*)2/3 (4.93.)

where:

2J w

t* — (go—ptang)t (4.94.)

is denoted time length and:

F = E9 cot (n/n) (4.95.)

l

o

is denoted the shape ratio. This form of the equation clearly shows that

the intrinsic dissolution profile depends only on the value of the dimensionless

shape ratio, P, which defines the particle shape. Furthermore, the

transformation makes it more convenient to evaluate the extent to which

dissolution of the prismatic particle deviates from spherical particle

dissolution (i.e. from the cube root law). For F=l i.e. when (w/wo)l/3 =1-t*,

there is no such deviation; however, as F decreases, the deviation becomes

more significant, i.e., when the length of the particle relative to its

side length or "diameter" becomes more extreme.
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It is seen (Fig. 4.5.) that as F decreases, the deviation from

the cube root law becomes larger. Dissolution then approaches "the square

root law", that is, a linear relationship between (w/wo)l5 and time length

(or time). This is in agreement with the fact that, for small F values, 4.92.

approximates (w/wo)l2 = l—t*.

The cube root law and the square root law were each postulated

previously as a model for the dissolution of spherical particles under sink

conditions (97,106). Pure drug particles are not spherical, however, but are

often prismatic in shape. Therefore, the particle shape effect should be

considered in any experimental evaluation of such models.

The dissolution equation for a rhombic pyramidal particle, 4.89.,

can also be transformed to 4.92. where:

then: t* = 2_J (h 2 + b 2/4)‘15 t (4.96.)
p o o

and: 2 2/4F = l+2 ho +00 ;5 (4.97.)4 4 -——————22
h + b /4
O 0

It is seen (Fig. 4.6.) that the shape ratio, F, for this pyramidal particle

form does not deviate much from 1 for most shapes, indicating that in most

cases dissolution closely approximates that of a spherical particle.

Dissolution equations for either a rhombic (4.83.) or a monoclinic

(4.85.) particle can similarly be written in a common transformed form as:

= _ * _ * _ *w/wo (l Flt )(l F2t )(l t ) (4.98.)

= = * = - .

where Fl bO/co, F2 bo/lo' and t 2Jt/bop for a rhombic particle and

= F = . * = . . . . .
Fl bo/co, 2 (bO/lO)Sina, and t (2J/bop)51na t for a monoclinic particle
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Figure 4.5

Influence of the shape ratio, F, on the intrinsic dissolution

profile of an n—gonal prismatic particle (tetragonal or hexagonal) or

a rhombic pyramidal particle. The four curves below and including

the diagonal are square root plots. The four curves above and including

the diagonal are cube root plots. The dissolution deviates increasingly

from the w/wO 1/3 versus t* linear relationship (the cube root law) as

the shape ratio becomes less than 1 and approaches a linear (w/wo)1/2

versus t* relationship (the square root law).



 

1
1

-74-

   

 

-5
TIME LENGTH t’

II
II

II
II

 
1

(
w

we
)/3



_ 75 _

Figure 4.6.

Variation of the shape ratio, F, of a rhombic pyramidal

particle having various shapes (see Structure IV, Fig. 4.4. for

definitions of b , c , and h ).
o o o
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Spherical Approximations.

The main objective of studying single-particle dissolution kinetics

is to gain a better understanding and description of multiparticulate systems.

In practice, the particles in such a system vary both in size and shape,

thus making a rigorous mathematical description quite complex. Such a

description must include a bivariate distribution function of the particle

dimensions, and evaluation of this distribution function is rather difficult.

A considerable simplification can be achieved, however, if the

dissolution of each particle in the multiparticulate system can be approximated

by the dissolution of a hypothetical spherical particle of some specified

diameter. The problem associated with the bivariate distribution function is

then avoided, since the system is simplified to contain only one dimensionless

variable, the diameter of the spheres. The exact dissolution profile of the

hypothetical particle system that approximates the real system can then be

calculated using an equation presented previously ( 95 ).

The usual approach to describe dissolution of non—spherical particles

has been to approximate them by spherical particles having the same surface

area or volume. It is of interest to evaluate the errors in such

approximations. A spherical particle, having the same surface area as an

n—gonal prismatic particle with shape ratio F, dissolves according to:

1 2 t1 1
(w/w ) /3 = l — “C0 n 1 t* (4.99.)

o n(l+2/F)

Or if it has the same volume, it dissolves according to:

t* (4.100.)
E 1

(w/wo)l/3 = l — (ZNFCOtn ) /3
3n

where t* and F are defined by 4.94. and 4.95. Figure 4.7. shows the substantial

errors introduced by such approximations based on equal surface area or volume.

This is not only the case for F = 1/4 but for all other values of the shape
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Figure 4.7

Application of the use of spherical approximations to describe

the dissolution of an n-gonal prismatic particle (curve A, Eq. 4.93,

F=l/4). Curve C and E respectively represent the dissolution of a spherica

particle with the same volume (Eq. 4.100, F=l/4, n=4,6). Similarly curve

D and F respectively represent a spherical particle having the same surface

area (Eq. 4.99, F=l/4, n=4,6). Curve B is the approximation (Eq. 4.103,

F=l/4) from which the equivalent spherical diameter is calculated (Eq. 4.104).
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ratio less than 1.

The problem of finding the diameter of the spherical particle that

best approximates the dissolution of an n—gonal prismatic particle is

mathematically the same as finding a quantity, x, such that:

3

w/wo = (1-xt)
(4.101.)

best fits 4.92. Possibly the best criterion for this fit is to minimize

the sum of the squared errors where these are weighted proportional to w/wo,

i.e. to minimize the integral:

I = if [(1-Ft*) (l—t*)2-(1-xt*)3] (l-Ft*) (1-t*)2dt (4.102.)

0

by solving for x when BI/Bx = o. The exact expression for x is too complex

to be of value. However, a very good approximation was obtained by choosing

x such that 4.101. and 4.92. intersect at t*=1/2 (point P, Fig. 4.7.),

l

which corresponds to x=2-(2—F) /3, such that the dissolution is approximated

by the following equation for the hypothetical spherical particle:

l l

(w/wo) /3 = 1 — [2-(2-F) /3] t* (4.103.)

The equivalent spherical diameter, a, i.e., the diameter of this spherical

particle, can then be obtained by equaling the right—hand sides of 4.103.

and 4.78. from which it follows that:

a = -———&lE——————- (4.104.)

[2- (2-1?) 1/3] pt*

Although the approximation given by 4.103. (curve B, Fig. 4.7.) does not

seem to be a particularly good fit to the exact dissolution curve calculated

for the n—gonal particle (curve A), when the same two curves are plotted as

w/wo vs. time length (Fig. 4.8.) instead of as (w/wo)l/3, it is clear that

this is because of the nonlinear scaling in the cube root plot. The

stippled curve (Fig. 4.8.) representing the spherical approximation shows
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I Figure 4.8

[‘ Dissolution of an n—gonal prismatic particle (tetragonal or

hexagonal) or a rhombic pyramidal particle having the shape ratio F=l/4

(unbroken line, Eq. 4.93) and a hypothetical spherical particle (broken

line) representing the approximation (Eq. 4.103) from which the equivalent

spherical diameter is calculated (Eq. 4.104).
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excellent fit to the true dissolution. The weighted errors of the spherical

approximation were calculated for various values of the shape ratio F and

showed (Fig. 4.9.) that this choice for the approximation was satisfactory.

By using similar reasoning, it was found that the equation:

(w/wo)l/3 = l - [2—(2—Fl)1/3(2-F2)l/3] t* (4.105.)

which is similar in form to 4.103. provides a good spherical approximation

to 4.98, which describes the dissolution of rhombic and monoclinic prismatic

particles. The equivalent spherical diameter in these cases is given by:

a = 2Jt (4.106.)1 1[2-(2-Fl) /3(2—F2) /3]pt*
 

The error in this spherical approximation (4.105.) is substantially greater

in the final stages of the dissolution process (Figs. 4.10 and 4.11.) than

in the previous case (Figs. 4.8. and 4.9.). However, a previous study (96 )

showed that dissolution of a nonuniformly distributed, multiparticulate system

is only slightly affected by the dissolution behaviour of the smallest

particles. Substantial truncation at the lower end of the particle-size

distribution had very little effect on the dissolution profile calculated (95 ).

Thus, approximation error in the later stage of the single-particle dissolution

does not introduce the same degree of error when applied to a nonuniformly

distributed, multiparticulate system. The approximation (4.105.) should,

therefore, yield considerably better results when applied to a multiparticulate

system than might be judged from Fig. 4.10. This explains the choice of the

particular weighting of the errors in the approximation procedure.

Table 4.1 summarizes the dissolution of the particle forms shown

in Structures I—VI and gives formulas for the calculation of the equivalent

spherical diameter in each case. The dissolution of these 10 crystal shapes

can be described by three basic transformed equations of cubic form in time-
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Figure 4.9

Graph of errors in the spherical approximation (Eq. 4.103) of

the dissolution (Eq. 4.93) of an n-gonal prismatic particle (isometric,

tetragonal, or hexagonal) or a rhombic pyramidal particle of different

shape ratios. The error is weighted proportional to the fraction undissolved

(w/wo). Key: 1, F = l;2, F = %; 3, F = %y and 4, F = %.
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Figure 4.10

Dissolution of monoclinic or rhombic prismatic particles with

shape ratios Fl = t and F2 = % (unbroken line, Eq. 4.98) and a hypothetical

spherical particle (broken line) representing the approximation (Eq. 4.103)

from which the equivalent spherical diameter is calculated (Eq. 4.104).
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Figure 4.11

Graph of errors in the spherical approximation (Eq. 4.103)

to the dissolution (Eq. 4.98) of a monoclinic or rhombic prismatic

particle of different shape ratios. The error is weighted proportional

l
to the fraction undissolved (w/wo). Key: 1, F2 = g7 2, F2 = k; and 3,
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Table 4.1

Summary of the dissolution of the particle forms shown in Fig.

4.7- including expressions for calculating the equivalent spherical

diameter.
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l
 

Equivalent spherical diameter a = 1 _____

(2—(2—F) /3) Vh: + 132/4

 

(a)

(b)

(C)

Figure 1 defines the quantities b0, CO, 10 and a used.

b
. W . . . .

When F=l, 1.e. :2 = tan 3 then the equivalent spherical diameter is

0

equal to the biggest sphere that can be contained in the prismatic

body. The spherical approximation of the dissolution will then become

exact.

This diameter is equal to the biggest sphere the pyramid can contain.
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length or time. Dissolution can thus be described exactly by a third degree

polynamial in time in all cases.

The basic assumptions behind these derivations is that the rate of

dissolution per unit surface area, J, remains constant during dissolution

and is the same everywhere at the interface of the dissolving crystal. This

assumption can only be approximately true in practice under complete sink

conditions. The higher activity at the crystal edges results in a larger J

value in these areas and, therefore, a “rounding off" of the shape, so that

during the later stages dissolution is slower than calculated. However, this

should result in an improvement in the fit of the spherical approximation

and could result in a closer fit to the real dissolution than the exact

expression given for isotropic conditions. Thus, the approximating curve

(stippled line, Fig. 4.8. and 4.10) is above the calculated dissolution

curve in the later stages. The true dissolution curve, because of the rounding

effect, is above the calculated curve and hence closer to the approximation.

Excellent agreement between experimental and calculated results

was obtained for the dissolution of a multiparticulate system of particles,

approximately tetragonal prismatic in shape, when the respective spherical

approximations were applied (120).

‘000—
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C H A P T E R 5

MULTIPARTICULATE DISSOLUTION

The dissolution of a multiparticulate system is considerably more

complex to characterize than a single particle system. There are two main

reasons for this. One reason is that it may be difficult to account for

the particle size distribution effect (see Chapter 6) which is present when

the powder is not monodisperse. Another reason is that there may be

significant interaction between the dissolving particles; the dissolution of

a particle in the powder will, in general, influence the dissolution of other

particles and often to varying degrees. In evaluating the intrinsic

dissolution properties of a powder it is therefore necessary to establish

experimental conditions which minimize such interactions. This is made

possible by the "single layer-flow through" principle employed in the dissolution

cell used in these experiments (see Chapter 7 and 10).

Under such sink conditions it is possible to establish a

multiparticulate dissolution model based on a single particle dissolution

model and the initial particle size distribution. Such a model should

describe the intrinsic dissolution properties of a powder.

Monodisperse powders.
 

If the initial particle size distribution can be considered to

be infinitely narrow, i.e. if all the particles are of the same initial

size, r0, then the multiparticulate model becomes identical to the simple

particle model when considered on a "fraction undissolved versus time basis".

For example if the single particle dissolution follows the cube

root model:
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w = wol/3 — kt (5.1.)

Then the multiparticulate model becomes:

wl/3 — WOl/3 - nl/3 kt (5.2.)

where n = w /w (5.3.)
o o

is the number of particles in the powder. Eqs. 5.1. and 5.2. are thus

identical in the sense that:

 

k 3
= = ~—————t 5.4.W/wO w/wo (1 1/3 ) ( )

w
o

Polydisperse powders.

—94

Several investigators (107,92 ) have considered the problem of

exactly describing the dissolution profile of powders in relation to their

particle size distribution. These authors have been concerned with powders

initially consisting of particles with log—normal size distribution. Earlier

attempts made use of approximations (107) Or computer simulations (92 )-

More recently, Brooke(93,94)developed an equation that permits calculation

of the dissolution profile of such powders without the aid of a computer.

This equation was later presented in a form to account for trimcated log-normal

distributions.

A general equation that exactly describes the entire dissolution

profile of powders under sink conditions is derived in the following section.

The equation is valid for particles having any initial size distribution

and dissolving according to any explicit single particle model. The equation

is then applied to obtain an exact expression for a log—normal powder

considering the cube root model.
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Derivation, General Case.
 

Consider a powder consisting of particles which initially (t=o)

have a weight density (probability distribution) fo(wo). Let the particles

dissolve independently of each other according to:

w = g (wo,t,A)
(5.5.)

where w and wo are the particle weights at time t and t=o, respectively and

A collectively represents dissolution parameters such as solubility, particle

density and particle shape factors. The inverse dissolution function is

defined as:

we = g"1 (w,t,A)
(5.6.)

Using the rules of transformation of independent variables (121) the particle

weight density function at time t becomes:

—1 d —l

h(w) — f0 [9 (w,t,A)] dw 9 mm» (5.7.)

For 5.7. to hold, the following conditions for g must be satisfied: (a) 9—1

must be a strictly increasing function of w for all t values, (b) 9 must

decrease strictly with time until equal to zero, (c) 9 must remain equal to

zero beyond that time. The latter two conditions ensure that the dissolution

function reflects the actual physical conditions of the dissolution process.

The first condition will rarely be violated because in application, 9 is

nearly always a strictly increasing function of wo for all t values. It is

obvious that the second condition must be met by any dissolution equation.

The third condition is not satisfied for most equations in the

107

literature (97,106,/). To overcome this problem, it is necessary to redefine

the particle weight density function such that it is generally applicable:

f(w) = JE— forw>o (5.8.)

ffh(w)dw

o
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f(w) = o for w f_o (5.9.)

where division by the integral is necessary to satisfy the condition that the

total integral (from - m to + 00) of f(w) must be equal to 1.

The weight of undissolved powder, W, at any time, t, is equal to

the product of the number of particles remaining, Nt' and the mean particle

weight, which for a large number of particles is the same as the expected

value of w, Et(w). Therefore, the following general equation can be written:

w = NtEt(w)
(5.10.)

The number of particles remaining at time t is:

(X)

N = N Jh(w)dw (5.11.)

t o o

where the initial numbers of particles NO is equal to the initial powder

weight, W0, divided by the initial mean particle weight:

W

N = 0 (5.12.)
O 00

fw f (w )dw

o o o o o

 

The mean particle weight as time t is given by:

00

A; wf(w)dw (5.13.)
Et(w)

which according to 5.8. can be written:

00

wh(w)dw

I
(5.14.)o

Et(w) w

I h(w)dw

o

substituting Eqs. 5.11., 5.12. and 5.14. into Eq. 5.10. yields:

T wh(w)dw

W o

——- =
5.15.

W
( )

(D

o I w f (w )dw

o o o o o

 

This equation relates to unbounded particle weight distributions. In

practice, the distribution is always bounded, so the limits of the integration

must be changed accordingly.

Let m0 and Mo denote the initial weights of the smallest and

. . 1

largest particle, respectively. These values then represent the lower and

 

1. These values are not intended to be absolute but rather represent limits

giving the best fit when the actual particle distribution is approximated

by any particular function. Therefore, they also represent truncation

limits of the function.
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upper boundaries, respectively, of fo(wo); f(w) will be correspondingly

bounded by Pg(mo,t,A) and Pg(Mo,t,A). The operator P is introduced to

ensure that the limits are never negative. Therefore, by definition, P

is equal to l in the time period before the operand becomes zero and is

equal to zero beyond that time. When these limits are introduced into 5.15.

and h(w) is written according to 5.7., the following expression is obtained:

w=Pg(Mo,t,A)

-1 - d —1
wfo [g (w,t,A)] a; g (w,t,A)dw

w=Pg(moItlA) . (5.16.)

 W_
w M
O

fwf (w)dw
00 O O

m
0

-l . . . .
If g (w,t,A) and wo 1n the integrals are con81dered dummy variables and

called x, 5.16. simplifies to:

L2
Ig(X,t,A)fo(x)dX

__l__—_.___ (5.17.)

Because of this transformation and the properties of the operator P, the

limits of integration, L1 and L have the following values:
2

L1 = mO for t such that Pg(mo,t,A) > 0 (5.18.)

_ 1 II II II II IIL1 = g (o,t,A) = 0 (5.19.)

L2 = M0 for t such that Pg(MO,t,A) > O (5.20.)

-1 I

L2 = g (o,t,A) " " " ' " = O (5.21.)

The time at which g(mo,t,A) = O is the critical time, that is, the time when

the dissolving particles begin to disappear. when g(Mo,t,A) = 0 all particles

are dissolved. Beyond that time, L = Ll 2, thus making W/Wo equal to zero.
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Equation 5.17. requires knowledge of the initial weight distributing

fo(wo), but more often the initial size distribution is of greater interest.

Consider particles that are spherical and remain so during dissolution; in

this case w = pfla3/6, where p and a are the particle density and diameter,

respectively.2 Transformation in 5.16. from the initial weight distribution

to the initial size distribution is then easily achieved; and by a similar

procedure to that used to obtain 5.17. from 5.16., the following equation is

 

derived: R

. wJ2 g(p—6- x3.t.A)1O(x)dx

W__ _ R1
(5.22.)

Wo Do
I 119 3x l (x)dx
do 6 o

where:
on 3

R = d for t such that Pg(—-d ,t,A) > 0 (5.23.)

l o 6 o

_ 6 -1 1/3 II II II II II _

Rl — [pH 9 (o,t,Afl - O (5.24.)

on 3
R = D for t such that Pg(-—D ,t,A) > O (5.25.)

l o 6 o

_ 6 -l ‘ 1/3 II II II II II _

R1 — [31? g (o,t,A)] _ o (5.26.)

In Eq. 5.22, dO and D0 are initial diameters of the smallest and largest

particles, respectively,1 10 is the initial particle—size density function.

Eqs. 5.17. and 5.22. rigorously describe the entire dissolution

profile of any powder if its initial particle weight density function, f0,

or initial particle—size density function, 10, is known, together with the

particle dissolution function, which can be any explicit expression. With

appropriate choice of limits of integration, the equations are applicable

to truncated as well as “ideal" distributions. The time-dependent integral

 

2. The derivation is valid for particles of other shapes as long as they

remain unchanged during dissolution and an appropriate shape factor is

used in place of fl/6.
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in the numerator of Eqs. 5.17. and 5.22. reduces to the constant integral

in the denominator of zero time, thus making the ratio W/Wo equal to l as

expected.

The general mathematical models expressed by 5.17. and 5.22.

require the use of a computer for numerical evaluation because they are

in integral form. However, if the initial particle weight or particle-size

distribution can be approximated by some simple function, then the model can

often be solved in terms of an expression suitable for evaluating without the

use of a computer.

Special Case: Log—Normal Powders and the Cube Root Model.

Carstensen and Musa (92 ) have pointed out in their review of

the literature that procedures such as milling, grinding and precipitation,

which are based on random processes, produce particles having skewed

distribution functions which often can be approximated by a log—normal

distribution. It is therefore of interest to examine this special case.

Consider a powder consisting of spherical particles of initial

diameters a0, distributed such that In aO approximates a normal distribution

with mean u and standard deviation 0, truncated at lnd0 = u—iO and lnDo =

u + jO, (Fig. 5.1.) where i and j are trimcation parameters. The density

function of In a0 is then given by:

N(lnaorH,0)

uxlnao) = lna =U + jO (5.27.)

o
I N(lnao,u,0)d lnaO

 

lnaO =u - 10

u — i0 :lnaO : u + jO

where the normal density function N is defined as:

N(x,u,0) = 3%— EXP L-(x-u)2/202] (5.28.)
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Figure 5.1. Illustration of the parameters in a truncated log—normal

distribution.
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Because the distribution is truncated, the integral in 5.27. is introduced

to satisfy the requirement that the total integral of u (1nao) must be

equal to 1. By using standard transformation technique (121), the initial

particle density function, 10, then becomes:

a0 N(ln ao,u,0) (5.29.)
10(a ) =

O D
C

where k is a positive constant. The inverse dissolution function is then:

we = (wl/3 + kt)3
(5.31.)

After the initial particle-size distribution (5.29.) and the particle

dissolution equation (5.30. and its inverse 5.31.) are defined, the

relationship giving the dissolution profile can then be derived by means of

5.22. in the following way:

After inserting Eqs. 5.29.-5.31. into Eq. 5.22., the integral in

the numerator, In of 5.22. becomes:

(5.32.)

It was indicated previously that W/wo = In/(In)t_o. By using this fact,

W/wo can be written:
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R

J2[w-(E%)l/3 kt]3 w_lN(ln w,u,0)dw

R1 (5.33.)

O D

° 2
I W N(ln w,u,0)dw

d
o

 

BL _
w

In 5.33., the time-independent integral in the denominator is equal to the

time-dependent integral in the numerator evaluated at zero time. To evaluate

the numerator of Eq. 5.33., employing a technique similar to that used to

derive the moment—generating function for a normal distribution (121), the

following useful equation can be obtained:

r

foN(1nx,u,o)dx = (F(A)—F(B) )EXP [(s+1) (U+(s+l)02/2)] (5.34.)
q

where A = (1n r - u)/O - (s+l)0 (5.35.)

B = (lnq - u)/O - (s+l)0 (5.36.)

and the function F( ) is the area under the standard normal curve function

given by:
x 2

-x /2
Fm = 1 Je dx (5.37.)

—1
Thus, to evaluate the numerator, I, in 5.33., the term (w—Kt)3w is expanded

- . l . . .
as w2—3(Kt)zHfiKt)3w l (letting K = (6/pfi) /3k for Simplic1ty). The above

formula is then applied term by term by putting s = 2,1,0, and -l; r = R2

and q = R and by treating t as a constant for the purpose of integration.
1

The following equation is then derived using W/wo = In/(In)t=o and noting

that 1ndO = u—io and lnDO - u+jo=
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T -u T ~11

F(—C2?-—-30)-F(lo —3o)

w/wo = F(j—3U) - F (-i-30)

T ~11 T -u .

2 1 2 -

_3(Kt) F( o - 20) — F ( 0 — 20) EXP[-u-50 /2 J (5.38.)

F(j—30) - F (—i—30)

T -u T -u
2 1

F( -0) - F ( -O)

2 o o 2

+3(Kt) [ F(j-30) - F (-i-30) EXPL 211—40 —]

T —u T —u
2 1

F( ) - F ( ) -

3 o o 2

_ ___________________ _ _ 2

(Kt) F(j_30) _ F (_i_30) EXP[ 311 90 / ]

where: T1 = u - id for In Kt §_u - id (5.39.)

T1 = ln Kt for ln Kt > u — i0 (5.40.)

T2 = p + jO for ln Kt :_U + jO (5.41.)

T2 = ln Kt for In Kt > u + jo (5.42.)

and K = (6/p'IT)l/3 k (5.43.)

The change in T, at timelength Kt = EXP (p—iO) (critical time) coresponds

to the time when the smallest particles, initially having a diameter d0 = EXP

(u-iO), begin to disappear. The change at Kt = EXP (u+jO) = Do signifies

the end of the dissolution process, so w/wo becomes zero after that timelength.

Equation 5.38. describes the complete dissolution profile of log-

normal powders and any sieve fraction of such powders. It assumes that the

particles dissolve according to the cube root law (5.30.) which also can be

written in the form a = a0 - Kt for spherical particles, where a0 and a are

the particle diameters at time zero and t, respectively. This relationship

is similar to the equation a = a0 - I used previously (92—94 ) in which T

denotes the timelength.

Brooke (94 ) derived an equation similar to 5.38 for log—normal

powders. Directions were given for the changes required in the equation at

the critical time. However, in his equation the first term is constant, equal
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to 1. Therefore, his equation is incorrect if applied to dissolution after

the critical time. The error so introduced becomes quite substantial for

large timelengths and large values of 0.

Brooke calculated values of W/Wo for various values of T/EXP(u)

(the latter terminology corresponds to EXP(-U)Kt used here). This procedure

represents an ingenious method of "scaling time" (by the factor EXP(-u)K)

so the dissolution profile becomes independent of the parameters u and k

(Eq. 5.30.) and only depends on O, enabling the effect of 0 alone to be

assessed. In the present work, however, cube root type plots of (W/Wo)l/3

versus EXP(—u)Kt are used for better comparison with the fundamental

particle dissolution equation (5.30) which obeys the cube root law.

Figure 5.2. shows such a plot for powders truncated at u i 20

(i=j=2) and having 0:0.3. The curvature of the unbroken line, calculated

according to Eq. 5.38. is logically expected. The stippled line represents

the dissolution profile calculated according to Brooke's equation (Eq. 4 of

Ref. 94 ). The two profiles are, as expected, identical until critical time

(EXP(-u)Kt=O.5488), but the later part clearly demonstrates the limitation of

his equation.

Figure 5.3. demonstrates the effect of O on the dissolution profile

for a powder initially having an ideal distribution (i=j=10). Powders of

uniform particle size, i.e., 0:0, give linear cube root plots as expected,

while the deviation from linearity is significant for larger 0 values. An

increase in 0 results in a decrease in the initial slopes of the curves, which

is consistent with calculations made by Brooke (94 ). Among powders having

the same logarithmic mean diameter, u, those with broadest distribution will

have the slowest initial release rate.

 

3. A Cyber 76 digital computer equipped with Calcomp platter was used for

calculations and plots. Numerical evaluations were tested to six digits.



Figure 5.2.
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Plot of the cube root of fraction undissolved versus

EXP(—U)Kt for a hypothetical log-normal powder, with

0:0.3 and truncation at pi2 (i=j=2). The unbroken

curve is calculated according to Eq. 5.38, and the

stippled curve is calculated according to an equation

given by Brooke.
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Figure 5.3.
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Effect of the particle—size distribution parameter, 0,

on plots of the cube root of fraction undissolved versus

EXP(-u)Kt, calculated according to Eq. 5.38. for

hypothetical ideal (i=j=lO) log normal powders.

Key: A, 0:0; B, O=O.2; C, O=O.l4; and D, O=O.7.
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Figure 5.4. and 5.5. show the effect of truncation on the

dissolution profile when the initial ln (particle diameter) - distribution

approximates a normal distribution (0:0.5) with various degrees of upper

(Fig. 5.4.) and lower (Fig. 5.5.) end truncation. Comparison of the two

figures indicates that the effect of truncation at the low end is very small

and considerably less than that of truncation at the upper end. The curves for

j=10,l,0.3 and 0.25 in Fig. 5.4. also shows that the magnitude of the slopes

of the curves increases with increasing truncation. The most marked effect

of truncation at the upper end is that the time for complete dissolution is

drastically reduced.

— o O o —
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Figure 5.4. Effect of upper end truncation on the dissolution profile

of powders having a log-particle diameter distribution

that is normal, with O=O.5, and truncated at u-lOO and

u + jO, where j = 0.25 (a), 0.5 (b), l (c), and 10 (d).
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Figure 5.5.
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Effect of lower end truncation on the dissolution profile

of powders having a log—particle diameter distribution

that is normal, with 0:0.5, and truncated at u-iO and

u + 100, where i = 0.25, 0.5, l and 10. The four curves

are essentially coincidental.



-ll6-

e7“k t



— 117 -

C H A P T E R 6

SIZE DISTRIBUTION EFFECTS

The dissolution profile of a powder is determined by its particle—

size distribution and the way the single particles dissolve. Several

mathematical models have been presented to describe single-particle

dissolution (97,10%9; ), but none of these has yet received complete

acceptance. Experimental evaluation of the models on the basis of multi-

particulate dissolution data is complicated by the distribution effect

present when the powder is not truly monodispersed. Such powders are

impossible to obtain in most cases (122). Processes such as sieving,

precipitation, and grinding do not yield completely uniform particles.

This situation is particularly true for fine powders which are of greatest

pharmaceutical importance. In recent years, there has been increasing

interest in evaluating the distribution effect in multiparticulate dissolution

(92—96, 107 ). In this chapter distribution effects for log-normal powder

systems are considered together with three single-particle dissolution models

from the literature. By using simulated dissolution data and particle—

size distributions, the possibility of distinguishing between the models is

investigated.

Theoretical Considerations

Let: w g(wo,t) (6.1)

g_l(w.t) (6.2)IIand w
0

describe the dissolution equation and inverse dissolution equation,

respectively, for a single particle, where w and wO are the particle weights

at time t and 0, respectively. Further, let 10 (a0) denote the initial (t=o)
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particle—size density ("probability") distribution. By assuming that

particles are spherical and remain so during dissolution, the particle weight,

w, is related to the diameter, a, at any time by w = pfla3/6, where p is the

particle density.

By using a technique similar to the one used in Chapter 5, the

following equation can be derived which rigorously describes the particle-size

distribution, 1(a), at any time if the initial distribution, 10(ao), is known

together with the particle dissolution function, g:

- 1

13—1193 ”12-1193

1(a) = lounpg (6a’t)] )da[wpg (6 a')]

1/3

 

L2 (6.3)

I 10(a)da

L1

1 l

_9. 3rt) /3 < < P .2 (IT—Q 3 ) /3

For P [%Np g (6 do __a _. “D g 6 Do, t (6.4)

The integration limits L1 and L2 depend on time as follows:

L = d fortsuchthatp<91d3u>o
(65)

1 o g 6 o ' '

L — __6. -1 (0 t) 1/3 II II II II II _ 0
(6 6)

1 — “p g I
—

. '

pH 3

L = D for t such that Pg (—— D ,t)> O (6.7)

2 o 6 o

_. 6 _1 1/3 II II II II II _

L2 — [Np g (o,tq — O (6.8)

where do and DO denote the initial diameters of the smallest and largest

particles, respectively. The operator P has been introduced to make the

expression generally applicable ( 95). It is defined to be equal to one

in the time period before the operand becomes zero and is equal to zero

beyond that time. The lower integration limit Ll changes value at g[(pfl/6)

_do3't]

3 -
.

The time at which g[(p‘lT/6)Do ,t] = 0 corresponds to the disappearance of

O, that is the critical time when the particles start to disappear.

the last particle and marks the completion of the dissolution process.
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Many powders have size distributions that are approximately log-

normal (122. Consider such a powder distributed such that 1n aO approximates

a normal distribution with mean u and standard deviation 0 truncated at

ln do = u-io and at 1n D0 = p+jo, where i and j are truncation parameters.

The initial particle-size distribution, 10 (a0), is then given by (96 ):

-l
_ a N(lna ,u,0)

10 (a0) _ —E§L_—__—_-£L_-—_——_———__ (6.9)

o -l
g aO N(lnao,u,0)d a0

0

d < a < D
o —- 0-— o

where N( ) is the normal distribution with ln ao as the variable.

The change in the particle-size distribution during dissolution

depends on the way the individual particles dissolve. Three widely known

models for single—particle dissolution are considered. When written in the

same form as 6.1, the cube root law (97 ) can be expressed as:

_ l/3 3
w — (wo k3t) (6.10)

In a similar way, the equation presented by Niebergal et al. (106) can be

written simply:

1:
w = (w - k t)2 (6'11)0 w

and the model proposed by Higuchi and Hiestand (107) can be written:

w = (w02/3 -klt)3/2 (6.12)

For simplicity and because their evaluation is not important to

the theoretical discussion, the constants kl, k2 and k3 are used in place

of the original time coefficients which included parameters such as the shape

factor, particle density, and diffusion coefficient. In the following section,

Eqs. 6.12, 6.11 and 6.10 will be referred to as models 1, 2 and 3, respectively.

By having defined the initial size distribution 10(ao) (Eq. 6.9),
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and the dissolution function (Eqs. 6.10—12) the size distribution at time t,

1(a), can be expressed applying 6.3:

3 m

 

 

 

3
(— — 1)( ) — '—

am am+Kt N[ln am+ Kt 341,0]

1(a) =
(6.13)

T -u T -u

1 2 ) ( 1 )
F - F

o o

For % p %

P(EXP [3(u—io)/nfl -Kt) _<_a<_P(EXP [3 (u+jo)/nfl -Kt)

and l(a) = O elsewhere. Also:

T1 = u-io for g1 ln (Kt) < p-i (6.14)

T — E 1n (Kt) II II n n > _-
(6 15)

1 ' 3 —“ l '

T2 = u+j0 for 1;:— 1n (Kt) < u+j (6.16)

T — .13 l (Kt)
II II " II > +'

(6 l7)

2 ' 3 n — u 3 '

i

and K = (6/p1T)m k (6.18)

Equation 6.13 describes the size distribution for all three models.

For Model 1, m = 3/2; for Model 2, m = 2; and for Model 3, m = 3. The

constants k and K for each model should be kl, k2, k3 and K1’ K2, K3,

respectively. The function F( ) is the commonly tabulated area under the

standard normal curve function defined earlier (5.3%.

The main particle size (diameter), 3 can be obtained by applying

the usual integration approach used in mathematical expectation:

3 m_3_ 2 -1 _

_ Jam(am + Kt) N[1n(am + Kt) 341,0] da

a = R
(6.19)

42'“) -F (T?)

The integration interval R in 6.19 is the same as the interval for

 

 

 

a defined in 6.13. Equation 6.19 considers Model 1 and 2 (m = 3/2 and m = 2,

respectively). The mean particle size for the third model (m = 3) simplies

further to:
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T -u T “U
2 l

Tz-U Tl-u “ u 0 - 3 .

F(-—) - F( )o 0

Where T1 and T2 are still defined as in Eqs. 6.14-17. The exact dissolution

profile of a log-normal powder with single particles dissolving according to

each of the three models can be derived using 5.22 presented earlier(96 ):

 

m ' (m-n)

{if :éo(:)(’xt) INN—NB). EXP (C) (6.21)

F(j-30)-F(-1—30)

For which

A = (Tz-u)/0 — 3n0/m (6.22)

B = (Tl-u)/o — 3nO/m (6.23)

and C = i-(n-m)(u+% (n+m)02/2) (6.24)

Where W and Wo are the amounts of undissolved powder at time t and 0,

respectively. Equation 6.21 with m = 3, although presented in a more compact

form, is identical to 5.38 derived earlier. Equation 6.21 is not defined

for Model 1 (m = 3/2) which must be considered separately:

R2
3 _

.£ (wz-Klt) /2 W 1N (in w,u,0)dw 2

1
EXP (-311-90/2 ) (6.25)
 fl. =

wo F(j—30) - F(—i—30)

where R1 = EXP(u—i0) for (Klt)12 <EXP (u-iO) (6.26)

Rl — (Klt);2 " " :EXP (u—iO) (6.27)

R2 = EXP(u+j ) for (Klt)% <EXP (u+jo) (6.28)

R2 = (Klt)% " " ngp (u+jo) (6.29)

The derivation of these equations are based on two assumptions:

(a) that the particles in the multiparticulate system dissolve independently

of each other, which will be approximated well under sink conditions; and

(b) that they dissolve according to the same single—particle dissolution
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model having fixed parameters (for these cases, kl' k2 and k3 are the same

for all particles and do not vary during dissolution). If these conditions

exist, then it is possible to propose some general rules concerning the

dissolution process. These rules are explained in relation to what will be

termed "the intrinsic dissolution profile", which can be defined in the

following way: Dissolution curves have the same intrinsic dissolution profile

if, by a suitable scaling of time, they can be brought into each other in a

w/Wo versus time plot (Fig. 6.1).

It should be clear from observation of Eqs. 5.17 and 5.22 that the

coefficient of time in an expression correctly defining the multiparticulate

dissolution profile originates directly from the coefficient of time in

the single-particle dissolution equation. Thus a different value of the

rate parameter, that is, a different coefficient of time in the single—

particle dissolution equation, has the same effect as a different scaling

of time. Therefore, the intrinsic dissolution profile will still be the same.

The following rule can thus be stated:

1. The intrinsic dissolution profile is independent of the

value of the rate parameter, that is, the coefficient of time in the single-

particle dissolution equation.

According to this rule, the rate parameter kl’ k2 and k3 (6.10—12)

have no influence on the intrinsic dissolution profile. Furthermore, there

will always be a proportional relationship between the coefficient of time

in the multiparticulate dissolution equation and the rate parameter. The

following rule can therefore be stated:

2. In two systems having identical particle—size distributions,

the time—scaling factor that brings one dissolution curve into another is

equal to the factor with which the rate parameters are proportionally related

in the two systems. (Fig. 6.1)
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Figure 6.1

Two dissolution curves having the same intrinsic dissolution

profile. Curve 1 can be brought into curve 2 by a time-scaling factor,

tZ/tl' Rule 2 states that k(1) = (t2/tl)k(2), where k(l) and k(2) are

the rate parameters in the single-particle dissolution equation for

Systems 1 and 2 having the same particle-size distribution. These

statements also include plots where w/Wo is raised to any other exponent.
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Consider two particle—size distributions that are distributed

on a logarithmic scale ll(log a) and 12 (log a) having the same shape.

Then for any diameter, a (Fig. 6.2) 11 (a) = 12 (log a + log Ka); i.e.,

1 (log a) = l1 (log Kaa), where log Ka is a measure of the distance between

2

the logarithmic distributions. Therefore, if the particles in system 2

are scaled (measured) in units of Ra, the resulting distribution is the same

as that for System 1. Such a scaling of the particle sizes has an effect

on the calculated dissolution profile.

However, if the coefficient of time in the single—particle

dissolution equation is dimensionally dependent on length, as in a model

that is not first order, then a scaling in length, as in the above

transformation of the particle-size distribution, has the same effect as

a scaling in time. If the single-particle dissolution is a first order

process, then the dissolution profile is completely independent of the

particle-size distribution, because the fraction of each particle that

dissolves in a given time is the same, independent of its size. Therefore,

it can be concluded that system 1 and 2 have the same intrinsic dissolution

profile, and the following rule can be given:

3. Two powders dissolving according to the same single—particle

dissolution model have the same intrinsic dissolution profile if their

particle-size distributions are of the same shape on a logarithmic scale.

(Fig. 6.2)

It follows from this rule that it is not the "position" of the

distribution, that is, not the actual size of the particles, but the shape

of the distribution that affects the intrinsic profile. Thus it can be

stated that:

4. The intrinsic dissolution profile does not depend on the actual

size of the particles but on the shape of their distribution.
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Figure 6.2

Two particle-size distributions having the same shape on a

logarithmic scale. According to Rule 3, these distributions result in

dissolution curves with the same intrinsic dissolution profile (for

example, curves 1 and 2 of Fig. 7.1).
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According to Rule 2, the concept of time scaling in dissolution

studies should have some practical application. It has already been stated

that it is very difficult to prepare completely monodispersed powders;

therefore, some nonlinearity is always present in the dissolution profile

due to the distribution effect (96 ). This nonlinearity introduces errors

into determination of the influence of factors such as stirring rate,

temperature, and vehicle composition on the rate parameters (kl, k2 or k3)

using conventional "initial slope" or "line ofbestfit" computational

techniques.

However, Rule 2 provides an alternative approach where this type

of error is negligible. The new technique simply involves finding a time—

scaling factor that brings one curve into the other or, more correctly,

minimizes the separation of the curves. This factor is then equal to the

factor by which the two rate parameters are proportionally related. Perhaps

the best criteria is to minimize the squared horizontal differences between

the curves.

According to Rules 1 and 3, it should be possible to normalize

the calculated dissolution profiles for log-normal powders by appropriate

scaling of time to a form that does not depend on either the rate parameter

(kl' k or k3) or the actual sizes of the particles. One approach is to

2

scale time in the W/Wo versus time plot as the time fraction w, defined as

the fraction of the time necessary for complete dissolution. The expression

defining the resulting normalized dissolution profile can be obtained in

the following way, using Models 2 and 3 as examples. The time for complete

dissolution, to, is given by

(m/3)ln(Kto) = u+j0; then since w = t/to it follows that:

up = KtEXP [-3(u+jo)/m] (6.30)
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3 (11+j0) /m
Accordingly, the Kt terms in 6.21 can be substituted by w , which

causes the u term to cancel out. After rearrangement, 6.21 can be written:

In

3; = ;O(:)(‘w) (mm)% EXP (c) (6.31)

where: A = j — 3nO/m

B = i — 3nO/m for o _<_ 1p i EXP [—3(i+j)o/m]

B = j + 1:31—- 1n lb-3nO/m

for EXP[-3(i+j)O/m] 5 w i 1

Thus the normalized dissolution profile (6.31 with m = 2 or m = 3)

does not contain any rate terms (k3 or k from 6.10 or 6.11) or any term (u)
2

representing the size of the particles. Scaling of time according to 6.30

has brought all dissolution curves originating from distributions with the

same "logarithmic shape" (which is completely defined by parameters 0, i and

j) into one single curve (6.31) which does not depend on the size of the

particles or the rate parameter from the single—particle equation. This

confirms Rule 1 and 3.

The transformation has essentially normalized all possible systems

having the same intrinsic dissolution profile into one single curve. This

curve is unique in that it makes it possible to evaluate the isolated

distribution effect. This evaluation is best done by plotting in a way

that linearizes the underlying single—particle dissolution equation (6.10-12),

l
by using (W/WO) /m instead of W/Wo in the plot. Such a plot will be

linear with slope = -l for a true monodisperse system. Any deviation from

this linearity and slope will be due solely to the distribution effect.

Figure 6.3 shows such normalized dissolution profiles, calculated

according to 6.21 and 6.31, for powders initially log—normal, having

distribution (shape) parameters 0 = 0.2 and i = j = 2, for particles dissolving
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Figure 6.3

Normalized dissolution profiles of powders initially log-normal

(O=O.2, i=j=2) calculated (Eq. 6.21, m=3,2, Eq. 6.25) to dissolve and plotted

according to models 1,2 and 3. The stippled line represents monodisperse

powders (O=o).
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according to each of the three models (6.10-12). The fraction of undissolved

powder, W/Wo, is raised to the powers of 1/3, 1/2 and 2/3 for the reason

just given. The distribution effect is smallest for Model 3 and greatest

for Model 1. Remarkably good linearity is observed for the first part

of the dissolution process for all three models. This result does not mean,

however, that the distribution effect is negligible in the beginning, as

is seen from the fact that the slopes differ considerably from -1.

It is obvious that good linearity in such plots is no necessary

criterion that the powder is monodisperse or that there is no distribution

effect. This error has been made frequently in investigations where the

dissolution process is not followed to the end or very near the end.

Furthermore, the validity of a particular dissolution model cannot always

be assessed solely from the linearity of a plot of data according to that

model even when dissolution is followed to the very end. This fact is

clearly demonstrated in Figs. 6.4 and 6.5.

Curve a in Fig. 6.4 shows a normalized dissolution profile of log-

normal powders (0:0.14, i=j=2) calculated (6.25) to dissolve and plotted

(W/WO to power of 2/3) according to Model 1. The size distribution effect

is clearly reflect in the nonlinearity of the curve. By plotting the same

data according to an incorrect model, Model 3 (W/wo to power of 1/3), the

size distribution effect is almost entirely cancelled and surprisingly good

linearity is obtained that extends to the very end of the dissolution process

(curve b).

Figure 6.5 shows the same phenomenon for powders (O = 0.12,

i = j = 2) where the particles are calculated to dissolve according to Model

2 (6.31, m = 2).

A judgment based solely on the linearity of such plots will often

lead to false conclusions about the validity of the model, even where



— 133 —

Figure 6.4

Normalized dissolution profil

6.25) to dissolve and plotted according to

es of powders initially log—normal

(0:0.14, i=j=2) calculated (

model 1 (curve a). Curve b represents the same data plotted to an incorrect

model (model 3) resulting in an almost cancellation of the size distribution

effect observed in curve a.
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Figure 6.5

Normalized dissolution profiles of powders initially log-normal

(0:0.12, i=j=2) calculated (Eq. 6.21, m=2) to dissolve and plotted

according to model 2. Curve b is the same data plotted according to

model 3, resulting in almost complete cancellation of the size distribution

effect observed in curve a.
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dissolution is followed to competition, unless an analysis of particle size

distribution is made. The phenomenon demonstrated in Figs. 6.4 and 6.5 are

not special cases for the particular values of a chosen but were observed to

apply for a wide range of O values.

These findings clearly emphasize the importance of particle-size

analysis in investigations of dissolution kinetics. It is of interest to

see how the particle-size distribution changes during dissolution. The

distribution of a powder that is initially log—normal (u = 5, 0 = 0.2,

i = j = 2) was calculated at various times according to 6.13 and plotted in

Figs. 6.6, 6.7 and 6.8, illustrating dissolution according to Models 3, 2

and 1, respectively. The distributions are labelled in chronological order

from A to H. Curves A and D represent the distributions initially and at

critical time, respectively.

When particles dissolve according to Model 3 (Fig. 6.6) then the

shape of the size distribution remain constant before critical time,

consistent with istropic dissolution (da/dt = - K3). This is not the case

for dissolution according to Mpdels l and 2 where the absolute rate of change

in size of the particles, da/dt, increases with time. For Model 1:

K
1 2 4:

- 2 (a0 - Klt)da/dt (6.32)

and for Model 2:

da/dt 3 3/2 _ -1/3— 3 K2 (a K2t) (6.33)

As a result, the distribution broadens before critical time

(Figs. 6.7 and 6.8) and is particularly affected at the small particle end

as zero is approached where da/dt takes extreme values. Because of the latter

effect, near the end of the dissolution process the relative frequency of the

very small particles increases with increasing size for Models 1 and 2

(Fig. 6.8 and 6.7) while it decreases for Model 3 (Fig. 6.6). This information
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Figure 6.6

Size distribution change with time for a powder initially log-

normal (u=5, 0:0.2, i=j=2), calculated (Eq. 6.13, m=3) to dissolve according

to Model 3. Distributions are labeled inxhronological order. Key: A,

initial distribution; and D, distribution at critical time.
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Figure 6.7.

size distribution change with time for a powder initially log-

normal (u=5, O=O.2, i=j=2), calculated (Eq. 6.13, m=2) to dissolve

according to Model 2. Distributions are labeled in chronological order.

Key: A, initial distribution; and D, distribution at critical time.
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Figure 6.8

Size distribution change with time for a powder initially loge

normal (u=5, 0:0.2, i=j=2), calculated (Eq. 6.13, m=3/2) to dissolve

according to Model 1. Distributions are labeled in chronological order.

Key: A, initial distribution; and D, distribution at critical time.
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should be of value for distinguishing model 3 from the two others. However,

from the distribution change alone, it is difficult to distinguish between

Models 2 and 3.

It appears from this discussion that it is not possible to distinguish

clearly between all three models from dissolution data or from particle-size

measurements alone. It would be of interest to determine whether this could

be done if both types of information are combined quantitatively. One

convenient combination seems to have potential for discriminating between

models. It will be called the dispersion product, 5, and is defined as:

s = (a/ao) x (Wo/W) (6.34)

where E and E; are the mean particle diameters at times t and 0, respectively.

The dispersion product is readily obtained, requiring only information for

the fraction dissolved and simple averages from particle-size measurements.

Time-consuming evaluations of distribution parameters are not required.

It is a dimensionless variable that depends only on the initial distribution

parameter, 0 (for fixed i and j), and the single—particle dissolution

equation. For this reason the variation of 5 during the dissolution period

should reflect the basic equation.

Figure 6.9 shows this variation for powders initially log-normally

distributed (0 = 0.2, i = j = z). The curves representing the three

dissolution models are significantly different. The basic shape of the

curve remains the same for varying values of 0, although the minima shift to

the right and to higher values for very narrow distributions. All three

curves approach 5 = 1 (stippled line) when 0 approaches zero as expected

for a completely monodisperse powder. The values of the three minima remain

approximately constant. When 0 ranges from somewhat less than 0.1 to at

least 0.2 (Fig. 6.10), which encompasses most fine powder distributions
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Figure 6.9

Variation of the dispersion product (Eq. 6.34) with progress

of dissolution of powders initially log—normal (G=0.2, i=j=2) calculated

to dissolve according to model 1, 2 and 3. The stippled line represents

a monodisperse powder (0:0).
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encountered in practice. Theoretically, the considerable difference between

the Smin values should make it possible to distinguish between the three models.

The dispersion product profile (5 versus w/WO or percent dissolved

has some powerful properties, since it is a dimensionless quantity

dependent only on the shape of the distribution and the form of the single—

particle dissolution equation. Any change in the coefficient of time kl’ k2

or k3 (Eqs. 6.10-12) during the dissolution will have no effect on the s

profile because 5 is essentially parametrically
represented by time, provided

the change is the same for all particles irrespective of their size. Thus,

if changes in such conditions as temperature, agitation, or vehicle composition

during dissolution have identical influence on all particles, these changes

will have no effect on the s profile. Alternatively, if the external

conditions are maintained constant, then 5 should indicate whether the

coefficients are independent of particle size and hence, whether such

parameters as the interfacial concentration gradient, shape factor, and

interfacial reaction rate are independent of particle size. The dispersion

product should, therefore, be a valuable tool in dissolution kinetic studies.

The extent to which these mathematical models can be applied to

describe the dissolution of a “real" powder depends on three assumptions.

1. As mentioned earlier, it was assumed that the particles dissolve

independently of each other. This should be approximated well under sink

conditions.

2. It was assumed that the dissolution of each particle in the

powder can be described by an equation having the same parameter value (k)

for all the particles. In practice, this assumption is rarely valid because

of differences in individual particle shapes, crystal structure, and

interaction with the vehicle. However, these types of effects probably can

be averaged to produce a parameter value for the single—particle
dissolution
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Figure 6.10

Variation of dispersion product minima, Smin' with the initial

distribution parameter, 0, for dissolution according to Models 1, 2 and
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model which, when used in the multiparticulate dissolution equation, results

in a good approximation of the actual multiparticulate dissolution behavior.

3. It was assumed that the initial particle-size distribution can

be approximated by a truncated log—normal distribution. Although it is

generally accepted that most powders are approximately log-normal, it is

likely that the log—normal distribution function only provides a coarse

approximation of the actual particle—size distribution, which usually contains

a number of irregularities.

This chapter has dealt only with log-normal powders and three

dissolution models. However Eqs. 5.22 and 6.3 make it possible to calculate

dissolution characteristics for a powder of any initial size distribution,

or a sieve fraction of such a powder, considering any single-particle

dissolution equation of explicit form.
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C H A P T E R 7

EXPERIMENTAL
EVALUATION OF THREE DISSOLUTION

MODELS

There exist at present several kinetic models for single particle

dissolution.
Experimental

evaluation of these models has been based on

multiparticul
ate dissolution data, but distribution

and particle shape effects

have not been considered.
The general theory of multiparticul

ate dissolution

was discussed in Chapter 5. This theory was subsequently
in Chapter 6 used

to develop mathematical
expressions for the dissolution of log-normally

distributed powders, considering three single—partic
le dissolution models.

The theory of single—partic
le dissolution in relation to particle shape was

discussed at the end of Chapter 4. Directions were given for calculating

the diameters of hypothetical spherical particles having dissolution behaviour

which approximates nonspherical particle dissolution with minimum error on

a weighted least squares basis.

This chapter demonstrates the combined application of these theories

to explain the dissolution kinetics of 60/85-mesh fraction of tolbutamide

such that both size distribution effects and particle shape effects are

considered. By using a time—scaling approach, the three single—partic
le

dissolution kinetic models are evaluated.

Theoretical Consideration
s

The three equations for dissolution of spherical particles under

sink conditions considered can be written in common form as:

l

w = (w m — kt)m
m

o

3

3, 2, 3' (7.1)
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representing the cube root, the square root and the 3/2-root models,

respectively (97,106,107). The positive constants k1, k2 and k3 replace

the original coefficients of time. These contained quantities such as

density, diffusion coefficient and shape factor. This simplification is

made because the aim is not to evaluate the theoretical basis of the three

equations but solely to assess them as models for describing the dissolution

kinetic data.

These equations (7.1) do not strictly describe the dissolution

correctly in their present form since w does not vanish for t + w. A more

correct formulation would therefore be:

i l

w = (w m — kt)m for t < w m /k (7.2)
O _O

l
w = O for t > wom /k

The general multiparticulate dissolution equation presented earlier (5.22)

however was developed such that it accepts the single particle dissolution

function in the forms of both 7.1 and 7.2. Equation 7.2 will be used for

simplicity.

In Chapter 6 the following equations were presented to describe the

dissolution profile of a multiparticulate log—normal system where the

spherical particles dissolve according to each of the three models (7.1):

m

a“; = $0 (:11) ('Kt) (In-n) %) EXP (C) (7.3)

where A = (TZ-uvo — 3no/m

B = (Tl—u)/O - 3no/m

c = EXP[% (n—m) (11% (n+m)02/2)]

T1 = max [% ln (Kt) , u—io']

T2 = max [g-ln (Kt), u+j0]
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R

 

2 2 3 —1
I (w -Kt) /2 w N(ln w,u,0) dw

W R1
2

fi_ = EXP(—3u—9O /2) (7.4)

o F(j—30)—F(-i—30)

where R = max [(Kt);2 EXP(u—i0]
l I

R2 = max [(th’, EXP(u+jO)]

The function F( ) above is the area under standard normal curve function

defined earlier (5.37). The function N(1n w,u,0,) is the normal distribution

function with ln w as variable, defined by:

2
_ 1 ln w—u ]

N (1n w,u,0) — 67?? EXP L %(—‘6——‘9 —

The constant K is related to kl' k2 and k3 by:

l
K = (es/mum ki i = 1, 2, 3 (7.6)

where p is the particle density.

It is assumed that the particle diameter (a) distribution is "log-

normal", that is, 1n a can be approximated by a normal distribution (mean = u,

standard deviation = O) truncated at the lower end at u-iO and at the upper

end at u+j0, where i and j are truncation parameters(Fig. 5.1).

The multiparticulate dissolution equations above consider spherical

drug particles. Such particles are only encountered when the drug exists in

liquid form as an emulsion. In solid form the particles are not spherical.

The drug used for the dissolution tests was a 60/85 mesh fraction of

Tolbutamide consisting of particles approximately tetragonal prismatic in

shape. It was shown in Chapter 4 that the dissolution of such particles can

be approximated well by the dissolution of hypothetical spherical particles.

The equivalent spherical diameter, a, is the diameter of the spherical

particle that best approximates the dissolution of the non—spherical particle,

and is given by:

a = 0 (7.7)
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where 10 and b0 are the length and side respectively of the tetragonal

particle. In this way dissolution of the non-spherical particle system can

be suitably described by the dissolution of a hypothetical spherical

particle system that can be rigorously treated using the equations above.

It is evident from these that k, u, 0, i, j and 9 must be known

to calculate the dissolution profile. The distribution parameters p, O, i

and j can be obtained from micrographs and p by a standard method, but the

single particle rate parameter k is unknown. It is possible however to

calculate the exact intrinsic dissolution profile with much less

information. According to the rules given previously (Chapter 6) for

multiparticulate dissolution only the shape of the initial distribution, that

is, of the above six parameters only 0, i and j are required to calculate the

intrinsic dissolution profile when the single particle dissolution model is

known. The concept of time scaling was discussed in Chapter 6. By such an

approach it is possible to evaluate quantitatively the difference between the

actual dissolution data and the calculated intrinsic dissolution profile.

Figure 7.1 illustrates this application of time scaling. Curve B

throughlthe experimental data points represents the dissolution curve

((w/wo)m versus t) and curve A the corresponding calculated normalised

intrinsic dissolution profile ((w/wo)m versus w).

Let, N, be the number of data points and, f, the time scaling

factor that brings curve B "into“ curve A such that the sum of the squared

deviations between the curves given by:

 

N 2
55 = )_ (ft. - w.) (7.8)

1—- l 1
i=1

is a minimum. This means f is obtained from ass/3f = O which gives:

N

Z lIJ.t
f = 1:1 1 1

(7.9)

N 2

Eiltl
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Figure 7.1

Time-scaling approach (Eqs. 7.8—7.11) used in Figs. 7.3-7.5

to evaluate the agreement between the observed dissolution data and the

theoretical dissolution curve calculated in form of the normalized intrinsic

dissolution profile, A, on the basis of particle-size analysis.
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The minimum of the sum of squares is therefore:

N . E witi ‘ 2
55 = 2: i=1 ti — wi (7.10)

2i=1 [N t.
i=1 1

which can be simplified such that the mean square deviation is given by:

N 2

1 _N_ 2 (zlwitl)_ 1:

i=1 .1? i
1:1

This expression is chosen as the basis for a quantitative judgment of how

well the kinetic models fit the data.1

The logarithmic distribution of the equivalent spherical diameters

of the 60/85 mesh fraction Tolbutamide used for the dissolution test was

obtained from direct measurements of 500 particles on a series of 30 x 30 cm

electron micrographs. These measurements were made in arbitrary units,

disregarding the magnification power, because the calculation of the intrinsic

dissolution profile as mentioned does not require information about the

actual sizes of the particles but the shape of their distribution (that is,

0, i and j for a log—normal powder). Each particle was approximated by the

tetragonal prismatic body which fitted best, and its equivalent spherical

diameter was calculated using Eq. 7.7.

The histogram of the logarithm of these diameters (Fig. 7.2) shows a good

fit to a normal distribution with standard deviation 0 = 0.395 and mean

 

1. The alternative approach, to bring curve A "into" curve B, that has

the character of a curve fitting to the data points would yield the

same result in a comparison of the models. The above time scaling of

the data is used for the convenience of plotting and to better

illustrate the predicted time for complete dissolution.
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Figure 7.2

Histogram of the logarithm of the equivalent spherical diameters

of a sample of 500 particles from the 60-85 mesh fraction of tolbutamide

powder used in the dissolution tests. The equivalent spherical diameters

of the particles that are approximately tetragonal prismatic in shape

were calculated according to Eq. 7.7 from measurements made (in arbitrary

units) on electron micrographs. The parameters of the truncated log—normal

distribution which best fits this diameter distribution are: 0 = 0.395,

u = 3.82, i = 2.25, and j = 2.20.
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u = 3.82. The truncation parameters, i = 2.25, and j = 2.20, were obtained

by dividing the distance from the mean to the end points of the distribution

by the standard deviation.

The normalised intrinsic dissolution profiles were calculated for

each kinetic model employing Eqs. 7.3 and 7.4 using the above values of the

distribution shape parameters C, i and j. These calculated profiles are

graphed as the continuous curves in Figs. 7.3-7.5 where the fraction of

undissolved powder, W/Wo' is plotted according to the respective single

particle dissolution equation (7.1) to illustrate the non-linearity caused

by the distribution and particle shape effects. The same figures include a

set of data for the dissolution of 15 mg Tolbutamide followed until about

90% had dissolved.2 These data are time scaled, using the optimal time

scaling factor given by Eq. 7.9 to illustrate the fit of the three models.

The fit is very good for Eq. 7.3, based on the "cube root model" (SE = 1.10x

10-3, Fig. 7.3) and based on the "square root model" (E; = 1.92xlO-3, Fig. 7.4)

but not so good for the'2/3—root model" (E; = 6.7Ox10—3, Fig. 7.5).

The dissolution test was done several times using different amounts

of Tolbutamide. The EE - values (Table 7.1) indicate (F—test, P < .05) that

the "cube root model" describes the single particle dissolution best with

the "square root model" almost as good, however, the "2/3—root model" is

relatively poor.

In order to make the above evaluations of the three models by

comparing dissolution data with theoretical calculations it is necessary

that the experimental conditions are consistent with the assumptions behind

these calculations. The three assumptions on which Eqs. 7.3 and 7.4 are

based are:

 

2. The absorbance after 90% dissolution was so small that substantial error

would have been introduced if the process were followed much further.
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Figure 7.3

Plot illustrating the agreement between data for the dissolution

of 15 mg of tolbutamide and the theoretical dissolution, considering the

cube root model (Eq. 7.1, m=3) calculated (Eq. 7.3, m=3) in the form of

a normalized intrinsic dissolution profile using the parameters from the

truncated log-normal distribution shown in Fig. 7.2. The data are time

scaled using the scaling factor given by Eq. 7.9. The mean square deviation

E = 1.10 x 10—3.
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Figure 7.4

Plot illustrating the agreement between data for the dissolution

of 15 mg of tolbutamide and the theoretical dissolution, considering the

square root model (Eq. 7.1, m=2) calculated (Eq. 7.3, m=2) in the form of

a normalized intrinsic dissolution profile using the parameters from the

truncated log—normal distribution shown in Fig. 7.2. The data are time

scaled using the scaling factor given by Eq. 7.9. The mean squared deviation

's_s= 1.92 x 10—3.
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Figure 7.5

Plot illustrating the agreement between data for the dissolution

of 15 mg tolbutamide and the theoretical dissolution, considering the

2/3—root model (Eq. 7.1, m=3/2) calculated (Eq. 7.4) in the form of a

normalized intrinsic dissolution profile using the parameters from the

truncated log—normal distribution shown in Fig. 7.2. The data are time scaled

using the scale factor given by Eq. 7.9. The mean squared deviation

E; = 6.70 x 10'3.
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Tolbutamide, SS x 103

mg Eq. 6a Eq. 6b Eq. 6c

5 1.18 2.08 7.17

1.22 2.20 7.40

1.20 2.21 7.58

10 1.15 2.01 6.92

1.21 2.18 7.41

1.29 2.30 7.80

15 1.10 1.92 6.70

' 1.19 2.10 7.12

1.23 2.26 7.50

Mean 1.20 2.14 7.29

Stand. error 0.050 0.119 0.337

Table 7.1

Mean square deviation, ES (Eq. 7.11) as a quantitative comparison

of the fit of the three multiparticulate dissolution equations. Eqs.

7.3 (m=2,3) and Eq. 7.4 (based on the single-particle dissolution models

of Eq. 7.1 (m=3,2, 3/2) to the data from the dissolution of various

amounts of 60/85 mesh fraction of tolbutamide.
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l. ——— It is assumed that the particles dissolve independently of

each other. - The apparatus constructed for this work is different from

other published dissolution flow cell apparatus in that it guarantees this

condition, which is of fundamental importance in the analysis of multiparticulate

dissolution kinetics. This is achieved by the "absolute sink arrangement“

of the drug particles in the dissolution cell. The particles are placed in

a single layer such that in principle no particle receives solvent that

has contacted other particles. The solvent thus contains no dissolved drug

that may influence dissolution. —

2. ~——— It is also assumed that the dissolution rate parameter (kl, k2 or

k3) is constant and the same for all particles. - According to the theory

on which the models are based this can only be achieved experimentally if

the temperature and composition of the dissolution liquid is maintained

constant and the flow rate is constant or uniform in the cross section of

the dissolution cell where the particles are placed. The first two conditions

are easily met. With regard to the flow rate the dissolution cell used has

a very useful feature, namely that the process can be stopped and the cell

rapidly disconnected allowing the particles to be inspected at any stage

of the dissolution process. Such inspections showed (after microscopic

measurements) uniform dissolution over the whole particle layer indicating

a uniform flow rate. The fact that the particles in the dissolution cell

can be inspected in this way makes it possible for the dissolution data to

be combined with particle size measurements.

3. —-—— It is further assumed that the initial particle size (diameter)

distribution can be approximated by a truncated log—normal distribution

function. — Figure 7.2 shows that this is a good approximation for the 500

particles measured, however, it does not guarantee the correctness of the
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assumption that this small sample represents the particle size distribution

in the samples used for the dissolution tests, although the uniformity of

the powder supported this assumption.

These investigations indicate that it is possible to describe

mathematically, the dissolution of a multiparticulate system with a high

degree of accuracy by considering both the particle size distribution

effect and the particle shape effect discussed earlier. It is evident from

the dissolution data obtained, that among the three models investigated, the

cube root model describes the kinetics best.

It is possible that more complex and flexible models for single

particle dissolution could describe the dissolution more adequately. The

fact that the EE values for the cube root and the square root model are

almost the same suggests a model with properties between these two. The

Danckwerts model as discussed by Goyan (105) is given by:

—dw/dt = A((Dp);2 + D/a)Ca (7.12)

where w = weight undissolved

A = the surface area

D = the diffusion coefficient

p = a quantity related to stirring

a = the radius of the particle

Ca = the steady state concentration.

This model is very flexible. when (Dp)% predominates, the apparent

model would be the cube root model. As the quantity D/a becomes more important,

then the square root model will become the apparent model. Finally, as the

quantity D/a predominates the "squared cube root model" will become the apparent

model. However, the Danckwerts model, when applied to the log—normal case,

results in a mathematical expression which is much more complex than Eqs.
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7.3 and 7.4.

The fit of the dissolution data to the cube root model is excellent.

Therefore, if an application of the Danckwerts model results in an even

better fit, this improvement will likely be statistically insignificant

considering the magnitude of the experimental errors. In such a case the

Hixson—Crowell model should be preferred because of its simplicity.



- 171 —

C H A P T E R 8

— FUNFIT - A TIME SHARING PROGRAM FOR GENERAL
 

NONLINEAR REGRESSION AND CURVEFITTING
 

Many investigators must deal with the problems of evaluating how

well one or more mathematical models describe a certain physical system or

of obtaining estimates of the parameters in a particular model. If the

mathematical model is nonlinear in its parameters and cannot be transformed

to a linear form1 it is necessary to use a computer to cope with the

complexity of computations. Several computer programs are available for

the treatment of nonlinear regression (123—132). Considerable time and

effort is often spent in applying the more powerful and versatile of these

programs and their complexity frequently inhibits the less experienced.

Even for the experienced user their inflexible and strict input structure

may often lead to errors that can be difficult to find because of the lack

of specific error messages. The time spent on correcting such errors is of

considerable inconvenience, particularly when the program used is not written

for interactive time—sharing.

This chapter describes a powerful and versatile FORTRAN computer

program, FUNFIT, for nonlinear regression and curve fitting that does not

have the disadvantages described above. It is written for the maximum

convenience of the user and utilizes the many advantages of interactive

 

l. The expression y = aebx is linear in the parameter a and nonlinear

in b. By transforming to ln = 1n + bx it is linear in (1n a)

and b. The expression y = ae + ce X is nonlinear in b and d and

cannot be transformed to a linear form by standard means.
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time-sharing. The input occurs essentially as a communication with the

computer. Questions are asked about which particular data treatment is

desired and instructions are given how to enter data. Every input is

extensively checked for numerical, logical and typing errors, so these

can be corrected immediately. A special command 'BACK' makes it easy to

edit previous inputs so multiple runs under various conditions can be

made quickly. The program offers an extensive analysis of residuals that

most other programs neglect, and a lattice search to obtain suitable initial

parameter estimates. A lattice search combined with contour maps makes it

possible to investigate whether a better solution of the nonlinear regression

problem may exist.

THEORY

The Central Limit Theorem of probability theory justifies the

assumption that random errors in a set of observations are normally

distributed. If the mathematical model is correct, the independent variable

exact, and the errors are independent and normally distributed with zero

mean and the same variance, then the method of least squares is the best

choice for the estimation of the parameters because the estimates obtained

will be maximum likelihood estimates.

For example the equation to be fitted to some observations might be:

y = ple + p3e = f(§1x) . (8.1)

T

where g = Lpl,p2,p3,p4] is the parameter vector and x the independent

variable. The problem is then to minimize the sum of the squared residuals,

that is:

NOBS NOBS

2 2

SS = Z ei E [yi - f(§_,xi)] (8.2)

i=1
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where [(yi,xi), i = l,2,...,NOBS] are the observations. There may also

be reasons to weight the observations in a certain way. The weighted

residual sum of squares is then defined as2

NOBS NOBS

2 2
SS ’ Z ew'i ‘ I wi[yi_f(B-’xi'] (8'3)

i=1 i=1

where wi is the weight of the i—th observation. Unweighted data are in

fact data having the same weight i.e., wi = l. The relationship between

weighted and unweighted residuals is

e . = VW—iei (8.4)
W,l

The above example represents a simple case with only 1 independent variable,

x. The function to be fitted could, in fact, have 2 independent variables

i.e. X = [x ,x ]T. The observations are then [(y x x ) i = l 2 ...
'— 12 i'l,i'2,i’ " '

NOBS] (e.g. concentration, time temperature) and are represented in 3

dimensions. The problem is then no longer a least squares curve—fitting

but a least squares surface—fitting. ‘FUNFIT' can fit 'hypersurfaces'

with up to 9 independent variables.

SIMULANTEOUS FITTING OF SEVERAL RESPONSE SYSTEMS
 

The system under investigation can sometimes be measured for

more than one response or dependent variable, y. For example blood levels

and urinary excretion of a drug could be measured in the same pharmacokinetic

experiment or, in an experiment in chemical reaction kinetics more than one

reaction product could be followed. In general, if there is a functional

 

2. In FUNFIT the weights are normalized i.e. scaled so that their sum is

equal to the number of observations, NOBS. This is done to achieve a

better comparison of weighted and unweighted sum—of—squares values.
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expression for each kind of measured response and these expressions contain

one or more common parameters it is likely that a simultaneous least squares

fit of all the functions would provide more reliable parameter estimates

than would be obtained by fitting each function individually. If, for

example, 2 different kinds of response are measured in a system, the

simultaneous least squares fitting problem is to minimize 'the sum of the

sum of squared residuals' given by:

NOBS 1 2
= . " f I .

55 X “1,1[YL1 1‘31 331,3]
i=1

(8.5)

NOBS2 v 2

+ _
E: w2,i[_Y2,i f2(32'§2,ifl
i=l

where the parameter vectors 31 and g. contain one of more common parameters.
2

The symbols are used in analogy with equation8.3 andsubscripts l and 2

denote response systems 1 and 2. Hence, functions fl and f2 are to be fitted

simultaneously to NOBSl observations from response system 1 and NOBS2

observations from response system 2 respectively. It is possible using

‘FUNFIT' to fit simultaneously up to 10 functions (response systems) each

containing up to 20 parameters and 9 independent variables, with or without

weighting of the single observations in each response system. The sum—of-

squares function can therefore be summarized by a general extension of

Eq' 8'5: NFUNC NOBS.
3 > 2

55 = z z w.. ..— f.(P. x. .) (8.6)
3,1[y3,1 J —j’—j,1 ]

j=l i=1

The total number of observations is

NFUNC

NOBS = E NOBSj (8. 7)

i=1
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where NOBSj is the number of observations for the j—th function.

WEIGHTING OF RESPONSE SYSTEMS

The problem of weighting is of particular importance in

simultaneous fitting for two reasons: 1. There may be a large difference

in the orders of magnitude of the values of the dependent variables in

each response system. 2. The variances of the errors may differ

considerably between the systems.

The effect of condition 1. can be reduced by the proper choice

of units for the dependent variables. Equation 8.6 assumes that the

residual variance between each individual response system is the same.

However this is seldom the case (i.e. condition 2. applies) and each response

system must be given its own weight. It is generally accepted that, in a

statistical sense, the best weighting scheme is to make the weight of each

observation inversely proportional to the variance of the error (as

estimated by the residual variance). Therefore the weight of each response

system should be made proportional to the reciprocal of its residual

variance which is obtained when the system is fitted individually by least

squares (i.e. not simultaneously with other systems). Therefore the weight

for the j-th response system should be:

 

NOBS — NPAR
w. = j j (8.8)

3 NOBSj [ ]2’
Z W. . Y . " f. (P.,X. .)

i=1 3'1 “'1 3 ‘3 "3'1 min

where NPARj is the number of parameters in the function fj and (NOBSj - NPARj)

is the residual degrees of freedom. Equation 8.6 can therefore be written

in an improved form:
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NFUNC Nost

58 = X W. z w. .[y. . - f.(1>.,x..)]2 (8.9)
3 311 Jll 3 _j _j'1

j=l i=1

where Wj signifies the weights of the j—th response system and w.’i the

weights of the observations within that system. For example, if it is

desired in a pharmacokinetic experiment to fit blood and urine data

simultaneously, an individual fitting of each of the two systems should be

done first. The weights to be used for each system in the simultaneous

fitting are calculated as the residual degrees of freedom divided by the

(weighted or unweighted) residual sum-of—squares obtained from the individual

fittings.

Fitting implicit functions

It is necessary to apply a special approach if a function to be

fitted is of implicit form; i.e., if the dependent variable, y, cannot be

expressed explicitly as a function of the independent variable(s), §_and

the parameters, g.

The function may be described by:

9(Yrérfi) = 0 (8.10)

Pl2 .
(e.g. y + X )p2 =+ (X + y 0) from which y can be found by an iterative

procedure only when numerical values of g and E_are given. The calculated

values of y are found by including in the user-supplied subroutine 'MODEL'

a suitable algorithm for finding the root of g. This algorithm will serve

the purpose of solving Eq. 8.10 for y so the subroutine indirectly defines

the functional relationship between y and §JEJ

MINIMIZATION

It should be noted that for a given set of observations the

residual sum of squares, SS, depends only on the parameters because in Eq's
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8.2, 8.6 and 8.9, the quantities y, 5, w, W, NFUNC and NOBS are all numbers

that are given. These equations can therefore be written in a shorter

form as

ss = ss(3) (8.11)

indicating that SS is a function of the parameters only. The least squares

fitting and parameter estimation is then simply reduced to a function

minimization problem, namely to find the particular values of the elements

of the parameter vector, E, that minimize SS.

If the sum-of-squares function is strictly convex in a specified

convex parameter space then it will only have one minimum (133). This

condition is guaranteed when fitting linear but not nonlinear functions

for which there may exist more than one minimum. There is, in general, in

the latter case no guarantee that the minimum found by any nonlinear regression

program is the smallest, giving the best possible fit and parameter estimates.

This problem can be illustrated in the case of two parameters where Eq. 8.11

describes a surface in 3 dimensions: Computer programs find the minimum

by some iterative procedure and therefore require initial estimates of the

parameters p1 and p2 together with their initial step sizes Apl and Ap2.3

For example if the SS surface has two troughs and the initial starting

point (pl,p2) lies on the slope of one of these and the same is the case

for the points (pl+Apl,p2), (pl,p2+Ap2) or (pl+Apl,p2+Ap2) then the strategy

of the minimization algorithms employed is to 'run downhill' so that the

parameter estimates in the next iteration step will usually be closer to

the bottom of that trough while the other trough which may contain a smaller

minimum, is overlooked. Mathematically this problem exists also for sum—of-

____________________________________________________________________
___

3. If the initial step sizes are not included in the input they are chosen

in relation to the upper and lower limits given for the parameters in

FUNFIT.
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squares surfaces in more than 3 dimensions (hyper surfaces) but is then

impossible to visualize.

The importance of good (i.e. close) initial parameter estimates

is obvious. The choice of small initial parameter step sizes will, as

seen above, result in an increased probability of overlooking a smaller

minimum. Large initial step sizes require more iterations and computation

time but reduce this probability because a larger part of the parameter space

is evaluated.

Most minimization algorithms in nonlinear regression programs are

based on the gradient method of Gauss-Newton (134). These are particularly

efficient in finding a minimum for a sum—of—squares function but are more

likely to overlook a better minimum than non-gradient methods that usually

take longer to converge. The simplex method of Nelder and Mead (135) used

in 'FUNFIT' appears to be a particularly suitable non-gradient method. It

has statistical application, is rapidly convergent and, on the way to the

minimum, covers a large section of the parameter space, reducing the

probability of missing a global (smallest) minimum. It has proven to be

a very robust method that will always find a minimum and further has the

advantage over gradient methods that nonlinear parameter constraints can

more easily be employed. The economic disadvantage of the somewhat slower

minimization procedure is insignificant in most cases.

LATTICE SEARCH

The most reliable way to search for a minimum smaller than that

found by some minimization procedure is to evaluate SS (£9 at each point in

a grid or lattice that spans over the whole parameter space. The computation

time for such a procedure increases exponentially and very rapidly with the

number of parameters and divisions per parameter. For example a lattice
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consisting of just 6 parameters with 10 divisions requires 106 SS—

evaluations each of which requires NOBS function evaluations. If SS (2)

is a surface in 3 dimensions (2 parameter case) its approximate shape can

be visualized from a contour plot constructed from the SS—values of the

points in a grid of the two parameters. If there are more than two parameters

a composite picture of the sum-of-squares surface can be built up by

"slicing“ the parameter space, that is by fixing all except two parameters

at a time. Contour plots help greatly in finding a global minimum and

considerably reduce the number of function evaluations that otherwise would

be required in such a search.

CONVERGENCE CRITERION
 

The accuracy with which the exact position of the minimum of SS (3)

can be determined is always limited. After a certain number of iteration

steps the SS—values of the points used in calculating the position of the

next §_estimate differ so little from each other that further iterations

will introduce round—off errors. It is because of this and for reasons of

economy, necessary to specify a stopping criterion for the minimization

process. A necessary (but not sufficient) condition for E_to_be close to

a minimum is that the SS—surface in the proximity of E_is "sufficiently

flat". The minimization process is often considered to have converged when

the SS (3) value does not change more than a certain amount from one iteration

step to the next. This guarantees a certain degree of 'flatness' as long

as there is a significant change in the parameter vector E_between the

iterations. However such a stopping criterion evaluates the ‘flatness'

in a somewhat imprecise way and since SS (2) is not usually dimensionless,

depends on the units used for the experimental data. The stopping criterion
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used in 'FUNFIT' checks the 'flatness' in terms of the coefficient of

variation (percent) of the SS-values of some points closely surrounding E,

The flatness is in this way defined more strictly and does not depend on the

units used. Results-can therefore be compared on a more consistent basis

than in the former case.

The stopping criterion determines how 'accurately' the parameters

are determined. Its value should be chosen in relation to the variability

of the parameters. There is no reason to choose a very small stopping criterion

to get very 'accurate‘ parameters if their values are statistically rather

uncertain. The variability of the parameters is related to the 'variability'

of the SS-surface in the region of the minimum because a flat surface allows

the parameters to have a wide range of values resulting in only a small

variation of the SS (2) value. The stopping criterion used in 'FUNFIT'

therefore has an advantage over other commonly used criteria because it is

based on the 'variability' of the surface and hence determines the 'accuracy'

of the parameters in relation to their variability. To avoid termination on

a flat plateau of the SS-surface or near a ‘saddle point' it must further

be ensured that the surface around the point found at convergence is convex.

In gradient methods this is often done by checking whether the matrix of

the second partial derivatives (the Hessian matrix) is positive definite

as is the case if all its eigenvalues are positive (133). In 'FUNFIT' the

minimization process is allowed to continue a certain number of iteration

steps after the 'flatness criterion' has been satisfied and the process is

considered to have converged if the new parameter values and SS-values are

sufficiently close to the previous values.
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STATISTICAL ESTIMATION
 

For many applications it is important to get statistical estimates

of the variability of the parameters obtained. As indicated above, this

information is found in the shape of the SS-surface near the minimum. The

complexity of the 85(3) expression in the nonlinear case does not allow

exact statistical estimates to be obtained. These are obtained instead by

approximating the surface in the region of the minimum with a more simple

surface for which exact, i.e. unbiased, statistical estimates can be

calculated. The SS (3) surface is approximated in the region of the final

parameter estimates, E, by a quadratic surface from a Taylor series

expansion where third— and higher order terms are neglected; i.e.,

2!35(3) s5(_13_) + VTss® (g—fi) + sun—fiwzssu?) (12-5) (8.12)

where VT = (B/Bpl + 3/3p2 + .. + B/Bpn) and n is the number of

parameters. The statistical information is found in the term VZSS(E), that

is the square matrix of the second partial derivatives of SS(P) evaluated

at E! the so-called Hessian matrix:

azssé) a2ss®

A 2 A Bpi aplap
mg) = Vss(g) = ................. {In (8.13)

8253(P) azssé)
2

aplap apn

The sample variance—covariance matrix of the parameters, V, is the inverse

of the Hessian matrix multiplied by the residual variance estimate:

ssé) —1 A
V = fi6E§:; H (E) (8.14)

It can be seen from this equation that in order to decrease the variances of

the parameters, the number of observations, NOBS, should be relatively
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large compared to the number of parameters, n. It is recommended that NOBS

should not be less than about 3n in statistical estimations. The covariance

between the i-th and the j-th parameter is the (i,j)—th element of the

variance-covariance matrix:

covA. A, = v. . 8.15
(pl,pj) 1’3 ( )

and the variance of the i—th parameter is the i—th diagonal element:

var(pi) = COV(pi,pi) = vi,i (8.16)

The elements of the correlation matrix, pi j' are calculated from the
I

variance—covariance matrix by:

p, . —
1!] 7§ar(pi) Var (pj) (8.17)

The joint probability distribution of the estimated parameters is multivariate

normal and is given by (136).

A T -l A

(3-3) V (3—3)] (8.18)9(3) = 1__7___ _
(2w)n 2 JW ex‘p 2

 

ASSUMPTIONS MADE IN THE STATISTICAL EVALUATIONS

The reliability of the statistical estimates above depends on

the following assumptions:

1. The independent variable(s) is without error.

2. The errors are independent, have zero mean and the same variance,

02,i.e.:

COV(E.,€.) = O (8.19)

. . 1 3
1753

E(€.) = 0 (8.20)
l

= O (8.21)
Var(€i)
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For the F- test, t- test and confidence limits to be valid the errors must

furthermore be normally distributed with zero mean and the same variance:

8i ~ N(O,02) (8.22)

3. The mathematical model is correct.
 

4. Equation 8.12 is exact.

When conditions 1., 2. and 3. are satisfied the least squares

estimate of g is also the maximum likelihood estimate of §_because the

likelihood function, L, can be written (137):

'2

2
(2n02) expE—ss(g)/2021 (8.23)“502)

which is maximized when SS(§) is minimized (02 = constant). Therefore the

least squares parameter estimates are unbiased under these 3 conditions.

Assumption 4. is only true when linear but not nonlinear functions

are fitted. The most crucial point in nonlinear regression appears to be

how good an approximation Eq. 8.12 is, because the statistical estimates

(variances, covariances) are based on formulae and analysis from linear

regression theory. The estimates are therefore biased and often called

'asymptotic estimates' because of the asymptotic property of the Taylor

series expansion (Eq. 8.12). It has been found in simulation studies that

the standard deviations of parameters in nonlinear regression can be two- to

three—fold different from their true values (138). Parameter estimates

are usually less biased because they are less sensitive to violation of

the above conditions.

WEIGHTING

. . . 2

Where assumption 2. 15 not true because the error variance, 0 ,

is not constant, it is recommended that weights inversely proportional to
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the individual variances be used, according to the following weighting

scheme:

i = 1,2,.., NOBS (8.24)

Thus if,

6. ~ N(o,0?) (8.25)

l 1

then the weighted errors will fulfil condition 2. because

8.

0—1~ N(o,1) (8.26)

i

(
V
) II 2
2

(
0 ll

so that this weighting will provide improved estimates. The error variances,

0:, can only be estimated by repeated experiments. However in some weighting

situations a certain functional relationship is assumed between the error

and the dependent or independent variable. For example in pharmacokinetics

it is often assumed that the standard deviation of the errors is proportional

to the plasma concentration, so the data are assigned weights inversely

proportional to the square of the concentration. It is not valid statistically

to use weights just to get a better fit. There must be a sound basis for

the weighting scheme used.

CONFIDENCE REGIONS AND CONFIDENCE LIMITS

 

When assumptions 1. to 4. are true it can be shown that 58(3)

is distributed as chi-square with (NOBS-n) degrees of freedom:

A 2 2

SS (3) ° XNOBS—n (8. 27)

and ss(_p_)-ss® ~ 02X: (8.28)

Both SS(E) — SS(§) and SS(E) follow a X2 distribution and are independently

distributed. The ratio
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[55(3) - ss<§)] /n

 

A ” F(n,NOBS—n)
(8.29)

ss (3) ANOBs-n)

is therefore distributed as an F—distribution with n and (NOBS—n) degrees

of freedom respectively (136)- The term 88(2) can be isolated from this

equation so that the critical points of the F-distribution provide the

exact (l—a) 100% confidence region of the parameters:

" 11

58(3) ’ 55(3) Ll + NOBS—n FOL,n,NOBS—n ] (8'30)

The set of parameter values, 2! for which this equation is satisfied forms

a closed contour line (two parameter case) or a contour surface inside

which the probability of simultaneously finding the true (population) parameter

values is (l—d) 100%. In the nonlinear case where assumption 4. is violated,

the confidence contours are still exactly defined by Eq. 8.30 but the (l—a)

100% confidence level is only approximated.

When linear equations are fitted the confidence region is

ellipsoidal in shape and given by:

ss (13) F (8.31)
A T -1 A

—P P-P

(E--) H (--) a,n,NOBS—n

< _L_

— NOBS—n

Because the parameters are correlated it is not possible to define

confidence limits for each individual parameter. Limits are however often

defined in terms of tangent points of 'support planes' i.e. planes parallel

to the parameter coordinate axis and tangent to the ellipsoidal region

defined by Eq. 8.31. The approximate (l-a) 100% 'support plane' confidence

limits of the parameters are given by (123)

A i SD / F 8. 2

pi i OL,n,NOBS-n X n ( 3 )

where SDi is the standard deviation of the i-th parameter.
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Assuming no correlation among the parameters the ‘uni—plane'

confidence limits are given by (123)

A t x SD 8.33
Pi ta,NOBs—n i ( )

where t is the t—statistic with probability level a and (NOBS-n)
a,NOBS-n

degrees of freedom. Confidence limits are sometimes desired for the ratio

of two parameters, for example pl/pz. This can be calculated using the

following expression (139):

A A 2 A A
— i A

pl pz toc,NOBs—n COV(pl’pz) t0L,NOBs—n (8.34)
A2 2

pz ' ta,NOBs—n var(pz)

where

A2 A A2 A A A A A

A — prar(p2) + pZVar(pl) — 2p1p2COV(pl,p2)

A A 2 (8.35)

cov(p ,p ) '

— t2 Var(A ) - 1 2
a,NOBs-n p1 Var(p2)

STANDARD DEVIATION OF A FUNCTION OF THE PARAMETERS
 

Use of variance—covariance matrix
 

The variance—covariance matrix Eq. 8.14 that is printed out

in most computer programs allows the standard deviation to be calculated

for any quantity that is expressed as a function of one or more of the

parameters. Let such a quantity be denoted

g = 9(pl,p2,...pk) (8.36)

then its standard deviation is given by the following formula which is

based on a Taylor series expansion (140)
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2 k 3i h A A '

(SDg) ~ p COV(pi,pj) (8.37)

i,‘j‘=1 1 3

where the summation extends over all k2 choices of the two indices i and j.

The formula is exact where g is linear in the parameters, but is otherwise

an approximation which is sufficiently accurate provided the coefficient

of variation of the parameters does not exceed about 20%.

Three special cases are of interest: 1. If g is a function

of one parameter pi only, then Eq. 8.37 reduces to

d_9 SD. (8.38)
dpi 1

 

s..|
g

In particular if g is linear and of the form ap + b (a and b are constants)

then SDg = aSDp exactly. 2. If g is a linear function of the form:

k A

g = Z: ai pi (8.39)

1:

then Eq. 8.37 becomes

k
2 A A A

+ . , .40ai Var(pi) E aiaj COV(pl,pJ) (8 J

l i¢j

2
(SDg) u

W
‘
P
’
1
w

3. If g is a ration of two parameters, for example 9 = fil/fiz, Eq. 8.37

  

becomes

(SD )2 ~ (i)2Var(A ) + (if Var(A ) + 2 33— E;— cov(A A)
9 ~ 3p p1 3p p2 3p 3p pl'Pz

1 2 1 2

(8.41)

which in this case gives

V (A ) A2 V (A ) 2A COV(A A )

(SD )2 ~ ar pl + Pl ar 192 Pl pl’p2 (8 42)

9 ~ A2 A4 A3 ‘
92 p2 P2
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Use of the transformation technique

Equation 8.37 often leads to rather complex expressions if g

is a nonlinear function of more than a few parameters. However, this problem

can be avoided in most cases and the standard deviation of 9 obtained

directly without the truncation errors that may be introduced when Eq. 8.37

is used. This can be done if, as is usually the case, Eq. 8.36 can be

solved explicitly or numerically for one of its parameters, so that this

parameter, 5i, can be expressed as a function of g and the remaining

parameters, i.e.

A

pi = h(grPerZ .. [pk-l) (8.43)

The function to be fitted to the data points can then be transformed so

that it contains g as a parameter essentially replacing pi. To evaluate

the function, pi is then simply calculated using Eq. 8.43 (where g and the

(k—l) parameters are among the k input parameters). Initial estimates must

be obtained for 9 since it acts as an input parameter. This is done by

calculating it from Eq. 8.36 using the initial estimates of the k parameters

or by using the final least squares estimates obtained from curve-fitting

based on the original untransformed function.

This transformation technique is of considerable importance and

highly recommended. For example, it allows the standard deviation to

be calculated for essentially any pharmacokinetic quantity that is expressed

in terms of the macro- or microparameters in the model.

EXAMINATION OF RESIDUALS
 

It is of fundamental importance to analyse the pattern of the

residuals because this is essentially the only way of examining whether the
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basic assumptions behind the nonlinear estimation are violated. Most

general nonlinear programs seem to ignore this. Perhaps the best way to

examine the residuals is to plot them against the independent and dependent

variables (141). Significant systematic deviations can be visualized in

this way. The assessment is somewhat complicated by the fact that there will

always be a correlation between the residuals because NOBS residuals are

only associated with (NOBS—n) degrees of freedom. 'FUNFIT' includes the

\

Durbin-Watson statistic, given by (142):

NOBS

‘=2 (8.44)

 

i=1

to test for excessive serial correlation (systematic deviation) among the

residuals. The statistic is compared with tabulated critical points at

a given significance level.

The fundamental assumption of random errors is also tested using

two nonparametric tests that will be called the 'group' statistic and the

'number' statistic. The ‘group' statistic is based on an analysis of groups

(runs) of residuals of equal sign. For example the sequence of residuals

(+++) (-—) (+) (——) (+) forms r = 5 groups. The least number of residuals

with the same sign is L = 4. If NOBS residuals, with equal probability

of being negative and positive, form a sequence with r groups, then the

probability of getting f_r groups is (143

r

NOBS -l f 8.45

P(ir’=(L) Zr ()
i=2

-L—l NOBS—L-l

where f = 2k. ) k . ) when i is even (8.46)

r .i -1 i._1
2
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L-l -NOBS-L-l L—l NOBS-L—l

and fr = (1-1)( i_3 ) + <1—3)< 1-1 > (8.47)
2 22 2

 

when i is odd. The ‘number‘ statistic is defined as the probability of

getting L or less residuals of same sign and is given by

L+l NOBS

P(§p) = 2'NOBS E: < 1-1 ) (8.48)
i=1

where the large brackets denote binomial coefficients i.e.(:) = x!/(yl(x—y)!).

If P(§r) < 0.05 or P(§L) < 0.05 then the hypothesis that the

residuals are random should be rejected (with a—-error < 0.05). This can

be used to reject the basic assumption of normal errors provided the model

is correct. However, it can also mean that the mathematical model is wrong

if it is assumed that the errors are in fact random with zero mean.

OUTLIERS

Several repeated experiments will be required to examine whether

the errors are all normally distributed. When only one experiment is

available a test must rely on the fact that if all the errors are deviates

from the same normal distribution, they will then collectively be normally

distributed. If the mathematical model is correct and it is assumed that

 

 

E(€i) = O and Var(Ei) = 02 then the residuals are unbiased estimates of

the errors, i.e. E(ei) = Si and the residual variance given by

NOBS _ 2 NOBS 2

Z (ei-e) z ei A
. P

52 = 1:1 z i=1 = SS(—) (8 49)

NOBS-n NOBS-n NOBS-n '

estimates 02. Further, if it is assumed that 8i ~ N(O,02) it follows that

ei/O ” N(O,l). Now, if the 4 basic assumptions mentioned previously are true

then ei/s, the unit normal deviate form of the residuals, estimates ei/O

and is N(O,l).
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The normal deviate form of the residuals can be used to test for

outliers, that is, data-points which, in a statistical sense, are not typical

of the rest of the data. The i—th observation is an outlier if the normal

deviate ei/s falls in the critical region of the N(0,l) distribution, that is

if lei/SI > 1.96 (d<0.05). If NOBS—n is smaller than 30 the normal deviate

should be compared with the critical values of the t— distribution with

(NOBS-n) degrees of freedom.

Outliers should be submitted to particularly careful examination

since they may provide information of vital interest. They should only be

rejected if they are caused by errors in the recording or the experimental

technique (144). Outliers may also occur if the mathematical model is

incorrect.

If there are many observations it may be useful to construct a

halfenormal plot of the residuals. The linearity of such a plot gives

information about outliers and how normally the residuals are distributed

(141). The above analysis extends also to weighted residuals.

COMPARISON OF PARAMETERS AND MODELS

It can be of interest to investigate whether there is a significant

difference in a certain parameter, pi' between two experiments (1 and 2).

If it is assumed the parameter is normally distributed a t—test

can then be applied.

A A

p1,1 'Pi,2

 - (8.50)
 

A + VA

/yar(pi'l) Var(pi’2)

If t falls in the critical region lt‘ > tOL/2 of a t— distribution with

(NOBSl + N0852 — 2n) degrees of freedom, the null hypothesis that pi l and

A

pi 2 are the same should be rejected at significance level a.

I
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For any particular system there may be more than one mathematical

model which could be appropriate. It is generally accepted that if two

models give approximately “equal" fits, the simpler model should be chosen

unless the more complex model can be justified on other criteria. At present

there does not seem to be any simple, rigorously based statistical test

which makes it possible to distinguish between alternative models. The

following test, based on a comparison of residual variances, is no exception.

It can however be used as a guide in the absence of other methods.

)>ss(_13_Let ss(§ l))/(NOBS -n1 1 2))/(NOBS —n2) be the residual

( ( 2

variances of models 1 and 2 respectively. If it is assumed SS(§+1)) and

SS(§(2)) are independent random variables having chi-square distributions

with (NOBSl-nl) and (NOBSz-nz) degrees of freedom, the variance ratio given

by: A

ss(P ) NOBS -n
—- 2

F = ii ___——2 (8.51)
85 (3(2)) NOBSl-nl

follows an F- distribution with (NOBSl-nl) and (NOBSz—nz) degrees of freedom.

. >
. .

Therefore, if F Fa,NOBSl-nl,NOBSZ-n2' the null hypotheSis that the reSidual

variances are identical should be rejected. The hypothesis that the residual

variance of model 2 is significantly smaller than that of model 1, (i.e. that

model 2 fits the experimental data better than model 1) can therefore be

accepted. If F does not exceed the critical value, further investigations

are required or the simpler of the two models should be chosen.

INPUT TO FUNFIT

The input is provided in a communication between the user and the

computer (scheme 8.1). Questions are asked about which data treatment is

wanted and depending on the answers, the next questions are given in relation



- 193 -

 

 

 

 

   

 

 
 

 
 

 
 

 

 

 

 

  
   

SCHEME I USER - COMPUTER INTERACTION DURING EXECUTION

OF THE TIME-SHARING PROGRAMME ”FUNFIT” FOR

GENERAL NONLINEAR REGRESSION AND CURVE FITTING(a)

(1) DO YOU WANT SOME INFORMATION YES

ABOUT THIS PROGRAMME (TYPE YES INFORMATION PRINTED

OR NO) ?

N0

(2) DO YOU WANT TO ENTER A YES ENTER THE HEADING BUT

HEADING FOR THE RESULTS ? ’ NOT MORE THAN ONE LINE.

N0 .

(3) DO YOU WANT STATISTICAL YES ENTER THE EXPANSION
EVALUATIONS OF THE CRITERIoN To AVOID

PARAMETERS ? ROUNDING—OFF ERRORS.
(DEFAULT =

N0

(U) DO YOU WANT AN ANALYSIS

OF THE RESIDUALS ? YES DO YOU WANT RESIDUAL

PLOTS ?

NO YES NO  
 

HOW MANY SUM'OF-SQUARES FUNCTION EVALUATIONS NILL YOU

 

ALLOW TO REACH CONVERGENCE ON MINIMUM (DEFAULT = *)
I
 

THE CHECK FOR FINAL CONVERGENCE Is DONE EVERY NLOOP TIMES

 

 

 

 

(6)
\ THAT THE PARAMETERS ARE CHANGED BY THE ITERATIVE PROCESS.

_ ENTER THE VALUE YOU WANT FOR NLOOP (DEFAULT = *
I

4(7) ENTER THE DEGREE OF OUTPUT YOU WANT FROM THE SUM-OF—SOUARES

FUNCTION MINIMIZATION PROCESS

NUMBER = FULL PROGRESS REPORT EVERY NUMBER FUNCTION

EVALUATIONS

0 = PARTIAL REPORT

— = NO OUTPUT
I

(8) HOW MANY FUNCTIONS OR RESPONSE SYSTEMS ARE TO BE FITTED

SIMULTANEOUSLY BY LEAST SQUARES (DEFAULT = l) ?  
 II >1 

 

 

HOW MANY OBSERVATIONS ENTER *LINES CONTAINING THESE TWO

DO YOU HAVE ? NUMBERS IN THE FOLLOWING ORDER
 
 (1) THE NUMBER OF THE FUNCTION TO

BE FITTED (I.E. 1,2,3")

(2) THE NUMBER OF OBSERVATIONS FOR

THE FUNCTION  
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I I I
 

(l7) ENTER A LINE FOR EACH OF YOUR *OBSERVATIONS. EACH LINE MUST CONTAIN

* NUMBERS IN THE FOLLOWING ORDER

(1) THE OBSERVATION NUMBER

(2) THE VALUE_O§ THE DEPENDENT VARIABLE(b)
——_— 1r

L(*) THE WEIGHT OF THE OBSERVATION .
J

(*) THE VALUE(S) OF THE * INDEPENDENT VARIABLES(S)
I

 
 
 

(l8) ENTER BACK FOR CORRECTION OR 0K FOR A FINAL CHECK ON ALL INPUTS
 

BACK
Do YOU WANT To MAKE

0K MORE CORRECTIONS ? YES CORRECTION(S) E (P:

   

 
       
   
 

N0
<%:)—A ALL INPUTS ARE CHECKED ERROR THE NATURE AND ORIGIN O

FOUND THE INPUT ERROR(S) IS P   

F

RINTED
 

NO ERROR
FOUND

YOUR INPUTS HAVE BEEN CHECKED. DO YOU WANT A SUMMARY OF THEM ?

YES

DO YOU WANT A PLOT OF YOUR DATA POINTS INCLUDED IN THE

SUMMARY ?

  
   

 
 

 
 

 YES~ NO

NO INPUT SUMMARY PRINTED

I
ENTER BACK FOR CORRECTION OR OK FOR ACTIVATION OF THE « BACK

 

 

     COMPUTATIONS
 

OK  
 

OPIENI(C)

l. SUN-OF-SOUARES FUNCTION MINIMIZATION AND OUADRATIC

SURFACE FITTING REPORTS

2. RESULTS

3. ADDITIONAL OUTPUT SPECIFIED BY THE USER IN THE

SUBROUTINE ”MODEL” THAT DEFINES THE FUNCTION(S) TO BE

FITTED.
I
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to the particular treatment chosen. The answers can be YES or NO or, in

short form, Y or N. Where numerical data are requested, these can be typed

anywhere on a line in integer, decimal or exponential form separated by

one or more blanks or a comma. For example 17.0 can be typed as 17 or 17.

and —0.00153 can be typed as such or as -.00153 or —l.53E—3, -l.53E-03,

—153E-5, etc.

The computer uses previously entered information to give exact

directions how to enter data. For example, in request no. 17 (scheme 8.1),

the user is told how many lines to type, which quantities each line must

contain'and the order in which these must be typed. The inputs resulting

from requests no. 8, l4 and 16 are stored and used for this instruction. The

user is also helped by default values in requests no.3,5,6,8,12,13 and 19

where some understanding of the minimization process is required.

The program has a unique feature that makes it possible to go

back at any time and correct or alter the input under any previous input

request. If, for example, BACK4 or B4 is typed anywhere on a line, alone

or along with other data, request no. 4 will be repeated and after the

appropriate input, will be followed by the current request without repetition

of the requests in between.

Possibly the most inconvenient feature of most computer programs

is the very strict form in which data have to be entered. Execution will

terminate in most cases if an input does not make sense because of a typing

error. This can be of great inconvenience for the user, particularly if

many data have to be entered. 'FUNFIT' does not have this disadvantage.

It will not terminate for any kind of typing error. Instead every input

is checked in several ways (scheme 8.2). Typing errors, logical errors

and numerical errors are all detected. It is, for example, not uncommon to
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(a)

(b)
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INDIVIDUAL INPUT STEP IN SCHEME 8.1(5)

 

 
 

 
 

 

STRUCTURE OF THE DATA CHECK PERFORMED AT EACH

 

 

 

 

 

 
  

  

 

 

 

 

  
 

 

 

 
 

 
 

 

  
 

 

 

 

 

 

 
 

You FORGOT To CURRENT

ENTER DATAI INPUT CORRECTION
REDUEST

INEUI

NO DATA
RECEIVED ?

YES B' REOUEST

BACK’ N0.‘

BACK-COMMAND YES
RECEIVED ?

N0 B NHAT REQUEST

BACK No. ?

NUMERICAL DATA ALPHA DATA
EXPECTED ‘EXPECIED \L

NOT NOT
CHECK ACCEPTABLE ERROR RECEIVED YES (Y)

NUMERICAL MESSAGE N0 (N)
DATA PRINTED<b> 0R 0K

J, RECEIVED 7

ACCEPTABLE

 

  
 

 

RETURNS T0 CURRENT
INPUT REQUEST
 

  NEXT INPUT REQUEST

  
 

 
  
 

THE INPUT DATA ARE CHECKED FOR NUMERICAL; LOGICAL

AND TYPING ERRORS. IF AN ERROR IS MADE IT IS

ESSENTIALLY IMPOSSIBLE TO PROCEED BEFORE IT HAS

BEEN PROPERLY CORRECTED. ALL INPUT DATA ARE

FURTHERMORE CHECKED COLLECTIVELY AFTER REQUEST

No.18 IN SCHEME 8.1 SUCCESSFUL RUNS SHOULD IN

THIS WAY BE GUARANTEED IN MOST CASES.

SCHEME 8.3 GIVES EXAMPLES OF SOME OF THE MANY INPUT

ERROR MESSAGES IN FUNFIT.
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type a comma in place of a decimal point or an "0" instead of a zero;

such errors are clearly indicated by the program and the last input line

is repeated for immediate correction. An error message is also printed

so corrections can be made if an input does not agree with an earlier input.

Some of the many error messages in 'FUNFIT' are listed in scheme 8.3. If

an error is detected the program will not proceed until proper corrections

are made. The total set of inputs is finally checked after request no. 18

before the computations are started. The "BACK" command makes corrections

easy if an error is found at this stage.

If 88(3) function minimization or statistical evaluation of the

parameters is not completed, a status report on the computations and a

diagnosis of the problem are printed together with a suggestion for a suitable

correction (using the BACK~command). The most likely reason for termination

of the minimization process is that the number of 58(2) evaluations may

exceed the maximum number specified in request no. 5 before convergence is

reached, probably because the stopping criterion has been set too strictly.

Another reason is that during the iteration process a parameter may reach

a value at which the function to be fitted is not defined (e.g. division by

zero, taking the logarithm of a non—positive number, etc.). This can be

avoided by a proper formulation of the user—supplied subroutine 'MODEL'

and by the right choice of parameter limits.

At convergence, the point in n—dimensional parameter space defined

by E_is surrounded by other points which form a polygon with §_as centroid.

The size of this polygon depends on the accuracy with which the 88(2) minimum

is determined and diminishes for small values of the stopping criterion.

The SS—values at the vertices, the centroid and mid-points of the sides of

the polygon provide the surface points used in the quadratic surface fitting

for estimating the variability of the parameters (135). Because of the small



-201-

SCHEME 8.3 SOME INPUT ERROR MESSAGES IN FUNFIT(a)

 

Input error, too many numbers on line above.* are expected.
Reenter last line in correct form according to request.

Input error, too few numbers on line above.* are expected.
Reenter last line in correct form according to request.

Input error. Unrecognized character ( )(b).
Reenter last line in correct form.

Input error. The number entered is not in the allowed range.
- Try again - ‘

Input error. The input is not in the right order.
— Try again -

Input error. You forgot to enter observation number *.
Reenter your data according to following request:

Input error. The weight for observation no.* (Y=*) is not defined
by the chosen weighting scheme no.*

Input error. Your input does not agree with your input under
request no.* .
- Try again -

Input error. The initial estimate of parameter no.* is not within
the limits given. Enter BACK if you want to make correction or
OK if you want the program to choose an acceptable initial para-
meter estimate.

Input error, your answer must be one of the following three only

YES NO BACK (Y,N,B)
— Try again -

Input error. Your input under request no.* does not agree with
the input under request no.*. What request number do you want to
go back to for making corrections?

Input error. You forgot to enter data.
- Try again —

Input error. The weight of the dependent variable is negative.
Reenter last line in correct form.

 

(a) The appropriate numbers are printed where * appears in the text.

(b) The mistyped symbol is printed in the bracket. This feature
prevents termination of the program when for example common
errors such as typing ',' instead of '.' or the letter O in-
stead of zero are committed. .
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size of the polygon at convergence these points will be so close together

that numerical rounding—off errors can be significant in the fitting procedure.

To prevent this, the polygon is expanded around the centroid before the

quadratic surface is fitted until the SS—values at the ventices exceed that

at the centroid by more than a given value of the expansion criterion

(request no. 3). Two tests are then done to ensure that the statistical

evaluation of the parameters is not significantly subject to numerical

errors: The minimum of the fitted surface is compared with the minimum

SS(§) found by the minimization process to check for round—off errors;

also, the surface points used in the fitting procedure must lie in a convex

region of the 55(2) surface in order to be close to the true minimum and

this is checked by evaluating whether the Hessian matrix (Eq. 8.13) is

positive definite.

It is however most unlikely that there will be any computational

difficulties either in the minimization process or in the statistical

evaluation of the parameters if the recommended (default) values are chosen

in requests no. 3,5 and 13.

Lower and upper parameter limits are specified in request no. 10

to prevent convergence on an 55(3) minimum that may give unrealistic parameter

estimates. If an initial estimate is not given for a parameter in request

no. 11 the mid-point of the range defined by its lower and upper limits is

chosen. Default values for the initial step sizes (request no. 12) are

chosen in relation to the initial parameter estimates and their lower and

upper limits so that a large part of the parameter space is searched in the

88(3) minimization process and the chance of overlooking a smaller minimum

is reduced.

Requests no. 11 and 12 also provide the option of choosing one or

more initial parameter estimates and their respective step sizes independently
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of their lower and upper limits. This option can be useful if it is

desirable to increase the chance of finding a minimum that gives final

estimates close to the initial estimates instead of finding another even

smaller minimum that may exist but would give less realistic parameter

estimates.

By entering l in request no. 5 a lattice search can be made before

the start of a run. The coordinates of the point in the lattice which has

the smallest SS(§) value can then be chosen as the initial estimates of the

parameters, and the run can be started after input no. 5 has been modified

(using a B5 command). This 'pre—search' for the best starting values

increases the chance of finding the global minimum.

APPLICATIONS OF THE 'BACK' COMMAND
 

The B** command is not only useful for correcting input errors

but has wider application. For example, if the analysis of the residuals

suggests a particular weighting scheme, a new run with weighted data can

easily be made. By typing B16, request no. 16 is repeated and the desired

weighting scheme can be chosen (e.g. R = -2 will give weights proportional

to y—2). The 'communication' then continues from the current request and a

new run, this time with weighted data, will be started by typing 818

followed by OK and N in succession. A new run in which one or more of the

parameters is kept constant can, in a similar way, be made by repeating

request no. 10 and fixing the parameters in question by setting upper

limit=lower limit=the fixed value.

The lattice search that can be chosen in request no. 19 includes,

in the case of two parameters (2-dimensional search), a contour map of the

58(3) surface, together with matrices of the 85(3) values and the sign of
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the partial derivatives of SS(§) with respect to each of the two parameters

at the points in the search grid. In the case of only one parameter (all

others fixed) a plot will be printed of 88(3) versus the parameter.

The B** command is particularly useful in connection with a lattice

search involving more than 2 parameters if a composite picture of the SS(§Q

surface is desired. This is done as follows: The command B10 is typed in

response to request no. 19 (or after a lattice search) and all but two

parameters are fixed. Then after the following 2—dimensional search, B19

is typed, followed again by B10. This procedure can be repeated as many

times as desired, each time 'slicing' the parameter space in a different way.

If two or more response systems are fitted simultaneously the

data for these are stacked and numbered in succession (in request no. 17).

Therefore, a new run where only the first response system is fitted

individually can easily be made by typing B8 followed by 1, B18 and N in

succession. If the first run was a simultaneous fitting of a pharmacokinetic

model using both blood and urine data the effect of including or excluding

the urine response system can quickly be evaluated.

Every time the B** command is used the computer stores the current

request position and returns to this immediately after correction of a

previous input. It is however, possible to erase this memory and continue

without returning from a previous request by typing the same B** command

twice in succession. This procedure is useful if, for example, the first 7

inputs for a new run with different observations are identical to those of a

previous run. These inputs are then taken to be the same and need not be

repeated for the new run if B8 is typed twice in succession after completion

of the previous run.
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OUTPUT

Scheme 8.4 summarizes the maximum output possible from 'FUNFIT'

for a single run. The sections printed in italics denote the standard

(minimum) output that is always printed (or displayed on a terminal screen).

The degree of output will range from this to the maximum output according

to the user's specifications.

The optional input summary is useful as a check for numerical

errors before activation of the computations or may serve as an extra copy

of the experimental data. A minimization report should be chosen if the

user—supplied subroutine 'MODEL' specifies parameter constraints that may

cause convergence problems. The report is also of value because it provides

a table of SS(§) values and parameter values that gives some information

about the sum-of—squares surface and how large a section of the parameter

space has been searched on the way to the minimum.

The quadratic surface fitting report is only printed in conjunction

 

with the minimization report when statistical evaluation of the parameters

has been requested (no. 3). The variance-covariance and correlation matrices

of the parameters printed in this section will also appear in the general

result section. The plots printed in the result section are line plots and

are therefore of low accuracy but provide the essential information.. The

exact coordinates of the points in the plots are tabulated so precise plots

can be produced manually if desired.

In fitting pharmacokinetic models it is often necessary to calculate

from the final parameter estimates, quantities such as half-lives, clearances

and volumes of distribution or to make a plot of the amount of drug in a

peripheral compartment versus time. It will be demonstrated in the following

section how the subroutine 'MODEL' which describes the equation(s) to be
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SCHEME 8.4 SUMMARY OF OUTPUT FROM 'FUNFIT'(a)

INPUT SUMMARY(b)

- Heading for problem. — Number of: variable parameters, constant

parameters, observations and independent variables for each res-

ponse system. Table of parameters with lower and upper limits,

initial estimates and step sizes. - Table of observations with

dependent variable(s), independent variable(s), weight (if any)

and normalized weight. - Plot of dependent variable(s) versus in-

dependent variable(s). - Weighting scheme used, expansion and

stopping criterion. -

SUM-OF-SQUARES FUNCTION MINIMIZATION REPORT(C)

— Table of evaluation no., sum-of—squares values and parameters.-

sum—of—square value and parameter estimates at convergence and

number of evaluations used to reach convergence.-

FITTING OF QUADRATIC SURFACE IN REGION OF MINIMUM(C)

- Minimum of quadratic surface and parameter values at minimum.-

Generalised inverse of information matrix (H—1). - Information

matrix (H). - Correlation matrix (Eq.8.l7x— Number of evaluations

Vused in the fitting.-

RESULTS

4 Heading for problem.- Table of parameters with their lower and

upper limits, initial and final estimates.- Table of standard

deviation, coefficient of variation and 95% confidence limits of

the parameters.- Graphical illustration of the relative position of
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the calculated parameters in their specified range.— Residual sum

of squares, regression sum of squares, sum of squared response,

mean of response, residual mean square, regression mean square,

mean of residuals and correlation coefficienti— Weighted residual

sum of squares, weighted residual mean squares, mean of weighted

residuals.- Table of dependent variable(s), independent variable(s),

observed and calculated responses, difference in response, differ-

ences expressed as percentages and as normal deviates.- Table of

weights, normalized weights, weighted residuals and normal deviate

form of weighted residuals.- Plot of calculated (fitted) curve in-

cluding experimental data points. Table of coordinates in plot.-

Analysis of variance table.- Durbin-Watson statistics for serial

correlation of residuals. 'Run test' and 'number test' for ran-

domness of residuals.- Residual plots: residuals versus dependent

and independent variables. Weighted residuals versus dependent and

independent variables.— Variance-covariance matrix.- Correlation

matrix.- OUTPUT SPECIFIED IN THE USER-SUPPLIED SUBROUTINE 'MODEL'.-

LATTICE SEARCH FOR GLOBAL MINIMUM(d)

The output in this section depends on the number of variable

parameters as follows: (1 PARAMETER) - Plot of‘ sum-of—squares

function values versus the parameter in its specified range.-

Table of coordinates of points in the plot.- Sum-of-squares and

parameter values at minimum found in the unidimensional search.—

(2 PARAMETERS)- Residual sum-of-squares matrix.

— Matrices of the Sign of the partial derivatives of

the sum-of-squares function with respect to each parameter.

- Sum-of—squares contour map.- Parameter values at the grid point
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that has the smallest sum—of-squares value.- (> 2 PARAMETERS).-

Total number of lattice points evaluated. Number of divisions

of each parameter interval.- Parameter values of the grid point

with the smallest sum-of-squares value.

 

(a) The scheme summarizes the maximum degree of output possible
from FUNFIT for a single run. The sections printed in italics
denote the standard, minimum output that is always printed.
The degree of output will vary in this range according to
the user's specifications.

(b) The input summary can be chosen to check all the inputs before
the activation of the computations or may serve as an extra
copy of the experimental data.

(c) It is useful to choose a minimization report if special
parameter constraints have been specified in the user supplied
subroutine 'MODEL' that specifies the function(s) to be fitted.

(d) The lattice search can be used to evaluate the contour of the
sum-of—squares surface when there are only two parameters. A
composite picture of the surface can be built up if there are
more than two by fixing all but two parameters at a time (see
text).
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fitted, can include a special section containing such additional calculations

and plots. This 'user—supplied output' will then be printed as the last part

of the results section. The program includes an easily applicable subroutine,

'PLOT', which enables the user to make special plots in this section.

DEFINING THE EQUATION(S) TO BE FITTED

In order to use FUNFIT the function(s) to be fitted must first

be defined by the user in a special subroutine called MODEL. The structure

of this subroutine is:

SUBROUTINE MODEL (Y,X,P,IPRINT)

where Y denotes the dependent variable(s); X the independent variable(s);

P the parameter vector and IPRINT is an integer variable which is controlled

by FUNFIT and is used if additional output is desired. The subroutine must

define Y as a function of X and P.

The structure can best be illustrated by some examples,

1. A single Equation, one Dependent and Independent Variable:

To fit the two—exponential equation:

the subroutine can be written simply as:

SUBROUTINE MODEL (C,T,P,IPRINT)

DIMENSION P(4)

C = P(l)*EXP(-P(2)*T) + P(3)*EXP(—P(4)*T)

RETURN

END
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Special Output

If it is desired to calculate a quantity, say:

A = pl/p2 + p3/p4
(8.53)

from the final least squares parameter estimates this can be done by the

computer by including the following special output section in the subroutine:

IF(IPRINT.EQ.¢)RET
URN

A = P(l)/P(2) + P(3)/P(4)

WRITE(6,1)A

l FORMAT(" A=", E12.6)

just before the RETURN statement. It is seen that the IPRINT parameter

controls the execution of the special output section. This section is

printed once just after the general output section described in scheme 8.4.

An easily applicable plotting routine is available for special

plots the user may wish to make in the special output section. Its structure

is

SUBROUTINE PLOT (XARRY,YARRY,NPOIN
S,NLINES)

where XARRAY and YARRAY are two arrays of dimension NPOINTS which contain

the coordinates to the points to be plotted using NLINES of the output

device.

In calculating the points for such plots it is frequently convenient

to know the interval over which the observations are taken, i.e. the

smallest and largest X value. This information can be made available by

including the common statement:

COMMON XMIN, XMAX

 

3. It is recommended to use NPOINTS=75 and NLINES=50.
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The following subroutine illustrates the use of PLOT in terms

of a plot (75 points) of the function:

f = e - e (8.54)

over the range of the t values, i.e. from XMIN to XMAX:

SUBROUTINE MODEL (C,T,P,IPRINT)

DIMENSION P(4),F2(75),TT(75)

COMMON XMIN, XMAX

C=P(l)*EXP(-P(2)*T) + P(3)*EXP(-P(4)*T)

IF (IPRINT.EQ.¢)RETURN

DO 1 I = 1,75

TT(I) = XMIN + (I-l)*XMAX/74.

1 F2(I) = ABS(EXP(-P(4)**TT(I)) — EXP(-P(2)*TT(I)))

CALL PLOT (TT,F2,75,50)

RETURN

END

Fitting Several Functions Simultaneously

The general structure of the user supplied subroutine MODEL

when N response systems or equations are to be fitted simultaneously can

be illustrated schematically as follows:

SUBRQUTINE MODEL (Y,X,P,IPRINT)

DIMENSION P( )

COMMON/FUNNUM/ITHFUN

GO TO (l,2,...,N)ITHFUN

1 Y = (lst function)

RETURN
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2 Y = (2nd function)

RETURN

N Y = (Nth function)

RETURN

END

The basis of this structure can be explained in the following way: During

the input procedure each observation point is numbered consecutively and

automatically assigned a label ITHFUN (ifith_§unction) indicating which

response system it belongs to. The user supplied subroutine MODEL is

called by FUNFIT for each observation point. The parameter ITHFUN that is

introduced by the COMMON block named FUNNUM (function ngmber) transfer

control to the i-th function which is then calculated. Control then returns

to FUNFIT where the squared residual at that particular point is calculated,

and added to the previous squared residual in the process of calculating

the sum of squared residuals.

Example

Consider the following linear compartmental system:

 
 

Pl p2
--—-**—-——-+

y1 y2       

where yl and y2, which are measured at various times t, are given by:

dyl/dt = -plyl (8.55)

dyz/dt = plyl-p2y2 (8.56)

which (for y =y and y =0 at t=0) integrates to:
l O 2
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Y1 = Yo EXP(—plt)
(8.57)

y2 = yopl (EXP(-plt) - EXP(-p2t)) (8.58)

p2'91

It is desired to estimate p1 and p2 from the set of observations of (yl,t)

and (y2,t). This can be done by fitting simultaneously 8.57 and 8.58 to

the observations.

These equations can conveniently be defined as follows:

SUBROUTINE MODEL (Y,T,P,IPRINT)

DIMENSION P(3)

COMMON/FUNNUM/J

GO TO (1,2) J

1 Y = P(3)*EXP(-P(1)*T)

RETURN

2 Y = P(3)*P(l)/(P(2)-P(l))*(EXP(-P(l)*T)-EXP(
-P(2)*T))

RETURN

END

The quantity yO can either be defined as a constant by setting its upper

and lower limits equal to the same (constant) value in the input, or it can

be defined as a parameter that is to be estimated by assigning appropriate

bounds for P(3).

Fitting an Equation with 2 Independent Variables, a Simple Example

Consider a first-order reaction:

A + B

where the fraction remaining, fA' of A is measured at various times, t, at

various temperatures T (OK). A simplified model for this reaction may be

written as:
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fA = EXP (-pltEXP(-p2/T)) (8.59)

where pl and p2 are parameters to be determined from a set of (fA,t,T) data

points. This model can be defined in the following way for FUNFIT:

SUBROUTINE MODEL (FA,X,P,IPRINT)

DIMENSION P(2),X(2)

FA = EXP(—P(1)*x(1)*EXP(—P(2)/x(2)))

RETURN

END

where X(l) acts as the time, t, and X(2) as the absolute temperature (0K).

Fitting of Implicit Equations, A Simple Example
 

It is, in the following equation:

plx = 1n y + pzy X.y,pl,p2 > 0 (8.60)

not possible to express y explicitly as a function of the independent

variable x so a special technique must be used to express and fit the

function:

y = f(x,p1.p2) (8.61)

The numerical problem of defining 8.60 in the form of 8.61 is the same

as finding the root of the equation:

plx - ln y - p2y = O (8.62)

for given values of x, p1 and p2; where pl 2 are the parameters to be
I

determined from a set of (x,y) observations. Let the left-hand side of

8.62 be denoted g(y) then y can be found by the Newton-Raphson iteration:

 

g(yi)

yi+1 = Yi — W (8.63)

where g'(y) = 39(y) = - l'- p2 (8.64)
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p x-ln y.~p y.
. l 1 2 1

. . . z . = . + —————-————-—-—- .1 e 8 63 becomes Y1+l yl l. + (8 65)

Y, D2
1

Since y and p2 > 0 then g'(y) < 0 so the function g(y) will be monotonously

decreasing:

Figure 8.1

g(y)

In the iteration 8.65 yi+l may become non—positive for which g(y) will not

be defined in the next iteration. To prevent this to occur it is convenient

to define:

= I S .yi+l yi/Z 1f yi+l O (8 66)

The iteration 8.65 may be considered to have converged when the relative

change in y between iterations is less than 0.0001% i.e. when

-6
ky1+1'yiVYiI < 10 ‘

The subroutine to define 8.61 (i.e. 8.60) may thus be defined

in the following way:

SUBROUTINE MODEL(Y,X,P,IPRINT)

DIMENSION P(4)

c P(3) = CONVERGENCE CRITERION

c 9(4) = MAx.No.0F ITERATIONS

MAX = IFIX (P(4))

DO 1 I = 1, MAX

I-
<

U) 35 § II Y

|.
< ll 0-4 + (P(l)*X—ALOG(Y)-P(2)*Y)/(1/Y+P(2))
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IF(Y.LE.¢.)Y = YSAVE/Z.

IF (ABS ( (Y-YSAVE) /YSAVE) . LT.P (3) ) RETURR

1 CONTINUE

WRITE(6,2)X,Y,P

2 FORMAT ("NO CONVERGENCE FOR X,Y,P =", 6E12.6)

RETURN

END

In this scheme P(3) and P(4) are used as "dummy" constant parameters which

are not a part of the regression equation but included of computational

reasons .
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C H A P T E R 9

CURVE FITTING AND MODELLING IN PHARMACOKINETICS

A Comparison of FUNFIT and NONLIN computer programs.

Several programs are available for nonlinear least squares

parameter estimation (123-128). Nearly all are based on the Gauss-Newton

or other related gradient methods since these are usually rapidly convergent

and provide estimates of the variance-covariance matrix. However, such

gradient methods may fail when the residuals are large (l45,l46),as is

often the case in fitting equations to biological data, and they may

converge on a non—stationary point (147) if great care is not taken by the

user in choosing a suitable value for the step size used in the finite

difference approximation of derivatives. The default value specified for

this step size in a program may unfortunately apply successfully only in a

limited number of cases. Such practical experiences are illustrated in

this paper in the application of the program NONLIN (123) which is based

on Hartley's modification of the Gauss-Newton algorithm (148).1

Such problems are eliminated in FUNFIT. This program has

implemented the adaptive simplex method of Nelder and Mead (l35fl50) which

is a nongradient method that does not require evaluation of derivatives.

This method is less efficient than Gauss—Newton based methods but

considerably more robust and reliable. It will never fail even under

extreme conditions where the gradient methods may be unstable due to near

singularity and ill-conditioning of the matrices used in the iteration

procedure.

 

1. Numerical techniques in nonlinear parameter estimation have been reviewed

by Chambers (149) and an excellent discussion has been given by

Dennis (145).
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The possibility of multiple solutions (multiple sums of squares

minima) undoubtedly represents the greatest problem in nonlinear estimation.

The problem is expected to be particularly pronounced in pharmacokinetic

studies, because these often involve the fitting of multiexponential

equations to rather variable biological data, and because the ratio of

number of data points to number of parameters is often quite small.

Parameter estimation under such conditions may produce spurious results

and discrimination between pharmacokinetic models may be very difficult and

unreliable. The problem can be reduced, but Usually not eliminated, if a

graphical or numerical method is available which provides good initial

parameter estimates for the iteration procedure. This is seldom the case

for models describing nonlinear pharmacokinetics. The best approach should

therefore be to use an algorithm which is effective in finding the

(statistically) best solution in terms of the smallest residual sum—of—

squares value.

It is generally accepted that the nongradient search methods

perform better than the gradient methods in this respect. In particular,

the adaptive simplex method used in FUNFIT appears to be very suitable

because of its unique minimization method.

Regardless of the choice of algorithm the question of which

starting values the parameters should be given still seems to be the

greatest practical problem the user faces in nonlinear estimation.

Frequently, when no preliminary estimation technique is available the

initial values are simply guesses which all too often produce unacceptable

results in the first run. However, by studying these results, corrections

can often be made so that acceptable results can be obtained in subsequent

runs .
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Interactive programs are most convenient in such cases. In

particular, FUNFIT has been designed so that it allows a highly interactive

and flexible editing of input at any stage.

Pharmacokinetic applications of FUNFIT

1. The classical linear, compartmental models are still the most often used

models in pharmacokinetic studies. The evaluation of such models is

well documented and has become a routine procedure in many investigations.

There has, however, been an increasing awareness that linear models

cannot adequately describe certain drug disposition phenomena (151,152)

and various nonlinear models have been postulated. These mathematical

models are often of a form which requires a special technique for least

squares fitting.

Often several possible models are investigated to explain a pharmacokinetic

phenomenon. There has been increasing interestin in discriminating

between such models (152,153).

It is appropriate to discuss points 2. and 3. above:

Fitting of Implicit Functions: a simple example

Several of the models describing nonlinear pharmacokinetic

phenomena can be expressed in an implicit form which can be fitted by

defining the functional relationship between the variables explicitly by

an iterative procedure.

Consider, for example, a simple one—compartmental model with

intravenous injection in which the drug is eliminated partly by conversion

to a single metabolite according to Michaelis-Menten kinetics and partly

by excretion unchanged in the urine Q54). The concentration of drug in

plasma, c, is given implicitly by:
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K + + M +
1n 9' _ vm ln klu m Vm kluco _ klu m vm t (9.1)

c — k K k K +v +k c K
o lu m lu m m lu m

where Vm and Km are the Michaelis-Menten parameters, CO = Dose/Vl and klu

is the urinary elimination constant. This equation can be written more

 

simply:

In C + Al ln (A2+A30) + A4 = 0 (9.2)

V
where A1 = m (9.3)

K
klu m

K+
A2 = klu m Vm (9.4)

K + +k
klu m vm luco

klu

A3 = k K +v +k 0 (9‘5)
lu m m lu 0

K +V
A = klu m m (9.6)
4 ————-——-— t - 1n c

Km 0

The dependent variable, c, cannot be isolated from 9.1 but must be found

by an iterative procedure by solving 9.2 for c.2 The Newton-Raphson

algorithm provides a simple and rapidly convergent method. If the

expression in 9.2 is denoted g(c) then c can be determined by the following

 

iteration:

9(ci)
= _ .7

ci+l ci g'(c.) (9 )
1

AA
39 1 l 2

' = —-=—+———where g (c) c c A2+A3c (9.8)

 

2. It would be incorrect, as is sometimes done for equations of similar

type, to fit directly the equation where t is expressed as a function

of the dependent variable. The result would be unreliable because

the dependent variable which accounts for nearly all of the errors in

the data, is treated as an independent variable without error.
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It is important that ci+l in this iteration does not take a

nonpositive value since this will terminate the execution of the program

because g(c) (1n 0) is not defined for c j_0. To prevent this it is most

convenient to define

= - < .Ci+1 Ci/2 if ci+l _'0 (9 9)

This is an acceptable approach because g(c) is strictly increasing for

C>O since A1, A , A A > O and therefore, g'(c) > O. The term ln (A2+A3c)

2 3' 4

in g(c) will also be defined under these conditions.

The above procedure can be used for most implicit mathematical

models in nonlinear pharmacokinetics. However special care must be taken

to prevent the parameters wandering into a parameter space where the function(s)

is not defined (e.g. logarithm of a nonpositive number, division by zero

etc.).

Discrimination between models
 

The best criterion to use in discriminating between alternate

pharmacokinetic models depends on the aim of the investigation and the

application of the results (138,15:E;)- If the main aim is to discriminate

between models, the experiment should be designed so that the hypothesized

models are placed in as much jeopardy as possible.

The problem is nevertheless considerably complicated by the

substantial variation and low reproducibility of measurements in a

biological system and the limited number of sample points available.

Discrimination on a statistical basis requires information about the

variability of the observations which can only be estimated by repeated

experiments. A likely outcome of such experiments would often be that

the system is "ill—conditioned" i.e. the variability of the data is too
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large to allow a discrimination on a significant probability level.

Since the macroparametric representations of linear, compartmental

models are all of the multi-exponential form:

c = E: A.e 1 (A.,0L.>O) (9.10)
1 1. 1.

i=1

it appears appealing in routine investigations of raw pharmacokinetic data

to apply a "multiple regression approach", similar to that used for linear

systems, to determine the order, n, of the system.

This seems to be unreliable, however, for several reasons.

1. There exists no computer program which will inevitably find the "best"

solution (smallest residual sum of squares) in a nonlinear least squares.

estimation which may have several minima.

2. Measurements in biological systems often produce substantial residual

values which may give rise to multiple minima.

3. The number of minima will increase very rapidly as the number of

exponential terms, n, to be fitted increases.

The problem of multiple minima can be reduced but not eliminated

by a suitable procedure which gives good initial estimates, or by multiple

runs with initial parameter values randomly taken from the parameter space,

or by performing a lattice search. The interactive structure of FUNFIT

makes it particularly suitable for performing multiple runs and lattice

searches.

So-called "back—projection" or "stripping" is the technique most

frequently used to obtain initial parameter estimates for models of the form

described by 9.10. The stripping is either done graphically or automatically

by the computer, in some cases employing a spline function representation

of the data (152)-
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However, it is important to realise that this particular technique

assumes that one or more exponential terms vanish in certain regions of

the total drug level—time curve. In other words the method tends to disregard

cases where two or more exponential terms dominate fairly equally throughout

the whole time space investigated. Hence, the method may produce biased

results. Discrimination between alternative models (9.10) on this basis

must therefore be considered unreliable.

It would be appropriate in this connection to refer to a different

method which does not introduce such a bias (15%. This method is based

on a linear shift operator technique which appears not to have been used

previously in pharmacokinetic studies. Currently it seems to be the most

suitable to use in obtaining initial parameter estimates in linear

compartmental models.

In evaluating how well a model describes some data, three points

must be considered:

1. How well do the_calculated values agree with those observed, i.e. what

is the sum of squared residuals or the correlation coefficient? 2. Does

the fit agree with the basic assumptions made about the errors? 3. How

predictive is the model?

A comparison of fits entirely in terms of sum of squared

residuals (such as an F-test) must be considered insufficient.

Analysis of Residuals
 

The importance of an analysis of residuals (137) seems to have

been completely ignored in most computer programs. The basic assumptions

in nonlinear least squares are: l. The independent variable(s) is

without error. 2. The errors, 6i in the dependent variable are independent
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(cov
1753'

(8i,€.)=0) and normally distributed with zero mean and the same variance

(e.~N(o,02) ).
l

The theory of least squares predicts that if the model is correct

then the residuals should reflect the above properties of the errors, in an

unbiased way, provided the errors possess these properties3 (140). The

assessment of a model on the basis of a residual analysis must rely on the

converse principle: If the residuals appear to be from the same normal

distribution then, under assumption 2, the model should not be rejected.

To investigate whether the residuals are in fact equally normally

distributed requires repeated experiments. When only one experiment is

available a test must rely on the fact that if the residuals are deviates

from the same normal distribution, then collectively they will be normally

distributed. The converse, however, is not true in general (140). Therefore,

in the absence of repeated experiments it is necessary to make the

additional assumption that if the residuals are collectively normally

distributed then they are individually normally distributed also.

Possibly the best way to examine the residuals is to plot them

against the independent and dependent variables (137,138). Significant

systematic deviations can be visualized in this way. FUNFIT includes such

plots and the following statistics which may be helpful in the assessment

and comparison of models.

The Kolmogorov—Smirnov statistic (159) is used to test for

normality of the residuals. THe procedure is as follows: Given N residuals,

the program calculates

 

3. This is only strictly true in the linear case but approximately true

for the nonlinear case.
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D = maxx|F*(X) - sN(x)| (9.11)

where SN(X) is the cumulative distribution of the residuals and F*(X) is

the cumulative normal distribution function with the same mean and variance

as the residual sample. The calculated value of D is compared with the

critical value obtained from a Monte Carlo calculation at a given

significance level.

The fundamental assumption of random errors is also tested in

FUNFIT using the "run test" and the "number test" as discussed in Chapter 8.

The Durbin—Watson statistic to test for serial correlation among the

residuals was also presented in that chapter together with the test for

"outliers".

If the residual analysis reveals that the residuals do not appear

to be significantly random or normally distributed then this does not

necessarily mean that the model is incorrect. More exactly it means one

is faced with the problem of either rejecting the hypothesis that the

model is "correct", rejecting the assumption made about the errors, or

rejecting the assumption that the computer program has found the "best"

solution in the case of multiple sum of squares minima. In the last two

cases the model cannot be verified. This clearly emphasizes the need for

a computer program which is efficient in finding a global minimum, the need

for accurate data to reduce or eliminate multiple minima, and the need for

carefully designed experiments which do not introduce systematic or

cumulative errors.

The predictive power of the model

The ultimate goal in mathematical modelling in pharmacokinetics

is to establish models with significant predictive power. A similar goal
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exists in modelling of economic systems. The voluminous literature in

this area can undoubtedly give inspiration to future approaches in pharma—

cokinetics.

A very useful test of the predictive capabilities of a model is

to test the hypothesis that the parameters do not depend on the model

variables. This can be done readily if sufficient data are available.

The total set of data is first partitioned into 2 or more subsets. The

parameters are then estimated separately for each subset and the parameter

subsets are tested for any trend or for a functional relationship with

the independent variable(s) by suitable correlation analysis. A test to

establish whether the parameter subsets are significantly different from

the parameter set obtained for the whole sample can also be employed Q60,16D.

The highly interactive structure of FUNFIT readily facilitates such

partitioning of the data enabling the above tests to be made.

A Comparison of FUNFIT and NONLIN

FUNFIT was applied to obtain parameter estimates of the following

simplified 2— and 3—compartment models:

0 = ple + p3e p >0 (9.12)

= >c ple + p3e + p5e pi 0 (9.13)

which were used to describe the plasma profile of pancuronium after I.V.

bolus injection in 4 human subjects. The data to which 9.12 and 9.13 were

fitted are shown in table 9.1.

Identical parameter limits and initial estimates were chosen to

those used in applying the 1969 version of NONLIN which appears to be the
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Table 9.1 Pancuronium Bloodlevel Data to which Eqs. 9.12 and 9.13 are

fitted using NONLIN and FUNFIT.

 

 

 

 

 

I.A. B.A. M.C. J_C.

TIME CONC. TIME CONC. TIME - CONC. TIME CONC.

No. min ug/ml min ug/ml min ug/ml min pg/ml

1 7.5 1.120 5.0 .600 5.0 1.033 5.0 1.440

2 10.0 .775 10.0 .556 10.0 .830 10.0 1.000

3 20.0 .545 15.0 .550 15.0 .800 15.0 .945

4 30.0 .510 20.0 .480 20.0 .680 20.0 .805

5 60.0 .395 30.0 .370 30.0 .555 30.0 .620

6 95.0 .416 60.0 .200 60.0 .255 60.0 .463

7 120.0 .166 90.0 .160 91.0 .235 90.0 .365

8 152.0 .200 120.0 .150 120.0 .220 120.0 .355

9 180.0 .200 255.0 .090 240.0 .143 143.0 .270

10 190.0 .168 361.0 .100 413.0 .095 257.0 .160

11 250.0 .130 408.0 .083

12 400.0 .067        
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most commonly used nonlinear regression program in pharmacokinetic

investigations. The stopping criterion for FUNFIT was 0.1 (per cent)

which gives approximately the same relative change in the SS value at

convergence as NONLIN with its differently defined stopping criterion set

at TEST=0.000l. The step size used in NONLIN to approximate derivatives

was DEL=0.00l; the same value as that used in the test problems given

in the NONLIN user's manual. The experimental plasma levels were recorded

to 3 significant digits after the decimal point so the precision factor in

NONLIN was chosen as IDIG=—9 to avoid significant truncation of calculated

values. This NONLIN and FUNFIT should give identical SS values for

identical parameter values. This was verified in all runs.

FUNFIT found a different solution than NONLIN in every case where

a 3—compartment model (9.13) was fitted, and in half of the cases where a

2—compartment model (9.12) was fitted (Table 9.2). The residual sum of

squares values obtained using FUNFIT were substantially lower than those

obtained using NONLIN in all cases where there was a difference. The

average percentage difference was -55% and —29% when fitting Eqs. 9.13 and

9.12 respectively. The differences were also reflected in the parameter

values. Furthermore, the run test indicates that the residuals are more

randomly distributed overall in the FUNFIT results.

To test NONLIN's results in the cases where results differed

for the two programmes FUNFIT was started with initial parameter values

identical to NONLIN's final estimates and with initial parameter step sizes =

0.1% of these parameter values: At the first iteration FUNFIT gave exactly

the same SS-value as NONLIN's value at convergence but it did not accept

this solution as a stationary point and converged to a significantly
 

different solution (Table 9.2).
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Table 9.2: Least squares fitting of Eq's9.12 and9.13usinq NONLIN (N) and FUNFIT (F).

 

 

 

PATIENT ( ) (b)
/POINTS 55 A55% a RUNS p1 p2 p3 P4 p5 p6

IA/lZ N .7131E-l 6 .14528+1 .2871 .4553 .302ZE-l .3986 .4165E-1

.24IOE-l -66.2 9 .4924s+1 .3026 .40818-1 .1686 .6013 .66328-

8‘”) .28698—1 -59.8 9 .294OE+1 .2370 .4855E-3 .3568E-1 .6025 .67128fi

JC/ll N .1825E-1 8 .1038E+2 .9543 .1139E+1 .7307E-1 .6039 .50488-

F .6631E—2 —63.7 9 .4649E+l .5826 .8223 .52425-1 .5597 .4721E-

F‘C’ .6074E-2 -66.7 9 .13035+2 .7920 .8369 .5411E-1 .5647 .4744E-

BA/lO N .89738-2 6 .2614 .43418—1 .3327 .34732-1 .1697 .1873E-

F .4653E-2 —48.1 6 .56038-1 .5668 .5911 .2526E-1 .1041 .2758E-

F(c) .44478-2 -5o.4 6 .72532-1 .2467E-1 .5253 .247SE-l .9702E—l .34925-

MC/lO N .1382E-1 4 .8224 .4488E-l .73883-1 .6326E-1 .3148 .2521E-

F .78448—2 -43.2 6 .1658E+1 .9200 .9374 .3623E-l .2283 .19368-

8(5) .8346E-2 ~39.6 6 .8740 .36008-1 .BIBE-l .6357E-1 .2336 .20355-

IA/lZ N .51028-1 5 .1983E+1 .2367 .6586 .74498-2

F .2199E-l -55.9 8 .1066E+2 .3999 .6202 .6858E-2

8‘5) .21998-1 -55.9 9 .lO49E+2 .3978 .6198 .6853E-2

JC/11 .1621E-1 7 .124os+1 .9424E-1 .6496 .5616E-2

F .16213-1 o 7 .1240E+l .94258-1 .6497 .5616E—2

BA/lO N .4528E-2 6 .5998 .25695—1 .1012 .21008-3

F .4446E-2 - 1. 6 .5975 .24705—1 .9677E—1 .5866E—S

F‘C’ .44498—2 - 1.8 6 .5962 .2484 .9835E—1 .5402E-4

MC/lO N .8194E-2 6 .9464 .3760E-l .2373 .2093E-2

F .81948«2 0 6 .9464 .3761E-1 .2374 .2095E-2

(a) 055% = 100(SSFUNFIT ' NONLIN)/SSNONLIN

(b) See text for definition of runs.

(c) FUNFIT was in these cases started using NONLINS final parameter estimate as initial

= 0.1% of these parameter values.estimates and with in1tial parameter step sizes
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The detailed minimization report chosen in the investigation of

this phenomenon, in fact, showed that the SS-function in NONLIN's convergence

region had a significant gradient value indicating that NONLIN‘s solutions

in these cases were not sufficiently close to the true sum of squares

minimum.

The most likely reason for the failure of NONLIN to find a

satisfactory solution in these cases appears to result from substantial

errors in the approximation of derivatives. ’

The derivative with respect to the i-th parameter, pi, of the

function f(§JE) to be fitted in NONLIN is approximated by a one-sided

difference formula:

8f 2 f()_(_rP1IP2--rpi+6piI--Pn) "f (£12)

393i 5pi
 (9.14)

where the step size 6, (DEL) is chosen by the user. The value of this

quantity is critical to the accuracy of the derivative. In choosing a

proper value for 6, one has to steer between two hazards: 1. If the value

chosen for 6 is too small the derivative will be substantially inaccurate

because of the rounding error which arises when the two f-values in (9.14)

are too close. 2. If 6 is set too large the derivative approximation will

be too inaccurate because of the truncation error (9.14 is only accurate

in the limit as 6+0). This indicates that there must be an optimal value

for 5. It can be shown that this value, for the i—th parameter, is

approximately given by:

(0.15)

  

where 6 is the relative error in the computed f-value and Hii is the i—th

diagonal element of the Hessian matrix. This formula shows that the optimal
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6-value differs from parameter to parameter. It is not uncommon to find a

very large value for the ratio, max(piHii)/min(piHii), indicating that the

choice of a single common 5—value as is done in NONLIN may not be adequate

for all derivative evaluations and may cause convergence to a non-stationary

point (147).

The above problem can be overcome in several ways:

1. By abolishing difference approximations and using exact analytical

derivatives. This, however, may be of considerable inconvenience for

the user who must define the analytical derivatives. It also limits

the use of the program to equations for which analytical derivatives

can be obtained.

2. By modifying the initial choice of 6 according to Eq. 19 or by other

means (162). However, even if alterations are made according to l. or

2. the Gauss—Newton methods may still converge in some cases to a

point at which the gradient does not vanish (145).

3. By abolishing the linearization approach in the Gauss-Newton methods

and using a general function minimization approach (163-165 ).

4. By the use of an algorithm which is not based on derivatives or derivative

approximations as is done in FUNFIT. The disadvantage of the last

approach is that more function evaluations are required to reach

convergence. For most pharmacokinetic applications this disadvantage

is not significant. However, in cases where many parameters (> about

12) are to be estimated or where the equation(s) to be fitted is

very time—consuming to evaluate (for example in the fitting of a

functional relationship described by a system of differential equations)

the disadvantage may become significant.

The presence of multiple SS—minima in fitting the 3—compartment

model is evident from the fact that in the cases where FUNFIT was started
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with NONLIN's final estimate it converged on a different solution (Table

9.2). The difference between SS-values found by FUNFIT in consecutive runs

was much smaller than the difference between NONLIN and FUNFIT's values.

To test for multiple minima in fitting the 2—compartment model

to IA's data, FUNFIT was started randomly 10 times in the chosen parameter

space. In 9 of these cases it found the same solution (Table 9.2) but in

one case it converged to:

SS = .2209E—l and pl_4 = .8780E+l, .3744, .6162, .6797E—2.

It is encouraging that this minimum is larger than that found in the 9+2

other cases. The more frequent occurrence of different solutions in the

3-compartment fitting confirms that the problem of multiple minima increases

with an increasing number of parameters.

In only about half the cases investigated did FUNFIT and NONLIN

find a smaller SS value for the 3—compartment model than for the 2—compartment

model. This clearly emphasises the problems in discriminating between

nonlinear mathematical models as discussed.

If, in fitting linear compartmental models, 9.10, the lower

limits for the coefficient parameters Ai are set to zero then, in theory,

the fit in terms of SS of a higher order model (e.g. n=3 gs n=2) should

always be better or at least as good as the fit of a lower order model.

Therefore, if under such conditions it is found that the higher order model

does not improve the fit (SS) then there is reason to believe a better

minimum exists. In such cases, the higher order model should be refitted

with initial estimates of the common parameters equal to the final parameter

estimates of the lower order models. If this procedure also fails to give

a lower SS-value, then a third run should be made where the common parameters

 

4. Provided of course that the parameter space for the lower order model

is a subset of that of the higher order model.
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are restricted within narrow limits around the optimal values for the lower

order model, and where the parameters in the higher order term (e.g. p5

and p6 above) are much less restricted. The above approach will be successful

in most cases and its use is recommended not only for fitting to sums of

exponentials but also for any other "order system" where the terms are

allowed to vanish. It should reduce significantly the problems associated

with multiple minima and the problems of finding suitable initial estimates.

Truncation

In the NONLIN program it is possible by using the IDIG parameter

to specify various degrees of truncation of the calculated values for the

dependent variable. For example, if IDIG is set at -3 then all calculated

values of the dependent variable will be truncated to 3 significant digits

after the decimal point. The philosophy behind the use of this parameter

is that there is no reason to calculate the predicted Values to any higher

precision than the observed values. In adopting such a philosophy it must

be realised that the results so obtained will be specific to the NONLIN

program and in general cannot be compared with results obtained using

other nonlinear regression programs. The difference between results

obtained specifying virtually no truncation (IDIG= -9) and specifying

truncation to the precision of the observations (IDIG= -3) was found to be

very pronounced (Table 9.3). The substantial difference was reflected not

only in the SS—values and parameter values but also in the randomness of

the residuals.

Truncation (IDIG= —3), furthermore, strongly affects the errors

in the derivative approximations since the value of E and hence, 5 in Eq.

9.15 will be affected. This may explain why NONLIN in one case (Table 9.3)



Table 9.3: Least squares fitting of Eq's9.12and9.13uSing NONLIN with precision factor -3 and -9

PAT IENT PREC ISION-

 

 

 

/POINTS FACTOR ss IASS%|(a) RUNS(b) pl p2 p3 P4 p5 p6

IA/12 —9 .71313-1 48 7 6 .1452£+1 .2871 .4553 .30223—1 .3986 .41653-2

-3 .3658E-1 8 .1793E+1 .1807 .3155 .lO97E-l .2949 .36978-2

JC/ll -9 .18253—1 35 2 8 .1028E+2 .9543 .1139E+l .7307E—l .6039 .5048E-2

-3 .11838-1 6 .1123+1 .1813 .5571 .33102—1 .5060 .4237E—2

BA/lo -9 .8973E-2 68 8 6 .2614 .43413—1 .3327 .3473E-l .1697 .1873E—2

-3 .lSlSE-l 4 .1396 .51723-1 .4649 .4265E-l .1734 .19532-2

MC/lO -9 .1382E-1 582 4 .8224 .4488E-l .7388E-l .6326E-1 .3148 .25212-2

—3 .9427E-l (c) 3 .8000 .6000 .3000 .1000 .4000E-1 .2000E—2

IA/12 -9 .51023-1 74 9 .1983E+1 .2367 .6586 .7449E-2

-3 .8924E-l 4 .8795 .4713E-1 .3312 .2706E-2

JC/ll -9 .1621E-1 165 .12403+1 .94242—1 .6496 .5616E—2

-3 .4306E-l 4 .1114E+l .4835E-l .4251 .2649E-2

BH/lO —9 .4528E-2 17 1 .5998 .2569E—l .1012 .2100E-3

—3 .5303E-2 6 .5547 .3019E—l .1610 .21212—2

MC/lO -9 .8194E—2 2 78 .9464 .3760E-l .2373 .20933-2

—3 .8422 5 .9226 .4107E-l .2760 .2779E-2

(a) IASS%| = 100 xg ss(_9) - ss(_3)'/ ss(_9)

(b) See text for definition of 'runs'.

(c) NONLIN failed to find a proper solution. At convergence after 5 iterations the final parameter estimates

were identical to the initial estimates.

‘
V
E
Z
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failed to converge properly.

The relative precision with which the parameter can be calculated

will also be affected by truncation since it will not be possible to improve

their estimates further when the computer has reduced the residual sum of

squares to a value, SS, for which

SS
-——--— < .1
SS(true) l + e (9 6)

where the error, 6, depends on the degree of truncation chosen by IDIG (149).

Furthermore the truncation procedure cannot be justified on a statistical

basis since the theory of least squares assumes no errors in the calculated

values. In fact great effort is often made to program the function to be

fitted so that it can be evaluated with minimum errors to avoid biased

results.

The user of the program NONLIN is, therefore, advised to use a

value for the precision factor IDIG such that minimum truncation takes place.

The many nonlinear regression programs available have provided

the scientist with a powerful tool useful for a great variety of problems.

However, the results obtained have too often been accepted and used without

an awareness of the limitations and possible unreliability of the program

used, ignoring the numerical problems involved.

The complex structure of the program used has often resulted in

an authoritative attitude which may go so far as using the program as a

substitute for rational thought. There is a definite need for programs which

are more reliable and which allow greater interaction between the user and

the program, with the user in a more dominant role.
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C H A P T E R l O
 

A NEW METHOD FOR CHARACTERISING THE DISSOLUTION

PROPERTIES OF DRUG POWDERS
 

Chapter 7 demonstrated good agreement between the theoretical

dissolution profile and experimental data for tolbutamide. The intrinsic

dissolution profile was calculated, using the rigorous mathematical approach

present in Chapter 5 and 6, from optical analysis of the size distribution

of the 60/85 mesh fraction powder. Such an analysis is complicated to

perform for micronized powders because of the highly irregular particle

shapes and the degree of aggregation often found in such powders.

However it should be possible to determine by nonlinear regression

analysis whether the dissolution of such a powder can be adequately described

by one of the multiparticulate dissolution models presented earlier.

In this chapter various such models, based on a log-normal particle

size distribution, are fitted by nonlinear least squares regression to

data from the dissolution of micronized glibenclamide using the FUNFIT

program. Estimates of parameters describing the effective initial particle

size distribution are obtained together with estimates of a quantity defined

as the specific dissolution rate parameter. A dissolution equation based

on an ideal, untruncated log—normal distribution with the single particles

dissolving according to the cube root law best describes the dissolution

kinetics. Dissolution behaviour of glibenclamide can be well described by

this model in terms of the specific dissolution rate parameter and one

other parameter which accounts for the distribution effect termed

the dispersion parameter.
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Estimation of these two parameters provides a means of describing

dissolution characteristics of drug powders apparently more correctly than

previous approaches. The method should be of interest in the quality

control of drugs likely to cause bioavailability problems because of

dissolution rate limited absorption.

Theoretical

The dissolution equation for a log-normal powder, considering the

cube root and the square root model, was given earlier by Eq. 6.21. This

equation appears to contain 5 parameters, namely 0, i, j, u and Km which

define the dissolution profile, W/Wo versus time. However, an attempt to

obtain least squares estimates of all these 5 parameters from W/Wo vs. time

data may fail because u and Km can be fused into a single parameter:

K* = e K (10.1)
m

which will be called the specific dissolution rate parameter.

The uniqueness of these 4 parameters, 0, i, j and K;, in defining

the dissolution profile can be seen by substituting Km = em K; into Eq.

10.1 resulting in total cancellation of u, in full agreement with the

theory discussed previously:

m 9
. 3n0 2 2

% = Z (:1) ("1‘31” (m n) F(j—m)-A (jug-go (10.2)

0 n=0 F(j-30)-F(—1-30)

—3io

0
where A = F(-i—§fi—) for t < i; e m (10.3)

m

3:0 -3i0

_ EL. * _§2§ l_ m > > i. m
and A F(3O ln(Kmt) m ) for K* e t K* e (10.4)

m m
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and

:11— = 0 for t_>_ e (10.5)

0 s
a
i
l
H

The continuous flow, recording apparatus used provides dissolution

rate data. The fraction undissolved, W/wo, versus time can be obtained by

integrating. The parameters 0, i, j and K; can then be estimated by

nonlinear least squares regression analysis using Eq. 10.2. However the

integrated data will contain integration errors. The integration also tends

to "smooth" the original data so estimates of the variability of the parameters

will be less reliable than if the original rate data were used. It is

therefore useful to derive an expression for the release rate in order to

estimate the 4 parameters directly from the original (rate) data.

By applying Eq. 5.33 of Chapter 5 the following equation is

 

obtained:

R 3
_ m —l

J2[xm-K t] x N(1n x,u,0)dx
R m

w _ 1
W. _ D (10.6)

o o 2

J. x N(ln X,u,0)dx

d

o

where do = eu—lc
(10.7)

+.

D _ e113“ (10.8)

o

2 L“.

m 3

R1 _ (maxLKmt, 00]) (10.9)

2 E

R = (max[K t, 0m]) 3 (10.10)
2 m 0

An expression for the dissolution rate of drug, Q = -dW/dt

can now‘be found by differentiating Eq. 10.6 with respect to time (using

Leibnitz's rule). For abbreviation, let B denote the (constant) denominator

of Eq. 10.6; differentiation then gives:
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R2 2

% Q = meJ (xm—Kt) (m'l)x'lN(1n x,u,0)dx (10.11)

0

R1

% m -l dR

- (R2 —Kmt) R2 N(1n R2, 11,0)d—t-

3 —1 dR

+

—- m
m.

___
(Rl Kmt) Rl N(1n Rl,u,0)dt

1

Before critical time R = d , R = D so dR /dt = dR /dt = O,

1 o 2 o l 2

and the last two terms of the right—hand side of Eq. 10.11 vanish. After

m

(Kmt)§ (according to 10.9),
the critical time, dRz/dt is still zero but Rl

thus the last term also vanishes because then:

E

3 B
I
L
»
)

2

m

R1 - K t = ((K t) ) ‘ K t = 0

m m m

Equation 10.11 can therefore be simplified to:

 

- -l

R (xm—Kmt)(m l) x N(1n x,u,0)dx

Q = mK W 1
(10.12)

m o

D

o

2
J x N(1n x,u,O)dx

do

3

m (m—l) —l . .

The term (x -Kmt) x under the integral Sign can be expanded to:

2 —1

x — 2K3t + (K3t) x (for m=3)

(10.13)

xa — K2t x_1 (for m=2)

and the formula given previously (5.34) can be applied to express the

integrals in 10.11 in terms of the function F. This leads to the following

 

1. The critical time is the time when the first particles begin to

disappear in the dissolution process, i.e.

~3-(u—io)
m

t = e
1.

K
m
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expression for Q that can be evaluated more readily and exactly than 10.12:

 

 

(m—l) Tz-u 3nd Tl-u 3n0

Q = m meo E: (m—l)(_Kmt)(m—n—1) F( O - m )-F( O - m ) X

n=o F(j-30)-F(-i-30)

:1 3 2
em(n--m) (114-2—m- (n+m)0 ) (10. 14)

where T1 and T2 are defined:

m .
T1 — maxLE ln(Kt), u-iU] (10.15)

T2 = max[%-1n(Kt), p+jo] (10.16)

This expression for the dissolution rate Q contains 5 parameters

(O,i,j,u and Km). However, as before only 4 parameters (O,i,j and K5) are

needed to define uniquely the dissolution rate profile:

 

(m—l) 3nO

Q = m K*W E m'l) (-K*t) (mm—l) F” m )—A x (10.17)
n=o n F(j—3o)-F(—i-30)

9 2 '
3 [(3) -1] 02
e

This equation is the differential form of Eq. 10.2. The quantity A is

defined as previously (10.3 and 10.4) and

310
1

Q = 0 for t :_E* e m
m .

The above expression is of considerable value since it allows the

effective initial particle size distribution parameters O,i and j to be

determined together with the specific dissolution rate parameter, Kg, by

nonlinear regression analysis of the dissolution rate profile (dW/dt versus

time).

It is also of interest to investigate how well the dissolution

behaviour can be described if the particle size distribution is considered
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ideal, i.e. if i=j-—*>°.

Noting that F(°°) = l and F(-°°) = 0, Eq. 10.17 becomes, for an

ideal distribution:

 

(m-l)
:m-l (m—n—l) m__ 3nO

Q = m meo E ( n )(-KI’:1t) [l—F(30 ln(KI’;t) m ):| X

n=o ‘

9 n 2 2ER“? -1]o’ (10.18)

If the distribution is considered ideal at the lower end (i=°°) but truncated

at the higher end, the expression becomes:

 

(m-l)
““1 - £39 _ a __3n_0

Q = m K*W Z ( )(_K*t) (m-n—l) F(j- m ) N30 ln(K;1t) m ) X

m 0 11:0 n m
F(j-30)

%[(%) 2-1.102
(10.19)

e

and if it is considered truncated at the lower end but not at the higher end

(j=w)=

(In-l) m—l (m—n—l) %[(%)2—1]02
Q = m ng E )(-K*mt) l—A e (10 20)

° n=o n l—F(-i—30) '

Monodis erse owder

 

It is of interest to look at the limiting case where the particle

size distribution is infinitely narrow, i.e. 0:0, since this case allows

a better understanding of the specific dissolution rate parameter, K;. It

also provides a method of obtaining a suitable initial estimate of this

parameter to use in nonlinear curve fitting.

When O=i=j=o, Eq. 10.17 becomes:
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(m-l)
———-— m—l (m- —1)

Q = mxg‘wo 2 ( n)(—K;1t) “ (10.21)

:0

which can be written more simply as:

(m-l)

9K = mK*W (l—K*t) (10.22)

m 0 mQ="dt

which, after integration, can be written:

1

E..m = _ *
(W0) 1 Kmt

(10.23)

As expected, since there is no size distribution effect this equation

predicts that the powder will dissolve strictly according to the cube root

or square root model.

When the powder is monodisperse u = ln a0 and Eq. 10.1 becomes:

-3 -3

51“ a. 1;;
K* = e K = a K

(10.24)

m m 0 m

1

fi'

For spherical particles Km = (epn) km where km is the rate parameter in

the single particle dissolution model:

1

wm = w -—kt
(10.25)

0 m

B
I
H

thus 10.24 becomes:

-3 l —l

* = m. N m} = m'
1 .

Km ao (6/0 ) km wo km
( 0 26)

1

When km = wom K;, from this expression is inserted in 10.25 the single

particle dissolution model can be written:

B
l
w

w

0—‘
w

o

) = 1 _ Kat (10.27)

A comparison of 10.27 and 10.23 shows that for a monodisperse powder the

specific dissolution rate parameter, K;, is common to both multiparticulate
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(10.23) and single particle dissolution (10.27). For both m=2 and 3 it has

the dimension of time—l.

Equation 10.22 can be written:

1 l ml

9““ = (mW K*)m‘1 - (mW )m'1 (K*)’“'1 t (10.28)
0 m 0 m

This equation can be used to obtain an initial estimate of K; from the linear

regression of Qfi:Ion't, using dissolution rate data. The intercept value,

(mWoK;)%:I, divided by (mWo)%:I gives K;%:I . (Fig. 10.1)

For a monodisperse powder 10.28 predicts a linear relationship

between /6 and t when the single particles dissolve according to the cube

root model (m=3) and a linear relationship between Q and t when they dissolve

according to the square root model (m=2).

Significant deviations from linearity were observed when

dissolution rate data for micronized glibenclamide were plotted in either

of these ways (Figs. lO.l—lO.5). Such deviations can arise if the powder

is not monodisperse or if the single particles do not dissolve according

to the single particle model given by 10.25.

Under an electron microscope the micronized glibenclamide used

appears to be quite polydisperse. The observed deviation from linearity

in the rate plots can thus be explained as a particle size distribution

effect, assuming 10.25 to be valid. However, the rate data can also be

explained by other single particle dissolution models in combination with

a size distribution effect. Conclusions about the validity of a single

particle model can only be made when the size distribution effect can be

taken into account.

Chapter 7 dealing with the dissolution of 60/85, mesh fraction

tolbutamide in relation to its particle size distribution indicated that
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Figure 10.1

Illustration of graphical method for obtaining an initial

estimate of the specific dissolution rate parameter, K; , from rate data

from the dissolution of 5 mg micronized glibenclamide. Equation 10.28

predicts for a monodisperse powder in which the single particles dissolve

according to the cube root law a linear relationship between V6 and t.

The deviation from linearity in the graph is caused by the size distribution

effect.
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the dissolution of the single particles accorded well with the cube root

model and almost as well with the square root model. The distribution effect

could be evaluated for tolbutamide because of the regular form of its

particles. This was not possible for the much smaller micronized

glibenclamide particles, which had very irregular shapes.

The effective particle size distribution

The multiparticulate dissolution equations presented assume

spherical particles. Such particles are usually not encountered in

pharamaceutical systems. However, the dissolution of a non—spherical

particle can in most cases be well approximated by the dissolution of a

hypothetical spherical particle. This is particularly true under conditions

of isotropic dissolution.

In Chapter 4 it was shown that an equivalent spherical diameter

can be calculated from the geometry of simple crystal forms. In this way

it is possible to obtain an effective particle size distribution, i.e. the

shape of the distribution of hypothetical spherical particles which

approximate the dissolution behaviour of real particles. For tolbutamide

it was found that the effective distribution was approximately log—normal.

Because of the irregular particle shapes it was not possible to make a

priori conclusions about the effective particle size distribution for

glibenclamide. In these investigations the distribution is assumed to

be log-normal, consistent with the results in Chapter 7 and the fact that

powders are often found to have a log-normal particle size distribution

(122,166). The distribution in Fig.5.l therefbre illustrates a log-normal

approximation to the effective particle size distribution. The initial

particle diameters are the diameters of the hypothetical spherical particles
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that approximate the dissolution of the real nonspherical particles.

If the lower and upper truncation parameters, i or j, are finite

the log—distribution is said to be truncated; otherwise it is ideal.

Regression parameters
 

In the discussion of size distribution effects in multiparticulate

dissolution in Chapter 6 it was indicated that the intrinsic dissolution

profile does not depend on the actual size of the particles but on the

shape of their distribution. For the same reason it is not possible to

determine by regression analysis the scale parameter, u, as might be

erroneously expected from the appearance of 6.21. If, in fact, this

equation is used to obtain least squares estimates of u and Km, these

would not be unique values. Any other of the infinite combinations of

the two parameters that give the same value of K; (10.1) will according

to 10.2 result in the same fit (for the same values of O, i and j). The

regression analysis can thus only provide estimates of the dimensionless

distribution parameters 0, i and j, which define the shape of the initial

distribution, and K;. The scale or position of the distribution, given

by u, is hidden in the specific dissolution rate parameter, K*m.

Curvefitting

Equation 10.17 was fitted by least squares to dissolution rate

data from dissolution of 5 and 10 mg micronized glibenclamide using FUNFIT.

The kinetic models given by 10.17—10.19 are defined in schemes 10.1—10.3
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respectively.2

The estimates obtained for the truncation parameters, i and j

(Table 10.1, Eq. 10.17), were all larger than 2 and in most cases exceeded

4, indicating that the effective initial particle size distribution was

close to ideal. It was shown in Chapter 5 that the effect on the dissolution

profile of the lower truncation parameter, i, is negligible. Simulation

studies also show that the influence of an increase in the upper truncation

parameter, j, becomes insignificant when j is larger than 2. It is

therefore expected from the values of i and j obtained using 10.17 that

the simpler model, 10.18, which assumes an ideal distribution (i=j=W)

should fit the same data nearly as well. The values in table 10.1

and the curves fitted in Figs. 10.2—10.5 confirm this expectation. There

does not seem to be any significant difference in either the K;' the O

or the r—values for the two models. The residual plots in Figs. 10.2, 10.3

and Figs. 10.4, 10.5 also seem to be very similar. Equation 10.19 (upper

truncation) and 10.20 (lower truncation) also gave similar results (and

therefore, these have not been included).

Choice of the mathematical model

In agreement with the general principles of mathematical modelling,

Eq. 10.17, should be considered as the model that best describes the

dissolution of the micronized glibenclamide. This is because it is the

 

2. The user of FUNFIT does not need to specify the binomial coefficients

or the cumulative standard normal distribution function, F, since these

are present in FUNFIT as function routines named NBC and SDF

respectively. The "model parameter", m, can be set at 3 or 2,

depending on whether a model based on the cube— or square root model

is to be fitted. The use of m is of great convenience since a

fitting to both models can quickly be done with a single input

of dissolution data.



TABLE 10.1 Least squares estimates of rate- and distribution

analysis of data from the dissolution of micronize

for multiparticulate dissolution kinetics.(3}

parameters obtained from nonlinear regression

d glibenclamide, considering various models

 

 

 

 

womq) SQUARE ROOT MODEL (m=2) cum: ROOT MODEL (m=3)

(b) ( ) a bEq.10.18 Eq.10.l9 C 36100.17” 2.1.10.13‘ ) 542.1049 M Eq.]0.l7 (d)
Scheme 10.2 Scheme 10.3 Scheme 10,1 Scheme 10.2 Scheme 10-3 Scheme lOJ

K;(min-1) 0.02858 (6.39) 0.02858 (5.12) 0.02359 (6.51) 0.02367 (4.55) 0.02367 (4.44) 0.02449 (3.96)

a 0.4759 (2.93) 0.4760 (2.70) 0.4760 (3.23) 0.6134 (2.47) 0.6184 (2.11) 0.6315 (1.71)

5 i °° °° 5.136 °° a 2.364
j m 5.299 5.655 °° 9.807 4.172

r‘“ 0.9935 0.9935 0.9935 0.9952 0.9952 0.9954

3 . -1
Kmhnin )0.02633 (7.13) 0.02633(10.6) 0.02633 (9.35) 0.02147 (9.45) 0.02147 (4.74) 0.02176 (4.03)

a 0.4955 (3.20) 0.4956 (7.24) 0.4955 (5.14) 0.6374 (3.29) 0.6374 (2.03) 0.6446 (1.99)

10 1 .. .. 9.912 .. .. 4.577

3‘ °° 5.299 6.732 a» 7.060 4.200

I“) 0.9938 0.9939 0.9938 0.9957 0.9957 0.9959

 

-
6
V
Z

(a) The values in brackets are relative standard deviations (percent).

(b) The initial size distribution is considered ideal (i-j-°,Fig.1).

(c) The initial size distribution is truncated at the upper end (i-w, j<~,Fig.l).

(d) The initial size distribution is truncated at both ends (Fig.1).

(e) Correlation coefficient.
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Figure 10.2

Least squares fit of the multiparticulate dissolution model

(Eq. 10.18 m=3) to rate data from the dissolution of 5 mg micronized

glibenclamide. The model assumes that the effective particle size

distribution can be approximated by an ideal log-normal distribution

and that the single particles dissolve according to the cube root model.

The inset graph shows a plot of the residuals versus time.
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Figure 10.3

Least squares fit of the multiparticulate dissolution model

(Eq. 10.17, m=3) to rate data from the dissolution of 5 mg micronized

glibenclamide. The model assumes that the effective particle size

distribution can be approximated by a log-normal distribution truncated

at both ends and that the single particles dissolve according to the cube

root model. The inset graph shows a plot of the residuals versus time.
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Figure 10.4

Least squares fit of the multiparticulate dissolution model

(Eq. 10.18, m=3) to rate data from the dissolution of 10 mg micronized

glibenclamide. The model assumes that the effective particle distribution

can be approximated by an ideal log—normal distribution and that the

single particles dissolve according to the cube root model. The inset

graph shows a plot of the residuals versus time.
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Figure 10.5

Least squares fit of the multiparticulate dissolution model

(Eq. 10.17, m=3) to rate data from the dissolution of 10 mg micronized

glibenclamide. The model assumes that the effective particle distribution

can be approximated by a log-normal distribution truncated at both ends

and that the single particles dissolve according to the cube root model. The inset graph shows a plot of the residuals versus time.
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Scheme 10.1

Computer code defining the multiparticulate dissolution models

given by 10.17 (m=2,3). The models assume that the initial effective

particle size distribution is log—normal and truncated at both ends and

that the single particles dissolve according to the "square root" or "cube

root" model. The code used together with the interactive time sharing

program FUNFIT enables 10.17 to be fitted by least squares to dissolution

rate data and estimates of K5, 0, i and j to be obtained.
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SUBROUTINE HODEL(0,T,P.IPRINT)

DIMENSION P(6)

P(I) = SIGMA.KSTAR,I,J,N0,M Q = DISSOLUTION RATE

1 2 3 4 5 6 T = TIHE

Q=fi.

IF(P(2).LE.0.)RETURN

H=IFIX(P(6)+.1)

IF(P(1).E0.0.)GO T0 4

AM=M

B=3.'P(1)/AM

IF(T.GE.EXP(B*P(4))/P(2))RETURN

C=EXP(-B‘P(3))/P(2)

D0 1 L=l,M

N=L-1

Afl=fl

D=B'AN

IF(T.LT.C)A=SDF(-P(3)-D)

IF(T.GE.C)A=SDF(ALOG(P(2)’T)/B-D)

0=0+FLOAT(NBC(M-1,N))’((-P(2)'T)*'(M-N-1))‘(SDF(P(4)-D)-A)‘

EXP(4.5’(AN’AN/AM/AM-1.)'P(l)'P(l))

Q=P(6)'P(2)‘P(5)'Q/(SDF(P(4)-3.'P(l))-SDF(-P(3)-3.‘P(l)))

IF(IPRINT.EQ.0)RETURN

WRITE(6,3)P

FORMAT(’ SIGMA.KSTAR.I,J,W0,M='/6E12.Q)

RETURN

IF(T.GE.1./P(2))RETURN

0=P(6)°P(2)'P(5)'((l.-P(2)'T)"(H-1))

GO TO 2

END
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SchemelO.2

Computer code defining the multiparticulate dissolution models

given by 10.18 (m=2,3). The models assume that the initial effective

particle size distribution is ideal log-normal and that the single particles

dissolve according to the "square root" or "cube root“ model. This code

used together with the interactive time sharing program FUNFIT enables

10.18 to be fitted by least squares to dissolution rate data and estimates

of K; and 0 to be obtained.



  

-26l-

SUBROUTINE HODEL(Q,T.P,IPRINT)

DIMENSION P(4)

P(1) = SIGMA,KSTAR,W@,H 0
l 2 3 4 T

5!} EEOLUTIOI‘J RATE

Q=@.

IF(P(2).LE.@.) RETURN

H=IFIX(P(H)+.1)

IF(P(l).E0.fl.)GO T0 4

AM=M

A=fl.

D0 1 L=1,M

N=L-l

AH=N

IF(T.EQ.0.)GO T0 1

A=AM/(3.*P(l))

A=SDF(A*ALOG(P(2)*T)-AN/A)

Q=Q+FLOAT(NBC(M-1,N))'((—P(2)*T)**(M-N-l))*(l.—A)*

+EXP(Q.5*(AN*AN/AN/AM-l.)*P(l)*P(l))

Q=P(4)‘P(2)*P(3)*Q

IF(IPRINT.EQ.%)RETURN

WRITE(6,3)P

FORHAT(' SIGMA,KSTAR,WE,M=’4E11.4)

RETUR?

IF(T.GE.l./P(2))RETURN

Q=P(4)*P(2)*P(3)*((l.-P(2)*T)**(M-l))

GO TO 2

END
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Scheme 10.3

Computer code defining the multiparticulate dissolution models

given by 10.19 (m=2,3). The models assume that the initial effective

particle size distribution is log—normal and truncated at the upper end

(i=w,j<W) and that the single particles dissolve according to the "square

root" or "cube root" model. The code used together with the interactive

time sharing program FUNFIT enables 10.19 to be fitted by least squares

to dissolution rate data and estimates of K;, G and j to be obtained.
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SUBROUTINE HODEL(Q,T,P,IPRINT)

DIMENSION P(5)

P(1) = SIGMA,KSTAR,J.N0,M OLUTION RATE
1 2 3 4 5

Q=Z.

IF(P(2).LE.@.)RETURN

M=IFIX(P(5)+.1)

IF(P(l).E0.@.)GO TO 4

AM=H

B=3.*P(l)/AM

IF(T.GE.EXP(B'P(3))/P(2))RETURN

A=0.

D0 1 L=1,M

N=L-l

AN=N

IF(T.EQ.Z.)GO T0 1 ‘

A=SDF(ALOG(P(2)*T)/B-B*AN)

Q=Q+FLOAT(NBC(M-1,N))‘((-P(2)*T)*'(M-N-l))‘(SDF(P(3)-B*AN)-A)*

+EXP(U.5’(AN*AN/AM/AM-l.)'P(l)*P(l))

0=P(5)'P(2)*P(4)*Q/SDF(P53)-3.‘P(l))

IF(IPRINT.EQ.E)RETURN

WRITE(6,3)P

FORMAT(’ SIGMA,KSTAR,J,H0,M= ’5Elfl.4)

RETURN

IF(T.GE.l./P(2))RETURN

0=P(5)*P(2)*P(4)'((l.-P(2)*T)'*(M-l))

GO TO 2

END
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simplest of the models, containing only the two parameters K; and O, and

fits the dissolution data just as well as the other models that contain

more parameters (i and j). Furthermore, it is clear (Table 10.1) that

the multiparticulate dissolution model based on the cube root model (mé3)

agrees best with the dissolution data. This is true for either a truncated

or ideal distribution using either 5 or 10 mg of powder (Table 10.1). Of

the 8 multiparticulate models investigated it can therefore be concluded

that the following equation:

2 . _

5W 2 ‘2 (2-n) l %—-Ln2—9]
at— = --31<*3 wo> (n) (—K’ét) [l-F(E ln(K§t)-n0)] e (10.29)

n=o

which can be written in integrated form as:

2

3 9- [re-9]———- 3

g = Z <) (-th)(3_n)[l-F(% 1n(K;t)—no)]e2 (10.30)
n

=0

best describes the dissolution kinetics of the micronized glibenclamide.

These two equations uniquely characterise the dissolution behaviour in

terms of the rate parameter, K3, and the distribution parameter, 0.

It appears from the residual plots in Figs. 10.2-10.5 that there

is a serial correlation between the residuals. The Durbin—Watson

statistic indicates (a < 0.05) that this correlation is significant (142).

Systematic deviation can be caused by non-random experimental errors.

It can also be caused by a significant departure from the assumed single

particle dissolution model 10.25 or by a deviation from log—normality.

The residual values are however so small in relation to the accuracy of

the experimental technique that the correlation seems of little importance.

The specific dissolution rate parameter, K*, should theoretically
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be independent of the initial amount used, wo. This is only found to be

approximately true. Values of the rate parameter, KR, obtained for WO=10

mg are consistently lower than for WO=5 mg (Table 10.1). The dissolution

models consider dissolution under complete sink conditions i.e. conditions

where there is no interaction between the dissolving particles. Using 10

mg of the very fine powder it has not been possible to load the dissolution

cell with a single "layer" of particles in such a way that dissolved drug

from any particle does not pass over other particles. The slightly larger

K; values observed when less powder is used in the cell agree with an

expected smaller particle interaction.

Characterisation and quality control of drug powders

Previous approaches to characterizing the dissolution properties

of drug powders have been based on equations describing monodisperse

systems. In many cases, the so—called "dissolution rate constant" evaluated

using such equations will not be sufficient to characterize the dissolution

behaviour because the size distribution effect is not accounted for. This

is particularly true for pharmaceutical systems which frequently involve

highly polydisperse fine powders.

The use of nonlinear regression analysis to evaluate the specific

dissolution rate parameter, K;, and the distribution parameter, 0, represents

a more exact and meaningful approach.

The properties of K; make its interpretation particularly

meaningful. These properties are best understood in relation to the

concepts of time scaling and the intrinsic dissolution profile from which

the following conclusion can be made:3

 

3. For example if it takes x min for a powder to dissolve, say 30% for a

given K; value, then it will take the powder x/2 minutes to dissolve

to the same extent if the value of K; is doubled (for illustration

see Fig. 6.1 ).
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If K; is changed by a factor a then the time for complete dissolution, or

the time for any particular fraction to dissolve, is changed by a factor

of l/a. This simple property makes K; a particularly useful parameter.

The distribution parameter, 0, which appropriately should be

called the dispersion parameter, is a single measure of how polydisperse

a powder is, or more exactly, how much the dissolution behaviour deviates

from that expected if the powder were completely monodisperse. A value

close to zero characterizes a nearly monodisperse powder, while higher

values indicate increasing “degrees of dispersion". Probably the most

important property of O is that it is a measure of how long it takes the

last fraction of a polydisperse powder to dissolve. For example, it is

seen from 10.5 that the time for complete dissolution increases exponentially

with O. For this reason it is most likely that very slightly soluble

drugs, which exhibit dissolution rate limited absorption, will show a

significant correlation between 0 and systemic availability. Research in

this area should be of considerable pharmaceutical interest.

Although the multiparticulate dissolution model defining K; and

0 may seem complex, the interpretation of these parameters is simple and

they can be readily obtained. The experimental technique used requires

a high precision, flow-through dissolution apparatus which is easy to

standardize in combination with a nonlinear regression program.

The method could well become established as a routine procedure

in quality control and further investigation could eventually result in

improved standards for drug dissolution.
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C H A P T E R l l

A METHOD OF OBTAINING DRUG-MACROMOLECULE BINDING

PARAMETERS DIRECTLY FROM DYNAMIC DIALYSIS DATA

The dynamic dialysis method for characterizing interactions of

small molecules with macromolecules is well established (167-181). It has

a number of advantages compared to equilibrium dialysis and ultrafiltration.

A complete binding profile can be obtained rapidly in one experiment

and the method utilizes only a small sample of macromolecule. As the

method is based on a dynamic process, an equilibrium state does not need

to be defined and compared to ultrafiltration there is no change in

concentration of macromolecule.

Meyer and Guttman (159) designed a dynamic dialysis method to

characterize drug-protein interactions. However this method has a number

of limitations. The experimental data must be differentiated to evaluate

binding parameters. It is recognised in numerical analysis that

differentiation of discrete data may introduce substantial errors

particularly if the number of data points is limited. An empirical

equation was used to fit dialysis data to obtain instantaneous rates.

A recent publication (179) has shown that the various empirical equations

used can yield substantially different binding parameters.

The technique of Meyer and Guttman (169) requires that_the rate

constant for dialysis be determined in a separate experiment in the absence

of macromolecules. It is assumed that the same rate constant will apply

in the presence of macromolecules. This may be an unreasonable assumption

as the rate constant depends on several factors such as the physico—chemical
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183

state of the dialysis membrane (182,/ ) which may change between runs.

A number of compounds are significantly bound to the membrane

material (171,177)- Using previous methods it has not been possible to

determine the dialysis rate constant and account for the membrane binding

in the determination of macromolecule binding parameters of such compounds.

In this chapter a new approach is presented which rigorously‘

describes the total kinetics of the system in a form that enables binding

parameters to be estimated accurately, directly from dialysis data. It

eliminates the need to determine an accurate dialysis rate constant in a

separate experiment. The method does not rely on differentiation of

experimental data and should be applicable to compounds that are membrane

bound.

THEORY

Consider an interaction between small molecules and macromolecules

which can be described by the general binding expression:

U
-

n.K.
i in

1+K.D
l f

(11.1)

C
I ll

 

i=1

where 6 is the nnmber of moles of small molecules bound per mole macro

molecule, ni is the number of binding sites in the i-th class of sites,

Ki is the association constant for the interaction and Df is the molar

concentration of unbound small molecules. If a model with two classes

(j=2) is assumed then the total concentration of drug, Dt' in the protein

compartment is given by (171):

anl n2K2

D
(11.2)+ ______—— _——

t Df P'ch 1+KD + 1+1< D
l f 2 f

If sink conditions prevail the small molecules will leave the
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protein compartment by a first order process:

where Ke is the dialysis rate constant.

It is convenient to introduce a variable, 5, defined as:

 
 

 

t
= - -——— 11.4

5 dt ( )

so that Df = s/Ke and Eq. 11.6 can be written:

‘n K n K
s 1 l 2 2

= —-+
Dt K Pts [K +K s + K +K 5:] (11.5)

e e 1 e 2

Taking the differential of this equation, noting th = -sdt, it becomes

' n K n K

(it = - —L+PK 11 + 22 \ds

K s t e 2 2/
e s(K +K s) s(K +K S)

e l e 2 (11.6)

which integrated from t=0 to t corresponding to s 50 to 5 yields:

1 l 1 s
t = -—-ln s + P n K ——————— + —- 1n (—~—-———)

+

Ke t l l Ke K15 Ke Ke+Kls ] (11.7)

1 1 s so
____——+._— ——

+ PthKZ K +K s K ln<K +K s)
e 2 e e 2 s

If the following function is defined:

1 1 1 x

fix) — K 1“ x + Ptanl K +K x + K in (K +K x) (11'8)
e e l e e 1

1 1 X
___+___ _____

+Ptnsz K+Kx K 1“ (K+Kx)
e 2 e e 2

then Eq. 11.7 can be written more simply as:

t = f(so) - f(s) (11.9)
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The exact functional relationship describing the change of Dt with t is

now described by Eq's 11.5 and 11.9 in parametric form where the variable

5 is the parameter. Each value of 5 defines by these equations a unique

pair of Dt and t values.

The quantity s0 is the initial (t=0) value of -th/dt (Eq. 11.4),

which would normally be determined by extrapolation. To avoid the errors

and problems of such an extrapolation it is convenient to define t=0

at the first sampling time. In this way 50 is —th/dt at first sampling.

In order to determine the binding parameters by nonlinear regression

it is necessary to define the exact functional relationship between Dt and

t, for any values of n1, Kl, n2, K2, so and Ke which are changing during

the nonlinear fitting procedure. This can be done by determining the

particular values of s which satisfy Eq. 11.9. These values are then used

to determine the corresponding values of Dt by Eq. 11.5.

However Eq. 11.9 cannot be expressed explicitly in terms of s so

some iterative procedure is needed to solve for s. The Newton—Raphson

algorithm is particularly suitable because it is computationally compact

and exhibits quadratic convergence.

If ¢(s) = t - f(so) + f(s) (11.10)

then Eq. 11.9 can be solved by the Newton-Raphson method using the following

iteration

 

d>(si)

S = S

1+1 i _ ¢'(si) (ll'll)

where the functions ¢ and ¢' are defined by:

 

1. The function ¢ is not defined for sso so it is necessary during the

iteration procedure to prevent s from taking a nonpositive value.

This is conveniently done by defining si+1 = si/2 if si+l S 0 Since

¢ is a monotone increasing function of s because ¢' = f' > O (s>0).
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PK nK nK

¢'(s) =f'(s) =Kls+ :9 1 1 2+ —-2—2—] (11.12)
e (Ke+Kls) (Ke+K2s)

K(s-s) (K+Ks)
1 s 1 o l s e l o

¢(s)=t+—ln—+PnK[.—————————+_ln_
:l

+
Ke 50 t 1 l (Ke+Kls)(Ke Klso) Ke so (Ke+Kls)

(11.13)

+ PthK2 [ K2(so~s) + l—-1n §__(Ke+K2so)]

(Ke+KZS)(Ke+KZSo) Ke so (Ke+K25)

In order for the algorithm (11.11) to converge within a given number of

iterations it is necessary that the initial estimates of s are not too

far from the s values for which 11.9 is satisfied. These initial estimates

can, according to 11.4, be obtained as the (positive) values of ~th/dt

estimated from the observed values of Dt vs. t. Any simple technique

for slope estimation can be used since the actual accuracy of the estimates

is of no importance for the final result.

The above derivations for 2 binding classes can easily be extended

to any number (j) of classes for which then:

 

s 5—] niKi
Dt = K—+ PtS- m (11.14)

e , e 1
i=1

5
j o

1 1 s

t — 1n 5 + Pt E ani[K +K.s K 1“ (K +K.s)]
e e l .e 1

1:1 S

(11.15)

and the iteration, 11.11, can still be used with

j
P K n.K.

(b' (S) = l + t e l .1. (11.16)

K s s 2... 2
e . (K +K.s)

i=1 e i

and
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¢(s) = t + :— ln —
(11.17)

K.(s —s) s(K +K.s )

+ P n K ———-&;—£L————-——— + i—-ln -——£i-:LJE-

t i i (K +K.s) (K +K.s ) K s (K +K.s)

e 1 e l 0 e 0 e 1

'=1

Binding of Small Molecules by the Dialysis Membrane

The treatment outlined above is based on an assumption that

binding occurs only to protein. However some drugs, particularly those

strongly protein bound can become significantly bound to the dialysis

membrane. This means that Ke cannot be estimated from plots of ln Dt vs.

t in the absence of protein using previous techniques because of curvature

(Fig. 11.1).

A special technique is therefore required to estimate the dialysis

rate constant and the membrane binding must be taken into account in the

treatment of the dialysis behaviour of the small molecule—macromolecule

system.

Determination of K and membrane binding parameters in absence of

macromolecule.

The binding of small molecules to the membrane can often be

considered as a Langmuir type absorption phenomenon (171), which is

mathematically analogous to binding to a single class of sites, and can

be described by the equation:

n*K*D

f
* = ____——

v 1+K*Df
(11.18)

where 5* is the amount of small molecules bound per amount of available

membrane material and K* is the association constant for membrane binding.
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Figure 11.1

Dynamic dialysis of glibenclamide in 0.067M phosphate buffer

in the absence of macromolecules at pH 7.4 and 37°. The tangents

illustrate a difference in the slope at t=0 and t=3 hours of 15%.
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This leads to the following relationship between Dt and t similar to

11.14 and 11.15 (j=l):

s k's
= ——-+ —-————-

Dt K K +K*s (11'19)
e e

So
1 K' K' s

= ——- -—————— + -—- ———————t K ln s + K +K*s K ln K +K*s (11.20)

e e e e s

Mn*K* '
: ' = ---— . l

where K WV (11 2 )

and M is the amount of membrane material available for binding, W is the

molecular weight of the small molecule and V is the volume of the protein

compartment. Equations 11.19 and 11.20 can then be used to determine Ke

and the membrane binding parameters K* and K' in the absence of protein

usingthe technique described above.

Determination of drug-macromolecule binding parameters in the presence
 

of membrane binding.

Once the parameters Ke, K' and K* have been determined using

theabove approach it is possible to account for membrane binding and

determine parameters for binding to the macromolecule.

Simultaneous binding to the membrane and the macromolecule

leads to the following expressions:

 

i

K's s anl

Dt — K +K*s K + PtS K +K.s (11'22)
e , e 1

i=1

K' K' s
— —— 11.23

t K +K*s K in K +K*s ( )
e e e

j s
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which enables the Dt' t functional relationship to be evaluated using the

iterative procedure discussed.

By comparing Eqs. 11.22 and 11.23 with Eqs. 11.14 and 11.15 it

is seen that in the presence of membrane binding the dialysis behaviour

is mathematically analogous to a system where the small molecule is binding

to two macromolecular species.

DATA TREATMENT AND RESULTS
 

Data for dialysis of chlorpropamide from bovine serum albumin

(BSA) in the presence of 1.6 x 10—5M free warfarin were treated according

2, K2 and the dialysis
totheproposed method. Binding parameters nl, K1, n

rate constant Ke were estimated using the function relating Dt and t

given in Eqs. 11.5 and 11.9 and evaluated using Eqs. 11.11-11.13 and 11.5.

This function was programmed in a subroutine (scheme 11.1) which was

executed with FUNFIT.

The least squares fit of the model using two classes of binding

sites (Fig. 11.2) agreed very well with the experimental data (r = 0.99986).

The binding parameters estimated by the method are summarised in Table 11.1.

The values for the number of binding sites nl and n2 were found to be so

close to 2 and 9 in a preliminary computation that their values were fixed

as integers. Such a model has greater conceptual value and the slight

change in I11 and n2 did not substantially alter the values of the other

parameters.

Also included in Table 11.1 are values for binding parameters

estimated by fitting dialysis data to a fourth order polynomial and then

evaluation using a modification of the method of Hart (184) as described

elsewhere (175). This method will be denoted derivative method I. A
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Scheme 11.1

The subroutine MODEL defines the functional relationship between

Dt and t in a dynamic dialysis process. This function, given in

parametric form by Eqs. 11.5 and 11.9, is calculated according to Eqs.

ll.1l-ll.13 and 11.5. The functions PHI and PHIDER used in MODEL defines

¢(s) and ¢'(s) as given by Eqs. 11.13 and 11.12. The subroutine which is

written specifically for FUNFIT enables least squares estimates of the

binding parameters n1, Kl' n2, K2 (Eq. 11.1) and the dialysis rate constant

Ke (Eq. 11.3) to be determined directly from dynamic dialysis data (Fig. 11.2).

The subroutine specifies s as a second "independent variable", x(2), which

is used as an initial value in the iteration, Eq. 11.11, that in less

than MAX cycles should determine 5 to an accuracy corresponding to an

accuracy of t better than 10_6%. The last two parameters (P(7) = total

macromolecule concentration and P(8) = MAX) of the eight formal parameters

are fixed during the least squares fitting procedure. A value of 50 for

MAX should be sufficient to reach convergence (Eq. 11.11) even for pure

starting values of P(l) to P(6). However if convergence is not reached

IPRINT is made equal to 1, the current values of the parameters are printed

and the control is returned to the main program so that appropriate action

can be taken.



h
h
fi
h
h

-278-

SUBROUTINE NODEL (DT,X.P,IPRINT)

DIMENSION X(2),P(8)

P=Nl.K1,N2,K2,SD,KE,PT,NAX DT = TOTAL CONC. OF SMALL NOLECULES

l 2 3 4 5 6 7 8 X(l) ' TINE

X(2) SLOPE ESTIMATEII
I

S=X(2)

NAX=IFIX(P(8))

DO 1 I=l,NAX

SSAVE=S

PHIVAL=PHI(S,P,X(1))

S=S-PHIVAL/PHIDER(S,P)

IF(S.LE.D.)S=SSAVE/2.

TINE=X(l)

IF(TIME.EO.D.)TIME=1.

IF(ABS(PHIVAL)/TIME.LT.lE-8) GO TO 2

l CONTINUE

IPRINT=1

2 DT=S/P(6) + P(7)’S*(P(l)*P(2)/(P(6)+P(2)’S)+

+ P(3)*P(N)/(P(6)+P(N)'S))

IF(IPRINT.EO.D)RETURN

NRITE(6,3)P

3 FORMAT(' N1,K1,N2,K2,SD,KE.PT,MAX =',(NE11.S))

RETURN

END

FUNCTION PHIDER(S,P)

DIMENSION P(8)

PHIDER=l./(P(6)’S) + (P(7)'P(6)/S)*(P(l)‘P(2)/((P(6)+P(2)‘S)*'2)+

+
P(3)‘P(4)/((P(5)+P(4)‘S)*‘2))

RETURN

END

FUNCTION PHI(S,P.T)

DIMENSION P(8)

A=ALOG(S/P(5))/P(6)

B=P(5)-S

C=P(6)+P(2)‘P(S)

D=P(6)+P(2)*S

E=P(6)+P(N)*P(5)

F=P(6)+P(N)*S

PHI=T+A+PI7)*P(l)*P(2)*(P(2)*B/(C’D)+A+ALOG(C/D)/P(6))+

+ P(7)*P(3)'P(N)*(P(4)*B/(E‘F)+A+ALOG(E/F)/P(6))

RETURN

END
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Figure 11.2

Dynamic dialysis data for the binding of chlorpropamide to 1%

BSA at pH 7.4 and 370 in the presence of 1.6 x 10-5M free warfarin. The

curve fitted by least squares is the function relating Dt and t (Eqs. 11.5

and 11.9) which provides estimates of n1, Kl, n2, K2 and Ke'
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Table 11.1 Chlorpropamide—BSA binding parameters obtained from dynamic

dialysis data by the new method and two derivative methods.

 

Derivative method

 

 

New Method 1(a) II (b)

n1 2 1.94 5.28

Kl (M'l) 2.64x104 1.09x104 2.92x103

n2 9 9.14 7.77

-1 _

K2 (M ) 1.94x102 1.86x102 3.6lx10 5

-l
Ke (Hr ) 0.714 0.711 0.711

55“) (mM)2 2.60.10_3 3.5.0.10'3 5.50.10-3

(a) A fourth order least squares polynomial was used to estimate -th/dt.

The binding parameters were calculated by the method of Hart (184)

as used by Brown & Crooks (175).

(b) The binding parameters were estimated by nonlinear regression analysis

of Q on Df, obtained by the method of Meyer & Guttman (169) from a

3—exponential fitting of Dt vs. t data.

(c) SS is the sum of squared differences (Figs. 11.3—ll.5)between observed

Dt values and exact theoretical values calculated according to Eqs.

11.5 and 11.9 for the estimated values of n1, Kl, n2, K2 and Ke.
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second derivative method (II) tested was that of Meyer and Guttman (169)

where a 3-exponentia1 expression:

“‘ i
D = 2 A.e (11.24)
t 1

is used to fit dialysis data. By differentiation at various t values a

5 vs. Df profile was constructed and the binding parameters were estimated

by a nonlinear regression technique using Eq. 11.1.

The dialysis rate constant, Ke, used for the derivative methods

of data treatment was that determined in a separate experiment.

There is good agreement between binding parameters determined

using the new method and method I. This is particularly true for n1, n2,

K and Re and although K2 determined by the new method is somewhat greater.
1

However entirely different binding parameters were determined

by method II. The reason probably lies in the choice of the empirical

equation, Eq. 11.24. The selection of this equation has probably been

based on a requirement for "smoothness" of the fitted curve and its first

derivative. Although this requirement may be satisfiedrEq. 11.24 does

not have the same flexibility as a polynomial which could be just as

important. The flexibility of polynomials to approximate arbitrary

functions is explained by the well-known Taylor series theorem.

The difference in flexibility is clearly demonstrated by fitting

a fourth order polynomial and 11.24 to exact dialysis data obtained using

the new method (Table 11.1). The Dt residuals (expressed as % of

calculated values) were for the polynomial fitting:

0.286, -0.217, ~O.519, -0.0609, 0.466, 0.779, 0.381, ;l.49, —l.42, 3.14,

—1.12

and the values for the triexponential fit were:

1.73, 1.91. 1.46, 3.38, -l.19, -2.65, -3.91, -4.55, -2.l9, 3.10, 10.7.
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This shows that the polynomial is considerably more flexible.

The triexponential fitting resulted in significant systematic deviation

in residuals leading to bias in the slope values and Dt values and

therefore a bias in the final results. The residual sum of squares (mM2l

were 5.85.10—4 and 1.04.10.2 for the polynomial and triexponential fitting

respectively.

A further disadvantage of using 11.24 is that multiple solutions

are possible because this equation is nonlinear (in a) and therefore may

result in several sum-of—squares minima. This is not the case with a

polynomial which has a unique least squares solution.

The fitting of 11.24 to the generated, exact Dt' t data was

repeated several times with different initial estimates for Ai and mi but

the same solution was obtained each time suggesting that the above fit is

the best possible using the triexponential equation.

The use of a lease squares polynomial to represent dialysis

data, is on the other hand, expected to be less suitable than the

triexponential when the experimental errors are large or where there are

significant 'gaps' between observation points. This is due to the fact

that the ordinary least squares polynomial fitting completely disregards

derivative values. The derivative values are commonly found to be in

large error at first and last observation points and just before or after

'gaps' in the data. This disadvantage of polynomials can be reduced

considerably by imposing constraints on the derivative values by using least

squares spline polynomials.

Such polynomials will compete favourably with 11.24 on data with

large errors and 'gaps' particularly considering the fact that the problem

of multiple minima, using 11.24, is much larger for large residual problems.
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However, no matter which empirical equation is used the results

obtained will theoretically never be as exact as obtained using the true

equation as in fact done in the proposed method.

To investigate the bias introduced by using method I and II the

exact D t profile was calculated using the parameter values (Table 11.1)
t'

obtained using the two methods. The differences between the observed Dt

values and the calculated values (Figs. 11.4 and 11.5) shows that the

residuals are significantly larger in those methods than in the new method

(Fig. 11.3). The residuals from method I are particularly biased in a

positive direction although their pattern resembles that from the new

method (Fig. 11.3).

On the other hand the residuals from method II (Fig. 11.5) show

an entirely different pattern consistent with the fact that the binding

parameters obtained using method II represent an entirely different solution.

A final check on the bias introduced by method I and II was made

by applying them to exact Dt' t data generated from the parameter values

(Table 11.1) obtained using the new method.

Method I found binding parameters relatively close to the true

values although K1 seems to be somewhat different (Table 11.2). Method II

found however an entirely different solution that is similar to the solution

obtained using the real experimental data.

The value for the dialysis rate constant, Ke, estimated by the

new method agrees very well with the value determined experimentally

(Table 11.1). As stated previously this may not always be true as the

permeability of the membrane may change between experiments.

Chlorpropamide does not appear to be significantly membrane bound.
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Figure 11.3

Differences between observed Dt values and exact theoretical

values calculated according to Eqs. 11.5 and 11.9 for the values of

n1, K , n , K and Ke (Table 11.1) estimated by the proposed method.
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Figure 11.4

Differences between observed Dt values and exact theoretical 
values calculated according to Eqs. 11.5 and 11.9 for the values of

n1, Kl’ n2, K2 and Re (Table 11.1) estimated by the derivative method of

Crooks and Brown. (175)
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Figure 11.5

Differences between observed Dt values and exact theoretical

values calculated according to Eqs. 11.5 and 11.9 for the values of

n1, Kl’ n2, K2 and Ke (Table 11.1) estimated by the derivative method of

Meyer and Guttman.(l69
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Table 11.2 Binding parameters obtained from exact generated dialysis

data using two derivative methods.

 

Estimated values

 

Exact values Method I Method II

n1 2 1.96 5.02

Kl (M_l) 2.64x104 1.21x104 3.04x103

n2 9 8.78 12.5

K2 (M'l) 1.94x102 1.74x102 3.16x1o'5

 

Ke = 0.714 Hr'l, Pt = 1.45 x 10'4M



- 292 -

Fig. 11.1 shows the kinetics of dialysis of glibenclamide in the absence

of BSA. The curvature indicates significant membrane binding. For this

drug it would not be possible to determine Ke and the binding parameters

using previous approaches.

This can however be done by the new method in two ways:

1. The membrane binding parameters, K', K*, the dialysis rate

constant Ke and the drug-macromolecule binding parameters ni,Ki can all be

determined simultaneously and directly from the experimental Dt' t data by

applying Eqs. 11.22 and 11.23.

2. Considering the many parameters involved in 1. it would be more

reliable first to determine Ke'K' and K* in a separate experiment in the

absence of macromolecule and then use the value of Ke as an initial estimate

and K‘, K* fixed as constants in the second experiment when ni and Ki are

determined.
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APPENDIX

Table of Symbols

a diameter or equivalent spherical diameter.

3 mean diameter.

A surface area.

a acute angle of crystal (p. 69).

b0 side length of crystal (t=0).

co solubility of compound in unionised form.

cb solute bulk concentration.

ci interfacial concentration of solute.

c* dimensionless concentration.

COV( ) covariance.

do initial diameter of the smallest particle in a powder.

Do ‘ initial diameter of the largest particle in a powder.

D diffusion coefficient.

Dt total concentration of small molecule.

Df free concentration of small molecule.

V2 Laplacian operator.

ei i-th residual value.

E( ) expected value.

Et(w) mean particle weight of time t.

erfc(x) = l—erf(x) complementary error function.

2 x —u2

erf(x) = -—- I e du error function.

.50

f( ) particle weight density function of time t.

F . shape ratio.

1 x -u2/2 . . . . .

F(x) = 7;:: f e du cumulative normal distribution function.

2n _w

F critical point of F-distribution.

alnlp



- 303 -

w stream function, time function.

g acceleration of gravity.

9( ) single particle dissolution function (p. 97).

g—l( ) inverse single particle dissolution function (p. 97).

Y mean rate of surface renewal (p. 51).

h diffusion layer thickness.

H Hessian matrix.

H+ H30 concentration.

Hii i-th diagonal element of Hessian matrix.

i lower truncation parameter (Fig. 5.1)

j upper truncation parameter (Fig. 5.1)

J interfacial mass flux (p. 66).

JD diffusion flux.

ki effective interfacial transport rate constant (p. 52).

km rate parameter for model m.

Ka dissolution constant of acid.

Kb dissociation constant of base.

Ke dialysis rate constant (Chapter 11).

Ki association constant for i—th class (Chapter 11)

Km Michaelis Menten parameter (Chapter 11), rate parameter for

model m.

Kw ion product of water.

K* specific dissolution rate parameter, association constant

for membrane binding.

1 sidelength of crystal (Fig. 4.4).

10( ) initial particle size distribution.

L( ) likelihood function.



Sc

SD.

1

SS

s()
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model parameter.

initial weight of the smallest particle.

initial weight of the largest particle.

logarithmic mean (Fig. 5.1). viscosity (Chapter 4).

number of sites in i—th class (Chapter 11)

normal distribution function (p. 101).

number of particles at time t.

number of moles of small molecules bound per mol macromalecule.

amount of small molecule bound per amount of available membrane

material.

parameter vector.

operator (defined p. 99).

total concentration of macromolecule

3.1415°"

radius of particle at time t.

dimensionless radius.

density

correlation coefficient between i-th

Reynolds number.

distance to fixed point (Chapter 4)

dispersion product (Chapter 6)

variable defined p. 269.

Schmidt number.

standard deviation of i-th element.

sum of squared residuals.

cumulative distribution of residuals.

(Chapter 11).

and j—th element.

standard deviation of normal distribution (Fig. 5.1.)
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time.

dimensionless time (Chapter 4).

critical value of t—distribution.

vertical velocity of free falling spherical particle.

variance-covariance matrix.

Michaelis Menten parameter.

variance.

weight of single particle.

weight of undissolved powder.

spherical coordinate (Chapter 4).

x!/(y1(x—y)!) binomial coefficient.
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