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Abstract

In this thesis, we illustrate the essential aspects of the adaptive image processing problem

in terms of two applications: the adaptive assignment of the regularization parameters in

image restoration, and the adaptive characterization of edges in feature detection appli-

cations. These two problems are representative of the general adaptive image processing

paradigm in that the three requirements for its successive implementation: namely the

segmentation of an image into its main feature types, the characterization of each of these

features, and the optimization of the image model parameters corresponding to the indi-

vidual features, are present. In view of these requirements, we have adopted the three

main approaches within the class of computational intelligence algorithms, namely neu—

ral network techniques, fuzzy set theory, and evolutionary computation, for solving the

adaptive image processing problem. This is in view of the direct correspondence between

some of the above requirements with the particular capabilities of specific computational

intelligence approaches.

We first applied neural network techniques to the adaptive regularization problem in

image restoration. Instead of the usual approach of selecting the regularization parameter

values by trial and error, we adopt a learning approach by treating the parameters in

various local image regions as network weights of a model—based neural network with

hierarchical architecture (HMBNN), such that they are adjustable through the supply of

training examples specifying the desired image quality.

In addition, we also applied the HMBNN to the problem of edge characterization . The

representation of the edge prototypes as network weights allow their automatic adjustment

using a learning process. As a result, instead of communicating their preferences through

the specification of thresholds to edge detection algorithms, human users can now highlight

specific edge examples on a particular image, and the corresponding pixel configurations

are then incorporated as training examples for the neural network.

Returning to the adaptive regularization problem, it was observed that, in addition to

the usual requirement of distinguishing low frequency image regions from high frequency



image regions and apply different regularization parameter values to each of them, it is

also desirable to further separate the edges and textured areas in the high frequency image

regions and regularize them differently due to their unequal noise masking capabilities.

This motivates the development of the Edge-Texture Characterization (ETC) measure,

which achieves this very purpose by characterizing the correlational properties of local

pixel configurations in terms of a scalar value.

The capability of this measure to distinguish edges from textures, together with the

inherent ambiguities associated with the terms “edge” and “texture”, naturally suggests

the formulation of a fuzzy model where these two concepts are represented as two fuzzy

sets defined on the domain of ETC measures. At the same time, the previous sub—network

structure of the HMBNN is extended to include two neurons which respectively computes

the associated restoration variables for edges and textures . The output of these two

neurons are then combined in an augmented output layer to give the final amount of gray

level update required, with the edge/texture fuzzy membership values, which reflects

whether the current pixel neighborhood resembles more to edges or textures, as the two

output weights.

Apart from using NN and fuzzy techniques, we also investigated the feasibility of

applying evolutionary computation techniques to this problem. This is due to our obser-

vation of the similar shapes of the histograms formed from the ETC measure values for a

large class of images, and the possible deviations from this standard shape for degraded

or improperly regularized image. Our purpose, therefore, is to adaptively regularize an

image such that its associated ETC-histogram again exhibits the standard shape. The

non—differentiability of the associated cost function necessitates the adoption of evolu—

tionary computational techniques which does not depend on the availability of gradient

information. An important implication of this EC approach is the possibility to specify

an image processing application in terms of a more accurate cost function instead of a

sub-optimal but differentiable one.
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Chapter 1

Introduction

1 . 1 Introduction

1.1.1 The Need for Adaptive Image Processing

The need for adaptive image processing arises from the non-stationary nature of the two

dimensional image signals. As opposed to stationary random processes where the statis—

tical properties of the signal remain unchanged with respect to the 2-D spatial index, the

very word “image” in an everyday sense almost always implies the presence of inhomo-

geneity in it. It is this inhomogeneity that conveys useful information of a scene, usually

composed of a number of different objects, to the viewer. On the other hand, a stationary

2-D random signal, when viewed as a gray-level image, does not usually correspond to

the appearances of real-world objects.

For a particular image processing application (we interpret the term “image process—

ing” in a wide sense such that applications in image analysis are also included), we usually

assume the existence of an underlying image model [49, 50, 93] , which is a mathematical

description of a hypothetical process through which the current image is generated. If we

suppose that an image is adequately described by a stationary random process, which,

though not accurate in general, is often invoked as a simplifying assumption, it is ap-

parent that only a single image model corresponding to this random process is required



for further image processing. On the other hand, more sophisticated image processing

algorithms will account for the non-stationarity of real images by adopting multiple image

models for more accurate representation. Individual regions in the image can usually be

associated with a different image model, and the complete image can be fully characterized

by a finite number of these local image models.

1.1.2 The Three Main Image Feature Classes

The inhomogeneity in images implies the existence of more than one image feature type

which convey independent forms of information to the viewer. Although variations among

different images can be great, a large number of images can be characterized by a small

number of feature types. These are usually summarized under the labels of smooth

regions, textures and edges (Figure 1.1). In the following, we will describe the essential

characteristics of these three kinds of features, and the image models usually employed

for their characterization.

 

   

 

 
 

 

Image Feature Types

Smooth Edges Textures
Regions        

 

Figure 1.1: The three important classes of feature in images

Smooth regions

Smooth regions usually comprise the largest proportion of areas in images, due to the

reason that surfaces of artificial or natural objects, when imaged from a distance, can

usually be regarded as smooth. A simple model for a smooth region is the assignment of
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a constant gray level value to a restricted domain of the image lattice, together with the

addition of Gaussian noise of appropriate variance to model the sensor noise [36, 50].

Edges

As opposed to smooth regions, edges comprise only a very small proportion of areas in

images. Nevertheless, most of the information in an image is conveyed through these

edges. This is easily seen when we look at the edge map of an image after edge detection:

we can readily infer the original contents of the image through the edges alone. Since edges

represent locations of abrupt transition of gray level values between adjacent regions , the

simplest edge model is therefore a random variable of high variance, as opposed to the

smooth region model which use random variables with low variances. However, this simple

model does not take into account the structural constraints in edges, which may then lead

to their confusion with textured regions with equally high variances. More sophisticated

edge models include the facet model [39] , which approximate the different regions of

constant gray level values around edges with separate piecewise continuous functions.

There are also the edge profile model, which describes the one-dimensional cross section

of an edge in the direction of maximum gray level variation [22, 98]. Attempts have been

made to model this profile using a step function and various monotonically increasing

functions. Whereas these models mainly characterize the magnitude of gray level value

transition at the edge location, the edge diagram in terms of zero crossings of the second

order gray level derivatives, obtained through the process of Laplacian of Gaussian (L0G)

filtering [74, 84] , characterizes the edge positions in an image. These three edge models

are illustrated in Figure 1.2.

 

/ a
‘/é)

Facet Model Edge Profile Model Zero-Crossing
Model

/ 

   

Figure 1.2: Examples of edge models



Textures

The appearance of textures is usually due to the presence of natural objects in an image.

The textures usually have a noise-like appearance, although they are distinctly different

from noises in that there usually exists certain discernible patterns Within them. This is

due to the correlations among the pixel values in specific directions. Due to this noise-

like appearance, it is natural to model textures using a 2-D random field. The simplest

approach is to use i.i.d (independent and identically distributed) random variables with

appropriate variances, but this does not take into account the correlations among the

pixels. A generalization of this approach is the adoption of Gauss Markov Random Field

(GMRF) [23, 24, 26, 54, 112] and Gibbs random field [27, 33] which model these local

correlational properties. Another characteristic of textures is their self-similarities: the

patterns usually look similar when observed under different magnifications. This leads

to their representation as fractal processes [13, 73] which possess this very self-similar

property.

1.1.3 Difficulties in Adaptive Image Processing System Design

Given the very different properties of these three feature types, it is usually necessary

to incorporate spatial adaptivity into image processing systems for optimal results. For

an image processing system, a set of system parameters is usually defined to control

the quality of the processed image. Assuming the adoption of spatial domain processing

algorithms, the gray level value mm, at spatial index (11,15) is determined according to

the following relationship

37mm = f(y;PSA(i1,12)) (1-1)

In this equation, the mapping f summarizes the operations performed by the image

processing system. The vector y denotes the gray level values of the original image before

processing, and pgA denotes a vector of spatially adaptive parameters as a function of the

spatial index (21,15). It is reasonable to expect that different parameter vectors are to be

adopted at different positions (21,15), which usually correspond to different feature types.



As a result, an important consideration in the design of this adaptive image processing

system is the proper determination of the parameter vector p5A(z'1, i2) as a function of

the Spatial index (14, 2'2).

On the other hand, for non—adaptive image processing systems, we can simply adopt

a constant assignment for p5A(i1, i2)

E’s/101, i2) 5 pNA (1.2)

where pNA is a constant parameter vector.

We consider examples of p5A(z'1, i2) in a number of specific image processing applica—

tions below.

0 In image filtering, we can define p3A(i1,i2) to be the set of filter coefficients in

the convolution mask [50] . Adaptive filtering [5, 101] thus corresponds to using a

different mask at different spatial locations, while non-adaptive filtering adopts the

same mask for the whole image.

0 In image restoration [3, 12, 55] , a regularization parameter [14, 47, 88] is defined

which controls the degree of ill-conditioning of the restoration process, or equiv-

alently, the overall smoothness of the restored image. The vector pSA(z'1,2'2) in

this case corresponds to the scalar regularization parameter. Adaptive regulariza-

tion [56, 68, 110] involves selecting different parameters at different locations, and

non—adaptive regularization adopts a single parameter for the whole image.

0 In edge detection, the usual practice is to select a single threshold parameter on

the gradient magnitude to distinguish between the edge and non-edge points of the

image [36, 50] , which corresponds to the case of non-adaptive thresholding. This

can be considered as a special case of adaptive thresholding, Where a threshold value

is defined at each spatial location.

Given the above description of adaptive image processing, we can see that the corre-

sponding problem of adaptive parameterization, that of determining the parameter vector

pSA(z'1, 712) as a function of (i1, 2'2), is particularly acute compared with the non-adaptive
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case. In the non-adaptive case, and in particular for the case of a parameter vector of low

dimensionality, it is usually possible to determine the optimal parameters by interactively

choosing different parameter vectors and evaluating the final processed results.

On the other hand, for adaptive image processing7 it is almost always the case that

a parameter vector of high dimensionality, which consists of the concatenation of all the

local parameter vectors, will be involved. lf we relax the previous requirement to allow

the sub-division of an image into regions and the assignment of the same local parameter

vector to each region, the dimension of the resulting concatenated parameter vector can

still be large. In addition, the requirement to identify each image pixel With a particular

feature type itself constitutes a non—trivial segmentation problem. As a result, it is usually

not possible to estimate the parameter vector by trial and error. Instead, we should look

for a parameter assignment algorithm which would automate the whole process.

To achieve this purpose, we will first have to establish image models which describe

the desired local gray level value configurations for the respective image feature types, or

in other words, to characterize each feature type. Since the local gray level configurations

of the processed image are in general a function of the system parameters as specified

in Eq (1.1), we can associate a cost function with each gray level configuration which

measures its degree of conformance to the corresponding model, with the local system

parameters as arguments of the cost function. We can then search for those system pa-

rameter values which minimize the cost function for each feature type, i.e., an optimization

process. Naturally, we should adopt different image models in order to obtain different

system parameters for each type of feature.

In view of these requirements, we can summarize the requirements for a successful

design of an adaptive image processing system as follows:

Segmentation

Segmentation requires a proper understanding of the difference between the corresponding

structural and statistical properties of the various feature types, including those of edges,



textures and smooth regions, to allow partition of an image into these basic feature types.

Characterization

Characterization requires an understanding of the most desirable gray level value configu-

rations in terms of the characteristics of the Human Vision System (HVS) for each of the

basic feature types, and the subsequent formulation of these criteria into cost functions in

terms of the image model parameters, such that the minimization of these cost functions

will result in an approximation to the desired gray level configurations for each feature

type.

Optimization

In anticipation of the fact that the above criteria will not necessarily lead to well-behaved

cost functions, and that some of the functions will be non—linear or even non—differentiable,

we should adopt powerful optimization techniques for the searching of the optimal pa-

rameter vector.

These three main requirements are summarized in Figure 1.3.
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Figure 1.3: The three main requirements in adaptive image processing

1.1.4 Computational Intelligence Techniques

Considering the above stringent requirements for the satisfactory performance of an adap—

tive image processing systems, it will be natural to consider the class of algorithms com-



monly known as computational intelligence techniques. The term “computational intelli-

gence” [4, 83] has sometimes been used to refer to the general attempt to simulate human

intelligence on computers, the so—called “artificial intelligence” (AI) approach [109] . How-

ever, in this thesis, we will adopt a more specific definition of computational intelligence

techniques according to the three encompassed fields in the IEEE World Congress on

Computational Intelligence [89] , which are neural network techniques, fuzzy logic and

evolutionary computation (Figure 1.4). These are also referred to as the “numerical” AI

approaches (or sometimes “soft computing” approach [51]) in contrast to the “symbolic”

AI approaches as typified by the expression of human knowledge in terms of linguistic

variables in expert systems [109].
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Figure 1.4: The three main classes of computational intelligence algorithms

A distinguishing characteristic of this class of algorithms is that they are usually

biologically inspired: the design of neural networks [41, 42] , as the name implies, draws

the inspiration mainly from the structure of the human brain. Instead of adopting the

serial processing architecture of the Von Neumann computer, a neural network consists of

a large number of computational units or neurons (the use of this term again confirming

the biological source of inspiration) which are massively interconnected with each other

just as the real neurons in the human brain are interconnected with axons and dendrites.

Each such connection between the artificial neurons is characterized by an adjustable

weight which can be modified through a training process such that the overall behavior
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of the network is changed according to the nature of specific training examples provided,

again reminding one of the human learning process.

On the other hand, fuzzy logic [59, 61, 113] is usually regarded as a formal way to

describe how human beings perceive everyday concepts: whereas there is no exact height

or speed corresponding to concepts like “tall” and “fast” respectively, there is usually a

general consensus by humans as to approximately what levels of height and speed the

terms are referring to. To mimic this aspect of human cognition on a machine, fuzzy logic

avoids the arbitrary assignment of a particular numerical value to a single class. Instead,

it defines each such class as a fuzzy set as opposed to a crisp set, and assigns a fuzzy set

membership value within the interval [0,1] for each class which expresses the degree of

membership of the particular numerical value in the class, thus generalizing the previous

concept of crisp set membership values within the discrete set {0, 1}.

For the third member of the class of computational intelligence algorithms, no concept

is closer to biology than the concept of evolution, which is the incremental adaptation

process by which living organisms increase their fitness to survive in a hostile environment

through the processes of mutation and competition. Central to the process of evolution

is the concept of a population in which the better adapted individuals gradually displace

the not so well adapted ones. Described within the context of an optimization algo-

rithm, an evolutionary computational algorithm [7, 29] mimics this aspect of evolution by

generating a population of potential solutions to the optimization problem, instead of a

sequence of single potential solution as in the case of gradient descent optimization or

simulated annealing [33] . The potential solutions are allowed to compete against each

other by comparing their respective cost function values associated with the optimization

problem with each other. Solutions with high cost function values are displaced from

the population while those with low cost values survive into the next generation. The

displaced individuals in the population are replaced by generating new individuals from

the survived solutions through the processes of mutation and recombination. In this way,

many regions in the search space can be explored simultaneously, and the search process

is not affected by local minima as no gradient evaluation is required for this algorithm.



We will now have a look at how the specific capabilities of these computational in-

telligence techniques can address the various problems encountered in the design and

parameterization of an adaptive image processing system.

Neural Networks

The adaptive capability of neural networks through the adjustment of the network weights

will prove useful in addressing the requirements of segmentation, characterization and

optimization in adaptive image processing system design. For segmentation, we can, for

example, ask human users to specify which part of an image corresponds to edges, textures

and smooth regions, etc. We can then extract image features from the specified regions as

training examples for a properly designed neural network such that the trained network

will be capable of segmenting a previously unseen image into the primitive feature types.

Previous works where neural network is applied to the problem of image segmentation

are detailed in [6, 34, 46]

Neural network is also capable of performing characterization to a certain extent,

especially in the process of unsupervised competitive learning [41, 60], where both seg-

mentation and characterization of training data are carried out: during the competitive

learning process, individual neurons in the network, which represent distinct sub-classes

of training data, gradually build up templates of their associated sub-classes in the form

of weight vectors. These templates serve to characterize the individual sub-classes.

In anticipation of the possible presence of non—linearity in the cost functions for pa-

rameter estimation during the optimization process, neural network is again an ideal

candidate for accommodating such difficulties: the operation of a neural network is in-

herently nonlinear due to the presence of the sigmoid neuronal transfer function. We can

also tailor the nonlinear neuronal transfer function specifically to a particular applica—

tion. More generally, we can map a cost function onto a neural network by adopting an

architecture such that the image model parameters will appear as adjustable weights in

the network [86, 118] . We can then search for the optimal image model parameters by
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minimizing the embedded cost function through the dynamic action of the neural network.

In addition, while the distributed nature of information storage in neural networks and

the resulting fault-tolerance is usually regarded as an overriding factor in its adoption, we

will, in this thesis, concentrate rather on the possibility of task localization in a neural

network: we will sub-divide the neurons into neuron clusters, with each cluster specialized

for the performance of a certain task [1, 65] . It is well known that similar localization

of processing occurs in the human brain, as in the classification of the cerebral cortex

into visual area, auditory area, speech area and motor area, etc [52, 102]. In the context

of adaptive image processing, we can, for example, subdivide the set of neurons in such

a way that each cluster will process the three primitive feature types, namely textures,

edges and smooth regions respectively. The values of the connection weights in each

sub-network can be different, and we can even adopt different architectures and learning

strategies for each sub-network for optimal processing of its assigned feature type.

Fuzzy Logic

From the previous description of fuzzy techniques, it is obvious that its main application in

adaptive image processing will be to address the requirement of characterization , i.e., the

specification of human visual preferences in terms of gray level value configurations. Many

concepts associated with image processing are inherently fuzzy, such as the description

of a region as “dark” or “bright”, and the incorporation of fuzzy set theory is usually

required for satisfactory processing results [25, 28, 45, 62, 105] . The very use of the words

“textures”, “edges” and “smooth regions” to characterize the basic image feature types

implies fuzziness: the difference between smooth regions and weak textures can be subtle,

and the boundary between textures and edges is sometimes blurred if the textural patterns

are strongly correlated in a certain direction so that we can regard the pattern as multiple

edges. Since the image processing system only recognizes gray level configurations, it

will be natural to define fuzzy sets with qualifying terms like “texture”, ”edge” and

”smooth regions” over the set of corresponding gray-level configurations according to
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human preferences. However, one of the problems with this approach is that there is

usually an extremely large number of possible gray level configurations corresponding to

each feature type, and human beings cannot usually relate what they perceive as a certain

feature type to a particular configuration. It is therefore one of the main contributions of

this thesis that a scalar measure has been established which characterizes the degree of

resemblance of a gray level configuration to either textures or edges. In addition, we can

establish the exact interval of values of this measure where the configuration will resemble

more to textures than edges, and vice versa. As a result, we can readily define fuzzy sets

over this one-dimensional universe of discourse [61].

In addition, fuzzy set theory also plays an important role in the derivation of improved

segmentation algorithms. A notable example is the fuzzy c—means algorithm [15, 40, 82, 94]

, which is a generalization of the k-means algorithm [72] for data clustering. In the k-

means algorithm, each data vector, which may contain feature values or gray level values

as individual components in image processing applications, is assumed to belong to one

and only one class. This may result in inadequate characterization of certain data vectors

which possess properties common to more than one class, but then get arbitrarily assigned

to one of those classes. This is prevented in the fuzzy c—means algorithm, where each data

vector is assumed to belong to every class to a different degree which is expressed by a

numerical membership value in the interval [0,1]. This paradigm can now accommodate

those data vectors which possess attributes common to more than one class, in the form

of large membership values in several of these classes.

Evolutionary Computation

The often stated advantages of evolutionary computation include its implicit parallelism

which allows simultaneous exploration of different regions of the search space [35] , and

its ability to avoid local minima [7, 29] . However, in this thesis, we will emphasize its

capability to search for the optimizer of non-diflerentiable cost function efficiently, i.e., to

satisfy the requirement of optimization . An example of a non-differentiable cost function
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in image processing would be the metric which compares the probability density function

(pdf) of a certain local attribute of the image (gray level values, gradient magnitudes

,etc) with a desired pdf. We would, in general, like to adjust the parameters of the

adaptive image processing system in such a way that the distance between the pdf of the

processed image is as close as possible to the desired pdf. In other words, we would like

to minimize the distance as a function of the system parameters. In practice, we have to

approximate the pdf’s using histograms of the corresponding attributes, which involves the

counting of discrete quantities. As a result, although the pdf of the processed image is a

function of the system parameters, it is not differentiable with respect to these parameters.

Although stochastic algorithms like simulated annealing can also be applied to minimize

non-differentiable cost functions, evolutionary computational algorithms represent a more

efficient optimization approach due to the implicit parallelism of its population-based

search strategy.

The relationship between the main classes of algorithms in computational intelligence

and the major requirements in adaptive image processing is summarized in Figure 1.5.
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Figure 1.5: Relationships between the computational intelligence algorithms and the main

requirements in adaptive image processing
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1.2 Scope of the Thesis

In this thesis, as specific examples of adaptive image processing systems, we consider

the adaptive regularization problem in image restoration [56, 68, 110] and the edge char—

acterization problem in image analysis. We adopt the technique of neural network as

a first approach to these problems due to its capability to satisfy all the three require-

ments in adaptive image processing, as illustrated in Figure 1.5. In particular, we use a

specialized form of network known as model-based neural network with hierarchical archi-

tecture [21, 65]. The reason for its adoption is that its specific architecture, which consists

of a number of model-based sub-networks, particularly facilitates the implementation of

adaptive image processing applications, where each sub—network can be specialized to

process a particular type of image features.

1.2.1 Adaptive Regularization

In regularized image restoration, the associated cost function consists of two terms: a

data conformance term which is a function of the degraded image pixel values and the

degradation mechanism, and the model conformance term which is usually specified as

a continuity constraint on neighboring gray level values to alleviate the problem of ill-

conditioning characteristic of this kind of inverse problems. The regularization parame-

ter [47, 55] controls the relative contributions of the two terms toward the overall cost

function.

In general, if the regularization parameter is increased, the model conformance term is

emphasized at the expense of the data conformance term, and the restored image becomes

smoother while the edges and textured regions become blurred. On the contrary, if we

decrease the parameter, the fidelity of the restored image is increased at the expense

of decreased noise smoothing. If a single parameter value is used for the whole image,

it should be chosen such that the quality of the resulting restored image would be a

compromise between the above two extremes.

More generally, we can adopt different regularization parameter values for regions in
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the image corresponding to different feature types. This is more desirable due to the

different noise masking capabilities of distinct feature types: since noise is more visible in

the smooth regions, we should adopt a larger parameter value in those regions, while we

could use a smaller value in the edge and textured regions to enhance the details there

due to their greater noise masking capabilities. We can even further distinguish between

the edge and textured regions and assign a still smaller parameter value to the textured

regions due to their closer resemblance to noises.

Adaptive regularization can thus be regarded as a representative example of the design

of an adaptive image processing system, since the stages of segmentation, characterization

and optimization are included in its implementation: the segmentation stage consists

of the partitioning of the image into its constituent feature types, the characterization

stage involves specifying the desired gray level configurations for each feature type after

restoration, and relating these configurations to particular values of the regularization

parameter in terms of various image models and the associated cost functions. The final

optimization stage searches for the optimal parameter values by minimizing the resulting

cost functions. Since the hierarchical model—based neural networks can satisfy each of the

above three requirements to a certain extent, we propose using such networks to solve

this problem as a first step.

The selection of this particular image processing problem is by no means restrictive,

as the current framework can be generalized to a large variety of related processing prob—

lems : in adaptive image enhancement [78, 117] , it is also desirable to adopt different

enhancement criteria for different feature types. In adaptive image filtering, we can derive

different sets of filter coefficients for the convolution mask in such a way that the image de-

tails in the edge and textured regions are preserved, while the noise in the smooth regions

are attenuated. In segmentation-based image compression [91, 99, 106] , the partitioning

of the image into its constituent features are also required in order to assign different

statistical models and their associated optimal quantizers to the respective features.
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1.2.2 Edge Characterization and Detection

The characterization of important features in an image requires the detailed specification

of those pixel configurations which human beings would regard as significant. In this work,

we consider the problem of representing human preferences, especially with regard to

image interpretation, again in the form of a model-based neural network with hierarchical

architecture [21, 65]. Since it is difficult to represent all aspects of human preferences in

interpreting images using traditional mathematical models, we encode these preferences

through a direct learning process, using image pixel configurations which humans usually

regard as visually significant as training examples. As a first step, we consider the problem

of edge characterization in such a network. This representation problem is important since

its successful solution would allow computer vision systems to simulate to a certain extent

the decision process of human beings when interpreting images.

Whereas the network can be considered as a particular implementation of the stages

of segmentation and characterization in the overall adaptive image processing scheme, it

can also be regarded as a self-contained adaptive image processing system on its own:

the network is designed such that it automatically partitions the edges in an image into

different classes depending on the gray level values of the surrounding pixels of the edge,

and apply different detection thresholds to each of the classes. This is in contrast to

the usual approach where a single detection threshold is adopted across the whole image

independent of the local context. More importantly, instead of providing quantitative

values for the threshold as in the usual case, the users are asked to provide qualitative

opinion on what they regard as edges by manually tracing their desired edges on an image.

The gray level configurations around the trace are then used as training examples for the

model-based neural network to acquire an internal model of the edges, which is another

example of the design of an adaptive image processing system through the training process.

As seen above, we have proposed the use of hierarchical model-based neural net-

work for the solution of both these problems as a first attempt. It was observed later
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that, whereas the edge characterization problem can be satisfactorily represented by this

framework, resulting in adequate characterization of those image edges which humans

regard as significant, there are some inadequacies in using this framework exclusively for

the solution of the adaptive regularization problem, especially in those cases Where the

images are more severely degraded. These inadequacies motivate our later adoption of

fuzzy set theory and evolutionary computation techniques, in addition to the previous

neural network techniques, for this problem.

1.3 Contributions of the Current Work

With regard to the problems posed by the requirements of segmentation, characterization

and optimization in the design of an adaptive image processing system, we have devised

a system of interrelated solutions comprising the use of the main algorithm classes of

computational intelligence techniques. The contributions of the work described in this

thesis can be summarized as follows:

1.3.1 Application of Model-Based Neural Networks to Adaptive

Regularization

A model—based neural network with hierarchical architecture [21, 65] is derived for the

problem of adaptive regularization in image restoration. The image is segmented into

smooth regions and combined edge/textured regions, and we assign a single sub-network

to each of these regions for the estimation of the regional parameters. An important

new concept arising from this work is our alternative viewpoint of the regularization

parameters as model—based neuronal weights, which are then trainable through the supply

of proper training examples. We derive the training examples through the application of

adaptive non-linear filtering [87] to individual pixel neighborhoods in the image for an

independent estimate of the current pixel value. Comparing with previous works where

the regularization parameters are estimated using only information from the associated
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iterative restoration process itself, or by using heuristic approaches , we believe this is

the first time where the theory of adaptive non-linear filtering, typical examples of which

include median filtering and weighted order-statistic (WOS) filtering [87] , are combined

with the theory of iterative image restoration to provide independent information for the

estimation of the regularization parameters.

1.3.2 Application of Model-Based Neural Networks to Edge Char—

acterization

A model—based neural network with hierarchical architecture is proposed for the problem

of edge characterization and detection. Unlike previous edge detection algorithms where

various threshold parameters have to be specified [36, 50], this parameterization task can

be performed implicitly in a neural network by supplying training examples. The most

important concept in this part of the work is to allow human users to communicate their

preferences to the adaptive image processing system through the provision of qualitative

training examples in the form of edge tracings on an image, , which is a more natural way

of specifying preferences for humans, than the selection of quantitative values for a set of

parameters. With the adoption of this network architecture and the associated training

algorithm, it will be shown that the network can generalize from sparse examples of edges

provided by human users to detect all significant edges in images not in the training set.

More importantly, no re—training and alteration of architecture is required for applying the

same network to noisy images, unlike conventional edge detectors which usually require

threshold re-adjustment.

As mentioned in the previous section, it was observed that the hierarchical model-

based neural network can already model those human-preferred edge configurations in

a satisfactory way, but that there are still some inadequacies in solving the adaptive

regularization problem using this framework exclusively, which is primarily due to the

different noise masking capabilities of the edges and textures in an image which requires
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separate regularization strategies for each of them. This aspect of the regularization

problem, which is not explicitly modelled in our previous network, in turn requires the

determination of which pixel configurations correspond to edges and textures respectively.

This motivates our development of the Edge-Texture Characterization (ETC) Measure,

and its incorporation into a generalized hierarchical model-based network architecture

which models the edges and textures as fuzzy sets. In addition to these neural network

approaches, we also propose an alternative solution of the adaptive regularization problem

which requires the use of evolutionary computational techniques. These generalizations

are described below:

1.3.3 Formulation of the Edge—Texture Characterization (ETC)

Measure

With regard to the problem of characterizing the degree of resemblance of a particular

gray level configuration to either textures or edges, a novel measure ,known as the Edge-

Texture Characterization (ETC) Measure, has been derived which quantifies this degree

of resemblance through a scalar value. In addition, we have established exact intervals

of this measure within which the corresponding gray level configuration resembles more

to edges than textures, and vice versa. As a result, we can distinguish between edges

and textures just by observing the value of this scalar quantity. This is particularly

significant as we cannot usually distinguish between edges and textures by comparing

the local variance or gradient magnitudes of the respective pixel configurations, which

may contain similar levels of high frequency components. The current approach also

represents an alternative form of segmentation compared with the usual approaches of

distinguishing between different types of textures, and distinguishing between smooth

regions and combined edge/textured regions.
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1.3.4 Incorporation of the ETC Measure in a Fuzzy Model-

Based NN for Adaptive Regularization

We have extended the previous framework of adaptive regularization using model—based

neural network by incorporating the ETC measure to assign different regularization pa-

rameter values to edge and textured regions. This is necessary due to the different

noise masking capabilities of the above two feature types. We have applied fuzzy tech—

niques [61, 113] in this part of the work, where we define two fuzzy sets with the names

EDGE and TEXTURE over the scalar ETC measure domain. This produces a fuzzy

version of the adaptive regularization model—based network where we have included a so—

called edge neuron and texture neuron in each sub—network, and which in turn estimate

two different values of regularization parameters for each segmented image region. The

final gray level estimate of each pixel is produced by combining the output of the two

neurons in an augmented output layer, with the fuzzy membership values associated with

the above two fuzzy sets as output weights.

1.3.5 Application of Evolutionary Programming to Adaptive

Regularization

Apart from the neural network-based techniques, we have developed an alternative so-

lution to the problem of adaptive regularization using evolutionary programming, which

is a member of the class of evolutionary computational algorithms [7, 29] . Returning

again to the ETC measure, we have observed that the distribution of the values of this

quantity assumes a typical form for a large class of images. In other words, the shape of

the probability density function (pdf) of this measure is similar across a broad class of

images and can be modelled using piecewise continuous functions. On the other hand,

this pdf will be different for blurred images or incorrectly regularized images. As a result,

the model pdf of the ETC measure serves as a kind of signature for correctly regularized

images, and we should minimize the difference between the corresponding pdf of the image

being restored and the model pdf using some kind of distance measure. The requirement
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to approximate this pdf using a histogram, Which involves the counting of discrete quan—

tities, and the resulting non—differentiability of the distance measure with respect to the

various regularization parameters, necessitates the use of evolutionary computational a1-

gorithms for optimization . We have adopted evolutionary programming Which, unlike

genetic algorithm which is another widely applied member of this class of algorithms,

operate directly on real—valued vectors instead of binary-coded strings and therefore more

suited to the adaptation of the regularization parameters. In this algorithm, we have

derived a parametric representation which expresses the regularization parameter value

as a function of the local image variance. Generating a population of these regularization

strategies which are vectors of the above hyperparameters, we apply the processes of mu—

tation, competition and selection to the members of the population to obtain the optimal

regularization strategy.

1.4 Organization of the Thesis

This thesis is divided into 8 chapters. The contents of each chapter are summarized as

follows:

Chapter 2 reviews the neural network techniques and its application to image pro—

cessing. Model-based neural networks are defined and the operations of two types of

model-based neurons which will be used in subsequent chapters are described. We then

generalize this framework to adopt a modular network architecture which incorporates

clusters of model-based neurons as sub—networks.

Chapter 3 describes our work on applying model-based neural network with hierar-

chical architecture to the problem of adaptive regularization in image restoration. EX—

perimental results are presented which illustrate the advantages and shortcomings of this

scheme. It is the latter which motivates the development of the fuzzy version of the

current algorithm in Chapter 6.

Chapter 4 describes our work on applying model-based neural network with hierarchi-

cal architecture to the problem of edge characterization and detection. We have presented
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experimental results which compare the performances of this new approach with conven-

tional edge detectors.

Chapter 5 describes the derivation of the Edge Texture Characterization (ETC) mea—

sure based on the representation of a local image pixel neighborhood as a correlated

stochastic process. Expermental results are presented which illustrate the capability of

this measure to distinguish between edges and textures in an image.

Chapter 6 begins by reviewing the fuzzy set techniques and its applications to image

processing. We then describe a fuzzy model incorporating two fuzzy sets, EDGE and

TEXTURE, which are specially defined to characterize their corresponding feature types

in terms of ETC measure values. This model is incorporated into the previous model-based

neural network to produce a fuzzified version of the network which is capable of assigning

different regularization parameter values to edges and textures, aside from discriminating

between smooth and abruptly varying image areas. Experimental results illustrate the

advantages of adopting fuzzy techniques in comparison with the previous non-fuzzified

network.

Chapter 7 describes the application of evolutionary programming to the adaptive reg—

ularization problem in image restoration. The properties of the probability density func-

tion (pdf) of the ETC measure are discussed and formalized in terms of a model ETC-pdf

consisting of multiple piecewise continuous functions. We then define a distance measure

between these pdf’s. The resulting non—differentiability of the distance measure with re-

spect to the regularization parameters necessitates the use of evolutionary programming

for its optimization. Experimental results are presented which illustrate the performance

of the EP-based algorithm with respect to conventional restoration algorithms, and the

previous neural network-based algorithms.

Chapter 8 presents the conclusion of this thesis and provides suggestions for future

research directions.
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Chapter 2

Model-Based Neural Network with

Hierarchical Architecture (HMBNN)

2. 1 Introduction

In this Chapter, we introduce the technique of neural networks, which is the first compu-

tational intelligence algorithm to be applied to our problem of adaptive regularization in

image restoration.

Neural network [2, 41, 42] represents an alternative computational paradigm to the

traditional serial (or Von Neumann type) machines. Whereas serial computers excel in

specific computational tasks Which involve large amounts of numerical calculations, its

performance in other tasks, such as visual perception and pattern recognition, is not di-

rectly comparable with the capabilities of human beings. This performance gap is usually

attributed to the fundamental difference in architecture of Von Neumann computers and

the human brain. In contrast with the execution of an algorithm on a serial machine,

where the operations of the algorithm are codified in the form of program instructions

and executed one after another in a sequential manner through a single central processing

unit, the cerebral cortex consists of a vast number of comparatively simple information

processors in the form of neurons. In addition, the neurons are densely interconnected

with each other through their axons and dendrites [2, 52, 102] . In this way, massively
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parallel processing of information is facilitated where any processing “algorithms”, if such

words are permitted, are encoded in a distributed manner as the simultaneous firing pat—

terns of specific neuron subsets within the cerebral cortex. The resulting signals are then

propagated through the densely interconnected network to other neurons. Usually, each

particular neuron will be receiving information from a large number of neurons through

its dendrites, and will in turn broadcast information through its axon to a large number

of other neurons.

This architecture partly explains the remarkable capability of human beings in per-

forming visual pattern recognition: this distributed encoding enables different neurons

to receive and process information from different parts of a visual scene simultaneously.

The processed information from individual neurons is then combined through higher level

neurons to reconstruct a consistent global interpretation of the entire scene. This is un-

like the Operation of a serial machine Where only a restricted window of information is

available from the scene for processing in a specific time interval.

More importantly, the overall behavior of the biological neural network can be modified

through the process of learning. This is usually performed by modifying the properties of

synapses [2, 52, 102] , which serve as gateways coupling the body of a neuron with axons

or dendrites, in response to external stimulations. The resulting flexibility gained through

this adaptive process allows the network to quickly acquire the essential characteristics of

novel environment. In addition, the large number of neurons and the distributed encoding

lend a degree of fault tolerance to the network, such that its performance deteriorates

gracefully with the malfunction of individual neurons rather than abruptly.

Artificial neural network represents the first attempts to incorporate the above desir-

able properties into computing machines. Corresponding to the neurons in the biologi-

cal network, we define artificial neurons which perform simple mathematical operations.

These artificial neurons are connected with each other through network weights which

specify the strength of the connection. Analogous to its biological counterpart, these

network weights are adjustable through a learning process which enables the network to

perform a variety of computational tasks. The neurons are usually arranged in layers,
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with the input layer accepting signals from the external environment, and the output

layer emitting the result of the computations. In between these two layers are usually

a number of hidden layers which perform the intermediate steps of computations. The

architecture of a typical artificial neural network with one hidden layer is shown in Fig-

ure 2.1. In specific types of network, the hidden layers may be missing and only the input

and output layers are present.

Network Output   
Output Layer

Hidden Layer

 

Network Input Input Layer

  
 

Figure 2.1: The architecture of a neural network with one hidden layer

The learning algorithms for the artificial neural networks are usually divided into two

main classes, the supervised learning algorithms and unsupervised learning algorithms,

which are described below.

2.1.1 Supervised Learning Algorithms

For this class of learning algorithms, the individual training example consists of the pair

(x,d), where x is the input vector and d is the desired output vector. The connection

weights are adjusted in such a way that , given the input vector x, the output of the

network will approximate the desired output vector (1. This class of algorithms is espe-

cially useful in learning classification problems when the ground truth is available for a

subset of data, and in function interpolation problems given a set of sample points from
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the original function.

2.1.2 Unsupervised Learning Algorithms

For this class of algorithms, the individual training example consists of the input vector

x only. The weight adjustment algorithm is designed in such a way that the network

gradually develops an internal representation of the intrinsic structure of the data. This

class of algorithms is especially useful for data mining applications where the objective is

to discover some hidden structures within the set of data. It is also useful for optimally

summarizing a set of high-dimensional data vectors in terms of their projections onto a

specific data subspace, a notable example being the extraction of features using principal

component analysis (PCA) [11, 76, 77] .

We will apply both algorithm classes to our adaptive image processing problem later in

the thesis: in Chapter 3, we reformulate the problem of adaptive regularization in terms of

the training of a model-based neural network with hierarchical architecture [65], where we

adapt the weights of the network using a supervised learning strategy . In Chapter 4, we

apply competitive learning [60], which is an unsupervised learning strategy, to capture the

essential characteristics of image visual features which human beings regard as significant.

2.2 Model-Based Neural Network

Instead of adopting the general architecture in Figure 2.1 for our adaptive image pro-

cessing applications, we propose the use of modular model-based neural network for our

purpose. We used the term ”model-based” in the sense of Caelli et.al [21] , where ex-

pert knowledge in the problem domain is explicitly incorporated into a neural network by

restricting the domain of the network weights to a suitable subspace in which the solu-

tion of the problem resides. In this way, a single weight vector can be uniquely specified

by a small number of parameters and the “curse of dimensionality” problem is partially

alleviated.

To appreciate this formulation more readily, we review some fundamental concepts of
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artificial neuron computation, where each such neuron is the elementary unit of computa—

tion in a neural network [41, 42} . In general, the s—th neuron in the network implements

a mapping f, : RN —> R which is given by

ys : fs(x)

= 9(pr)

9(Z_:1pqnxn) (2.1)

where

x = [$1,...,;vN]T€RN and

ps 2 [p317 - - - 7PleT 6 RN

are the input vector and the weight vector‘for the neuron respectively. 9 is usually a

nonlinear sigmoid function which limits the output dynamic range of the neuron. We will

extend this concept and define two types of model-based neuron in the next two sections.

2.2.1 Weight—parameterized model-based neuron

The main assumption in this weight-parameterized model-based formulation [21] is that

for a specific domain of knowledge, the corresponding weight domain is restricted to a

low-dimensional submanifold of RN.

Denoting this weight domain by WP, the formulation thus assumes the existence of a

mapping M : RM —> Wp C RN such that

P = M(Z) (2-2)

where
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with M < N. The mappings Mn : RM —-> R, n = 1, . . . ,N are the component functions

of M. The structure of a typical weight-parameterized model—based neuron is shown in

Figure 2.2.

Assuming that each component function is differentiable with respect to z, the steepest

descent update rule for the components of z is as follows

 

a
zm(t +1) 2 zm(t) — 7782i

N at} 31),,
_ Zm(t) — 77”;1 8—197162", (2.3)

where E, is an instantaneous error measure between the network output and the desired

output.

 

Figure 2.2: The weight—parameterized model-based neuron

As a result, if we possess prior knowledge of our problem domain in the form of

the mapping M and if M < N, the optimization can proceed within a subspace of

greatly reduced dimensionality and the problem of “curse of dimensionality” is partially

alleviated. In the next Chapter we will present an alternative formulation of the adaptive

regularization problem in terms of this model-based neuron.

2.2.2 Input-parameterized model—based neuron

Instead of mapping the embedded low-dimensional weight vector 2 6 RM to the high-

dimensional weight vector p 6 RN, an alternative implementation of a model-based
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neuron, which we will call the input-parameterized model-based neuron, is to map the

high—dimensional input vector x 6 RN to a low—dimensional vector xp 6 RM. This is

P can fullyunder the assumption that for the problem at hand, the reduced vector x

represent the essential characteristics of its higher dimensional counterpart x. If such

a mapping exists for the set of input vectors x, we can directly represent the weight

vector in its low—dimensional form z in the network instead of its embedded form in a

high—dimensional vector p.

More formally, we assume the existence of a mapping 73 : RN ——> RM, such that

x1D = P(x) 6 RM, Where M < N. The operation of this model-based neuron is then

defined as follows:

= 9(2 23711-77712) (2-4)

The weights of the network can then be adjusted directly using the following equation

88,
— ”—82—", (2-5)zm(t + 1) = zm(t)

without involving the high-dimensional weight vector p. The input-parameterized model—

based neuron is illustrated in Figure 2.3.

Both types of model-based neurons allow the search for the optimal weights to proceed

more efficiently in a low-dimensional weight space. The decision to use either one of

the above neurons depend on the nature of the problem, which in turn determine the

availability of either the mapping M for the weights, or the mapping ”P for the input: if

the parameter space of a certain problem is restricted to a low-dimensional surface in a

high—dimensional space, then it is natural to adopt the weight—parameterized model-based

neuron. This is the case for the adaptive regularization problem in Chapter 3, where the

valid set of weight vectors for the network forms a path, or alternatively a one-dimensional

surface, governed by the single regularization parameter A.

On the other hand, for cases where such representation for the weight vector is not

readily available, while there is evidence , possibly through the application of principal
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Figure 2.3: The input-parameterized model-based neuron

component analysis (PCA) [11, 76, 77] or prior knowledge regarding the input vector

distribution, of the existence of an information-preserving operator (with respect to the

current problem) which maps the input vectors to a low-dimensional subspace, then it is

more natural to adopt the input-parameterized model-based neuron. This is the case for

the edge characterization model-based neural network in Chapter 4, where the original

input vector comprising a window of edge pixel values is mapped to a two—dimensional

vector representing the two dominant gray levels around the edge.

2.3 Hierarchical Neural Network Architecture

While the previous model—based formulation describes the operations of individual neu-

rons, the term “modular neural network” [1, 38, 48, 58, 79, 108, 107] refers to the overall

architecture where specific computations are localized within certain structures known as

sub—networks. This class of networks serves as natural representations of training data

arising from several distinct classes, where each such class is represented by a single

sub-network. Specific implementations of modular neural networks include the various

hierarchical network architecture described in [31, 64, 65, 69, 70].

We are especially interested in the particular hierarchical implementation of the modu-
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lar network structure by Kung and Taur [65]. Their proposed architecture associates a sub—

network output ¢(x, W7.) with the T-th sub—network. In addition, we define lower—level neu-

rons Within each sub—network With their corresponding local neuron 0utput1b,(x,ws,), 3,, =

1, . . . , ST. Depending on the specific relationships between the sub—network output ¢(x, WT)

and its associated local neuron output ¢T(x,wsr), Kung and Taur has defined two main

categories of hierarchical architecture:

2.3.1 Hidden-Node Hierarchical Architecture

For this class of hierarchical architecture, the sub—network output is defined as the linear

combination of the local neuron outputs as follows:

31-

¢(X,WT) = Z CST¢T(X7W31‘) (2-6)
Sr=1

Where CST are the combination coefficients. The local neuron output evaluation can assume

a variety of forms depending on the current application. The most important functions

include the sigmoid function:

¢T(x,wsr) = g(wfrx) (2.7)

where 9(a) is the sigmoid function

 
l

= 2.8g(u) 1+ ( >
and the Gaussian radial basis function (RBF)

_||x—v'Vsz|l2

wr(xa W57) : e 268T (2.9)

where Wsr : [WET UETF‘.

Due to the resemblance of each sub-network to a two-layer feedforward neural network,

the current architecture is especially suitable for function approximation applications,

Where a complex function is divided into several comparatively simple components and

with each of these assigned to a single sub-network. A supervised training algorithm is

then applied to each sub-network for weight adjustment with a corresponding partition

of the training examples. The hidden-node hierarchical architecture and the structure of

its sub-network is shown in Figure 2.4.
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Figure 2.4: Hidden—node hierarchical network architecture (a) global network architecture

(b) sub-network architecture
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2.3.2 Subcluster Hierarchical Architecture

For this class of networks, a winner-take-all competition process is applied to all the

neurons within a certain sub—network to determine the local winner as follows

W5; = arg 11ng ¢,(x, wsr) (2.10)

where w,; is the index of the winning neuron.

The sub-network output ¢(x,wr) is then substituted with the corresponding local

neuron output of the winner

¢(X, WT) : ¢T(x7 wsfi)
(2.11)

In accordance with this competition process, it is natural to adopt the Euclidean

distance for evaluating the local neuron output

wr(x,ws,) = nx — will (2.12)

This class of networks is especially suitable for unsupervised pattern classification,

where each pattern class is composed of several disjoint subsets of slightly different char—

acteristics. We can then assign each primary pattern class to a single sub-network, and

each secondary class under the current primary class to a neuron within the sub-network.

The subcluster hierarchical network architecture and the structure of its sub—network is

shown in Figure 2.5.

2.3.3 Combination of Sub-Network Outputs

In the last stage, the information provided by the various sub-networks is combined to

form the final network output. In the context of classification problems, Kung and Taur

defined the final network output as the index of the global winner using a winner—take-all

approach

7"“ = arg max ¢(x, W,) (2.13)

This definition is applicable to both the hidden-node hierarchical architecture and the

subcluster hierarchical architecture.
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Figure 2.5: Subcluster hierarchical network architecture (a) global network architecture

(b) sub-network architecture
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Whereas the index r*, which indicates the assigned class of the current network input,

is important for classification applications, sometimes the value of the network output

itself is important, as in function approximation problems. In the latter case, we usually

define the network output y as a function of the individual sub-network output as follows:

y = f(¢(x,w1), . . . , ¢(x,wR)) (2.14)

where R is the number of sub-networks.

A common example for f is the linear combination operation, where

y = Z: ar¢(x,wr) (2.15)

and a, are the combination coefficients. However, the form for f is in general not re-

stricted to linear operations, and we can admit alternative, possibly nonlinear, form for

f depending on the particular problem at hand.

2.4 Model-Based Neural Network with Hierarchical

Architecture (HMBNN)

Given the previous description of the model-based neuron, which specifies the compu-

tational operations at the neuronal level, and the overall hierarchical structure, which

specifies the macroscopic network architecture, it is natural to combine the two in a sin-

gle framework. More specifically, we can incorporate model-based neuron computation

at the lowest hierarchy, i.e., at the level of single neuron within a sub-network, of the

hierarchical neural network.

Formally, we can specify the computation of the local neuron outputs 1,1}T(x, W5.) of

the neurons in two different ways, in accordance with the previous two definitions of

model-based neuron computation. For the weight—parameterized model-based neuron,

and assuming W3, 6 RN, the local neuron output computation is specified as follows:

¢T(X7Wsr) E ¢T(X7M(Z31‘)) (2-16)
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where zs, 6 RM, with M < N, is the model-based weight vector, and M : RM —> R” is

the mapping relating the model-based weight vector to the neuronal weight vector. In this

case, the lower-dimensional model—based vector zs, is embedded in the higher-dimensional

weight vector wsr, and the weight Optimization is carried out in the lower-dimensional

weight space RM.

For the input—parameterized model—based neuron, instead of embedding the model-

based vector zsr in a higher—dimensional space, we map the high—dimensional input vector

x 6 RN on to a low—dimensional submanifold RM through the operator ’P as follows:

wax, Wsr) E MXP, 23,) (2.17)

= wr(P(X), 25,) (2.18)

where xP = P(X) is the low-dimensional input vector corresponding to x in RN.

These two implementations of model-based neurons are equally applicable to both the

hidden—node hierarchical architecture and subcluster hierarchical architecture, thus giving

rise to four different classes of model—based neurons with hierarchical architecture. We

have selected two among these four classes of networks for our adaptive image processing

applications, which are described in the next section.

2.5 HMBNN for Adaptive Image Processing

2.5.1 Adaptive Regularization in Image Restoration

As mentioned in Chapter 1, our formulation of the adaptive regularization problem re-

quires the partition of an image into disjoint regions, and the assignment of the optimal

regularization parameter value A to the respective regions. It is natural, therefore, to

assign a single sub-network to each such region, and regard the regularization parameter

A as a model-based weight to be optimized using a special set of training examples. More

specifically, for the r-th sub-network, it will be shown in the next Chapter that the image

restoration process is characterized by the evaluation of the local neuron output as a linear
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operation as follows.

¢.(x, p5.) = Pix (2-19)

where x 6 RN denotes a vector of image gray level values in a local neighborhood, 135. is

the image restoration convolution mask derived from the point spread function (PSF) of

the degradation mechanism. The dimension N of the vectors x and p3, depends on the

size of the PSF. It will be shown that the convolution mask coefficient vector Ps, can be

expressed as a function of the regularization parameter A. In other words, there exists a

mapping M : R —> RN such that

133. = M(/\) (2.20)

which is equivalent to the embedding of the scalar parameter /\ in the high-dimensional

space RN , and this neuron thus corresponds to a weight-parameterized model-based neu—

ron.

The training examples for this network is of the form (x, Ax), where Am, the de—

sired output of the network, corresponds to the required change in gray level value for

the current pixel to achieve satisfactory restoration. Due to the continuous range of

Am, the current problem belongs to the category of function approximation applications

which favors the adoption of the hidden-node hierarchical architecture. We have there-

fore employed this architecture for the current adaptive regularization problem with the

model—based weight A in each sub-network determined by supervised learning.

2.5.2 Edge Characterization and Detection

In Chapter 4, we will introduce an adaptive edge characterization scheme, where different

threshold parameters are defined for detecting edges under different background illumina—

tions. This is motivated by our observation of the different preferences of human beings in

regarding a certain magnitude of gray level discontinuity as constituting a significant edge

feature under different illuminations. To incorporate this criterion into our edge detec—

tion process, it is natural to adopt a hierarchical network architecture where we designate
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each sub-network to represent a different illumination level, and each neuron in the sub-

network to represent different prototypes of edge-like features under the corresponding

illumination level. In Chapter 4, we have defined an edge prototype as a two-dimensional

vector w E R2 which represents the two dominant gray level values on both sides of the

edge.

Due to this necessity of inferring prototypes from the human-supplied training ex-

amples, it is natural to adopt unsupervised competitive learning where each prototype

is represented as the weight vector of a neuron. The winner-take—all nature of the com-

petition process also favors the use of the subcluster hierarchical architecture, such that

only the local winner within each sub—network is allowed to update its weight vector. In

addition, for the r-th sub-network, the local neuron output is evaluated in terms of the

Euclidean distance between the edge prototype and the current edge example

1/)T(XP7ZST) = lle _ ZSrll (2-21)

where xp 6 R2 is the current edge example, and zsr is the sT-th edge prototype of the

r-th sub-network.

In View of the fact that the current edge example is usually specified in terms of a

window of gray level values x 6 RN, where N > 2, it is necessary to summarize this

high-dimensional vector in terms of its two dominant gray level values. In other words,

we Should derive a mapping ’P : RN ——> R2 such that

XP = P(X) (2.22)

which corresponds to an input-parameterized model-based neuron.
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Chapter 3

Application of HMBNN to Adaptive

Regularization

3.1 Introduction

In this Chapter, we apply the model-based neural network with hierarchical architecture

(HMBNN), defined in the previous Chapter, to the problem of adaptive regularization in

image restoration. Image restoration techniques [3, 55] are important in that they can ex-

tract substantial information from only a degraded version of visual data originating from

some physical events, and may even be indispensable if the event itself is non-repeatable.

Degradations are usually in the form of blurring due to lens defocusing, atmospheric tur-

bulence, and relative motion Which are collectively known as system degradations, and

noises arising at various points in the imaging system which are collectively known as

statistical degradations [3, 55, 67].

Image restoration is in general a difficult problem due to the ill—conditioned or even ill—

posed nature of the associated inverse filtering operation [3, 14, 67]. Regularization is one

of the most popular techniques employed to alleviate this situation. In regularized image

restoration, the cost function consists of a data—conformance evaluation term and a model-

conformance evaluation term [14, 88]. The model—conformance term is usually specified as

a continuity constraint on neighboring gray-level values in image processing applications.
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The contribution of these two terms is adjusted by the so-called regularization parameter

or the Lagrange multiplier Which allows the two terms to combine additively:

1 - 2 1 A 2
E = Elly - HXII + EAIIDXII (3-1)

where the vector y, with yi,i : 1, . . . , NI as components and N; as the number of image

pixels, denotes the blurred image with its pixel values lexicographically ordered. The vec-

tors fr with components 2%,- is the corresponding restored image and the matrix H, with

components hij, 2', j = 1, . . . , N1, is the blur function. The matrix D With components dij-

is a linear operator 011 5c and A is the regularization parameter. For image restoration pur-

pose, D is usually a differential operator, and the minimization of the above cost function

effectively limits the local variations of the restored image. Iterative approaches are usu—

ally employed to search for the minimizer of this cost function. Interpreting Eq (3.1) in a

probabilistic setting, it can be shown that the traditional Wiener filter for image restora-

tion can be considered a special case within this general regularization framework [3].

Notwithstanding the improvement of the regularization approach upon the original

inverse filtering approach, the restored image is still plagued by two primary types of dis-

tortions, namely, noises and ringing artifacts. The amplification of the former is brought

under control to a certain extent by regularization. The latter is a result of the high fre-

quency response mismatch of the regularized filter to the inverse filter , and is manifested

as alternate dark and bright stripes near the major edges [67, 101]. The ringing artifacts

can be suppressed by either decreasing the level of regularization in the edge region to

reduce the filtering mismatch, or by increasing the regularization in the edge’s vicinity to

enforce gray-level continuity.

From the above discussion, it is obvious that an adaptive approach of regularization

has to be adopted. Determining the correct value of the regularization parameter at each

pixel site is a non—trivial problem, as the magnitude of the parameter has no obvious

relationship with the desired regional image quality. In theory, an optimal parameter

value exists for each pixel site if we view the total restoration error as being composed

of two terms, namely the noise amplification error term and the regularization error
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term [67, 68]. As the former is monotonically decreasing with the parameter value while

the latter is monotonically increasing with it, there exists an optimal parameter value

Which minimizes the overall restoration error. Attempts have been made to estimate this

optimum parameter iteratively [32, 53, 56, 57], but the value is only optimal with respect

to the particular restoration error functional adopted, which in turn depends strongly on

the particular regularization operator used. As a result, optimization of the parameter

value with respect to a particular functional may not necessarily correspond to improved

visual quality for the image.

Notwithstanding the above difficulties, we still possess the qualitative knowledge that

small regularization parameters are to be used for the edge and textured regions to enhance

the details there, while large parameters are required for the smooth regions to suppress

the noise and ringing, although the exact parameter value for attaining optimum visual

quality is in general unknown. This strongly suggests an adaptive approach in which the

functional dependence between the parameter value and the local image activity is em-

pirically determined, as exemplified by the works in [56, 68, 90]. The work in [85] can be

considered a discrete version of the previous approaches where the continuum of param-

eter values is replaced by a finite number of values, with each of them corresponding to

a particular range of image activities. As usual, the difficulties of these approaches lie in

the non-intuitiveness of the regularization parameter value as a specification of the local

image quality, and considerable experimentations are required to determine the correct

function relating the regularization parameter value to the local image activity. Kang and

Katsaggelos, in their spatially adaptive iterative restoration algorithm [56], have incor-

porated limited adaptivity in the determination of this functional form by automatically

adjusting a multiplicative factor of this function based on particular global attributes of

the partially restored image.

An example of a more intuitive image quality specification can be found in the field

of nonlinear adaptive image filtering, where we express our desire to preserve certain

features in different image regions by indirectly specifying a different filter mask for each

such region [5, 87]. The distribution of the coefficient values in different masks directly
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reflects the degree of detail preservation desired in different image regions. As a result,

the above problem of regularization parameter assignment can be alleviated if we can first

specify the desired local image quality in terms of a filter mask and then somehow define

a correspondence between the mask and a particular parameter value.

In this Chapter, we propose an alternative solution to the problem of regulariza-

tion parameter assignment by realizing the above correspondence in the form of an

HMBNN [21, 65]. A model—based neuron is in effect a conventional artificial neuron

with its weights mutually coupled through a small number of parameters, which serves

to reduce the dimension of the underlying network weight space. We will show that the

original image restoration problem can be interpreted as the computation of a model—

based neuron with the regularization parameter being the coupling parameter between its

various weights. The desired restoration behavior in a particular image region can then

be specified in terms of a regional training set generated by the predicted pixel values

of a pre-specified regional filter mask. We can then associate each distinct image region

with a model-based neuron, and apply the training process to each neuron to vary its

weights, or in effect the regional regularization parameter, to best approximate the local

desired characteristics. As a result, the current assignment is more relevant in relation to

the local spatial characteristics of the image than the usual practice of using an arbitrary

function of the signal to noise ratio to determine the parameter value [56, 67].

3.2 The Hopfield Neural Network Model for Image

Restoration

3.2.1 Optimization of the Restoration Cost Function

In the current work, the optimization of the primary image restoration cost function E

was performed within the framework of neural network optimization where a modified

neural network architecture based on the Hopfield neural network model in [44, 81, 118]

was employed. This primary Hopfield image restoration neural network ,which is mainly
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responsible for optimizing the value of E, is to be carefully distinguished from the HMBNN

described previously, which serves as a secondary neural network to optimize the regular-

ization parameter A in E.

Image restoration employing the Hopfield neural network model [44] was first proposed

by Zhou et.al [118] Where the parameters characterizing the point spread function (PSF)

were embedded into the connection weights of the network, and the energy—minimizing

capability of the network was then exploited to minimize this cost function as it evolved

into its equilibrium state.

The energy EH of the Hopfield network is defined in terms of the connection weights

between the neurons, the bias input of each neuron and the collective states of each

individual neuron at a particular instant as follows.

1 N] N1 N1

EH = ‘5 ZZ wijviv, — 2 bit, (3-2)
i=1j=1 i=1

where v,- is the output of the i-th neuron, wij is the connection weight between the i—th

and the j—th neuron, b,- is the bias input for the i—th neuron, and N1 is the number of

neurons in the network.

Comparing the intrinsic neural network cost function EH with the restoration cost

function E, we notice that both equations are quadratic in the variables 1),- if we identify

the gray-level values of the restored image it, with v,- and the number of neurons N; with

the number of image pixels. The connection weights and input bias of the neural network

are pre-computed by equating the remaining corresponding variables in the two equations.

N1 N1

wij : _ Z hpihm' _ A Z dzn'dm' (3-3)
p21 p=1

NI

bi = Z yphm- (3.4)

p21

where hp,- and d,,,- are the elements of H and D respectively.

In the original implementation of the network by Zhou etal [118], they followed the

canonical update procedure for the Hopfield neurons: the variable 11.,- is defined for the

i-th neuron as follows:
NI

u,- = Z wijvj + b7; (3.5)

i=1
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The required amount of update A11, for the i-th pixel was then evaluated by passing u,-

through a hard-limiting nonlinearity g(-):

Am- : 9(ui) (3.6)

where

1 if :c > 0

9(17): 0 if a: = 0 (3.7)

—1 ifx < 0

The updated gray level value for the i-th pixel is then given by

U7;(t +1) 2 1),-(t) + AU; (3.8)

From these equations, it is seen that the gray level value v,(t + 1) can change by at

most 1 during each update, thus resulting in a long time for convergence. In view of this,

Guan [37] has derived an equivalent update procedure which allows A11,- to be greater than

1 to increase the speed of convergence. In other words, the original Hopfield framework is

relaxed in favor of more efficient operations. In this algorithm, the neurons in the network

are updated sequentially by equating the derivative of E with respect to each 1), to zero

and solving for the new output v,(t + 1), thus in effect performing coordinate descent [71].

 
8E NI .

1 J21

where
N1

u,- = Z: wijvj + bi (310)

i=1
is the activation of the neuron.

From this condition, we can calculate the amount of update Av,- required as follows

NI

’11.,(t + 1) = Z wijvj + wiiAv, + bi

1:1

2 0

which implies

_ u, (0
wii

(3.11)
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and the final output of the neuron is again given by

It can be shown that the point 11,-(t + 1) is the global minimum of the energy function

E(1),) by evaluating the second derivative of E as follows:

 
82E

811-2 2 —wii
N, N,

2= maze.”
12:1 12:1

for positive A. As a result, we can attain this global minimum by equation (3.11) in a

single step [37] rather than restricting the update values to $1 as in Zhou etal [118]

In addition, equation (3.11) expresses the change in neuron output as a function of

the regularization parameter A through wan This dependency is essential for the re—

formulation of the current adaptive regularization problem into a learning problem for a

set of model-based neurons.

3.3 Adaptive Regularization—An Alternative Formu—

lation

In this section we propose an alternative formulation of adaptive regularization which

centers on the concept of regularization parameters as model-based neuronal weights. By

adopting this alternative viewpoint, a neat correspondence is found to exist between the

mechanism of adaptive regularization and the computation of an artificial model-based

neuron.

Referring to equation (3.11) and identifying the gray-level value 53,-(t) at the lexico-

graphically ordered pixel site 2' with the neuron output 12,-(t), we can express the instanta—

neous restoration stepsize Av, (t) in (3.11) in the form of a neural computational process

as follows

A’Ui = —-Ufi

wit
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NI_ 21:1 wij'Uj + bi

wii
N1

= ZPij’Uj + qibi
i=1

zpfii am

where

p.- = [10.1, - - - ,PiN,,(Ii]T E RNI+1

Vi = ['01:- . -:vN17bi]T E RN1+1

and the weights of this hypothetical neuron are defined as

wij
pi]. = _w—ii (3.14)

1
.- = —— 3.15

q wit ( )

The weights wij of the primary Hopfield neuron (as opposed to those of this hypothetical

neuron) are in turn given by equation (3.3)

N; N,

we = — Z hpihpj - /\ Z dpz‘dpj
p=1 p=1

where we define

flj:_ZW% (Mn

lij = _deidpj (3.18)

From these equations, the weights pij of the hypothetical neuron can be expressed as a

function of the regularization parameter A as follows

.. _gij + Alij

1
z. = ____ 3.2

q gii + Mu" ( 0)

To re—interpret these equations as the computation of a model-based neuron, we re—cast

them into its two—dimensional form from the previous lexicographical ordered form. Defin-

ing the lewicogmphical mapping [3 as follows
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where (i1, i2) is the corresponding 2-D position of the i—th lexicographical vector entry in

the image lattice, and N9, is the width of the image lattice. With this mapping, we can

re-interpret equation (3.13) in a 2-D setting

LC LC

Avihiz = Z Z fii1,i2,k,fl7n+k,i2+z+q~imbim2 (3-22)

kz—Lclz—LC

where the tilded form of the variables indicate that the current quantity is indexed by

its 2-D position in the lattice, rather than its 1-D position in the lexicographically ordered

vector. The summation in the equation is taken over the support of a 2—D neuronal weight

mask, the size of which depends on the extent of the original point spread function [118]

and which is (2Lc + 1)2 in this case. For i = £(i1,i2), we define

1711,12 = 111‘ (3.23)

121,1ka = pi,£(i1+k,i2+l)
(3.24)

and the variables Ail-biz, (711,12 and him are similarly defined as 77,-”, For spatially

invariant degradation, the variables fii1,i2,k,z and (31132 are independent of the position

(11,25) in the image lattice, and the above equation can be re—written as

Lc Lc ~

Avimfi = Z Z pk,lvi1+k,iz+l +qbi1,i2

k=—ch=—LC

_ ~T~_ . 325
— p v’tlflz ( ‘ )

where

~ _ ~ ~ ~ ~T N+1

P — [p—LC,—Lca'"ap0,01"'1ch,Lcaq] E R c

~ _ ~ ~ ~ ~ T N +1

Vim — [vii—Lm—Lcwwaving:- --avz‘1+Lc,i2+Lc7bi1,i2l 6 R ‘

and NC = (2L0 +1)2.

3.3.1 Correspondence with the General HMBNN Architecture

For spatially invariant degradation with small support, we have the condition NC < NI,

where N; is the number of pixels in the image, and we can View equation (3.25) as a

local convolution operation over a selected neighborhood of 17,-,” On the other hand, due

47



to the invariant nature of 15M and (7 for all i1 and 25, this operation can alternatively be

viewed as the computational process of a model-based neuron with input vector vim-2 and

weight vector [3. In other words, if we assume that the image is subdivided into regions

RT, r = 1,. . . , R, and we assign a sub—network with a single model-based neuron to each

region, i.e., S, = 1 for each 7" according to the notation in Chapter 2, then the local

model-based neuron output corresponding to R, can be represented as

$1" ({Iilfizi fik,l()‘r)) : fi£l()‘r)vi1,i2 (326)

where AT, the regional regularization parameter, can be considered the scalar model-based

weight associated with each region R,. Since there is no competitive learning involved in

the operation of this restoration network , it can be classified within the class of hidden—

node hierarchical networks as described in Chapter 2. The architecture of this HMBNN

for adaptive regularization is shown in Figure 3.1.

Network Output

l
Region Selection |

ll ll
 

 
 

          

 

Smooth Smooth Edge! Edge!
Region . . ' Region ..... Texture . . . Texture

Subnet 1 Subnet Rb Region Region
Subnet 1 Subnet Rf

I Network Input
 

Figure 3.1: The model-based neural network with hierarchical architecture for adaptive

regularization

Adopting the weight-parameterized model-based neuron in Chapter 2 due to the nat-

ural way in which Ar 6 R is embedded in the high-dimensional weight vector 1316,10” E

RNC‘H, and referring to equation (3.19)7 we can obtain the component mappings Mn of

the model-based neuron for the r-th sub—network as follows

_ gal + )‘rfk,l~ ~ n21,...,Nc (3.27)
90,0 + )‘rlfl,0

5k,l(/\r) = Mn()‘1‘):
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1
W.) = MN. (A.)=—~———~ 3.28

+1 90,0 + )‘rl0,0 ( )

where the mapping index n corresponds to some specific arrangement of the indices (k, l)

in the 2—D weight mask [51”, and the values of g“ and TM can be obtained from their

lexicographical counterparts gij and lij using equation (3.24). The resulting concatenation

M of the components is thus a mapping from R to ENC“. Corresponding to the notation

of section 2.2, we have M = 1 and N 2 NC + 1 for the current adaptive regularization

problem. In addition, each mapping is in the form of a first—order rational polynomial of

AT, the differentiability of which ensures that the weights p“ are trainable. The structure

of the model-based neuron adapted for restoration is shown in Figure 3.2.

f mm)

131:0»)

//////'\)<\/
///T////Vi.-./V‘J
/ / /‘ /

 

Figure 3.2: The model—based neuron for adaptive regularization

To complete the formulation, we define a training set for the current model-based

neuron. Assuming that for a certain region R, in the image lattice, there exists a desired

restoration behavior A171 for each pixel (1'1, Q) E 72,. We can then define the training
11 17:2

set V. as follows

VT = {(Viifl'za Afiifl'z) I (7:1)22) 6 RT} (3.29)

where the input vector ‘71,,” contains the gray-level values of pixels in the Nc-neighborhood

of (731, 1'2). Defining the instantaneous cost function 5,; of the neuron as follows,

5: am? Arr-1,2)? (3.30)
11 i2
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we can then apply steepest descent to modify the value of the regularization parameter

 

 

AT.

_ 6aA,(t + 1) _ A,(t) — "6A. (3.31)

where

agt _ ~d ~‘ . 3(A17i1j2)

3)” — (Avila) A1111“) 8A,. (3.32)

To evaluate the partial derivative in equation (3.32), we first define the following two

quantities

LC LC

5121.15 = Z Z §kfl7i1+k¢2+l (3.33)
k=—L¢l=—LC

~ LC Lc ~

fiim = Z Z lk,n7.-.+k,.-2+z (3.34)
k=—Lcl=—LC

From equation (3.25), the change in neuron output, AIL-1,12, is then expressed in terms of

these quantities as follows,

 

 

Lo Lo ~

Ail-1J2 = Z Z fik,lfii1+k.i2+l +§bihiz

k:—Lc l=‘—Lc

_ _ £;_Lc ZIL=°_LC (£71m + )‘rlk,l)77i1+k,i2+l + bi1,i2

50,0 + Arlen

= _97_j15_jb_ (335)
90,0 + A’I'loao

From this equation, we can evaluate the derivative in equation (3.32)

8(Afiihi2) z: a (_61i1,i2 + Arbvimi+ Sim)

0A. 8A. fiop + Mop
(am, + bi1,i2)lo,0 — flinz‘zfiop (3.36)
 

(570,0 + /\rl~o,0)2

We can see from equation (3.36) that the evaluation of the derivatives depend on variables

which have already been pre—computed for the purpose of the primary restoration. For

example, the weights gm), “(0,0 and the bias him-2 are pre—computed at the beginning of

the restoration process, and the quantities 61,-”, and EM, are already evaluated for the

purpose of determining the instantaneous pixel value change Ail-hi2 in equation (3.25). As

a result, the adaptive regularization does not involve excessive computational overhead.
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The size of the training set V, depends on the extent of the region R, in defini-

tion (3.29). It is possible to define ”R, to include the entire image lattice, which would

amount to a fixed regularization scheme where we will search for the optimum global reg-

ularization parameter value using a single model-based sub-network, but for the problem

of adaptive regularization, the region RT is usually restricted to a subset of the image

lattice, and several such regions are defined for the entire lattice to form an image par—

tition. We associate each such region with a sub-network, the totality of which forms a

model-based neural network with hierarchical architecture. In general, we would expect

the emergence of regional AT values which results in the improved visual quality for the

associated region through the training process. This in turn depends critically on the def-

”.1
inition of our desired output Av,1,i2 in the regional training set and our image partition.

These two issues will be addressed in Sections 3.4 and 3.5.

3.4 Regional Training Set Definition

To complete the definition of the regional training set VT, we should supply the desired

~¢output Av,”-2 for each input vector in”, in the set. The exact value of A174 which
11,12

would lead to an optimal visual quality for the particular region concerned is normally

unknown due to the usually unsupervised nature of image restoration problems. Never—

theless, an appropriate approximation of this value can usually be obtained by employing

a neighborhood-based prediction scheme to estimate A173,,2 for the current pixel. This is in

the same spirit as the neighborhood-based estimation technique widely used in non-linear

filtering applications where a nonlinear function defined on a specified neighborhood of

the current pixel is used to recover the correct gray—level value from its noise-corrupted

value [87] . The nonlinear filters are usually designed with the purpose of noise suppres-

sion in mind. The resulting operations thus have a tendency to over-smooth the edge and

textured regions of the image. Remedies to this over-smoothing problem include various

edge adaptive filtering schemes where the prediction is performed along the current edge

orientation to avoid filtering across the edges [5, 87] . In this work, we would similarly
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adopt two different prediction schemes for the smooth and textured regions and use the

resulting estimated values as the desired outputs for the respective regional training sets.

For combined edge/textured regions, we shall adopt a prediction scheme which empha-

sizes the dynamic range of the associated region, or equivalently, a scheme which biases

towards large values of Avd but at the same time suppresses excessive noise occur-
11,i2’

ring in those regions. For the edge/texture prediction scheme, the following prediction

neighborhood set for each pixel was adopted.

Np:{(k,l):k,l=—Lp,...,0,...,Lp} (3.37)

In addition, we define the following mean gray level value 5,”, with respect to this neigh-

borhood set as follows:
LP

vi1,i2 : —2 2p 77i1+k,i2+l (3.38)

NP Ic=—L,, z=—L,,

where 6,1,1, denotes the gray-level value at (i1, i2) and N1) = (2Lp + 1)2.

To avoid the problem of over-smoothing in the combined edge/textured regions while

suppressing excessive noise at the same time, we have adopted the concept of weighted

order statistic {W03} filter [19, 92] in deriving a suitable desired network output A173,” for

the training set. The set of order statistics corresponding to the prediction neighborhood

~(np)
set can be defined as follows. for the np-t-h order statistic ”i1,2

: P(k,l) E|(k, l) E Np (3.39)

where P : Np —> {1, . . . , Np} is a one-to—one mapping such that the following condition

is satisfied:

621-, s ... 3 «2‘32: 3 ... s 175332 (3.40)

The output of a weighted order statistic filter is defined as the linear combination of the

order statistics
Np

ed . = Z owe("1” (3.41)11,12 i1,i2
npzl

For odd Np, the simplest example of a WOS filter is the median filter [87] where

w(Mp) = 1

WW) = 0 n, aé M, (3.42)
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and

M1, = (3.43) 

Therefore, the WOS filter can be considered as a generalization of the median filter where

the information from all the order statistics are combined to provide an improved estimate

of a variable. In general, for the purpose of noise filtering, the filter weights call) and mm?)

are chosen such that 01(1) z 0 and camp) z 0, since the corresponding order statistics 171(11 ?12

N12)and1111 12 usually represent outliers.

Adopting the value L1, = 1 and N1, = (2 - 1 + 1)2 = 9 as the size of the prediction

neighborhood set , we define the predicted gray level value 17193112 and the corresponding

desired network output A17d according to the operation of a WOS filter as follows:
11 22

~13) ~ =11- ~ <1)- -
~d ”11,12 11,12 11112

1111,12 = ~11) ~ (3.44)
vim) vi1,i2 Z 5i1,i2

~d ~11 ~
Avilflq : Ui1,i2 — vi1:i2 (3'45)

or equivalently
9

= 2 away; (346)
711,21

where

01(3) 2 Loam”) = 0,111, 31$ 3 for 171-1111, < 51-1111

111(7) 2 1,1112%”) 2 0,111, 95 7 for 171-1 1-2 2 17,-1 1-1

The motivation for choosing the respective order statistics for the two different cases is

that, for the case 511 1-1 2 171-1111, we assume that the true gray level value lies in the interval

[171-1112, 171?)1-1] For blurred or partially restored image, this corresponds approximately to

1(15)1-1,17(111191-2] with its endpoints at the median and maximum gray level values.

Nd _,17(5)
111'2 _ ibiz

the interval [17

Within this interval, we cannot choose 11 2 51111-1, as this will result in

excessive smoothing for the combined edge/textured regions. Neither can we choose

17d _ 211(9)1112 11 11, with the corresponding order statistic being usually considered an outlier

which does not accurately reflect the correct gray level value of the current pixel. A

=0.5(17(5) + 17(9)- ), but the presence of the outlier 17(9)possible candidate could be11" 111-1 12 11 1-1 11 12
11,12
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in the linear combination will still result in non—representative predictions, especially for

high levels of noise. To ensure the comparative noise immunity of the resulting estimate

_ ~(7)
_ ”ihizwhile avoiding excessive smoothing, the choice mi 1-? represents a compromise

which offers the additional advantage that the gray level value is among one of those

in the prediction neighborhood set. The adoption of this value thus implicitly imposes

a continuity constraint between the current and the neighboring pixels. The choice of

~d _ ~(3)121-1,i2 — “#2 for the case “11,15 < ”mg 18 Slmflarly Justified.

On the other hand, we should adopt a prediction scheme which biases towards small

~¢values of A121hi2 for the smooth regions to suppress the more visible noise and ringing

there. In view of this, the following prediction scheme is adopted for the smooth regions

«7‘1 = am (3.47)
1.17%.?

A174 = id 4,1,” (3.48)
ll,i2 i1,’i2

This prediction scheme essentially employs the local mean, which serves as a useful in-

dicator 0f the correct gray—level values in smooth regions, as an estimate for the current

gray-level value. Alternatively, it can be viewed as the operation of a filter mask with all

its coefficients being Nip.

The essential difference between the current approach and traditional adaptive non-

linear filtering techniques [87] is that, whereas the traditional filtering techniques replace

the current gray-level value with the above predicted value, the current scheme use this

predicted value as a training guidance by incorporating it as the desired output in the

regional training set. We then apply steepest descent to change the corresponding regional

regularization parameter according to the information in these training patterns. In this

way, both the information of the degradation mechanism (in the form of the model-based

neuronal weights fikJ) and the regional image model (in the form of the regional training

set V,) are exploited to achieve a more accurate restoration.
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3.5 Determination of the Image Partition

Conforming to the above description of an image as a combination of edge/textured and

smooth components, we denote the edge/textured components by frwrf = 1, . . .,Rf

and the smooth components by Bryn, = 1,...,Rb. We further define the following

combinations of these components

j: 2 U5; (3.49)

B = 03% (3.50)

’PF 2 E}Tf,7'f=1,...,Rf} (3-51)

133 = {Brb,rb=1,...,Rb} (3-52)

13R = PFUPB (3-53)

Our partitioning strategy is to first classify each pixel as belonging to the region .7: or B

and then derive the partitions ’PF and ”PB using connectivity criteria. We perform the

preliminary classification by adopting the following local activity measure 613,15 for each

pixel

611,2} : 1n(0i1,i2) (354)

where

1 LI, Lp _ 1

015,12 = (N— Z Z: (17i1+k,i2+l— 17i1,i2)2)5 (3-55)

P k=—Lp zz—Lp

and and is defined in equation (3.38). The logarithm mapping is adopted to approximate

the non—linear operation in the human vision system which transforms intensity values to

perceived contrasts [50]. We then assign the current pixel to either .7: or 8 according to

the value of (Sim-2 relative to a threshold T

.7: = {(i1,i2) I (Sibiz > T} (3'56)

B = {(ihiz) I 61.1% S T} (3.57)

The threshold T is usually selected according to some optimality criteria based on the

particular image content. In this work, we have chosen T = T*, where T* is the threshold
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which minimizes the total within-class variance 92 of (Sim-2, i.e.,

T* = arg mTin 92(T) (3.58)

where

2 1 2 1 2
Q : |——| Z (01'1”;2 ‘— 03) + W Z (0i1,i2 — 0.7:) (3'59)

(i1,i2)EB (i11i2)€f

and

1
0'3 2 TB— 2 Gibb (3.60)

I (i1,i2)EB

1
0’}: = W Z 011,1‘2 (3.61)

(i1,i2)€.7'-

The partitions 73F and P3 are in turn extracted from the sets .7: and B by considering

each element of ”PF or P3 to be a maximally connected component of .7: or B. To be more

precise, if we adopt the usual 8—path connectivity relation C8 as our connectivity criterion

in the case of f [36], then the partition ’PF will be given by the quotient set f/Cg of .7:

under the equivalence relation Cg. The partition P3 is similarly defined.

In View of the simplicity of this preliminary segmentation scheme and the fact that

the relative proportion of the two region types would vary during the course of image

restoration, we should adopt some re-segmentation procedures throughout the restoration

process to account for this variation. In this work, we have used a modified version of the

nearest neighbor classification procedure [103] to perform the re-assignment, and we have

restricted the re—assignment to pixels on the region boundary. The following neighboring

R .
1111 izb2

region set C PR is defined for each such boundary pixel

Mia-b2 = {73mg = 1, - - .,Q} (3.62)

where each region ”IL, in the set is adjacent to the boundary pixel (ib1,ibz), or more

precisely, there exists at least one pixel in each Rq which is in the 8-neighborhood of

(ibl, ibg). Corresponding to each Rq we can define the following regional activity Eq

_ 1
0q=|—7-z—| Z aim-2 (3.63)

‘1 (i1,i2)ERq
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where 01“,, is defined in equation (3.55). With the definition of these variables, we can

proceed with the re—classification of the boundary pixels by adopting the following nearest

neighbor decision rule for (ibl, ibg)

 (iblu 2lb?) 6 Rq" if laiblailfl _ 64" < laibifl'bz _ qua q = 1a ' ' ‘ i Q (3'64)

The application of this decision rule is manifested as a continual change in the boundary

of each region in such a way as to increase the homogeneity of the activities of the regions.

Finally, with the full determination of the various texture and smooth components in the

image by the above scheme, we can apply the steepest descent rule (3.31) to each regional

regularization parameter A, and using the prediction schemes for the respective regions

to achieve adaptive regularization.

3.6 Experimental Results

The current algorithm was applied to a number of images under various conditions of

degradations. The batch of images, which includes one depicting a flower, a woman’s face

(Lena) and an eagle respectively, are particularly relevant for testing the efficacy of the

current scheme, as they exhibit a combination of smooth backgrounds together with a

wide variety of textural patterns. For example, in the Lena image, we can contrast the

relatively fine textures in the feathers on the hat with the almost featureless background

and face, and on the flower image, we can compare the smooth petal regions with the

textured region consisting of the stamen. These images are shown in Figure 3.3.

We applied progressive levels of degradation to the fiower’s image to evaluate the

robustness of the current algorithm. The different degrees of degradation applied include,

in increasing order of severity, a 5 X 5 Gaussian PSF (point spread function) with standard

deviation ag equals 1 and with Gaussian noise at the level of 30dB BSNR (Blurred Signal

to Noise Ratio) [55, 67] added, a 5 x 5 uniform PSF with 30dB level noise added, and a 5

x 5 uniform PSF with 20dB level noise added, representing the most severe of the three
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Figure 3.3: Images used in the adaptive regularization experiments. (a) Flower image (b)

Lena image (c) Eagle image
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conditions . The blurred signal to noise ratio is defined as follows

2

BSNR = lolog10 E (3.65)
0%

where afix is the variance of the blurred image, and 0,2, is the variance of the additive

noise.

In addition, we have applied the 5 X 5 uniform PSF with 30dB noise to the other two

images to evaluate the algorithm’s performance for images with different texture/background

compositions.

We first applied the algorithm to the flower image under the 5 x 5 Gaussian blur. The

results are shown in Figure 3.4 . For the purpose of comparison, we have included the

results of the non—adaptive version of the Hopfield network image restoration algorithm

proposed by Zhou et al [118]. The degraded image is shown in Figure 3.4(a), and the

non-adaptive image restoration results are shown in Figures 3.4(b) and (c) respectively.

For Figure 3.4(b), we have used a small regularization parameter /\ = 0.0005 for the

whole image. We can notice the noisy appearance of the background regions due to the

inadequate suppression of noises in those regions, although the effect is not serious due

to the narrow width of the PSF which makes the restoration problem only moderately

ill—conditioned. In Figure 3.4(c), we have increased the global regularization parameter

to A = 0.004 to suppress the noises and at the same time preserve the features. The

adaptive result using the current algorithm is shown in Figure 3.4(d). Comparing this

with the under-regularized case in Figure 3.4(b), we can observe that, with the adoption of

multiple regularization parameters and the optimization of their values using the current

algorithm, the noises in the smooth regions can be adequately suppressed. However,

for the current case, the non-adaptive result in Figure 3.4(0), where the regularization

parameter is judiciously chosen, is comparable with the adaptive result due to the narrow

width of the PSF.

The results for the 5x5 uniform PSF with 30dB noise added are shown in Figure 3.5.

This PSF characterizes a more severe degradation, which is evident from the appearance

of the degraded image in Figure 3.5(a), and the inversion of this degradation represents
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(C) (01)

Figure 3.4: Restored Flower images (5 x 5 Gaussian blur, 30dB BSNR). (a) Blurred

image. (b)-(d) Restored images using (b) non-adaptive Hopfield restoration algorithm

(small A). (c) non-adaptive Hopfield restoration algorithm (optimally adjusted A by user)

((1) HMBNN.
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(C) (d)

Figure 3.5: Restored Flower images (5 X 5 uniform blur, 30dB BSNR). (a) Blurred image.

(b)-(d) Restored images using (b) non-adaptive Hopfield restoration algorithm (small

A). (c) non-adaptive Hopfield restoration algorithm (optimally adjusted A by user). (d)

HMBNN.
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a more ill-conditioned problem due to the appearance of periodic zeros in the Fourier

transform of the PSF [3]. This is immediately apparent from the increased levels of

amplified noises in the smooth regions for the non-adaptive restoration results using a

small global /\ (A = 0.0005) in Figure 3.5(b). In Figure 3.5(c), we have set /\ = 0.004

in order that the background noise is effectively suppressed While the image features are

adequately preserved. However, we can notice that, due to the non-adaptive nature of the

process, some residual noises remain in the smooth regions while blurring of the edges and

textures can be observed. Comparing these images with HMBNN result in Figure 3.5(d),

we can notice that the background noise is more effectively suppressed. Some of the edges

and textures are correctly regularized while some of them appear blurred. These problems

will be further discussed in chapters 5 and 6.

The results for the 5x5 uniform PSF with 20dB BSNR are shown in Figure 3.6 .

Whereas the description for the images in Figure 3.5 is mostly applicable to the corre-

sponding images in Figure 3.6 , the difficulty in restoring the images under this PSF is

apparent. One can notice the further increased noise levels in the smooth regions for

the under-regularized case in Figure 3.6(b), and any attempts to suppress these increased

noise levels will result in blurring of the image features (Figure 3.6(c)), while the level of

residual noises in the background is still significant . These can be compared with the

restored image using the current algorithm in Figure 3.6(d), which results in a reasonable

appearance for the image even under the current level of severe degradation.

However, we can notice a number of problems with our current approach in Fig—

ure 3.6(d). Although most of the background noises are effectively removed compared

With the non-adaptive approaches, we can notice some noises around the edges, and some

smooth blotches in the textured area due to the classification of some weak textures as

smooth regions. These are also present in the 30dB case in Figure 3.5 as well but to a less

serious extent. These problems and their solutions will be further discussed in chapters 5

and 6.

It is not sufficient just to employ adaptive processing, but that correct segmentation

of the image into smooth and edge/textured regions, and assignment of the appropriate

62



 
(e) (0

Figure 3.6: Restored Flower images (5x5 uniform blur, 20dB BSNR) (a) Blurred im-

age. (b)-(f) Restored images using (b) non-adaptive Hopfield restoration algorithm (small

A). (c) non-adaptive Hopfield restoration algorithm (optimally adjusted A by user) ((1)

HMBNN (e) Decreased A from HMBNN value in edges/textures (f) Increased /\ from

HMBNN value in edges/textures. 63



parameter values to each region, are required to obtain the best visual appearance for

the restored image. To illustrate this point, we have included examples of adaptively

regularized images which do not satisfy the above conditions. In Figures 3.6(e) and (f),

we perturb the regularization parameter values assigned to the combined edge/textured

regions by the current algorithm. In Figure 3.6(e), the parameter is adjusted such that

it is smaller than the one assigned by the network. We can immediately notice the

noisy appearance around the edges and in the textured regions. Although the noises are

restricted to only a small area, they severely interfere with the perception of the overall

image. On the other hand, if we adjust the parameter in the edge/textured regions

such that its value is greater than the originally assigned one (Figure 3.6(f)) , we can

notice the blurring of these regions. These illustrate the importance of choosing the

correct parameter values, which is achieved by the current algorithm, even if adaptive

regularization is adopted.

 

Figure 3.7: Evolution of the segmentation map of flower during the restoration process

(a) Initial segmentation (b) Final segmentation

In Figure 3.7 , we illustrate the evolution of the boundary of each region, which was

continually updated using the nearest neighbor decision criterion (3.64) throughout the

restoration process. Starting from the initial segmentation in Figure 3.7(a), the boundary

of each region gradually evolves to the final partitions in Figure 3.7(b). Comparing the
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partition in Figure 3.7(b) with the initial partition, we can immediately note the closer

resemblances of the final partitions to the original images. We can particularly note the

more intricate borders in the final partitions resulting from the continual refinement of the

boundary pixel classification. In this way, the final segmentation gives a more accurate

description of the image contents in a perceptual sense.

The evolution of the A, values across the various regions are shown in the images in

Figures 3.8(a) and ((1). Starting from a uniform A value across the whole image, the

parameter values evolve differently in each region as depicted from Figures 3.8(a) to (d).

It can be seen that the regularization parameters decay to small values (corresponding

to darker pixels on the diagram) at the textured regions, bringing out the details while

increasing towards large values ( corresponding to brighter pixels) for smooth regions to

achieve noise suppression. Despite the piecewise constant appearance of the diagrams,

there exists small local variations of A, in each region due to our implementation of the

parameter update as a stochastic gradient procedure [41], which serves to adapt to the

local peculiarities. In general, the final distribution diagrams for A, corresponds closely

to our desired distribution for the images and are directly responsible for the improved

visual qualities.

We have also applied the current algorithm to other images. The results for the image

Lena and an image depicting an eagle, under 5 X5 uniform blur with 30 BSNR additive

noise, are shown in Figures 3.9 and 3.10. Similar comments for the flower image can be

applied to these restoration results. For example, in Figure 3.9(d) where the adaptive

result for the image Lena is shown, we can observe that the smooth regions are correctly

regularized compared with the non-adaptive approaches, but the edges are slightly noisy

and there are smooth blotches in the textured regions. These problems will be addressed

in chapters 5 and 6. Similar comments also apply to the adaptively regularized eagle

image in Figure 3.10(d).

Figure 3.11 shows the A-distribution maps for the three images under 5 x5 uniform

blur at different levels of additive noise. Figures 3.11(a) and (b) ShOW the A-map of the

restored flower image under 30dB BSNR and 20dB BSNR respectively, Figures 3.11(c)
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(C) (d)

Figure 3.8: Evolution of the regional regularization parameters in the flower image during

the restoration process (a)-(d) A-map (a) iteration 1 (b) iteration 5 (c) iteration 10 ((1)

final map.
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(C) (01)

Figure 3.9: Restored Lena images (5 x 5 uniform blur, 30dB BSNR). (a) Blurred image.

(b)—(d) Restored images using (b) non-adaptive Hopfield restoration algorithm (small

A). (c) non-adaptive Hopfield restoration algorithm (optimally adjusted A by user) (d)

HMBNN.
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(C) ((0

Figure 3.10: Restored Eagle images (5 x 5 uniform blur, 30dB BSNR). (a) Blurred

image. (b)—(d) Restored images using (b) non-adaptive Hopfield restoration algorithm

(small A). (c) non-adaptive Hopfield restoration algorithm (optimally adjusted /\ by user)

(d) HMBNN.
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and (d) show the corresponding maps for Lena, and Figures 3.11(e) and (f) show the

corresponding maps for eagle. Apart from the observation that the A values are correctly

assigned in each map such that the smooth regions are assigned large values and the

combined edge/texture regions are assigned small values, there exists distinct differences

between the maps corresponding to 30dB BSNR additive noise and those corresponding

to 20dB BSNR. Generally, the values of the regularization parameters are greater for the

20dB cases than the 30dB cases, which reflects the higher levels of noise in the former

cases and the greater necessity for smoothing in the background regions by adopting larger

A values.

 

Image name,PSF/noise level X; AS
 

 

Flower, Uniform PSF/30dB 0.000392 0.0373
 

Flower, Uniform PSF/20dB 0.00196 0.0678
 

 

Lena, Uniform PSF/30dB 0.000349 0.0300
 

Lena, Uniform PSF/20dB 0.00171 0.0558
 

 

Eagle, Uniform PSF/30dB 0.000426 0.0649
     Eagle, Uniform PSF/20dB 0.00269 0.0989
 

Table 3.1: Average regional regularization parameter values for the two region types

In Table 3.1 , we have listed the average regularization parameter values XET for the

combined edge/textured regions and X5 for the smooth regions. These are average values

across all the regions of a specific type and weighted by the region areas. This is useful in

comparing the relative magnitudes of parameter values across different noise levels, and

especially for the values in the combined edge/textured region which cannot be readily

perceived from the A- maps. The values in Table 3.1 show that, whenever the level of the

additive noise increases, the regularization parameters in different regions are assigned

larger values by the algorithm. This is reasonable due to the more urgent need of noise

suppression compared with feature enhancements in the more severely degraded images.

70



 

(a) (b)

Figure 3.12: Degraded images (5 x 5 uniform blur, 20dB BSNR). (a) Lena (b) Eagle

Although the current algorithm gives a reasonable appearance to the restored flower

image even for the more severely degraded case, some of the problems become apparent

when the current algorithm is applied to other examples of severely degraded images.

These can be seen in Figures 3.13(a),(c) and (e), where the current algorithm was applied

to the images flower, Lena and eagle under 5 X 5 uniform blur with 20 dB BSNR addi—

tive Gaussian noise respectively (The degraded image of flower at 20dB BSNR is shown

in Figure 3.6, the degraded images of Lena and eagle at 20dB BSNR are shown in Fig-

ures 3.12(a) and (b) respectively). Although the appearance of the restored flower image

is reasonable (Figure 3.13(a)) , we can nevertheless perceive slight distortion around the

edges of the petals due to the amplified noises. This distortion is more apparent in the

Lena image (Figure 3.13(c)) , and is the result of its textured area (feathers on Lena’s

hat) being connected to some of the edges as a single region as is seen in its A—map.

As a result, essentially the same parameter value is assigned to both types of features.

Whereas this particular parameter value is appropriate for the textured area as seen from

the image, the same value results in a noisy appearance for the edges. The same problem

is also observed in the eagle image (Figure 3.13(e)).

In other words, the current scheme of generating the predicted gray level value using
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(e) (f)

Figure 3.13: Restored images (5 x 5 uniform blur, 20dB BSNR). (a) Flower (edge—

oriented prediction) (b) Flower (texture-oriented prediction) (0) Lena (edge-oriented pre—

diction) (d) Lena (texture-oriented prediction) (e) Eagle (edge—oriented prediction) (f)

Eagle (texture-oriented prediction). 72



~(3)~ 7 ~ 2 .
v( ) when 011,12 2 ”(i1,i2)a and usmg vim-2i1,i2 when 7711M < 561,15), results in a regularization

parameter value which is more appropriate for textures than for edges. To allow increased

level of smoothing for the edges, the only alternative choice for generating the desired

network output is to adopt the pair of order statistics one step closer to the median,

~(6) ~(4)1.e., vim-2 and 1111,12. The median itself is not used as the predictor for the edge/textured

regions, as its value is usually close to the local mean for blurred or partially restored

image, and its adoption will cause over-smoothing of the image features. Therefore, our

alternative scheme can be summarized as follows:

173,2 = 1:23 1?” < E” (3.66)
’Ui1,i2 > Ui1,i2“my _

We will hereafter refer to this modified prediction scheme as the edge—oriented prediction

scheme, and the original as the texture—oriented prediction scheme. As its name implies,

we can expect that the resulting regularization parameters under the modified prediction

scheme will be more appropriate for edges than for textures, in contrast with the original

prediction criterion which is more suitable for textures. The restoration results for this

alternative scheme are shown in Figures 3.13(b), (d) and (f). Although the noises in

the vicinity of the edges are mostly suppressed in these images, we can notice that the

textured areas become over regularized.

In addition to these , we can notice patches of blurred regions among the textured

areas in the Lena image. This is due to the need for the algorithm to increase the area of

the smooth regions to more effectively suppress the increased level of noises. However, this

also leads to parts of the less prominent textured sub-regions being classified as smooth

regions, as is seen in the A-map of Lena. The resulting appearance of blurred patches

lends an unnatural appearance to the overall textured area. This problem is also present

in the flower image but to a less serious extent.

In View of these problems, it is clearly necessary to derive a new classification pro-

cedure which can distinguish between edges and textured areas in an image. We can

then apply different regularization strategies to each of these types of features according

to their noise masking capabilities. Conventional classification approaches based on the
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local image variance or the edge magnitudes usually cannot distinguish these two fea-

ture types due to their similar magnitudes of gray level variations. Previous attempts

have been made to extract the textured areas in an image [66] , but this requires the

evaluation of multiple image attributes and the characterization of particular intervals of

each attribute corresponding to textures. In Chapter 5, we have derived a new scalar

measure, the Edge—Texture Characterization (ETC) measure, which is capable of distin—

guishing between edges and textured regions using a scalar value alone. In Chapter 6, we

apply this measure in a fuzzified version of the current HMBNN which adopts different

regularization strategies for edges and textures, thus alleviating the problem previously

described. The remaining problem of blurred patches appearance in the textured area

clearly requires an alternative characterization of the textured areas independent of the

local image variances on which the segmentation of the image are based. In Chapter 5,

we have derived a textured area extraction algorithm based on the ETC measure which

approximately locates the textured regions within the image. This texture map can be

used as a complementary source of information for the proper regularization of especially

those less prominent areas of textures

3.7 Summary

An alternative formulation of the adaptive regularization problem in image restoration

was proposed in the form of a model—based neural network with hierarchical architecture

(HMBNN) operating on non-overlapping regions on the image. Based on the principle of

adopting small parameter values for the textured regions for detail emphasis while using

large values for ringing and noise suppression in the smooth regions, we have developed

an alternative viewpoint of adaptive regularization which centers on the concept of reg-

ularization parameters as model—based neuronal weights. From this we have derived a

stochastic gradient descent algorithm for optimizing the parameter value in each region.

In addition, incremental re-definition of the various regions using the nearest neighbor

principle is incorporated to reverse the effects of initial inaccurate segmentation.
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The current scheme was applied to a number of images containing various combinations

of smooth regions, textures and edges. The experimental results correspond closely to

our original expectation in that the algorithm automatically adopts small regularization

parameters for the detailed regions and large parameter values for the comparatively

smooth background.

With the establishment of this new framework of adaptive regularization, various pos—

sibilities for further research naturally suggest themselves. For example, we have treated

the edge and textured regions as equivalent in this work, but the noise masking capabili-

ties of these two types of regions are in effect very different and is particularly noticeable

under high levels of noise. As a result, it would be beneficial to separate these two region

types and adopt different regularization strategies for each of them. This is achieved

in Chapter 5 where the ETC measure, which is capable of distinguishing between pixel

configurations corresponding to edges and textures, is introduced. This is incorporated

in Chapter 6 into the present HMBNN framework to result in a fuzzified version of the

current network, which is capable of applying different levels of regularization to edges

and textures, and thus alleviating many of the problems described in the experimental

section. In the meantime, we explore the possibility of applying the current HMBNN

framework to the problem of edge characterization and detection in the next Chapter.
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Chapter 4

Application of HMBNN to Edge

Characterization

4. 1 Introduction

In this Chapter, we investigate the feasibility of employing human-defined features as

training inputs for neural networks specially designed for feature detection. Specifically,

we have investigated the efficiency of a model-based neural network with hierarchical

architecture [21, 65, 70] in acquiring accurate characterization of what humans regard

as features through a Human—Computer Interaction (HCI) approach, and in generalizing

this acquired knowledge to novel features which are equally significant but have not been

explicitly specified in the training data.

Edge characterization constitutes an important sub-branch of feature extraction where

the primary aim is to detect those pixels in an image with specific types of changes in

intensities [36, 50] . In view of this, the process is usually divided into two stages: one,

the detection of specific types of change; two, a decision about whether they are to be

accepted as relevant features to a given problem domain. Typical examples of difference

measure used in the first stage include the Roberts operator, the PreWitt operator and

the Sobel operator [36, 50]. The second stage is defined by a decision process on the

resulting edge magnitudes. This work is particularly concerned with this latter aspect of
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edge detection.

In simple edge detection, a global threshold on the edge magnitudes is usually inter-

actively chosen to produce a binary image specifying the edge locations. The result is

usually not satisfactory due to the overlapping of the edge magnitude ranges of impor—

tant features and strong background noise. More sophisticated approaches, including the

Canny edge detector [22] and the Shen—Castan edge detector [98], employ an expanded

threshold set in the so—called hysteresis thresholding operation, where a significant edge

is defined as a connected series of pixels with the edge magnitude of at least one member

exceeding an upper threshold, and with the magnitudes of the other members exceeding

a lower threshold. In addition, the requirement for exact edge locations usually requires

some form of Laplacian of Gaussian (L0G) filtering [74] to detect the zero crossings, or

analogous filtering operations in which more parameters have to be specified to determine

the proper image resolution at which the edge detection operation is to take place. This,

together with the previous thresholding parameters, gives rise to a large variety of possible

parameter combinations, each of which will result in a very different appearance for the

final edge map.

In this Chapter we have explored a neural computing approach to estimating such

parameters to fit human performance. It is our anticipation that still more parameters

will be required for future edge detection operations. In View of this, a logical choice for

a proper representation of these parameters would be in the form of connection weights

for a neural network. To do this, we have developed a model-based neural network for

edge characterization which is based on the hierarchical architecture proposed by Kung

and Taur [65]. In this case the connection weights of the network encode both the edge-

modelling parameters in the high-pass filtering stage and the thresholding parameters

in the decision stage. In other words, the input to the network is the original gray level

image, and the output is a binary image which specifies the location of the detected edges.

This is in contrast with previous uses of NN for edge detection [17, 16, 100] , where the

primary motivation is to generalize the traditional differencing operators by replacing

them with NN. As a result, the emphasis of their approaches is on the learning of the
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filter coefficients in the first filtering stage, and the thresholds for the final decision stage

are usually chosen heuristically.

4.2 Network Architecture

The proposed architecture is composed of a hierarchical structure consisting of clusters of

neurons forming sub—networks, with each neuron of a sub-network encoding a particular

subset of the training samples. In the training stage, each sub—network encodes different

aspects of the training set, and in the recognition stage an arbitration process is applied

to the outputs of the various sub-networks to produce a final decision.

The motivation for using this HMBNN architecture is that, in edge detection, it would

be more natural to adopt multiple sets of thresholding decision parameters and apply the

appropriate set of parameters as a function of the local context, instead of just adopting

a single set of parameters across the whole image as in traditional approaches.

The HMBNN architecture thus constitutes a natural representation of the above adap-

tive decision process if we designate each sub—network to represent a different background

illumination level, and each unit in the sub-network to represent different prototypes of

edge-like features under the corresponding illumination level. The architecture of the

feature detection network is shown in Figure 4.1. The internal representation scheme for

edge information at the various hierarchical levels are explained below.

4.2.1 Characterization of Edge Information

For illustrative purposes we consider a 3x3 moving window over the image. Representing

the gray-level values in the window W as a vector x = [$1 . . . x9]T E R9, and defining

the mean of these values as follows,

(
0
|
:
—
l

T: Elm” (4.1)

we summarize the gray—level information in the window in terms of a vector m 2 [m1 m2]T E

R2, which characterizes the two dominant gray level values within the window and is de-
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Figure 4.1: The architecture of the HMBNN edge detector

M1 2 {xn : xn < E} (4.2)

M2 = {:L‘n : 11:” 2 E} (4.3)

l

|M1| . a.
1

|M2| anM2

m“ — W + m (4.6)
2

We associate each sub-network Gr, 7‘ = 1, . . . , R with a prototype background illumination
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gray-level value gr (the choice of the appropriate number of sub-networks R will be dis-

cussed in Section 4.4.3). We then assign all those 3 x 3 Windows in the image with their

background gray—level values closest to gr to the sub-network GT. Specifically, a particular

window W in the image, with its associated parameters m, m1,m2 defined in Eqs (4.2)



to (4.6) , is assigned to the sub-network GT. if the following conditions are satisfied

9r* 6 [mla m2] (4.7)

 
lm—gT* < lfi—gr| r:1,...,R,r¢r* (4.8)

where [Tn/1,7712] is the closed interval with m1, m2 as its endpoints (this is in contrast with

the column vector representation of m, which we denote as [m1 m2]T). In this way, we

partition the set of all 3 x 3 windows in the image into Clusters, with all members in a

single cluster exhibiting similar levels of background illumination. Hereafter we denote the

conditions in (4.7) and (4.8) collectively as x —> G,“ The operation of this sub-network

assignment process is illustrated in Figure 4.1.

4.2.3 Neuron Nrs in Sub-Network GT

Each sub-network G, contains S neurons N”, s = 1, . . . , S, with each neuron encoding

the various different edge prototypes which can exist under the general illumination level

9,. We associate each neuron with a weight vector W” = [111,571 wm,2]T E R2, which

serves as a prototype for the vector m characterizing the two dominant gray—level values

in each 3 x 3 window W. We assign a certain window with corresponding vector In to

the neuron NW. if the following condition is satisfied

  
<||m—Wrs|| s=1,...,S,s;és* (4.9)

Hm “ WTS"

In this work, we have chosen S = 2 in order that one of the neurons encodes the prototype

for weak edges and the other encodes the prototype for strong edges. We designate one

of the weight vectors W”, s = 1, 2 as the weak edge prototype wf. and the other one as

the strong edge prototype w“; according to the following criteria:

l _
0 WT — Wm” where s; = arg min3(w,5,2 — 112ml)

0 Wfi 2 Wm“, where s” = arg maxs(wrs,2 — 112ml)

Given the weak edge prototype wi = [111531 w£,2]T , the measure (wig —w£,1) plays a similar

role as the threshold parameter in conventional edge detection algorithms in specifying the
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lower limit of visibility for edges, and is useful for identifying potential starting points in

the image for edge tracing. The operation of the neuron assignment process is illustrated

in Figure 4.2.

  Pre-processing  

Figure 4.2: The architecture of a single sub—network Gr

4.2.4 Dynamic tracking neuron Nd

Independent of the neuron clusters GT and N”, we associated a dynamic tracking neuron

Nd with the network. This neuron is global in nature in that it does not belong to any

of the sub-networks GT, and that all of the sub-networks can interact with this particular

neuron. Similar to the neurons N” in each sub-network GT, the dynamic neuron consists

of a dynamic weight vector Wd 2 [wd,1 wd,2]T E R2. In addition, it consists of a scalar

parameter gd which is analogous to the illumination level indicator gr of each sub—network.

Thus this particular neuron takes on both the characteristics of a sub-network and a

neuron. The structure of the dynamic tracking neuron is shown in Figure 4.3.

The primary purpose of this neuron is to accommodate the continuously varying char-

acteristics of an edge as it is being traced out in the recognition phase. As opposed to

the usual practice of varying the neuronal weights during the training phase, this neuron

is inactive during the acquisition of the edge configurations. It is only during the recog—
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Figure 4.3: The structure of the dynamic edge tracking neuron

nition phase and upon the detection of a primary edge point, which is a comparatively

prominent image feature location (the exact definition is given in a later section), that we

dynamically vary the weight vector W4 and illumination level indicator 9,1 of this neuron

to trace out all those secondary edge points connected to the primary edge point. The

detailed operation of this neuron is described in a later section.

4.2.5 Binary edge configuration

Suppose that the vector m for the current window W is assigned to neuron N” with

weight vector W”. We can define the function Q : R9 x R2 —> B9 ,where B = {0,1},

which maps the real vector x E R9 representing the gray-level values of the current

window to a binary vector b = Q(x,wrs) = [q(x1,wrs) . . . q(a:9,w,s)]T 6 B9, in terms

of the component mapping q : R x R2 —> B as follows:

0 if l-Tn - wrs,1| < lmn - wrsfll

q($n7 Wrs) =
(4.10)

1 if imn _ wrs,1| Z ‘33” _ wrs,2l

The binary vector b assumes a special form for valid edge configurations. Some of the

possible valid edge configurations are shown in Figure 4.4.
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Figure 4.4: Examples of valid edge configurations

During the network training phase , we acquire all the human-specified valid edge

configuration patterns in a process to be described in a later section. We will store all

these patterns in an edge configuration set C Which forms part of the overall network.

A distinguishing feature of the set C is that it is closed under an operation R%, which

permutes the entries of a vector b E B9 in such a way that, when interpreted as the entries

in a 3 x 3 window7 R%(b) is the 45" clockwise rotated version of b. This operation is

illustrated in Figure 4.5. The purpose of imposing this structure on C is that the edge

configuration in the training image may not exhibit all of its possible rotated versions, so

that the above constraint can facilitate the detection of those rotated edge configurations

not present in the training set.
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Figure 4.5: Illustrating the operation 12%

4.2.6 Correspondence with the General HMBNN architecture

The current edge characterization network has a direct correspondence with the gen-

eral architecture described in Chapter 2 as follows: the sub—networks GM?" 2 1,. . .,R

can be directly associated with the sub-networks in the general model, and the neurons

NmHST : 1,. . .,ST are associated with those within each sub-network in the general

model, with S, = 2 for all r in the current application. Due to our implementation of

competitive learning at both the sub-network and the neuronal levels, it belongs to the

class of subcluster hierarchical networks as described in Chapter 2.
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Instead of embedding a low—dimensional weight vector within a high-dimensional

Space as in the network in Chapter 3, we have instead mapped the comparatively high-

dimensional input vector x into a low-dimensional input In which characterizes the two

dominant gray level values within a local window of pixels. In other words, we adopt the

input-parameterized model-based neuron in Chapter 2 with the mapping ’P : R9 —> R2,

defined such that,

m = ’P(x) (4.11)

Despite the above correspondences, there are slight differences between the original formu—

lation of the subcluster hierarchical structure in [65] and the current edge characterization

network structure. In the original network, the sub-network output ¢(x,wr) is directly

substituted by the neuron output of the local winner as follows

¢(x,w,) E ¢T(x,ws*) (4.12)

where 3* is the index of the local winner, and 1/2T(x, Wy) is the local neuron output of the

winning neuron.

In the current network, on the other hand, the competition process at the sub—network

level is independent of the corresponding process at the neuronal level, and is of a very

different nature: the competition between the sub-networks is specified in terms of the

conformance of the current local illumination gray—level value with one of the prototype

background illumination levels, i.e., a comparison between scalar values. The competition

at the neuronal level, however, involves the comparison of vectors in the form of two-

dimensional edge prototypes existing under a particular illumination gray—level value. As

a result, the sub—network outputs and the local neuron outputs are independently specified

at the two hierarchical levels. At the sub-network level, the following sub-network output

is defined for the background illumination gray level values:

Mm, gr) = I‘m‘ - grl (4-13)

At the neuron level, the following local neuron output is defined for the edge prototype

vectors:

¢r(ma W”) : ”m _ WM“ (4'14)

84



4.3 Network Training

The training of the network proceeds in three stages: in the first pass, we determine

the prototype illumination level 9,, r = 1,. . . , R for each sub-network G, by competitive

learning [41, 60]. In the second stage, we assign each window W to its corresponding sub-

network and then determine the weight vectors w”, again using competitive learning. In

the third stage, we assign each window to its corresponding neuron in the correct sub-

network, and extract the corresponding binary edge configuration pattern b as a function

of the winning weight vector Wm. We apply the operation Ri" successively to b to obtain

the 8 rotated versions of this pattern, and insert these patterns into the edge configuration

memory C.

4.3.1 Determination of gr for sub-network Gr

Assuming that the current window with associated parameter Tn‘ is assigned to the sub-

network G, according to the conditions in (4.7) and (4.8) . Using competitive learning,

we update the value of 9, using the following equation:

gr(t + 1) = 9.0?) + new - gr(t)) (4-15)

The learning stepsize 77(t) is successively decreased according to the following linear sched-

ule

W + 1) = n<o><1 — ,3) (4.16)
f

where tf is the total number of iterations.

4.3.2 Determination of WT, for neuron Nrs

In the second stage, we assume that the current window with associated feature vector

m has been assigned to the neuron N,s within the sub-network 0,. Again, employing

competitive learning, we can update the current weight vector W” using the following

equation

Wm(t + 1) = wm(t) + n(t)(m — w,s(t)) (4.17)
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where the stepsize 77(t) is successively decreased according to Eq (4.16).

4.3.3 Acquisition of valid edge configurations

In the third stage, after determining the background illumination levels 9, for the sub-

networks and the weight vectors W,s for all the neurons, we once again assign all the

3 X 3 windows to their corresponding sub—networks and the correct neurons Within the

sub-networks. Assuming that the current window is assigned to neuron N,S within sub-

network G,. We can transform the current window W with gray-level vector x E R9 into

a binary edge configuration vector b E B9 according to equation (4.10):

b = Q(x,wrs) (4.18)

where W” is the associated weight vector of N”. The binary vector b is thus a human—

specified valid edge configuration and is inserted into the valid edge configuration set C.

To satisfy the requirement that the set C be closed under the operation R%, we generate

eight edge configurations bj, j = 0, . . . ,7 using R§ as follows

b0 = b (4.19)

b,+1 = R§(bj) j=0,...,6 (4.20)

and insert all eight patterns into the configuration set C.

4.4 Recognition Phase

In the recognition phase, the network is required to locate all those pixels in a test image

with similar properties as the acquired feature prototypes - thus testing the generalization

capability of the network. This recognition phase proceeds in two stages. In the first

stage, all pixels in the test image with high degree of conformance with the acquired

edge prototypes are designated as primary edge points. This is analogous to the stage of

hysteresis thresholding in conventional edge detection algorithms where we locate those

edge points with their edge magnitudes greater than an upper threshold. In the second
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stage, starting from the high conformance edge points, we apply a recursive edge tracing

algorithm to locate all those pixels connected to these edge points satisfying a relaxed

conformance criterion, which are the secondary edge points. This is analogous to the

hysteresis thresholding operation where we specify a lower threshold for all those edge

points connected to those points with edge magnitudes above the upper threshold.

4.4.1 Location of primary edge points

In this first stage, we inspect all 3 x 3 windows in the test image and designate all those

windows with corresponding parameters m, m1, m2 as primary edge points, if the following

conditions are satisfied

(p1). x —> G, (refer to conditions (4.7) and (4.8)) for some 7".

(p2). m2 — m1 2 “’52 — wil, where W5. is the weak edge prototype vector of GT.

(p3). b = Q(x,w,3) E C, where W” is the weight vector associated with the assigned

neuron for x.

Condition (p1) specifies that the background illumination level value of the current win-

dow should match one of those levels associated with a sub-network. Condition (p2)

ensures that the magnitude of gray-level variation, which is characterized by the differ-

ence m2 — m1, is greater than the corresponding quantity of the weak edge prototype

of the assigned subnetwork. Condition (p3) ensures that the binary edge configuration

corresponding to the current window is included in the edge configuration memory, 0, of

the network.

4.4.2 Location of secondary edge points

At this stage, we utilize the dynamic tracking neuron Nd associated with the network

to trace the secondary edge points connected to a primary edge point. The weights of

the tracking neuron are initialized using the relevant parameters m’l’, m3 and 7777” of the
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current window W containing the detected primary edge point.

wd,1(0) = m’f (4.21)

wd,2(0) = m; (4.22)

yam) = mp (4.23)

where Wd 2 [wdg wd,2]T is the weight vector of the dynamic neuron and gd is a local

illumination level indicator which keeps track of the varying gray-level values as the current

edge is being traced. As mentioned above, both of them are dynamic quantities such that

their values are continually updated during the recognition phase rather than the training

phase. We have adopted this approach since during the tracing of an edge, although the

primary edge point and its associated secondary edge points may reasonably conform to

a particular edge prototype in the trained network, there will inevitably be deviations,

especially when the network is applied to a test image which it has not been trained

on before. In these cases, the weights of the dynamic neuron will serve as a specialized

edge prototype as distinguished from the general edge prototypes represented by the

sub—networks and neurons of the original network. This is especially important for the

accurate conversion of the gray level values x of the current window W into a binary

edge configuration b to be matched against the valid configurations in the edge pattern

memory C.

After the proper initialization of the dynamic neuron, we apply a recursive edge tracing

algorithm to locate all those pixels connected to the primary edge points by recursively

checking a specific set of secondary edge validation criteria at each 8—neighbor of the

current primary edge point, and designating those satisfying the criteria as secondary

edge points. For a particular primary edge point, we will locate all of its associated

secondary edge points using the dynamic neuron. The following set of conditions are

specified for the validation of the secondary edge points

(81). b = Q(x,wd) E C, where wd is the weight vector associated with the dynamic

neuron.
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(52). gd 6 [m1, m2], where gd is the local illumination level indicator associated with the

dynamic neuron.

Condition (51) is similar to the case for primary edge point detection, where we match

the corresponding binary edge configuration of the current window with those in the edge

configuration memory C. Condition (s2) is a modified version of condition (4.7) in the

requirements for x —> GT, which ensures that a potential secondary edge point should be

under similar levels of background illumination levels (as summarized by the parameters of

the dynamic neuron) as those points in the portion of edge already traced out. Notice that

we have allowed the possibility of weak secondary edge points by omitting the constraints

on edge magnitude (Condition (p2) for primary edge detection), as long as the points are

connected to a primary edge point.

For each validated secondary edge point, we update the local illumination level indi-

cator 9,1 of the dynamic neuron using the mean value ms of the corresponding window

W

9d(t + 1) = 9d“) + “(0)0758 — gd(t))' (4-24)

In addition, if the secondary edge point satisfies condition (p2) for primary edge point

detection - implying that the edge strength of the current point is comparable with that

of a primary edge point, we utilize the vector m3 of the corresponding window to update

the weight vector of the dynamic neuron

wd(t + 1) = wd(t) + 77(t)(m3 — wd(t)) (4.25)

The purpose of using validated secondary edge points to update gd is to allow the

dynamic neuron to closely track the local gray level values in order for condition (s2) (for

secondary edge point detection) to be accurately detected. The decision to use a fixed

learning step size 77(0) as opposed to the usual decreasing step size sequence also reflects

this purpose. That is, a fixed stepsize allows the gradual decaying of the initial conditions

during edge tracing such that the value of gd will reflect the most current average gray

level values in the local neighborhood. On the other hand, the decision to use only those
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validated points which satisfy the edge magnitude criterion (p2) for updating Wd is that,

during the edge tracing process, we may encounter very weak edge points which are,

nevertheless, validated through their satisfaction of the secondary edge point detection

criteria (s1) and (s2). However, the vector m5 extracted from the current window is

unlikely to be representative of the characteristics of the current edge being traced, and

thus should not be included in the updating of the local edge prototype encoded in the

dynamic weight vector Wd. The learning stepsize 77(t) in this case is thus allowed to

decrease gradually such that the weight vector still partially retains the characteristics of

the initial primary edge point from which we start the tracing.

4.4.3 Determination of the network size

We recall that each sub-network G, is characterized by a weak edge prototype vector

wfi, and a strong edge prototype vector wfi‘. The corresponding component differences

wig — toil and 211372 — wfil thus reflect the range of edge magnitudes covered by the current

sub-network. We define the following average prototype vector ”W, : [Wm WHAT 6 R2 as

follows

I u

= Wr+wr

wr _ 2 (4.26)

The interval [Enhwng] (as opposed to the vector notation [Em WT,2]T) thus represents

the average gray level range covered by the current sub-network. For a parsimonious

representation of the edges, we usually avoid excessive overlapping of these associated

intervals of the sub-networks. According to the weight update equation (4.17), if we

initialize w,s(0) such that g, E [wrs,1(0),wrs,2(0)], s = 1, 2 and if we update w,s(t) with

those vectors m such that g, E [m1,m2] as specified in criterion x —> 0,, then it is

obvious that g, E [wrs,1,w”,2],s = 1,2 for the final weight vector W”, and therefore

g, E [firming] for the average prototype vector W,. In view of this, we have defined

the notion of substantial overlap between intervals of the sub-networks as follows: for

sub-network GT, if there exists one or more sub-networks 0,1 with r’ aé r, such that

the condition gr 6 [wrl,1,wrl,2] is satisfied as well, then we say that there is substantial
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overlapping between the associated intervals of sub-networks GT and Grr.

Adopting the usual definition of the membership function for set A,

1 if a E A
[14(0) 2 _ (4.27)

0 if a ¢ A

we define the interval overlap measure 05 for sub-network Gr as follows:

R

05 = Xalwrlmrlmgr) (4.28)
,1:

which essentially counts the number of sub-networks substantially overlapping with sub-

network r (including itself). For example, apart from satisfying the condition 9, E

[Enhwrg], if there is one other sub-network r’,r’ aé r such that the condition gr 6

[fir/,1,ETI,2] is satisfied as well, then 05 = 2.

The mean interval overlap measure ER is then defined as follows:

._R 1 R
0 = — Z 05 (4.29)

R 1‘21

In general, the values of these two measures depend on the number of sub-networks R in

the network.

According to these definitions, a natural criterion to adopt for the choice of R to avoid

substantial overlapping between sub—networks, while ensuring adequate representation of

the edges in the training images, is to select the maximum possible number of sub-networks

R while subjecting to the constraint 5R < 2 to avoid substantial interval overlapping.

More precisely, we select R* such that

R* = max{R : 5R < 2} (4.30)

4.5 Experimental Results

For network training, we have selected various edge examples from two images, a flower

and an eagle, and incorporated them into the training set. To increase the size of the

training set, we have prepared multiple edge tracings by a single user for each of the two

images. The eagle image is shown in Figure 4.6(a) and the four independent tracings by
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a single user for this image are shown in Figures 4.6(b) to (e). The corresponding image

and tracings for the flower image are shown in Figures 4.7(a) to (e). In all cases the task

was to “trace out” significant edges in the image.

From Figures 4.6 and 4.7, it is evident that the preference of a single user is highly

correlated: most of the preferred edge points are re—selected in all the four tracings,

although there are variations between trials. Although it is not immediately obvious how

these highly correlated tracings can increase the training set size, this can be explained

by referring to Figure 4.8. In the figure, the solid curve represents the “true” edge and

the dashed curves represent the various different tracings in independent trials. In most

of the cases, we only expect the human user to trace the edge approximately, and so

each of the independent trials produces tracings which intersect different portions of the

true edge. As a result, each independent trial increases the number of training examples

corresponding to locations on the true edge.

One may argue that the multiple tracings also increase the number of non-edge points

close to the “true” edge due to the inexact tracings, but the very nature of the current

network in acquiring new edge configurations will ensure that most of these non-edge

points will be automatically rejected: in order for a training edge point with its associated

neighboring gray levels x to modify any weight vector under a certain sub—network 0,,

it has to satisfy the condition x —> 0,, which requires the checking of the membership

condition 9, 6 [m1, m2]. For a non-edge point, the length of the interval [m1, m2] will be

negligibly small, and it is highly improbable that any gray level indicator 9, associated

with the sub—networks will be included in that interval, thus preventing this point from

modifying any weight vector in the network.

We first applied the NN—based edge characterization scheme to the images employed

in the training set. This was done to test the performance of the network in generalizing

the sparse tracings of the human users to identify the other edge-like features on the same

image. We have applied condition (4.30) in selecting the number of sub—networks, which

results in R* = 5. The detected edges for the eagle image using the current method are

shown in Figure 4.9(a).
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(b)-(e) Edge examples supplied by human user.1mage(3.) EagleFigure 4.6
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Figure 4.7 (3) F1ower lmage (b)-(e) Edge examples supplied by human user.
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Figure 4.8: Edge tracings by human users in independent trials (solid curve: real edge,

dashed curves: tracings by human users)

A comparison of Figure 4.9(a) with Figures 4.6(b) to (e) demonstrates the generaliza-

tion capability of the NN—based edge detector: starting just from the acquired features in

Figures 4.6(b) to (e), the network was able to locate other important edges in the eagle’s

image as perceived by humans. Although Figure 4.9(a) seems to be a satisfactory carica-

ture of the original image, the performance of the edge characterizer has to be validated

further by comparing the result with that of standard edge detectors. The performance of

current edge detectors is usually controlled by a set of tunable parameters, and we would

expect that the result of the NN edge detector should correspond to the performance of

those edge detectors under near optimal settings of parameters.

We have compared the performance of the NN edge detector with that of the Shen-

Castan edge detector [98] in Figures 4.9 and 4.10 : the Shen-Castan edge detector can

be considered an improved version of the Canny edge detector [22] , which is widely used

as a comparison standard in edge detection research. This edge detector employs an

exponential filter in the smoothing operation prior to the differencing operation, which,

as claimed by the authors, provides a better degree of edge localization than the Gaussian

filter used in the Canny edge detector. The associated parameters of the Shen—Castan

edge detector include the exponential filter parameter a, which determines the degree of

smoothing prior to edge detection, and the hysteresis thresholds t1, 152. There are a large

number of possible combinations between these parameters, With each corresponding to

a very different resulting edge profile.

Figure 4.9 compares the NN feature detector result with the Shen—Castan edge detector

under various settings of the hysteresis thresholds, while fixing the filter parameter a at
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Figure 4.9: Edge detection results for the eagle image (a) Detected edges using NN. (b)—(e)

Detected edges using Shen—Castan edge detector with different hysteresis thresholds t1, t2

(filter parameter a = 0.3) (b) t1 = 10, t2 = 15. (0) t1 = 20, t2 = 25. (d) t1 = 30, t2 = 35.

(e) t1 = 40,t2 = 45.
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0.3. The result of the NN edge detector is shown in Figure 4.9(a) and the results for

the Shen-Castan edge detector are shown in Figures 4.9(b) to (e). The lower hysteresis

threshold ranges from t1 = 10 to t1 = 40, and we have set the upper threshold t2 = t1 + 5.

In general, the choice of this upper threshold t2 is not as critical as the choice of the lower

threshold 251, as long as the condition t2 > t1 is satisfied. Therefore one can also replace

the increment 5 with other convenient values, as long as it is not excessively large, without

affecting the results greatly.

From Figures 4.9(b) to (e), we can observe that the detected edge profile is sensitive to

the choice of t1 and t2. In general, lower values of t1 and 752 will reveal more details but at

the same time cause more false positive detections, as can be seen in Figure 4.9(b) . On

the other hand, higher values of thresholds will lead to missed features as in Figure 4.9(e).

In our opinion, Figure 4.9(c), with t1 : 20 and t2 = 25, constitutes an adequate repre-

sentation of the underlying features of the image. This can be compared with the result

of the NN edge detector in Figure 4.9(a). We can see that the features detected by the

current approach are similar to those under the near optimal settings of the threshold

parameters of a conventional edge detector. The important point is that the current ap-

proach directly acquires the appropriate parameter settings through the human-specified

features and no trial and error is required.

In Figure 4.10, we compare the performance of the NN feature detector with the Shen-

Castan edge detector under different settings of the filter parameter a with fixed t1 and

t2. The results for the Shen-Castan edge detector are shown in Figures 4.10(a) to (d)

and we can compare them with the previous NN result in Figure 4.9(a). The settings

for the filter width (1 range from a = 0.4 to a = 0.7. Although there is no corresponding

concept of smoothing in the case of the NN detector, we can regard the setting of a, as an

alternative means to control the detection rate of false positives: in general, decreasing

a will lead to more false positives, and increasing a will remove those false positives but

lead to missed features. In addition, varying a will lead to the gradual shifting of the

edges due to the smoothing action of the filter. We can observe all these effects as we

increase a from Figures 4.10(a) to (d). In particular the shifting of the edges lend an
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unnatural appearance to the corresponding edge profiles which is especially noticeable

in Figures 4.10(c) and (d). The adjustment of this parameter is again avoided in the

NN edge detector which directly assimilates the characteristics of human-defined features

through the learning process.

Comparison results for the flower image are shown in Figures 4.11 and 4.12, where Fig-

ure 4.11 shows the effect of varying the thresholds t1, t2, and Figure 4.12 shows the effect

of varying the filter width a. The detected edges using the NN approach are shown in Fig-

ure 4.11(a). For the Shen-Castan edge detection results, we may consider Figure 4.11(c)

(with thresholds t1 = 20 and t2 = 25) as a near optimal representation and Figure 4.11(d)

as an adequate representation. Comparing these results with Figure 4.11(a), we notice

that the quality of the NN detection results lies in between these two and thus can cer—

tainly be considered a close approximation to the optimal result. However, comparing

Figure 4.11(a) with Figure 4.11(c), we see that the detected textures for NN are not as

prominent as those in the Shen-Castan detection result. This can partly be attributed

to the fact that no training examples have been taken from this area in Figures 4.7(b)

to (e) and no explicit texture modelling has been implemented in the current model, and

partly due to the particular value of threshold used in Figure 4.11(c) (we can compare

this with the detected textures in Figure 4.11(d) and 4.11(e) under different thresholds).

In general, we can expect the texture detection result to improve if we explicitly model

the edges and textures as separate entities in the network [111].

On the other hand, we may consider Figure 4.11(b) as over-cluttered with non—essential

details, while missed features are clearly noticeable in Figure 4.11(e). In Figure 4.12, we

notice the same effect of edge dislocation due to changes in the width parameter a. Again

we emphasize that no process of trial and error in selecting parameters is required for the

NN edge detector as compared with the Shen-Castan edge detector.

We further evaluated the generalization performance of the NN edge detector by ap—

plying the network trained on the eagle and flower features in Figures 4.6 and 4.7 to

some other images. In Figures 4.13(a), image of a clock and other objects are shown, and

Figure 4.13(c) shows an image with natural scenery. The corresponding detection results
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Figure 4.11: Edge detection results for the flower image (a) Detected edges using NN. (b)—

(e) Detected edges using Shen—Castan edge detector with different hysteresis thresholds t1,

t2 (filter parameter a = 0.3) (b) t1 = 10,t2 = 15. (0) t1 = 20,t2 = 25. (d) t1 = 30, t2 = 35.

(3) t1 = 40,t2 = 45.

100



 
(c) (d)

Figure 4.12: Edge detection results for the flower image (a)-(d) Detected edges using

Shen—Castan edge detector with different filter parameters a (hysteresis thresholds t1 = 20,

t2 = 25) (a) a = 0.4. (b) a = 0.5. (c) a = 0.6. (d) a = 0.7.

101



Figure 4.13 (
Detected edges “Si

a) Clock '
11g NN.

Image (b ) Detected edges ”Si

102

11g NN. (C ) Natural scenery 1mage (d)

.
w
fl
x
n
fi
w
m

.

fi
f
u
t
3
%

v4
:
é
}

wm
mx
mw
x/
m.

H w
A «
o
n
?

,
«I
;

m
a

 



are shown in Figures 4.l3(b) and (d) respectively . The results are very satisfactory, con—

sidering that the network is trained only on the eagle and flower images. The results also

conform with some usual human preferences in interpreting pictures, such as the omission

of clouds and the appearance of only the broad outline of trees, instead of the detailed

textures within, in Figure 4.13(d).

We have also tested the robustness of the current approach against noise contamina-

tions. Figure 4.14(a) shows the addition of zero-mean Gaussian noise with a standard

deviation of 0,, = 10 to the eagle image. We have applied the same NN as in the previous

noiseless case to this image Without any re—training and alteration of architecture. The

result is shown in Figure 4.14(b) showing that although some false alarms occurred, the

overall effect is not serious and the result is reasonably similar to the noiseless case. On

the other hand, for the Shen-Castan edge detector, if we choose the previous optimal

threshold of t1 = 20 and t2 = 25 (Figure 4.14(c)), the effect of noise is clearly noticeable,

and we will have to re-adjust the thresholds to t1 = 25 and t2 = 30 to eliminate its effect

(Figure 4.14(d)).

For the other three images, the results for the noisy case are shown in Figures 4.15(b),(d)

and (f). Again, notice that, due to the edge-modelling capability of the neural network,

the effect of noise contamination is not significant.

4.6 Summary

We have developed a model-based feature detection neural network with hierarchical

architecture (HMBNN) which directly assimilates the essential characteristics of human—

specified features through a learning process. The specific architecture of the network

divides the training features into sub-classes in such a way as to reflect the different

preferences of human beings in regarding intensity discontinuities as features under dif-

ferent illumination conditions. Conventional edge detection algorithms using NN mainly

focus on generalizing the front-end filtering operation while continuing to select the de-

tection thresholds explicitly. The current HMBNN edge detector implicitly represents
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these decision parameters in the form of network weights which are updated during the

training process, and which thus allow automatic generation of the final binary edge map

without further parameter adjustments. In addition, due to the specific architecture of

the network, only positive training examples in the form of edge tracings on the image

are required, unlike previous NN—based edge detection schemes where both positive and

negative examples are required.

It is also important to note that, in contrast to current edge—extraction methods, this

HMBNN takes into account the non-stationary nature of edges in so far as different criteria

apply to different image regions as a function of the local intensity distributions. The

different rules which capture such different criteria are learnt by the proposed architecture.

This HMBNN edge detector has been successfully applied to both the image from which

its training data originate and to novel images with promising results. One attractive

feature of the current approach is its robustness: no re—training of the network and no

alteration of architecture are required for applying the network to noisy images.

106



Chapter 5

Distinguishing Between Edge and

Texture: the Edge-Texture

Characterization (ETC) Measure

5. 1 Introduction

In this Chapter, we will introduce the Edge-Texture Characterization (ETC) measure,

which is a scalar quantity summarizing the degree of resemblance of a particular pixel

value configuration to either textures or edges. In other words, pixel value arrangements

corresponding to textures and edges will in general exhibit different values for this mea—

sure. This is unlike the case where the local variance or the edge magnitude [50] is adopted

for the image activity measure. Due to the possibility that both edges and textures may

exhibit similar levels of image activities in terms of gray level variations around their

neighborhoods, it is usually not possible to distinguish between these two feature types

using the conventional image activity measures.

On the other hand, the current ETC measure is derived based on the correlational

properties of individual pixel value configurations. In general, we may expect that configu—

rations corresponding to edges and textures will possess significantly different correlational

properties, with the individual pixels in a texture configuration being far less correlated
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with each other than those in an edge configuration. This is described in a quantitative

way using the current measure. More importantly, we have analytically established in—

tervals of ETC measure values corresponding to those pixel configurations which visually

more resemble textures than edges, and vice versa.

This measure is especially useful for distinguishing between edges and textures in image

restoration such that we can specify different levels of regularization to each of them. Due

to the different noise masking capabilities of these two feature types, it is usually not

desirable to apply similar values of regularization parameters to both of them. This is

seen in Chapter 3 where parameter values optimal to textured regions usually result in a

noisy appearance for the edges due to its surrounding smooth regions, and those values

suitable for edges usually cause blurring in textured regions. With the incorporation of

the newly formulated ETC measure into our previous HMBNN approach in Chapter 6 ,

we are able to separately estimate two different parameter values which are optimal to

edges and textures respectively, and apply the correct parameter to the current pixel in

accordance with its associated ETC measure value.

Even with the possibility of distinguishing between edges and textures, it is still pos-

sible to misclassify parts of the textured regions exhibiting weak variations as smooth

regions, and apply corresponding large regularization values to those sub-regions. This

will result in smooth blotches appearing Within certain textured regions and lending an

unnatural appearance to the overall image, as can be seen in some of the restored images

under more severe degradations in Chapter 3. To remedy this problem, we have also

derived a texture extraction algorithm based on the ETC measure, Where the output of

the algorithm are connected regions of textures established through the application of

continuity constraint on those pixels with high ETC measure values, which most likely

correspond to parts of textured regions. This texture map serves as an alternative source

of information which complements our previous image activity classification map based

on local variances, and is able to override incorrect classification of weak textured regions

as smooth regions.
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5.2 The Edge-Texture Characterization (ETC) Mea-

sure

The starting point of our formulation is as follows: we consider the gray level values of

image pixels in a local region as i.i.d. random variables with variance 02. If we apply a

local K x K averaging operation to each pixel, the variance 0’2 of the smoothed random

variables is given by

1 0'2

,2 _—EUTRu-—’_ E (5.1)

where R = diag[a2, . . . , 02] is the K2 x K2 covariance matrix of the K2 random variables

in the K x K averaging Window, and u is an K2 X 1 vector with all entries equal to

one. The diagonal structure of the covariance matrix is due to the independence of the

random variables. The i.i.d. assumption above is in general not applicable to real-world

images. In fact, we usually identify a meaningful image with the existence of controlled

correlation among its pixels. As a result, we generalize the above i.i.d. case to incorporate

correlations inside the K x K Window.

      
/,:,/

VAVAW//.

p={12,13} P={8,8,9}

(a) (b)

Figure 5.1: Illustrating the various forms of partition ”P

We define the multiset 73 = {P1,...,P,-,...,Pm}, where P1 + + Pm = K2, as a

partition of the K2 variables in the window into m components. In addition, we assume

that all variables within the i-th component is correlated with each other With correlation

coefficient pi, and variables among different components are mutually uncorrelated with

each other. Some examples of 73 in a 5 X 5 window are given in Figure 5.1. For example,

we can describe the region around an edge pixel by the partition P = {P1, P2}, where

P1 m P2 (Figure 5.1(a)). In this general case, the variance 0’2 after K x K averaging is

109



given by

,2 1 02
U = EUTRU = E (5.2)

In this case, R is a block—diagonal matrix with the following structure

R = diag[R1, . . . ,Rm] (5.3)

Each sub-matrix R,,1L = 1, . . . , m is of dimension P,- X P, with the following structure

1 pi - - - Pi

Pi
R, = a2 (5.4)

Pi

pi --- pr 1

If we carry out the matrix multiplication in equation (5.2), the square of the quantity It

in the equation is evaluated to be

n2 2 K4
K2 + 219,613 MP? — Pi)

 (5.5)

Assuming that 0 g p,- g 1 for all i, which implies positive correlation among pixels

within a single component, the value of H is maximized when p,- = 0, Vi, giving n = K in

equation (5.5), which corresponds to the previous case of i.i.d. variables.

On the other hand, if we assume p, = 1 for all 2' within a single element partition

73 = {K2} and substituting into equation (5.5), we have

2 K4

F” :K2+(K4—K2)
= 1 (5.6)

which implies a = 1. This corresponds to the case where all the gray level values within

the window are highly correlated, or in other words, to smooth regions in the image. In

general, the value of K, is between 1 and K. Thus it serves as an indicator of the degree of

correlation within the K x K window. Larger values of n indicate low level of correlation

among the pixels in the window, which are usually the cases for textured and edge regions,

while smaller values of H usually correspond to smooth regions as indicated above. To

provide an intuitive grasp of the values of 15 corresponding to various features in the image,

we carry out the calculation prescribed in equation (5.5) for a 5 x 5 averaging window.
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For K = 5, the minimum and maximum values of Ii? are 1 and 5 respectively. For a

positive within-component correlation coefficient pi, the value of K. is constrained within

the interval [1,5]. Referring to Figure 5.1(a) which describes image edge regions With the

partition 73 = {12,13}, and further assumes that p,- : p = 0.9 for all components, we

have, after substituting the corresponding quantities into equation (5.5)

54
2 _

‘ 52 + 0.9[(122 — 12) + (132 — 13)]
 H z 2.20 (5.7)

or K) m 1.48. This value of K), which we designate as K22, serves to characterize all edge-like

features in the image if a 5 x 5 averaging window is used. On the other hand, if we

consider more complex features with the number of components m > 2, which usually

correspond to textures in the images, we should expect the value of K, to be within the

interval [148,5]. This is confirmed by evaluating K, for the partition ”P = {8,8,9} as

illustrated in Figure 5.1(b), again assuming p,- = 0.9 for all i,

2 _ 54

‘ 52 + 0.9[2(82 — 8) + (92 — 9)]
 r. z 3.28 (5.8)

or K, x 1.81, which we designate as H3. As a result, the value of K3 indicates to a certain

extent the qualitative attributes of a local image region, i.e., whether it is more likely

to be a textured region or an edge region, rather than just distinguishing the smooth

background from the combined texture/edge regions as in the case of using the local

standard deviation aim-2 alone. We can therefore refer to this quantity K) as the Edge-

Texture Characterization (ETC) measure.

 

m 1.05 K36 2.54
 

mg 1.48 n7 2.72
 

H3 1.81 mg 2.91
 

K34 2.08 [439 3.07
 

K35 2.33 K325 5.00        
Table 5.1: ETC measure values for various different partitions
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Table 5.1 lists the values of the measure [£1 to 1-29 and n25. We can notice that,

in general, the value of It increases with the number of correlated components within

the pixel window, which confirms our previous observation. The case of 25 components

corresponds to the case of i.i.d. random variables and results in the value #225 = 5. It is

also noted that the value of K1 is slightly larger than the case of fully correlated random

variables in our previous calculation due to our present assumption of p = 0.9. For

image processing applications in later chapters, we adopt the assumption that the intra-

component correlation for smooth regions is greater than that for the edges and textures.

As a result, while maintaining the value p = 0.9 for edges and textures, we will adopt

p = 1 for smooth regions, which is equivalent to setting [$1 = 1.

We can estimate the value of It in a pixel neighborhood by the ratio 6/6’ in accordance

with equation (5.2) , where 6 and 6’ are the sample estimates of a and 0’ respectively.

1-2 —_ 2
U 2 — Z (dad—III) (5.9)

MM (i,j)eN

1 _
6’2 = —— Z (x; . — 3a)? (5.10)

'Nl (i,j)eN J

In the equations, N denotes a neighborhood set around the current pixel, 55M denotes

the gray level value of pixel (i, j) in the set, and mg, is the corresponding smoothed gray

level value under K x K averaging. T and E are respectively the mean of the gray level

values of the original and smoothed variables in the neighborhood set. In general, this

empirically estimated H is not restricted to the interval [1, K] due to the use of the sample

variances, but most of its values are restricted to the interval [0, K].

5.3 Experimental Results

To illustrate the capability of the ETC measure to distinguish between smooth regions,

edges and textures, and especially between the latter two which cannot be easily separated

using local variances, we present the ETC—map, which is a representation of the ETC

values as a gray level image, of the images flower, Lena and eagle in Figures 5.2, 5.3

and 5.4. In addition, we highlight those image pixels with their corresponding It values
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within the following three intervals 11,12 and [3, where I1 = [0, 51$], 12 2 (51—3—52, m3] and

13 2 (H3, 5] in three separate binary maps. From the discussion in the previous section,

pixels exhibiting K, values within the intervals [1,12 and [3 approximately correspond

to smooth pixels, edge pixels and texture pixels respectively. This can be confirmed by

visually inspecting the binary maps in Figures 5.2, 5.3 and 5.4. (The adoption of H3 rather

than 52% as the decision threshold between edge and texture is due to our observation

that ,in terms of visual quality, the former constitutes a more appropriate transition point

between the two feature types.)

Figure 5.2 shows the ETC—map and the feature segmentation maps for the flower

image. From the ETC-map in Figure 5.2(a), it can be seen that the textured regions in

the image appear brightest in the map, which correspond to the highest values of It and

is thus consistent with our previous assertion that texture pixels should exhibit higher

values of n. It is also seen that the edges correspond to intermediate values of H, and the

smooth regions appear darkest in the map, which again agree with our previous assertion.

To verify the characteristic K: values for the various feature types, we construct binary

maps in Figures 5.2(b)-(d), where the black pixels are those with their K) values corre—

sponding to the intervals 11,12 and I3 in Figures 5.2(b),(c) and (d) respectively. From the

discussion in the previous section, it is expected that pixels with It values in [1 should

form the smooth regions of the images, which is confirmed by visually inspecting Fig-

ure 5.2(b). Our expectation that those pixels with K, values within the intervals [2 and

I3 should correspond to the edges and textures pixels respectively is also confirmed by

inspecting Figures 5.2(0) and ((1).

Figure 5.3 shows the same classifications performed on the image Lena. It can again be

seen that specific ranges of ETC measure values are indicative of particular feature types

in the image, thus confirming the discriminatory capability of this new measure. The

same conclusion can be drawn by observing the results for the image eagle in Figure 5.4.

The main feature types of this image consist of the smooth region and edge components

as indicated in Figures 5.4(b) and (c). The texture components shown in Figure 5.4(d)

are not as dominant as the other two components.
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Figure 5.2: (a) ETC-map of flower (b) smooth region map (C) edge map ((1) texture map
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Figure 5.3: (a) ETC—map of Lena image (b) smooth region map (c) edge map (d) texture

map
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Figure 5.4: (a) ETC-map of eagle image (b) smooth region map (C) edge map ((1) texture

map
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5.4 An algorithm for textured area extraction

In this section we describe an algorithm for textured area extraction based on the ETC

measure. The motivation for this algorithm is due to our previous observation that,

for severely degraded images, the HMBNN adaptive regularization algorithm produces

blurred blotches within textured areas. This is the result of using the local pixel variances

as the basis for the initial image segmentation, where the weak textural patterns within the

area are classified as smooth regions. To overcome this problem, a complementary source

of texture characterization information which is not dependent on the local variances is

required. A possible candidate is a texture characterization map based on the newly

formulated ETC measure.

It has been previously shown that the ETC measure can distinguish between smooth

regions, edges and textures. This is achieved in a completely different way from using the

local variances for similar purposes. For example, it is usually not possible to distinguish

between edges and textured regions using local variances due to their similar levels of

local activity. On the other hand, the ETC measure is able to achieve this very purpose

by characterizing the different local correlational structure of edges and textures using

a scalar quantity. For a ETC-based segmentation algorithm, therefore, we can speak of

the extraction of a textured area instead of the case in a variance-based algorithm where

we can only speak of the extraction of a combined edge/textured region. It is natural to

expect that the characteristics of the former would be different from the texture subset

within the combined edge/textured region extracted using local variances. It is therefore

likely that the extracted textured area using ETC can provide a complementary source

of texture characterization which can possibly eliminate the local blurring problem.

5.4.1 The Texture Extraction Algorithm

In view of the ability of the ETC measure to characterize textures in terms of a scalar

quantity, we first apply a thresholding operation on the ETC values within an image.

We then designate those pixels with K: greater than the threshold 0,, as potential texture
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pixels. From the discussion in the previous section, a reasonable choice for 6,, would be

approximately 1.8, but we have chosen 0,, = 1.5 to ensure that all the texture pixels are

extracted at the expense of including some edge pixels, which we will remove in a later

step.

Denoting the maximally connected components of the set of texture pixels as Ra, a =

1,. . . ,A, we apply two erosion operations [97], corresponding to the two structuring ele—

ments shown in Figure 5.5, to each of the regions. The structuring elements are designed

such that horizontal or vertical sequences of pixels with run lengths less than 10 are

removed, thus effectively excluding edge pixels from each region.

Figure 5.5: The two structuring elements used in the texture extraction algorithm

Corresponding to each region Ra, the erosion operations produce a set of sub-regions

Umba C Ra, ba 2 1, . . . , B,,. The number of sub-regions B, will be greater than 1 if splitting

of Ra occurs after the erosion operation.

In addition to removing the edge pixels, the erosion operations also remove some of

the boundary pixels of the textured regions. To restore the region boundary, we follow

the erosion with a modified dilation operation as follows.

For the region Ra, we denote the centroids of each associated sub-regions Umba, 1),, =

1,. . .,Ba as Ca,baaba : 1,. . .,Ba. Corresponding to each sub—region Umba, we define its

radius 7"me as follows:

Ta,b.1 = max lu — ca,b.| u e Um (5.11)

For each region Um, we define the dilated texture region Ugh“ in terms of Ru and

Ta,ba as below

U51». 2 {U 5 Ba 1 I“ — Cabal S ra,ba} (5.12)
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By definition, the relation Um, C Ufba is always valid, but U3,“ also includes other pixels

in R, which are reasonably close to Uam but have been previously removed by the erosion

operation, and in this way we restore part of the original boundaries of the textured

regions. We designate the dilated regions Ughwba = 1,. . .,Ba as our final segmented

textured regions. The above operations are illustrated in Figure 5.6.

4—Ra

D

Ua’l Ua,1

Figure 5.6: Illustrating the morphological operations for texture extraction

5.5 Experimental Results

We have applied the texture extraction algorithm to the three images flower, Lena and

eagle. For the images flower and Lena which contain substantial textures, we should

expect the current algorithm to locate the corresponding regions approximately. For the

image eagle which consists mainly of edges, it would still be insightful to observe what

the algorithm would consider as textures under these circumstances.

The results are shown in Figure 5.7. We have included the original images flower,

Lena and eagle in Figures 5.7(a), (c) and (e) respectively for easy comparison with the

extraction results, which are shown in Figures 5.7(b), (d) and (f). The extracted regions

for the image flower mainly concentrate around the flower stamen, which would usually

be considered as textures by humans. For the Lena image, the regions are concentrated

around the feathers of the hat, which again constitute textures in the image. We have thus
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Figure 5.7
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demonstrated the capability of the current algorithm to extract textured regions in the

image. Compared with the edge/texture classification map in the previous section, it is

seen that, whereas the classified texture pixels appear as scattered patches in the previous

examples, they now appear as single continuous regions due to our incorporation of both

region connectivity criteria and judicious morphological operations on these regions in

constructing the final texture map.

In Figure 5.7(f), the algorithm has extracted the eagle’s eye and some of the more

prominent patterns, although strictly speaking, we do not usually associate these with

textural patterns. This is due to the nature of the ETC measure which classifies pixel

neighborhoods according to their number of highly correlated components. For those pixel

configurations with more than two components within a small neighborhood, as in the

case of the eagle’s eye, the associated ETC measures will exhibit large values and result

in their classifications as textures.

In order for the texture maps to serve as complementary sources of texture character-

ization in image restoration, we must be able to extract such maps from the blurred or

partially restored images prior to restoration. Figure 5.8 shows the textured regions ex-

tracted from the partially restored images. Figures 5.8(a),(c) and (e) show the extracted

textures for the images flower, Lena and eagle under 5 X 5 uniform blur with 30dB noise,

and Figures 5.8(b), (d) and (f) show the extracted textures under the same PSF with

20dB noise. For these partially restored images, we have adopted a lower threshold of

6,, = 1.25, which is the mean between #51 = 1.0 and H2 2 1.5, to allow for the possibility

that parts of the textured regions are not completely restored and thus take on lower

values of It.

It can be seen from the figures that, despite the degraded nature of the images, the

algorithm is still capable of recovering the approximate shape of the textured regions. This

observation especially applies to the images flower and Lena where there are substantial

areas of textures. Although we can notice some distortions to the region boundaries due

to the degradations, the overall results can still be considered a valid characterization of

the textures in the images.
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5.6 Summary

In this Chapter, we propose a new characterization measure which can distinguish between

the main feature types of an image. The new measure, known as the Edge-Texture

Characterization measure (ETC), effectively summarizes the local correlational properties

of an image in terms of a scalar value. Distinct ranges of this measure value correspond

to different feature types of the image. This is especially important for distinguishing

between the edges and textures, which usually have similar levels of local variances and

cannot be separated using conventional methods. Based on this new measure, we have

also derived a new texture extraction algorithm which specifically highlights the textured

area as opposed to a combination of edge and texture pixels resulting from variance—based

segmentation algorithms.

In view of the problems encountered in Chapter 3, namely the requirement to dis—

tinguish between the edges and textures of an image and apply different regularization

strategies to each of them, the ETC measure represents an ideal candidate for the solution

of this problem. In the next Chapter, we will characterize these two feature types in terms

of two fuzzy sets defined on the set of ETC measure values. These are then incorporated

into our previous HMBNN framework to form a fuzzified version of the algorithm.
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Chapter 6

The ETC Fuzzy HMBNN for

Adaptive Regularization

In this Chapter, we propose a fuzzified version of the model—based neural network for

adaptive regularization in Chapter 3. A hierarchical architecture is again adopted for

the current network, but we have included two neurons in each sub-network instead of a

single neuron in Chapter 3. We referred to those two neurons as the edge neuron and the

texture neuron respectively. They in turn estimate two regularization parameters, namely

the edge parameter and the texture parameter, for each region with values optimal for

regularizing the edge pixels and the textured pixels respectively within the region. Ideally,

the parameter of the edge neuron should be updated using the information of the edge

pixels only, and the texture neuron should be updated using the texture pixels only, which

implies the necessity to distinguish between the edge and texture pixels. This is precisely

the motivation for the formulation of the ETC measure in Chapter 5, which achieves this

very purpose. As the concepts of edge and texture are inherently fuzzy as explained in

Chapter 1, we characterize this fact by defining two fuzzy sets, the EDGE fuzzy set and

the TEXTURE fuzzy set, over the ETC measure domain. This is possible since the value

of the ETC measure reflects the degree of resemblance of a particular local gray level

configuration to either textures or edges. More importantly, there exists definite intervals

of measure values which we can claim that the corresponding gray level configuration
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should be more like textures, and vice versa. As a result, the ETC measure domain serves

as an ideal universe of discourse [61] for the definition of the EDGE and TEXTURE fuzzy

sets. In view of the importance of the fuzzy set concept in this Chapter, we will first have

a review on this topic.

6.1 Theory of Fuzzy Sets

The inclusion of a member a in a set A is usually represented symbolically as a E A.

Alternatively, we can express this inclusion in terms of a membership function ,uA(a) as

follows

1 if a E A

uA(a) = (6'1)
0 if (1 ¢ A

The membership function takes values in the discrete set {0,1}. Zadeh, in his 1965

paper [113] , generalized the definition of the membership function such that it can take

values in the real-valued interval [0,1]. The generalized set corresponding to the new

membership function is known as a fuzzy set [59, 61, 113, 114, 116, 115] in contrast with

the previous crisp set.

The implication of the new membership function is that, aside from the states of

belonging wholly to a set or not belonging to a set at all, we can now allow an element

to be a member of a fuzzy set “to a certain extent”, with the exact degree of membership

being expressed by the value of the corresponding membership function. Therefore, if the

membership function value uA(a) of an element a is close to 1, we can say that a belongs

“to a large degree” to the fuzzy set A, and we should expect that a possesses many of

the properties that are characteristic of the set A. On the other hand, if the membership

function value is small, we can expect that the element a only bears a vague resemblance

to a typical member of the set A.

This concept is particularly important for expressing how human beings characterize

ever day concepts. Take for example the concept “tall”. We can immediately visualizey

the meaning of the word. But in order for machine interpretation systems to recognize
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this concept, we must provide an exact definition. If restricted to the use of crisp sets,

we may define this concept in terms of the set T = {h : h 2 1.7m} where h is the height

variable. According to this definition, a value of the variable h such as h : 1.699m will

not be considered as belonging to the concept “tall”, which is certainly unnatural from

the human viewpoint. If we instead define “tall” to be a fuzzy set with the membership

function shown in Figure 6.1, the value h = 1.699m can still be interpreted as belonging

“strongly” to the set, and thus conforms more closely to human interpretation.

Mb)

1.0

 

>—

Height h(m)

 

1.7

Figure 6.1: The fuzzy set representing the concept TALL

The ordinary operations on crisp set can be generalized to the case of fuzzy set in

terms of the membership function values as follows:

HAnB(II3) = min{#A(33)aMB($)} (6-2)

HAUBW) = mafoA($)a/IB($)} (5-3)

M1603) = 1—HA($) (6.4)

where A n B, A U B and Ac are respectively, the intersection of fuzzy sets A and B,

the union of A and B, and the complement of A. These equations reduce to the ordi-

nary intersection, union and complement operations on crisp sets when the ranges of the

membership functions ”AWL/1803) are restricted to values in {0,1}.

A fuzzy inference relationship is usually of the following form:

If ((xl has property A1) (X) ...... ® (3107, has property An», then (y has property B)
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where 3:1,.. .,:1:n and y are numerical variables, 141,...,An and B are linguistic descrip—

tions of the properties required of the corresponding numerical variables, and (8) de—

notes either the union or intersection operations. As described above, we can convert

the linguistic descriptions A1, . . . , An and B into fuzzy sets with membership functions

uA,(a:1), . . ., uAn(xn) and uB(y), where we have identified the names of the fuzzy sets

with their corresponding linguistic descriptions. Formally, we can describe this inference

operation. as a mapping between fuzzy sets as follows:

B’: F(A1, . . . ,An) (6.5)

where B’ C B is a fuzzy subset of B. Fuzzy subsethood is formally described by the

following condition

A C B if ,uA(x) S uB(a:),\7’$ (6.6)

which reduces to the ordinary subsethood relationship between crisp sets if uA(a:), ,uB(m)

are allowed to take values only in {0,1}.

The particular fuzzy subset B’ chosen within the fuzzy set B (or equivalently, the

particular form of the mapping F) depends on the degree to which the current value of

each variable 33,-,2' = 1, . . . , n belongs to their respective fuzzy sets A,. To summarize, the

inference procedure accepts fuzzy sets as inputs and emits a single fuzzy set as output.

In practical systems, a numerical output which captures the essential characteristics

of the output fuzzy set B’ is usually required. This is usually done by specifying a

defuzzification operation D on the fuzzy set B’ to produce the numerical output 3/

y' = mm (6-7)

A common defuzzification operation is the following centroid defuzzification [61] operation

, 3°00 yualy) dy
y = 7—“ 6-8

Loo MB’(IU) dy ( )

where we assign the centroid of the fuzzy membership function uB/(y) to the variable y’.

127



6.2 Edge—Texture Fuzzy Model Based on ETC mea-

sure

In Chapter 5, we have defined the Edge—Texture Characterization (ETC) measure n which

quantifies the degree of resemblance of a particular gray level configuration to either

textures 0r edges. In addition, we have established that, for values of 5 within the

interval 12 : (51%1m3], we can consider the underlying gray level configuration to be

reasonably close to that of edges, and for H > n3, we can conclude that the corresponding

configuration has a closer resemblance to that of textures. However, if we consider the

value K, = 53 + e, where e is a small positive constant7 we will classify the corresponding

configuration as a texture configuration, but we can expect that it will still share many

of the properties of an edge configuration due to the closeness of K, to an admissible edge

value. In fact, it is difficult to define the concepts of “edge” and “textures” in terms

of crisp sets in the ETC domain. In view of this, fuzzy set theory becomes a natural

candidate for characterizing these concepts in terms of the ETC measure.

EDGE and TEXTURE set membership functions
Fuzzy Set Membership Value

1-00 TEXTURE fuzzy set
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Figure 6.2: The EDGE and TEXTURE fuzzy membership functions
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We therefore define two fuzzy sets, namely the EDGE fuzzy set and the TEXTURE

fuzzy set, on the ETC measure domain in terms of their membership functions ,uE(n) and

HT (5), as follows:

1
NEW = W (6-9)

1
Mn) -W (6-10)

The two set membership functions are plotted in Figure 6.2. From the figure, it is seen

that ,uE(/<;) is a decreasing sigmoid function with the transition point at K, : mg, and ,uT(rc)

is an increasing sigmoid function with the transition point at H: 2 HT. The parameters flE

and fiT control the steepness of transition of the two membership functions. In view of

the discussion in Chapter 5 which characterizes edges with values of K, within the interval

12, we may have expected the function pE(/s) to exhibit a peak around $2 and tapers off

on both sides. Instead, we have chosen a decreasing sigmoid function with the transition

point at ICE z K22, which implicitly classifies the smooth regions with K < #92 as belonging

to the EDGE fuzzy set as well. This is due to our formulation of the current regular-

ization algorithm in such a way that, whenever a certain pixel configuration has a larger

membership value in the EDGE fuzzy set, larger values of regularization parameters will

be applied to this configuration. As a result, it is reasonable to assign greater member-

ship values to those configurations with K, < n2, which usually corresponds to weak edges

or smooth regions, due to their less effective noise masking capabilities compared with

strong edges. In other words, we are interpreting the membership function [JE(KZ) as the

indicator of the required amount of regularization for a certain pixel configuration rather

than its true correspondence to a characteristic edge configuration.

On the other hand, the shape of the TEXTURE set membership function truly reflects

the fact that we consider those gray level configurations with K, > rag to be essentially

textures. However, instead of choosing RT 2 m3, which was shown to correspond to a

gray level configuration containing three uncorrelated components and may reasonably

resemble textures, we instead choose the more conservative value of KIT 2 2 > n3.

From the two membership functions, we define the following normalized ETC fuzzy
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coefficients flE(/t) and flT(/s)

 

 

~ 5 = #1300
NE( ) #(KJ) (6'11)

~ _ #TU‘J)
#T(K) _ ”(H) (6'12)

where

Mo) = MEG-t) + MM) (6-13)

6.3 Architecture of the Fuzzy HMBNN

Corresponding to the partition of the image into the combined edge/texture components

y:,f, rf : 1, . . . , Rf and the smooth regions 8”, rb = 1,. . . , Rb, we assign individual sub-

networks to each of these regions. For the smooth regions, we assign ,as in Chapter 3,

one neuron to each smooth region to estimate a single parameter A“, rb = 1,. . .,Rb for

each region. However, for the combined edge/textured regions, instead of employing only

one neuron as in the previous case, we have assigned two neurons, which we designate as

the edge neuron and the texture neuron with associated weight vectors fledgeO‘fi‘fige) and

fated/Vex), to each edge/texture sub-network. The two weight vectors are ,respectively,

functions of the edge regularization parameter )6?“ and the texture regularization param-

eter Mi”. As their names imply, we should design the training procedure in such a way

that the parameter A5?“ estimated through the edge neuron should be optimal for the

regularization of edge-like entities, and A3?” estimated through the texture neuron should

be optimal for textured regions.

Corresponding to these two weight vectors, we evaluate two estimates of the required

pixel change, Afiffl: and A6332, for the same gray level configuration 9,1,,2 as follows

i1,i2Afiedge : fiedge()‘:lfige)T‘7i1,i2 (614)

M?“ = ptem(/\£jz)Tv,-,,i, (6.15)
Z1J2

where (2'1, 7L2) E .7”. The quantities A6555: and Afifffiz are the required updates based on

the assumptions that the underlying gray level configuration {7,1,12 corresponds to edge or

textures respectively.
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Referring to Chapter 5 and the fuzzy formulation in the previous section, we can

evaluate the ETC measure Him-2 at pixel position (i1, 12) as a function of the pixel values

in a local neighborhood of (i1, i2). From this we can calculate the normalized edge fuzzy

coeflicient value flE(r~t,-,,,-2) and the normalized texture fuzzy coefficient value flT(m,-,’,-,).

As a result, a natural candidate for the final required pixel update value A6,”, can be

evaluated as a convex combination of the quantities A553: and Afifffg with respect to

the normalized fuzzy coefficient values

A6,”, = flE(/€i1,i2)A’l78dge + flT(Hi1.i2)A5tez (5-16)i1,i2 11,12

From the above equation, it is seen that for regions around edges where [mafia-1,”) % 1

and flflmhiz) z 0, the final required gray level update A271,,” is approximately equal

to Afiffl’gf, which is optimal for the restoration of the edges. On the other hand, in

textured regions where [TAM-1,2) z 1 and flE(/<t,-1,,2) z 0, the required update A5,”,

assumes the value Afifffi which is optimal for textures, provided that proper training

procedures are adopted for both of the neurons. Alternatively, this equation can be

interpreted as the operation of a two-layer sub-network, where A6,”, is the network

output, flE(I€i1,i2),/TI,T(I€1'1,¢2) are output weights, and A5553: and Afiiffiz are the hidden

neuron outputs. The architecture of this two-layer sub-network is shown in Figure 6.3.

._
.

N

 

Network r,

Sub-Network Input

Figure 6.3: The architecture of the fuzzy HMBNN sub-network
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6.3.1 Correspondence With the General HMBNN Architecture

Similar to our previous model—based neural network formulation in Chapter 3, the cur-

rent fuzzy HMBNN model also adopts the hidden-node hierarchical architecture, Which

is depicted in Figure 3.1 in Chapter 3. The architecture of the sub-networks for the

regularization 0f the smooth regions remains the same. However, for the edge/texture

regularization sub-networks, we have adopted a new architecture in the form of a two—

layer network, with two neurons in the hidden layer as shown in Figure 6.3. Corresponding

to the general form for evaluation of the sub-network output in Chapter 2, we can describe

the operation of the edge/texture regularization sub—network for region 7-)]. as follows:

2

¢(i’ri1fl2afi1‘f) : 2 0511117 (vi1,i2af)()‘:f)) (617)
5:1

where

1 _ edeA” 2 Avg (6.18)

2 _ tea:
Ar, = A.) (6.19)

¢Tf(vilyi2’ii(Af‘f)) E f)(’\:f)Tvi1,iz (620)

01 E fiE(Hi1,i2) (6.21)

C2 E flT(K‘i1,i2) (622)

and f)” can be considered as a concatenation of 130%), s = 1, 2.

6.4 Estimation of the Desired Network Output

In Chapter 3, we define the desired network output A27?“-2 and the associated predicted

~¢gray level value 1211,15, where

27:11,” : 7611,1’2 + A1731} (6.23)

as follows: for smooth regions, we define the variable 2731712 as the mean of the neighboring

pixel values

(7‘1 = 51-1,” (6.24)
i1)i2
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z 1 LP 11 ~

“11,12 = F 2 Z Uil+k,i2+l (6.25)

17 k:=—L1,,l=—Lp

where NP 2 (2L7, + 1)2 is the size of the filter mask for averaging. For combined

edge/textured regions, we consider the ranked pixel values in the prediction neighbor-

hood set

N, _ ~(1) ~91?) ”(N114
’_ 1'1,iz""’ 11,127""v1'1,12

where 175"’13;IS the 71,,t—h order statistic of the pixels1n the ordered prediction neighborhood

set and corresponds to 17,-,+k,,-2+l for appropriate [9 and l. The ranked gray level values

satisfy the following condition

~(1) <’U~01?) < < ,UUVp)

011,123 [011,12 — — 11,12

In Chapter 3, adopting a prediction neighborhood size of NP 2 9, we define the predicted

gray level valuevz‘il 2for the combined edge/textured regions as follows:

~(3) A, 2

17d . : ”11,15 7111,12 < (011,12 (626)

11112 11(7) _

i1,i2 ”11,12 2 ”11,12

It was found from the experiments in Chapter 3 that this texture—oriented estimation

scheme is appropriate for restoring images at moderate noise levels, and for the textured

areas in restored images at high noise levels. However, the resulting predicted gray level

value will lead to a noisy appearance for the edges at high noise levels due to its smaller

noise masking capability compared with textures. In view of this, we can apply the

alternative edge-oriented estimation scheme at high noise levels

~(4) N z

1)" - ('1)- -

~d _ ”11,12 11,12 11,12

”W ‘ 46) ~
(6.27)

”15,12 ”11 1'2 2”1'1 12

This edge-oriented scheme results in a less noisy appearance for the edges, but the textured

areas will appear blurred compared with the previous case. It would therefore be ideal if,

at high noise levels, we can apply the texture-oriented estimation scheme to the textured

areas only, and apply the edge-oriented estimation scheme to only the edges. This in

turn requires the separation of the edges and textured areas, which is usually difficult in
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terms of conventional measures such as image gradient magnitudes or local variance due

to the similar levels of gray level activities for these two types of features. On the other

hand, the previous fuzzy formulation in terms of the scalar ETC measure allows this very

possibility.

In addition, equations (6.26) and (6.27) predict the desired gray level value 17,41,” in

terms of a single order statistic only. The estimation will usually be more meaningful if we

can exploit information provided by the gray level values of all the pixels in the prediction

neighborhood set Np. In the next section, we investigate this possibility by extending the

previous criSp estimation framework to a fuzzy estimation framework for 17% 1-2.

6.5 Fuzzy Prediction of Desired Gray Level Value

In this section, we define two fuzzy sets, namely the EDGE GRAY LEVEL ESTIMATOR

(EG) fuzzy set and the TEXTURE GRAY LEVEL ESTIMATOR (TG) fuzzy set, over the

domain of gray level values in an image. This fuzzy formulation is independent from our

previous ETC-fuzzy formulation where the EDGE and TEXTURE fuzzy sets are defined

over the domain of the ETC measure. The purpose of this second fuzzy formulation is to

allow the utilization of different prediction strategies for 17:11,” in the edge and textured

regions respectively, and the evaluation of this predicted gray level value using all the

gray level values in the prediction neighborhood set Np instead of a single crisp value.

6.5.1 Definition of the fuzzy estimator membership function

For this gray level estimator fuzzy model, we define the two set membership functions,

90Eda-1,”) and (pTG('T),~h,-2) in terms of Gaussian functions, as opposed to the use of sigmoid

nonlinearity in the first model. Again denoting the gray level value at location (i1, 25) as

17,-”, and the np-th order statistic of the prediction neighborhood set Np as figfifig, and

assuming that a”, Z in, without loss of generality, which corresponds to the second

condition in equations (6.26) and (6.27), we define the membership functions of the EG
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fuzzy set and the TG fuzzy set as follows:

_ ~.. “(6)

‘PEG(17i1,i2) = 6 “3““?”WV (6.28)
. . “'(7)

(PTGWim‘z) = {ETGGII’Zz—fi‘1'?)2 (6.29)

For the condition 2711 12 < 5:1 i2, we will replace the centers of the EG and TG membership

functions with121-1)” and121(1),} respectively, in accordance With equations (6.26) and (6.27).

(P(V’ihiz)

(p1:G(V ) (pTG(V" i)
111i; ‘1’ z

1.0

 

 

Figure 6.4: The fuzzy membership functions of the sets EG and TG

The two membership functions are depicted graphically in Figure 6.4. Under the

~6()11 22 as the preferred gray levelcondition 2211 i2 2 17“,2, where we previously designate v

estimator in the edge-oriented estimation scheme, we now generalize this concept by

~(6)assigning a membership value of 1 for v“ 12. However, instead of adopting this value

exclusively, we have also assigned non-zero membership function values for gray level

~(6)h 12, thus expressing the notion that nearby values also have relevancy111values close to v-

determining the final predicted gray level value. Similar assignments are adopted for the

TG membership function withv(7 as the center.
11 )12

In the two equations, the two parameters €EG and §TG control the width of the respec-

tive membership functions, thus quantifying the notion of “closeness” in terms of gray

level value differences for both fuzzy sets. In general, the values of these two parameters

are different from each other, and the optimal values of both parameters may also differ

for different image regions. In view of these, we have devised a training algorithm for

adapting these parameters in different regions and this will be described in a later sec-
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tion. The requirement for adaptation is also the reason we have chosen SEC; and {Ta to

be multiplicative factors instead of their usual appearances as denominators in the form

of variances for Gaussian functions: in the former case, we have only to ensure that both

parameters are greater than zero. In the latter case, there is the additional difficulty

that the adapting variances can easily become too small to result in an excessively large

exponent for the Gaussian functions.

6.5.2 Fuzzy Inference Procedure for Predicted Gray Level Value

Given the membership functions gOEG(z7,-1,,~2) and 90710021,”) of the two fuzzy sets EG and

TG, we can define a mapping F, which assigns a single fuzzy set G, the GRAY LEVEL

ESTIMATOR fuzzy set, to each pair of fuzzy sets EG and TG,

G = F(EG,TG) (6.30)

in the following way: since any fuzzy set is fully defined by specifying its membership

function, we will define the set mapping F in terms of real-valued mappings between the

parameters of the membership function mafia-hi2) and the parameters of the membership

functions (pEg(17,-M~2) and (pTG(17,-,,,~2) as follows:

<PG(17i1,i2) = 6_€G(E1‘i2_$ff¢2)2 (6.31)

N _ N N 6 ~ ~ 7
113,132 = ME(H¢1,i2)U§1,)¢2 + #T(’€i1,i2)vz(1,)i2 (6-32)

60 E flE('€i1,i2)€EG + fiT(Hi1,i2)€TG (6-33)

. . ~ 2 ~ 2 ~ 6 ~ 7

under the c0nd1t10n vim-2 2 vim-2 . For Um; < vim-2, the terms 11:1 3,2 and 0,9,2 are replaced

~(4)_by 12,1,” and 171‘?” respectively.

The mapping operation is illustrated in Figure 6.5. From the figure, it is seen that

the mapping performs a kind of interpolation between the two fuzzy sets EG and TG.

The coefficients flare-M2) and Ilflnihiz) refer to the previous normalized fuzzy coefficient

values of the fuzzy ETC measure model, which is independent from the current gray

level estimator fuzzy model. If the current pixel belongs to an edge, the conditions

flEUc) m 1 and flT(k) z 0 are approximately satisfied, the resulting final gray level
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1.0

 

 

Figure 6.5: The mapping of the fuzzy sets EG and TG to G

estimator fuzzy set G is approximately equal to the edge gray level estimator fuzzy set EG,

and the final prediction for the gray level value, 17:11,”, will be based on the corresponding

membership function of this fuzzy set. On the other hand, if the current pixel belongs to

a textured area, the conditions flats-M2) % 0 and fiflmhiz) % 1 hold approximately, and

the estimation of 17511,,»2 will be mostly based on the membership function of the texture

gray level estimator fuzzy set TG. For all the other cases, the mapping operation results

in a membership function for the set G with values of parameters intermediate between

those of EG and TG.

6.5.3 Defuzzification of the fuzzy set G

The fuzzy inference procedure determines the final GRAY LEVEL ESTIMATOR fuzzy

set G with corresponding membership function (pawl-1,1,) from the membership functions

(pngim-z) and cpTG(17,-h,,). In order to provide a desired network output for the fuzzy

HMBNN, we have to defuzzify the fuzzy set G to obtain a crisp prediction 54 and the11,1'2

associated desired network output A1731 #2. A common way to defuzzify a fuzzy set is to

employ centroid defuzzification [61], Where we assign the centroid of the fuzzy membership

function to be the crisp value associated with the function. In the case of the fuzzy set

G, we obtain

~d _ ffooo W007)” _ ~G. . : _ . . .34
21,22 fjooo 900(17)dfi [011,12 (6 )
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Due to the adoption of the Gaussian function for spG(17,-,,,-2), this particular defuzzification

strategy does not take into account the information provided by the width of the member-

ship function. Specifically, rather than simply using 173,2, which may not correspond to

any of the pixel gray level values in the prediction neighborhood set, as an estimator for

the current pixel value, we would also like to incorporate those pixels in the neighborhood

set with values “close” to 17G in a sense depending on the exact value of the width1.1,i2’

parameter 60, in the determination of the final estimate for the current gray level value.

The inclusion of these pixels from the neighborhood set will reduce incompatibility of the

value of the estimator with those pixel values in its neighborhood. In accordance to these,

we propose the following discrete defuzzz'fication procedure for the fuzzy set G:

)vii:— soa(o123.9120 + Z soa(E:‘,12)oE:‘,13 (6.35)
np=1

where ¢G(17,-,,,~2) is the scaled membership function defined as follows:

~ ~ 1 ~
9000123,“) 5 5900(Us'm'2) (6.36)

C E (pGWG )+ Z soa(o(oE:‘,12) (6.37)
npzl

From this expression, it is seen that the final crisp estimate 171 does not necessarily
z1 12

equal to the centroid 17,61,2 as in continuous defuzzification, but it also depends on the

pixel values in the prediction neighborhood set Np. In particular, if there exists a pixel

~11(p)-,1,2 in Np which is not exactly equal to 17?1#2, but is nevertheless “close” to

~(np)
i1,i2

with value 1;

it in the form of a large membership value spG(17 ) in the fuzzy set G, then the crisp

estimate 17f”-2 will be substantially influenced by the presence of this pixel in N such

Gthat the final value will be a compromise between 17,”-2 and11,1012; This1s to ensure that,

apart from using 17G we incorporate the information of all those pixels in the prediction
11,1127

nei hborhood set which are close in values to 17.0 . to obtain a more reliable estimate ofg 11,12

the current pixel value.
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6.5.4 Regularization Parameter Update

Given the final crisp estimate 17%,,-2 for the current pixel, we can then define the desired

network output AW for the fuzzy HMBNN as in Chapter 3:
z1,1'2

A64 =6¢ —6,-,,,-, (6.38)
“J2 “J2

Adopting the same cost function 6}, where

1
8, = §(Afi¢ — Art-WV (6.39)

11yi2

we can update the value of the regularization parameter by applying stochastic gradient

descent on this cost function:

86}

8A,
 A,(t +1) = Mt) — n (6.40)

The partial derivative in the equation can be evaluated using the procedures described in

Chapter 3.

However, unlike the case in Chapter 3, the fuzzy regularization network has two neu-

rons, namely the texture neuron and the edge neuron, associated with a single sub—network

for the combined edge/textured region, whereas there is only one neuron associated with

a sub-network for our previous network. We must therefore derive two update equations

for the two regularization parameters Alix“) and xvi-“(fl associated with the respective

neurons. In addition, each update equation is to be designed in such a way that the

resulting value of the regularization parameter would be appropriate for the particular

types of regions assigned to each neuron. For example, we may expect that the parameter

Afiifit) of the texture neuron would be smaller than the parameter Afiigefl) of the edge

neuron due to the better noise masking capability of textures.

In view of these considerations, we can formulate the two update equations by regard-

ing the current sub-network as a two-layer network. More precisely, we consider the form

of equation (6.16), which is repeated here for convenience

Afiihiz : flE(Hi1,i2)Afiedge + fiT(/€il,i2)Afitex
1.1 51.2 7:1 )i2
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where flE(I€11,i2), flT(I€ihi2) can be regarded as the output weights of the sub—network, and

Afifff:,A17f-ff2 can be considered as the outputs of the hidden edge and texture neurons.

As a result, we can derive the update equations for both Aedge and At“ using the generalized

delta rule for multilayer neural networks.

For the parameter Afifige associated with the edge neuron, the update equation is derived

as follows:

(98d e _ d e t

Aifg (t + 1) _ Agfg (t)— na—A—edge

3a aA__~_fjg§
_ ed e
_ Arfg (t) — ”a_A—~edge_—6Aedge

v11 :12

8A1“ 12 awed“ed 6 1
: Arf‘q (t) + ”(A771v11 ,i2 _Avil,12)6TA~edge aA——e—d;:2

[011,12

d 65;?ng

I Aifgea) + ”(Ad”11 ,1'2 —A’U“ 1,2)flE(H11,1‘2) 8—/\:dlg’ez (6.41)

Similarly, for N”, we have the following update equation
Tr

8Afifef§

At"? (t + 1) Z Aim“) + “(Avdv11 12 _AU1'1 i2)fiT(K311,12) 6A“;2 (6.42)

Ti

From the equations, it is seen that if the current pixel belongs to a textured region,

the conditions flT(I€il,12) % 1 and 13,901,322) z 0 is approximately satisfied, and we are

essentially updating only the parameter of the texture neuron. On the other hand, if the

pixel belongs to an edge, we have the conditions flE(ni1,,-2) % 1 and flfinihh) % 0, and we

are updating the edge neuron almost exclusively.

6.5.5 Update of the Estimator Fuzzy Set Width Parameters

Previously, it is seen that the width parameters of the gray level estimator fuzzy sets, 5139

and STE , determine to what degree the various pixels in the prediction neighborhood set

participate in estimating the final predicted gray level value. In other words, the param-

eters establish the notion of “closeness” in gray level values for the various edge/textured

regions, which may differ from one such region to another.

In general, we have no a priori knowledge of the values of the width parameters re—

quired for each combined edge/textured region. In View of this, we propose a simple
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learning strategy which allows the parameters of each such region to be determined adap-

tively. Recall that, for the fuzzy sets EG and TG, we assign a membership value of l to

~(6) ~(7)
the order-statistics 11‘ ~ and v,1,” ,1,” respectively (assuming '17,,“ > 5,1,”), indicating that

these two values are highly relevant in the estimation of the current gray level value.

Since the shape of the Gaussian membership function can be fixed by two sample points,

we can determine the width parameter by choosing a gray level value in the set of order

statistics which is the least relevant in estimating the final gray level value, and assign

a small membership value 6 << 1 to this gray level value, thus completely specifying the

entire membership function.

A suitable candidate for this particular gray level value is the median, or alternatively,

the 5-th order statistic ESL-2. If we adopt this value as our estimate forvthe final gray

level value, we are effectively aiming at a median filtered version of the image. Although

median filter is known to preserve edges while eliminating impulse noises for the case of

images without blur [87] , we can expect that, for blurred or partially restored images,

the median will be close to the mean gray level value in a local neighborhood, and thus

would constitute an unsuitable estimate for the final gray level value in the vicinity of

edges and textures. We can thus assign a small membership value to the median gray

level value to completely determine the final form of the Gaussian membership function.

More precisely, we define the following error function CE for adapting the two width

parameters 5E0 and {Ta as follows

1 ~

CE = 5(e — <PG(Uif,)¢2))2 (6.43)

which expresses the requirement that the value of (pg('l72~1,i2) should be small when a”, is

close to the median value. The gradient descent update equations for the two parameters

§EG and 5T0 with respect to CE can then be derived by applying the chain rule according

to equations (6.31) and (6.33). For the parameter 6E0,

acé

3519c;

8C§ 8900 8€G

_ "5%55-0 3513c;

 

{ECU + 1) = EEG“) — 775

 

= EEGW)
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= 5mm — nd-(e — 303(«7333>>)<—(a3?3 — 173,3)soaw333»(ta/<33»
~ ~ 5 ~ 5 ~ ~

= act) — nguE<n33-3>soa<v333><e — 3301333))(11333 — 3) (644)

Similarly, the update equation for 5T0 is

€Ta(t + 1) = eat) — ngnT(n3,.-3>soa<a3?3)(e — 3007333))(17333 — v33) (6.45)

From the form of the two update equations, it is seen that, similar to the case for the

update of the regularization parameters, when the current pixel belongs to a textured

region, where fiT(/~c,-1,,-2) m 1 and [IA/$3132) z 0, substantial update is performed on ETC;

While there is essentially no update on 6E6, which is reasonable in view of the necessity

to update the shape of the TG membership function using information from the textured

pixels only. On the other hand, for edge pixels Where flE(/<t,h,-2) z 1 and fiT(n,-1,,2) % 0,

only the parameter {Ea will be substantially modified.

6.5.6 Incorporation of the Texture Map

The incorporation of the above fuzzy models in the HMBNN enables the classification

of the previous combined edge/textured regions into separate edge and textured regions,

thus solving one of the stated problems of the previous version of the network in Chapter 3,

namely the incompatibility of a single parameter value to both the edge and the textured

regions. From the experimental results in Chapter 3, it was observed that whenever the

adaptive regularization scheme was designed such that the resulting parameter values in

the combined edge/textured regions are biased in favor of the textured areas, the edges will

appear noisy. On the other hand, if the values are biased towards the edges, the textured

regions will appear blurred. The capability of the current fuzzy HMBNN in distinguishing

between the edge and texture components has allowed the possibility of adopting different

regularization strategies for each of these regions, thus greatly alleviating this problem.

However, the other stated problem in Chapter 3, that of the appearance of smooth

blotches within a textured area, remains unsolved by the current approach. As stated

previously, this problem is due to the presence of regions of low local variances within
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a textured area, which causes those regions to be classified as smooth regions in the

segmentation step prior to restoration. Although there is justification in applying a large

parameter value to those regions due to their low variances, the presence of such smooth

regions within a textured area lends an unnatural appearance to the overall image. To

solve this problem, we have to incorporate complementary information in the form of a

texture map which represents the textured areas as continuous regions into the restoration

process, in addition to the previous local variance-based segmentation.

In Chapter 5 we have derived a textured region extraction algorithm which approxi—

mately locates the most prominent textured areas in an image, and thus exactly serves

the above purpose of providing an independent representation of the textured areas as

continuous regions. This is possible due to the use of the ETC measure K, as an alternative

characterization of the textures as opposed to local variances in the initial segmentation,

and the incorporation of continuity constraints in deriving the final textured regions. For

image restoration, we have to apply the texture extraction algorithm to the blurred and

noisy images instead of the original image as in Chapter 5. For more accurate extrac-

tion results, we have first applied restoration with non—adaptive regularization to the

respective images before texture extraction. The results of applying this algorithm to the

degraded images of flower, eagle and Lena under different additive noise levels are shown

in Figure 5.8 in Chapter 5.

With the availability of this additional characterization, we are especially interested

in those pixels which are normally classified as smooth regions in the variance-based seg—

mentation, but appear as within an extracted area in the current texture map. More

precisely, denoting the set of extracted texture areas as UTD,7' : 1, . . . ,T, we are inter—

ested in those pixels (21,15) 6 U? m B” for some 7' and T1,, where B” is one of the smooth

components in the variance-based segmentation. For these pixels, independent of the

underlying value Him-2 of the ETC measure, we assign the normalized fuzzy coefficient

value of flT(/€i1,12) = 1 and flEOtiw-z) = 0 to them, instead of determining the actual

fuzzy membership values. This is due to the more correlated nature of the underlying

gray level configuration of these weak texture pixels which usually leads to their identifi-
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cation as edge elements instead of texture elements, and which in turn imposes a higher

level of regularization to these pixels, again lending a smooth appearance to the weak

textures. This can be compensated by adopting the above procedure of pre—assigning the

membership function values to favor a texture classification for these pixels.

After identifying the weak texture pixels, we have to explicitly assign them to one of the

combined edge/texture sub—networks for regularization, since they are excluded from the

normal combined edge/textured regions in the variance-based segmentation map. For a

particular weak texture pixel, we could have identified the closest combined edge/textured

region in the variance-based segmentation map with respect to this pixel, and assign it

to the corresponding sub—network. However, for simplicity, we simply assign all the weak

texture pixels to a single combined edge/texture sub—network to avoid the need to evaluate

distances for each of these pixels. A natural candidate for this single sub-network is the

one with the area of its corresponding region being the maximum among all the regions.

More precisely, we choose the sub-network with associated region f}; such that

r; = arg max |.7-',f| (6.46)
Ti

where lfrf| denotes the area of region .7”.

6.5.7 Experimental Results

As in Chapter 3, we have applied the fuzzy HMBNN regularization strategy to the images

flower, Lena and eagle under various conditions of blur and additive noise, including 5

x 5 Gaussian blur (09 = 1) at 30dB BSNR, 5 X 5 uniform blur at 30dB BSNR, and

5 x 5 uniform blur at 20dB BSNR. (The original images of flower, Lena and eagle are

shown in Figures 3.3(a), (b) and (c) in Chapter 3). In addition, we have provided a more

comprehensive comparison between the performance of the current algorithm with other

conventional algorithms by including the restoration results using Wiener filter [3] and the

spatially adaptive iterative restoration algorithm by Kang and Katsaggelos [53, 56, 57].

In the latter algorithm, the regularization parameter was defined as a functional of the

partially restored image )2 at each iteration. In this way, estimation of the regularization
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parameter value can proceed simultaneously with the restoration process.

In the spatially adaptive iterative restoration algorithm proposed by Kang and Kat-

saggelos [53, 56] (referred to as KK-SAI hereafter), a modified form of the original energy

function for image restoration is defined as follows

1 A 1 A -
E = §||y - HXllia) + §A(X)HDXH2B($<) (6-47)

Instead of the usual isotropic Euclidean norm || - ||2 employed previously, the weighted

Euclidean norms with respect to the diagonal matrices A()‘{) and B()‘() are adopted. These

matrices allow the selective emphasis of either the data term or the regularization term

in specific image pixels to achieve spatially adaptive image restoration. To achieve this

purpose, they define the weighting matrix B(fc) as follows.

9(3?)
Bi :1—
() ’Yi

 (6.48)

where

(9(2) = diag[af, ...... ,012VI] (6.49)

with a2 representin the local variance at the i-th pixel, and 7,2 = mama-2. In highg z2‘

activity regions where the local variances are large, we should expect bij z 0, whereas

bij % 1 in smooth regions.

The role of the weighting matrix A()‘{) is complementary to that of 3(a) and is defined

as follows:

A(x) = I — 3(a) (6.50)

The global regularization parameter is defined as a function of the partially restored

image x

“Y — Hillioz)
/\(x) = ——.—— (6.51)

7;, — ”Dxllfam)

where the constant 71 is chosen as follows

1
”/1 = ——2HYH2 (6.52)

to ensure the overall convexity of the cost function with respect to x.
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(e) (f)

Figure 6.6: Restored flower images (5 X 5 Gaussian blur (09 = 1), 30dB BSNR). (a)-(f)
Restored images using (a) Wiener filter (b) non—adaptive Hopfield restoration algorithm
(optimally adjusted /\ by user) (c) KK—SAI (d) HMBNN (texture-oriented prediction).
(e) HMBNN (edge—oriented prediction) (f) IZuzzy HMBNN.
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(e) (0

Figure 6.7: Restored flower images (5 X 5 uniform blur, 30dB BSNR). (a)-(f) Restored

images using (a) Wiener filter (b) non-adaptive Hopfield restoration algorithm (optimally

adjusted A by user) (0) KK-SAI (d) HMBNN (texture-oriented prediction). (e) HMBNN

(edge—oriented prediction) (f) Fuzzy HMBNN.
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(e) (f)

Figure 6.8: Restored flower image (5 x 5 uniform blur, 20dB BSNR). (a)-(f) Restored

images using (a) Wiener filter (b) non—adaptive Hopfield restoration algorithm (optimally

adjusted A by user) (c) KK—SAI (d) HMBNN (texture-oriented prediction). (e) HMBNN

(edge—oriented prediction) (f) Fuzzy HMB1\11N.
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The results for 5 X 5 Gaussian blur with 30dB BSNR are shown in Figure 6.6 (the

degraded image is shown in Figure 3.4(a) in Chapter 3). Figure 6.6(a) shows the result for

Wiener filtering, Figure 6.6(b) shows the result using the Hopfield restoration network by

Zhou et.al [118] (referred to as HNN hereafter), with the value of A chosen to give the best

visual results. Figure 6.6(c) shows the result using the KK-SAI restoration algorithm. In

addition, we have included the results using the previous version of HMBNN in Chapter 3.

Figure 6.6(d) shows the result using the texture—oriented prediction scheme for estimating

the regularization parameters in the combined edge/textured regions, and Figure 6.6(e)

shows the result using the edge—oriented prediction scheme. The result for the current

fuzzy HMBNN algorithm is shown in Figure 6.6(f). Under this low level of degradation,

we can observe that the restoration results are generally similar and comparable With

each other. Although, compared with the fuzzy result in Figure 6.6(f), we can notice the

slightly blurred image features and ringing in the Wiener filtering result, and the slightly

blurred appearance of the KK-SAI restoration result.

The corresponding results for 5 x 5 uniform blur with 30dB BSNR are shown in

Figure 6.7 (the degraded image is shown in Figure 3.5(a) in Chapter 3). In this case,

the more ill-conditioned PSF causes more severe blurring of the image features in the

Wiener filtering result in Figure 6.7(a). For the Hopfield network restoration result in

Figure 6.7(b), it is evident that even though we have adjusted A to give the best visual

result, the non-adaptive nature of the process inevitably causes some blurring of the

image features, while some residual noises still remain in the smooth regions. For the

KK-SAI algorithm (Figure 6.7(c)), even though spatial adaptivity has been incorporated

in the form of weighted norms in the energy function, the adoption of a fixed mapping

between the local variance and local regularization parameter in the weighting matrices

does not usually result in optimal visual qualities for different images under various forms

of degradations. In the current case, although the strong edges and the smooth regions

are properly regularized, the weak edges and textures appear blurred. For the non—

fuzzy version of the HMBNN restoration algorithm, although the result using the texture-

oriented prediction scheme in Figure 6.7(d) provides a satisfactory result compared with
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the previous algorithms, where we can notice the comparative absence of background noise

and the relatively more well-defined flower stamen, we can also notice the appearance of

noises in the vicinity of edges. The noise is less noticeable in the textured areas such as the

flower stamen area due to their better noise masking capability. If we try to suppress the

noises around the edges by using the edge-oriented prediction scheme (Figure 6.7(e)), we

can notice that, although the edges in the image are satisfactorily restored, the textured

areas now become blurred due to the higher values of A required for noise smoothing

around the edges. These can be compared with the restoration result using the current

fuzzy algorithm in Figure 6.7(f), where different values of A are applied to the textured

areas and edges respectively according to the local ETC measure value. We can observe

that noise suppression around the edges is achieved without compromising the details of

the textured area, resulting in a very satisfactory quality for the final restored image.

The necessity for the current fuzzy algorithm becomes more apparent if we look at

the results under 5 X 5 uniform blur with 20dB BSNR, representing the most severe

degradation in this experimental setup (the degraded image is shown in Figure 3.6(a)

in Chapter 3). We can notice the blurry appearance of the Wiener filtering result in

Figure 6.8(a), and the noisy appearances of the Hopfield network result by Zhou et al

in Figure 6.8(b). Similar to the 30dB case, the KK-SAI algorithm results in properly

regularized smooth regions and strong edges, While the weak edges and textures remain

blurred. Although the restoration using the non-fuzzy HMBNN and texture-oriented

prediction in Figure 6.8(d) can be considered satisfactory, the noises around the edges are

more noticeable than for the 30dB BSNR case. If we apply edge-oriented prediction to

suppress the noises around the edges, the blurring of the textured areas becomes apparent

(Figure 6.8(e)).

These restored images can be compared with the fuzzy restoration result in Fig-

ure 6.8(f). we can see that the restoration result is satisfactory even under this high

level of degradation. This is achieved by the possibility of distinguishing between tex—

tures and edges through the ETC measure and the judicious assignment of different A

values to the two feature classes.
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(e) (D

Figure 6.9: Restored Lena images (5 x 5 uniform blur, 30dB BSNR). (a)-(f) Restored

images using (a) Wiener filter (b) non-adaptive Hopfield restoration algorithm (optimally

adjusted A by user) (0) KK-SAI (d) HMBNN (texture-oriented prediction). (e) HMBNN

(edge-oriented prediction) (f) Fuzzy HMBNN.
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(e) (0

Figure 6.10: Restored Lena images (5 x 5 uniform blur, 20dB BSNR). (a)—(f) Restored

images using (a) Wiener filter (b) non-adaptive Hopfield restoration algorithm (optimally

adjusted A by user) (0) KK—SAI (d) HMBNN (texture-oriented prediction). (e) HMBNN

(edge-oriented prediction) (f) Fuzzy HMBngI.
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(e) (f)

Figure 6.11: Restored eagle images (5 X 5 uniform blur, 30dB BSNR). (a)-(f) Restored
images using (a) Wiener filter (b) non-adaptive Hopfield restoration algorithm (optimally
adjusted /\ by user) (0) KK-SAI (d) HMBNN (texture-oriented prediction). (e) HMBNN
(edge—oriented prediction) (f) Fuzzy HMBNN.
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(e) (f)

Figure 6.12: Restored eagle images (5 X 5 uniform blur, 20dB BSNR). (a)-(f) Restored

images using (a) Wiener filter (b) non-adaptive Hopfield restoration algorithm (optimally

adjusted A by user) (c) KK-SAI (d) HMBNN (texture-oriented prediction). (e) HMBNN

(edge-oriented prediction) (f) Fuzzy HMBNN.
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We have also applied the current algorithm to the images Lena and Eagle, under 5 x

5 uniform blur at both 30dB BSNR and 20dB BSNR, in Figures 6.9, 6.10, 6.11 and 6.12

(the degraded images of Lena and eagle at 30dB BSNR are shown in Figures 3.9(a) and

Figures 3.10(a) respectively, the corresponding degraded images at 20dB BSNR are shown

in Figures 3.12(a) and (b)). For the image Lena at 20dB BSNR in Figure 6.10 , it is seen

in Figure 6.10(d) that the amplified noises around those edges on the face especially

interfere with the perception of the overall image. The suppression of those noises using

edge—oriented prediction results in a more noticeable blurring due to the large textured

areas in the image. The fuzzy restoration result in Figure 6.10(f) alleviates these two

problems to a large extent.

For the eagle image at 20dB BSNR in Figure 6.12, the primary purpose of employing

the fuzzy HMBNN is for edge noise suppression (compare Figures 6.12(d) and (f)). Due

to the comparative lack of strongly textured regions, the result of edge-oriented prediction

using the non—fuzzy HMBNN in Figure 6.12(e) is comparable with the current fuzzy result

in Figure 6.12(f). However, we notice slight noise amplification in the textures below the

eagle’s eye. This is due to the particular value of A331” selected by the algorithm under

the assumption that textural patterns can effectively mask noise, which is not strictly

satisfied in the current case, although the overall effect of this is not too objectionable.

In addition to the subjective comparisons, we have included objective comparisons of

the restoration results in terms of the root mean square error (RMSE) measure, which is

defined as follows:

RMSE = (Nilux — 5.1% (6.53)

where x and s: are the original image and restored image respectively with the pixels

arranged in lexicographical order, and N1 is the number of pixels in the image.

The RMSE values of the restored images using the various algorithms are listed in

Table 6.1 . It can be seen that the current HMBNN approach results in the lowest RMSE

for all the images under various forms of degradations. However, we should bear in mind

that the RMSE measure just represents a convenient supplementary reference, and does
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Image, PSF/noise level Blurred Wiener HNN KK-SAI Fuzzy HMBNN

Flower, Uniform PSF/30dB 8.73 7.96 5.76 6.95 5.16

Flower, Uniform PSF/20dB 10.06 8.12 8.71 8.69 6.94

Lena, Uniform PSF/30dB 13.03 11.23 8.18 11.15 7.10

Lena, Uniform PSF/20dB 13.79 11.61 10.67 12.05 9.69

Eagle, Uniform PSF/30dB 9.88 9.61 7.92 8.64 6.97

Eagle, Uniform PSF/20dB 11.98 9.75 10.56 11.12 8.99
 

 
Table 6.1: RMSE values of the restoration results using various algorithms

not fully characterize the visual quality of an image. This can be seen by comparing the

RMSE values of the Kang and Katsaggelos spatially adaptive iterative algorithm with

that of the Wiener filter under 20dB noise. Although the RMSE values of the Wiener

filtering result are lower than that of the spatially adaptive algorithm at this noise level,

it is obvious upon visual inspection that the spatially adaptive algorithm provides a more

acceptable restoration result due to the comparative absence of ringing in the background.

The A-maps for the three images are shown in Figure 6.13. The maps correspond-

ing to 5 x 5 times uniform blur at 30dB BSNR for the images are shown in Fig-

ures 6.13(a),(c),(e), while those corresponding to the same PSF at 20dB BSNR are shown

in Figures 6.13(b),(d),(f). Since two regularization parameters, namely Ag?“ and Mix, are

defined for each combined edge/textured region and applied to each pixel within, we have

used the convex combination (with respect the normalized fuzzy coefficients) of these two

values at each pixel for the purpose of constructing the A-map.

Ar, = flE(Hn,z‘2)/\5}ige + flT(/€i1,iz)/\:€}z (6-54)

From the figures, it is seen that the maps are in general similar to those produced by the

non—fuzzy HMBNN restoration algorithm, where there are tendencies for the designated

smooth regions to assume larger areas at higher noise levels. However, a distinguishing

difference between the current A-maps and those in Chapter 3 is the explicit superposition
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(e) (D

Figure 6.13: The A-distribution maps for the three images under 5 x5 uniform blur at

different levels of additive noise. (a)-(b) Flower (a) 30dB BSNR (b) 20dB BSNR (c)—(d)
Lena (c) 30dB BSNR (d) 20dB BSNR (e)—(f) Eagle (e) 30dB BSNR (f) 20dB BSNR.
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0f the derived texture map, using the texture extraction algorithm described in Chapter 5,

0n the original A-maps. This is more apparent for the images flower and Lena, Which

contain substantial areas of textured regions, by comparing their current A—maps with

those in Chapter 3. We can notice the enlargement of the textured regions and the removal

of the small smooth areas with the regions. As described previously, the motivation of

including these complementary sources of texture characterization is due to the possible

existence of low variance smooth regions within a textured area, which will accordingly

be assigned large /\ values and be perceived as smooth blotches within the otherwise well-

defined textural patterns, giving an unnatural appearance to the overall image. The effect

of including the texture maps can be observed from the restored images in Figures 6.8(f)

and 6.10(f), Where we can see that the textured areas are comparatively free of smooth

 

 

 

 

 

 

 

 

 

  

blotches.

Image name,PSF/n0ise level W W W

Flower, Uniform PSF/30dB 0.00156 0.000523 0.0525

Flower, Uniform PSF/20dB 0.00767 0.00252 0.0759

Lena, Uniform PSF/30dB 0.000976 0.000763 0.0423

Lena, Uniform PSF/20dB 0.00568 0.00238 0.0690

Eagle, Uniform PSF/30dB 0.00207 0.000604 0.0776

Eagle, Uniform PSF/20dB 0.00770 0.00322 0.0795    
 

Table 6.2: Average regional regularization parameter values for the three feature types

We have listed the average values of the two regularization parameters , W and W,

estimated respectively by the edge neuron and the texture neuron, in Table 6.2 . As in

Chapter 3, these are average values across all the combined edge/textured regions and

weighted by the region areas. For the 30dB BSNR cases, it can be observed that due to

the different training strategies applied to the edge neuron and texture neuron, the values

of the corresponding parameters exhibit marked differences. Most notably, the texture
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parameters W are consistently smaller than the edge parameters. This is appropriate

for the enhancement of the textured areas without causing too noticeable distortions due

to their better noise masking capability. On the other hand, the comparatively larger

edge parameters W allow the smoothing of the more noticeable noises in the vicinity

of edges. However, compared with the smooth region parameter values W, the edge

parameters are still small enough to provide an acceptable enhancement of the edges. For

the 20dB BSNR cases, similar conclusions can be drawn, except that all the corresponding

parameter values are greater than the 30dB BSNR cases in order to suppress the higher

levels of noises. In addition, the differences betweenW and W values become greater

due to the need to suppress the even more noticeable noises around the edges.

Employing the fuzzy inference mechanism to determine the desired network output

A5141,” at each pixel, we could expect that this will vary from pixel to pixel in such a

way to allow the preferential enhancement of the textured areas to edges. This can-

not be readily observed from the A-maps since we are performing the fuzzy inference

on the gray level update values instead of the A values themselves. To appreciate this

adaptivity more fully, recall that for those pixels With their ETC fuzzy coefficient values

[ITO-tibiz) >> fiE(/~c,-h,-2), they will be essentially classified as textures and assigned the

texture regularization parameter Mix. On the other hand, for those pixels with coef-

ficient values flE(I€i1,z‘2) >> flT(Hi1,i2), they will essentially be considered as edge points

and assigned the edge regularization parameter Afi‘fige. In view of these, we have dis-

played, in Figures 6.14(b), (d) and (f), those pixels with their ETC coefficient values

fiT(/t,-1,,-2) > flE(/€il,i2). We should expect that those pixels will be regularized essen-

tially by the smaller Affjf, therefore it is important that they actually correspond to the

textured areas in the image. This can be confirmed from the figures where it is seen

that the displayed areas in the Lena image are mostly clustered around the feathers,

and those in the flower image appears within the area containing the stamen. In Fig—

ures 6.14(a), (c) and (e), we have displayed those image pixels with their ETC coeflicient

values flE(I€ihi2) > fiT(n,-1,,-2). They will essentially be regularized with the larger parame-

ter )6?” and thus we expect that they should correspond to the edges of the image, which
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is again confirmed from the figures.

With the availability of this edge-texture discrimination information, together with

the auxiliary texture map, further enhancement of the current algorithm is possible: our

current image model assumes that the texture patterns are capable of effectively masking

the noises. If the noise level or the specific texture patterns concerned are such that this

assumption is not valid, we can always incorporate the associated specific noise or texture

model in deriving a more appropriate local regularization scheme. It is then possible

to restrict its application to the textured region due to the availability of the auxiliary

texture information, and leave the other regions unaffected.

6.6 Summary

We have generalized the previous HMBNN framework for adaptive regularization to in-

corporate fuzzy information for edge/texture discrimination. Adopting the ETC measure

developed in Chapter 5, we propose an edge/texture fuzzy model which expresses the de-

gree to which a local image neighborhood resembles either edge or texture in terms of two

fuzzy membership values. Correspondingly, we modify our previous network architecture

to incorporate two neurons, namely the edge neuron and the texture neuron, within each

sub—network. Each of the two neurons estimate an independent regularization parameter

from the local image neighborhood and evaluate the corresponding required gray level up-

date value as a function of its own parameter. The two gray level update values are then

combined using fuzzy inference to produce the final required update in such a way which

takes into account the degree of edge/texture resemblance of the local neighborhood. In

general, the algorithm is designed such that less regularization is applied to the textured

areas due to their better noise masking capability, and more regularization is applied to

the edges where the noises are comparatively more visible.

The generalized algorithm is applied to a number of images under various conditions

of degradations. The better visual quality of the restored images under the current algo—

rithm can be appreciated by comparing the result with those produced using a number
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of conventional restoration algorithms, and especially those using the previous non-fuzzy

version of the current algorithm where a single regularization parameter value is applied

to both textured areas and edges whenever they are connected as a single region. The

current fuzzy HMBNN paradigm thus refines the previous notion of simply applying less

regularization for the combined edge/textured regions to allow the possibility of using

different levels of regularization to accommodate the different noise masking capabilities

of the various regional components, which represents a novel contribution to the field of

adaptive image regularization.

This Chapter concludes our work on adaptive regularization using HMBNN. In the

next Chapter, we will adopt a completely new viewpoint for the adaptive regularization

problem in terms of a novel cost measure Which governs the adaptive assignment of the

regularization parameters to various image regions. Due to the difficulty of optimizing

this cost measure using conventional gradient-based algorithms, we will introduce the

application of evolutionary computation to the problem of adaptive regularization.
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Chapter 7

Application of Evolutionary

Programming to Adaptive

Regularization

7. 1 Introduction

In this Chapter, we propose an alternative solution to the problem of adaptive regular-

ization by adopting a new global cost measure. It was seen in Chapters 5 and 6 that

the newly formulated ETC measure is capable of distinguishing between the textures and

edges in an image. It is further observed in this Chapter that the distribution function of

this measure value in a typical image assumes a characteristic shape, which is compara—

tively invariant across a large class of images, and can thus be considered a signature for

the images. This is in contrast with the distribution function of other quantities such as

the gray level values which varies widely from image to image, as can be confirmed by

observing the gray level histograms of different images.

It is also observed that the corresponding ETC distribution function (or equivalently

the ETC probability density function (ETC-pdf)) of degraded images is usually very dif—

ferent from that of the non-degraded images. In other words, for optimal restoration

results, we can assign the regularization parameters in such a way that the ETC distri-
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bution function of the restored image once again assumes the shape which is typical for

non-degraded images, or more formally, we have to minimize the distance between the

ETC-pdf of the restored image and the characteristic ETC-pdf of non—degraded images.

In practice, we can only approximate the ETC—pdf by the histogram of the measure

values in the image, which cannot be expressed in closed form with respect to the regu-

larization parameters, and thus the conventional gradient-based optimization algorithms

are not applicable. We have therefore adopted an artificial evolutionary optimization ap-

proach where evolutionary programming (EP), belonging to the class of algorithms known

as evolutionary computational algorithms, is used to search for the optimal set of regular—

ization parameters with respect to the ETC—pdf criterion. One of the advantages of this

class of algorithms is their independence from the availability of gradient information,

which is therefore uniquely suited to our current optimization problem. In addition, these

algorithms employ multiple search points in a population instead of a sequence of single

search points as in conventional optimization algorithms, thus allowing many regions of

the parameter space to be explored simultaneously. The characteristics of this class of

algorithms are described in the following section.

7.2 Introduction to Evolutionary Computation

Evolutionary programming [29, 30] belongs to the class of optimization algorithms known

as evolutionary computational algorithms [7, 8, 9, 10, 29] which mimic the process of nat-

ural evolution to search for an optimizer of a cost function. There are three mainstreams

of research activities in this field, which include research in genetic algorithm (GA) intro-

duced by Holland [35, 43, 75] , evolutionary programming (EP) by Fogel [29, 30] , and

evolutionary strategy (ES) by Rechenberg and Schwefel [95, 96]. The defining characteris—

tic of this class of algorithms includes its maintenance of a diversity of potential optimizers

in a population and allow highly effective Optimizers to emerge through the processes of

mutation, recombination, competition and selection. The implicit parallelism resulting

from the use of multiple search points instead of a single search point in conventional
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optimization algorithms allows many regions of the search space to be explored simulta-

neously. Together with the stochastic nature of the algorithms which allow search points

to spontaneously escape from non—global optima, and the independence of the optimiza—

tion process from gradient information, the instances of local minima are usually reduced,

as unlike the case with the gradient-based algorithms. In addition, this independence

from gradient information allows the incorporation of highly irregular functions as fitness

criteria for the evolutionary process, unlike the case with gradient—based algorithms where

only differentiable cost functions are allowed. It is not even necessary for the cost func-

tion to have a closed form, as in those cases where the function values are obtained only

through simulation. We will give a brief introduction of the above members of this class

of algorithms in the following sections.

7.2.1 Genetic Algorithm (GA)

Genetic algorithm [35, 43, 75] is the most widely used among the three evolutionary

computational algorithms. The distinguishing feature of GA includes its representation

of the potential optimizers in the population as binary strings. Assuming the original

optimizers are real-valued vectors z 6 RN, an encoding operation 9 is applied to each

of these vectors to form the binary strings g = 9(2) 6 BH, where B = {0,1}. In other

words, the various evolutionary operations are carried out in the space of genotypes.

New individuals in the population are created using the operations of crossover and

mutation. In GA, crossover is the predominant operation, while mutation only serves as

an infrequent background operation. In crossover, two binary strings gm, gp2 are randomly

selected from the population. A random position h E {1, . . .,H} is selected along the

length of the binary string. After this, the sub-string to the left of h in p1 is joined to the

right sub-string of p2, and similarly for the left sub-string of 192 and the right sub-string of

p1, thus mimicking the biological crossover operation on the chromosomes. On the other

hand, the mutation operator toggles the status of each bit for a certain binary string with

a probability 7rm, which is a very small value in the case of GA. The main purpose of
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mutation is to introduce new variants of genotypes into the population.

After the processes of crossover and mutation, the fitness of each binary string,

f (gp), p = 1,. . . , n, is evaluated, where ,u is the number of optimizers in the population,

and f represents the fitness function. The function f usually reflects the requirement of

the optimization problem at hand. In the case of a maximization task, we can usually

equate the objective function of the problem with the fitness function. In the case of a

problem which requires minimization, we can simply set the fitness function to be the

negative of the current cost function.

After the evaluation of the individual fitness values, the optimizers in the population

undergo a proportional selection process: each optimizer is to be included in the next

generation with probability 7r(gpl), which reflects the relative fitness of individual gpz

_ f(gp’)
7r(gP’) _ 5:1 f(gp) (71)

In other words, an individual is more likely to survive into the next generation if it

possesses a high fitness value. As the algorithm proceeds, the population will eventually

consist of those optimizers with appreciable fitness values.

7.2.2 Evolutionary Strategy (ES)

As opposed to genetic algorithm, evolutionary strategy [95, 96] represents an alternative

evolutionary approach where the various adaptation operations are carried out in the

space of phenotypes: instead of first encoding the individual optimizers z 6 RN into

binary strings, the recombination and mutation operations are carried out directly on the

real—valued vectors as described below.

For the recombination Operation, two optimizers zpl, z],2 are randomly selected from

the population, and a new optimizer z is generated from these two according to the

recombination operator O.

z : C(zpl, zm) (7.2)

The simplest form for C is the linear combination operation

2 = ozzp1 + (1 — oz)zp2 (7.3)
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where a < 1 is the combination coefficient, although other combination operations, as

described in [7], are also possible.

The mutation operation in ES randomly perturbs each component of the optimizer

vector 2- to form a new optimizer z’ with components z’- as followsJ J

z; = zj + N(O, 0;”) (7.4)

where N(0, a) is a Gaussian random variable with mean 0 and standard deviation 0. In the

terminology of ES, the parameter 0;” associated with the component zj is usually referred

to as a mutation strategy parameter. The values of the mutation strategy parameters

determine whether the current optimization process more resembles a global search, as

when the ajm’s assume large values, which is desirable at the initial stages when many

regions of the parameter space are simultaneously explored, or a local search which is more

appropriate toward the final stages when the mutation strategy parameters assume small

values to restrict the search within promising localities. The mutation strategy parameters

themselves are usually adapted according to the following log-normal equation:

037" = 0;” eXp(T'N(O, 1) + TNj(0,1)) (7.5)

where 7’, T are pre—determined constants, and N(0, 1), Nj(0, 1) are Gaussian random vari—

ables with mean 0 and standard deviation 1. In the case of Nj(0, 1), the random variable

is re—sampled for each new component j. The log—normal adaptation equation is adopted

to preserve the positivity of the mutation strategy parameters 0;".

The recombination and mutation operations are performed 7 times to form 7 new

individuals from the original a individuals in the population. In the case of (n+7) selection

strategy [7] , the fitness values f (zp) of each individual in the (u + 7) parent/descendant

combination are evaluated, and those ,u optimizers in this combination with the greatest

fitness values are incorporated into the population in the next generation. In the (11,7)

selection strategy [7], only the fitness values of the newly generated 7 descendants are

evaluated and the fittest of those incorporated into the next generation. The selection

process is deterministic and depends solely on the fitness values of the individuals.
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7.2.3 Evolutionary Programming (EP)

Evolutionary Programming [29, 30] shares many common features with evolutionary strat—

egy in that the primary adaptation operations are also carried out in the space of pheno—

types. In addition, there are a number of important similarities.

o The individual components zj of each optimizer z E RN are also perturbed according

to equation (7.4), with the mutation strategy parameters 0;” similarly defined for

the current component. In some variants of EP, the individual components are

perturbed by an amount proportional to the square root of the objective function

value [29].

o The individual mutation strategy parameters 0;" themselves are also subject to

adaptations. In some EP variants7 the log-normal relationship (7.5) is also adopted

for this purpose.

Despite these similarities, there are a number of important differences between EP and

ES which clearly distinguishes the former from the latter:

0 In EP, mutation is the only adaptation operation applied to the individuals in the

population. N0 recombination operations are carried out.

0 Instead of using a deterministic selection strategy as in ES, where 7 descendent opti-

mizers are created from u parent optimizers7 and the members of the new population

selected from the resulting combination according to a ranking of their respective

fitness values, EP uses a stochastic selection strategy as follows: for each optimizer

in the (u + 'y) parent/descendent combination, we randomly select Q other opti—

mizers in the same combination and compare their fitness values with the current

optimizer. The current optimizer is included in the population in the next gener-

ation if its fitness value is greater than those of the Q “opponents” selected. In

addition, the number of descendants *y is usually set equal to the number of par—

ents p. In other words, this Q—tournament selection strategy can be regarded as a

probabilistic version of the (u + u) selection strategy in ES.
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The tournament selection strategy has the advantage that, compared with the deter—

ministic selection strategy, even optimizers which are ranked in the lower half of the 01+u)

parent and descendent combination have a positive probability of being included into the

population in the next generation. This is especially useful for nonstationary fitness func-

tions when certain optimizers in the population which at first seem non-promising turn

out to be highly relevant due to the constant evolving nature of the fitness landscape.

These optimizers may probably be already excluded in the initial stages of optimization

if a deterministic strategy is adopted, but in the case of a tournament selection strategy,

it is still possible for these optimizers to be included if there are indications that they are

slightly distinguished from the truly non—promising optimizers through the result of the

tournament competition.

This is also the reason for our choice of EP for our adaptive regularization prob—

lem: in our algorithm, we have generated a population of regularization strategies, which

are vectors of regularization and segmentation parameters, as our potential optimizers.

The optimal regularization strategy is selected from the population at each generation

according to criteria to be described in a later section, and this is used to restore the

image for a single iteration. This partially restored image is then used as the basis for

the evolution of regularization strategies in the next generation. In other words, the

fitness landscape in the next generation depends on the particular optimizer selected in

the previous generation, thus constituting a non-stationary optimization problem. The

stochastic tournament selection strategy is therefore useful in retaining those regulariza-

tion strategies which initially seem non-promising but are actually highly relevant in later

restoration stages.

7.3 The ETC—pdf Image Model

In this Chapter, we address the adaptive regularization problem by proposing a novel

image model, the adoption of which in turn necessitates the use of powerful optimization

algorithms such as those typical in the field of evolutionary computation. This model is
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observed to be capable of succinctly characterizing common properties of a large class of

images, and thus we will regard any restored image which conforms to this image model

as suitably regularized. In other words, this model can be regarded as a possible objective

characterization of our usual notion of subjective quality. The model, which is specified

as the probability distribution of the ETC measure, is approximated as a histogram, and

the regularization parameters in the various image regions are chosen in such a way that

the corresponding ETC-histogram of the resulting restored image matches the model pdf

closely, i.e., minimizing the difference between the two distributions. It is obvious that

the resulting error function, which involves differences of discrete distributions, is highly

irregular and non-differentiable, and thus necessitates the use of powerful optimization

algorithms. In View of this, we have chosen evolutionary programming as the optimization

algorithm to search for the minimizer of this cost function.

ETC-pdf of different images
p(k) x 10'3
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Figure 7.1: The ETC-pdf of different images

Denoting the probability density function of the ETC measure 1-: within a typical

image as pn(f€), we have plotted the ETC—histograms, which are approximations of the
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ETC-pdf, for several images in Figure 7.1. It is noticed that the histograms peak around

H = 1, indicating the predominance of smooth regions. As It increases, values of the

various histograms gradually decrease, with 1),,(Ic) % 0 for K} s K, which is the size of

the averaging Window used, (K = 5 in the current example). This indicates the smaller

proportion of edges and textured regions. More importantly, it is seen that, although

there are slight deviations between the various ETC—histograms, they in general assume

the typical form as shown in Figure 7.1. This is in contrast with the traditional gray-level

histogram which is usually used to characterize the gray level distribution in an image,

and which can vary widely from image to image. This is illustrated in Figures 7.2(a)

to (d), where the gray level histograms for the same images are shown. As a result, we

can consider the ETC-histogram as a form of signature for a large class of non—degraded

images.

On the other hand, it is observed that the corresponding density functions for degraded

images are usually very different from the standard density function. Figure 7.3 illustrates

this point by comparing the corresponding ETC-pdf of one of the images in Figure 7.1

and its blurred version. In the figure, the solid curve is the original ETC—pdf and the

dotted curve is the ETC-pdf of the blurred image. It is seen that the rate of decrease is

greater for the blurred image, indicating the higher degree of correlation among its pixels.

Therefore, one possible regularization strategy to allow the restored image to more closely

resemble the original image is to assign the parameters in such a way as to minimize the

discrepancies between the ETC—histogram of the restored image and that of the original.

Due to the similar shapes of the ETC-pdf in Figure 7.1, we can model the ETC-pdf

using a combination of piecewise Gaussian and exponential functions. During restoration,

we can adaptively assign the regularization parameters in such a way that the correspond-

ing ETC-pdf in the restored image conforms closely to the model density function. In

this work, we have adopted the following model pnM(/€) for the typical ETC-pdf, which
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can best characterize the density function of a large class of images.

ce_("‘_1)2 0 S K, g 1

1921(5) = cow—1) 1 < n S n3 (7.6)

caiwrnaSm—M) [$3 < K s K

In this equation, we use a Gaussian function segment to model the density function when

H 6 [0,1], and use two exponential function segments to model the tail distribution in

the interval [1, K], with the corresponding parameters a1 and a2 satisfying a1 < (L2. The

constant H3 in the equation is that value of H which corresponds to an almost equipartition

of the K2 variables into three components as described in Chapter 5. It has been shown

for the case of 5 x 5 averaging window that K23 % 1.8. We could have modelled the

density function in the interval [1, K] using a single exponential segment with parameter

a, and in turn estimate this parameter from a histogram of It using typical real-world

images. Instead, we have used two separate exponential functions, with al and a2 chosen

such that al < (12. The reason for doing this and choosing the particular transition point

n3 is that: for I‘D E [1,/$3], the neighborhood surrounding the current pixel consists of

less than three gross components, which usually corresponds to a mixture of noises and

smooth regions, and is particularly undesirable given the enhanced visibility of noises

against the smooth background. One must therefore limit the probability of occurrence

of such values of n, which explains the adoption of a1 < a; in the probability density

model allowing a smaller probability of occurrences for K, E [1, 53]. One may argue that

this may adversely affect the probability of edge occurrence, which consists of two gross

components with K, : H2 6 [1,/s3] as well, but edges usually occupy a small area in a

typical image, which translates to a very small occurrence probability, so it is much more

probable that those locations with m in that interval correspond to a mixture of noises

and smooth backgrounds, and the main effect of probability reduction in this interval is

the elimination of this type of artifacts. The variable 5 controls the rates of decay for the

two exponentials, and the constant c in the equation is a normalization factor such that

K Mf p, (1;) dx. = 1 (7.7)
0
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7.4 Adaptive Regularization Using Evolutionary Pro-

gramming

As mentioned previously, the value of the regularization parameter in image restoration

applications is usually determined by trial and error. Therefore, the purpose of estab-

lishing the model in Section 7.3 is to provide an objective way by which we can assign

the parameters adaptively to result in the best subjective quality. Formally, we replace

the constrained least square cost function for image restoration in Chapter 3 with the

following cost function:

1 , 1 A

E = Elly — Hx||2 + §||DXHE (7-8)

where, instead of a single parameter A, we employ a diagonal weighting matrix: L defined

as follows:

L = diag[/\(01), ...... ,A(JN,)] (7.9)

where 0,,i = 1, . . . , N1 is the local standard deviation of the i-th pixel in the image. This

is similar to the case of the spatially adaptive iterative restoration algorithm by Kang

and Katsaggelos [53, 56] , described in the experimental section in Chapter 6, where we

employ the following form for L

 

2 2

L = /\ diag[1 — a? , ...... ,1 — (ii (7.10)

and amax denotes the maximum value among all the local standard deviations. (The

local variances 0,- should be distinguished from the mutation strategy parameter of”).

In that algorithm, an additional weighting matrix Ab?) is also adopted for the first data

term, while for the present case no such weightings are employed. In addition, Whereas the

diagonal entries of L for the KK-SAI algorithm is restricted to the form in equation (7.10)

, the corresponding entries M0,) for the current algorithm can be any arbitrary function

of the local standard deviation 0,-

Denote the ETC-pdf for the restored image )2 as p,,(r~c), our objective is to select

the particular forms for M0,) in the weighting matrix L in such a way to minimize the
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following weighted probability density error measure of the ETC measure It (ETC—pdf error

measure).

K

a = /0 were) — may dn (7.11)

where the weighting coefficients are defined as follows

— _i__
w(/<;) = max(pf$‘4(a),pn(n))2 (7.12)

to compensate for the generally smaller contribution of the tail region to the total proba-

bility. In practice, we replace the integral operation by a finite summation over a suitable

discretization of [0,K], and the density function pK(/€) is approximated using the his—

togram of K3 in the partially restored image.

(1

Eidf = Z W(TA)(:D£”(TA) — 13AM)? (7.13)

r=1

where A is the width of the discretization interval, 13,,(rA) is the estimated ETC—pdf of Ifi in

terms of its histogram , and d is the number of discretization intervals. Since the histogram

records the relative occurrence frequencies of the various values of It based on the previous

discretization, it involves the counting of discrete quantities. As a result, the overall

error function (7.13) is obviously non-differentiable with respect to the regularization

parameters, and the evolutionary programming approach provides a viable option to

minimize this error function.

Evolutionary programming is a population-based optimization algorithm in which the

individual optimizers in the population compete against each other with respect to the

minimization of a cost function, or equivalently, the maximization of a fitness function [8].

In the current case, we have already specified the fitness function, which is equation (7.13).

In addition, we have to specify the form of the individual optimizers in the population

as well. For the adaptive regularization problem, we consider the following regularization

profile Moi) defined on the local standard deviation 0,- around the i—th pixel

Am x "" Amin

M01") = aW+ )‘min (7.14)

Equation (7.14) defines a decreasing sigmoidal function on the local standard deviation

range of the image, which is consistent with our previous view that large A is required at
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low variance pixels to suppress noise and small A is required at high variance pixels to

enhance the features there. There are four parameters in equation (7.14) which determines

the overall A assignment strategy: Amin and Am“ represent the minimum and maximum

parameter values used respectively, a represents the offset of the sigmoidal transition from

the origin, thus implicitly defining the standard deviation threshold which separates the

small variance from the large variance region. fl controls the steepness 0f the sigmoidal

transition. The various parameters of a typical regularization profile are illustrated in

Figure 7.4.

[31>B2

  

 

Figure 7.4: Illustrating the various parameters of a typical regularization profile 8,,

Concatenating these four parameters together with the mutation strategy parameters

agnmm, agnm, 0;", 0’} (not to be confused with the local standard deviation 0;- of an image)

into an 8—tuple, we define the following regularization strategy 8,, as the p-th potential

optimizer in the population.

_ m m m m
Sp : ()‘min,p7 )‘maxma apa flpa aAmimpa UAmaxypa 0a,!” 0,641) (7-15)

Employing the usual operations of evolutionary computational algorithms, which in the

case of evolutionary programming is restricted to the mutation operator [29], we generate

a population P consisting of p, instances 0f 8,, in the first generation, and we apply muta-

tion to each of these u parents to generate p descendants in each subsequent generation
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according to the following equations

Aininm Z /\min,p + N“): ”Summp) (7-16)

Ainaxm = Amaxm + N(0, 0T,,,..,.,,,) (7-17)

02;, 2 cup + N(0, 02:1,) (7.18)

[3; = flp + N(0, 0%) (7.19)

where N(0, 0) denotes a Gaussian random variable with zero mean and standard deviation

0. The variables X Xmin,p? max,pv a; and 5;, are the components of the descendant strategy

8;. The mutation strategy parameters are updated according to the following log-normal

adaptation rule .

”flap 2 ”Tmin,peXP(N(0,T1)+Nj(0,T2)) (7.20)

037.221; = UTm.x,peXp(N(0m)+Nj(0,T2)) (7.21)

033» = UZpeXP(N(0,Tl)+NJ-(0,T2)) (7.22)

OZ; : ogfpeXp(N(Oa7-1)+Nj(0772)) (7.23)

where N(0,71) is held fixed across all mutation strategy parameters, while Nj(0,7’2) is

generated anew for each parameter. The values for 7'1 and 7'2 are (m)_1 and ( 2W)“

respectively, as suggested in [7], where 2N is the dimension of the regularization strategy

8],.

For each regularization strategy 8,, in the population, we can in principle use it to

restore a blurred image, and then build up the histogram 13,,(n) by evaluating H at each

pixel and counting their relative occurrence frequencies. Finally, we can evaluate the

ETC—pdf error Egdf(8p) as a function of the strategy 8,, by comparing the difference

of the normalized histogram and the model ETC—pdf, and use this value as our basis

for competition and selection. Adhering to the canonical operations of EP, we employ

tournament competition as our chief selection mechanism. For tournament competition,

we generate a subset T(Sp) C P \ {Sp} for each strategy 8,, with I’TI = Q by randomly

sampling the population Q times. We can then form the set W(8p) as below

W(8,,) = {Sq 6 TI ESdf(3q) > E;df(8p)} (7-24)
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which contains all those strategies Sq in T with their corresponding ETC-pdf error greater

than that of Sp. We then define the win count wc(Sp) as the cardinality of W(Sp)

wc(5p) = |W(S,,)| (7.25)

Denoting the population at the current generation as P(t), we order the regularization

strategies 8,, in P (t) according to decreasing values of their associated win counts wc(8p),

and choose the first ,u individuals in the list to be incorporated into the next generation

P(t+1).

7.4.1 Competition Under Approximate Fitness Criterion

As we have mentioned, we can in principle perform a restoration for each of the 2p

regularization strategies in P(t) to evaluate its fitness , but each restoration is costly in

terms of the amount of computations, since it has to be implemented iteratively, and is

especially the case when the number of individuals in the population is large. We therefore

resort to an approximate competition and selection process where each individual strategy

in the population is used to restore only a part of the image. Specifically, we associate

each strategy 8,0,1) 2 1,. . . ,2“ in the population P(t) with a subset 7%,, C X, where X

denotes the set of points in an Ny X N3: image lattice

and where the regions 72,, form a partition of X

RpiflRm = 0 p1¢p2 (7.27)
2u

UR, = X (7.28)
1221

In this way, we can define the quantity Elfdf(8p,72p), which is both a function of Sp and

R as the evaluation of ;df(8p) restricted to the subset 72,, only. This serves as anp7

estimate of the exact Egdf(8p), which is evaluated over the entire image lattice X and is

therefore a function of Sp only. In order to approximate the original error function closely,

we must choose the subsets ”R1, in such a way that each of them captures the essential
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features of the distribution of the ETC measure in the complete image. This implies that

each of these subsets should be composed of disjoint regions scattered almost uniformly

throughout the lattice X and that both the ways of aggregating these regions into a single

RP and the ways of assigning these subsets to each individual in the population should

be randomized in each generation. In view of these, we partition the image lattice X into

non-overlapping square blocks B, of size n x n

B 2 {BS : 3 E I} (7.29)

where

351 n 352 = (2) 5‘1 75 82 (7.30)

U B, = X (7.31)

.961

In this equation, I is the index set {1, . . . , S} and S is the number of n X n square blocks in

the image lattice. Assuming 211 < S and furthermore that u E S/2u is an integer, i.e., 2/1

is a factor of S, we can construct the following random partition 731 = {Ip : p = 1, . . . , 2n}

of I Where

Ipl film I w p1 7S P2 (7.32)

2M

U Ip = I (7.33)

1721

and |Ip| : u as follows:

0 Randomly sample the index set I u times without replacement to form I1.

0 For p = 2, . . . , 2p, randomly sample the set I\ U2: Iq u times to form Ip

Finally, we define the subsets 72,, corresponding to each individual strategy Sp as follows.

72, = U B, (7.34)

sEIp

We can then evaluate Egdf(8p,Rp) for each strategy 8,, with its corresponding region

RP and use it in place of the exact error Egdf(8p) for the purpose of carrying out the

tournament competition and ranking operation in Section 7.4. The process is illustrated
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in Figure 7.5. In this case, for the purpose of illustration, we have used a population with

only four individuals. The image is divided into 12 sub-blocks and we have assigned 3

sub-blocks to each individual in the population. This assignment is valid only for one

update iteration only, and a randomly generated alternative assignment is adopted for

the next iteration to ensure adequate representation of the entire image through these

assigned blocks.

 

 

 

      

Figure 7.5: Illustrating the assignment of regions 72,, to individual regularization strategy

81) for a 4—member population.

7.4.2 Choice of optimal regularization strategy

After the tournament competition and ranking operations, we can in principle choose the

optimal strategy 8* from the population P (t) and use it to restore the image for a single

iteration. We can define optimality here in several ways. The obvious definition is to

choose that strategy 8* with the minimum value of Egdf

A

8* = arg train [’fdf(8p,Rp) (7.35)

Alternatively, we can form a subset of those elite strategies with their win index wc(8p)

equal to the maximum possible value, i.e., the tournament size Q:

5Q 2 {8p : wc(8p) = Q} C P(t) (7.36)

and then choose our strategy 8* by uniformly sampling from this subset.

The above selection schemes are suitable for the competition and selection stage of

conventional evolutionary computational algorithms where the fitness value of each indi—
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vidual directly reflects its inherent optimality. In the current approximate competition

scheme, however, we have replaced the exact fitness value Egdf with the estimate Egdf,

which depends on both the inherent fitness of the strategy 8,, and its particular assigned

region RP. Therefore, there may exist cases where a non—optimal strategy will acquire

a high fitness score due to a fortuitous combination of image blocks BS in forming its

assigned region. To prevent this, a more sophisticated selection scheme involving the elite

individuals in the population is required.

Recalling that the estimated error Egdf is both a function of the inherent fitness of the

strategy 8,, and its assigned region ’Rp, and a fortuitous combination of image blocks B,

may result in a low estimated error even though the inherent fitness of 8,, is not very high.

But the very word “fortuitous” implies the rarity of this event, and since the assigned

region for each regularization strategy changes in each generation, we should expect that

for a strategy with low inherent fitness, it will quickly encounter a combination of image

blocks BS leading to a very large estimated error and become displaced from the popula-

tion. On the other hand, for a strategy with high inherent fitness, we should expect that

the corresponding estimated error will be low for a variety of image block combinations

in each generation, and it will most probably survive into the next generation. In view of

this, a proper way to estimate an optimal regularization strategy from the current popu-

lation should involve the survival time tp of each individual strategy 8p which is defined

as follows:

tp E t — t; (7-37)

such that
t

5,, 6 fl P(t’) (7.38)
tlzt;

In other words, t; is the generation where the strategy 8,, first appears in the population,

and t is the current generation. The survival time tp is defined as the difference between

these two indices. In general, it is reasonable to assume that a regularization strategy

with a long survival time 2%,, is more likely to possess high inherent fitness, but whether a

strategy with a short survival time possesses high inherent fitness is yet to be confirmed in
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later generations. As a result, it is more reasonable to choose the optimal regularization

strategy based on those in the population with long survival times. Rearranging the

corresponding survival time tp of each individual in ascending order,

t(1),. ..,t(p),...,t(gu) (7.39)

such that

to) < g 750,) S S ta”) (7.40)

and t(p) denotes the p—th order statistic of the survival time sequence, we expect those

values 7500) with large index p will most likely correspond to a strategy 80,) with high

inherent fitness. Choosing p0 > 1 and regarding each strategy as a vector in R8, we define

the following combined regularization strategy

* 1 2H8,0 = mpgosm (7.41)

To ensure the inclusion of only those individuals with high inherent fitness in the above

averaging operation, the value p0 is usually chosen such that p0 > 1.

In addition, if we possess a priori knowledge regarding inherent properties of desirable

regularization strategies characterized by the constraint set Cs, we can modify the previous

averaging procedure to include this knowledge as follows

8* =
P0 2n

2];po I{8(p) 6C5}

(7.42)

where 1500605} is the indicator function of C5.

The optimal strategy 81:0 is constructed based on the estimated ETC—pdf error Egdf,

and we have to evaluate its performance based on the true error measure Sdf eventually,

which requires using 81:0 to restore the whole image for one iteration and then collecting

the statistics of the measure It on the resulting image to form an estimation ofpn(n). In the

current algorithm, this has to be performed once only, again highlighting the advantage

of using Egdf, which requires performing restoration over an image subset only for each

individual strategy in the population, instead of using Egdf in the competition process,

which requires performing restoration for an entire image . In this way, the time required

for fitness evaluation is independent of the number of individuals in the population.
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Denoting the current optimal strategy as 8*(t) and the last strategy used to update

the image as S*(t — 1), we should decide between using 8;) or 8*(t — 1) as 8* (t), or

we should simply left the image unrestored for the present iteration. Denoting the null

strategy as S¢, which amount to leaving the present image unrestored, the basis of this

decision should be the true ETC-pdf error value Egdf(8) where S = 8*
Po’

8*(t — 1) 01' 8¢.

Using )‘(T(S) to indicate the resulting restored image through the action of 8, $c(t) as the

updated image, and R(t — 1) as the pre—updated image, we adopt the following decision

rule for choosing 3*(1)

. If Egdfwgo) = min{E;df(8;0), Egdf(s*(t — 1)), Egdf(3¢)}

1. 3*(1) = 5;)

2. g(t) = 72:45,);0)

. 11 gdf(s*(t — 1)) = min{( gdf(s;0),E;df(s*(t— 1)),Egdf(s¢)}

1. 8*(t) = 5*(1— 1)

2. 12(1) = 124810: — 1))

. If Egdf(s¢) = m1n{(E;df(s;o), gdf(5*(t—1)),E;df(s¢)}

1. 5*(1) = s),

2. 32(1) = x4541) = x(t — 1)

The convergence of the general evolutionary programming algorithm was demonstrated

in [29]. However, the current modified form of EP depends more on the monotonically

decreasing value of Egdf(8) in the above implementation. Together with the fact that

Egdf(8) is bounded below by zero, the current algorithm is guaranteed to converge.

7.5 Incorporation of ETC Fuzzy Criterion

To further improve the restoration result, we can incorporate the ETC fuzzy membership

values for selective regularization of high variance pixels as either edges or textures. The
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chief motivation of including this additional step is due to our observation that the pa-

rameter Amin corresponding to the final evolved regularization strategy is usually biased

in favor of textures. Using the sigmoid regularization function A(a,-) (or adopting a 2—D

index, A(ai,,,~2)), for adaptive parameter assignment, those pixels with high standard de-

viation aim-2 > a (which may either be textures or edges) are essentially assigned with

a parameter value A z Amin. While this value is near optimal for the textured regions,

it is usually too small for regularizing the edges which are not as effective in masking

noises, thus resulting in a noisy appearance around the edges. This is analogous to the

case in HMBNN regularization Where we employed texture-oriented prediction scheme

to estimate the desired output for the restoration network. While retaining the value of

A % Amin for the texture pixels, we would like to adopt A > Amin for the edge pixels.

This can be accomplished in the present case by simply defining two parameter values,

edge > Ate“;Afldge for ed es and Atez for textures, at each pixel 2'1, 2'2 , and requiring that A - - .g
711,712 11 {‘211,i2 i1,i2

Unlike the fuzzy HMBNN algorithm where we separately estimate the two parameter val—

edge
ues, here we adopt a simpler approach where we just require that )‘il,i2 be proportional

to Affair This is a reasonable assumption since a greater Afffiz discovered by the evolu—

tionary algorithm, which signifies a more severely degraded image, usually implies the

requirement of a greater Afig: for the edges as well. More formally, we define

Alex 2 )‘(Ui1,i2) (7.43)
1111.2

W96 = At” (7.44)
”#2 ily'i2

where aim-2 is the local standard deviation at (l1, l2), and C > 1 is a proportional factor.

For each high variance pixels, we would then evaluate the two ETC fuzzy coefficient

values, flE(K,,~,,,-2) and fiTml-hiz) according to the local ETC measure Him;- The final

. . . . d
lambda value Aim, is then obtamed as a convex combmatlon of A2313: and Afiffiz

Aim = fiE('€i1,i2)/\edge + fiTWm‘th-m (7-45)i1,i2 “#2

This is in contrast with the previous HMBNN case where, instead of combining the two

A values, we combine the two required gray level update values Afiedge and A17?“ Whilei1,i2 11,1'2-
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this is more natural in the previous neural network setting where we are considering the

required updates as hidden neuron outputs, the ETC fuzzy coefficient values as output

weights, and the final update A6,”, as being the output of a linear combiner output

neuron, it is more appropriate to apply the fuzzy combination on the parameter /\ in this

case, which is considered as the emergent output of the evolutionary process.

7.6 Experimental results

As in previous experiments on adaptive regularization, we applied the current evolutionary

algorithm to the three images flower, Lena and eagle (the original images are shown in

Figures 3.3 in Chapter 3). Progressive degrees of degradation including 5X5 Gaussian

blur (09 = 1) at 30dB BSNR, 5 X 5 uniform blur respectively at 30dB BSNR and 20dB

BSNR are applied to the images to test the robustness of the current algorithm.

The parameters of the ETC-pdf image model were chosen as follows: a1 = 0.83, a2 =

0.85 and [<33 2 1.8 using a 5x5 averaging window. The value A = 0.1 is used as the

width of the histogram discretization interval. The parameter 8 in the model is chosen

to be i such that the value of the model ETC-pdf decays by a factor a1 across each dis—

cretization interval if K, E (1, [£3], and a2 if K E (53, 5]. For the evolutionary programming

algorithm we have chosen a = 16, or equivalently, a population containing 2p 2 32 indi—

vidual strategies . This corresponds to the splitting of each 256x256 image used in the

experiments into 64 sub-blocks B5 of dimensions 32x32 and assigning 2 sub-blocks to each

individual regularization strategy. For the purpose of improved accuracy in determining

Egdf (SP,R,,), however, we have allowed partial overlapping in the block assignment, re—

sulting in 4 assigned blocks for each individual. In the competition stage of the algorithm,

we have employed tournament competition with a tournament size Q = 10 as the selection

mechanism. To increase the efficiency of the searching process, we have confined the val—

ues of Amin Within the interval CA 2 [0.0005, 0.004]. The fact that this is not an overly
min

restrictive constraint is evident from Table 7.1 listing the optimal regularization strategies

discovered by the current algorithm under a variety of degradation conditions, where we
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can see that the optimal values of Amin is well within the above specified interval, and the

primary purpose of specifying this constraint is to speed up the searching process. Apart

from this, no additional bounds are imposed on the other entries of the regularization

strategy to avoid over—constraining the problem. In other words, we have adopted the

constraint set C5 = CAM x R7 in equation (7.42).

The results for the 5x5 Gaussian PSF with 30dB noise are shown in Figure 7.6 (the

degraded image is shown in Figure 3.4(a) in Chapter 3). Figure 7.6(d) shows the restored

image using the current evolutionary algorithm. In order to validate the current algorithm

as a viable alternative solution of the adaptive regularization problem, we first compare

the result with restored images using non-adaptive regularization methods. Figure 7.6(a)

shows the under-regularized restored image using the non-adaptive Hopfield neural net—

work restoration approach by Zhou etal [118], with A = 0.0005, and Figure 7.6(b) shows

the result using A = 0.004 to achieve compromise between noise smoothing and feature

preservation . In addition, to qualify as a useful adaptive regularization approach, we

would expect that the quality of the evolutionary adaptive regularized image should be

comparable to our previous result using the non-fuzzy HMBNN approach, which is shown

in Figure 7.6(c). For the narrow Gaussian PSF and this moderate level of noise, the

results are in general comparable to each other, except in the under-regularized case in

Figure 7.6(a) where we can notice noise amplification in the smooth regions.

The results for the 5 x 5 uniform PSF with 30dB noise are shown in Figure 7.7 (the

degraded image is shown in Figure 3.5(a) in Chapter 3). We can observe that the restored

image using the evolutionary approach in Figure 7.7(d) is more preferable compared with

the non-adaptive results (Figures 7.7(a) and (b)). We can also see that the current

EP result is comparable with our previous non-fuzzy HMBNN result in Figure 7.7(c)

even under this increased level of degradation. We can also notice that, in the HMBNN

approach, the image is partitioned into connected regions and a single regularization

parameter value is applied across each such region. This results in the blurring of some

of the textured areas when part of them are classified as smooth regions. On the other

hand, the current algorithm assigns a specific regularization parameter value Aim-2 to
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(C) (01)

Figure 7.6: Restored flower images (5 x 5 Gaussian blur, 30dB BSNR). (a)-(d) Restored

images using (a) non-adaptive Hopfield restoration algorithm (small A). (b) non-adaptive

Hopfield restoration algorithm (optimally adjusted A by user) (c) HMBNN. ((1) EP.
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(c) (d)

Figure 7.7: Restored flower images (5 x 5 uniform blur, 30dB BSNR). (a)-(d) Restored

images using (a) non-adaptive Hopfield restoration algorithm (small A). (b) non-adaptive

Hopfield restoration algorithm (optimally adjusted A by user) (c) HMBNN. ((1) EP.
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(e) (0

Figure 7.8: Restored flower images (5 x 5 uniform blur, 20dB BSNR). (a)-(f) Restored
images using (a) non—adaptive Hopfield restoration algorithm (small A). (b) non—adaptive
Hopfield restoration algorithm (optimally adjusted A by user) (C) HMBNN. ((1) EP (e)
Decreased a from EP value (f) Increased a from EP value.
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each pixel according to its local standard deviation aim-2 based on the decreasing sigmoid

relationship . As a result, the parameter can adapt itself even within smooth regions to

reveal possible hidden textures, and the extent of texture blurring in Figure 7.7(d) is not

as serious as in Figure 7.7(c).

The results for the 5 X 5 uniform PSF with 20dB noise are shown in Figure 7.8 (the

degraded image is shown in Figure 3.6(a) in Chapter 3). We notice that the EP result

in Figure 7.8(d) is slightly noisier than the non-fuzzy HMBNN result in Figure 7.8(c),

especially around the edges. However, compared with the non-adaptive results in Fig-

ures 7.8(a) and (b), we can see that the smooth regions in the EP result are correctly

regularized. In addition, similar to the non—fuzzy HMBNN result, smooth blotches also

appear in the textured regions in Figure 7.8(d). Recall that similar problems occur in

the non-fuzzy HMBNN result, it is reasonable to adopt the same set of solutions, i.e, to

separately regularize the edges and textures, and to incorporate complementary informa—

tion regarding the textured regions. These extensions of the current EP algorithm will be

discussed later.

Despite these problems, it is seen that the final threshold parameter 0: adopted by the

EP algorithm is appropriate for the current image. To see this, we perturb the evolved

threshold parameter oz slightly and use the modified strategy to restore the same image in

Figures 7.8(e) and (f). In Figure 7.8(e), the parameter a is adjusted such that it is slightly

below the evolved value. We can note the resulting noisy appearance of the image due to

the misclassification of some of the smooth areas as edge/textures. In Figure 7.8(f), the

parameter a is adjusted slightly above the evolved value, which results in the blurring of

some of the image features due to their misclassification as smooth regions.

We have also applied this algorithm to other images. Figure 7.9 and 7.10 show the

results for Lena and eagle under 5 x 5 uniform blur at 30dB BSNR (the degraded images

for Lena and eagle are shown in Figure 3.9(a) and Figure 3.10(a) in Chapter 3) . In these

two cases, the EP results are preferable to the non-adaptive approaches, and comparable

to the previous approach based on the non—fuzzy HMBNN.

The A assignment map for all three images under 5x5 uniform PSF are shown in
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(C) (d)

Figure 7.9: Restored Lena images (5 x 5 uniform blur, 30dB BSNR). (a)-(f) Restored
images using (a) non-adaptive Hopfield restoration algorithm (small A). (b) non—adaptive
Hopfield restoration algorithm (optimally adjusted A by user) (c) HMBNN. ((1) EP.
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(C) (d)

Figure 7.10: Restored eagle images (5 X 5 uniform blur, 30dB BSNR). (a)-(d) Restored
images using (a) non-adaptive Hopfield restoration algorithm (small A). (b) non-adaptive

Hopfield restoration algorithm (optimally adjusted A by user) (0) HMBNN. (d) EP.
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Figure 7.11: The A-distribution maps for the three images under 5 X5 uniform blur at

different levels of additive noise. (a)-(b) Flower (a)30dB BSNR (b) 20dB BSNR (c)-(d)
Lena (c) 30dB BSNR (d) 20dB BSNR (e)-(f) Eagle (e) 30dB BSNR (f) 20dB BSNR.
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Figure 7.11. Figure 7.11(a),(c),(e) show the assignment maps under 30dB additive noise,

and Figure 7.11(b),(d),(f) show the corresponding maps under 20dB noise. In all the

assignment maps, the darker gray values correspond to small A values, and the brighter

values correspond to large A values. In general, the discovered regularization strategy

by the artificial evolutionary process assigns small parameter values to textured regions.

These smaller values in turn help to bring out more fine details in these regions in the

accompanying restoration phase. On the other hand, large A values are assigned to the

smooth regions , which in turn help to suppress the noises in those regions. In addition, the

parameters are assigned in such a way that the original structure of the image is respected.

The assignment maps for the same image are in general different under different levels of

additive noise: for low level of additive noise, the area over which large values of A are

assigned is small compared with the corresponding maps under high level of additive noise.

This implies that edge/texture enhancement takes precedence over noise suppression in

this case. On the other hand, for higher level of additive noise, most of the areas in the

image are assigned large values of A, and only the very strong edges and texture regions

are assigned moderately smaller A values. We can thus conclude that for low noise levels,

the primary purpose is edge/texture enhancement, whereas for higher noise levels it is

noise elimination.

It is seen that, for less severely degraded images, the A values within the smooth image

regions can adjust themselves to accommodate slight variations in local variances so as

to selectively enhance hidden textures. This can readily be discerned in the A maps in

Figures 7.11 (a),(c) and (e) where gray patches representing smaller A values appear in

some of the smooth regions. In addition, we observe that the A values in the smooth

regions are similar for both the cases of 30dB and 20dB noise, which indicate that the

particular value of Amax employed is not critical as long as it is above a certain threshold

value for adequate noise suppression.

We also compare the resulting regularization strategies discovered by the artificial

evolutionary process under different levels of additive noise . The regularization strategies

corresponding to the A—maps in Figure 7.11 are shown in Table 7.1.
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Image, PSF/noise level Amin Amax a [3
 

 

Flower, Uniform PSF/30dB 0.000516 0.0791 8.52 18.09
 

Flower, Uniform PSF/20dB 0.00119 0.0619 16.40 9.73
 

 

Lena, Uniform PSF/30dB 0.000901 0.0931 13.37 17.20
 

Lena, Uniform PSF/20dB 0.00120 0.0956 18.86 14.59
 

 

Eagle, Uniform PSF/30dB 0.000632 0.0555 8.20 13.73
 

Eagle, Uniform PSF/20dB 0.00198 0.0783 14.69 12.03      
 

Table 7.1: Comparison of the final evolved regularization strategy under different degra-

dation conditions

From Table 7.1 , it is seen that the optimal regularization strategies are in general

different for different levels of additive noise. For lower levels of noise, the minimum

regularization parameter Ami“ is seen to be smaller than the corresponding value at higher

noise levels. This is reasonable due to the possibility of excessive noise amplification

at higher noise levels, which in turn requires higher values of Amin for additional noise

suppression.

It is also observed that ,compared with Ami“, the effect of the maximum parameter

value Amax is not as critical under various degradation conditions, provided that it is

greater than some threshold value for effectively suppressing the background noise under

the particular condition. Suppose that AfnaX corresponds to this value, then any value

Amax > Afr,” would be equally effective in suppressing the same level of noise. This

explains the values for Amax in Table 7.1 where in some cases, the values for the lower

noise levels are even higher than those at higher noise levels.

The parameter a represents the offset of the transition in the sigmoidal regularization

function, which implicitly defines the standard deviation threshold separating the small

variance from the large variance region. Therefore, this is a critical parameter which

determines the overall segmentation of the image into smooth and textured regions. In-

correct choices of this parameter usually result in undesirable artifacts in the final restored
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image. For example, if we have Chosen this parameter too small, implying that some of

the smooth regions are classified as textures, noises will be amplified which will be very

visible in the supposedly smooth regions. On the other hand, if we have chosen the pa-

rameter too large, some textured regions will be misclassified as smooth regions, which

will lead to their excessive blurring. The effect of different choices of this parameter has

been illustrated in Figure 7.8(e) and (f).

From Table 7.1, we can observe that a is generally smaller for lower additive noise

levels and greater for higher noise levels. This is reasonable in view of the fact that for

slight degradations, we can afford using little or no regularization in the textured regions

to bring out all the details, even at the expense of misclassifying a very small portion of the

smooth regions, because at such slight degradation level, the degree of noise amplification

is not very serious and our primary purpose would be edge/texture enhancement. On

the other hand, for more severe degradations, we cannot afford to misclassify any smooth

regions as textured regions, which will lead to very visible noises. We can, however, afford

to misclassify small areas of edge/textured regions even at the expense of smoothing some

of the details, as the subjective quality of the resulting image is far more preferable to an

otherwise noisy image.

The parameter fl controls the steepness of the sigmoidal function transition. The

original purpose of using this parameter is to introduce some degree of fuzziness into the

adaptive regularization procedure as opposed to the use of hard decisions. Smaller 5 values

correspond to soft decisions in distinguishing between smooth and weak textured regions,

Which gradually tend towards a hard decision mechanism as fl increases. By making this

parameter adjustable, we should expect our search algorithm to adopt the optimal level

of fuzziness for each picture under different degradation conditions. From the results,

it is seen that for the particular images used in our experiments, this parameter is not

particularly sensitive to different levels of degradations, and is usually fairly large for most

of the cases, indicating that crisp partitions of the image into smooth and edge/textured

regions are preferred by the current algorithm.

Although the current algorithm produces satisfactory restoration results even for the
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(a) (b)

Figure 7.12: Restored images (5 x 5 uniform blur, 20dB BSNR). (a) Lena (b) Eagle

severely degraded flower image in Figure 7.8, similar problems as in the HMBNN algo-

rithm occur when the method is applied to the images Lena and eagle under the same

level of degradation (the degraded images for Lena and eagle at 20dB BSNR are shown in

Figures 3.12(a) and (b) in Chapter 3). The results are shown in Figure 7.12 under 5 x 5

uniform blur with 20dB noise. It can again be observed that the final evolved A values in

the edge/textured areas are biased in favor of the textured areas, leading to a noisy ap-

pearance for the edges. The noise is slightly more visible around the edges compared with

the corresponding images for the HMBNN algorithm due to the different cost measures

adopted for determining A. In addition, as in the previous cases, smooth blotches appear

in the textured areas of the restored image, which are particularly noticeable within the

region containing the feathers in Lena. Recalling the similar types of problem encountered

in Chapter 3, it is natural to adopt similar solutions to these problems, namely, the clas-

sification of the edge/textured areas into separate edge and textured areas using the ETC

measure, and the application of fuzzy criteria in assigning different A values to the two

different areas. The existence of smooth blotches also calls for the inclusion of the texture

map, derived using the texture extraction algorithm in Chapter 5, as a complementary

input to the restoration algorithm.
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(e) (0

Figure 7.13: Restored Flower images (5 X 5 uniform blur, 30dB BSNR). (a)-(f) Restored
images using (a) Wiener filter (b) non-adaptive Hopfield restoration algorithm (optimally
adjusted A by user) (c) KK-SAI (d) Non-fuzzy EP (e) Fuzzy HMBNN (f) Fuzzy EP.
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(e) (0

Figure 7.14: Restored Flower images (5 x 5 uniform blur, 20dB BSNR). (a)-(f) Restored

images using (a) Wiener filter (b) non—adaptive Hopfield restoration algorithm (optimally

adjusted A by user) (C) KK-SAI (d) Non-fuzzy EP (e) Fuzzy HMBNN (f) Fuzzy EP.
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The results for the Flower image using the fuzzified version of the evolutionary restora—

tion algorithm are shown in Figure 7.13, under 5 X 5 uniform blur at 30dB BSNR. As

in Chapter 6, we have compared the the current result in Figure 7.13(f) with those of

conventional algorithms such as Wiener filter (Figure 7.13(a)), the Hopfield neural net—

work restoration algorithm by Zhou et.al (HNN) (Figure 7.13(b)), and the Kang and

Katsaggelos spatially adaptive iterative algorithm (KK-SAI) (Figure 713(0)). We have

also included the non-fuzzy evolutionary restoration result in Figure 7.13 (d). Due to the

only moderate level of degradation, the non—fuzzy result is already satisfactory, but we

can notice the slightly noisy appearance of the edges of the petals. This can be compared

with the current fuzzy evolutionary result in Figure 7.13(f), where these edge noises are

removed without affecting the already near optimally regularized textured regions. We

have also included our previous fuzzy HMBNN restoration result in Figure 7.13(e), which

represents our previous most satisfactory result. We can see that the current result using

the evolutionary programming approach is comparable to the fuzzy HMBNN result.

The difference between the fuzzy and non-fuzzy evolutionary restoration results be—

comes more apparent when we observe the restored images under 5 X 5 uniform blur with

20dB noise. In the non-fuzzy EP result in Figure 7.14(d), we can notice the amplified

noises in the vicinity of edges. This can be compared with the fuzzy evolutionary result in

Figure 7.14(f) where the incorporation of the ETC fuzzy criterion has allowed the selective

removal of noises around the edges without affecting the fidelity of the textured areas.

This result is also comparable with our previous fuzzy HMBNN result in Figure 7.14(e)

under this more severe degradation, indicating that the current evolutionary approach

represents a viable alternative solution to the problem of adaptive regularization.

We have also applied the current approach to the Lena and eagle image under 5 x

5 uniform blur with 20dB noise (Figures 7.15 and 7.16). Conclusions similar to those

for the flower image can be drawn regarding these two images: the adoption of the fuzzy

criteria in the evolutionary restoration algorithm always results in images with better

subjective quality (Figures 7.15(f) and 7.16(f)), and the results are usually comparable to

those images restored using the fuzzy HMBNN approach (Figures 715(9) and 7.16(e)).
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(e) (0

Figure 7.15: Restored Lena images (5 X 5 uniform blur, 20dB BSNR). (a)-(f) Restored
images using (a) Wiener filter (b) non-adaptive Hopfield restoration algorithm (optimally
adjusted /\ by user) (c) KK-SAI (d) Non—fuzzy EP (6) Fuzzy HMBNN (f) Fuzzy EP.
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Figure 7.16: Restored eagle images (5 X 5 uniform blur, 20dB BSNR). (a)—(f) Restored
images using (a) Wiener filter (b) non-adaptive Hopfield restoration algorithm (optimally
adjusted A by user) (c) KK-SAI (d) Non-fuzzy EP (e) Fuzzy HMBNN (f) Fuzzy EP.
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Image, PSF/noise level Blurred Wiener HNN KK-SAI F-HMBNN F-EP

Flower, Uniform PSF/30dB 8.73 7.96 5.76 6.95 5.16 5.48

Flower, Uniform PSF/20dB 10.06 8.12 8.71 8.69 6.94 7.03

Lena, Uniform PSF/30dB 13.03 11.23 8.18 11.15 7.10 7.29

Lena, Uniform PSF/20dB 13.79 11.61 10.67 12.05 9.69 9.65

Eagle, Uniform PSF/30dB 9.88 9.61 7.92 8.64 6.97 7.09

Eagle, Uniform PSF/20dB 11.98 9.75 10.56 11.12 8.99 9.01         

Table 7.2: RMSE values of the restoration results using various algorithms

We list the root mean square error (RMSE) of the restored images under the current

evolutionary restoration algorithm, together with our previous RMSE values of all other

algorithms, in Table 7.2 for ease of comparison (F-HMBNN and F-EP refer to the fuzzy

HMBNN and fuzzy EP algorithms respectively). It is seen that, in all the cases, the

RMSE values for the current fuzzy EP algorithm are comparable to the values for the

fuzzy HMBNN algorithm, and are smaller than the corresponding values of the other

conventional algorithms, indicating the effectiveness of the evolutionary approach. The

RMSE differences between the NN-based and EC-based algorithms can be attributed to

the adoption of different criteria in determining the local regularization parameters.

7.7 Summary

We have proposed an alternative solution to the problem of adaptive regularization in

image restoration in the form of an artificial evolutionary algorithm. We first characterize

an image by a model discrete probability density function (pdf) of the ETC measure Ii),

which reflects the degree of correlation around each image pixel, and effectively character-

izes smooth regions, textures and edges. An optimally regularized image is thus defined as

the one with its corresponding ETC-pdf closest to this model ETC-pdf. In other words,

during the restoration process, we have to minimize the difference between the ETC—pdf of
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the restored image, which is usually approximated by the ETC—histogram, and the model

ETC-pdf. The discrete nature of the ETC-histogram and the non-differentiability of the

resulting cost function necessitates the use of evolutionary programming (EP) as our op-

timization algorithm to minimize the error function. The population-based approach of

evolutionary programming provides an efficient method to search for potential optimiz-

ers of highly irregular and non—differentiable cost function as the current ETC-pdf error

measure. In addition, the current problem is also non-stationary, as the optimal regular—

ization strategy in the current iteration of pixel updates is not necessarily the same as the

next iteration. The maintenance of a diversity of potential optimizers in the evolutionary

approach increases the probability of finding alternative optimizers for the changing cost

function. Most significantly, the very adoption of evolutionary programming has allowed

us to broaden the range of cost functions in image processing which may be more relevant

to the current application, instead of being restricted to differentiable cost functions.
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Chapter 8

Conclusions

8. 1 Main Conclusions

In this thesis, we have illustrated the essential aspects of the adaptive image process-

ing problem in terms of two applications: the adaptive assignment of the regularization

parameters in image restoration, and the adaptive characterization of edges in feature

detection applications. These two problems are representative of the general adaptive im-

age processing paradigm in that the three requirements for the solution of this problem:

namely the segmentation of an image into its main feature types, the characterization of

each of these features, and the optimization of the image model parameters corresponding

to the individual features, are present in these two applications. In view of these re—

quirements, we have adopted the three main approaches within the class of computational

intelligence algorithms, namely neural network techniques, fuzzy set theory, and evolu—

tionary computation, for the solution of the adaptive image processing problem. This is

due to the direct correspondence between some of the above requirements with the partic—

ular capabilities of specific computational intelligence approaches, which is summarized

as follows:
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Neural Networks

Although neural networks are usually associated with its capability of optimization, which

is amply utilized in the adaptive regularization problem for the optimization of the re-

gional parameters, and in the edge characterization problem for the learning of the edge

prototypes, we have also incorporated the capabilities of segmentation and characteriza-

tion in this class of techniques by adopting a model-based neural network with hierarchical

architecture (HMBNN). The modular architecture of the network results in the division

of the total number of neurons into distinct sub-groups, with each sub-group representing

a single class of patterns, thus fulfilling the purpose of segmentation. On the other hand,

the model-based configuration of each neuron enables each neuron sub—group to assimilate

the essential properties of its corresponding class of patterns, thus fulfilling the purpose

of characterization. In addition, the learning capability of the neural networks allows the

adaptive determination of the parameters of the resulting feature model, thus satisfying

the purpose of optimization. The importance of these three capabilities associated with

this class of specialized neural networks is illustrated by their effectiveness in the adaptive

regularization and the adaptive edge characterization problems.

Fuzzy Logic

Fuzzy set techniques are most effective for our requirement of characterization, especially

characterization of human preferences with regard to the quality of adaptively processed

images. This is due to the inherently ambiguous definition of certain human concepts

which cannot be expressed in terms of a crisp classification, but can only be character—

ized by matters of degrees. A typical example in the context of image processing is the

concept of textures and edges, the clarification of which is important in image filtering

and restoration applications due to their different noise masking capabilities. This can be

facilitated by adopting a fuzzy characterization in terms of the degree of resemblance of

a particular gray level configuration to either textures or edges.
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Evolutionary Computation

Evolutionary computation represents a powerful optimization approach which readily sat—

isfies the corresponding requirement on the part of adaptive image processing. Due to its

stochastic nature, which reduces the instances of local minima, it is especially effective

for non-convex, and even non-differentiable cost functions specifying the requirements of

a particular image processing operation. This is in contrast with neural network tech-

niques based on gradient learning algorithms which is more susceptible to spurious local

minima in the former non-convex case, and is altogether not applicable in the latter non-

differentiable case. An important implication of adopting this class of techniques is the

possible broadening of the class of cost functions applicable to image processing, which

can possibly reflect the nature of the current problem more accurately, instead of being

restricted to differentiable but non—optimal cost functions.

Through our application of the above computational intelligence techniques to the

problem of adaptive image processing applications, we can draw the following conclusions

with regard to the merit of this approach:

8.1.1 Effectiveness of adopting a learning approach in adaptive

regularization

Instead of using a trial and error approach in selecting the regularization parameters in

image restoration, we have adopted a learning approach for this task, with the regular—

ization parameters in various local regions of the image acting as network weights of a

model-based neural network. The additional incorporation of a modular architecture for

the network allows the adoption of different local image models for individual regions,

and the regional regularization parameters are then adjusted using a gradient descent

learning algorithm in accordance with the corresponding local model. This is in contrast

with conventional approaches Where the parameters are determined solely as functions

of the partially restored image, such that the current learning approach offers additional

flexibility in determining the final image quality by judiciously choosing the various im-
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age models. More importantly, once the local image models are specified, the current

approach can be applied to images with various degrees of degradations through the au-

tomatic adjustment of the regularization parameters, without further need of re-specifying

the original models

From the experimental results, it is seen that the current approach has correctly

assigned different parameter values to different image feature types, with small parameter

values being assigned to the edges and textured regions for detail enhancement, and large

values being assigned to the smooth regions for noise suppression, resulting in a pleasing

appearance of the restored images. The results are in general superior to those restored

using a non—adaptive approach. More importantly, the network automatically adjusts the

various regularization parameters to accommodate different degradation conditions, thus

demonstrating the effectiveness of the current approach.

8.1.2 Robustness of neural network—based edge characterization

The previously described model—based neural network with hierarchical architecture is also

suitable for the task of image edge characterization, Where the various sub-networks of

the overall network encode the different edge prototypes existing under different levels of

background illumination. This is important in view of the different human preferences in

regarding certain discontinuities in gray level values as significant features under different

illumination conditions. More importantly, the representation of the edge prototypes as

network weights allow their automatic adjustment using a learning process. Instead of

communicating their preferences through the specification of threshold parameter values

to edge detection algorithms, human users can now highlight specific edge examples on

a particular image, and the corresponding pixel configurations are then incorporated as

training examples for the neural network.

Our experiments have shown that the trained network is capable of generalizing from

the sparse examples supplied by the human user to identify all the important edges, both

on images from which the training data originate, and on novel images. Most importantly,
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the trained network can be directly applied, without further re-training and architecture

alteration, to noisy images and still identify the correct edges, thus demonstrating the

robustness of the current approach. This is unlike conventional edge detection approaches

where the thresholds are usually required to be re—adjusted under similar circumstances.

8.1.3 Formulation of the Edge-Texture Characterization (ETC)

measure

The question of whether it is possible to distinguish between edges and textures with—

out involving extensive computation is answered in the affirmative by the formulation of

the Edge-Texture Characterization (ETC) Measure. Unlike the usual measures of image

activities such as local variance or gradient magnitude which produce similar values for

edges and textures, and thus cannot distinguish between these two, the ETC measure

assigns different scalar values to specific pixel configurations with different correlational

properties. As a result, edges and textures are usually assigned different ETC measure

values due to their different underlying pixel configurations. More importantly, we can

analytically establish intervals of measure values corresponding to those pixel configu-

rations which resemble edges more than textures, and vice versa. This is confirmed by

experiments where we can reasonably isolate the edges and textures of various image by

highlighting those pixels with measure values within the above intervals.

8.1.4 Incorporation of edge—texture discrimination in adaptive

regularization

The importance of edge—texture discrimination in image restoration is highlighted in our

previous experiments using an HMBNN for adaptive regularization, where the unsuit—

ability of imposing similar levels of regularization for both edges and textures was noted

due to the different noise masking capabilities of these two feature types. The newly

formulated ETC measure thus serves as an ideal candidate for this task. The continuous

transition between edge and texture pixel configurations with variations of this measure

210



value, together With the inherent ambiguities associated With the words “edge” and “tex-

ture”, naturally suggests the formulation of a fuzzy model Where these two concepts are

embodied in two corresponding fuzzy sets defined on the domain of ETC measure. At

the same time, the previous sub—network structure of the HMBNN is extended to include

two neurons, each of which computes the relevant variables for restoration under the as—

sumption that the underlying pixel configuration corresponds to edges or textures. The

output of these two neurons are then combined in an augmented output layer to give

the final gray level update value, With the edge/texture fuzzy membership values of the

current pixel configuration serving as output weights for the network. Experiments have

shown that this capability of distinguishing between edges and textures greatly improve

the overall appearances of the restored images, especially for images under more severe

degradations, compared with our previous results.

8.1.5 Effectiveness of evolutionary parameterization in image

restoration

We have also explored an alternative solution to the problem of adaptive regularization

using evolutionary programming. This is due to our recognition of the similar form for the

pdf (probability density function) of the ETC measure values for a large class of images,

Which thus serves as a signature for a large number of non-degraded images. On the

other hand, the corresponding form of the ETC—pdf for degraded images are usually very

different from the non—degraded ETC—pdf. Our purpose, therefore, is to restore the image

in such a way that its ETC-pdf once again conforms to the non-degraded ETC—pdf.

The necessity to approximate the ETC-pdf of real images using histograms, and the

resulting non-difierentiability of the associated cost function, requires the adoption of pow-

erful optimization techniques of Which evolutionary programming is a prominent example.

We have specified the individual optimizers in the population in such a way as to include

essential regularization and segmentation parameters, so that the successful completion

of the optimization process Will result in the simultaneous performances of adaptive reg—
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ularization and segmentation. This is in contrast with the previous model—based neural

network approach where a preliminary segmentation of the image is required.

Experiments have indicated that the evolutionary approach produced restored images

with qualities fully comparable with those restored using the previous HMBNN approach.

Besides confirming the current approach as a viable alternative solution to the problem of

adaptive regularization in image restoration, a more important implication is the possibil—

ity of extending this evolutionary paradigm to other image processing applications such

that more accurate cost functions specifying the operations of these applications can be

incorporated, instead of being restricted to cost functions suitable only for gradient-based

optimization.

8.2 Suggestions for Future Works

8.2.1 Improvements for Current Works

Image Restoration

The primary focus of this thesis is on image restoration, and in particular the adaptive

assignment of the associated regularization parameters for optimal visual results. This

is one of the possible approaches in locally regulating the quality of the restored image,

wherein a quadratic function is adopted as the regularization functional, and different

regularization parameter values are assigned to specific spatial locations. Another possible

approach is to adopt a non-quadratic cost function [18] which is also characterized by a

set of parameters which determine the degree of smoothness for the resulting image. In

other words, the task of determining those parameters is similar to our current task of

determining the regularization parameters, but the effect of varying the parameters of the

non—quadratic functional on the visual quality of the image may be very different from that

of varying the regularization parameters. As a result, a possible future research direction

would be to adapt our current HMBNN approach such that the network weights represent

the parameters characterizing these functionals, and to compare the corresponding results
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with the current case using the quadratic regularization functional.

Another potential research area is the application of the current approach to cases

where the point spread function (PSF) is only partially specified or even totally unspeci-

fied [63] . In the current work, we assume that we have complete knowledge of the point

spread function, but in certain cases the measurement of the PSF may be subject to

error, or its form is altogether unknown. In these cases, we have to resort to the process

of blind or partially blind deconvolution [63] where the parameters of the PSF, together

with the regularization parameters, have to be estimated using the information from the

degraded image alone. The solution to this problem may require the design of a special

class of sub—network in our HMBNN architecture where the associated weights represent

the unknown PSF coefficients.

Still another possible application area is in the restoration of images subject to spa-

tially variant degradations [80, 104] . As opposed to the specification of spatially varying

regularization parameters, the specification of spatially varying PSF represents a far more

difficult problem due to the much higher sensitivity of the quality of the restored image to

errors in the PSF. Assuming the possible partitioning of the difierent PSFs into classes,

an HMBNN can be designed such that each sub-network can be used to estimate the

coefficients of a single PSF class.

General Feature Characterization and Detection

In this thesis, we have described a neural network—based approach for edge characterization

and detection, where human—specified edge examples are used to establish edge prototypes

within the network through the process of training. A natural generalization of this

approach is to incorporate other types of image features which human beings would usually

regard as significant. These include textures, lines, corners or possibly even higher—level

scene descriptions. In addition to the designated sub-networks for the edge prototypes,

we can establish different classes of sub—networks for texture prototypes, line prototypes,

or corner prototypes respectively. Similar to the case for edge characterization, we can

ask human users to highlight their preferred examples corresponding to each of the above
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features on an image, and then we can incorporate these examples as training data for

the respective sub-networks for prototype establishment. It is anticipated that the ETC

measure Will play an important role here in the characterization of features.

8.2.2 Extensions to other application areas

Although our primary focus in this thesis is on the problem of image restoration and fea-

ture characterization using computational intelligence techniques, these two applications

are representative of the typical requirements for formulating adaptive image process—

ing algorithms7 and the generality of the approaches adopted can be readily extended to

other applications. In particular, in contrast With the requirement of optimization which

is comparatively more application-dependent, the requirements of segmentation and char-

acterization of individual image feature types have to be addressed in a wide variety of

image processing applications. Some of the possible extensions of our current line of work

include

Adaptive image filtering

Many of the problems encountered in adaptive image filtering [5, 87] is similar to those in

image restoration, and in most of the literatures the image filtering problem is also clas-

sified under the topic of image restoration. The primary difference between the filtering

and our current deblurring operation is that, While the degradation in the latter involves

mostly blurring and moderate levels of noises, the former usually involves very high levels

of noises of possibly mixed statistical properties, but With little blurring [87]. In contrast

With the deblurring operations which are important in astronomical and medical image

processing [55, 67] , the filtering operation is more prevalent in video processing applica-

tions [20] Where Gaussian noises and impulse—like noises With heavy-tailed distributions

co—exist.

Many of the criteria in adaptive regularization is thus also applicable to adaptive filter—

ing. For example, increased levels of smoothing is usually required for the smooth regions
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due to the more visible noises in those regions, and less smoothing can be applied around

the edges and textures, although the specific mechanism for implementing this adaptive

filtering operation is distinctly different from that in deblurring, which would thus require

modification and possibly extension of our current computational intelligence approach.

The newly formulated ETC measure is also highly relevant for this alternative applica—

tion: due to their different noise masking capabilities, it is also desirable to differentiate

between edge and texture in adaptive filtering applications, such that different levels of

filtering can be applied to each of them.

Adaptive image compression

The segmentation and characterization of individual image feature types such as edges,

textures, and smooth regions are also important for the application of adaptive image

compression [91, 99, 106] , where separate coding strategies are applied to each of the

above three features to minimize the overall compression ratio. Modification of our cur-

rent computational intelligence approach can thus be applied to segment an image into

its constituent components, and then characterize the individual features in terms of ap—

propriate image models. A final optimization process will then adjust the parameters of

individual image models so as to minimize the entropy of the residual variations unac-

counted for by the models. The resulting coding gain can be expected to be substantial

over non—adaptive image compression, due to the need to transmit only the model param-

eters and the residual sequence.
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