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Abstract

This thesis addresses the problem of gravitational-wave (GW) detection using radio timing

observations of pulsars. We study GW signals in real and simulated pulsar timing observations,

and describe the astrophysical implications for cases in which no GW signal is detected. We

simulate timing observations from a range of hypothetical pulsar timing array projects. The

pulse arrival times are then perturbed by an individual source of GWs. One of the simulated

data sets comprises an array of 20 pulsars timed with a root-mean-square residual of 10 ns

over 10 years. If there is no detectable GW signal in this data set, then the merger rate of

supermassive black-hole binaries (SMBHBs) with a chirp mass of 109 solar masses is less than

one merger every 105 years up to a redshift of z = 2. This constraint rules out estimates of

the SMBHB merger rate based on hierarchical galaxy formation with standard assumptions on

the merger parameters. Applying a similar analysis to recently published observations from

the Parkes Pulsar Timing Array (PPTA) yields a constraint on the merger rate of SMBHBS of

less than one merger every five years for SMBHBs with chirp mass ~ 1010 solar masses up to

a redshift of z = 2. The results also indicate that it is unlikely that an individual GW source

could be detected with existing data sets.

We consider the signal caused by an isotropic stochastic gravitational-wave background

(GWB), and show that, with a few more years of observations, either the GWB will be de-

tected or the parameter space of most current galaxy evolution models will be significantly

constrained. An analysis of the cross-correlation between the timing residuals of different pul-

sars in the PPTA shows that there is no detectable GWB signal in the current data. The GWB

detection statistic is dominated by only a few pulsars in the current PPTA data. There are good

prospects for detection of the GWB using radio timing of pulsars in the next decade. We con-

clude that the effect of instabilities in realisations of the terrestrial timescale and inaccuracies in

the solar system ephemeris must be removed from the timing residuals in order to detect a GW

signal in pulsar timing observations in the fiiture. The forthcoming International Pulsar Timing

Array project will also significantly increase the probability of detection of GW signals using

pulsar timing.
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Chapter 1

Introduction to Pulsar Timing and

Gravitational Waves

Chapter Outline: In this Chapter, we describe:

pulsars and their properties;

0 millisecondpulsars and techniquesfor observing them;

0 gravitational waves including some common sources ofgravitational waves and a sum-

mary ofprojects aiming to detect them;

0 techniquesfor detecting gravitational waves using radio timing observations ofmillisec-

0ndpulsars;

o the current state of thefield in detecting andplacing limits on gravitational waves with

pulsar timing;

0 an outline ofthe thesis.

1.1 Pulsars

A pulsar is a rapidly rotating magnetised neutron star that emits beams of electromagnetic (EM)

radiation. The first pulsar was discovered in 1967 (Hewish et al., 1968). Because the EM beams

periodically sweep over the Earth (like a lighthouse beam sweeps across an observer), the pulsar

detection was made by observing a sequence of pulses in a time series that J. Bell had obtained

using a radio telescope (reproduced in Figure 1.1). The pulses were periodic and appeared at

the same sidereal time every day. This led Bell and Hewish to confront the possibility that these

were artificially-generated signals from extraterrestrial planets (Hewish, 1975). It was soon

realised that the pulses could be the radio emission from the super—dense stellar remnant of a

supernova (e. g., Gold, 1968), and, in the 44 years that have followed, almost 2000 pulsars have

been catalogued (Manchester et al., 2005)].
 

1The ATNF Pulsar Catalogue: http: //www . atnf . csiro . au/research/pulsar/psrcat/.
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Figure 1.1: The pen chart showing the detection of pulsed radio emission from a pulsar, with

time on the horizontal axis and intensity given by vertical deflections (in the top trace). The

pulses have a 1.33 s period, and appear at the same sidereal time every day. [Image reproduced

from Hewish (1975)]

1.1.1 Properties

A typical pulsar is born after a star with initial mass approximately in the range 8M9 to 15M®,

where 1M9 % 2 X 1030 kg is one Solar mass, undergoes core collapse to produce a supernova

(Lyne & Smith, 2005). The core ofthe progenitor usually remains after the supernova explosion

and forms a neutron star with a typical mass of 1.4MQ, radius of 10 km and surface magnetic

field of ~ 1012 gauss (Chandrasekhar, 1935; Pacini, 1967; Gold, 1968). This neutron star

can be detected as a pulsar if it emits EM radiation from its magnetic poles, the magnetic and

rotation axes are misaligned and its emission beams intersect the line of sight to the Earth.

Because pulsars lose energy through a range of processes (e.g., emitting a relativistic particle

wind; Lorimer & Kramer, 2005), their angular velocity will decrease as they age. We can model

the rate of decrease in the pulsar’s angular velocity w as a power lawz:

(Doc—w . (1.1)

 

2A power-law model is chosen because it gives simple estimates for several pulsar properties, without assuming

that the pulsar spin-down is caused by magnetic dipole braking in vacuum.
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If we assume that the only mechanism that reduces the rotation rate of the pulsar is magnetic

dipole braking (Jackson, 1962), then n = 3 in Equation (1.1). This, combined with the assump-

tion that the pulsar’s present day period is much greater than its period at birth, allows for an

estimate of the pulsar’s characteristic age (e.g., Lorimer & Kramer, 2005):

P
= 2—15, (1.2)

Tc

where P is the pulsar rotational period (assumed equal to the pulse period) and P is its time-

derivative.

We can extend this analysis to estimate the magnetic field strength at the surface of the

pulsar. We assume not only that the magnetic field is a pure dipole (as above), but also that the

magnetic axis is perpendicular to the rotation axis. Taking canonical values ofthe radius and the

moment of inertia of the pulsar (10 km and 1038 kg m2 respectively), we obtain the following

formula for the surface magnetic field at the pulsar’s magnetic equator (e.g., Manchester &

Taylor, 1977):

Bsmflq = 3.2 x 10190315)”2 G, (1.3)

where P is in units of seconds. However, the assumptions on the radius and moment of inertia of

the pulsar and that the magnetic and rotation axes are perpendicular will be inaccurate. Hence,

Equation (1.3) gives at best an order of magnitude estimate of Bsmffieq. The magnetic field

strength at the poles is expected to be a factor of two larger (Shapiro & Teukolsky, 1983; Usov

& Melrose, 1995).

It is apparent from equations (1.2) and (1.3) that P and P are instrumental in determining

the present properties of a given pulsar, and also its evolutionary history and future. A popu-

lar graphical representation for the pulsar population is the P-P diagram, which is plotted in

Figure 1.2 for 1702 pulsars. The thin-dotted lines correspond to lines of constant characteristic

age, indicating that most pulsars are born in the upper-left corner of the diagram. As pulsars

age, it was originally thought that the magnetic field decays exponentially with a N 5 X 106 yr

timescale (Bhattacharya & van den Heuvel, 1991). However, recent work suggests that early

pulsar evolution may include an increase in magnetic field strength for some pulsars (Lyne,

2004; Lyne & Smith, 2005). In the standard model, a pulsar’s period increases and its period

derivative decreases such that it joins the population of “normal” pulsars with periods ~ 1 s,

and period derivatives ~ 1045.



The pulsar will eventually evolve to a state in which it can no longer produce its character—

istic beams ofEM radiation. While the pulsar emission mechanism is not well-understood, it is

believed that an electron-positron pair cascade process is required (Melrose, 2004). When there

is insufficient energy for this cascade process to continue, pulsars will cease their emission.

This occurs when a pulsar’s rotation rate slows, and thus provides a “death line” on Figure 1.2.

This death line is thought to occur at (adapted from Ruderman & Sutherland, 1975)

PP—3 = 2.8 x 10‘17 s-3 . (1.4)

However, this line is by no means a hard limit; Lyne & Smith (2005) point out that some

pulsars become faint enough to avoid detection well before crossing the death line, while others

are detected with larger P and smaller P than this “limit” allows.

After crossing the death line, some pulsars can be reborn because of accretion from a binary

companion. These “recycled” pulsars form the topic of the next Section.

1.1.2 Recycled and Millisecond Pulsars

A review of a variety of formation mechanisms for recycled pulsars and so—called “millisecond

pulsars” (MSPs) is given by Bhattacharya & van den Heuvel (1991). The most widely accepted

mechanism contains the following essential steps:

1. The larger mass member (the primary) of a sufficiently massive binary system evolves

to supernova before the smaller mass member (the secondary) leaves the main sequence.

The supernova will disrupt the binary orbit in at least 90% of cases (Radhakrishnan &

Shukre, 1985; Dewey & Cordes, 1987).

2. After the supernova explosion, the primary forms a neutron star. 1n the rare case that the

binary system is not disrupted, the secondary remains largely unperturbed. The neutron

star primary may or may not evolve to cross the death line in Figure 1.2.

3. The secondary evolves and leaves the main sequence, causing it to expand until it over-

flows its Roche lobe. This causes accretion onto the neutron star primary, which transfers

angular momentum to the neutron star, increasing its rotational frequency. If the primary

is visible as a pulsar, it will now be termed a “recycled pulsar”.
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Figure 1.2: The P — P diagram for all 1702 pulsars with measurements of P and P (‘+’

symbols), where P > 0, as at February 19th, 2011. Also shown are the lines of constant char-

acteristic age (dotted lines) and constant magnetic field (dashed lines). The “death line” (solid

line with label) indicates a rough lower limit on the product PP3 (see Equation 1 .4) below

which the pulsar emission will cease. Some pulsarsin binary systems can then be‘‘recycled”

to the lower-left quadrant and reappear as short-period pulsars (see Section 1.1.2) The “Spin-

up Line” (solid line with label) indicates an estimate of the minimum spin period of recycled

pulsars for a given value of P.



4. The final rotational period of the recycled pulsar depends, among other things, on the

mass of the secondary star. If the secondary star is not massive enough to experience

core-collapse, then its red giant phase will provide accreting matter to the primary for

N 107 years or more. The primary star will then be spun up to a rotational period of

~ ms. The weakening of the primary’s magnetic field during the accretion process also

ensures that the primary will spin down slowly compared to young pulsars. The primary

star is now a MSP.

A lower bound on the period of the MSP can be found by analysing the interaction of the

magnetised accreting matter with the magnetosphere of the MSP. The accretion flow exerts

torque on the MSP at the outer boundary of its magnetosphere, known as the “Alfvén surface”

(Lyne & Smith, 2005). The spin-up process continues until the angular velocity of the magne-

tosphere equals the angular velocity of the accreting matter at the Alfvén surface. When this

condition is satisfied, P and P will be related by (Arzoumanian et al., 1999):

P = (1134/3, (1.5)

where the value of a is uncertain; we have assumed a = 8.3 X 10'16 5—4/3. Equation (1.5)

provides a lower bound on P for a given value of P that is labelled “Spin—up Line” in Figure

1.2. Thus, the population of MSPS is expected to populate the region between the spin-up line

and the death line.

The first MSP was discovered in 1982 (Backer et al., 1982), with a rotational frequency

of 642 Hz. About 7% of all known pulsars today can be classed as MSPs, and they form a

population in the lower left corner of Figure 1.2 that is distinct from normal pulsars. They are

useful laboratories for astrophysics because of their very high matter density, extreme rotational

speeds and predictable spin-down behaviour.

1.2 Observing Pulsars

Pulsars are observed using large-aperture radio telescopes fitted with low system-temperature

receivers. The signal from the telescope is processed using a “backend” system, which is usually

a digital signal processor. When observing their radio pulses, a range of effects must be taken

into account during each pulsar observation. The dispersive effects of the interstellar medium

6



(ISM) must be corrected, as the ISM acts to “smear out” each pulse (see Lorimer & Kramer,

2005). Charged particles in the ISM change the group velocity of radio waves as a function of

frequency, which gives the following formula for their group velocity (Shapiro & Teukolsky,

1983):
2 1/2

v(fEM) = c (1 — e ) IDS—1, (1.6)
fE21M

where fEM is the radio frequency, v is the group velocity of the waves, 0 is the speed of light in

 

vacuum and fe is the plasma frequency for the ISM, which is a function ofthe density ofcharged

particles ne. According to Equation (1.6), a wave of infinite frequency will travel at c through

plasma. The difference in arrival time at the telescope for two radio waves with frequencies

fEMJ and fEMjg after travelling a distance D from their source with velocities v1 and 112 is

At = /0 [U1(l)_1—Ug(l)-1]dl

62

22

D

(fg&,1—fgli,2>/ new, (1.7)
27Tmec

where we have written fe in terms of the fundamental constants c, e (the charge of an electron)

and me (the rest mass of an electron). The charged particle density is a function of I because the

density of charged particles varies throughout the Galaxy (Taylor & Cordes, 1993). The integral

of me along the line of sight is called the dispersion measure (DM). We can thus calculate the

delay — compared to EM radiation travelling in vacuum — as a function offrequency by assuming

that fEMyg : 00 and fEM,1 = fEM in Equation (1.7). This leads to the following expression for

the delay of a pulse of frequency fEM because of plasma in the ISM:

D

At % 4.15 x 103 U ne(l)dl]fg131 s. (1.8)
0

This means that each pulse from the pulsar is smeared out when it is observed at the radio

telescope, because each pulse consists of a range of frequencies (see Figure 1.3).

1.2.1 Incoherent De-dispersion

The dispersion effect described in the preceding Section can be corrected using the process of

de-dispersion, which is often performed by the observing backend system. One method for

de-dispersion is known as “incoherent” de-dispersion, where the range of observed frequencies

is divided into many small segments, or “frequency channels”. After measuring the DM, a

7



 
 

  
 

 

 

   
 
  
 

 

  

 

  
   
  
 

 

 

 

  
  

  
 

  
     
 

  
 

 

  
  
  
  
   
   F

r
e
q
u
e
n
c
y

(M
l-

12
)

C
h
a
n
n
e
l
N
u
m
b
e
r

 
 

  
 

 

 

 

 

   
 

 

  
 

 

 

  
   
  
 

 

     ...w ~.\,.v~.\_~‘_~,-a_/w_._ww~.~ ~~.w...w..,nw_.lw.w.w_m.w“
i . i l i . - l

O 0.5 1

Pulse phase (periods)

Figure 1.3: Pulse dispersion and “incoherent” de-dispersion. The abscissa gives the pulsar rota-

tional phase. The pulse signal arrives at the telescope at a later time in lower frequency channels

because of the dispersion induced by the interstellar plasma, as described by Equation (1.8). In

the case shown here, the pulse is so dispersed compared to the pulse period that the difference

in time-of-arrival between the highest frequency channel and the lowest is larger than two pulse

periods. Thus, the delayed signal has wrapped across multiple cycles of pulse phase. The to-

tal bandwidth for this observation was 288 MHz, comprising 96 channels of 3 MHz bandwidth

each. An artificial delay is induced in all frequency channels fEM.1 with respect to the lowest fre—

quency channel fEM,2 using Equation (1.7). The addition ofthe signal in each delayed frequency

channel gives the incoherently de-dispersed pulse shown in the lower panel. The absolute delay

experienced by the lowest frequency (fEM % 1233 Hz) can be calculated using Equation (1.8).

[Image obtained from: http: //www . cv . nrao . edu/course/astr534 /Pulsars . html;

original image by Lorimer & Kramer (2005)]

time delay (described by Equation 1.7) is then induced in each channel relative to the lowest

observed frequency, as shown in Figure 1.3. The delayed signals from each frequency channel

can then be summed to produce a time series of de-dispersed pulses where the pulse arrival time

is approximately independent of frequency.



1.2.2 Coherent De-dispersion

Incoherent de-dispersion cannot correct the pulse dispersion across the bandwidth of each fre-

quency channel; for example, the dispersion across the 3 MHz bandwidth of each channel in the

observation in Figure 1.3. This effect can be overcome using “coherent” de—dispersion (Hank-

ins & Rickett, 1975). This technique is based on the fact that the frequency-dependent delays

introduced by propagation through the ISM can be represented as phase rotations of the pulsar

signal. These phase rotations depend on the frequency and the distance travelled by the pulse

(e.g., Lorimer & Kramer, 2005). The effect of the ISM is to filter the pulsar signal using a filter

with transfer function H. If the centre of the telescope’s observing frequency range is at f0,

then the value of the transfer function at frequency f0 + f will be (Lorimer & Kramer, 2005)

HUD +f) = exp (W10) , (1.9)

where i = \/:T, D = 4.15 x 103 MHz2 pc‘1 cm3 s is the dispersion measure constant from

Equation (1.8) and [DM] is the dispersion measure, which can be measured by the telescope.

To perform the coherent de-dispersion, the phase rotations induced by the ISM are first

determined by measuring the complex voltage signal observed at the telescope. These phase

rotations are then “unwound” by applying the inverse of the transfer function in Equation (1.9)

to the observed signal. This process has been implemented in several observing systems around

the world (see Bailes, 2003; Demorest et al., 2004).

1.2.3 Folding

After coherent or incoherent de-dispersion, the mean pulse profile is formed using a “timing

model” for the pulsar’s behaviour. This model can be extremely detailed, and will include the

pulsar’s basic properties, such as its period, dispersion measure and sky-position, as well as a

range of other effects if the pulsar is a member of a binary system. This model is used to “fold”

the incoming signal at the apparent pulse period, which increases the signal-to-noise (S/N) ratio

of a pulsar observation by summing the individual pulses. This process forms the mean pulse

profile, or “folded” profile. After folding, the mean pulse profile of an MSP is largely invariant

for that MSP (Lorimer, 2005). We can thus develop a standard template pulse profile, which is

either an analytic model of a high S/N ratio observation of the pulsar, or simply a very high S/N

9



ratio observation of the pulsar. By comparing the template to observations of the pulsar over

a period of ~years (see Section 1.5.1), predictable spin-down behaviour is observed for many

pulsars (Hobbs et al., 2011). This predictable spin-down behaviour will be the focus of most

of this thesis, in particular the way this property of MSPs can be used to detect gravitational

anCS.

1.3 Gravitational Waves

Gravitational waves (GWs)3 are one ofthe predictions of general relativity (GR; Einstein, 1916).

A GW is a travelling perturbation in space-time, and its effect on a ring of freely-moving test

particles with fixed coordinates is shown in Figure 1.4. The GW stretches space in one direc-

tion and simultaneously compresses it in the perpendicular direction (e.g., Shawhan & LIGO

Scientific Collaboration, 2003). GWs exhibit two orthogonal polarisation modes - the ‘+’ polar-

isation (shown in Figure 1.4) and the ‘ ><’ polarisation. The ‘ >< ’ polarisation causes space-time

deformations that are offset by an angle 7r/4 from those caused by a ‘+’ polarised GW. The

strength of a GW is generally defined by the strain he induced in a rod of length l as:

hC=Al/l, (1.10)

where Al is the maximum change in l induced by the GW over one period (for a periodic GW).

GWs are emitted by any object undergoing acceleration whose motion is neither spherically nor

cylindrically symmetric, such as any two objects orbiting their common centre of mass (Peters

& Mathews, 1963).

Any system that emits GWs will lose energy via GW radiation (Einstein, 1918; Peters &

Mathews, 1963; Phinney, 2001). The energy loss caused by GW emission has been indirectly

inferred using observations of the binary pulsar PSR B1913+16 (Hulse & Taylor, 1975; Tay—

lor & Weisberg, 1982). The detection was based on observation of the orbital decay of PSR

Bl913+16, measured by the cumulative advance of the periastron time for the orbit (see Fig-

ure 1.5). That is, the difference between consecutive times at which the pulsar is closest to its

companion is decreasing. The decrease in the time taken to complete each orbit is consistent

with GR and inconsistent with some other theories of gravitation (Will, 1977; Taylor & Weis-
 

3Note that “gravitational waves” are not to be confused with “gravity waves”, which are waves for which the

restoring force is gravity, e. g., water waves in the open ocean.
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0009%
Figure 1.4: The effect of a GW with strength hc = 0.5 on a ring of freely-moving test particles

when the GW propagates perpendicularly to the plane of that ring, e.g., caused by a GW prop-

agating into the page. The ring (lst image from left) is compressed East-West and expanded

North—South (2nd image from left), then returned to its original state (3rd image from left), then

compressed North—South and expanded East-West (4th image from left), then returned to its

orignal state (5th image from left). If the GW is periodic with a period of Tgw, then these im-

ages show the forrn of the ring at times t = 0, Tgw / 4, TgW / 2, 3Tgw /4 and Tgw. [Image reproduced

from Shawhan & LIGO Scientific Collaboration (2003)]

Time
 

berg, 1982). In Figure 1.5 we reproduce an updated version of the famous image from Taylor &

Weisberg (1982), showing the remarkable level of agreement between the theoretical prediction

ofGR and the observed orbital shrinkage over 30 years of observations of PSR B1913+164. As

a result of such investigations, we are now all but sure of the existence of GWs.

1.4 Detecting Gravitational Waves

The results of Taylor & Weisberg (1982) and Weisberg et al. (2010) do not constitute a direct

detection of GWs, as they have not explicitly detected the stretching and compressing of space-

time expected of a GW (see Figure 1.4). Direct detection of GWs will herald a new era in the

study of astronomy and astrophysics.

GWs provide a unique way to study the Universe as they provide information about systems

in a completely different way to EM waves. In particular, some regions of the Universe that

are opaque to EM radiation - including, for example, the first 3 x 105 yr after the Big Bang

(Sathyaprakash & Schutz, 2009) - may be observable using GW telescopes. Similarly, much

recent work (e.g., Bloom et al., 2009; Sesana & Vecchio, 2010a,b; Corbin & Cornish, 2010) has

outlined the benefits for detecting EM counterparts for GW sources and vice versa.

 

4A similar figure was presented by Weisberg et a1. (2010).
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Figure 1.5: The shrinking of the orbit of the binary pulsar PSR Bl913+16 (as mea-

sured by the decreasing time taken for each complete orbit of the pulsar) as a func-

tion of year number. The measurements of the cumulative advance in the peri—

astron time (points) are remarkably consistent with the prediction of GR (parabolic

line). If the system were not emitting GWs, its orbit would not be decaying and

the points would follow the line of zero orbital decay (horizontal line). [Image credit:

http : //www.people . carleton. edu/Njweisber/binarypulsar/Bl913+16 .gif]
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1.4.1 Current and Future Gravitational-Wave Detection Projects

The huge scientific gains expected from directly observing GWs has led to the establishment of

many current global efforts to detect GWs. The Laser Interferometer Gravitational-Wave Ob-

servatory (LIGO; e. g., Abbott et al., 2009)5, VIRGO (Acernese et al., 2006)6 and The Australian

International Gravitational Observatory (Barriga et al., 2010)7 are some ofthe more well-known

projects that aim to detect and analyse GW signals from astrophysical objects. Each of these

projects aims to detect the delay of a locally-generated EM signal along one direction being

correlated with the advance of a locally—generated EM signal in a perpendicular direction. For

example, each of the widely-separated LIGO stations consists of two evacuated 4 km chambers

at 90 degrees to each other. Laser signals are sent and received through these chambers with the

objective of detecting a relative delay between the two. Such a detection could correspond to a

detection of the compression of space-time in one direction occurring simultaneously with an

expansion of space-time along a perpendicular direction, which is the expected action of GWs

(see Figure 1.4). Measuring the delay and advance of light due to the action of GWs requires

exquisitely precise measurement instruments. For example, LIGO is attempting to measure a

path length difference of ~10‘18 m between its two perpendicular arms over 4km (Shawhan

& LIGO Scientific Collaboration, 2003). For comparison, the diameter of an atomic nucleus is

rle‘15 m (e.g., Pohl et al., 2010).

Typical GW sources for LIGO and other ground-based interferometers include the coales-

cence of compact binaries (containing white dwarfs, neutron stars or low-mass black holes),

supernova explosions and nearby non-axisymmetric rotating neutron stars, whose rotation pe-

riod and sky-position are known if they are detectable as pulsars (Shawhan & LIGO Scientific

Collaboration, 2003). These sources all emit GWs with frequencies from ~Hz to ~kHz, corre-

sponding to the frequency range over which LIGO is most sensitive. Advanced LIGO (Smith

& LIGO Scientific Collaboration, 2009, and references therein) is an upgrade to LIGO that

is currently being implemented and should improve the detector’s sensitivity by two orders of

magnitude while retaining a similar range of detectable frequencies.

A GW detection experiment in its planning stages is the proposed Laser Interferometer

 

5See http : //www. ligo . caltech.edu/adeIGO/.

6See http: //www.virgo.infn. it/.
7See http: //www.aigo . org.au/.
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Space Antenna (LISA; Larson et al., 2000)8. LISA will consist of three instruments in space

forming three laser interferometers. For LISA, the evacuated cavities that are required for LIGO

to function on Earth are replaced by the near-perfect vacuum of interplanetary space, which

means that the length of these “cavities” can be much greater. The three LISA components

are expected to be separated by N5 x 106 km. LISA will be sensitive to the final inspiral and

coalescence of binary black holes (with member masses in the range 103M® to 1010MQ) and a

galactic foreground of neutron star and white dwarf binaries. These processes emit GWs with

frequencies of ~qu to ~mHz. The sensitivity ranges and likely sources for LIGO and LISA

are summarised in Figure 1.6.

1.5 Detecting Gravitational Waves with Millisecond Pulsars

GWs can also be detected using the predictable rotation behaviour of MSPs and their beams of

EM radiation. This was first suggested by Sazhin (1978) and Detweiler (1979). The likely GW

sources whose signals may be detected with MSPs will emit in a different GW frequency range

to sources for the other detection experiments mentioned above. MSPs can detect GWs in the

frequency range ~nHz to ~sz. Such GWs will be emitted by a range of sources, including:

o supermassive black-hole binaries (SMBHBs) at the cores of merged galaxies (Jaffe &

Backer, 2003; Wyithe & Loeb, 2003; Jenet et al., 2004; Sesana et al., 2008);

o a network of cosmic superstrings (e. g., Damour & Vilenkin, 2005);

o relic GWs from the interaction ofthe large-scale dynamic cosmological metric with quan-

tum instabilities in metric perturbations that existed in the early Universe (Grishchuk,

2005»

o the quantum chromodynamic (QCD) phase transition in the early Universe, when the Uni-

verse’s temperature was ~100 MeV (Maggiore, 2000; Caprini et al., 2010, and references

therein).

These sources are plotted in Figure 1.6, indicating their typical frequency ranges.

 

8See http : //lisa.nasa.gov/.
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Figure 1.6: GW strain sensitivity as a function of frequency for GW analysis with pulsars

(“PTA”), LISA and LIGO. The ordinates show the logarithm of the GW strain, he, defined

in equations (1.10) and (1.11). In the nHz — IIHz frequency range, we have listed sources of

stochastic GWBs (“Cosmic strings”, “Supermassive black-hole binaries in galaxies” and “Relic

G-waves”) and the limits that have been placed on their amplitude (see Section 1.6.2 for de-

tails; “J06” is the Jenet et al., 2006 limit; “Current limit” is the van Haasteren et al., 2011

limit). The wedge-shaped limits are derived under the approximation that the pulsar sensitiv—

ity to GWs is maximum at f = 1 /Tobs, where Tabs is the time-span of the observations. The

pulsar sensitivity is assumed to be zero for lower frequencies and proportional to frequency for

higher frequencies, as described in Equation (53) of Sesana et al. (2008). “Unresolved Galactic

binaries” includes white-dwarf and neutron-star binaries. The region labelled “Coalescing mas-

sive black-hole binaries” shows the expected range of signals from the final inspiral of massive

black-hole binary systems with member masses in the range 103M® to 1010MQ. The “Current”

LIGO sensitivity shows the capabilities of existing datasets, while “Advanced” LIGO expects to

improve GW sensitivity by two orders of magnitude. “SN [supernova] core collapse” and “NS-

NS [neutron star] coalescence” are typical signals that LIGO expects to detect. [This image is

based on figure 7 presented by Manchester (2010)]
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Superstrings, relic GWs and the QCD phase transition all represent GW sources for which

the resultant GW signal is believed to be independent of direction and stochasticg. Each source

forms an isotropic stochastic gravitational—wave background (GWB). Very massive or nearby

SMBHBs can be considered as individual sources of GWs (Lommen & Backer, 2001; Jenet

et al., 2004; Sesana et al., 2009). Alternatively, the superposition of the GW signals from many

SMBHBs throughout the Universe will form a GWB (e.g., Jaffe & Backer, 2003).

Detection of the GWs from an individual SMBHB will require very precise pulsar observa-

tions over a period of several years (Sesana et al., 2009). The combination of new observing

systems and recently discovered pulsars means we are approaching the required level of preci—

sion (Demorest, 2011; Manchester, 2011). However, observations must continue at this level

over at least five years to achieve the level of precision calculated by Sesana et al. (2009) as the

minimum requirement for detection of a single source of GWs. On the other hand, some of the

GWB sources provide a relatively large amplitude signal and may be detected or ruled out in

the coming years (Jenet et al., 2006).

GWB sources can be described using many parametrisations. We will use the characteristic

strain spectrum hc(f), which takes the following form for most GWBs:

hc(f) = A(f/f1yr)o‘, (1.11)

where A = hc(f = fl yr) is a dimensionless constant termed the “amplitude” of the GWB

(see Equation 1.10), f1 yr 2 1/ (1 yr) and a is a constant that satisfies a < 0 for all expected

backgrounds (Jenet et al., 2005). Another quantity often used to discuss GWB sources is the

energy density of the GWB per unit logarithmic frequency interval, ng (f) (adapted from Jenet

et al., 2006):

9gw(f)H3 = —hc(f)2f2, (1.12)

where H0 is the Hubble constant. Typical values for A and a are in the ranges 10‘17 < A <

10‘14 and —7/6 3 Oz 3 —2/3 respectively.

However, the GWB due to merging and coalescing SMBHBS exhibits a slightly different

form from that shown in Equation (1.11). It is now generally thought that the large elliptical

galaxies seen in the present day have formed from the merging of smaller galaxies. Since most

 

9The stochastic signal consists ofmany GW emitters, each radiating GWs with a different amplitude, frequency

and phase.
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nearby galaxies appear to have solitary supermassive black holes (SMBHs) at their centre, this

implies that the SMBHs at the core of each of the progenitor galaxies must coalesce in some

way. It is unknown whether most of the mass transfer that takes place during coalescence is via

accretion or via the merging of the two black holes (BHs). Many authors have considered the

expected GWB that would result from hierarchical galaxy formation models (Phinney, 2001;

Jaffe & Backer, 2003; Wyithe & Loeb, 2003; Enoki et al., 2004; Sesana et al., 2008). GR

predicts that the characteristic strain spectrum has a spectral exponent of a = —2/3 (Phinney,

2001), and most authors have concluded that the amplitude is in the range 10‘15 S A S

10—14. However, a recent analysis based on Monte Carlo simulations of the population of

SMBHBs was performed by Sesana et a1. (2008), which showed that the discrete nature of

the GW-emitting sources has a measurable effect on the GWB due to SMBHBs. This led to the

derivation of a different form for hc(f ) (Sesana et al., 2008):

_ j: ‘2/3( i)70

h.c(f) _ ho (f0) 1+ f0 (1.13)

with the following ranges for the variables 70, f0 and ho:

o 70 : —1.04 < 70 < —1.11

0 f0 : 1.4 x 10—8 Hz < f0 < 5.3 X 10—8 Hz

. ho : 0.65 x 10-15 < ho < 2.15 x 10—15

from the results ofthe four models of SMBHB assembly considered in their paper. These ranges

imply that the predicted range of A = hc(f = fl yr) is

10—16 < A < 3 x10‘15.

In Figure 1.7, we have reproduced a figure from Sesana et a1. (2008) that shows their prediction

for the characteristic strain spectrum of the GWB and the uncertainty in that prediction.

The obvious next question is “How can we use MSPs to study such sources?” We choose to

study GWs with MSPs as the detector by using a technique called “pulsar timing”.
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Figure 1.7: The characteristic strain spectrum of the GWB as a function of GW frequency

as calculated by Sesana et al. (2008). This spectrum is determined by the parameters of the

SMBHB population, which is determined by the evolution of SMBHs. Four recent models of

SMBH evolution are compared (dashed lines; see Volonteri et al., 2003; Koushiappas et al.,

2004; Begelman et al., 2006; Volonteri et al., 2006), along with the average signal calculated

by Sesana et al. (2008) (thick solid line) and its l-a uncertainty (hatched region). The signal

resulting from the standard GR assumption of a spectral exponent of a = —2/3 for the charac-

teristic strain spectrum is also shown (thin solid line; see Equation 1.11), calculated using the

SMBHB assembly model discussed by Volonteri et a1. (2003). [Image reproduced from Sesana

et al. (2008)]
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1.5.1 Millisecond Pulsar Timing

The aim of a pulsar timing observation is to measure a precise and accurate time-of-arrival

(ToA) for a pulse of EM radiation from a pulsar. Mean pulse profiles are very stable (e.g.,

Lorimer & Kramer, 2005), which means precise and unbiased ToAs can be obtained over many

years.

To perform the most precise pulsar timing, a range of effects must be taken into account dur-

ing each observation. The dispersive effects of the ISM must be corrected using de-dispersion

(Sections 1.2.1 and 1.2.2). The mean pulse profile is then formed by folding the de-dispersed

pulses (Section 1.2.3). The observation will typically have a duration of ~1 hr for precision

MSP timing, meaning that the data contains ~ 106 pulses for a typical MSP.

The observed pulse profile is compared with the standard template for the MSP by measur-

ing the time shift that gives maximum cross-correlation between the two, following the method

described by Taylor (1992). This measurement results in an estimate of a ToA (that is, the

arrival time of the pulse at the radio telescope) and its uncertainty.

The ToA is then corrected using a chain of clock corrections, whereby the observatory

timescale is first referenced to Universal Coordinated Time (UTC) and then to Terrestrial Time

as realised by International Atomic Time, abbreviated to TT(TAI). This corrected ToA is then

transformed to the arrival time at the solar system barycentre using a solar system ephemeris

(see Standish, 2004). This ephemeris includes, amongst other things, the relativistic time trans-

formations between the Earth and the solar system barycentre, and the masses and velocities

of each planet and many major dwarf planets and asteroids. These transformations provide a

barycentric ToA.

For high precision timing, pulsars are usually observed many times per year over at least a

few years. The ToAs obtained can then be used to improve the model for the pulsar’s timing

behaviour that is used to fold the incoming pulses as described earlier in this Section. For

example, the estimate of the pulsar’s sky-position can be improved after timing observations

have been carried out for a year or more. Timing models will be discussed in greater detail in

Chapter 2.

By subtracting the arrival time predicted by the pulsar timing model from the observed

arrival time, we obtain a “timing residual” for that particular observation. Timing residuals are

influenced by noise, but also contain a wealth of information about the telescope hardware and
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processing systems, or about planetary, solar system, extra—galactic and cosmological physics.

In particular, MSP timing residuals may contain the signals induced by GWs. Hence, MSPs

may be used to study GW signals from astrophysical and cosmological sources by examining

the timing residuals. Many authors have developed strategies for using MSP timing residuals to

study GWs (Romani & Taylor, 1983; Kaspi et al., 1994; Jenet et al., 2005, 2006; van Haasteren

et al., 2009; Anholm et al., 2009; Burt et al., 2011), and we outline the present state of the field

in the next Section.

1.6 Techniques for Studying Gravitational Waves with Pul-

sar Timing

1.6.1 Detecting Gravitational Waves with Pulsar Timing

After the pioneering work of Sazhin (1978) and Detweiler (1979), the foundation for detection

of a GWB with pulsars was laid down by Hellings & Downs (1983). It is now widely accepted

that a background of low-frequency GWs that is described by Equation (1.11) causes ToA

perturbations with power spectrum, Pg, given by: (Detweiler, 1979; Jenet et al., 2005, 2006)

A2 2a—3

Pg(f) = W (%> . (1.14)

where f1 yr = 1/ (1 yr). These ToA perturbations (regardless of the source) are also correlated

between pairs of pulsars in a quadrupolar fashion. This correlation, which depends only on the

angle between the pair of pulsars as shown in Figure 1.8 (Hellings & Downs, 1983), provides

an unambiguous signature of the GWB. The functional form of this signature is given by:

3 at 1
((Qij)—§xlogw—Z+§, (1.15)

where a: = [1 — cos(6;-j)] / 2 and ‘92'1' is the angle between pulsars 2' and j subtended at the

observer (Hellings & Downs, 1983; Jenet et al., 2005)”). The function ((61-1) is independent of

GW frequency, and is derived assuming the GW polarisation modes are as described by GR;

other GW modes are analysed by Lee et a1. (2008) but are not considered in this thesis.
 

10The right-hand-side of Equation (1.15) is a factor of 3/2 larger than the original result of Hellings & Downs

(1983), but identical to the equation given by Jenet et a1. (2005). This is because Hellings & Downs (1983)

correlated GWB-induced Doppler shifts in pulse ToAs, whereas Jenet et a1. (2005) correlated GWB—induced timing

residuals (the integral of the Doppler shift).
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Figure 1.8: The expected correlation in pulsar timing residuals due to an isotropic stochastic

GWB. The abscissa gives the angle subtended at the observer by a particular pulsar pair. The

ordinate gives the expected correlation (normalised to a value between —1 and 1) between the

timing residuals of that pair. This signal is independent of the GW frequency and assumes that

GWs behave as predicted by GR.

21



Detection of such a correlated signal requires timing residuals with overlapping time-spans

from many MSPs in order to sample the curve shown in Figure 1.8 with sufficient density to

claim a detection of the GWB. This goal can be achieved using a “pulsar timing array” (PTA).

PTAs are able not only to detect GWs and the GWB, but also can detect errors in TT(TAI) and

errors in the solar system ephemeris (Foster & Backer, 1990).

The first complete account of a method for detecting the correlated signal induced in timing

residuals by the GWB, and thus directly detecting the GWB using a PTA, was given by Jenet

et a1. (2005). Their method involves the calculation of the pairwise correlations between the

time series of residuals for each pulsar in the PTA. For an array of Npsr pulsars, this process

provides Npsr(Nler — 1) /2 measured correlations. A detection of the GWB would then be

possible by calculating the correlation between the expected GWB signal shown in Figure 1.8

and the observed pairwise correlations. Jenet et al. (2005) label the value of this correlation as

p and define the “significance” of the detection as

Szp/ap, (1.16)

where a; = 2/Npsr(Npsr — 1) (Jenet et al., 2005). However, this detection scheme is sub—

optimal; for instance, pulsars with different amounts ofnoise in their timing residuals contribute

equally to this detection statistic. While Jenet et a1. (2005) did consider the effect of analysing

residuals with different noise levels, each time series of residuals is given an equal weight

in calculating S. There was also no treatment of other issues associated with analysing real

pulsar timing residuals, such as the non—simultaneous sampling of the observations, the highly

variable ToA error bars, large variation in the time-span of different time series and the issue of

non-overlapping observations.

Van Haasteren et a1. (2009) present a Bayesian technique for detecting the GWB that im-

proves on the Jenet et al. (2005) technique. The technique assumes that the GWB has the form

given in Equation (1.11), but that neither A nor a are known. A joint distribution in these two

variables can then be calculated. This technique was applied recently to observations of six

pulsars from the EPTA as described in van Haasteren et a1. (2011). This paper also includes the

detection of a simulated GWB signal that has been artificially added to their data set. However,

the GWB detection problem includes many aspects that are difficult to solve exactly and ap—

proximate solutions may only be testable with Monte Carlo simulation. Tests based on Monte
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Carlo simulation have not yet been performed with the van Haasteren et al. (2009) technique

because these tests would require a very large amount of computation time.

A detection technique was also presented by Anholm et al. (2009). Their method is a

frequency-domain analysis based on the methods of the laser interferometer community. How-

ever, their derivation does not include the effects of the fitting of the pulsar timing model to the

observed ToAs. This fit severely attenuates the GWB signal that we aim to detect and compli-

cates the analysis of the timing residuals. The effect of the timing model fit on GWB estimation

is discussed at length in Chapter 6 (also published as Yardley et al., 201 la).

The detection of a GWB requires a 100 ns root—mean-square (rrns) timing residual on at least

20 pulsars over a period of at least five years (Jenet et al., 2005). Using extensive observations

of 20 MSPs over several years (see, e.g., table 1 of Manchester, 2011), it is apparent that some

MSPs can be timed more precisely than others because of narrow pulse profiles or greater

flux density. This means the reference PTA data set, which consists of observations of 20

pulsars with 100 ns rms residual timed over five years, will be very difficult to obtain with

current observation systems and processing algorithms. However, the prospects for future GW

detection with pulsars are improved by the fact that the GWB signal from all expected sources

has a g —2/3 in Equation (1.14). This means that the strength of the expected GWB signal

T13/3_
increases with observing time-span, Tobs, at least as fast as obs , for example, doubling the

observed data-span increases the expected signal by a factor of 20. Furthermore, recent work

by Sesana et a1. (2009) suggests that it may be possible to directly detect a single source of

GWs with a few very precisely timed pulsars, despite the fact that the GWB signal is expected

to be stronger on average than any individual source. This has led to a flurry of recent interest in

detecting single sources ofGWs with pulsars (e.g., Corbin & Cornish, 2010; Sesana & Vecchio,

2010a; van Haasteren & Levin, 2010; Sesana & Vecchio, 2010b;'Pshirkov et al., 2010; Burt

et al., 2011).

These works have considered detection of sinusoidal signals induced by GWs in MSP timing

residuals, as well as GW “burst” signals caused by SMBHB coalescence or the periastron ap-

proaches of SMBHBs with highly elliptical orbits. In principle, the algorithm of van Haasteren

& Levin (2010) is suitable for the study of any GW signal for which the GW waveform has

known functional form. Many of the techniques for single source detection proposed in the

last five years are yet to be applied to real pulsar timing observations, with the exception of the
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technique presented in Chapter 4 of this thesis, which is applied to timing residuals from a PTA

observed with the Parkes radio telescope (see Section 2.1).

However, the noise levels on many current PTA observations are too high to allow detection

of GW signals at the expected levels (e.g., the levels given in Sesana et al., 2008, 2009). It is

likely that the GWB will be detected within the next decade (Demorest, 2007; Hobbs et al.,

2010a), while a detection of an individual source ofGWs depends on the location of the source

relative to precisely timed pulsars (Burt et al., 2011). In the meantime, a wealth of astrophysical

information can be gleaned by placing limits on the expected amplitude of GW signals. These

limits have been calculated using the timing of individual pulsars, as well as the timing of

multiple pulsars1 1.

1.6.2 Finding Upper Limits on Gravitational Waves with Pulsar Timing

Historically, most authors have focussed on finding upper bounds on parameters of the GWB,

whereas interest in constraining the properties of individual sources of GWs has been rela-

tively recent. Romani & Taylor (1983) used the timing residuals of a 1.3 s-period pulsar, PSR

B1237+25, to constrain ng(f ) at f N 10‘8 Hz, and thus demonstrate that such GWs do not

dominate the energy density of the Universe. While Stinebring et a1. (1990) observed two pul—

sars (PSRs J 1857+0943 and J1939+2134), their technique was only used to provide an upper

bound on ngHg using the timing residuals of each pulsar individually. Kaspi et a1. (1994) then

used a similar technique to provide an upper bound on ngHg using similar observations with

a longer time-span. They made the important step of combining the data from their two pulsars

to find the best constraint on the GWB amplitude. However, the statistical method employed by

Kaspi et a1. (1994) has been criticised by other authors (Thorsett & Dewey, 1996).

The technique of Kaspi et al. (1994) was modified by Jenet et a1. (2006) in the wake of such

criticism to provide statistically rigorous constraints on ngH3 and also on hc(f) Jenet et a1.

considered a range of different GWB sources and found a new limit on the parameters of each

source. In particular, their limit of

mo = fly) 3 1.1 x 10—14, (1.17)
 

11A measurement of a binary pulsar’s orbital period and the error in the measurement of the rate of change

of orbital period can constrain the GWB in the frequency range 10‘12 Hz< f < 10—9 Hz (Bertotti et al., 1983;

Kopeikin, 1997). This thesis does not discuss these methods.
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Figure 1.9: MBHB coalescence rates and galaxy merger rates as a function of redshift. The

galaxy merger models assumed by Jaffe & Backer (2003) (thin solid line) and Rajagopal &

Romani (1995) (thin dashed line) are inconsistent with recent simulations of the coalescence

rates for SMBHBs (histograms). Using the model of Jaffe & Backer (2003) in the Monte Carlo

simulations of Sesana et al. (2008) yields results that are inconsistent with recent models of the

evolution with redshift of the SMBHB coalescence rate (thin dotted line; Sesana et al., 2008).

[Image reproduced from Sesana et al. (2008)]

as the 95%—confidence upper bound on a GWB with spectral exponent of a = —2/3 constrains

the galaxy merger rate evolution with redshift (Jenet et al., 2006). Jaffe & Backer (2003) and

Wen et al. (2011) parametrised the merger rate of galaxies R(z) such that R(z) goes as (1+ 2W,

where ”y is now thought to be in the range —1 < *y < 3 (Carlberg et al., 2000; Patton et al., 2002;

Lin et al., 2004; Kartaltepe et al., 2007; Lin et al., 2008). The limit given in Equation (1.17)

constrains 7 to be less than 2.6, but only if we allow the formation of SMBHs at very high

redshifts near 2 = 100 (see Wen et al., 2011). Furthermore, figure 12 of Sesana et al. (2008)

(reproduced in Figure 1.9) suggests that the SMBH coalescence rate is not a simple power-law

with redshift, and that the rate decreases at redshifts greater than 2 = 2 for most current models.

MSP timing is yet to provide constraints, Via upper limits on the expected GWB signal, that

rule out the most recently proposed models of SMBHB evolution (see Sesana et al., 2008). A

very recent upper bound on the GWB amplitude of h,c(f = fl yr) 3 6 x 10‘15 for a = —2/3

(van Haasteren et al., 2011) does constrain the parameters of the GWB model of Wyithe &

Loeb (2003), but not the currently accepted predictions for the GWB amplitude of Sesana et al.

(2008). However, significant progress has been made in constraining the parameter space of
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Figure 1.10: An upper bound on the GWB amplitude hc(f = fl yr) as a function of a. The
ordinates are measured in 10g(hc(f = fl yr)) (the axis on the left-hand side) and in log(§2gw(f =
flyr)h.(2,), where ho 2 H0/ 100 (the axis on the right-hand side). The 68%—confidence upper

bound (solid line) and the 95%-confidence upper bound (dashed line) from van Haasteren et a1.

(2011) are more constraining than the upper bounds published by Jenet et a1. (2006) (dots).

The van Haasteren et a1. (2011) upper bound is the first that can be calculated as a continuous

function of a. For a GWB caused by SMBHBs, it is expected that a = —2/3 at the most

sensitive frequencies of current pulsar timing experiments (the value indicated by the vertical

dot—dashed line). [Image reproduced from van Haasteren et a1. (2011)]

cosmic superstring models (Jenet et al., 2006; Olmez et al., 2010; van Haasteren et a1., 2011).

In Figure 1.10, we reproduce a figure from van Haasteren et a1. (2011) that shows the GWB

upper bounds for different values of a.

With regard to individual GW source limits, MSP timing has been used to provide use-

ful constraints on the parameters of proposed SMBHBs. Lommen & Backer (2001) used

~1000 days of observations on three MSPs (PSRs J1713+0747, J1857+0943, J1939+2134)

to constrain the properties of a range of nearby massive dark objects, if any of these objects

harboured a black-hole binary. Jenet et a1. (2004) ruled out a proposed SMBHB at the core

of the radio galaxy 3C66B (Sudou et al., 2003). Using a straightforward periodogram analy-

sis and seven years of publicly-available pulsar timing observations of PSR B1855+09, Jenet
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et al. (2004) showed that the SMBHB proposed by Sudou et al. (2003) is ruled out with 95%

confidence by these observations. They went on to show that they could constrain the mass

ratio of the two BHs and / or the orbital eccentricity of any SMBHB in 3C66B with very high

confidence.

However, with the exception of the techniques presented by van Haasteren et al. (2009)

and in Chapters 4 and 6, many techniques have not been able to adequately account for all the

aspects of real pulsar timing observations. These include, but are not limited to, non-white

noise sources affecting the timing residuals, the irregularly and non-simultaneously sampled

observations of a PTA, and the effects of fitting the timing model to the observed ToAs.

The aim of this thesis is to develop, implement and demonstrate techniques for studying

GWs with PTAs that can be applied immediately to almost all real pulsar timing observations.

The only data sets to which these techniques may not be applied in their present form are those

with time series that exhibit a very steeply-decreasing power spectrum with power—law exponent

less than -2, as is seen in many young pulsars and a few MSPs (e.g., PSR J1939+2134; Hobbs

et al., 2010b). This is not a significant drawback of the techniques presented because any time

series that exhibits such a steeply-sloping spectrum is unlikely to be useful for GW detection.

It is also not difficult to augment these techniques using a new method of spectral analysis

appropriate for steeply—decreasing power spectra (Coles et al., 2011).

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2:

We show some examples of real pulsar timing data sets from one of the most prominent

PTA projects, the Parkes Pulsar Timing Array (PPTA). We describe methods of simulating

ToAs and GW signals using “plugins” to the software package TEMPOZ. We demonstrate that

these simulated observations do resemble real observations from a radio telescope.

Chapter 3:

We develop a technique for detecting GW signals from individual SMBHBs that induce

a correlated sinusoidal signal in timing residuals that are otherwise uncorrelated. We test the

technique on simulations of a range of possible future PTA observations. We analyse a set
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0f uncorrelated timing residuals observed at the Arecibo and Parkes telescopes to determine

their sensitivity to GW sources that induce sinusoidal signals in the residuals. We use these

sensitivity calculations to constrain the coalescence rate of SMBHBs as a function of their mass

and redshift using a technique developed by Wen et a1. (2011). We also describe the limitations

of this technique.

Chapter 4:

We improve the technique of Chapter 3 such that we can process the most recently published

data from the PPTA, as published by Verbiest et a1. (2009). This leads to a measurement of the

sensitivity of a PTA to sinusoidal GW sources. We calculate the first realistic GW-sensitivity

curve for a PTA that can be compared with LIGO and LISA GW—sensitivity curves. The PTA

sensitivity curve includes GW frequencies from 2 nHz to 400 nHz and is calculated for current

observations and future predictions. We calculate the constraint on the coalescence rate of

SMBHBs for the PPTA data set presented by Verbiest et a1. (2008, 2009) using the Wen et a1.

(2011) technique.

Chapter 5:

We transition from treating individual GW sources to treating the incoherent sum of all GW

sources, which forms the isotropic stochastic GWB. We describe the software implemented in

TEMPOZ for simulating GWB signals and their effect on timing observations of pulsars. We

use TEMPOZ to calculate a limit on the amplitude of the GWB for a variety of data sets using

the method of Jenet et a1. (2006). Each limit leads to a constraint on the coalescence rate of

SMBHBs using the Wen et a1. (2011) technique.

Chapter 6:

We introduce a new technique that can detect the expected steep power-law GWB signal in

pulsar timing residuals. We demonstrate that no GWB signal has been detected in the PPTA

residuals to date, but find previously unpublished effects in the GWB detection process that

must be accounted for. In particular, the full effect of the timing model fit that produces the

timing residuals must be included in the analysis.

Chapter 7:

We conclude the thesis with some suggestions and predictions for future directions ofGWB

detection with pulsars. In particular, we briefly discuss the importance of the International
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Pulsar Timing Array collaboration.
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Chapter 2

Real and Simulated Data Sets

Chapter Outline: In this Chapter, we:

0 review current PTA projects across the world and the properties oftheir data sets.

0 describe two published data setsfrom the Parkes Pulsar Timing Array that have been the

focus ofour GWanalysis and will be used in later Chapters.

0 describe methodsfor simulation ofrealistic timing residuals.

0 describe simulations ofGWsignals in timing observations.

0 give examples ofsimulated data setsfor current andfuture observingprograms.

Chapter 1 listed numerous techniques that have been proposed for estimating the amplitude

of GW signals in pulsar timing residuals (Sections 1.5 and 1.6). However, most of these meth-

ods cannot be applied directly to recent observations because of, for example, the sampling of

the observations or the presence of non—white noise in the residuals. 1n Chapters 3 — 6, we

will introduce new GW—analysis techniques that have been applied to observations from the

Parkes Pulsar Timing Array. These methods can be applied to almost any set of pulsar timing

observations. To develop algorithms that can be applied to real observations, it is necessary to

parameterise the effects that must be accounted for. In this Chapter, we review the current PTA

projects and describe the data sets that they are producing. We give a detailed description of data

sets that will be analysed in later Chapters. We describe and implement methods for simulating

pulsar timing observations and derive and implement the effects of GWs on the pulse ToAs.

Finally, we describe the properties of simulated pulsar timing data sets that will be analysed in

Chapters 3 and 5.

2.1 Current Pulsar Timing Array Projects

Several pulsar timing research groups around the world are carrying out PTA observing projects.

At the time of writing, these are:
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o The “Parkes Pulsar Timing Array” (PPTA; Manchester, 2008; Verbiest et al., 2010, and

references therein)‘2 collaboration, which uses the 64-m diameter Parkes radio telescope.

The collaboration aims to time 20 MSPs over a period of at least 5 years. The majority of

the pulsars are already yielding a weighted rms residual below 1 ,us, with the rms of a few

pulsars below 200 ns (Manchester, 2010). The project has been ongoing since late 2004,

although a subset of the PPTA pulsars have been timed at the Parkes observatory since

1994, albeit with less regularity and precision (Verbiest et al., 2008, 2009). The PPTA

data sets are the focus of the GW analysis presented later in this thesis. Details of these

data sets are given below in Sections 2.2.3 — 2.2.5.

o The “European Pulsar Timing Array” (EPTA; e.g., Stappers et al., 2006; Ferdman et al.,

2010)13 collaboration, which currently observes MSPs using four large radio telescopes.

These are the lOO-m diameter Effelsberg, the 76-m diameter Lovell, the 94-m diameter-

equivalent Nancay, and the 96—m diameter—equivalent Westerbork synthesis radio tele—

scopes. The EPTA collaboration also intends to observe pulsars with the 64-m diameter

Sardinia radio telescope, which is expected to become operational in 2011 (Tofani et al.,

2008). The combination of these telescopes provides observations at a wide range of

frequencies from 0.12GHz to 95.5 GHz with bandwidths ranging from ~100 MHz to

1 GHz. The EPTA collaboration currently times 24 MSPs (Ferdman et al., 2010; Hobbs

et al., 2010a).

o The “North American Nanohertz Observatory for Gravitational Waves” (NANOGrav;

Jenet et al., 2009)14 collaboration, which observes MSPs using the 100-m diameter Green

Bank Telescope and the 300—m diameter telescope at the Arecibo Observatory. Pulsars

are observed at Green Bank at 820 and 1400 MHz, and observed at Arecibo at 327, 430,

1400 and 2300 MHz (Demorest, 2011)”. Sources have been observed using coherent

dedispersion systems with a 64 MHZ bandwidth, though recent upgrades allow a coher-

ently de-dispersed observing bandwidth of up to 800 MHz (Ransom et al., 2009). They

are currently timing 20 MSPs (Nice et al., 2011), though new pulsars are being added to

 

12http : //www.atnf . csiro . au/research/pulsar/ppta/.

13http : //www.epta . eu.org/.
l4http: //nanograv . org/ .

15See also: http : //science .nrao . edu/newscience/9—Wed/l7—Demorest/demorest_

santa__fe_2011 .pdf.
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the source list.

0 A PTA at Kalyazin Observatory, Russia, described by Ilyasov et al. (2004b), is observed

using the 64-m diameter Kalyazin telescope. This telescope typically times pulsars at

frequencies of600 and 1400 MHz with a bandwidth of3.2 MHz (Ilyasov, 2006). Kalyazin

observatory has performed timing observations on an array of seven MSPs since 1996

(Ilyasov & Oreshko, 2007).

Other collaborations and countries, such as China, may soon commence MSP timing obser-

vations that could lead to their own PTA (Nan, 2008; Smits et al., 2009; Nan, 2009). Also,

very-low-frequency observations of pulsars using India’s Giant Meterwave Radio Telescope

may facilitate even more precise timing observations (Jenet et al., 2009).

A new global PTA collaboration is emerging, the International Pulsar Timing Array (IPTA),

which is currently a combination of the PPTA, EPTA and NANOGraV (Hobbs et al., 2010a).

The current array of pulsars observed as part of the IPTA is shown in Figure 2.1. The IPTA will

provide the most sensitive data sets to date for GW detection via pulsar timing. Even though

a few experiments have already used shared data (e.g., Champion et al., 2010), more extensive

collaboration and data-sharing agreements have not yet been finalised.

2.2 High-Precision Pulsar Timing at Parkes

Throughout this thesis we will focus on the analysis of data from the PPTA to determine its

sensitivity to GWs and other signals that are expected to produce a correlated signal in the

timing residuals. High-precision timing of pulsars for the PPTA project has been conducted

under two long-term observing proposals: P140 and P456. Details of both projects are given

below.

2.2.1 P140: “Precision Pulsar Timing”

The first project that carried out repeated observations of an array of MSPs at the Parkes tele-

scope commenced in 1994, entitled “P140: Precision Pulsar Timing”. These observations were

conducted during the same period of time as the Parkes 70 cm survey for MSPs (Bailes et al.,

1994; Lyne et al., 1998) with the original intention of improving the timing models for pulsars

that were newly discovered as part of the survey. The project also observed two of the bright
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Figure 2.1: The position and typical ToA uncertainty for the IPTA pulsars (as listed in table 1 of Hobbs et al., 2010a). The figure shows pulsars

from the PPTA (blue), EPTA (green) and NANOGrav (red) projects described in Section 2.1. The centre of each circle indicates the location of

the pulsar in right ascension (RA) and declination (Dec). The radius of the circle, ram, is related to the size of the typical error bar, atyp, on a

timing observation of that pulsar for that project Via rem = 0.011(1 — log(0.250typ)). Hence, a larger circle on the above plot indicates that a

ToA from the pulsar has a smaller typical error bar. The labelling ofRA is non-standard, such that RA : 12h is the central meridian.
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MSPs discovered earlier at Arecibo, PSRs J 1713+0747 and J l939+2134. With the discovery

of new pulsars in the Swinburne intermediate-latitude survey (Edwards et al., 2001), the list of

pulsars that were being observed under the project was extended to 16 MSPs by 2006. The

P140 project ended in 2011. Highlights from the P140 project include:

o the measurement of the 3—dimensional binary orbital geometry of PSR J0437—4715,

which led to a verification of the space-time distortion near its companion via detection

of the Shapiro delay predicted by GR (van Straten et al., 2001)”;

o the measurement of the mass of the binary companion of PSR J 1909—3744 by observing

its Shapiro delay (Jacoby et al., 2005). This mass measurement, combined with other

measurements and predictions of GR, implied that PSR J 1909—3744 has a large mass.

This supported the idea that the cause of the high spin-frequency of MSPs is that they

undergo a recycling phase via accretion from their companion;

o a comparison between the pulsar timing measurements and the radio interferometry mea-

surements of the position, parallax and proper motion of PSR J0437—4715. This led to

independent confirmation of the parallax distance (Deller et al., 2008).

2.2.2 P456: “A millisecond pulsar timing array”

In February 2004, the first observations for the PPTA began under the Parkes observing project

“P456: A millisecond pulsar timing array”. High-precision observations (see Section 1.5.1)

were collected from late 2004. This ongoing project differs from P140 as it specifically aims

to detect GWs. The P456 project also aims to detect errors in TT(TAI) and in the solar system

ephemeris. These aims require the extension of the list of monitored pulsars from 16 to 20

MSPs, suggested by Jenet et al. (2005) as a minimum requirement for GWB detection. The

project includes low- and high—frequency observations of the pulsars to enable correction for

variations in the pulse DM (You et al., 2007). Some highlights of the project so far include:

o the use of P456 observations and publicly-available observations (Kaspi et al., 1994) to

measure an upper bound on the GWB amplitude that rules out some GWB formation

mechanisms (Jenet et al., 2006);
 

16Observations of this pulsar were later used to constrain the parameters of alternative gravity theories (Verbiest

et al., 2008; Deller et al., 2008).
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0 measurement of the instability of Terrestrial Time (TT), as realised by TT(TAI), using a

combination of P140 and P456 observations (Hobbs et al., 2011);

0 measurement of the mass of all solar system planetary systems from Mercury to Saturn,

providing the most precise published value for the Jovian system mass (Champion et al.,

2010). This paper used observations of three pulsars from P140 and P456 (published by

Verbiest et al., 2009), as well as some observations of a fourth pulsar made at Effelsberg

and Arecibo.

2.2.3 Properties of the P140/P456 Observations

For the majority of the analysis discussed in this paper, the P456 and P140 data have been com-

bined. Each pulsar has been observed for ~10 min to 1 h in each observation, depending on the

hardware used at the time. Since 2005, the typical length of an observation is ~1 h. Observa-

tions of each pulsar are made every few weeks, though PSRs J0437—4715 and J 1909—3744 are

often observed several times during each observing session. For some pulsars there are gaps of

several months during which no observations were taken.

Most observations have been performed at wavelengths centred on 10/50 cm (3100/685 MHZ)

using a dual-frequency receiver (Granet et al., 2005) or at 20 cm (1400 MHz). Observations in

the 20 cm band between 1994 and November 2002 were taken with the Caltech fast pulsar tim-

ing machine (FPTM; Navarro, 1994). This backend system timed pulsars with either one or two

128 MHz-wide bands; the observations varied greatly in quality. Observations between Novem-

ber 2002 and June 2010 were taken with the Caltech-Parkes-Swinbume Recorder 2 (CPSRZ;

Bailes, 2003). These observations were coherently de-dispersed over two 64 MHz-wide observ-

ing bands centred at 1341 MHz and 1405 MHz. From 2004, additional simultaneous observa-

tions have been taken with a variety of Parkes digital filterbank systems with bandwidths from

256 MHz to 1 GHz (Manchester, 2008). Each MSP monitored at Parkes has been observed for

a different time-span, depending in part on when each pulsar was discovered. The observations

have been made at irregular intervals and the sampling has been different between pulsars.

ToA uncertainties have varied widely over short and long timescales. Short timescale varia-

tion is caused by unequal integration time between observations and by scintillation in the ISM

(Lyne & Rickett, 1968; Rickett, 1990; Cordes, 2002). Long timescale variation in the ToA error

size is caused by upgrades in the receiver and backend systems at the telescope. The magni—
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tude of the average ToA uncertainty can change discontinuously as a result of these upgrades

in the observing hardware at Parkes. In Figure 2.2, we plot the timing residuals obtained from

observations of two pulsars to demonstrate the variations in ToA uncertainties, sampling and

time—span described above.
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Figure 2.2: The variation in sampling, ToA uncertainties and time-spans of MSP timing obser-

vations under Pl40/P456. The abscissa is time in days as measured by the Modified Julian Date

(MJD). The ordinate measures the timing residual for each observation of each pulsar. The dot—

ted lines indicate zero residual for each pulsar, and the length of the vertical bar on the left-hand

side in each panel indicates lOns. The right-hand column gives the pulsar’s name in the J2000

coordinate system. The observations of PSRs J 1730—2304 and J1600—3053 shown here are a

subset of the 20 sets of MSP timing observations published by Verbiest et a1. (2009).

2.2.4 Fitting the Timing Model and Estimation of Pulsar Parameters

The ToAs for each pulsar are fit with a model for the pulsar’s behaviour to minimise the vari-

ance of the timing residuals. A typical model includes the DM, rotational parameters (pulse

frequency and its first derivative), astrometric parameters (e. g., position, proper motion) and, if

the pulsar is a member ofa binary system, orbital parameters (i.e., the Keplerian binary parame-

ters and, if necessary, some post-Keplerian parameters; see Edwards et al., 2006). A significant

parallax has only been measured for pulsars that are relatively close to Earth or for those with a

small rms residual (Verbiest et a1., 2009).
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For our data, the fitting ofthe pulsar timing model is carried out with TEMP02 (Hobbs et al.,

2006; Edwards et al., 2006). TEMP02 is a software package designed as a plugin architecture

in the ‘C’ programming language. This enables users to write their own programs in C with

access to the TEMP02 core. TEMP02 supersedes the earlier TEMPO code that was not designed

for processing multiple pulsars simultaneously, whereas TEMP02 can simultaneously process

PTA observations (e.g., Hobbs et al., 2006, 2011). Also, the TEMPO code does not account

for all effects that cause ToA variations of S 100 ns. TEMP02 accounts for all known timing

effects to ~1 ns accuracy (Hobbs et al., 2006). This level of accuracy is an order of magnitude

greater than the most precise current timing observations (e.g., Manchester, 201 1). In particular,

TEMP02 accounts for

the pulsar’s intrinsic slow-down behaviour;

0 its orbital motion;

0 its secular motion or that of its binary system;

c dispersion caused by the solar system, Earth’s ionosphere, and the ISM;

o the motion of the observatory caused by Earth’s rotation, orbital motion, precession, nu-

tation and polar motion;

0 pulse delay induced by Earth’s troposphere; and

o gravitational time-delays caused by solar system bodies or the pulsar’s binary companion.

In this way, TEMP02 produces very precise parameter estimates for any observed pulsar. Pul-

sar model parameters for most of the Parkes pulsars timed under P140 and P456 have been

published by Verbiest et a1. (2008, 2009).

Compared to other measurement techniques, the pulsar parameters are most precisely de-

termined using the timing observations themselves”. However, it should not be assumed that

every measured parameter has physical meaning. For example, the intrinsic rotational period

 

17A notable exception is the parallax measurement for PSR 10437-4715 obtained with interferometry that is an

order of magnitude more precise than the best measurement from pulsar timing (Deller et al., 2008; Verbiest et al.,

2008). However, the pulsar timing measurement of other parameters (such as the proper motion) is more precise

than the interferometric measurement. Also, while such precise interferometry measurements are possible for the

very close and bright pulsar PSR J0437—4715,these measurements will not be practical for the general population

of pulsars because of their much greater distance and lower flux density.
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of a pulsar cannot be directly measured with current techniques. The pulse period determined

by TEMPOZ is affected by the pulsar’s radial velocity, intrinsic pulsar rotational instabilities

(Hobbs et al., 2010b), instabilities in terrestrial time standards (Hobbs et al., 2011), and even

the existence ofGW signals (e. g., Pshirkov, 2009), amongst numerous other factors.

2.2.5 Properties of the P140/P456 Timing Residuals

The timing residuals (see Section 1.5.1) produced by TEMPO2 for the P140/P456 observations

are shown in Figures 2.4, 2.5 and 2.6. The error bar on each residual, which is equal to the

ToA uncertainty, is underestimated on average for almost all of the PPTA pulsars (Verbiest

et al., 2009). This means that the uncertainty in the parameter estimates for these pulsars will

be underestimated”. In an effort to correct this, the standard approach is to multiply each

measured ToA uncertainty for a particular pulsar by an “error factor” (EFAC; e.g., Verbiest

et al., 2009). Generally, the EFAC (typically a number between one and four and defined as

M) will be different for each pulsar, though a recent analysis by Verbiest et a1. (2009) used

EFACs that were also different for each backend system.

Several deterministic signals have been removed from the residuals because of the timing

model fit that estimates the parameters ofthe pulsar model. In Figure 2.3, we show characteristic

signatures induced in the timing residuals for an incorrect pulse period (top left), an incorrect

pulse period derivative (top right), an incorrect pulsar sky-position (bottom left) and an incorrect

pulsar binary orbital period (bottom right). Any physical phenomenon that induces timing

residuals resembling the signals in Figure 2.3 — such as a constant Doppler shift of the pulse

period, acceleration of the pulsar in the local gravitational potential (e. g., for pulsars in globular

clusters; see Freire et al., 2001) or GW signals with a period of lyr — will be undetectable

after the standard pulsar timing fit has been applied. The implications of this are discussed in

Chapter 4 and Chapter 6 and have been discussed by several authors (e.g., Blandford et al.,

1984; Hellings, 1989; Kopeikin, 1999).

The weighted rms residual varies over two orders of magnitude between different pulsars

(see Table 2.2). This is because of the S/N ratio difference of the pulse profile between different
 

18This can be corrected using the “reduced X2” of the fit, defined as x? 2 Zn g/Ndof, where Tn is the n—

th observed post-fit residual, an is its error and Ndof is the number of degrees of freedom in the residuals. By

multiplying each measured parameter uncertainty by m, the correct uncertainty can be obtained if the uncer-

tainties have a normal distribution. Ideally, X12. is close to unity, indicating that the model fits the observations at

the accuracy predicted by the noise level of the observations.
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Figure 2.3: The signature in simulated pulsar timing residuals for PSR J0613—0200 as produced

by an incorrect value of different pulsar parameter measurements. In each plot, the abscissa is

the MJD while the ordinates are the residuals determined using the input pulsar parameter file

before fitting is applied within TEMPOZ to improve the pulsar parameter estimates. Here we plot

the timing residuals after introducing an error in the pulsar’s period (top left), period derivative

(top right), sky position (bottom left) and binary orbit period (bottom right). These simulated

observations are sampled once every 14 d with an uncertainty of 100 ns on each residual, except

for the data set displaying the binary orbit period error. For the binary orbit period error, one

observation every two days with a 10ns uncertainty on each residual was chosen since the

orbital period of PSR J06l3—0200 is 25 (1. Each image was produced using the PLK plugin to

TEMP02 from simulated data created using the FAKE plugin.
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pulsars and because ofunmodelled signals in the timing observations. For example, most of the

published observations from these projects have not been fully corrected for DM variations (You

et al., 2007)”. This means that the residuals still contain signals due to variations in the DM.

Other physical effects that have not been included in the timing model — such as calibration

and other instrumental errors (van Straten, 2006), timing noise intrinsic to the pulsar system

(Hobbs et al., 2010b; Shannon & Cordes, 2010, and references therein), errors in the solar

system ephemeris (Champion et al., 2010), and errors in TT(TAI) (Hobbs et al., 2011) — will

induce timing residuals.

Verbiest et a1. (2009) showed that such noise sources will not prohibit GWB detection with

the PPTA pulsars. Furthermore, these authors provided an in-depth analysis of the noise prop-

erties of all the PPTA pulsars. They conclude that instabilities intrinsic to the pulsars or the

observing systems do not induce residuals with rms > 100 ns over a five-year timescale for

most PPTA pulsars. Hence, GW detection with the PPTA pulsars remains a possibility, using

observations carried out under the observing projects P140 and P456. Some recently published

observations of the PPTA pulsars are described in the next Section. Both sets of observations

will be analysed to study GW signals in Chapters 3, 4, 5 and 6.

2.3 Published Observations from the Parkes Pulsar Timing

Array

In this Section we describe the observations that formed the Jenet et a1. (2006) data set and those

that formed the Verbiest et al. (2009) data set. We show the pulsar timing residuals that result

from each timing analysis. In Chapters 3 and 5, we analyse the Jenet et a1. (2006) observations

to determine their sensitivity to individual sources ofGWs and calculate an upper bound on the

GWB amplitude. In Chapters 4 and 6, we analyse the Verbiest et a1. (2009) observations and

search for single sources of GWs and a GWB signal.

2.3.1 The Jenet et a1. (2006) Observations

Jenet et a1. (2006) presented a statistically—rigorous technique for finding an upper bound on the

GWB amplitude. The Jenet et a1. (2006) observations have been assembled from:
 

”Such corrections are now part of the standard PPTA data processing and can be applied to most existing

residuals for which observations have been made at two or more frequencies.

40



o publicly-available observations of PSR J1857+0943 taken with the Arecibo radio tele-

scope between 1986 and 1993 (Kaspi et al., 1994); and

o observations of seven pulsars, including PSR J1857+0943, made with the Parkes radio

telescope under the P140 and P456 timing projects (Hotan et al., 2006).

The Arecibo observations of PSR J1857+0943 were carried out at ~1400 MHz and span

eight years. The Parkes observations used both the 20 cm receiver and the 10/50 cm dual-

frequency coaxial receiver. The average sampling interval of these data is ~16d, with one

observation at each of the three frequencies taken during each 16 (1 period. The observed pulsar

signals were recorded with a variety of backend systems, including:

o the Wide-Band Correlator system (You et al., 2007) with 2 bit digital sampling at a band-

width of up to 1 GHz;

0 a digital filterbank with 8 bit digital sampling of a 256 MHz bandwidth (Yan et al., 2011);

o the Caltech Parkes Swinburne Recorder 2 (CPSR2; details in Bailes, 2003; Hotan et al.,

2006), a baseband recorder with coherent dedispersion over two observing bands, each of

64 MHz bandwidth. For observations at 20 cm, these bands are centred on 1341 and

1405 MHz; for simultaneous observations at 10/50 cm they are centred on 3100 and

685 MHZ.

The residuals are summarised in Table 2.1 and plotted in Figure 2.4. The figure shows the

very irregular sampling, the unequal noise levels between pulsars and the significant variation

in error bar size between observations of a given pulsar. In Section 3.3.3, we will analyse

these observations to determine their sensitivity to individual GW sources that induce sinusoidal

timing residuals.

Jenet et a1. (2006) did not apply their method to all the Parkes MSP observations that were

available in 2006. This is because their technique for finding an upper bound on the GWB

amplitude (described in Chapter 5) demanded the use of time series that were consistent with

white noise (i.e., their power spectrum is independent of frequency). Many time series from

the P140 and P456 projects did not meet their criteria for whiteness because of calibration- and

hardware-induced artifacts, as well as other unknown timing noise sources (Jenet et al., 2006).

For some other pulsars, only a subset of their observations could be used. This meant that,
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Table 2.1: Parameters of the Jenet et a1. (2006) data set.
 

 

 

 

 
 

PSRJ Period DM Pb Weighted RMS Span No. of

(ms) (cm‘3 pc) (d) Residual (us) (years) Observations

J0437—4715 5.757 2.65 5.74 0.12 2.2 233

J1024—0719 5.162 6.49 — 1.10 2.4 92

J1713+0747 4.570 15.99 67.83 0.23 3.2 168

J1744—1134 4.075 3.14 — 0.52 3.3 101

J1857+0943 5.362 13.31 12.33 1.12 20.3 398

J1909—3744 2.947 10.39 1.53 0.29 2.4 2859

J1939+2134 1.558 71.04 — 0.21 2.4 231

1

I -_.___ , 11043774715

1 ifl§ . 1102470719

1 . in,“ m713+o747

B

5 1 , in“? 1174471134
Egg

1 @fifw J1857+O943

I .‘u 1190973744

1 .. ..-. J1939+2134

1 1 1 1 1 1 1

—4000 72000 0 2000 4000

MJ07510000

Figure 2.4: The timing residuals from the observations of seven pulsars published by Jenet et al.

(2006). The abscissa gives the time of the corresponding observation in MJD. The ordinate

measures the timing residual for each observation of each pulsar. The dotted lines indicate zero

residual for each pulsar, and the length of the vertical bar on the left-hand side in each panel is

10/15. The right-hand column gives the pulsar’s name in the J2000 coordinate system. [Image

produced using the PLOTMANY plugin to TEMPO2.]
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Table 2.2: Basic information for the Verbiest et a1. (2008, 2009) data sets.
 

 

PSRJ Period DM Pb Weighted RMS Span No. of

(ms) (cm‘3 pc) ((1) Residual (Ms) (years) Observations

J0437—4715 5.757 2.65 5.74 0.20 9.9 2847

J0613—0200 3.062 38.78 1.20 1.56 8.2 190

10711—6830 5.491 18.41 — 3.23 14.2 227

JlO22+1001 16.453 10.25 7.81 1.62 5.1 260

J1024—0719 5.162 6.49 — 4.22 12.1 269

11045—4509 7.474 58.15 4.08 6.64 14.1 401

J1600—3053 3.598 52.19 14.34 1.14 6.8 477

J1603—7202 14.842 38.05 6.31 1.92 12.4 212

J1643—1224 4.622 62.41 147.02 2.50 14.0 241

J1713+0747 4.570 15.99 67.83 0.20 14.0 392

J1730—2304 8.123 9.61 — 2.51 14.0 180

11732—5049 5.313 56.84 5.26 3.24 6.8 129

J1744—1134 4.075 3.14 — 0.62 13.2 342

J1824—2452 3.054 119.9 — 1.6020 2.8 89

Jl857+0943 5.362 13.31 12.33 1.21 22.121 376

J1909—3744 2.947 10.39 1.53 0.17 5.2 893

Jl939+2134 1.558 71.04 — 23.9 23.322 588

J2124—3358 4.931 4.62 — 4.03 13.8 416

12129—5721 3.726 31.85 6.63 2.19 12.5 179

J2145—0750 16.052 9.00 6.84 1.82 13.8 377
 

because of the nature of their technique, Jenet et a1. had to discard a large fraction of their

observations.

2.3.2 The Verbiest et al. (2009) Observations

Verbiest et a1. (2009) presented long time-span observations of 20 MSPs using the Parkes radio

telescope”. The pulsars were timed with a weighted rrns residual of ~ 0.2 — 23115 for a

period of rv12 years. The specifications of each set of timing residuals are given in Table 2.2,

where, in column order, we present the pulsar name in the J2000 coordinate system, pulse

period, dispersion measure, orbital period, weighted rrns residual, data-span and number of

recorded ToAs. For full details ofToA estimation and data processing, see Verbiest et a1. (2008,

2009). The timing residuals from all observations are shown in figure 1 of Verbiest et a1. (2009).

Between different pulsars, there is variation in the noise level of the residuals and the sampling
 

23In this thesis, we augment the Verbiest et al. observations by adding eight years ofToAs for PSRs J1857+0943

and J l 939+2134 to the beginning ofthe list of observations for these pulsars. These additional ToAs were obtained

from publicly-available data collected using the Arecibo radio telescope and presented by Kaspi et a1. ( 1994).

43



 

 

 

l ‘ ' l ‘ I

I . _—...... ....... , . .. «34374715

I g a gil_l . In. . ........_..._.,,..-,._,... «361370200

I , . , ...§.”¢Hi_u J1022+1001

I E HEM !g.fiw‘_.§ JWBOOIBOSS

. iii await l M * l um :aw“
CLEO? I . .-.- min. ”mug... . .. “a.” 9...; gm”, Jl7l3+0747

I . i inn-g. qguii ii! u q; a: .f fiflmmfi,, J1744—H34

I ”a”. J1824—2452

I . . -_.. _ .M909~3744

I [51 Lif'li' ”I; n; i . "3:" :- . I... “'3‘”er J214570750

1 l . l t l  
 

— 2 O O O O 2 O O O 40 O O

Md D — 5 l O OO . 0

Figure 2.5: The 10 pulsars with the smallest weighted rms residual in the Verbiest et a1. (2009)

observations. The abscissa gives the date of the observation. The ordinate measures the timing

residual for each observation of each pulsar. The dotted lines indicate zero residual for each

pulsar, and the length of the vertical bar on the left-hand side in each panel indicates lous.

The right-hand column gives the pulsar’s name in the J2000 coordinate system. Noise levels

vary significantly both between pulsars and at different epochs. The time-span also differs for

different time series, and in general the observations of each pulsar were begun on different

dates.

frequency and start dates for the observations. In Figure 2.5, we plot the timing residuals for the

10 pulsars with the smallest weighted rms residual with the same scaling on the axes. In Figure

2.6, we plot a similar figure for the remaining 10 pulsars.

The observations were made with a number of different observing systems — both the fron-

tend receivers and the backend instrumentation have varied over time. Arbitrary phase offsets

have been fitted for and removed between the ToAs from each different observing system for

a given pulsar. This reduces the standard deviation of the timing residuals for that pulsar and

can remove significant signals from the residuals, especially over long timescales. This effect

is shown in Figure 2.7 for an extended set of observations of PSR J0437—4715 that includes

more recent data than that published by Verbiest et a1. (2009).

The Verbiest et a1. (2009) residuals have a number of features that complicate their analysis.

While the timing residuals ofmost ofthe pulsars are white, nine out ofthe twenty pulsars exhibit
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Figure 2.6: The 10 pulsars with the largest weighted rms residual in the Verbiest et a1. (2009)

observations. The abscissa gives the date of the observation. The ordinate measures the timing

residual for each observation of each pulsar. The dotted lines indicate zero residual for each

pulsar, and the length of the vertical bar on the left-hand side in each panel indicates Sous. The

right-hand column gives the pulsar’s name in the J2000 coordinate system. Noise levels vary

significantly both between pulsars and at different epochs. The residuals of PSR J 1939+2134

are dominated by a polynomial ofunknown origin.

non-white noise”.

The Verbiest et a1. (2009) observations contain a wealth of information on many physical

effects. However, the techniques for GW analysis presented to date have difliculty in analysing

the residuals. The Jenet et al. (2006) technique cannot be applied in its current form, nor can

the Anholm et a1. (2009) technique, as outlined in Section 1.6. The technique presented by

van Haasteren et a1. (2009) can be applied to these observations, but this would require a large

amount of computation time and the results would be difficult to confirm via Monte Carlo

simulation. This necessitates the development of new techniques for GW analysis that can be

applied to pulsar timing observations. Such methods are described in subsequent Chapters of

this thesis. To develop and test new GW—analysis techniques, we need to be able to simulate PTA

observations. Many methods are possible for creating simulated timing residuals; we choose to

use the methods implemented in the FAKE and PSD_SIMULATOR plugins to TEMPOZ.
 

24This was determined using a simple two-point correlation analysis to determine the degree of correlation

between adjacent residuals using the CHECKWHITE plugin to TEMPOZ.
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Figure 2.7: The effect of fitting arbitrary phase offsets between different observing systems

on the PSR J0437—4715 residuals obtained from observations under P140 and P456. The

total time-span of the observations in each figure is 12.2 years; the first 9.9 years of data were

presented by Verbiest et a1. (2008) and are described above. If the phase offsets are measured

using very precise system tests at Parkes (upper figure; Manchester, 201 1), then significant low-

frequency structure is revealed in the residuals, indicating the presence of an unmodelled signal.

If we instead determine these phase offsets using a TEMP02 fit of the observations, as was done

by Verbiest et a1. (2008, 2009) for the first 9.9 years of the observations, then most of this signal

is removed (lower figure).
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2.4 Simulating Pulsar Timing Observations

2.4.1 The FAKE Plugin to TEMPOZ

The FAKE plugin produces simulated observations at a user-defined set oftimes that are affected

by user-selected levels of white noise, red noise or other pulsar timing effects such as glitches.

The only required input is the timing model for the pulsar. The arrival times predicted by the

input timing model are subtracted from the list of observation times, which are assumed to

represent pulse ToAs, and the timing residuals are formed. These timing residuals are then sub-

tracted from the initial ToAs, creating a new set of ToAs that will be predicted more accurately

by the input timing model than the initial ToAs. The TEMP02 modelling and fitting process is

non-linear in general, meaning that this procedure must be repeated until the timing residuals

are negligible (Hobbs et al., 2009). The ToAs will then be exactly predicted by the input timing

model; we refer to these as a set of “ideal ToAs”. The ideal ToAs have the same sample times as

the actual observations. They can then be modified using the specified levels of white noise, red

noise, GWs and any other simulated effects. This process creates simulated pulsar timing ob-

servations for which we know the form of all effects that influence the ToAs. In the upper panel

of Figure 2.9, we show simulated timing residuals for PSR J06l3—0200 created with the FAKE

plugin. The simulated residuals have the same time—span, average sampling and weighted rms

residual as the real observations, but the observation times, error bars and spectral properties of

the simulated residuals do not resemble the actual observed residuals shown in Figure 2.8.

2.4.2 Simulating Observations with Variable Error Bars and Irregular

Sampling

If we have a list of ToAs and their uncertainties, it is straightforward to simulate ToAs with the

same sampling and error bars as the input ToAs using TEMPOZ. In particular, this means that

the noise level can vary from one ToA to the next, as occurs for real observations of pulsars.

The sampling interval between consecutive observations can also vary. In the lower panel of

Figure 2.9, we show timing residuals formed from a simulated set of observations for PSR

J0613 —0200. Each simulated observation has the same error bar and MJD as the corresponding

real observation.

These simulated observations give residuals that are more similar to the observed data in Fig-
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Figure 2.8: The observed timing residuals for PSR J0613—0200 from Verbiest et a1. (2009).

The residuals collected with CPSR2 (filled diamonds) and other backend systems (open circles)

are shown. We investigate three different methods to simulate a time series that resembles this

time series as closely as possible. The results of applying each different simulation method are

shown in Figures 2.9 and 2.13.

ure 2.8 than the simulated observations created by FAKE. However, the simulations described

here still yield residuals that are consistent with white noise of varying standard deviation. The

observations in Figure 2.8 exhibit significant low-frequency noise that should be included in

simulations of observations of this pulsar25.

2.4.3 The PSD_SIMULATOR Plugin to TEMPOZ

To simulate significant low-frequency noise in pulsar timing residuals, we require a mathe-

matical model of the low-frequency spectrum of the “pre-fit” residuals. We define the pre-fit

residuals to be the timing residuals obtained before applying the TEMPO2 parameter fit to de-

termine a new timing model. The predictions of this new timing model can be subtracted from

the ToAs to form the “post-fit” residuals. When observing pulsars, multiple fits will already

have been applied to the data. For example, in the discovery of a new pulsar, an estimate of the

pulsar’s pulse period, dispersion measure and sky-position will have been obtained. Subsequent

observations of the pulsar will allow these parameters (as well as the period derivative and other

parameters) to be measured using the standard pulsar timing procedure, which includes a pulsar

parameter fit. As the time-span of the observations increases, it is possible to fit for more and

 

25The low-frequency noise in PSR J0613 —0200 was analysed by Verbiest et al. (2009).
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Figure 2.9: Simulated timing residuals for PSR JO613—0200. The upper panel was created

using the FAKE plugin to TEMPOZ and assuming regular sampling with equal error bars. The

lower panel was created using the same observation epochs and error bars as the observed resid-

uals of PSR J0613—0200. The random gaussian deviation at each residual is given by the error

bar size, but does not include any low-frequency noise. The filled diamonds are the residuals

resulting from simulated observations taken with the CPSR2 observing backend system; open

circles show the residuals resulting from simulated observations using other observing backend

systems. Neither of the simulated data sets shown here resemble the actual observed timing

residuals in Figure 2.8.
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Figure 2.10: The effective transfer function for the Verbiest et a1. (2009) observations of PSR

10613—0200. The abscissa gives the frequency, while the ordinate gives the effective transfer

function of the TEMPOZ parameter fitting process. See text for more details.

more pulsar parameters. It is therefore not usually possible to determine timing residuals that

do not have various signatures subtracted from them by the TEMPOZ parameter fit (see Figure

2.3). However, such residuals can be simulated”, which enables subsequent investigation of

the effect of the TEMPO2 fit on the data. The effect of the fitting is particularly important when

applied to observations affected by non-white noise. For instance, significant low-frequency

power will be removed when estimating the pulsar period, its derivative (see Figure 2.3) or any

arbitrary phase offsets (see Figure 2.7).

Before simulating pre-fit residuals explicitly as a time series, we first simulate their power

spectrum. This requires an estimate of the average effect of the TEMPO2 pulsar parameter fit

on the particular set of observations being simulated. This estimate can be calculated using

the XFER_FUNC plugin to TEMPO2. This plugin estimates the power spectrum — before and

after pulsar parameter fitting — of simulated white noise with the same sampling and ToA errors

as the input timing residuals (see Section 2.4.2). Dividing the post-fit spectrum by the pre—fit

spectrum gives an estimate of the effective “transfer function” of the TEMPO2 fitting procedure

(e.g., Blandford et al., 1984; Hellings, 1989). This process is repeated 1000 times to find the

average effective transfer function.

 

26We later show how to simulate the timing residuals induced by a GW signal. The simulation creates ToAs

from an input timing model by adding user-defined noise levels and GW signals to pulse arrival times that are

predicted by the model. Standard TEMP02 fits can then be applied to determine the post-fit residuals that would

actually be observed.
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The effective transfer function for the Verbiest et al. (2009) observations ofPSR J06 l 3 —0200

is shown in Figure 2.10. A small value of the effective transfer function indicates a frequency

at which the TEMP02 parameter fit removes most of the power. There are three prominent fea-

tures. First, at least 5% of the input power is lost at all frequencies during the TEMP02 fit. This

is mainly caused by the fitting of two arbitrary phase offsets to the ToAs. Second, a significant

loss of power occurs in the lowest two frequency channels because of the TEMP02 fits for the

period, period derivative and arbitrary phase offsets. Third, near-total loss of power occurs at a

frequency of 3.1 x 10—8 Hz because of the TEMP02 fit for the pulsar’s sky-position (see Figure

2.3).

To obtain the pre-fit power spectrum, we divide the measured power spectrum of the actual

residuals by the effective transfer function. The pre-fit power spectrum is shown in Figure 2.11,

along with the spectrum of the actual residuals and a model of the pre-fit spectrum Pmode1(f) =

afb for the low-frequency portion of the spectrum. We aim to simulate a time series that is

consistent with this low-frequency spectral model. For the high—frequency noise in the residuals,

we use the ToA error bars in the same way as described in Section 2.4.2. After the TEMP02 fit

is applied to the total time series, the post-fit simulated residuals will resemble the time series

of actual residuals in Figure 2.8.

We can simulate a time series with user-defined sampling that has a power spectrum con-

sistent with a given spectral model. We first simulate an equally—spaced time series with the

required power spectral density (e. g., the dashed line in Figure 2.11). The power spectral den-

sity of a time series 7",, of Npts points with time-span Tobs at frequency fk can be defined as27

P(fk) = 2Tobs lf(fk)|2 . (2.1)

where .7-"(fk) is the Discrete Fourier Transform (DFT) of the time series. To calculate the DFT,

we use the TK_FFT function within the TKSPECTRUM library to TEMP02. This function uses

the following definition of the DFT:

 

N ts—l

1 P — 7rimnHf...) = N. Z we 2 m...) (2.2)
ps 7120

where m is an integer between 0 and (Np:S — 1). The power spectral density defined in Equation

 

27See, e.g., equation (6.6) of Albrecht et a1. (2003).
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Figure 2.11: Power spectra of the pre-fit residuals (solid trace) and the actual residuals (dotted

trace) from the Verbiest et al. (2009) observations of PSR J0613—0200. The abscissa gives the

frequency, while the ordinate gives the power level in units of yr3. The “pre-fit” spectrum is

obtained by dividing the power spectrum of the actual residuals by the transfer function plotted

in Figure 2.10. We can model the low-frequency portion of the pre—fit spectrum with a power-

law (dashed line).

(2.1) is one-sided, meaning that we only allow positive frequency channels between k = 1 and

k = (Np:S — 1) /2, rounded down. We define P( f0) = 0 because there is no information

contained in the mean of a set of pulsar timing residuals. The DFT defined in Equation (2.2) is

two-sided.

Rearranging equation (2.1) yields

 2 P(fk): . 2.3I]:(fk)| 2Tobs ( )

Since the DFT contains real and imaginary parts (R,c and 1,, respectively), we have

P(fk)R2 12 = —— . 2.4k + k 2Tobs ( )

Our method for simulating a time series that has a random power spectral density consistent

with the input P ( fk) uses the following procedure:

0 We create two arrays of Npts normally distributed random numbers, R, and In. Npts is a

parameter that can be defined by the user and must be a power of two in our implementa—

tion.
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c We multiply each array by [Pmode1(f = fk) /4Tobs]1/2, where Pmodel is the model for pre-

fit power spectrum and fk = k/Tobs. Rn now represents the real part of the DFT while

In represents the imaginary part. These arrays will now satisfy the identity in Equation

(2.4).

0 We perform an Inverse DFT on Rn + i1” to form a complex array Tn. We define the

Inverse DFT as:
Npts— 1

Tn : Z f(fk)el27rkTL/Npcs ' (2'5)

k:0

The time series Tn will be regularly sampled with sampling interval tn 2 to + nTobS /Npts,

where to is the arbitrary start-time for the series. We shift the time series such that to is

the time of the first observation in the actual data.

0 We interpolate the residuals onto the arrival times in the observed time series using a

constrained cubic spline. This interpolation works well when Npts is sufliciently large, as

shown in Figure 2.12.

o The power spectrum of these interpolated residuals will follow the input spectral model.

This procedure can be extended to provide a realistic simulation of a set of observed pulsar

timing residuals. We add white noise consistent with the measured error bars on the real data

to the values of the interpolated time series described above. This yields a new time series

affected by white noise and low—frequency noise that is uncorrelated between pulsars. This new

time series has exactly the same sample-times as the actual residuals. This means we can add

each value to a set of ideal ToAs — determined using the procedure described in Section 2.4.1 —

to form a simulated set of ToAs. Timing residuals formed from these simulated ToAs will have

the same power spectrum, ToA uncertainties and sampling as the actual residuals.

The required transformations described above are implemented in the PSD_SIMULATOR

plugin, which is given in C-code in the Appendix. The implementation includes the fact

that the timing residuals are real, meaning that the DFT will be Hermitian. This means that

R [f(fkfl = R [f(prth] and I [f(fkfl = —I [f(prmkfl, which can reduce the number

of computations required.

While the FAKE plugin described in Section 2.4.1 can simulate ToAs that yield gaussian red

noise in the timing residuals, it is restricted to simulating power-law models. The PSD_SIMULATOR
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Figure 2.12: Interpolation of the time series calculated in Equation (2.5) onto the actual obser-

vation times for PSR J0613—0200. Only a subset of the full time series of PSR J06l3—0200

residuals is shown here. The time series (dots connected by solid line) is initially sampled regu-

larly once every 11.7 d. This is then interpolated onto the actual observation times for the ToAs

from PSR J06l3—0200 in the Verbiest et a1. (2009) data set (crosses).

plugin can simulate gaussian noise consistent with most spectral models. In Figure 2.13 we plot

an example of the residuals formed from simulated ToAs for PSR J06l3—0200 created using

the PSD_SIMULATOR plugin, cf. the actual residuals plotted in Figure 2.8.

With the ability to simulate realistic timing residuals, we now seek to add a variety of signals

to these simulations. In this thesis we focus on the addition of different GW signals to the ToAs.

In the next Section, we describe methods for simulating GW sources and their effect on the

arrival times of pulses from a pulsar.

2.5 Simulating GWs With TEMP02

TEMP02 simulates the effect ofGW signals on ToAs rather than timing residuals, creating data

sets that can be processed using exactly the same method as ToAs collected with a telescope.

For instance, the same processing tasks (such as parameter fitting, determining arbitrary phase

jumps or measuring DM variations) can be applied to the simulated ToAs in exactly the same

way as they are applied to the measured ToAs. As described in Section 1.5, ToAs will be

affected by GW signals from SMBHBS. The strain amplitude induced by GWs from SMBHBs
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Figure 2.13: Simulated timing residuals for PSR J0613—0200. These residuals were created

using the PSD_SIMULATOR plugin, where the simulated data includes the same sampling, error

bar sizes and low-frequency noise as the observed residuals shown in Figure 2.8. The filled dia-

monds are the residuals resulting from simulated observations taken with the CPSR2 observing

backend system; open circles show the residuals resulting from simulated observations using

other observing backend systems.

will vary as a function of time, but for most pulsar timing experiments the variation will be over

such long timescales to cause negligible change in the GW signal (Lommen & Backer, 2001).

TEMP02 treats the simulation of an evolving SMBHB differently from that of a non-evolving

SMBHB. We only consider non-evolving GW sources in this thesis. TEMP02 assumes that non-

evolving GW sources have zero eccentricity. This assumption is valid because binary systems

tend towards zero eccentricity over a much shorter timescale than the orbital decay timescale

(Peters, 1964).

For a non-evolving source of GWs, the GW—induced ToA perturbation at the Earth”, Re (t),

at time t is given by (Detweiler, 1979; Lee et a1., 2011)

_ tP A (t)+PXAX(t)
Re(t) _ Real{/O —++—2(1:T—dt} (2.6)

 

28This will be a real number, because measured timing residuals are real-valued. However, the calculation of

Re(t) is greatly simplified by including an imaginary part in the integrand in Equation (2.6). This imaginary part

corresponds to another set of timing residuals that are out of phase with the real part and are not measured under

typical observing conditions.
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where P+,X and *y are real-valued geometrical terms defined by

P+ = (15,-6)2—(15p.¢)2 (2.7)

PX = 2(15p.6)(15p-¢) (2.8)

7 : [51).]5!) (2-9)

where k}, is a unit vector directed from Earth to the pulsar and [$9 is a unit vector directed from

Earth to the GW source (so the GW propagates in the direction —k:1,). In equations (2.7) - (2.9),

we have the following definitions

k}, - 0 = sin 6,, cos 69 — cos (9,, sin 6g cos((f>g — qfip) (2.10)

15,, . ¢ = cosep sin(gbg — (15,.) (2.11)

kip - kg = sin 6,, sin 69 + cos 6],, cos 69 cos(gbg — (121,) (2.12)

In these equations, we define ($10.61,) to be the right ascension (RA) and declination (Dec) of

the pulsar, respectively, and ($5,, 69) to be the RA and Dec of the GW source respectively.

Prior to this work, TEMPOZ was only capable of simulating GWs with real-valued polari-

sations; that is, a linear combination of A+ and AX with real coefficients. However, in general

we expect SMBHBs to emit elliptically polarised waves (unless the SMBHB is exactly edge-on

with respect to our line-of—sight; e.g., Blanchet et al., 1996). Elliptical polarisation requires the

introduction of complex—valued coefficients of A+ and AX.

The terms A+,X in Equation (2.6) are given by

AM (t) = A+.xei<2”fi+%> , (2.13)

where 27rf is the GW angular frequency at the Earth and (1)9 is a constant phase offset. Assuming

that f is constant over the duration of the observations, we can continue from Equation (2.6) as

follows:

i(27rft+<1> ) _

Re“) 2 Real {————P+A++ PXAX X (___eg 1)}
2(1— 7) 2'27rf

{P+Rea1(A+) + PX Real (AX)} sin(27rft + (1)9)

47rf(1 — 2)
{P+Imag (24+) + PXImag (AX)} {cos(27rft + (1)9) — 1}

47rf(1 - 2)
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 (2.14)



The GW—induced ToA perturbation at the pulsar, Rp(t), is the same except for an additional

phase term due to the GW transit time between the pulsar and the Earth. This phase term is

(adapted from Hobbs et a1., 2009; Lee et a1., 2011):

ACI>g= (1++15. ENDEWC, (2.15) 

where D10 is the (in general, unknown) distance from Earth to the pulsar and c is the vacuum

speed of light, which is also the speed of the GW. Hence we can express Rp(t) as

{P+Rea1 (14+) + PXReal (AX)} sin(27rft + (1)9 — ACIDQ)

47rf(1 - v)
{P+Imag (141+) + PXImag (AX)} {cos(27rft + (199 — Atbg) — 1}

47Tf(1 - 7)

R120?) =
 

 (2.16)

Hence, the total ToA perturbation R(t) induced by a GW passing the Earth and the pulsar is

RU) = Re“) — Rpm
{P+Real (14+) + 1D,< Real (AX)} {sin(27rft + @9) ~ sin (27rft + (139 — A<I>g)}

47rf(1- 7)
{P+Imag (A+) + lemag (AX)} {cos(27rft + @g) — cos (27rft + (1)9 — A¢g)}

47Tf(1 — v)

The induced ToA perturbation in Equation (2.17) shows two distinct physical effects. The GW-

 

 (2.17)

induced ToA perturbation at the Earth, Re (if), is given in Equation (2.14) and is called the “Earth

term”. The GW—induced ToA perturbation at the pulsar is given in Equation (2.16) and is called

the “pulsar term”. Equation (2.17) has been implemented in the TEMPOZ GW simulation engine

GWSIM.H.

We now use the techniques described in Section 2.4 to simulate data sets for a range of future

timing array projects. In the next Chapter, we will investigate the sensitivity of these simulated

data sets to individual GW sources that induce sinusoidal timing residuals as described above

in Equation (2.17).

2.6 Simulated Timing Array Observations

For analysis in Chapter 3 and Chapter 5, we have simulated several PTA projects with different

characteristics using the FAKE plugin, described in Section 2.4.1. Here, we assume that the

residuals are consistent with white noise with equal error bars. These assumptions will be

57



 

 

Scenario Number of Residual Timespan of

Name Pulsars nns (ns) Observations (d)

Arecibo 1/5 10 1750 / 3500 / 5250

PPTA 20 100/500 1750 / 3500 / 5250

IPTA 40 20 @ 100 ns, 20 @ 500 ns 1750 / 3500 / 5250

SKA 20/100 10/100 1750 / 3500 / 5250     
 

Table 2.3: Parameters used to simulate different PTA projects.

relaxed in later Chapters. The characteristics of each data set are given in Table 2.3. In every

simulated set of timing residuals, one observation is taken every two weeks. In particular, 1750

days of observing produces 127 data points (including end-points), 3500 days produces 252 data

points and 5250 days produces either 377 or 378 data points depending on the pulsar parameter

file being used.

The characteristics of the “Arecibo” scenarios are intended to emulate the very precise tim-

ing but limited sky-coverage attainable with the radio telescope at the Arecibo Observatory.

The characteristics of the “PPTA” scenarios illustrate possible data sets that may be obtained by

the end of the project, though these data sets would serve equally well as a simulation of the

EPTA or NANOGrav data sets. The characteristics of the “IPTA” scenario are chosen to show

the large number of pulsars observed as part of the project, with some precisely timed pulsars.

The “SKA” scenarios correspond to simulated observations with the proposed Square Kilome-

tre Array telescope (SKA)29. While the SKA will improve timing precision and the number

of observable pulsars, the exact characteristics of any PTA project using the SKA are hard to

predict.

To obtain 100 pulsars for the simulated PTA observed with the SKA, it was necessary to read

in pulsars from the pulsar catalogue that have properties consistent with those of the currently

known MSPs. In particular, most MSPs are in binary systems so it will be necessary to fit for

binary parameters for many ofthe SKA pulsars. All the pulsars with P < 60 ms and P < 10”17

are plotted on a P — P diagram in Figure 2.14. 100 of these pulsars were chosen for the SKA

simulation.

After choosing pulsars suitable for timing with the SKA, it was necessary to choose a stan-

dard list of pulsar parameters to include in a model for each of these pulsars. In subsequent

processing, every parameter measured for each pulsar was included in the timing fit, except for:

 

29See http: //www.skate1escope . org/.
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Figure 2.14: A P — P diagram showing pulsars used in the SKA simulation (crosses). Other

symbols indicate the remaining known pulsar population.

proper motion;

dispersion measure (and any derivatives);

2nd and higher derivatives of rotational frequency;

any post-Keplerian orbital terms, including the sine of the inclination angle, mass of the

companion and the lst derivatives ofthe longitude of periastron, the projected semi-major

axis, the orbital period and the eccentricity;

For most pulsars used in the SKA simulation in Chapters 3 and 5, the timing parallax was also

excluded from the timing model. However, the timing parallax fit was performed for those

pulsars with a significant parallax measurement in the pulsar catalogue”.

Having simulated a range of PTA scenarios, we will analyse their sensitivity to individual

GW sources that induce sinusoidal residuals in Chapter 3. By determining the sensitivity of the

different PTAs to such GW sources, it is possible to constrain the merger rate of SMBHBs as a

function of redshift and chirp mass. Such constraints can be used to rule out predicted models

for the formation and evolution of black-hole binaries.
 

30For the SKA simulation described in Section 4.3.4, the timing parallax was included in the timing model of

every pulsar.
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Chapter 3

Using Pulsar Timing to Detect Single

Sources of Gravitational Waves Embedded

in White Noise

Chapter Outline: In this Chapter, we:

0 describe a techniquefor detecting GWs that induce sinusoidally varying perturbations in

the ToAs. This technique can only be applied to timing residuals that are consistent with

white noise.

0 apply this technique to simulated and real pulsar timing observations. This provides

estimates of the sensitivity of diflerent PTAs to individual sources of GWs that induce

sinusoidal residuals.

o constrain the coalescence rate ofSAlBHBs using these GWsensitivity estimates.

The results ofthis work (Section 3.3.4 below) were published in:

Wen Z. L., Jenet F. A., Yardley D., Hobbs G. 8., Manchester R. N., 2011, ApJ, 730, 29

Some ofthe introductory work (Section 3.1) was published in §3.I of'

Yardley D. R. B., Hobbs G. B., Jenet F. A., et al. 2010, MNRAS, 407, 669

In Chapter 2, we described methods for simulating pulsar timing observations (Section 2.4)

and showed how GWs affect the timing residuals (Section 2.5). In this Chapter, we introduce

a method to measure the sensitivity of pulsar timing observations to GWs from individual non-

evolving SMBHBs. Such GWs will induce sinusoidal variations with known amplitude in the

ToAs. Our algorithm can detect these sinusoidal variations, but can only be applied to timing

residuals that are consistent with white noise. In our algorithm, we perform a Monte Carlo sim—

ulation of the ToAs to determine the strength of the sinusoid that is required to give a significant

detection at each GW frequency. We then inject sinusoidal GW signals with different strain, h,,

and frequency, f, into the ToAs and measure the detection probability for each value of lls and

f. This process gives the sensitivity of the observations to an individual non-evolving SMBHB
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that could be in any position on the sky and emits GWs with arbitrary polarisation (see Section

1.3), and a frequency in the nHz to ,qu range.

We apply our method to simulated observations from the PTAs that are described in Section

2.6. We also analyse a set of real timing observations presented by Jenet et al. (2006) and

described in Section 2.3.1. The resulting estimate of GW—sensitivity as a function of frequency

and GW strain places a constraint on the rate of coalescence of SMBHBs (Wen et al., 2011).

3.1 Gravitational Waves from Supermassive Black-Hole Bi-

naries

In Section 2.5, we derived the timing residual induced by a GW. For this analysis, we assume

that the total GW—induced ToA perturbation is a sinusoid. This assumption is based on two

facts. The first is that, for most SMBHBs, the frequency of the signal will not vary significantly

over the time-span of the observations. For an equal-mass binary, the lifetime of a SMBHB

scales as (adapted from Lommen & Backer, 2001):

M1+Mg ‘5/3 Porb 8/3
=5.1 104 —— — 3.1

T X ( 109M® ) 1000d yr” ( )

where Ml and M2 are the black-hole masses and Porb is the orbital period“. For a SMBHB

with M1 + Mg 2 109 Me and Port, 2 1000 d (which would emit GWs with a 500 (1 period), the

lifetime is four orders of magnitude larger than the typical data—span of pulsar timing observa-

tions. This means no significant chirping of the GW signal will occur over the duration of the

observations. Therefore, we assume that the GW frequency is constant. In this case, Equation

(2.17) can be used to calculate analytically the expected GW-induced residual.

The second fact is that, for most SMBHBs, the light travel-time from the pulsar to Earth is

much smaller than the evolutionary timescale of the system. Evolution of the SMBHB over the

timescale of the light travel time from the pulsar to Earth was measured in simulations of the

proposed SMBHB in 3C66B (Jenet et al., 2004). This resulted in the sinusoid in the residuals

caused by the Earth term exhibiting a higher-frequency than the sinusoid caused by the pulsar

term (equations 2.14 and 2.16). We now determine whether such evolution will be significant

for a typical SMBHB. The observed frequency, f (t), of the GWs emitted by a SMBHB changes

 

3‘Note that for a binary in a circular orbit, 2PGW = Porb, where Paw is the period of the emitted GWs. This is

because the space—time metric for this binary system will be identical at times t and t + Pom /2
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at a rate (Peters & Mathews, 1963; Wen et al., 2011):

df _ % (GMC 5/3
__ 8/31 5/3 11/3 32d, 5 ) 7r (+2) f . < >C3

where G is the gravitational constant, MC 2 (M1 11/12)3’/5 (Ml + Mg)_1/5 is the chirp mass of

the SMBHB, c the vacuum speed of light, and z the redshift of the SMBHB. If we assume that

the orbital frequency is f1 at time t1, and is f2 at time t2, we can integrate this to obtain

15 8/3 / C3 5/3= __ — _ —8 3 _ —8/3 —5/3At 768 [f2 f1 MGM) 7r (1+z) , (3.3)

since MC and z are independent oftime, and where At = t2 —t1. As an example, we consider the

time taken for the observed GW frequency to shift by an amount equal to two frequency bins.

If this is less than the light travel time from the pulsar to the Earth, then the sinusoidal pulsar

term and the sinusoidal Earth term will have different frequencies, meaning our assumption that

the GW—induced ToA perturbation is sinusoidal would be invalid. For Tobs = 5 yr, where Tabs is

the time-span of the observations of the pulsar, the frequency resolution is 1 / 5 yr z 6.34 nHz.

Therefore we set f2 = 50 nHz (following Sesana & Vecchio, 2010b) and f1 = 50 — 12.7 nHz =

37.3 nHz. For Me = 108'5MQ (a typical value for a resolvable SMBHB; Sesana et al., 2009;

Sesana & Vecchio, 2010b) and z = 0, we obtain At = 5 X 103 yr. A typical pulsar distance

for a PTA pulsar is 1 kpc, giving a light travel time of approximately 3 x 103 yr, which is less

than At. Hence, we ignore this longer timescale evolution, meaning that, in our model, the

Earth term and the pulsar term always have the same frequency. However, we have allowed the

two periodicities to be offset in phase. This alters the amplitude and phase of the signal in the

timing residuals. We hence reduce the problem of detecting ToA perturbations induced by a

non—evolving circular binary system to the problem of identifying the presence of a significant

sinusoid in the timing residuals. To confirm that such a sinusoid is caused by GWs, one would

need to ensure that the expected GW signature is present in the timing residuals of all pulsars

(Equation 2.17).

To determine the signal that a particular SMBHB will induce in our timing residuals, we

begin with the expected GW strain averaged over all orbital orientations of the binary, h,, for
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an individual SMBHB (Thorne, 1987):

 

2 (GMf/E” 2/3
h, = 4 —— 1 z , .4[5 64%) [m + )1 <3 >

where D(z) is the comoving distance to the SMBHB, given by

c 2 dz’
D = — 3.5(2) H0 / W) , < >

where E(z) = H(z)/H0 = QA + Qm(1 + z)3 under a spatially flat ACDM cosmological

model (White & Rees, 1978). For our analysis we assume DA 2 0.7 (e.g., Komatsu et al.,

2009), giving Qm = 0.3.

Using equations (2.17) and (3.4), we can calculate the amplitude, Ares, of the sinusoidal

perturbation induced in the ToAs by a non-evolving SMBHB. The result is (Jenet et al., 2004,

and references therein):

 AToA = h, (1 + cos 6) sin(2¢) sin [ (3.6)
7rfDP(1— cos 6)

27Tf ] ’c

where 27rf = 27r/PGW is the GW angular frequency, 6 is the angle between the direction from

which the GWs emanate and a vector from the Earth to the pulsar, Q5 is the GW polarisation

angle and DP is the (usually unknown) distance to the pulsar”. Equation (3.6) implies that

the signal amplitude in a pulsar GW detector depends on the location of the GW source. For

instance, GWs propagating along the line of sight from the Earth to the pulsar will not induce a

measurable sinusoid in the timing residuals.

However, the observed timing residuals can be significantly different to the GW—induced

ToA perturbations after the fitting process has been carried out. Figure 3.1 shows the effect this

can have on GW detection — a GW signal with a period ofone year (top left panel) will be almost

completely removed after fitting (top right panel) because this signal mimics an error in the

pulsar position. A GW signal with a period oftwo years (bottom left) is only slightly attenuated

by fitting (bottom right). In order to simulate realistic post-fit residuals in the presence of a

GW signal, we add the GW-induced perturbation directly to a set of ideal ToAs as described in

Section 2.4.1. We then perform the standard pulsar timing fitting procedure on these modified

ToAs to determine the timing residuals.

 

32For the nearest PPTA pulsars, Dz) can be measured using the parallax distance.
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Figure 3.1: Attenuation of GW signals in timing residuals caused by pulsar parameter fitting.

In each panel the abscissa is the MJD and the ordinate gives the timing residual in seconds.

The dashed lines indicate zero residual. The plotted residuals are formed by adding a simulated

GW signal to the timing observations for PSR J 1909—3744 that are described in Section 2.3.2

and performing the TEMPOZ timing model fit. The top row shows 3 GW signal with a period

of one year (top left) being completely removed after fitting for the pulsar timing model (top

right). The bottom row shows a GW signal with a period oftwo years (bottom left) being largely

unaffected by the fitting procedure (bottom right).
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We now describe an algorithm for detecting the presence of this GW-induced perturbation

in the timing residuals. In brief, the algorithm determines the sensitivity of any set of white

timing residuals from a PTA to the GW signals from individual non-evolving SMBHBs.

3.2 Calculating the Sensitivity of a Pulsar Timing Array to

Individual Non-evolving Sources of Gravitational Waves

The detection of a sinusoid in the presence of noise with known statistics is a well-studied

problem with a simple optimal solution, the maximum likelihood estimator”. A number of

algorithms can be used, depending on the characteristics of the data. For our analysis in this

Chapter, we assume that each time series ofresiduals is consistent with white noise with varying

error bars and irregular sampling.

To detect the GW—induced sinusoid in the timing residuals, we use one of the most com—

mon spectral estimation tools: a normalised Lomb-Scargle periodogram (Lomb, 1976; Scargle,

1982; Press et al., 1992). The periodogram is normalised by the variance of the input timing

residuals. When processing multiple pulsars, we add the power measured in each frequency

channel to form a “summed periodogram”. Note that normalizing each power spectrum by the

variance of the residuals is equivalent to weighting each power spectrum by the inverse variance

when summing. Our “detection statistic” is the power level, 13,, in some frequency channel 2'

in the summed periodogram. If B exceeds the detection threshold Ti, then a detection of a

sinusoid has been made. We quantify the significance of this sinusoid using the “false alarm

probability”, Pf. The false alarm probability gives the probability that a detection is recorded

by our algorithm when no signal is present. For our analysis we use 73f = 0.001.

We now describe analytic approximations of the detection thresholds. These analytic ap-

proximations are only valid for equally—spaced samples of white noise with constant variance.

To obtain detection thresholds for our pulsar timing data sets, we use Monte Carlo simulations

described in Section 3.2.2.

 

33E.g., Chapter VII, Section 9 in (Mood et al., 1974)
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3.2.1 Analytical Calculation of Detection Thresholds

We analytically determine the threshold power level for a given 73,: for a set of Npsr time series

of equally-spaced white noise. The power, B, in frequency channel 2' can be written as

Npsr

P— 2](R3,, +13) (3.7)

where R3,, and I”, are the real and imaginary parts of the DFT of the p-th time series, respec-

tively (see Equation 2.4). Rm, and 1,7,, are independent, normally-distributed random variables,

so H is distributed as a X2 random variable with 2Npsr degrees of freedom. If we assume

Npsr = 1, the cumulative distribution function (cdt) of P,- has a simple form:

Adm) = 1 — e—Pi/Z’ . (3.8)

Therefore, for an individual time series, the probability that the value of P,- is less than some

threshold T1,,- is 1 — e‘Tlai/Q. The probability that P, exceeds T13 is therefore 73'“ = e‘TM/2.

We can express T1,,- as a function of ”Pfil as

TLi = —2h'l(73f71) . (3.9)

For 73” = 0.001, this yields T1,, = 13.8 for all i.

Equation (3.9) does not account for the fact that a false detection can occur at any fre-

quency in the power spectrum of the timing residuals. With real data, we calculate the summed

power spectrum of Npsr time series and, as the frequency of a possible GW signal is usually

unknown, search for significant power at any frequency. For the case Npsr = 1, the probability

that P,- is less than some threshold T,- for all z' is (1 — e‘Ti/2)Nd‘a“, where Nchan is the num-

ber of independent frequency channels in the power spectrum. For a time series consisting of

Npts measurements of white noise, we have Nchan 2 pts / 2 (e.g., Scargle, 1982). Hence, the

probability, 73f, that B 2 Ti for at least one value of 2' is

73, = 1 — (1 — e-Ti/3)N"‘s/2 . (3.10)

Rearranging (3.10) yields the detection threshold E as a function of 73;:

E:—2ln{1_(1_’Pf)1/(NptS/2)} 7 (3_11)
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where 73f represents the probability of a false detection at any frequency in the power spectrum.

Using ”Pf = 0.001 means that, in a given data set, any detection is made with greater than 3-0

confidence.

However, when analysing pulsar timing residuals, equations (3.9) and (3.11) cannot be di-

rectly applied to determine the detection threshold, for two reasons. First, the effect ofparameter

fitting on the post-fit timing residuals must be accounted for. Second, the data sets are irreg-

ularly sampled, meaning that it is difficult to determine the number of independent frequency

channels in the DFT. Hence, equations (3.9) and (3.11) have been used in our analysis only to

confirm the accuracy of simulated estimates of T,- when Npsr = 1. For Npsr > 1, we confirmed

the accuracy of simulated estimates of T1,, using computations of the cdf of a X2-distribution

with 2NPSr degrees of freedom.

3.2.2 Calculating Detection Thresholds via Monte Carlo Simulation

To calculate the detection thresholds using simulations, we must be able to create simulated

timing residuals for each pulsar that are statistically equivalent to the input timing residuals.

For timing residuals that are consistent with white noise, we create statistically equivalent sets

of timing residuals by randomly rearranging, or “shuffling”, the input residuals for each pulsar.

Any shuffled set of timing residuals for a particular pulsar will have the same sample times,

error bars, mean and variance as the input residuals. An advantage of this shuffling technique is

that it assumes nothing about the distribution of the timing residuals, it simply re—orders them.

We can thus calculate detection thresholds for white timing residuals from NpSIF pulsars using

the following procedure.

1. We calculate the ideal ToAs (defined in Section 2.4.1) for each pulsar in the input data

set;

2. We create 105 sets of observations by shuffling the residuals for each pulsar34 and adding

them to the ideal ToAs;

3. We carry out the TEMP02 pulsar parameter fit for each realisation to create 105 sets of

post-fit timing residuals that are statistically equivalent to the input residuals;

 

34This assumes that there are at least nine timing residuals for the pulsar, because 8! < 105. As typical data sets

have ~200 observations, the 105 data sets are independent.
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4. We calculate the normalised Lomb-Scargle periodogram of each shuflled set of post-fit

residuals. For our analysis, the periodogram spans frequencies between 1 / (30 yr) and

1 / (14 d). To sample this frequency range in the periodogram, we must over-sample each

pulsar’s periodogram by a factor of 30 yr/T01354,, where Tobw, is the time-span of the

observations of pulsar p.

5. We add the periodograms obtained for each pulsar in each data set, giving 105 summed

periodograms;

6. In each frequency channel in the summed periodogram, we find the 100th-highest power

level across the 105 power estimates for that channel. This is the detection threshold, TM,

corresponding to PM = 0.001 in that frequency channel.

7. We increase T1,, in each frequency channel by a fixed factor 6’ > 1, such that there are 100

power estimates higher than BTU across all frequencies in the 105 summed periodograms.

This higher threshold T,- = 6TH gives a false alarm probability of 73f = 0.001 for false

detections at any frequency in the input data set.

In Figure 3.2, we show the detection thresholds T1,,- and 5T1",- for a simulated set of pulsar

timing observations of PSR Jl7l3+0747. The simulated observations span 5250d with one

observation every two weeks. Simulating a data set with these parameters using the FAKE plugin

to TEMP02 produces 378 timing observations” . The pre-fit timing residuals are samples of

white noise. In the detection thresholds, significant power is absorbed at a range of frequencies

as described in Table 3.1. The left column gives the frequency range at which power is absorbed.

Each absorption is caused by the TEMP02 fit for the pulsar timing model parameters named in

the right column.

Since the sampling interval in this set of timing residuals is 14 d, the sampling frequency is

fS = 1/ (14 d). Thus, the Nyquist frequency is fNyq = 1/ (28d) 2 0.0357d‘1. In an equally-

spaced time series, every sinusoidal component with frequency f cannot be distinguished from

a sinusoid with frequency f, — f. This effect is known as “aliasing”, and means that all sinusoids

with frequency larger than fNyq are indistinguishable from a lower frequency equivalent. As we

have sampled our power spectra up to twice the Nyquist frequency, our power spectra exhibit
 

35With input parameters of Tobs : 5250 d and a sampling interval of 14d, FAKE produces 378 data points

spanning 5263.7 d with a sampling interval of 13.96 (1.
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Table 3.1: Causes of significant power absorptions in the thresholds in Figure 3.2.
 

 

Frequency (d‘l) Cause
fz- < 0.0004 period, period derivative

fz- = 0.003 sky-position

fI = 0.006 parallax
fi = 0.015 binary orbit period

fI- = 0.029 other binary parameters36   
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Figure 3.2: Detection thresholds for a single pulsar corresponding to PM = 0.001 and 79f =

0.001 for 378 simulated observations sampled once every two weeks. The lower trace (solid line

connecting ‘+’ symbols) indicates TM. The upper trace (dashed line connecting ‘ >< ’ symbols)

indicates Ti. Both thresholds shown here have been calculated by simulation (see Section 3.2.2).

aliasing effects. This explains why power absorptions occur in pairs in Figure 3.2, reflected

around the frequency f x 0.036 d‘l.

TM is plotted as the lower detection threshold in Figure 3.2. The value of T112~ agrees with

the expected value from Equation (3.9) in frequency channels that are negligibly affected by the

TEMPOZ fitting procedure. This agreement has been shown to hold for the simulated detection

thresholds for data sets including up to 100 pulsars. The upper detection threshold in Figure

3.2 represents 5TH. The level of this threshold agrees with the prediction of Equation (3.11)
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within 10%. The discrepancy arises because the upper threshold calculated from simulation is

calculated using the factor fl. This factor essentially treats every frequency channel in the same

way, whereas the TEMPOZ fitting affects the power in each channel in different ways.

3.2.3 Detecting Individual Non-evolving Gravitational-Wave Sources

Having obtained a set of detection thresholds for the observations, we inject simulated GW

signals into simulations of the input data set and measure the number of such signals that we

can detect. We use the following procedure to find the detection rate for a particular GW strain

and frequency:

1. We simulate 103 sets of timing residuals for each pulsar that are statistically equivalent to

the input timing residuals using the shuffling technique.

2. We add the effect of a GW point source with angular frequency 27rfi, amplitude hs,

random sky-position and random polarisation to the ToAs of every pulsar (see Equation

3.6). This induces sinusoidal ToA perturbations in each pulsar. The distance to each

pulsar is assumed to be 0.91 kpc, which is the current best estimate of the distance to PSR

J1857+0943 (Kaspi et al., 1994) and is typical for pulsars in the PPTA37.

3. We perform the standard TEMPO2 pulsar parameter fit.

4. We calculate the periodogram for each pulsar’s time series and add the periodograms to

form the summed periodogram. If the summed power in channel 1' is greater than the

detection threshold T1 in that channel, then the simulated GW signal has been detected.

5. We repeat the previous three steps for each of the 103 realisations of the input data set and

find the detection percentage.

This process is repeated for 50 logarithmically-spaced values of hS in the range 10‘16 S hs g

10‘10 and 51 GW frequencies fi. The 51 frequencies include 50 logarithmically-spaced values

in the range (30 yr)"1 3 fi 3 (14 d)‘1 and the frequency fi = 1/1 yr, enabling analysis of

the effect of the pulsar position fit on our sensitivity to GW sources. The result is a “sensitivity

 

37Assuming that the distance to each pulsar remains larger than the GW wavelength, varying the distance to each

pulsar would have little effect on the average detection rate in a Monte Carlo simulation because the GW source is

non—evolving. In some individual realisations, the last factor in Equation (3.6) may be exactly zero for particular

values of the pulsar distance.
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matrix”, which is a grid of the detection percentages for each GW strain and frequency. In

Section 3.3 and Chapter 4, we assume a 95% detection probability, enabling us to plot the GW

strain sensitivity of a PTA as a function of GW frequency.

3.3 Results and Discussion

In this Section, we present results from applying the method of Sections 3.2.2 and 3.2.3 to

several PTA data sets. Each of the data sets analysed here is consistent with white noise. The

simulated PTA observations are discussed in Section 2.6. In brief, the timing residuals obtained

from the simulated PTA observations for each pulsar are equally-spaced and have equal error

bars. In a given simulated PTA data set, each pulsar has the same rrns residual. For the actual

observations presented by Jenet et a1. (2006) and summarised in Table 2.1, the ToA uncertainty

varies for each observation, meaning that the timing residuals do not have equal error bars. The

time—span of the observations and the variance of the residuals for each pulsar also vary.

First, we analyse a simulated PTA data set consisting of 20 pulsars timed with a rms of

500 ns over 10 yr. The results exhibit typical features of measurements of the GW sensitivity

of pulsar timing measurements, such as sensitivity losses caused by pulsar parameter fitting.

Second, we analyse several simulated PTA data sets to determine the dependence of the PTA

sensitivity on the number of pulsars, the observing time—span and the rrns residual. Third, we

analyse the Jenet et a1. (2006) observations (described in Section 2.3.1) and compare the results

to those obtained for a simulated set of optimistic PPTA observations. Finally, we present the

astrophysical implications of these results via the constraint that can be placed on the coales-

cence rate of SMBHBs (Wen et al., 2011).

3.3.1 Properties of the Sensitivity Curves

In Figure 3.3, we plot the 95% contour of the sensitivity matrix obtained for a simulated PTA

data set, consisting of observations of 20 pulsars with a rrns residual of 500 ns, with one obser-

vation taken every two weeks over 10 yr. This contour is referred to as a “sensitivity curve”.

There are several frequencies at which the sensitivity is significantly reduced, as described in

Table 3.2. The left column gives the frequency range over which the sensitivity is reduced, while

the right column describes the cause of the reduction. For comparison, the lowest frequency in

the power spectrum of the timing residuals for this PTA simulation is 1/ 10 yr % 2.7 x 10—4 d‘l.
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Sensitivity Curve for 20 psrs @ 500 ns, 10 yrs
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Figure 3.3: The sky-averaged sensitivity of a PTA data set (consisting of 20 pulsars timed with

a rms residual of 500 ns over 10yr) to individual non-evolving sources of GWs. The abscissa

gives the observed GW frequency while the ordinate gives the strain amplitude of the GW

source. The thick solid line indicates the level at which we detect 95% of the GW sources.

The thin solid lines and arrows indicate the regions where the timing parameter fit reduces the

sensitivity, as described in Table 3.2.
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Table 3.2: Causes of significant sensitivity losses shown in Figure 3.3.
 

 

  

Frequency (d‘l) Cause
f,- < 0.0004 fitting for period & period derivative of every pulsar

0.0023 < f,- < 0.0033 fitting for sky—position of every pulsar

f, > 0.061 aliasing + fitting for period & period derivative  

The fitting and aliasing effects for this sensitivity curve, described in Table 3.2, are similar to

those described in Table 3.1 for the detection thresholds of a single pulsar.

Fitting for the pulsar’s sky-position causes a sensitivity loss over a range of frequencies”.

This is because of the frequency sampling in the sensitivity matrix and the limited frequency

resolution of the residuals. Figure 3.3 also shows that, in our technique, a GW-induced sinusoid

in these simulated ToAs with f = 1/ 1 yr and h, > 10‘12 can be detected in the residuals, even

after fitting for the pulsar sky-position.

The process of fitting for an individual pulsar’s orbital parameters will reduce the sensitivity

of its timing residuals to GWs, but this has only a small effect on the sensitivity of a PTA. This

is because the estimation of the orbital parameters (such as the orbital period of a binary pulsar)

removes a sinusoid with a different frequency for every pulsar (see Figure 2.3).

At frequencies that are negligibly affected by pulsar parameter fitting, such as the range

4 x 10‘3 d‘1 < f < 5 X 10‘2 d‘l, the sensitivity curve in Figure 3.3 has unit slope. This

is because, as the GW frequency increases, the magnitude of the GW—induced sinusoid in the

ToAs decreases according to Equation 3.6. This means that the amplitude of the sinusoid in the

residuals decreases. If the timing residuals from the PTA are not consistent with white noise,

or if the PTA data set includes sets of timing residuals with different time-spans, then this slope

would not be constant across this frequency range. The maximum sensitivity is at a frequency

of f a 1 / (0.7 Tobs). This is because of the opposing effects of the pulsar parameter fitting

(which reduces the amplitude of the sinusoid in the residuals at low frequencies) and the low

frequency of the GW source (which increases the amplitude of the induced sinusoid).
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Figure 3.4: The sensitivity of two simulated PTAs as a function of the number of pulsars,

Npsr, in each array. The abscissa gives the number of pulsars (on a logarithmic scale), the

ordinate gives the logarithm of the minimum GW strain, hs, that yields a 95% probability

of detection. The first simulated PTA has all pulsars in the same location on the sky (solid

line), and the second has all pulsars spread over the sky (dashed line). The upper dotted line

represents a function f (Npsr) = N;125 — 12.63, the lower dotted line represents a function
g(Npsr) = N‘O'25 — 13.86.psr
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3.3.2 Scaling of the Sensitivity with Properties of the Observations

In this Section, we investigate the dependence of the PTA sensitivity on Npsr, Tobs and the rms

residual. In Figure 3.4, we show the effect on the sensitivity caused by increasing Npsr and/or

observing pulsars that are distributed evenly on the sky. The solid line shows the improve-

ment in sensitivity obtained by adding more pulsars to the timing array that are all in the same

position on the sky. The dashed line shows the improvement when observing pulsars that are

spread across the sky. The improvement occurs because the sky-position of the GW sources

is unknown (see Equation 3.6). However, the magnitude of the improvement depends on the

specific PTA (Burt et al., 2011). For large Npsr, the sensitivity improves as N855, regardless of

the distribution of pulsars on the sky. This is consistent with a recent estimate of the sensitivity

of PTAs to individual sources of GWs (Lee et al., 2011)”.

In Figure 3.5, we plot the sensitivity curves obtained for a simulated PTA observed using the

SKA. For this analysis, we have assumed that the SKA will be able to observe 100 pulsars that

are suitable for timing. Pulsar ToAs measured using the SKA are expected to be a factor of~ 100

more precise than current observations (Kramer & Wex, 2009). However, it is unlikely that

timing precision will reach the NHS level because of pulse shape instabilities, calibration effects

and other noise sources (Cordes et al., 2004). Hence, we have analysed two SKA simulations

consisting of 100 observed pulsars. In one simulation, all pulsars are timed with a rms residual

of 10 ns. In the other simulation, all pulsars are timed with a rms residual of 100 ns. The results

of these simulations are analysed in Section 3.3.4 to estimate the constraint on the coalescence

rate of SMBHBs that can be obtained with the SKA. They also enable us to investigate the

dependence of the PTA sensitivity to individual GW sources on the rms timing residual and on

the observing time-span.

The PTA sensitivity to a GW—induced sinusoid in the timing residuals is inversely propor-

tional to the rms residual for residuals that are consistent with white noise (Lee et al., 2011).

This is because the S/N ratio of the detection of the sinusoid will increase as the noise reduces.

In Figure 3.5, the “minimum detectable amplitude” (defined as the value of h, indicated by the

 

38This loss in sensitivity could be avoided in cases where pulsar sky—positions are measured using a technique

other than pulsar timing, such as interferometry (Deller et al., 2008).

39These authors considered a coherent addition of the GW—induced sinusoidal signal from each pulsar, meaning

that their measured sensitivity improves as Ngéf. Our analysis simply adds the power spectrum of each pulsar,

meaning that the coherence ofthe GW—induced sinusoidal signals is lost. Hence, our measurement ofthe sensitivity

improves only as N355 for large Npsr.
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Sensitivity Curves for 100 Pulsars
 

    
10‘3 10‘2

Frequency (cycles/day)

Figure 3.5: The sensitivity curves for three simulations of timing residuals obtained using the

SKA. The abscissa gives the observed GW frequency while the ordinate gives the strain ampli-

tude of the GW source. Each line indicates the level at which we detect 95% 0f the GW sources

in that particular simulated data set. The three data sets considered are: 100 pulsars timed with

100 ns rms residual over 10 yr (solid line); 100 pulsars timed with 10 ns rms residual over 10 yr

(dashed line); and 100 pulsars timed with 100 ns rms residual over five yr (dotted line).
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sensitivity curve at a particular frequency) shown by the dashed line is a factor of 10 lower than

that shown by the solid line. This indicates that, as expected, the sensitivity is improved by a

factor of 10 when the rrns residual is reduced by a factor of 10.

The minimum detectable amplitude is inversely proportional to Ngt'g’ (Scargle, 1982). In

our case, increasing Npts has the same effect on the S/N ratio of a significant sinusoid in the

residuals40 as increasing Tobs. This is because the sampling interval is fixed at 14 d, meaning

that Npts is proportional to Tabs. Figure 3.5 shows the sensitivity curves for observations of

100 pulsars timed with a rrns residual of 100 ns over five yr (dotted line) and over lOyr (solid

line). As expected, increasing the time—span of the observations by a factor of 2 reduces the

minimum detectable amplitude by a V5 for GW frequencies in the range 4 x 10‘3 d‘1 <

f < 6 x 10—2 d‘l. Other GW frequencies are significantly affected by the pulsar parameter

fit. The figure also shows that doubling TobS provides an even larger improvement in sensitivity

at low frequencies as it decreases the lowest GW frequency that can be detected using the

timing residuals. The PTA is more sensitive to lower frequency GWs, as they induce larger ToA

perturbations for a fixed value of h, (see Equation 3.6).

3.3.3 Sensitivity of the Jenet et al. (2006) Observations and a Prediction

for the Full Parkes Pulsar Timing Array

The Jenet et a1. (2006) observations differ in three ways from the simulated observations inves-

tigated in Sections 3.3.1 and 3.3.2. First, the observations are unequally spaced for each pulsar.

In Figure 3.6, we plot the detection thresholds for the Jenet et al. (2006) observations. They do

not exhibit the same symmetry about f = 0.036 d—1 as the simulated observations, indicating

that, as expected (Press et al., 1992), aliasing effects are insignificant in the Jenet et al. (2006)

observations.

Second, the Jenet et al. (2006) observations have variable ToA uncertainties. This means

that the TEMPOZ parameter fitting in the Monte Carlo simulations can be carried out using two

approaches. One approach accounts for the error bar on each ToA by minimising the weighted

variance of the residuals. The other approach ignores the ToA error bars by minimising the un-

weighted variance of the residuals. The two approaches lead to different estimates of the pulsar

parameters and to different detection thresholds. In Figure 3.6, we plot the detection thresholds

 

40This is only true at frequencies that are not significantly affected by the parameter fit.
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Figure 3.6: Detection thresholds corresponding to 73f = 0.001 for the Jenet et a1. (2006) ob-

servations. The abscissa gives the frequency while the ordinate gives the power level. The

detection thresholds obtained when a weighted parameter fit was carried out (upper trace) do

not show the power absorption features seen in the case of an unweighted parameter fit (lower

trace).

obtained from each approach. When using a weighted TEMP02 fit, the power reductions in the

detection thresholds described in Table 3.1 are not present. This is not surprising, but adversely

affects our sensitivity at these frequencies, as shown in Figure 3.7. When using an unweighted

TEMP02 fit, the detection thresholds are very low near f = 1/1 yr and at low frequencies, as

expected. This is because the Lomb—Scargle periodogram does not account for the error bar on

each ToA when calculating each spectral estimate. We choose to use unweighted pulsar param-

eter estimates because our spectral estimate is also unweighted. In Figure 3.7 we analyse the

sensitivity of both approaches.

Third, the Jenet et a1. (2006) observations differ from the simulated observations as each

pulsar has been observed over a different time-span. This affects the shape of the sensitivity

curve, as can be seen by comparing the solid line in Figure 3.7 to the dashed line. The inclusion

of long time-span observations ofPSR J1857+0943 (spanning 20.3 yr) in the Jenet et a1. (2006)

data set improves the sensitivity to GWs in the frequency range 10‘4 d”1 < f < 10’3 d‘1 by a
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Figure 3.7: Sensitivity curves for real and simulated PPTA data sets. The abscissa gives the GW

frequency, while the ordinate gives the GW strain. Each line indicates the level at which 95% of

GW sources with any sky-position and polarisation can be detected in that set of observations.

The solid line indicates the sensitivity of the Jenet et a1. (2006) observations if we weight each

ToA equally when estimating the timing model parameters for each pulsar. The dotted line

indicates the sensitivity when we account for the varying ToA uncertainties. The dashed line

shows the sensitivity for a simulation of a target PPTA data set, consisting of 20 pulsars timed

with a ms of 100 ns over five yr.
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factor of ~ 3. However, the PSR J 1857+0943 observations have little effect on the sensitivity

for f > 10‘3 (1‘1 because the timing residuals for this pulsar have a larger rms variation than

the residuals of the other pulsars.

The ToAs for the other six pulsars in the Jenet et a1. (2006) data set have been measured over

much shorter time-spans (spanning ~2.6yr) and have significantly lower noise levels. Hence,

as the GW frequency increases, the average induced sinusoidal signal becomes weaker (Equa—

tion 3.6) at the same time as the signal shifts into the detectable band for more of the pulsars.

These two effects alter the sensitivity of the PTA at each frequency in opposite directions. This

accounts for the much slower variation in the sensitivity of this data set with frequency, com-

pared with the other data sets we have considered. The sensitivity curve that uses a weighted

TEMPOZ parameter fit (the dotted line in Figure 3.7) has much lower sensitivity at low frequen-

cies than the curve obtained from an unweighted fit. This is because our calculated detection

thresholds are significantly higher when performing a weighted TEMP02 parameter fit (Figure

3.6). Figure 3.7 also shows that the sensitivity curve that uses a weighted TEMPO2 parameter

fit is multi—valued at frequencies near f = 4 x 10‘4d’1. This is because the TEMP02 weighted

parameter fit is numerically unstable when very large sinusoidal signals are present in the ToAs

that are not removed by this fit. As a result, the post-fit residuals can exhibit large noise levels

that obscure the large GW signal in more than 5% of cases. This causes the detection percentage

to drop below 95% for GW amplitudes larger than some threshold, meaning that the resulting

sensitivity curve is multi-Valued.

The most optimistic goal for the PPTA is the timing of 20 pulsars with a rms timing residual

of 100 ns over five yr. The dashed line in Figure 3.7 shows the sensitivity curve obtained for

a simulated data set with these properties. This simulated PPTA data set is a factor of ~15

more sensitive than the Jenet et a1. (2006) data set. It is important to note that, when detecting

single sources of GWs, a few very precisely timed pulsars are more likely to make a detection41

than many pulsars with less precise timing (Burt et al., 2011). For example, the addition of a

further 20 pulsars timed with a rms residual of 500 ns over five yr to the simulated PPTA data set

makes negligible difference to the sensitivity to individual GW sources. However, such a data

set would be very sensitive to the isotropic stochastic GWB, as will be described in Chapters 5

and 6.

 

41Recall that, while a single pulsar can be used to detect a significant sinusoidal signal, that signal can only be

attributed to a GW if the expected correlated signal is observed in other pulsars.
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3.3.4 Constraining the Coalescence Rate of Supermassive Black—Hole Bi-

naries

It is proposed by Wen et a1. (2011) that, if no GWs are detected in a given data set, then it is

possible to place a constraint on the coalescence rate of SMBHBs. More specifically, we can

constrain the quantity [dzR/d10g(Mc)d10g(1 + 2)], which gives the rate of coalescence, R,

per logarithmic chirp mass interval, d log MC, per logarithmic redshift interval, where z is the

redshift. A constraint on the coalescence rate ofSMBHBs constrains the merger rate of galaxies

and hence can rule out models of galaxy evolution (e.g., Jaffe & Backer, 2003).

The constraint on [d2R/d10g(Mc)d10g(1 + z)] depends directly on the sensitivity matrix

calculated in Section 3.2.3. In Figures 3.8 and 3.9, we show [dQR/dlog(Mc)dlog(1 + 2)] as

a function of 10g(1 + z) for chirp masses of 109M® and 1010MQ. The Jenet et a1. (2006)

observations do not yet constrain the merging frameworks discussed by Jaffe & Backer (2003)

or Sesana et a1. (2008) at either of the chirp masses we have considered. As shown in Figure

3.8, an extended PPTA project, which times 20 pulsars with a rms residual of 100 ns over 10 yr,

can constrain part of the Jaffe & Backer (2003) parameter space. However, only a PTA with

a rms timing residual of 10 ns can provide significant constraints on the merger rate predicted

by Sesana et a1. (2008, 2009). In Chapter 5, we discuss the constraints obtained using upper

bounds on the amplitude of the isotropic stochastic GWB. For a given set of white residuals,

these upper bounds provide more significant constraints on the SMBHB coalescence rate than

the sensitivity matrix for individual GW sources. The constraints obtained using upper bounds

on the GWB will significantly constrain galaxy evolution models in the near future, without

requiring timing accuracies near 10 us on each pulsar.

3.4 Conclusion

We have presented a method for determining the sensitivity of a PTA to individual non-evolving

GW sources. Such measurements constrain the coalescence rate of SMBHBs as a function of

redshift and chirp mass. However, the technique presented in this Chapter has a few significant

shortcomings:

1. The technique can only be applied to sets of timing residuals that are consistent with

white noise. Many MSPs that are timed with sufficiently high precision over long time-
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Figure 3.8: Upper bounds on the coalescence rate of SMBHBs using the sensitivity matrices

calculated for different sets of PTA observations in Section 3.3. For calculating the abscissa,

z is the redshift of the SMBHB. The ordinate gives the logarithm of the differential rate of

coalescence per log redshift per log chirp mass. Here, we show the constraints provided by

the Jenet et a1. (2006) data set (open triangles), 20 pulsars timed with 500 ns rms residual over

10yr (open squares), the same timed with 100 ns rms residual over five yr (crosses) and the

same timed with 100 ns rrns residual over 10yr (open circles). The grey region indicates the

expected coalescence rate with evolution index —1 < 'y < 3 (see Section 1.6.2) assuming the

framework of Jaffe & Backer (2003) and using observations from the Sloan Digital Sky Survey

(Wen et al., 2009). The dashed traces indicate the maximum (thick line) and minimum (thin

line) coalescence rates predicted by Sesana et a1. (2008, 2009). No bounds can be plotted for

chirp masses of 109 MG because of the low sensitivity of these data sets. [Image reproduced

from figure 4 of Wen et al. (201 1)]
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Figure 3.9: All characteristics of this plot are the same as in Figure 3.8, except that we now

show the constraints obtained using 20 pulsars timed with a rms timing residual of 10 ns over

10 yr (stars), 100 pulsars timed with 10 ns rms residual over 10 yr (filled circles), the same timed

with 100 ns rms residual over 10 yr (filled squares) and the same timed with 100 ns rms timing

residual over five yr (filled triangles). [Image reproduced from figure 5 of Wen et al. (2011)]
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spans show significant low-frequency noise in their timing residuals (Verbiest et al., 2009;

Manchester, 2011). This low-frequency noise must be accounted for.

2. The technique uses the sensitivity matrix to constrain the coalescence rate of SMBHBs.

However, this constraint only requires estimates of the largest GW signal that could be

present in the timing residuals, as opposed to the smallest GW signal that could be de-

tected using the residuals. Hence, a more stringent constraint could be found with the

same observations.

In Chapter 4, we develop a related detection technique that addresses these issues.
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Chapter 4

The Sensitivity of the Parkes Pulsar

Timing Array to Individual Sources of

Gravitational Waves

Chapter Outline: In this Chapter, we:

0 describe a technique that can detect single sources of GWs in non-white pulsar timing

residuals;

0 give the sensitivity ofcurrent andfuture GW detection experiments to single GWsources

spanningfrequenciesfrom nHz to kHz;

0 place a Sky-averaged constraint on the coalescence rate ofnearby (z < 0.6) SMBHBs.

Many Sections in this Chapter are heavily based on sectionsfrom the refereedjournal article:

Yardley D. R. B., Hobbs G. B., Jenet F. A., et al. 2010, MNRAS, 407, 669

In particular, Section 4.1 below is a summary of§2 of Yardley et al. (2010) and Sections 4.2, 4.3

and 4.4 below have been rewardedfrom §3.2, §4 and §5 0f Yardley et al. (2010) respectively.

Section 4.2 below and Appendix A ofthis thesis contain materialfrom the appendix of Yardley

et al. (2010).

In this Chapter, we develop a new method for detecting individual non-evolving SMBHBs

in the residuals obtained from PTA observations. While the technique presented in Chapter 3

can detect these sources, it assumes that the timing residuals being analysed are consistent with

white noise. This assumption is only valid for a relatively small number of PTA data sets. Here,

we extend the method of Chapter 3, allowing it to be applied to a broader range ofMSP timing

observations.

The method described in Section 4.2 below can be applied to most sets of timing residuals.

Full details of the implementation are described in Appendix A. We apply this method to timing

residuals from the PPTA published by Verbiest et a1. (2008, 2009) and described in Section
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2.3.2. This results in a measurement of the sensitivity of the PPTA to individual non-evolving

GW sources as a function of frequency. The frequency range of the resulting sensitivity curve

complements the frequency range of the LISA and LIGO GW—sensitivity curves. A constraint

on the coalescence rate of nearby (2 S 2) SMBHBs with chirp mass ~ 1010 Me is determined

to be less than one coalescence every five years.

4.1 Observations

The observations used in this analysis are a subset of those described in Section 2.3.2, and

consist of observations of 18 pulsars42 using the Parkes and Arecibo radio telescopes. Many

of these pulsars exhibit a small amount of low-frequency noise in their timing residuals. These

pulsars have been timed with a weighted rrns residual, aw, in the range 0.17 as < aw < 6.6 as

for a period of ~10 yr.

4.2 Calculating the Sensitivity Curve and Limit Curve

The detection of a sinusoid in the timing residuals is complicated by the fact that the residuals

are irregularly sampled and the noise that affects the residuals consists of at least two compo-

nents. The noise has a white component that varies from sample to sample. This component is

well-understood and the square of the error bar gives a variance estimate for the white noise on

each residual“. The noise also has a non-white component for which the source is unknown.

The non-white noise could be due to calibration errors, timing noise intrinsic to the pulsar, a

GWB signal or other effects. The spectrum of low-frequency noise in pulsar timing residuals

is often modelled using a power-law (e.g., Hobbs et al., 2010b). We make the less-stringent

assumption that the non-white noise has a smoothly-varying power spectrum. In all cases, we

have estimated the power spectrum from the actual residuals and have shown that the noise can

be modelled sufficiently well for our purposes using a smoothly-varying function.

We estimate the power spectrum using a Lomb-Scargle periodogram that, for this analysis,

is not normalised by the variance of the residuals. This periodogram technique would not give

 

42We choose to remove the observations of PSRs J 1 824-2452 and Jl939+2134 from our data set because their

timing residuals are dominated by low-frequency noise. This low-frequency noise complicates the spectral analysis

for little gain in sensitivity.

43The timing residuals analysed in Chapter 3 contain only this white component of the noise.
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accurate spectral estimates for data sets that exhibit a steeply sloping spectrum. All the data

sets used in this Chapter do not exhibit steep power spectra and so this technique is valid. We

briefly describe our approach for producing a sensitivity curve here; full details are provided in

Appendix A.

To make a detection of a significant sinusoid in our timing residuals, we make a simple

model of the noise across all frequencies in the Lomb-Scargle periodogram of the residuals.

This model is used to define a set of detection thresholds. These thresholds are set such that

the probability of a false detection at any frequency across the entire observed periodogram

when no signal is present is 73f = 1%. In practice, the detection thresholds are given by the

noise model multiplied by some fixed factor that is determined from simulation, as described in

Appendix A. We then add the effect of sinusoidal GW signals to the ToAs in the same manner

as described in Section 3.2.3. We calculate the periodogram of the residuals and make a simple

model of the noise. Using the technique described in Appendix A, we ensure that the signal

that we aim to detect is not modelled as part of the noise in the periodogram. We adjust the

GW strain until we can detect 95% of the GW-induced sinusoids in our timing residuals. This

process gives the sky- and polarisation—averaged sensitivity as a function ofGW frequency over

the range f N (10yr)‘1 to f ~ (10d)_1.

In Figure 4.1, we show the periodogram (thin trace) of the timing residuals for three pulsars

where their ToAs are affected by a low-frequency GW source. We also show the noise mod-

els for each pulsar (thick line). Details on the calculation of these noise models are given in

Appendix A.

There are two aspects to our detection strategy, namely the false alarm probability (1%)

and the probability of making a detection (95%). Using 73f = 1% means that any detection

made will be a 2.6-0 detection. Hence, our sensitivity curves give the GW amplitude at which

the probability of making a 2.6-0 detection at a random position on the sky for a randomly

polarised GW is 95%. For a single pulsar, when the GW source has favourable sky-location

and polarisation, the minimum detectable strain is a factor of ~ 10 — 15 smaller than the sky-

averaged case (see Section 4.3.1).

We are interested in answering two questions. The first is “What is the largest GW source

at a particular frequency that could be present in the timing residuals?” This will give an upper

bound on the amplitude ofnon-evolving individual GW sources in our data set at that frequency.
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Figure 4.1: The periodogram of each of three sets of timing residuals, where we have added

a low-frequency sinusoid to each set of ToAs. The abscissa gives the frequency, the ordinate

gives the power in arbitrary units, where we include constant offsets in the periodograms of

PSRs J1857+0943 and J l713+0747 to make this plot. The ordinate in each periodogram is

scaled by independent values to make this plot. The thin trace is the periodogram, the thick

dark line is the adopted model for each periodogram.
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This question is answered by comparing simulated GW sources to our observed timing residu-

als. We simulate a GW source at a given frequency with a random sky-location and polarisation.

We adjust the amplitude of this source until the power of the GW sinusoid exceeds the power in

the observed timing residuals at that frequency in 95% of simulations. This approach gives the

most conservative upper limit, since it allows for the possibility that all the power we observe

at this frequency results from one GW—induced sinusoid. This process can be repeated to deter-

mine the upper limit as a function of frequency, yielding a “limit curve”. We will determine the

limit curve for our 18-pulsar data set in Section 4.3.

The second question is: “If there were a GW source with a particular frequency somewhere

on the sky, what is the minimum strain amplitude that would produce a detectable signal at that

frequency in our data set?” This is similar to the question that was addressed by the sensitivity

curves in Section 3.3. To answer this question, we add simulated sinusoidal GW signals to

our ToAs and perform the standard pulsar timing analysis. We then calculate the minimum

amplitude at which we would detect a significant sinusoid at the input GW frequency in our

data ifwe had collected that data set at a telescope. Hence, we must account for all the sources

of noise in our pulsar detector“. The answer to this second question yields our sensitivity

for detecting the GW—induced sinusoids, rather than just limiting their amplitude. For large

amplitude sinusoids with period 2 Tom, a signal will often be detectable at a higher frequency

than the input frequency because we can detect the side lobes of the large input signal. In

contrast to the approach of Chapter 3, we have not allowed detections at different frequencies

to the input GW frequency in this implementation. The sensitivity curves for each of our data

sets are calculated in Section 4.3.

Npts

2Tabs

Np15

The periodogram frequency range is from fi to 2Tb
0 S 0 S

for a single pulsar“. Note that

would be the Nyquist frequency for that pulsar if its timing residuals were equally-spaced. If

we are processing multiple pulsars then we can perform a weighted sum of their periodograms

to increase our sensitivity. To perform the sum, we calculate the periodogram at a list of fre—

quencies that is identical for all pulsars. The frequencies are equally spaced from (30 yr)‘1 to

(28 d) ’1.

To perform the detection, we first make a simple frequency-dependent model of the noise in

 

44The threshold for detection at any frequency across the observed periodogram will often be ~ 3 times greater

than the locally-averaged power level.

45The power at a frequency of zero is arbitrary for pulsar timing residuals.
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the periodogram for each pulsar (see Figure 4.1) and then weight each pulsar by the inverse of

the noise model for that pulsar“. This simple weighting scheme gives a factor of ~ 5 improve-

ment in sensitivity over a simple, non-weighted addition of the periodogram of each pulsar.

4.3 Results and Discussion

We now present the sensitivity of the PPTA to GW-induced sinusoidal signals in the ToAs using

the data set described in Section 4.1. We account for all the observed features in the sensitivity

curves. We also calculate the constraint on the coalescence rate of SMBHBs implied by the

non-detection of GWs in the ToAs. Finally, we give a prediction for the sensitivity of a future

PTA project using the SKA.

4.3.1 The Sensitivity of Some Individual Pulsars

In Figure 4.2, we plot the sky- and polarisation—averaged sensitivity curves for PSRs J0437—47 1 5

(thin solid line), J1713+0747 (dashed line) and J 1857+O943 (dot-dashed line) where each pul-

sar has been analysed individually. The open triangles on the plot indicate that the plotted

“detectable” amplitude at that frequency value is a lower bound. The thin dotted line indicates

the sensitivity of PSR J0437—4715 to a hypothetical SMBHB located at a RA of 4137m and

a Dec of +42°45m and emitting purely ‘plus’ polarised GWs. This line indicates the much

greater sensitivity obtainable with the timing residuals of PSR J0437—4715 when the position

and polarisation of the simulated GW source are favourable. The ratio of this thin dotted line

to the thin solid line gives the factor of ~ 10 — 15 improvement in sensitivity for favourable

sky-location and polarisation discussed in Section 4.2. Also shown are the expected signals at a

range of frequencies from two hypothetical SMBHB systems at the mean distance of the Virgo

cluster (taken to be 16.5 Mpc, from Mei et al., 2007), with equal member masses of 109M® or

1010M®.

The reduction in sensitivity caused by fitting for the pulsar’s position is at the same fre-

quency of (1 yr)‘1 for all pulsars. Fits for orbital parameters also reduce sensitivity to GWs, but

at different frequencies for each pulsar. For example, the orbital period of PSR J1857+O943 is

12 days (corresponding to a frequency of 9.6 X 10‘7 Hz), which is above the average Nyquist

 

46For spectrally—white timing residuals, this is equivalent to weighting by the inverse variance of each set of

residuals, as done in Section 3.2.
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Figure 4.2: Sensitivity curves for PSRs J0437—4715 (thin solid line), J1713+0747 (dashed),

J1857+0943 (dot-dashed) and the 18-pu1sar timing array using our detection scheme (thick

solid line). The abscissa gives the GW frequency, the ordinate gives the minimum detectable

strain amplitude of an individual non-evolving GW point source with a random polarisation,

phase and sky-position. The thin dotted line is the sensitivity obtained using PSR J0437—47 1 5

and assuming favourable sky-location and polarisation of the GW source. An open triangle

indicates that the plotted value is a lower bound on the detectable amplitude at that frequency.

The straight triple-dot-dashed lines indicate the expected signal from an individual SMBHB

with equal member masses of 109M© or 1010M® if it were located at the mean distance of the

Virgo cluster. The ‘ >< ’ symbols are the expected signals at the Earth in the year 2004 and at

PSR J1857+0943 ~ 3000 yr ago caused by the proposed SMBHB at the core ofthe radio galaxy

3C66B. The ‘*’ symbol is the expected signal caused by the proposed SMBHB at the core of

OJ287. The ‘+’ symbol is the GW strain and frequency emitted by a typical resolvable SMBHB

as plotted in figure 2 of Sesana et al. (2009). Also shown on the plot is the 95%-confidence

limit curve for the 18-pulsar timing array (thick dotted line); in this case the ordinate gives the

maximum amplitude GW source that could be present in our data.
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frequency for this pulsar. We therefore do not see the corresponding loss in sensitivity at this

frequency in the PSR J 1857+0943 sensitivity curve. All pulsars exhibit a reduction in sensi-

tivity at low frequencies, which is mainly caused by two effects. First, the fit of a quadratic

polynomial to the ToAs to model the pulsar spin-down removes some GW signal. Second, the

fitting of arbitrary phase offsets to many ofthe data sets to connect the timing residuals obtained

with different backend systems removes some GW signal (see below). Greater sensitivity is ob-

tained at the lowest frequencies if we allow for detection of a sinusoid at any frequency in the

timing residuals, regardless of the input GW frequency“. This is because the pulsar spin-down

and phase offset fits do not remove a pure sinusoid from the residuals. This means that not all

of the input GW signal is removed by the pulsar parameter fit. However, in this implementation

we have only allowed the GW signal to be detected at the input GW frequency.

As the GW frequency increases, the induced signal in the ToAs becomes weaker for a given

strain, as described by Equation (3.6). At the highest frequencies, our sensitivity is limited by

the sampling of the timing residuals. This is particularly evident in the sensitivity curve for the

lS—pulsar timing array where there is a turn-up in the sensitivity curve at the last few frequency

values, corresponding to a decrease in sensitivity.

The periodogram of irregularly-sampled residuals will be affected by leakage. There is no

clear way to distinguish between spectral leakage from low-frequency GW—induced sinusoids

and the red noise seen in many MSPs. Hence, the sensitivity of our detection technique to

low-frequency sinusoidal GWs (where the GW period is similar to the data-span) is reduced

compared to analysing equally-spaced data. Some pulsars in our sample do not exhibit excess

low-frequency noise (e.g., PSR J1857+0943), so the power spectrum with no GWs added may

be modelled with a constant. However, our model of the power spectrum must account for the

confusion between the spectral leakage from a low-frequency GW signal and red noise. In an

equally—spaced time series with weak red noise, spectral leakage is less severe and thus there is

no such confusion.

In the sensitivity curve for PSR J0437—4715 there is a loss of sensitivity at a frequency

of (540 days)“, or ~21nHz. This is caused by the fitting of several arbitrary phase offsets

between the ToAs collected using different observing backend systems, as described in Section

2.3.2. If overlapping data exist between the different observing backends, these offsets can be

 

47This approach was taken in Chapter 3.
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precisely determined and held fixed in subsequent processing. Even if no overlapping data exist,

it is sometimes possible to eliminate these arbitrary offsets Without losing phase connection in

the timing solution. Our analysis takes into account all of the offsets fitted by Verbiest et al.

(2009). There is also a loss in sensitivity just above the (1yr)‘1 frequency for this pulsar. This

is caused by the sampling of the observations — a sinusoid at this frequency induces power in

many adjacent frequency channels, depending on the phase of the GW source. This increases

the apparent noise level in this region of the periodogram, which increases the noise model and

thus also the detection threshold sufficiently to prohibit 95%-confidence detection. In the best-

case sensitivity curve for PSR J0437—4715 (thin dotted line in Figure 4.2), there is a decrease

in sensitivity at a frequency of ~ 150 nHz. This decrease is caused by significant leakage of the

input sinusoid into adjacent frequency channels. This sensitivity decrease is less significant in

the sky-averaged case because the variation in the amplitude of the GW—induced sinusoid due

to the sky- and polarisation-averaging is a much greater effect.

4.3.2 The Sensitivity of the Parkes Pulsar Timing Array and Probable

Single Sources

The thick solid line in Figure 4.2 shows the sensitivity of the 18 pulsars in our data set assuming

the GW source position and polarisation are unknown. This sensitivity curve is the first mea-

surement of the sensitivity of a full PTA experiment to individual GW sources. The frequency

range analysed (30 yr) ‘1 — (28 d)‘1 is chosen to demonstrate the high- and low-frequency sensi-

tivity limits for our pulsar timing data sets. At the lowest frequencies, our sensitivity is limited

by the period derivative and jump fits, as well as the fact that our longest data set is shorter

than 30 yr. At the highest frequencies, the sensitivity is limited by the sampling of our timing

residuals; that is, (28 d)“1 is the nominal Nyquist frequency for the PPTA.

Figure 4.2 also shows the upper limit attainable using our 18-pulsar data set (thick dotted

line). This limit curve was obtained with 95% confidence using the technique described in

Sections 4.2 and Appendix A. For some pulsars, a different-order polynomial model to the

detection case was chosen in order to accurately model the power spectrum with no GWs added.

Lommen & Backer (2001) placed a 99% confidence limit showing that they could rule out signal

amplitudes as small as 150 ns in their residuals at a period of 53 days, corresponding to SMBHB

orbital periods of 106 days. Using our longer data sets and the same 99% confidence level, we
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can place a better limit of around 120 ns at this frequency. At signal periods of 1000 days

(where some of our sets of timing residuals exhibit excess low—frequency noise), we obtain a

99% confidence limit of 190 ns. This limit is worse than the Lommen & Backer (2001) limit

of 170 ns. However, there is no evidence that their analysis takes into account the effects of red

noise present in their residuals.

The two ‘ ><’ symbols in Figure 4.2 indicate the expected strain amplitude and frequency of

the proposed SMBHB at the core of the radio galaxy 3C66B (Sudou et al., 2003). In order to de-

termine the expected strain amplitude, we use Equation (3.4) with the redshift and masses given

in the original paper (Ml = m1 = 4.91 x 1010 M9, Mg = m2 = 4.91 x 109 M9, 2 = 0.0215).

The distance to the GW source is assumed to be 90 Mpc, implied by the low-redshift distance

approximation D = cz/HO. The frequencies of the signal at the Earth and at PSR J 1857+O943

(fEanh = 1 / 0.88 yr, fJ1857+0943 = 1 /6.24 yr) were obtained by Jenet et a1. (2004). The signal

occurs at two frequencies because of the evolution of the SMBHB in the time interval between

the interaction of the GWs with the Earth and the receipt of the GW—affected EM waves from

the pulsar (see Equation 3.3). However, according to Equation (3.1), the timescale for evolu-

tion of the SMBHB is much longer than the span of the observations, so we assume that the

frequency of each signal is constant over the observations. The GW signal at the pulsar will,

in general, have a different frequency and amplitude for each pulsar in our array, whereas the

Earth term will have the same frequency for observations of all pulsars. This system was ruled

out with 95% confidence by Jenet et al. (2004). Our results show that, even with a blind search

of the Verbiest et a1. (2008, 2009) observations, where we know neither the sky—position nor the

frequency of the GWs, we would detect the GW—induced oscillations at the Earth caused by this

source. The expected signal is well below the plotted sensitivity curve for PSR J1857+0943

even though Jenet et al. (2004) only used the publicly-available ToAs for PSR J1857+0943.

However, their technique is analogous to our limit technique, whereas the sensitivity curve plot-

ted for PSR J 1857+0943 in Figure 4.2 assumes we are aiming to detect such sources of GWs.

Furthermore, our sensitivity curve is sky-averaged whereas they used the known position and

frequency of the proposed GW source in their analysis (by chance it had a very favourable sky-

location with an angle of 81 .5° between the Earth-pulsar vector and the Earth-3C66B vector)“.

Furthermore, if the frequency of the GW signal is known a priori, the false alarm probability

 

48Jenet et a1. (2004) also underestimated the distance to the proposed GW source in 3C66B by around 8% by

assuming that its redshift was 2 = 0.02.
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is considerably decreased, meaning that the detection threshold is around a factor of two lower,

increasing the probability of detection. Jenet et al. (2004) also assumed that they were analysing

spectrally white timing residuals, an assumption which increases sensitivity, particularly at low

frequencies.

The ‘*’ symbol in Figure 4.2 indicates the expected GW strain and frequency for the can-

didate SMBHB in the blazar OJ287. A ~l2yr-periodic signal has been identified in its optical

outbursts (Sillanpaa et al., 1996), but other parameters of the system are not well-constrained.

We parametrise the SMBHB as follows: member masses 1.3 x 108 MG and 1.8 x 1010 M9, in-

trinsic orbital period 9 yr (observed GW period 6 yr because of rcdshifting), eccentricity zero49,

redshift 0.306, distance 1.3 Gpc. The distance was again obtained using D = cz/HO, which is

an acceptable approximation given the imprecision in the other parameter measurements and

the fairly low redshift of this system (see footnote 1 of Davis & Lineweaver, 2004). The GW

signals emitted by this system induce timing residuals of around 6ns that are below current

limits.

A study was presented by Sesana et al. (2008) of the generation of the stochastic GWB

from the cosmic population of SMBHBs. This work showed that the stochastic background

of GWs is likely to be detected using a PTA in the near future. In Sesana et al. (2009) the

individual resolvable SMBHBs were considered. They predicted that at least one SMBHB will

induce ToA perturbations around 5 — 50 ns, which is below our current sensitivity. We choose

(from the upper left panel of their figure 2) a representative resolvable single source from their

simulations. This source has an emitted GW frequency of 2 x 10‘8 Hz and a characteristic

induced timing residual of 25 ns. The signal from this source is indicated by the ‘+’ symbol in

Figure 4.2. This is a typical resolvable SMBHB, thus it is likely that several sources will emit

GWs with a larger amplitude than this. We emphasise that we do not yet have long data—spans

with sufficiently low rms residual to detect such sources.

SMBHBs may form in galaxy clusters. The nearest galaxy cluster to Earth is the Virgo

cluster. In Figure 4.3 we examine the possibilities for pulsar timing to detect GWs generated by

SMBHBs in the Virgo cluster. The mean sky-position of this cluster is at a RA of 1280m and

a Dec of +120 (Mei et al., 2007); to produce the curve in Figure 4.3, all simulated GW signals

come from this direction. The plotted sensitivity curve indicates that we have a better than 95%

 

49Valtonen et al. (2009) estimate the eccentricity to be 0.7, but we do not consider eccentric SMBHBs in this

thesis.
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Figure 4.3: Sensitivity of the PPTA using the l8-pulsar Verbiest et a1. (2008, 2009) data set

for detecting signals from SMBHBs located at the sky-position and mean distance of the Virgo

cluster. The abscissa gives the GW frequency. The ordinate gives the minimum detectable

strain amplitude of GWs emanating from a non-evolving individual source in the direction of

the mean sky-position of the Virgo cluster with a random polarisation and phase. The open

triangles indicate that the plotted value is a lower bound on the detectable amplitude at those

frequencies. The dot-dashed lines indicate the expected signals from three different types of

SMBHB if they were located in the Virgo cluster, with equal member masses 109MQ, 1010M®

and 1011M® as labelled.

96



probability of detecting sinusoidal signals in our timing residuals caused by SMBHBs with

member masses Ml = Mg 2 1010 M9 in the Virgo cluster. These SMBHBs could emit GWs

with any polarisation, but our detectable frequency range for such sources is 3 x 10‘9 Hz < f <

4 x 10‘7 Hz. We could marginally detect SMBHBs with MI 2 Mg : 109 Me if the emitted

GWs have favourable polarisation.

The PPTA sensitivity is complementary in GW frequency to the LIGO, VIRGO and LISA

sensitivities. In Figure 4.4 we give the detection sensitivity of some current and future GW de-

tection experiments“). Also shown on the plot are some likely sources in each of the detectable

bands. The combination of the PTA and LISA sensitivity curves almost covers the full GW

frequency range from N nHz through to ~ mHz. This GW frequency coverage will enable the

study of the evolution of GW—emitting systems.

4.3.3 Constraining the Coalescence Rate of Supermassive Black-Hole Bi—

naries

As described in Section 3.3.4, the non-detection ofGWs from SMBHBS in pulsar timing obser—

vations enables an upper bound to be placed on the coalescence rate of SMBHBs (Wen et a1.,

2011). However, the upper bounds in Section 3.3.4 were calculated using a sensitivity matrix

that gives the probability of detection of a GW source as a function of f and h,s for a given data

set. Here, we calculate upper bounds on the SMBHB coalescence rate using a “limit matrix”

that gives the probability that a GW source is ruled out by the observations as a function of

f and his. For the same data set, the use of the limit matrix provides an upper bound on the

SMBHB coalescence rate that is more constraining than the upper bound provided by the sensi-

tivity matrix. We use the limit technique described in Sections 4.2 and Appendix A to calculate

the limit matrix element at each f and hs.

We calculate the limit matrix on a grid of 51 GW frequency values and 50 GW strain values.

The 51 frequency values consist of 50 logarithmically-spaced frequencies between (30yr)_1

and (28 d)_1, and also f = 1 / (1 yr). The 50 strain values were logarithmically-spaced between

10‘16 and 10‘“). 1000 Monte Carlo iterations were used at each value of f and hs to determine

the fraction of such GW sources that are ruled out by the data set. For the Verbiest et al. (2008,

 

50To obtain the LISA sensitivity curve, we have assumed the standard parameters for the LISA design and that it

aims to detect sources at a signal-to-noise ratio of three. The LIGO sensitivity curves are obtained from the stated

design goals of the project.
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Figure 4.4: Sensitivity of some current and future GW observatories to individual GW sources

as a fiinction of frequency. The abscissa gives the GW frequency, the ordinate gives the mini-

mum detectable strain amplitude of a sinusoidal GW point source with a random polarisation,

phase and sky-position. The open triangles indicate that the plotted sensitivity at that frequency

is a lower bound. The plot also shows potentially detectable sources in the three frequency

bands. The straight lines indicate the expected signals from two different types of SMBHB if

they were located in the Virgo cluster, with equal member masses 109M® and 1010M© as la-

belled. The ‘ >< ’ symbol is the expected signal at the Earth caused by the proposed SMBHB at

the core of the radio galaxy 3C66B. The ‘*’ symbol is the expected signal caused by the candi-

date SMBHB at the core of OJ287. The ‘+’ symbol is the GW strain and frequency emitted by

a typical resolvable SMBHB as plotted in figure 2 of Sesana et a1. (2009). “Unresolved Galac—

tic binaries” include white-dwarf and neutron-star binaries. “Coalescing massive black-hole

binaries” correspond to the final inspiral of black-hole binary systems. The “Current” LIGO

sensitivity shows the capabilities of existing data sets, while “Advanced” LIGO expects to im—

prove GW sensitivity by two orders ofmagnitude. “SN [supernova] core collapse” and “NS-NS

[neutron star] coalescence” are typical signals that LIGO expects to detect.
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Figure 4.5: Upper bound on the coalescence rate of SMBHBs as a function of redshift. The

open triangles give the upper limit on the SMBHB merger rate for the Verbiest et a1. (2008,

2009) data set and the open squares give the limit for the simulated SKA data sets. The shaded

region indicates the expected coalescence rate obtained from Jaffe & Backer (2003) as well as

data from the Sloan Digital Sky Survey (Wen et al., 2009) for SMBHB systems of chirp mass

as labelled in each panel. The dashed line indicates the average coalescence rate based on the

analysis by Sesana et a1. (2008).

2009) observations, the 95% confidence contour of the limit matrix is consistent with the thick

dotted line in Figure 4.2.

The resulting constraint on the SMBHB coalescence rate is shown in Figure 4.5 as a function

of log(1 + z). The plot shows that the coalescence rate of SMBHBs with 2 S 2 with chirp

mass ~ 1010 M9 is less than one merger every five yr. Our observations do not yet constrain

the merging frameworks discussed by Jaffe & Backer (2003) or Sesana et a1. (2008) at the

range of chirp masses we have considered. However, some of the high-mass and high-redshift

predictions may soon be ruled out or confirmed using pulsar timing. Furthermore, the limit on

the amplitude of the isotropic stochastic GWB obtainable from the Verbiest et a1. (2008, 2009)

observations may provide a more constraining upper bound on the SMBHB coalescence rate

(see Chapter 5).
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4.3.4 A Predicted Sensitivity Curve for the Square Kilometre Array

Figure 4.4 also gives a predicted sensitivity curve for the SKA. To produce this figure we used

simulated observations for the 100 pulsars described in Section 2.6. We have assumed we can

time each pulsar with an accuracy of 20 ns over five yr, obtaining one observation per pulsar

every 14 d. We have also assumed that their power spectra will be statistically white. It is un-

likely that pulsar timing residuals will exhibit a white power spectrum at this timing precision

and, hence, the plotted sensitivity is a lower bound on what is achievable with the SKA. In

particular, the sensitivity at low frequencies is expected to be worse than that shown here, be—

cause we expect higher noise levels caused by the GWB, intrinsic pulsar timing noise and other

unmodelled effects.

The simulated SKA data are equally-spaced, which causes the level of spectral leakage

to be much lower than that observed in irregularly—sampled data sets. Hence, the confusion

between red noise and low-frequency signal is no longer an issue in these simulations because

a sinusoidal GW signal will induce a very narrow peak in each pulsar’s periodogram, even at

low frequencies. We have therefore modelled each pulsar power spectrum with a constant.

There are three prominent losses in sensitivity - at frequencies smaller than (Tobsfl and at

periods of one year and six months. The partial loss in sensitivity at a period of six months

(N 6 x 10’8 Hz) is caused by fitting for the pulsar parallax. The total loss in sensitivity at GW

periods of one yr could be mitigated using independent measurements of the position of the

pulsar, for example using very—high-precision interferometry; such precision may be available

in the SKA era (Smits et al., 201 1). The SKA sensitivity curve differs from that shown in Figure

3.5 because the noise level in the residuals is different, and we have only allowed detection of

the GW—induced sinusoid at the input GW frequency.

The SKA sensitivity curve shown in Figure 4.4 is calculated assuming we do not know the

location or frequency of a potential GW source. Using these two additional pieces of informa-

tion it may be possible to confirm or deny the binarity of the massive dark object at the core of

OJ287. It may also be possible to detect many of the resolvable SMBHBS predicted by Sesana

et a1. (2009). Using the SKA and LISA, it may be possible to observe the full evolution of SME—

HBs from emitting GWs in the pulsar timing band (during the early phases of coalescence) to

emitting GWs in the LISA band (during coalescence) (e. g., Pitkin et al., 2008).
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4.4 Conclusion

We have presented the strain sensitivity of the PPTA to non-evolving point sources of GWs as

a function of frequency. The sources most likely to produce a detectable sinusoid in the pulsar

timing frequency range are SMBHB systems in the early phases of coalescence at the cores of

merged galaxies. The sensitivity curve is analogous to the LIGO, VIRGO and LISA sensitivity

curves and shows the unique GW frequency range accessible with pulsar timing. These results

can be used to place an upper bound on the number of coalescing binary systems of a given chirp

mass as a function of redshift. Current observations do not yet rule out any recently proposed

models of galaxy evolution.

However, the isotropic stochastic GWB is expected to provide a larger amplitude signal in

the ToAs than most individual sources (Sesana et a1., 2008). If the amplitude of the GWB signal

remains large after the pulsar parameter fit, then it may be detectable in the timing residuals

from a PTA. Furthermore, non-detection of the expected GWB signal provides a constraint on

the coalescence rate of SMBHBs (Wen et a1., 2011). Therefore, in the next two Chapters, we

examine the GWB signal using simulated and real observations of a PTA.
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Chapter 5

Limiting the Amplitude of the

Gravitational—Wave Background

Chapter Outline: In this Chapter, we:

0 describe the methodfor simulating a GWB as implemented in TEMPO2.

o briefly describe the techniqueforplacing an upper limit on the GWB amplitude developed

by Jenet et al. (2006).

0 apply this technique to the same white data sets used in Chapter 3.

o calculate the constraints on the SMBHB coalescence rate using the technique published

by Wen et al. (201]).

o briefly describe which models ofgalaxy evolution are ruled out by the limits obtained

with diflerent simulated data sets.

As described in the text, a more detailed version ofSection 5.1 was published as

Hobbs G., Jenet F., Lee K. J., et al. 2009, MNRAS, 394, 1945

In Section 5.2, I created the simulated data sets and measured the limit on the amplitude ofthe

GWB for each data set. The constraints on the coalescence rate of SMBHBs (Section 5.2.1)

were calculated by Zhonglue Wen andpublished as

Wen Z. L., Jenet F. A., Yardley D., Hobbs G. 8., Manchester R. N., 2011, ApJ, 730, 29

In Chapter 4, we showed that it is likely that the GWs emitted by an individual non—evolving

SMBHB will induce ToA perturbations that are below current sensitivity levels. A stronger

signal may be induced in pulsar ToAs by an isotropic stochastic background of GWs. Such

a background is formed from the incoherent sum of many individual SMBHBs with different

frequencies, amplitudes and phases (see Section 1.5).

In this Chapter, we calculate upper limits on the GWB amplitude using the technique pre-

sented by Jenet et al. (2006). This technique requires simulation of the effect of a GWB 0n

ToAs. We apply this technique to real and simulated PTA observations that are consistent with
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white noise“. The results indicate that it is likely that a variety of models of galaxy evolution

may be ruled out using PTA observations in the near future.

A new technique for detection of the GWB due to SMBHBs will be described in Chapter

6. While the direct detection of GWs will have significant consequences for astrophysics and

cosmology, the sensitivity of current PTA data sets is insufficient for making such a detectionsz.

However, upper limits on the GWB amplitude can be obtained with any set ofPTA observations.

These upper limits constrain the coalescence rate of SMBHBs as a function of redshift (Wen

et al., 2011) and models of galaxy evolution (Jaffe & Backer, 2003; Wyithe & Loeb, 2003;

Sesana et al., 2008).

5.1 Method

5.1.1 The Expected Signal Induced by a Gravitational-Wave Background

in Timing Residuals

The signal induced by a GWB in pulsar ToAs is described in Section 1.6.1. For this work, we

assume that a GWB due to SMBHBS has characteristic strain spectrum of the form

mm = A(f/fiyr)‘2/3. (5.1)

This is consistent with most models in Section 1.5. The Sesana et a1. (2008) model predicts

a more complicated form for the strain spectrum of the GWB (given in Equation 1.13 of this

thesis). This model shows significant deviation from a simple power law for f > 10‘8 Hz.

However, our analysis probes GWB frequencies f S, 10'8 Hz (see Figure 1.6), where the dif-

ference between Equation (1.13) and Equation (5.1) is insignificant.

A GWB of the form given in Equation (5.1) will induce perturbations in the ToAs of each

pulsar with the following power spectrum (Hobbs et al., 2009):

A2 —13/3

P9(f) : 12713 (ffyr) ‘ (52)  

In order to use the technique of Jenet et al. (2006) described in Section 5.1.3, we must be able to

simulate a GWB that reproduces this expected signal. This is done using TEMPO2. We briefly

 

51These are the same observations that were analysed in Chapter 3 to detect individual non-evolving SMBHBs.

52As described in Section 1.6, a detection of a GWB signal is expected within the next decade.
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describe the GWB simulations in the next section; full details were published by Hobbs et a1.

(2009).

5.1.2 Simulating a Background of Gravitational Waves With TEMP02

TEMP02 simulates a GWB using many individual monochromatic GWs. For each GW source,

the phase, (1)9, the right ascension, (by, and the sine of the declination are each chosen from

uniform probability distributions:

Prob(<I>g) = 1/27r , (5.3)

Prob(¢g) = 1/27r , (5.4)

Prob(sin Hg) = 1/2 (5.5)

respectively, where 09 is the declination ofthe GW source, as in Section 2.5. The GW frequency

f is chosen from a uniform distribution in log(f )53:

—J_1 < <
Prob(f) = “0572“) fl _ f _ fh (5.6)

0 otherwise

where fl and f}, are the lowest and highest frequencies for the simulated GWs, respectively. In

this thesis, we used fl = 0.05/T0bS and fh = 1d‘1.

The imaginary parts of A+ and A X are set to zero for every GW because the GWB will be

unpolarised. The real parts are each normally distributed with zero mean and standard deviation

given by:

10g(fh/fl)
UA(f) = Thcg)» (5-7)

where hc( f) is given in Equation (5.1) and N is the number of GW sources simulated. In

general, N ~ 1000.

The resulting set ofN GWs forms an isotropic, unpolarised GWB with a gaussian amplitude

distribution with mean characteristic strain hc( f), as given in Equation (5.1). It is essential for

the work both in this Chapter, and Chapter 6, that we can simulate a realistic GWB signal. In

order to provide confidence in the accuracy of the GWB simulations, we reproduce work that

 

53This choice is motivated by the large spread of simulated GW frequencies over many orders of magnitude. We

suspect that the exact form of the distribution has little effect on our sensitivity to the GWB signal.
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Figure 5.1: Timing residuals for PSR J 1939+2134 obtained from simulated ToAs that are af-

fected by 100 ns of white noise and a GWB signal with A 2 10‘”. The abscissa gives the

MJD, the ordinate gives the residual after estimating the pulsar’s period and period derivative.

The uncertainty in each simulated ToA (error bars) is 100 ns. [Image reproduced from Hobbs

et a1. (2009)]

was first shown by Hobbs et a1. (2009).

First, Hobbs et al. (2009) simulated ToAs for PSR J1939+2134 that have been sampled once

every two weeks over 3000 d. The ToAs consist of ideal ToAs (that is, the ToAs predicted by

the timing model; see Section 2.4.1) that are then perturbed by 100 ns of white gaussian noise

and a GWB signal. After carrying out a TEMPO2 fit to estimate the pulsar’s period and period

derivative, the resulting post-fit timing residuals are shown in Figure 5.1.

Second, Hobbs et a1. (2009) calculated the average power spectrum of 1000 realisations of a

set of 512 GWB-induced ToA perturbations. The 512 simulated ToAs occur at weekly intervals

and consist of ideal ToAs that are then perturbed by a simulated GWB with A 2 10‘”. The

predictions of the timing model are then subtracted from the simulated ToAs, without carrying

out a TEMP02 fit. In this case, the pre-fit residuals are identical to the post-fit residuals. The

average power spectrum of the residuals is plotted in Figure 5.2. Also shown is the theoretical

level of the GWB power spectrum assuming A = 10”15 in Equation (5.2). At high frequencies

in the plot, the average spectrum of the simulated residuals is not consistent with the theoretical

spectrum. This is because of rounding errors in the TEMPO2 processing that, in this case,

induce noise with a standard deviation of 0.2 ns. Given that TEMPOZ was designed to maintain
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Figure 5.2: The power spectrum of GWB-induced ToA perturbations. The abscissa gives the

frequency, the ordinate gives the power spectral density. The spectrum of 512 weekly—spaced

ToA perturbations averaged over 1000 GWB simulations (solid trace) reproduces the theoretical

spectrum (solid diagonal line) at all but the highest frequencies. [Image reproduced from Hobbs

et a1. (2009)]

1 ns precision, and the smallest observed residuals are currently greater than 20 ns, this noise

can be neglected. Thus we conclude that the GWB simulation engine in TEMP02 induces ToA

perturbations caused by a GWB that reproduce the theoretical power spectrum.

5.1.3 Calculating an Upper Bound on the Amplitude of the Gravitational-

Wave Background

We now use the TEMP02 GWB simulation engine to calculate an upper bound on the GWB

amplitude using timing residuals that are consistent with white noise. We use the technique

published by Jenet et a1. (2006). These authors aim to calculate an upper bound on the GWB by

finding an upper bound on the level of red noise present in the timing residuals. Red noise is one

of the characteristic signatures of GWB—induced residuals (see Figure 5.1). Jenet et a1. define a

statistic, T, that can detect red noise in timing residuals. We briefly describe the calculation of

T here; full details are given by Jenet et a1. (2006) and Hobbs et a1. (2009).

T is the sum of the power in the first seven channels of the weighted average “polynomial

spectrum” for the data set. For each pulsar, the l-th channel of the polynomial spectrum is
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defined by the result of a fit of an orthonormal polynomial of order l to the residuals. The

average is calculated over all pulsars in the data set and is weighted by the square ofthe weighted

rms residual. For residuals that are dominated by a GWB signal of the form of Equation (5.2),

the sum of the first seven channels of the polynomial spectrum contains 95% of the power in

the GWB signal (Jenet et al., 2006). In practice, the remaining 5% of the GWB power in higher

channels will be negligible compared to other noise sources in the residuals. If these higher

channels were to be included in the sum, then the detection statistic would be less sensitive to a

GWB.

The limit on the GWB amplitude for a given white data set is obtained using two Monte

Carlo simulations. The process is very similar to that used in Chapter 3 for individual GW

sources. The first simulation calculates a particular value of the statistic, T0, such that any

measured T that exceeds T0 indicates that significant red noise is present in the data set. We

use the following procedure:

0 We determine a set of ideal ToAs predicted by the timing model of each pulsar in the data

set.

0 We randomly rearrange the input residuals and then add them to the ideal ToAs.

0 We perform the TEMP02 parameter fit to obtain a new set of post—fit timing residuals that

are statistically equivalent to the input residuals.

c We calculate T for this new set of residuals.

c We repeat the previous five steps 104 times and find the 10th highest value of T, which

we set as T0. The probability that a statistically—equivalent data set would yield a value

of T larger than T0 when no red noise is present is 0.1%.

The second Monte Carlo procedure obtains the limit on the GWB amplitude as follows:

0 We add GWB-induced perturbations and a shufl‘led set of the original residuals to the

ideal ToAs. The GWB has amplitude A = Atest in Equation (5.2).

0 We perform the TEMP02 parameter fit, which absorbs some of the GWB signal in the

post—fit residuals.

c We calculate T for this new set of residuals.
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Table 5.1: The upper bound on A obtained from each set of observations.
 

 

Data set Aup
(Npsr-rms residual-Tom)

20 PSRs-SOO ns-10yr 1.1 x 10‘15
20 PSRs-100 ns-5 yr 9.9 x 10—16
20PSRs—100ns-10yr 2.2 x 10‘16
20 PSRS-IO ns-lOyr 2.0 X 10_17

100 PSRs-lOO ns-S yr 5.7 x 10—16
100PSRs-100ns-10yr 1.3 x 10’16
100 PSRs-lO ns-10yr 8.8 x 10—18

Jenet et a1. (2006) observations 1.1 x 10‘14
 

0 We repeat the previous three steps 104 times and measure the percentage of T values that

exceed To.

0 1f the percentage is more than 95%, then we repeat the previous four steps with a smaller

value of Atest. If less than 95%, repeat the previous four steps with a larger Atest-

c When a value of Atest is found such that 95% of the measured values of T exceed To,

then Aup = Atest is the 95%-confidence upper limit on the GWB amplitude.

This procedure calculates statistically-rigorous upper bounds on the amplitude of the GWB

(Jenet et al., 2006). However, if it is applied to data sets that contain some red noise, then the

resulting GWB limit is lower than the value that the data set actually implies (Hobbs et al.,

2009). We now apply this method to each of the white-noise data sets analysed in Chapter 3 to

determine the upper bound on A from each set of observations.

5.2 Results and Discussion

In the first column of Table 5.1, we describe the data sets used. The second column gives

the corresponding upper bound, Aup. The upper bound we obtain for the Jenet et al. (2006)

observations is equal to the upper bound published by Jenet et al. (2006). Jenet et al. also

analysed a simulated white-noise data set consisting of five years of observations of 20 pulsars

with a rms residual of 100 ns, and obtained Aup = 6.5 x 10‘”. This is significantly less than

the upper bound of Am = 9.9 X 10‘16 shown in Table 5.1 for a fortnightly-sampled data set. It

turns out that the simulated observations presented by Jenet et a1. (2006) were sampled weekly
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(Hobbs & Jenet, private communication). We obtained Aup = 6.6 x 10‘16 for a simulated

data set consisting of weekly-sampled observations of 20 pulsars with a rms residual of 100 ns

over five years. Hence, we conclude that our results are consistent with the work of Jenet et a1.

(2006)

5.2.1 Constraining the Coalescence Rate of Supermassive Black-Hole Bi—

naries

Wen et al. (2011) derive a constraint on the coalescence rate of SMBHBs for a given upper

bound on the GWB amplitude. This constraint is calculated by assuming that there are many

SMBHBs emitting GWs in each frequency channel of the residuals. However, if the residuals

have been timed accurately or over a long period of time, then the constraint on the coalescence

rate is sufficiently low that this assumption is violated at some redshifts. This means that the

constraint for a given chirp mass is only valid over certain ranges of redshift for which the

induced timing residual is low for each SMBHB (Wen et al., 2011).

In Figures 5.3 and 5.4, we plot the upper bound on the SMBHB coalescence rate as a func-

tion of redshift for our data sets. Valid constraints can be obtained at all redshifts for these data

sets using the methods presented in Chapter 3 or Chapter 4, because these methods allow for an

arbitrarily small number of GW sources in each frequency bin. However, these methods also

give a higher upper bound on the coalescence rate compared to the method presented in this

Chapter, so the method of this Chapter should be used whenever it provides a valid constraint.

In Figure 5.4, we show that no valid constraints can be obtained with this method for MC 2

109M© with either of the simulated data sets that have a rms timing residual of 10 ns. However,

these data sets provide significant constraints on the merger rate of SMBHBs with smaller chirp

masses. We do not present such constraints here because the precision of current data sets is not

at the required 10 ns level for more than a few pulsars.

5.2.2 Predictions of Galaxy Evolution Models

Wyithe & Loeb (2003) predict that the amplitude of the GWB could be as high as A 2 10‘”.

This prediction has recently been ruled out by van Haasteren et al. (2011) using a Bayesian

analysis technique. Our results indicate that this prediction could also be ruled out by applying

the Jenet et al. (2006) technique to the “20PSRs-500 ns-lO yr” data set.
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Figure 5.3: Upper bounds on the coalescence rate of SMBHBs using the values of Aup calcu-

lated for different sets of PTA observations given in Table 5.1. For calculating the abscissa, z is

the redshift of the SMBHB. The ordinate gives the logarithm of the differential rate of coales-

cence per log redshift per log chirp mass. The solid horizontal bars indicate that the constraint

is valid in that redshift interval, while the dotted horizontal bars indicate that the constraint is

invalid. The plot includes the constraints provided by the Jenet et a1. (2006) observations (open

triangles), 20 pulsars timed with 500 ns rms residual over 10 yr (open squares), the same timed

with 100 ns rrns residual over five yr (crosses) and the same timed with 100 ns rrns residual over

10yr (open circles). The grey region indicates the expected coalescence rate with evolution

index —1 < *y < 3 (see Section 1.6.2) assuming the framework of Jaffe & Backer (2003) and

using observations from the Sloan Digital Sky Survey (Wen et al., 2009). The dashed traces in-

dicate the maximum (thick line) and minimum (thin line) coalescence rates predicted by Sesana

et al. (2008, 2009). [Image reproduced from Figure 2 of Wen et a1. (2011).]
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Figure 5.4: Lines and regions on this plot are the same as in Figure 3.8, except that we now

show the constraints obtained using 20 pulsars timed with a rrns timing residual of 10ns over

10 yr (stars), 100 pulsars timed with a rms residual of 10 ns over 10 yr (filled circles), the same

timed with 3 ms residual of 100 ns over 10 yr (filled squares) and the same timed with a rrns

residual of 100 ns over five yr (filled triangles). [Image reproduced from Figure 3 of Wen et a1.

(2011).]
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Jaffe & Backer (2003) and Enoki et a1. (2004) predict that the GWB amplitude is around

A 2 10‘”. If the timing residuals are white, then this prediction could be ruled out using the

most optimistic prediction for the full PPTA observations, which is the “20PSRs-100ns-5 yr”

data set. An improved technique for calculating an upper bound on the GWB amplitude could

rule out this prediction with the “20PSRs-500 ns-lO yr” data set.

Sesana et a1. (2008) predict that the characteristic strain of the GWB is in the range 10‘16 <

hC < 3 x 10‘15 at f = flyr. While any of the simulated data sets shown in Table 5.1 could

constrain part of this parameter space, the whole range of hc(f = flyr) can only be ruled out

by the simulated SKA timing observations that yield a rms residual of 10 us on 2 20 pulsars.

However, a timing program that observed a PTA with at least 20 pulsars at a timing precision

of ~100 ns for more than 10 years could significantly constrain the predicted range.

If a significant upper bound on the GWB amplitude is obtained, several characteristics of

SMBHB formation and evolution may be constrained (see Sesana et a1., 2008, and references

therein). Aside from the constraints on the coalescence rate described in Section 5.2.1, a smaller

GWB amplitude could mean that the proportion ofSMBHBs that proceed to coalescence may be

less than 100%. The BH mass function could also be over-estimated currently, which would lead

to inflated predictions ofthe GWB amplitude. Alternatively, the gravitational recoil experienced

by each SMBH during merger could be larger than currently predicted, meaning that fewer

SMBHBs would form. These parameters are diflicult to measure using direct observations of

SMBHBs.

5.3 Conclusion

We have applied the technique of Jenet et a1. (2006) to both real and simulated observations to

determine upper bounds on the GWB amplitude. We have also briefly described the astrophys-

ical consequences of such limits. However, the technique can only be applied to sets of timing

residuals that are consistent with white noise, which is only the case for a relatively small num-

ber of data sets. Most current sets of pulsar timing residuals show evidence of red noise. Also,

the Jenet et al. (2006) technique cannot easily be extended to provide a direct detection of a GW

signal. In Chapter 6, we develop a technique that can detect a GWB signal and can be applied

to almost any set of pulsar timing residuals.
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Chapter 6

On Detecting the Gravitational-Wave

Background Using a Pulsar Timing Array

Chapter Outline: In this Chapter, we:

0 correct minor errors in the Verbiest et al. (2008, 2009) data set and also adjust the ToA

uncertainties.

0 develop a frequency-domain correlation technique to search for a GWB signature in the

PPTA residuals.

0 apply this technique to the corrected Verbiest et al. data set andfind no detectable GWB

signal.

0 discuss characteristics of the PPTA residuals and the GWB signal that aflect the GWB

analysis.

0 examine the eflect of instabilities in a realisation of Terrestrial Time and errors in the

solar system ephemeris on the GWB detectability.

Sections 6.1, 6.2, 6.3, 6.4 and 6.5 are adaptedfrom sections in thefollowingjournal article:

Yardley D. R. B., Coles W. A., Hobbs G. B., et al. 2011, MNRAS, 414, 1777

Figure 6.5 and its associated text arefrom thefollowing conference proceedings:

Yardley D. R. B., Coles W. A., Hobbs G. 8., Manchester R. N., 2011, in Burgay M.,

D’Amico N., Esposito P., Pellizzoni A., Possenti A., eds, Radio Pulsars: An Astrophysical

Key to Unlock the Secrets ofthe Universe, Vol. 1357 of AIP Conference Series. American

Institute of Physics, Melville, New York, p. 77

In this Chapter, we attempt to detect a GWB signal caused by SMBHBs in an updated ver—

sion of the PPTA observations presented by Verbiest et al. (2008, 2009) (introduced in Section

2.3.2). While an upper bound on the GWB amplitude can rule out models of galaxy evolution

(see Section 5.2.2) and cosmic strings (see Section 1.6.2), a detection of the GWB would lead

to increased understanding of physics and cosmology. In order to confirm that any signal ob-

served in a data set is caused by a GWB, it is essential to detect (unambiguously) the expected

correlation in the timing residuals of pairs of pulsars, as shown in Figure 1.8
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Several techniques have already been proposed in the literature to detect the GWB (see

Section 1.6.1). However, most methods have not taken into account all the details of analysing

pulsar timing data, or are restricted to particular observations.

The GWB detection technique we present in this Chapter is based on the method of Jenet

et a1. (2005). It improves on their technique in a number of ways:

0 we study the pairwise correlation described by Hellings & Downs (1983) in the form of

pairwise cross-power spectra;

0 we obtain independent estimates of the GWB from each frequency component in each

CI'OSS-pOWCI' spectrum;

0 we use an optimally-weighted linear combination of the cross-power estimates as the

detection statistic;

c we account for the effect of different overlapping time-spans between the pulsar pairs;

0 we calibrate the cross-power spectra and their estimated errors using simulations that

completely account for the fitting of the pulsar timing model.

In this Chapter, we discuss a number of issues that are common to both the Jenet et al.

(2006) limit technique and any limit technique based on measuring the GWB-induced correla-

tion between pulsars. Such issues include the estimation of power spectra when the sampling is

irregular and the ToA uncertainties are variable, and the effects of fitting the timing model.

In Section 6.1 we describe the observations and the analysis that led to the timing residuals

we use in this Chapter. Section 6.2 describes the theoretical background and our method for

making a detection of the isotropic stochastic GWB. Section 6.3 describes the results obtained,

Section 6.4 describes their implications and the outstanding issues for GWB detection Via pulsar

timing, and Section 6.5 summarises our conclusions.

6.1 Observations

High-precision timing observations of 20 MSPs over ~10 yr were presented by Verbiest et a1.

(2008, 2009). The timing residuals for all pulsars obtained from these observations are shown in

Figure 2.5 and Figure 2.6 and described in Section 2.3.2. However, to form the data set we use in
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Table 6.1: Basic information for our corrected version of the Verbiest et a1. data set.

PSRJ Period DM Pb Weighted RMS Span No. of

(ms) (cm‘3 pc) ((1) Residual (MS) (years) Observations

 

 

J0437—4715 5.757 2.65 5.74 0.20 9.9 2847

J0613—0200 3.062 38.8 1.20 1.52* 8.2 190

J0711—6830 5.491 18.4 — 3.24* 14.2 227

J1022+1001 16.45 10.3 7.81 1.63* 5.1 260

J1024—0719 5.162 6.49 — 4.17* 12.1 269

J1045—4509 7.474 58.2 4.08 680* 14.1 375*

Jl600—3053 3.598 52.2 14.3 1.11* 6.8 474*

11603-7202 14.84 38.1 6.31 1.98* 12.4 212

J1643—1224 4.622 62.4 147 1.94* 14.0 241

J1713+0747 4.570 16.0 67.8 0.20 14.0 392

J1730—2304 8.123 9.61 — 2.52* 14.0 180

J1732—5049 5.313 56.8 5.26 3.23* 6.8 129

J1744—1134 4.075 3.14 — 0.62 13.2 342

Jl 824—2452 3.054 120 — 163* 2.8 89

J1857+0943 5.362 13.3 12.3 1.14* 22.2” 376

J1909—3744 2.947 10.4 1.53 0.17 5.2 893

J1939+2134 1.558 71.0 — 15.0” 23.3" 588

J2124—3358 4.931 4.62 — 4.01* 13.8 415*

J2129—5721 3.726 31.9 6.63 2.19 12.5 177*

J2145—0750 16.05 9.00 6.84 1.88* 13.8 376*
 

”There is a gap of ~11 years between the end of the observations presented by Kaspi et al. (1994) and the

beginning of observations with the Parkes telescope. In our analysis we use the Arecibo observations of PSR

J1857+0943 only to assist in the estimation of the pulsar parameters and then discard the Arecibo residuals in

further processing.

bWe have altered the value of the phase offsets between different observing systems for these timing residuals

compared with the analysis of Verbiest et al. (2009), which lowers our measured rms.

cThis time series features several large gaps and includes the Kaspi et a1. (1994) data.

*These values differ slightly from those presented by Verbiest et a1. (2009) because we have removed duplicated

observations in five pulsars, and corrected a minor processing error involving the uncertainties on observations

made with different observing systems.
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this Chapter, we have made minor corrections to the original Verbiest et a1. observations. While

we have not repeated the ToA estimation process already described and performed by Verbiest

et a1. (2008, 2009), we have removed erroneous duplicated ToAs from some pulsars in the data

set. Also, in forming the timing residuals, we have treated the observations of every pulsar in the

same manner when measuring the arbitrary phase offsets between different backend systems.

This caused the PSR J1939+2134 timing residuals to exhibit a lower rms than in the original

Verbiest et a1. data set because the value of these offsets changed. A summary of the data set

used in this Chapter is given in Table 6.1.

In our data set, the data-spans vary widely, ranging from 2.8 years for PSR J1824—2452

to 23.3 years for PSR J 1939+2134. The weighted rms residual also varies over two orders of

magnitude, from 170 ns for PSR J1909—3744 to 15 as for PSR J 1939+2134. The residuals are

unequally spaced and the sample times are different between pulsars. As described in Section

2.2.3, for some pulsars the average magnitude of the ToA error bar changes discontinuously at

a particular point in the time series because of upgrades in the observing hardware. For most

pulsars, the upgrade that caused the most significant change in the ToA uncertainty was the

transition from the FPTM backend system to CPSR2 in the year 2002. For pulsars whose ToA

uncertainties significantly improved after this upgrade, a weighted fit to the residuals would

be mostly influenced by the most recent observations, thus reducing the GWB sensitivity of

such data sets. To ameliorate this effect, we attempt to reduce the variation in the magnitude of

the ToA uncertainties so that, in subsequent weighted estimates using the timing residuals, the

weights are spread more evenly across the data set.

In Table 6.2, we provide a list ofthe pulsars whose ToA uncertainties exhibit a “step-change”

in average magnitude. For these pulsars, we have calculated the unweighted variance of the

residuals both before and after the upgrade that caused this step—change. These variances are

added in quadrature with the original error bars in each portion of the time series before com-

mencing any further processing. For all other pulsars, there was no significant change in data

quality at the epoch of the hardware change. We thus calculate the unweighted variance of the

whole time series and add it in quadrature with the original error bars before any further pro—

cessing. This simple process increases the uncertainty on all ToAs“. However, the uncertainty

 

54This process of augmenting the error bar on each residual is ad hoc because we do not have a good error model

for the PPTA timing residuals. Improving the white noise model is an important goal of PPTA research at present.

The basic problem is that we know that there are other white noise processes that affect the timing residuals in

addition to radiometer noise, such as pulse jitter (Cordes & Shannon, 2010; Oslowski et al., 2011). However,
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Table 6.2: Pulsars with non-stationary timing residuals. For these pulsars, we estimate the

unweighted ms ofthe residuals before and after an important hardware change at the telescope.

PSRJ Type of Epoch RMS before RMS after

change (MJD) change (us) change (Ms)

 

 

11600—3053 backend 52654.0 9.61 1.31

J1713+0747 backend 52462.5 1.24 0.48

J1732—5049 backend 52967.5 7.57 4.03

11744—1134 backend 52462.6 1.54 1.29

J2124—3358 backend 52984.5 9.74 4.64

J2129—5721 receiver 51410.0 5.47 3.48

J2145—0750 backend 52975.5 4.14 3.17
 

on the most precise ToAs will increase by more than the corresponding increase for less precise

ToAs, meaning that there will be less variation in the weight of each residual across the time

series.

6.2 Method

The GWB-induced residuals are correlated between different pulsar pairs as shown in Fig-

ure 1.8. Although limits on the amplitude of the GWB can be obtained from the residuals of

a single pulsar (e.g., Kaspi et al., 1994), the GWB can only be detected with confidence by

observing this pairwise correlation. We now describe our technique for detecting a GWB signal

in pulsar timing residuals.

6.2.1 Detecting the Gravitational-Wave Background Signal

The expected GWB signal in pulsar timing residuals was described in Section 5.1.1. For this

analysis, we assume that the GWB due to SMBHBs is described by equations (5.1) and (5.2).

In this case, the cross—power spectrum between the induced ToA perturbations in pulsars z' and

j is

Xulf) :Pg(f)C(6ij) a (6-1)

where Xij(f ) is the value of the cross-power spectrum at frequency f , Pg(f ) is the power

spectrum of the GWB—induced ToA perturbations given in Equation (5.2) and Q (627') is given in

Equation (1.15).
 

we don’t yet know what processes are involved or how much they contribute to the timing residuals. An interim

solution is now available in the form of the FIXDATA plugin to TEMP02.
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In order to detect the GWB signal, we estimate X,j(f ) for each pair of pulsars. As the

spectrum of the GWB is very steep, only the lowest frequencies are of interest. Also, because

we want to detect the correlated GWB signal between pulsars, we will focus on the overlapping

portion of each pair of pulsars. The observations of each pair of pulsars overlap over some

time-span, Tovcrlap. For Npsr = 20 there are Npairs = 190 pairs. For each pair we estimate the

cross-power spectrum at harmonics of f = 1 /Tovcflap. If the sampling were uniform and the ToA

uncertainties were equal, these estimates would be uncorrelated. In practice we find that they

are not uncorrelated and this reduces the sensitivity of our detection algorithm. It is probable

that the independence can be restored using the Cholesky spectral estimation procedure recently

discussed by Coles et a1. (2011). However, this is beyond the scope of this thesis.

For some pairs, Tovcrmp can be much smaller than the length of one or both time series.

For our time series, Tovcflap ranges from just 0.8 yr for PSRs J0437—4715 and J1824—2452,

to 14.1 yr for PSRs J0711—6830 and J1939+2134. The use of only the overlapping residuals

causes a bias in the cross—power spectral estimates, the cause of which is currently not known.

We correct this bias by removing a quadratic function from the overlapping section of the two

time series using a weighted least-squares (WLSQ) fit, as shown in Figure 6.6. This fit is in

addition to the standard timing model fit that estimates the pulsar parameters. We estimate the

cross-power spectrum using:

Xij(f) = f‘1'<f)-F;(f)/Tovcrlap 7 (62}

where 7-“, denotes the DFT ofthe timing residuals ofpulsarz’ and * denotes complex conjugation.

We use the following standard definition of the one-sided DFT (a factor of two larger than the

two-sided DFT given in Equation 2.2):

 

N ts—l
2 P ~.

f(fk) : N t Z Tue—27len/Npts, (63)

p S n20

where i = \/:T in this particular equation, 7",, is the n-th residual and k is an integer between

1 and (Np,S — 1) / 2, rounded down. Calculating the DFT is not trivial because of the uneven

sampling and variable error bars. We calculated .73,(fk) for every pulsar using a WLSQ fit of a

sine term plus a cosine term at each fk = k/Tover1ap. This gives identical results to a weighted

Lomb-Scargle estimate of the spectrum (Scargle, 1982; Zechmeister & Kiirster, 2009). The
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variance of each cross-power spectral estimate is

aim = <B<f>><Pj(f)>/2, (6.4)

where (...) indicates an expectation value and B(f ) is the spectral estimate of the residuals of

pulsar 1' at frequency f. In practice, we calculate these expectation values using a power-law fit

to the lowest frequencies in the periodogram of each pulsar. This power-law fit gives a spectral

model for low frequencies in this pulsar.

We account for the effects of fitting the timing model to the observations using two Monte

Carlo simulations. The first simulation estimates the effective transfer function for each pulsar

(see Section 2.4.3). The transfer function for each pulsar is similar to that shown in Figure 2.10

for PSR J0613—0200. We then correct the measured cross-power spectrum for each pulsar

pair at each frequency by dividing by the geometric mean of the transfer functions of the two

pulsars at that frequency. This correction is common between our analysis and that of Verbiest

et a1. (2009), but this is the only pulsar parameter fitting correction performed by Verbiest et a1.

(2009).

However, this process ofcorrecting the cross—spectrum using TEMPO2 transfer functions can

only correct the effects of the timing model fit as it acts on white noise in the residuals. This is

because, although fitting the timing model is a linear operation, it is not a filter. In particular, this

means the effect of the timing model fit will be different when the residuals are contaminated

by red noise, compared to the case where the residuals are consistent with white noise. When

a set of residuals with time-span Tobs is affected by red noise, fitting the full timing model

to the residuals reduces P(f = 1 /Tobs) by significantly more than the white noise transfer

function. This is easily confirmed by simulation. A second correction is therefore necessary

to measure the effect of the full timing model fit on the non-white GWB contribution to the

residuals. We simulate ~10000 realisations of the residuals and add a simulated GWB signal

with A = 3 x 10‘15 and a = —2/3 to all pulsars using the methods described in Sections 2.4.3

and 5.1.2. This value of A was chosen because it gives the largest GWB signal that is still small

compared with the noise, hence reducing the number of required simulations. We fiirther reduce

the number of simulations by fixing every pulsar to be at the same position and distance, giving

the maximum correlated GWB signal between pulsars. We perform the full pulsar parameter

fit using TEMPO2, estimate the cross—power spectrum in each realisation and apply the transfer

119



function correction described above. We divide the average corrected cross-power spectrum of

each pulsar pair by the theoretical level of the cross-power spectrum given in Equation (6.1).

This process defines a set of “calibration factors”, Pym-(fie). When forming subsequent estimates

of the cross—power spectrum using Equation (6.2), we calibrate each estimate at the lowest

three frequencies of the cross-power spectrum by dividing the cross-power—spectral estimate for

pulsars z' and j at frequency fk by yij(fk).

After performing both of these corrections, we estimate A2. For each frequency channel,

fk, of the cross-power spectrum (measured in yr‘l), we have (see equations 1.14 and 6.1)

[A?1C(61j)]k : 127T2f13—2QR631 [Xij(fk)l (65)

where Afj indicates the measurement of A2 obtained from pulsars 2‘ and j and Real [Xij( fk)] is

the real part55 of the cross-power spectrum. The variance of 141sz (617) is then proportional to

the variance ofX,j.

To compare directly with the technique of Jenet et a1. (2005), we perform a weighted sum

of the Afjg (627') estimates over cross-spectral frequency to obtain a single estimate of 14ng (61-3)

for each pulsar pair. This gives

127T2 2k X¢j(fk)k2a'3/0§{,j (fk)

(Tovcrlap)3—2a 2k k4a—6/05Qj (fie)

 Afj (917‘) = (6-6)

where both summations range from k = 1 to Nspemj, and where NspeCfl-j is the number of

cross-spectral frequencies for pulsars z' and j. This final estimate of 14ij (62-3) is similar to the

unnormalised covariance between the residuals of pulsars z' and j. We also use the observed

scatter in estimates of £1ij (6,7) obtained from simulated observations to estimate the uncer-

tainty 6A§jC (6,3) for each pulsar pair.

Having fully calibrated our technique using simulations, we estimate the squared amplitude

of the GWB, A2, by forming an average of the £1ng (619‘) estimates weighted by the inverse

variance of each estimate. In practice this average is done by performing a WLSQ fit to find

the amplitude .42 (and its corresponding uncertainty) for which the quantity Ax best fits the

observed values of 14ij (6,5). For ease of notation, we index over all possible pulsar pairs using

m, where m is an index running from 1 to Npairs and we set (m E C (017’)- In this case, the

 

55The imaginary part of the cross—power spectrum contains uncorrelated terms and is discussed in Section 6.4.
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expression for A2 is

Em Cir/0313,14". Em 1/0333"
 (6.7)

and its unweighted variance is

2 1 1
0A 2 = .

A2 2m (gm/031%". 2m 1/0341;
 (6.8)

This initial estimate of the error assumes that each of the 614ij (911‘) is well-estimated. If

this is not true, then we need to augment the error on fl? by an extra term that describes the

amount of scatter in the residuals. This corresponds to accounting for a non-unity reduced X2

of the WLSQ fit that determines A2. Thus our final estimate for the variance of A2 is

 

 

A 2

2 1 Z... ([Afncm] — Am.) mg”...
0- - =

A2 (Npairs _ 1) Em Cri/Uigncm

A 2

1 2 (A2,. — A2) M...
= 2 , (6.9)

(Npairs _ 1) Z 1/0Am

which is just the weighted estimate of the variance of 142. If A? is significantly larger than

0A2, then a detection of the GWB has been made. This algorithm has been implemented as a

TEMPOZ plugin, which is included in Appendix B.

6.3 Results

From our data set we estimate the squared GWB amplitude to be A? = —4.5 x 10-30, with an

uncertainty 0A2 = 9.1 x 10—30. Our result is consistent with the null hypothesis, that there is

no GWB present. Although the estimate is negative and therefore would lead to an unphysical

GWB, it is not improbable because the standard deviation is a factor of 2 larger than the mag-

nitude of the mean56. We simulated many realisations of the observations using the method of

Section 2.4.3, including the uncertainty given by the ToA error bars and a random process con-

sistent with the low-frequency spectrum of the residuals but no GWB signal. These simulations

showed that our estimate is consistent with the null hypothesis with 76% confidence. This result

 

56This would not be an issue for a Bayesian approach to GWB detection wherein the prior can restrict the value

of A2 to being positive.
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Figure 6.1: The histogram shows the distribution of A2 for simulations of our residuals with

no GWB present The thin dotted line shows the value of A2 obtained from the observations.

The estimates to the right of the dotted line include 76% of the simulation results. All physical

GWBs have A2 > 0.

is shown as a histogram in Figure 6.1. At first, it appears that this histogram could be used to

provide a 95% confidence upper bound on the GWB amplitude. However, as discussed further

below, any limit thus obtained would not take account of “self—noise” (Jenet et al., 2005) due to

the GWB-induced perturbations at the pulsar.

In Figure 6.2, we plot the 15 estimates of 14ij (6”) with the smallest uncertainties. It is

clear from this Figure that the current noise levels are larger than 4.5 x 10—30 and that our result

is consistent with the null hypothesis. The dot-dashed curve for A2 = 10‘28 seems to imply that

such a large GWB signal is ruled out by the observations. These observations probably do rule

out such a GWB signal (though this has not been investigated), but if A2 were actually 10‘28

the noise levels on each A1234 (6”), which provide the upper bound, would be much higher. As

the noise levels come from the power spectrum of the residuals of each pulsar, obtaining an

upper bound using the noise levels is equivalent to obtaining an upper bound directly from the

individual power spectra and ignoring the cross correlations. Such a bounding technique is not

pursued in this Chapter.
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Figure 6.2: The 15 most precise estimates of 14ij (011‘) obtained from our data set (points with

error bars), the best-fit value of A2( = —4,5 x 10‘30 x ( (dashed curve) and the signal expected

from a strong GWB with A2 = 10‘28 (dot-dashed curve).

6.4 Discussion

The results of applying this algorithm to the corrected version of the Verbiest et al. (2008,

2009) data are disappointing in the sense that the sensitivity is considerably poorer than that

calculated in the Appendix provided by Verbiest et a1. (2009). We believe the estimated errors

to be correct because they are calibrated by simulation, so we ask the question: Why are the

cross-power spectra ofthe GWB lower than expected? To investigate this we have run a series

of simulations57 with GWB signals of differing amplitudes injected into the observations. The

results are shown in Figure 6.3. The mean values of the derived £12 are plotted as solid lines

connecting error bars (that indicate the uncertainty in the mean) for two cases: (1) the algorithm

including correction with the ”M calibration factors (thick solid line); and (2) the algorithm with

7,,- E 1 (thin solid line). These results show that our method returns a GWB amplitude estimate

212,” such that, on average, flint = Aizn. Figure 6.4 shows that this GWB signal is at the correct

 

57These simulations use a spread of pulsar distances and synthesise residuals with the same sampling as our

observations, using the methods of Section 2.4.3 and 5.1.2. The simulated residuals include white noise consistent

with the observed error bars, red noise consistent with the spectral model mentioned in Equation (6.4) and a signal

from a GWB with a : —2/3 and with a range of amplitudes between A2 = 6.4 x 10‘33 and A2 z 4 x 10—28.

We did not perform post—Keplerian pulsar parameter fits.
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Figure 6. 3: Average A2 as a function of input GWB A2 for our residuals. The ordinate gives

the average output A2 from our detection algorithm. The triple——dot—dashed line indicates points

where the input A218 equal to the output A2. We have considered 2 cases: performing the full

detection procedure (thick lines) and the uncalibrated detection procedure that uses Fm (f)_ 1

(thin lines). In both cases we have averaged over 1400 realisations for each input A2, and

estimated the average output A2 (solid lines), where the error bars give the error in the mean of

A2. The dashed lines give the square root of the average of 0342 in each case, and are in good

agreement with the sample standard deviations over the amplitude range of interest (dotted

lines).

level on average in every pulsar pair. The difference between the thick solid line and the thin

solid line in Figure 6.3 indicates that the GWB power is reduced by a factor of ~12 because

of the pulsar parameter fitting, even after adjusting the cross—power spectra using the effective

transfer function.

We can estimate the amount of GWB signal lost in estimation of different timing pa-

rameters by calculating the weighted average calibration factor in the lowest frequency chan—

nel of each pulsar pair. While this will be at a different frequency for each pair, it nev-

ertheless provides a straightforward figure of merit for comparing the effect of fitting dif-
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Figure 6.4: The expected covariance in simulated residuals that include a GWB component

with squared amplitude A2 : 10—28. The smooth dashed curve corresponds to the theoretical

covariance for an input A2 = 10—28. The points correspond to the mean of the estimates of

.4ij (627-) (Equation 6.6) from 200 simulated sets of timing residuals for the 20 PPTA pulsars.

The error bars give the uncertainties in these mean estimates. For clarity we only plot the 20

pairs with the smallest rrns scatter in their estimates of 14ij (go) over the 200 simulations.
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Table 6.3: The effect of fitting different combinations of timing model parameters on the GWB

signal in the lowest frequency channel. Values in the 4th column are the inverse of values in the

2nd column. The symbols are: 1/ (pulse frequency); 1) (pulse frequency derivative); “JUMP”

(arbitrary phase offsets between different observing systems were removed from all pulsars);

“ALL” (all timing model parameters were fit).

Timing Model Weighted mean of Uncertainty in Sensitivity

Parameters y,j(f = 1/T0vcrlap) Weighted Mean Loss Factor

 

 

l/, 1) 0.1716 0.0003 5.83

V, I), JUMP 0.0796 0.0002 12.6

ALL 0.0790 0.0002 12.7
 

ferent timing model parameters. For the full TEMPO2 fit acting on our residuals, we find

7—,](f = 1/T0vcflap) = 0.0790 3: 0.0002, which represents an average loss of 0.0790’1 2 12.7

in GWB signal at f = 1 /Tovc,1ap. This explains the large decrease in sensitivity of our method

compared to that presented in the Appendix of Verbiest et al. (2009), which did not fully ac-

count for the effect of pulsar parameter estimation on the GWB signal. In Table 6.3, we give

the weighted average calibration factor at f = 1 /Toverlap when fitting for different parameters

in the timing model. The estimation of the pulsar position and parallax have little effect on

72“f = 1/Tovcr1ap) since Tovcflap is a few times greater than 1 yr for most of our pulsar pairs, and

so are not shown in Table 6.3. This table indicates that one can almost determine the complete

effect of fitting on the GWB sensitivity by only including fits for the spin frequency, its deriva-

tive and the arbitrary phase offsets between different observing systems. Additionally, while

the spin frequency derivative fit only significantly affects the power in the lowest frequency

channel, the arbitrary phase offsets affect the power in the lowest few channels and hence can

significantly affect our estimate of A2.

The dashed lines in Figure 6.3 show that for GWB amplitudes around A2 = 5 x 10—30, the

average uncertainty on A? is double the average uncertainty when there is no input GWB. This

extra contribution to the uncertainty comes from the effect of the GWs passing near the pulsar,

which we refer to as the self-noise of the GWB. For larger values of A2, the uncertainty on A?

is dominated by the GWB self-noise as discussed by Jenet et a1. (2005).

For comparison with previous limits, we attempted to place a 95% confidence upper bound

as follows. Using the same simulations that produced Figure 6.3, we attempted to find the

amplitude of a simulated GWB that gave a measurement of A2 larger than —4.5 x 10‘30 —

the value obtained from the actual observations — with probability 0.95. The results, shown in
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Figure 6.5: Percentage of A2 estimates from simulated observations above the observed value

of A2 = —4.5 x 10—30, as a function of input simulated A2. The dotted vertical line shows

the limit of A2 < 1.2 X 10‘28 (Jenet et al., 2006). The percentage of A2 estimates above the

observed value of A2 = —4.5 x 10‘30 (thin solid line) does not reach 95% (thick horizontal

line) within the plotted range of simulated A2 values.

Figure 6.5, show that the percentage of estimates of A2 above —4.5 x 10‘30 does not reach

95% for any simulated A2 S 4 x 10—28. We traced this to the issue that the GWB sensitivity

of the different time series varies widely between the different pulsars analysed by Verbiest et

al. (see Section 6.4.4). The maximum simulated GWB amplitude shown in Figure 6.5 is much

larger than the Jenet et al. (2006) upper bound (A2 g 1.2 x 10—28). Thus we cannot obtain

a sufficiently low upper bound with 95% confidence to warrant further investigation with our

current time series and weighting scheme.

Furthermore, any limit obtained in this way would be considerably worse than one obtained

through other methods, such as direct power estimation, because of the huge variation in noise

levels amongst our pulsars”. A power spectral analysis of the Verbiest et a1. (2008, 2009)

similar to that presented by Jenet et al. (2006) is expected to provide a much lower bound on

the GWB amplitude than cross-correlation analysis.

We confirm the accuracy of the measured uncertainty on each estimate of 14ng (6,7) using

 

58We cannot apply the Jenet et al. (2006) limit method to these observations because it requires that the timing

residuals of each pulsar be white. The method presented by van Haasteren et al. (2009) could be applied to these

observations, but this would require a large amount of computation time and any limit obtained would be difficult

to confirm via Monte Carlo simulation.

127



the reduced X2 of the WLSQ fit that determines 1112. The reduced X2 of this fit is

2 1 ([AiCkl — A241)?

X = 7
I‘ (Npairs _1) k Uiick

 (6.10)

which has a value of 1.3 for our residuals, indicating that the uncertainty estimates 0A: are con-

sistent with the rrns variation of the estimates AZ. We obtain an independent estimate of the ac—

curacy of the measured errors by making use of the information contained in the imaginary part

of the cross-power spectrum, which we denote Imag [X,j(f)] We calculate Imag [/1ij (6,3)]

by evaluating Equation (6.5) with Imag [X,j( f )] in place of Real [X,j(f)] We then process

Imag [/1ij (6,3)] in exactly the same way as the real part is processed. Since correlation coef-

ficients are real, we expect that Imag [/1ng (0,9)] will contain no correlated signal. This means

that we can calculate the analogue of the reduced X2 using Imag [/1ij (6,1)] :

 

1 Z (Imag [/124le ' (6.11)X2 =rum

(Npairs — 1) k OZiCk

Similar to the reduced X2, if the errors on Aij (619-) are well—estimated then this quantity should

be near unity. For our residuals, we find xiim = 0.87, indicating that the errors are well-

estimated.

Although both x? and xiim show that the uncertainties 014% are reliable on average, these

uncertainties come from power spectral estimates so they are random variables. We estimated

the sensitivity of 1412 to variations in 0,4: by multiplying each UAi by a random factor, distributed

as the square root of the product of two X2 random variables with two degrees of freedom.

This is the expected distribution for each 0A? We found that 0142 increased by a factor of

1.6, indicating that the use of incorrect (5/1ij (19,7) estimates degrades the sensitivity of the A?

measurement by only a factor of 1.6.

However, the 14ng (627‘) are not Gaussian; rather they come from the sum of two pairwise

products of independent Gaussian variables and thus have a two-sided exponential distribution

that is reflected in Figure 6.1. This means that the maximum likelihood estimator for A2 is not a

WLSQ estimator but a weighted least absolute deviation (LAD) fit (e.g., Cox, 2006). We tested

both weighted and unweighted LAD fits and found that the results for WLSQ and unweighted

LAD fits were very similar, while the weighted LAD fit introduced a small bias in the mean.

These results are shown in Table 6.4. We suspect that the bias occurs because any LAD fit
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Table 6.4: The results from estimating A2 with different estimators averaged over 105 simula-

tions of realistic residuals including a GWB with A2 = 10—30.
 

 

Estimator Mean A2 Error in Mean ms of A2

(x10-30) A2 (x10-30) (x10-30)
WLSQ [our method] 0.99 0.038 12

Unweighted LAD 1.0 0.038 12

Weighted LAD 0.84 0.041 13
 

Table 6.5: The results from our observations using different methods of spectral analysis of the

timing residuals.
 

 

Processing A2 0A2
Performed (x10'30) (x10‘30)

Smoothing & Interpolation 3.0 10

Smoothing only — 7.8 10

No smoothing [our method] —4.5 9.1
 

includes a ‘dead-zone’ feature, where a range of parameter estimates give the same minimum

absolute deviation. This dead zone is negligible when the number of estimates is large, but

can be significant otherwise. Since our A2 estimates are dominated by a small number of Ai

measurements and the results ofthe different estimators are similar, we chose the more standard

WLSQ fit in calculating A2. Although the WLSQ estimator is not maximum likelihood, it is

apparently more robust in our particular case.

Estimation of A2 is also largely independent of changes to the method of spectral analysis.

We experimented with reducing the white noise in the residuals by smoothing each time series

over a 60-d period before commencing the spectral analysis. We also tested interpolation using

a constrained cubic spline of each smoothed time series onto a 14-d grid common to all pul-

sars before the spectral analysis. The results of these different approaches are given in Table

6.5. Since there was no statistically significant difference between the different approaches, for

simplicity we elected not to smooth or interpolate the residuals.

6.4.1 Treatment of a Large Amplitude Gravitational-Wave Background

For their detection statistic, Jenet et al. (2005) calculated the normalised cross correlation be—

tween the timing residuals of each pulsar pair. They optimised the S/N ratio using a filter

designed to whiten the residuals before correlation. For a simulation of the 20 PPTA pulsars,
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this approach increased the maximum achievable detection significance for a GWB from 30 to

130. However, their filter cannot be applied to real pulsar timing observations without modi-

fication. We investigated the effect of such a filter by performing simulations of our residuals

where each simulation included a signal from a GWB with A Z 3 x 10—15. In the frequency

domain, the filter takes the form of a weighting factor, so we optimised this weighting factor

to match the large input GWB amplitude. We found that this method did not improve the S/N

ratio, and we traced this under-performance to the problem of spectral leakage from the low-

est frequencies to the higher frequencies. We found that the first few cross-spectral estimates,

which make the largest contribution to our detection statistic, were all more than 90% correlated

with the lowest spectral estimate (i.e., at frequency f : 1/Tovcr1ap), meaning that re-weighting

cannot change the overall S/N ratio. The spectral leakage is particularly significant because of

the irregular sampling and variable ToA uncertainties in these observations. We expect that an

improved spectral analysis technique (e. g., Coles et al., 201 1) will eliminate the spectral leakage

and enable us to take advantage of more degrees of freedom59 when the GWB signal is larger

than the noise.

6.4.2 Fitting Timing Models over Different Data-Spans

The time series we consider in this Chapter have widely varying time-spans. The effect of

such variation has not been considered in most PTA analyses to date. As part of the pulsar

parameter estimation, we fit for the pulse period and its derivative over the full duration of

each time series. Originally, we then computed the cross-power spectra from the overlapping

portion of residuals of each pulsar pair with no further processing. However, upon simulating

this procedure, we found that the lowest frequencies in the cross-power spectra were biased

whenever Tobs > Tovcflap. This bias took the form of a significantly non-zero imaginary part in

the cross-power spectrum. Also, we found that much of the correlated signal at low frequencies

was removed, as shown in Figure 6.6. We were unable to eliminate these effects unless we

performed a WLSQ fit of a quadratic function for each time series over the overlapping time

range. This restores the correlation in the GWB signal between different pulsars (right panels of

Figure 6.6). This additional WLSQ fit will introduce a new bias because of removing some of

 

59In contrast to Verbiest et a1. (2009), who state that quadratic fitting removes one degree of freedom from the

power spectrum of each pulsar’s residuals, we have shown that quadratic fitting does not affect the number of

degrees of freedom in the lowest few frequency channels of each power spectrum.
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Figure 6.6: The effect of fitting a timing model over different data-spans. The simulated time

series in the upper three panels are 5 years long, those in the lower three panels are 15 years

long (the longer time series in the first 2 panels have been truncated because deviation in the

y—direction has the same magnitude in each panel). The bottom right panel only includes the

overlapping simulated observations. The vertical dotted lines indicate the overlapping timing

residuals for these time series. We added the same large signal to both time series and the

time series are identical in the overlapping region (left panels). After fitting the timing model

(middle panels), this signal is no longer correlated between the two time series. The correlation

is restored by performing a WLSQ fit of a quadratic function in the overlapping region of the

two time series (right panels).
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Table 6.6: The results from using updated realisations of TT and the solar system ephemeris.

The last column gives the change in the value of A2 with respect to processing the observations

with TT(TAI) and DE405, the realisations used for our data set.
 

 

Realisation Solar Change

of Terrestrial System fl? 0,42 in A2
Time Ephemeris (x10‘30) (X10_30) (x10‘30)

TT(TAI) DE405 —4.5 9.1 0.0

TT(TAI) DE421 —2.3 9.4 2.2

TT(BIPMZOIO) DE405 —3.7 8.7 0.8
 

the GWB signal at f = 1/Tovcr13p, but this new bias is easily corrected with the calibration factors

717(k). However, there is an additional loss of 10% of the GWB signal in our observations

because of this extra WLSQ fit.

6.4.3 Correlated Signals in the Timing Residuals

The GWB analysis is complicated by the unknown effects of other correlated signals in the

timing residuals. Instabilities in TT(TAI) and errors in the solar system ephemeris both produce

signals that are correlated between different pulsars. An instability in TT(TAI) will affect all

pulsars in the same way, inducing a correlated signal that is independent of the angular sepa-

ration of the pulsars on the sky. This would lead to a positive offset in the correlation curve in

Figure 1.8. An inaccuracy in the solar system ephemeris will typically induce residuals that are

positively correlated for small pairwise angular separations. Such a signal could be correlated

with the GWB signal shown in Figure 1.8. We estimated the effect of these uncertainties by

using an updated realisation of TT and the most recent solar system ephemeris.

Instabilities in realisations ofTT produce a positive cross correlation independent of angular

separation. Any estimate of the clock error will thus be correlated with the estimate ofthe GWB

amplitude. Had we made a significant detection of the GWB, this would have to be accounted

for. To estimate the importance of possible clock instabilities, we processed our observations

using the version of TT released by Bureau International des Poids et Mesures (BIPM) in 2010

(e.g., Petit, 2003). This post-corrected timescale has revealed statistically significant inaccu-

racies in TT(TAI). The results are shown in Table 6.6. While the change of clock reference

only changes our estimated GWB level by nine per cent of the uncertainty, the absolute change

(0.8 X 10‘”) is at a significant level for some predictions of the GWB (see Section 5.2.2). This
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implies that such instabilities in realisations of TT must be accounted for when analysing future

data sets.

The results from using the newest solar system ephemeris DE421 (Folkner et al., 2009) are

given in Table 6.6. While there have been some improvements in this ephemeris version corn-

pared to DE405, most of the changes are absorbed by the pulsar parameter fit. The estimated

GWB level has changed by 24% of the uncertainty. Ifwe assume DE421 is correct, then the use

of DE405 is similar to introducing a spurious GWB signal with A = 1.5 x 10‘“, a signal that

is undetectable in most of our time series. However, future observations will need to account

for the effects of inaccuracies in the solar system ephemeris.

6.4.4 Contribution of Different Pulsars to the Estimate of A2

It is difficult to determine the exact contributions to the weighting of each pulsar pair when using

error bars derived from Monte Carlo simulations. The dominant effect is the size of Tovcrlap.

For a GWB caused by SMBHBs, the weighting factor increases approximately as Tgimp. A

higher noise level in the residuals of each pulsar in the pair will decrease the weight of that pair

approximately linearly. The angle subtended at the observer by the pair of pulsars 9U can be

important if 6U is near the zeroes of the function plotted in Figure 1.8.

To determine which pulsars contribute the most to our estimate of the GWB, we perform

the WLSQ fit described by equations (6.7) and (6.8) to only 189 of the possible 190 14ij (61])

estimates. By varying which estimate of 14ij (917') is removed, we can find the pulsar pairs that

have the greatest influence over the measurement of 142 in these residuals. This is performed by

finding A142 for each pair of pulsars, which is the measured .42 from all pulsar pairs minus the

value of 142 when not including the given pulsar pair. Those pairs with the largest contribution

to this measure are given in Table 6.7, and a histogram of the absolute value iAAAQ} for all pulsar

pairs is provided in Figure 6.7.

This analysis shows that the measurement of fl? is determined by only a few pulsar pairs.

This severely reduces the number of degrees of freedom when detecting the GWB, and thus

decreases the maximum attainable detection confidence (see Jenet et al., 2005) because it re-

duces our ability to average out the self-noise in the residuals caused by the GWB signal at

each pulsar. Observing more strong pulsars is essential to increasing the number of degrees of

freedom in order to detect the GWB with reasonable confidence. This is further endorsement of
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Table 6.7: The nine pulsar pairs whose absence from the array changes the measurement of A2

from our residuals by more than 1030. The first column contains the names of the pulsars1n

the pair, the second column lists values of AAZ, and the third column gives the change as a

percentage of the value of A2 derived when using all our data.

Removed Pulsar Pair AA2 (x 1030) Percentage change
 

 

 

 

J17l3+0747, Jl744-1l34 18.0 -400%

J2124-3358, J2145-0750 2.32 —52%

Jl730-2304, 11744-1134 2.10 -47%

J0711-6830, J2145-0750 1.26 -28%

J0437-4715, 11909-3744 -1 .07 24%

J0437—4715, J2129-5721 -l.36 30%

J0437-4715, J2145-0750 -1.41 31%

J1713+0747, 12145-0750 -3.97 88%

J0437-4715, J17l3+0747 -7.15 159%

g l l 1 "'1 1 1

N
u
m
b
e
r

   

 

iAAzl estimate

Figure 6. 7. The effect on A2 of the removal of different pulsarpairs, as measured by |AA2|.

Almost all pulsar pairs have no significant effect on the value ofA2 obtained from our residuals.
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the International Pulsar Timing Array concept (Section 2.1) and agrees with the conclusions of

Jenet et a1. (2005), but is contrary to a suggested strategy for detection of individual GW sources

(Burt et al., 2011). This is a fundamental difference between the single GW source detection

problem and the GWB detection problem.

6.5 Conclusion

In implementing a GWB detection algorithm along the lines originally proposed by Jenet et al.

(2005), we have confronted a number of issues that must be addressed when using real obser-

vations. We find that in practice the S/N ratio can be reduced by a factor of ~12 compared with

the ideal situation discussed by Verbiest et al. (2009) because of the fitting of a timing model

to form the residuals. In particular, almost all of the signal loss is caused by the fitting of a

quadratic term and arbitrary phase offsets between different observing systems. We also find

that it will be important to estimate and correct both clock errors and ephemeris errors when

attempting to detect the GWB at a level less than A = 2 x 10—15. As pointed out by Jenet

et a1. (2005), prewhitening will be required to obtain detection significance larger than 30. We

find that this cannot be done without solving the problem of spectral leakage due to irregular

sampling and variable ToA uncertainties.

Fortunately, there are encouraging indications that many of these problems can be solved.

Recent work (Hobbs et al., 2011; Champion et al., 2010) shows that clock errors and ephemeris

errors can be estimated and removed. These errors are at a level that would disrupt the GWB

signal in pulsar timing observations in the near future, and could even impact the analysis of a

modified version of the Verbiest et al. (2008, 2009) observations that did not include arbitrary

phase offsets between observing systems. The clock and ephemeris communities will continue

to improve their data sets as systems with more sensitivity become available. It appears possible

to improve the process of fitting a timing model and also to improve the spectral leakage using

the algorithm discussed by Coles et al. (2011). It has proved possible to calibrate most of the

phase discontinuities between different observing systems in the PPTA observations and this

alone can improve the S/N ratio of the GWB signal by a factor of two.

We have not discussed DM variations, but it is likely that some of the low frequency noise

in our residuals is due to such interstellar propagation effects. Certainly as the various PTA data

sets improve it will be essential to estimate and remove any frequency-dependent effects.
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Our analysis shows that, although the Verbiest et a1. (2008, 2009) data set contains obser—

vations of 20 pulsars spanning many years, only a few of the pulsars in this data set contribute

significantly to detecting the GWB, thereby reducing our detection confidence. It is uncertain

whether this will be the case for the most recent observations from the PPTA. Observations of

a larger sample of pulsars with precise ToA measurements will help to overcome this problem.
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Chapter 7

Conclusion and Future Prospects

Chapter Outline: In this Chapter, we:

0 describe thefield ofGW research using pulsar timing as it was in 2007 when this thesis

commenced.

o summarise the results ofChapters 3 — 6.

o outlinefuture work and a path to a possible detection ofGWs with pulsar timing.

This thesis has addressed the problem of how to study GWs using observations of MSPs.

We have focussed on current results using observations from the PPTA project. A detection has

not yet been made, but we have constrained the amplitude of single GW sources. In Section

7.1, we highlight the status of GW detection experiments with pulsars before and during this

thesis work. In Section 7.2, we discuss the possible future of this exciting project.

7.1 The Past

At the start of 2007, it was already clear that pulsar observations could be used to make a direct

detection of GWs (e.g., Sazhin, 1978; Detweiler, 1979). First attempts to create a PTA had

been described by Foster & Backer (1990), and Hellings & Downs (1983) had shown that an

unambiguous detection of a GWB could be made by measuring correlated timing residuals with

a specific angular dependence. Jenet et al. (2005) had shown that a PTA project would need to

observe Z20 pulsars over 25 years to be sensitive to expected GW sources. However, Jenet et

al. (2004) had already used pulsar observations to rule out a proposed SMBHB system in the

radio galaxy 3C66B with a high degree of confidence.

In 2005, the main data collection for the PPTA project started. A small subset of the data

were studied to provide a limit on the amplitude of the GWB (Jenet et al., 2006). This work led

to the most constraining limit on the GWB amplitude until early 2011 and was used to rule out
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some models of cosmic superstrings. However, this method assumed that the timing residuals

were statistically white and therefore limited the application of the algorithm to only a few data

sets. Jenet et a1. (2005) had proposed a method to detect a GWB, but this method could only

be applied to timing residuals that had the same regular sampling for all pulsars. The treatment

of the effects of pulsar parameter fitting on the algorithms for GWB detection had scarcely

been considered (particularly for data sets in which each pulsar was observed for a different

time-span).

Over the course of this thesis, we have described techniques that can be applied to almost

any set of observations from a PTA. Through the work of Chapters 3 and 4, it is now possible

to measure the sensitivity of almost any set of PTA observations to an individual GW—induced

sinusoid. This means that a realistic sensitivity curve, which is analogous to the LIGO sensitiv-

ity curve, can now be calculated for GW analysis with a PTA. From Chapter 5, we reported that

the non-detection of a GWB signal in the near future would provide significant constraints on

currently—accepted models of SMBH formation and evolution. However, if a GWB signal can

be detected, it is possible to use the technique of Chapter 6 to detect a GWB signal in almost

any PTA data set in a straightforward and unambiguous way. Any detection using this technique

takes account of the effects of pulsar parameter estimation on irregularly-sampled observations

over different time-spans with unequal error bars. This work also shows that the GWB detec—

tion statistic currently relies on only a handful of pulsars in the PPTA, whereas a successful

detection of the GWB requires the contribution of many pulsars. This is contrary to the optimal

observing strategy for detecting single sources of GWs that has been outlined in other recent

work (Burt et al., 2011).

7.2 The Future

We currently have not detected any GW signal using the PPTA observations. It is clear that the

detection technique should be improved, the current data sets need to become more sensitive

and that observations of even more pulsars are required. The following steps are being carried

out to achieve this:

First, the IPTA project (Section 2.1) will allow data from all the major PTA projects to

be shared. This project is essential for a high-confidence detection of a GW signal in PTA

observations. Under the IPTA, observations of many more pulsars will be available. This
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will significantly increase the probability of a detection of a single GW source and especially

the probability of a GWB detection. Aside from the statistical benefits of a larger number of

pulsars, it could also prove vital for convincing a wider physics audience that any GW signal

that is detected is in fact caused by GWs.

Second, Chapter 6 showed that instabilities in TT(TAI) may obscure the GWB signal.

While such an instability can be distinguished from the GWB signal using their different cor-

related signatures, the noise level in the residuals revealed by the post-corrected realisation

TT(BIPM2010) is at the level of most predictions for the GWB signal due to SMBHBs. Algo-

rithms have been implemented to detect and remove this signal (Hobbs et al., 2011), and these

algorithms should now be combined with a GWB detection algorithm.

Third, Chapter 6 also showed that errors in the solar system ephemeris may induce a stronger

signal in the timing residuals than the GWB signal. While a spectral analysis technique has been

applied to measure the mass of known planets in the solar system (Champion et al., 2010), the

effect of such errors on the likelihood of GWB detection with pulsars has not been considered

in detail. In particular, it is possible that the correlated signal induced in timing residuals by an

error in the solar system ephemeris Will be related to the correlated signal that is caused by a

GWB.

Fourth, while we have not discussed the importance ofDM variations in obscuring a GWB

signal, it is generally accepted that the DM variations will induce significant low-frequency

noise in the timing residuals of many pulsars. It is possible to correct for such variations by

comparing observations obtained at widely-separated observing frequencies.

Fifth, if no GW signal is detected in the IPTA data, it is very likely that almost all current

predictions for the amplitude of the GWB signal caused by SMBHBs will be ruled out in the

next few years. This would have important consequences for current models of galaxy forma-

tion and evolution. However, which of the parameters that are used in modelling the GWB

signal (i.e., the black-hole merger rate, the merging efficiency, the black-hole mass function;

see Section 5.2.2) are ruled out (or constrained) using a given upper bound on the GWB is not

yet clear.

Finally, while it is uncertain whether pulsar timing or very precise interferometry will make

the first direct detection of GWs, any GW signal that is detected will herald the era of GW

astronomy. This opens up an entirely new method of observation, providing simultaneous EM
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and GW information for some sources while also illuminating previously unobservable regions

of the Universe.

140



References and Bibliography

Abbott B. P., Abbott R., Adhikari R., et a1. 2009, Phys. Rev. D, 80, 102001

Acemese F., Amico P., Al-Shourbagy M., et al. 2006, Class. and Quant. Grav., 23, 63

Albrecht H.-E., Damaschke N., Borys M., Tropea C., 2003, Laser doppler andphase doppler

measurement techniques. Springer-Verlag, Heidelberg

Anholm M., Ballmer S., Creighton J. D. E., Price L. R., Siemens X., 2009, Phys. Rev. D, 79,

084030

Arzoumanian Z., Cordes J. M., Wasserman 1., 1999, ApJ, 520, 696

Backer D. C., Kulkarni S. R., Heiles C., Davis M. M., Goss W. M., 1982, Nature, 300, 615

Bailes M., 2003, in Bailes M., Nice D. J., Thorsett S., eds, Radio Pulsars, Astronomical Society

of the Pacific, San Francisco, p. 57

Bailes M., Harrison P. A., Lorimer D. R., Johnston S., Lyne A. G., Manchester R. N., D’Amico

N., Nicastro L., et a1. 1994, ApJ, 425, L41

Barriga P., Blair D. G., Coward D., et a1. 2010, Class. and Quant. Grav., 27, 084005

Begelman M. C., Volonteri M., Rees M. J., 2006, MNRAS, 370, 289

Bertotti B., Carr B. J., Rees M. J., 1983, MNRAS, 203, 945

Bhattacharya D., van den Heuvel E. P. J., 1991, Phys. Rep., 203, 1

Blanchet L., lyer B. R., Will C. M., Wiseman A. G., 1996, Class. and Quant. Grav., 13, 575

Blandford R. D., Narayan R., Romani R. W., 1984, J. Astrophys. Astr., 5, 369

141



Bloom J. S., Holz D. E., Hughes S. A., et a1. 2009, submitted to the US Astr02010 Decadal

Survey, eprint arXiv:astro-ph/0902. 1527

Burt B. J., Lommen A. N., Finn L. S., 2011, ApJ, 730, 17

Caprini C., Durrer R., Siemens X., 2010, Phys. Rev. D, 82, 063511

Carlberg R. G., Cohen J. G., Patton D. R., et al. 2000, ApJ, 532, L1

Champion D. J., Hobbs G. B., Manchester R. N., et a1. 2010, ApJL, 720, L201

Chandrasekhar S., 1935, MNRAS, 95, 676

Coles W., Hobbs G., Champion D. J., Manchester R. N., Verbiest J. P. W., 2011, MNRAS, 418,

561

Corbin V., Cornish N. J., 2010, eprint arXiv:astro—ph/1008.l782

Cordes J. M., 2002, in Stanimirovic S., Altschuler D. R., Goldsmith P. F., Salter C. J., eds, ASP

Conf Ser. 278: Single-Dish Radio Astronomy: Techniques and Applications Astronomical

Society of the Pacific, San Francisco, p. 227

Cordes J. M., Kramer M., Lazio T. J. W., Stappers B. W., Backer D. C., Johnston S., 2004, New

Astr, 48, 1413

Cordes J. M., Shannon R. M., 2010, eprint arXiv:astro-ph/1010.3785

Cox D. R., 2006, Principles ofStatistical Inference. Cambridge University Press, Cambridge

Damour T., Vilenkin A., 2005, Phys. Rev. D, 71, 063510

Davis T. M., Lineweaver C. H., 2004, PASA, 21, 97

Deller A. T., Verbiest J. P. W., Tingay S. J., Bailes M., 2008, ApJ, 685, L67

Demorest P., 2011, BAAS, 43, 124.02

Demorest P., Ramachandran R., Backer D., Ferdman R., Stairs 1., Nice D., 2004, BAAS, 36,

149.01

Demorest P. B., 2007, PhD thesis, University of California, Berkeley

142



Detweiler S., 1979, ApJ, 234, 1100

Dewey R. J., Cordes J. M., 1987, ApJ, 321, 780

Edwards R. T., Bailes M., van Straten W., Britton M. C., 2001, MNRAS, 326, 358

Edwards R. T., Hobbs G. B., Manchester R. N., 2006, MNRAS, 372, 1549

Einstein A., 1916, Annalen der Physik, 354, 769

Einstein A., 1918, Sitzungsberichte der Koniglich PreuBischen Akademie der Wissenschaften

(Berlin), p. 154

Enoki M., lnoue K. T., Nagashima M., Sugiyama N., 2004, ApJ, 615, 19

Ferdman R. D., van Haasteren R., Bassa C. G., et a1. 2010, Class. and Quant. Grav., 27, 084014

Folkner W. M., Williams J. G., Boggs D. H., 2009, The Planetary analLunar Ephemeris DE421,

IPN Progress Report 42—178 (Pasadena, CA: NASA Jet Propulsion Laboratory)

Foster R. S., Backer D. C., 1990, ApJ, 361, 300

Freire P. C., Camilo F., Lorimer D. R., Lyne A. G., Manchester R. N., D’Amico N., 2001,

MNRAS, 326, 901

Gold T., 1968, Nature, 218, 731

Granet C., Zhang H. Z., Forsyth A. R., et al. 2005, IEEE Antennas and Propagation Magazine,

47, 13

Grishchuk L. P., 2005, Physics Uspekhi, 48, 1235

Hankins T. H., Rickett B. J., 1975, in Methods in Computational Physics Volume 14 — Radio

Astronomy Academic Press, New York, p. 55

Hellings R. W., 1989, in R. W. Hellings ed., NASA Conference Publication 3046, p. 93

Hellings R. W., Downs G. S., 1983, ApJL, 265, L39

Hewish A., 1975, Science, 188, 1079

Hewish A., Bell S. J., Pilkington J. D. H., Scott P. F., Collins R. A., 1968, Nature, 217, 709

143



Hobbs G., 2002, PhD thesis, University of Manchester

Hobbs G., Archibald A., Arzoumanian Z., et al. 2010a, Class. and Quant. Grav., 27, 084013

Hobbs G., Coles W., Manchester R., Chen D., 2011, in Capitaine N., ed., New Challenges

for Reference Systems and Numerical Standards in Astronomy, Presence Graphique, France,

p. 237

Hobbs G., Jenet F., Lee K. J., et al. 2009, MNRAS, 394, 1945

Hobbs G., Lyne A. G., Kramer M., 2010b, MNRAS, 402, 1027

Hobbs G. B., Edwards R. T., Manchester R. N., 2006, MNRAS, 369, 655

Hotan A. W., Bailes M., 0rd S. M., 2006, MNRAS, 369, 1502

Hulse R. A., Taylor J. H., 1975, ApJ, 195, L51

Ilyasov Y. P., 2006, Chin. J. Astron. Astrophys. Suppl., 6, 148

Ilyasov Y. P., Imae M., Hanado Y., Oreshko V. V., Potapov V. A., Rodin A. E., Sekido M.,

2004a, in Camilo F., Gaensler B., eds, IAU Symposium 218: Young Neutron Stars and Their

Environments, Astronomical Society of the Pacific, San Francisco, p. 435

Ilyasov Y. P., Oreshko V. V., 2007, in van der Hucht K. A., ed., Highlights ofAstronomy #14,

Vol. 2, p. 489

Ilyasov Y. P., Oreshko V. V., Potapov V. A., Rodin A. E., 2004b, in Camilo F., Gaensler B., eds,

IAUSymposium 218: Young Neutron Stars and Their Environments, Astronomical Society of

the Pacific, San Francisco, p. 433

Jackson J. D., 1962, Classical Electrodynamics. John Wiley & Sons, New York

Jacoby B. A., Hotan A., Bailes M., 0rd 8., Kulkarni S. R., 2005, ApJ, 629, L113

Jaffe A. H., Backer D. C., 2003, ApJ, 583, 616

Jenet F., Finn L. S., Lazio J ., et a1. 2009, submitted to the US Astr02010 Decadal Survey, eprint

arXivzastro-ph/0909. 105 8

144



Jenet F. A., Hobbs G. B., Lee K. J., Manchester R. N., 2005, ApJ, 625, L123

Jenet F. A., Hobbs G. B., van Straten W., et a1. 2006, ApJ, 653, 1571

Jenet F. A., Lommen A., Larson S. L., Wen L., 2004, ApJ, 606, 799

Kartaltepe J. S., Sanders D. B., Scoville N. 2., et a1. 2007, ApJS, 172, 320

Kaspi V. M., Taylor J. H., Ryba M., 1994, ApJ, 428, 713

Komatsu E., Dunkley J., Nolta M. R., et a1. 2009, ApJS, 180, 330

Kopeikin S. M., 1997, Phys. Rev. D, 56, 4455

Kopeikin S. M., 1999, MNRAS, 305, 563

Koushiappas S. M., Bullock J. S., Dekel A., 2004, MNRAS, 354, 292

Kramer M., Wex N., 2009, Class. and Quant. Grav., 26, 073001

Larson S. L., Hiscock W. A., Hellings R. W., 2000, Phys. Rev. D, 62, 062001

Lee K. J., Jenet F. A., Price R. H., 2008, ApJ, 685, 1304

Lee K. J., Wex N., Kramer M., Stappers B. W., Bassa C. G., Janssen G. H., Karuppusamy R.,

Smits R., 2011, MNRAS, 414, 3251

Lin L., Koo D. C., Willmer C. N. A., et a1. 2004, ApJL, 617, L9

Lin L., Patton D. R., Koo D. C., et al. 2008, ApJ, 681, 232

Lomb N. R., 1976, Astrophys. Space Sci., 39, 447

Lommen A. N., Backer D. C., 2001, ApJ, 562, 297

Lorimer D. R., 2005, Living Reviews in Relativity, 8, 7

Lorimer D. R., Kramer M., 2005, Handbook ofPulsar Astronomy. Cambridge University Press,

Cambridge

Lyne A. G., 2004, in Camilo F., Gaensler B., eds, IAU Symposium 218: Young Neutron Stars

and Their Environments, Astronomical Society of the Pacific, San Francisco, p. 257

145



Lyne A. G., Manchester R. N., Lorimer D. R., et a1. 1998, MNRAS, 295, 743

Lyne A. G., Rickett B. J., 1968, Nature, 218, 326

Lyne A. G., Smith F. G., 2005, Pulsar Astronomy, 3rd edn. Cambridge University Press, Cam-

bridge

Maggiore M., 2000, Phys. Rep., 331, 283

Manchester R. N., 2008, in C. G. Bassa Z. Wang A. C., Kaspi V. M., eds, 40 Years ofPulsars.‘

MillisecondPulsars, Magnetars and More, Vol. 983. American Institute ofPhysics, Melville,

New York, p. 584

Manchester R. N., 2010, in Damour T., Jantzen R. T., Ruffini R., eds, Proceedings ofthe Twelfth

Marcel Grossman Meeting on General Relativity World Scientific, Singapore, in press

Manchester R. N., 2011, in Burgay M., D’Amico N., Esposito P., Pellizzoni A., Possenti A.,

eds, Radio Pulsars: An Astrophysical Key to Unlock the Secrets ofthe Universe V01. 1357 of

AIP Conference Series. American Institute of Physics, Melville, New York, p. 65

Manchester R. N., Hobbs G. B., Teoh A., Hobbs M., 2005, AJ, 129, 1993

Manchester R. N., Taylor J. H., 1977, Pulsars. Freeman, San Francisco

Mei S., Blakeslee J. P., C6té P., et a1. 2007, ApJ, 655, 144

Melrose D., 2004, in Camilo F., Gaensler B., eds, IAU Symposium 218: Young Neutron Stars

and Their Environments, Astronomical Society of the Pacific, San Francisco, p. 349

Mood A. M., Graybill F. A., Boes D. C., 1974, Introduction to the Theory ofStatistics, 3rd edn.

McGraw-Hill College, New York

Nan R., 2008, in Stepp L., Gilmozzi R., eds, Ground-based and Airborne space Telescopes 11

Vol. 7012 of SPIE Conference Series. p. 70121E

Nan R., 2009, BAAS, 41, 226.03

Navarro J., 1994, PhD thesis, California Inst. of Tech.

146



Nice D. J., Demorest P. B., Gonzalez M. E., Ferdman R. D., Ransom S. M., Stairs I. H.,

NANOGrav 2011, BAAS, 43, 139.06

Olmez S., Mandic V., Siemens X., 2010, Phys. Rev. D, 81, 104028

Oslowski S., van Straten W., Hobbs G., Bailes M., Demorest P., 2011, MNRAS, in press, eprint

arXiv:astro-ph/1108.0812

Pacini F., 1967, Nature, 216, 567

Patton D. R., Pritchet C. J., Carlberg R. G., et a1. 2002, ApJ, 565, 208

Peters P. C., 1964, Phys. Rev., 136, 1224

Peters P. C., Mathews J., 1963, Phys. Rev., 131, 435

Petit G., 2003, in Time Service Department, ed., 35th Annual Precise Time and Time Interval

Systems and Applications Meeting 2003, Curran Associates, Inc. (published in 2008), p. 307

Phinney E. S., 2001, eprint arXivzastro-ph/0108028

Pitkin M., Clark J., Hendry M. A., Heng I. S., Messenger C., Toher J., Woan G., 2008, J. Phys:

Conf. Ser, 122, 012004

Pohl R., Antognini A., Nez F., et a1. 2010, Nature, 466, 213

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, Numerical recipes in C:

The art ofscientific computing, 2nd edn. Cambridge University Press, Cambridge

Pshirkov M. S., 2009, MNRAS, 398, 1932

Pshirkov M. S., Baskaran D., Postnov K. A., 2010, MNRAS, 402, 417

Radhakrishnan V., Shukre C. S., 1985, in Srinivasan G., Radhakrishnan V., eds, Supernovae,

Their Progenitors and Remnants, Indian Academy of Sciences, Bangalore, p. 155

Rajagopal M., Romani R. W., 1995, ApJ, 446, 543

Ransom S. M., Demorest R, Ford J., McCullough R., Ray J., DuPlain R., Brandt P., 2009,

BAAS, 214, 605.08

147



Rickett B. J., 1990, Ann. Rev. Astr. Ap., 28, 561

Romani R. W., Taylor J. H., 1983, ApJ, 265, L35

Ruderman M. A., Sutherland P. G., 1975, ApJ, 196, 51

Sathyaprakash B. S., Schutz B. F., 2009, Living Reviews in Relativity, 12, 2

Sazhin M. V., 1978, Sov. Astron., 22, 36

Scargle J. D., 1982, ApJ, 263, 835

Sesana A., Vecchio A., 2010a, Class. and Quant. GraV., 27, 084016

Sesana A., Vecchio A., 2010b, Phys. Rev. D, 81, 104008

Sesana A., Vecchio A., Colacino C. N., 2008, MNRAS, 390, 192

Sesana A., Vecchio A., Volonteri M., 2009, MNRAS, 394, 2255

Shannon R. M., Cordes J. M., 2010, ApJ, 725, 1607

Shapiro S. L., Teukolsky S. A., 1983, Black Holes, White Dwarfs and Neutron Stars. The

Physics ofCompact Objects. Wiley—Interscience, New York

Shawhan P. S., LIGO Scientific Collaboration 2003, Nucl. Instr. and Methods in Phys. Res. A,

502, 396

Sillanpfiéi A., Takalo L. 0., Pursimo T., et a1. 1996, A&A, 305, L17

Smith J . R., LIGO Scientific Collaboration 2009, Class. and Quant. GraV., 26, 114013

Smits R., Lorimer D. R., Kramer M., Manchester R., Stappers B., Jin C. J ., Nan R. D., Li D.,

2009, A&A, 505, 919

Smits R., Tingay S. J., Wex N., Kramer M., Stappers B., 2011, A&A, 528, 108

Standish E. M., 2004, A&A, 417, 1165

Stappers B. W., Kramer M., Lyne A. G., D’Amico N., Jessner A., 2006, Chin. J . Astron. Astro-

phys. Suppl. 2, 6, 298

148



Stinebring D. R., Ryba M. F., Taylor J. H., Romani R. W., 1990, Phys. Rev. Lett., 65, 285

Sudou H., Iguchi S., Murata Y., Taniguchi Y., 2003, Science, 300, 1263

Taylor J. H., 1992, Phil. Trans. Roy. Soc. A, 341, 117

Taylor J. H., Cordes J. M., 1993, ApJ, 411, 674

Taylor J. H., Weisberg J. M., 1982, ApJ, 253, 908

Thome K. S., 1987, in Hawking S., Israel W., eds, 300 Years of Gravitation, Cambridge Uni-

versity Press, Cambridge, p. 330

Thorsett S. E., Dewey R. J., 1996, Phys. Rev. D, 53, 3468

Tofani G., Alvito G., Ambrosini R., et a1. 2008, in Stepp L., Gilmozzi R., eds, Ground—based

andAirborne space Telescopes 11 Vol. 7012 of SPIE Conference Series. p. 70120F

Usov V. V., Melrose D. B., 1995, Aust. J. Phys., 48, 571

Valtonen M. J., Nilsson K., Villforth C., et a1. 2009, ApJ, 698, 781

van Haasteren R., Levin Y., 2010, MNRAS, 401, 2372

van Haasteren R., Levin Y., Janssen G. H., et a1. 2011, MNRAS, 414, 3117

van Haasteren R., Levin Y., McDonald P., Lu T., 2009, MNRAS, 395, 1005

van Straten W., 2003, PhD thesis, Swinburne University of Technology

van Straten W., 2006, ApJ, 642, 1004

van Straten W., Bailes M., Britten M., Kulkami S. R., Anderson S. B., Manchester R. N.,

Sarkissian J., 2001, Nature, 412, 158

Verbiest J. P. W., Bailes M., Bhat N. D. R., et a1. 2010, Class. and Quant. Grav., 27, 084015

Verbiest J. P. W., Bailes M., Coles W. A., et al. 2009, MNRAS, 400, 951

Verbiest J. P. W., Bailes M., van Straten W., et a1. 2008, ApJ, 679, 675

Volonteri M., Haardt F., Madau P., 2003, ApJ, 582, 559

149



Volonteri M., Salvaterra R., Haardt F., 2006, MNRAS, 373, 121

Weisberg J. M., Nice D. J., Taylor J. H., 2010, ApJ, 722, 1030

Wen Z. L., Jenet F. A., Yardley D., Hobbs G. B., Manchester R. N., 2011, ApJ, 730, 29

Wen Z. L., Liu F. 8., Han J. L., 2009, ApJ, 692, 511

White S. D. M., Rees M. J., 1978, MNRAS, 183, 341

Will C. M., 1977, ApJ, 214, 826

Wyithe J. S. B., Loeb A., 2003, ApJ, 590, 691

Yan W. M., Manchester R. N., van Straten W., et a1. 2011, MNRAS, 414, 2087

Yardley D. R. B., Coles W. A., Hobbs G. B., et al. 2011a, MNRAS, 414, 1777

Yardley D. R. B., Coles W. A., Hobbs G. B., Manchester R. N., 2011b, in Burgay M., D’Amico

N., Esposito P., Pellizzoni A., Possenti A., eds, Radio Pulsars: An Astrophysical Key to

Unlock the Secrets of the Universe, Vol. 1357 of AIP Conference Series. American Institute

of Physics, Melville, New York, p. 77

Yardley D. R. B., Hobbs G. B., Jenet F. A., et a1. 2010, MNRAS, 407, 669

You X. P., Hobbs G., Coles W. A., et a1. 2007, MNRAS, 378, 493

Zechmeister M., Kfirster M., 2009, A&A, 496, 577

150



Appendix A

Our Technique for Detection of a

Gravitational-Wave-Induced Sinusoid in

Actual Pulsar Timing Observations

This Appendix contains supplementary material relevant to Chapter 4.

In the following sections, we give full details of the implementation of the algorithms de-

scribed in Section 4.2. In particular, we describe some of the problems that arose during the

analysis. Solutions to these problems are described below, while their implementation as a

TEMPOZ plugin is given in Appendix B.

A.1 Our Technique for Producing a Sensitivity Curve

Our method for creating curves showing the sensitivity of our timing residuals to GW—induced

sinusoidal signals from individual SMBHBs takes into account non-white noise. To produce a

sensitivity curve for a given set of pulsars and their timing residuals, we use a three-step process

as follows:

 
1. We choose logarithmically—spaced GW frequencies between % and 21;”: (single pulsar)

or between (30 yr)‘1 and (28 d)‘1 (multiple pulsars). The frequency sampling we used

for multiple pulsars requires oversampling each periodogram by a factor 30 yr/TobS for

that pulsar.

2. At each frequency, we:
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(a) add the effect of a sinusoidal GW point source with angular frequency 27rfi, am-

plitude hs and random sky-position and polarisation to the ToAs, as described by

Equation (3.6).

(b) process the data using TEMPOZ to obtain post-fit timing residuals.

(c) run a detection algorithm (described below) on the post-fit residuals that reports

either a detection or a non—detection.

(d) repeat steps 2a — 20 a large number of times (we use 103 iterations) and record the

detection percentage.

(e) If we have detected (95 :t 1) % of the signals then we have satisfied our detection

criterion and we record f,- and hs, which places a point on the pulsar timing sen-

sitivity curve. If the detection criterion is not satisfied, adjust hS higher if too few

detections have been made and lower if too many, then return to step 2a.

3. Select the next frequency in the grid and repeat.

Our detector functions as follows:

1. For each pulsar in the input data set, we calculate a non-normalised Lomb-Scargle peri—

odogram of the residuals with the frequency range described above.

2. We smooth the periodogram by taking the logarithm of the power values and using a box-

car median filter. By default, the number of points in the filter is 11 times the oversam-

pling factor for that pulsar. This accounts for the correlated spectral estimates induced by

the oversampling of the periodogram and by the irregular spacing of the timing residuals.

3. We use a least-squares fit to the median-smoothed log—periodogram to obtain a low-order

polynomial (i.e., of order less than six) that provides a simple model of the power spec-

trum (see Section A.4). The median-smoothing and model-fitting are performed only on

those points in the periodogram with frequency 3 (Tow—1. This three-step spectral mod-

elling process ensures that the simulated GW source is not included in the model as part

of the noise in the spectrum. This is particularly important at the low- and high-frequency

edges of the periodogram. When analysing the data collected from multiple pulsars we

combine their periodograms using a weighted sum. The weight used for each pulsar is the

inverse of the simple frequency-dependent model of the power spectrum for that pulsar.
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4. We multiply the noise model obtained above by a factor of ~ 2 — 3 (determined from

simulations; see Section A3) to define a set of detection thresholds for any given false

alarm probability (we use Pf = 1%). These detection thresholds are set such that there is

a 1% probability of any observed power across the whole periodogram being greater than

the threshold when there is no signal present.

5. If the measured power in the channel containing the input GW frequency is greater than

the detection threshold in that channel, then we have made a detection of a significant

sinusoid.

In place of step 1 ofthe GW detection algorithm described above, Lommen & Backer (2001)

used a floating-mean periodogram. Such a periodogram allows for the sinusoid fitted by the

Lomb-Scargle algorithm to have non—zero mean. This can be important when the observations

are sparsely sampled. We have not used a floating-mean periodogram because we expect the

improvement to be relatively small for our well-sampled observations. Furthermore, the detec-

tion algorithm we present in this Appendix is a simple implementation that we acknowledge is

not optimal.

Some of the simulated sinusoidal GW point sources produce large signals in the timing

residuals, depending on their amplitude, polarisation and location on the sky. If a set of timing

residuals showed evidence of a strong signal, a typical analysis would use a model of the pulsar

with the fewest possible parameters (i.e. a period, period-derivative and any arbitrary phase off-

sets) to obtain residuals. This allows the observations to be examined more closely to determine

the source of signal. To simulate this process, in step 2b above we calculate the full parameter

fit as normal and measure the reduced X2 for the fit. If the reduced X2 is larger than 20, then

we instead only fit for the pulsar period and spin—down, and for arbitrary phase jumps between

different backend systems.

The weighted fit for the pulsar parameters sometimes increases the power calculated at

certain frequencies by the periodogram. This is because our periodogram technique does not

account for the uncertainty in each ToA estimate. For example, extra power may be induced at

a period of six months because the weighted pulsar parameter fit gives an updated value of the

parallax that increases the unweighted power at this frequency. This is not surprising, but it can

lead to false detections. This was accounted for in the modelling of the power spectrum — con-

servative models were used in general. An optimal treatment would require a more-complicated
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weighted power spectral estimate. A weighted spectral estimate would also increase the leakage

in the periodogram because of the highly variable ToA uncertainties.

A.2 Our Technique for Producing an Upper Limit or a Limit

Matrix

As described in Section 4.2, we have developed a technique for ruling out GWs with a particular

strain amplitude as a function of frequency. The important assumption in producing an upper

bound is that, at any frequency in our periodogram, the power caused by GWs cannot be more

than the observed power. If it were, we would have observed a higher power level at that

frequency. This means that we assume that all the power at a given frequency is caused by an

individual non-evolving source of GWs. We then calculate the GW strain that gives a power

greater than this level in 95% of simulations. This value of the GW strain becomes the upper

bound.

To produce this upper bound, we first calculate the periodogram of the observed timing

residuals of each pulsar. We make a simple polynomial model of the noise in this periodogram

and use the inverse of this noise model as the weight in calculating a weighted and summed

periodogram. This weighted and summed periodogram is the “limit threshold” in this case. The

limit threshold roughly represents the weighted average noise level in the residuals.

We then simulate the ToAs induced by a non-evolving SMBHB using Equation (3.6). These

induced ToAs are consistent with a noiseless sinusoid. We apply the TEMPOZ parameter fit

directly to these ToAs to calculate the residuals induced by this SMBHB in each pulsar. We

calculate the weighted and summed periodogram of the induced residuals using the same noise

model for each pulsar that is used for the actual observations. We compare this weighted sum of

noiseless sinusoids to the limit threshold. We then scale the strain amplitude so that the induced

signal produces more power than the limit threshold in 95% of simulations. We can thus rule

out the existence of any stronger GW sources at this frequency (with random sky position and

polarisation) with 95% confidence.

Unlike in the detection case, we cannot use the reduced X2 to inform us of the quality of

the pulsar parameter fit. This is because we are fitting pulsar parameters to a noiseless sinusoid,

so the reduced X2 is meaningless for these parameter fits. However, the amplitude of each

simulated GW signal when producing a limit is considerably smaller than that required to make
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a detection because the limit threshold is lower than the detection threshold. An upper bound

on the amplitude of a sinusoid present in timing residuals will always be lower than the lowest

detectable amplitude, because detection must account for the noise in the detector.

A.3 The False Alarm Probability

We have used simulations to calculate the detection threshold for a false alarm probability of

1% across the whole weighted and summed periodogram of a given data set. The statistics of

each channel in the periodogram approximately follow a xg-distribution with 2Npsr degrees of

freedom, but many other effects change the statistics of each channel, as described below.

After adding a large GW signal to our ToAs that induces a sinusoid in frequency channel 2',

the statistics of channel 2' follow a non-central Xg-distribution, i.e., a Ricean distribution. This

does not affect the false-alarm probablility determination but would affect analytic determina-

tions of pulsar timing sensitivity. Other effects include:

o the irregular sampling of the time series (which can cause correlated estimates of the

power in different channels);

0 the oversampling of the periodogram when analysing multiple pulsars (which means that

the peaks in the periodogram will be more fully resolved and thus the peak value is

higher); and

o the median filtering (which lowers the height of each peak in the periodogram as well as

raising the troughs).

Our method for calculating the detection threshold is similar to the method described in

Section 3.2.2. We calculate T”, which is the detection threshold in an individual frequency

channel that gives a 1% false alarm probability, by assuming that the power follows a X2-

distribution with 2Npsr degrees of freedom. For this analysis, T17,- is a factor of 2 lower than the

level implied by a X2-distribution with 2Npsr degrees of freedom because the mean of such a

distribution is 2Npsr, whereas the mean of the weighted and summed periodogram is Npsr. We

then choose 6’ > 1 (generally in the range 1.3 < 5’ < 2.5) and calculate Ti’ 2 fi’TU. T," forms

a first estimate of the detection threshold corresponding to a particular false alarm probability

across all frequencies in the periodogram.
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We then simulate ~ 103 realisations of white noise with a rms residual of 100 ns and the

same sampling as the original time series. We do not perform a TEMPOZ parameter fit, nor add

any SMBHB signals to the data. We calculate a weighted and summed periodogram for each

realisation and compare it to Ti’ . We find the number of simulated data sets yielding a detection

at any frequency. If this number is more than 1% of the total number of simulated data sets, then

we increase fl’ and repeat the process. The factor 3’ is adjusted until we find the correct factor

6’ = B such that the detection rate above the correct detection threshold T,- = 3T1,, equals the

false alarm probability. Note that the process of calculating [3 described here is equivalent to

manually calculating fl in Section 3.2.2.

A.4 Modelling the Power Spectrum

Some typical spectral models used in our analysis are shown in Figure 4.1. The three pulsars

shown in this figure are the same three whose individual sensitivity is displayed in Figure 4.2.

In general, the models chosen are conservative in the presence of red noise to minimise the

number of spurious detections at low frequencies.

The spectral models in Figure 4.1 exhibit some typical features from our analysis. In partic-

ular, the models account for the confusion between red noise in the timing residuals and signal

leakage caused by irregular sampling. Many of the PPTA pulsars (including PSRs J0437—4715

and J1713+0747) exhibit high power levels at the lowest frequencies. This requires the in-

clusion of more terms in the chosen polynomial model; for example, PSRs J1713+0747 and

10437—4715 are both modelled with quartic polynomials. On the other hand, the timing resid-

uals of PSR J1857+0943 exhibit a flat periodogram at all frequencies before the addition of

simulated GW signals. However, if the actual residuals had been affected by a low-frequency

GW source, we would be unable to distinguish between leakage from the GW signal and low-

frequency noise. As shown in Figure 4.1, it is conceivable that these timing residuals are af-

fected by low-frequency noise in the channels adjacent to the signal. Hence, we model its

periodogram with a cubic polynomial to take account of the fact that we cannot distinguish

between a low-frequency GW source affecting the ToAs and red noise affecting the ToAs.

When limiting the amplitude of the individual non-evolving GW sources that could be af-

fecting our observations, we do not add sinusoids to the measured timing residuals. Hence,

a different model for the power spectrum may be used from those shown here, because the
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features in the periodogram are different.
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Appendix B

Computer Programs Implemented

This Appendix contains the source code for three ofthe TEMP02 plugins that I developed during

my PhD. This code is included in my thesis in case the original source code is lost or deleted,

and as a reference for some details described in the thesis. While the code has been thoroughly

tested for functionality, it has been only slightly edited to aid readability.

All three codes are freely available online at:

http://www.atnf.csiro.au/research/pulsar/tempoZ/index.php?n=Main.

Plugins

B.1 The XFERJUNC4J’LUG.C plugin

This plugin is described in Section 2.4.3 of this thesis. It has been slightly edited for its appear-

ance from the original source code.

/*****************************************************************************/

/* a plugin to determine the transfer function of tempoZ as it acts on a particular data set.

You need to rerun this code everytime you change which parameters are being fit for 0R

have a new data set if you want to correct for the effects of tempoZ. This code also uses

smoothed and interpolated white noise as the "prefit" spectrum and performs the same

smoothing and interpolation on the post—fit residuals to calculate the post—fit spectrum.

This does not affect the transfer function at low frequencies (which is what we care about

given the weighting function used in the GWB detection statistic) and appears to have

negligible effect on the transfer function at high frequencies.

*/

#include <stdio.h>

#include <string.h>

#include <std1ib.h>

#include <math.h>

#include ”’tcmp02.h“

#include "TKspcctrum.h“

#include ”T2loolkit.h“

#include "TKfit.h“

#include ”GWsim.h”

using namespace std;
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void makeIdcaISats(pulsar *psr,int npsr,char parFilc[MAX?SILVALHMAXIILELEN],char timFi1c[

MAX_PSR_VAL] [MAXIILELEN ] ) ;

void TK-wcightLSZ(d0uble *x,d0uble *y,double *sig,int n,double *outX,double *outY,int *outN,

double *outYJc, double *outYJm, int uschight);

void intcrpolateSplineSmooth(double *inX, double *inY, int inN, double separation , double *

interpX , double *intcer , int *nlntcrp);

void uniquc(d0uble *in, int nIn, double *out, int *nOut);

double TKfindWcightcdRMS_d(double *x,double *wt,int n);

double TKWeightcdmcan_d(double *x,double *wt,int n);

double TKfindWcightchariancc_d(double *x,double *wt,int n);

void intcrpolateSplineSmoothFixchhase(double *inX, double *inY, int inN, double separation ,

double *intcrpX, double *inteer , int *nlntcrp, double fixcdStarl);

/* The main function called from the TEWOZ package is 'graphicallnterface' */

/* Therefore this function is required in all plugins */

extern ”C” int graphicallntcrfacefint argc,char *argv[],pu1sar *psr,in( *npsr)

{
printf("\n\n!!! NB your tim file must be sorted because this program uses TKspcctrum!!!

Which sorts your data!!!\n\n\n\n”);

char parFile [MAX_PS]LVAL][MAX_F1LELEN];

char timFile[MAX.PSR_VAL][MAX_FILELEN];

int i,k,j,p,it ,nit;

nit = 1000; //default value

int specTypc = 2; //default is Lamb Periodogram

double hifac = 3.0; //default is to go to 3 times higher frequency than the average — this

should hopefully cover all possible overlapping data spans.

int smooth = O; //default is no smoothing by a 60—day width exponential smoother.

int intcrp = 1; //default is to do the interpolation.

int useWeight = 0; //default is to just do a LSQ fit for the spectral estimates with

specType = 4.

double phase = 13.0; //the phase offset in the ”fixedPhase variable"— defines where in

the fortnight we take each sample after interpolation.

double globalParamcter;

*npsr = 0; /* For a graphical interface that only shows results for one pulsar */

printf("Graphica1 Interface: xfer_func\n”);

printf(”Author: DY\n”);

printf(”Version: 1\n“);

/* Obtain all parameters from the command line */

for (i=2;i<argc;i++)

{
if (strcmp(argv[i],”-—f”)==0)

{
strcpy(parFilc[*npsr],argv[i+1]);

strcpy(timFi1c[*npsr],argv[i+2]);

(*npsr)++;
printf(”*npsr =%d ",*npsr);

}
else if (strcmp(argv[i],"—nit”)==0)

sscanf(argv[++i], "°/od", &nit);

else if (strcmp(argv[i],”-—phase”)==0)

sscanf(argv[++i], ”%1f", &phasc);

else if (strcmp(argv[i],"—spccTypc")==0) //2 => Lamb Scarlge. 4 => Weighted Lamb

Scargle, l==> DFT

sscanf(argv[++i], ”°/od”, &spccTypc);

else if (strcmp(argv[i],”-smooth")==0) //Do a 60—day smooth and re—interpolate the

data onto a daily grid.

smooth = 1;

else if (strcmp(argv[i],"—noInterp”)==0) //Don't do the interpolation onto the regular

grid
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interp = 0;

else if (stremp(argv[i],”—useWeight")==0) //=0 to do an unweighted LSQ fit of sin and

cos to determine spectrum, = l to do a weighted LSQ fit.

useWeight = 1;

else if (strcmp(argv[i],"—h”)==0||strcmp(argv[i],”——help”)==0)

{
printf(”\n TEMPO2 xfer_func plugin: determines the transfer function of temp02 as it

acts on a particular data set. That is, what effect does temp02 have on the

power spectrum of any input data set automatically , e.g. the dip in the power

spectrum at l/lyear, the dip at the lowest few frequencies caused by quadratic

fitting , etc., and what are the error bars on the spectral estimates?\n”);

p ri n t f( ”===================\ n") ;

printf(”\nUSAGE: \n\t temp02 —gr xfer_func —f par1.par tim1.tim —f par2.par tim2.tim

..i(as many as desired) [options]\n");

printf(”\n Command line options:\n”);

printf(”—h or —-help:\t display help and exit\n”);

printf(”—nit:\t number of iterations to do in determining the transfer function\n");

printf("—spccTypc:\t determines which kind of periodogram to do —> 1 gives DFT, 2

gives Lomb Seargle, 4 gives Weighted Lomb Scargle\n”);

printf(”—smooth:\t turns on smoothing and interpolating the input data seti\n”);

printf(“—useWeight:\t uses weights to calculate the LSQ fit of sins and eosines to

determine the power spectrum\n”);

printf(”—nolnterp:\t turns off the interpolation step when used with ’—smooth’ \n”)

exit(0);

printf(“\n”);

if (specType == 1)

{
printf("DFT selected , you MUST have regular sampling to use it!!!!\n”);

}
else if (specType != l && specType != 2 && spccType l= 4)

{
printf(”Unknown spectral analysis type\n");

exit(l);

}
readParfile(psr,parFile ,timFile,*npsr); /* Load the parameters */

readTimfile(psr,timFilc,*npsr); /* Load the arrival times */

preProccss(psr ,*npsr ,argc ,argv);

for (i=0;i<2;i++) /* Do two iterations for pre— and post-fit residuals */

{
formBatsAll(psr,*npsr); /* Form the barycentric arrival times */

forchsiduals(psr,*npsr,l); /* Form the residuals */

if (i==0) doFit(psr,*npsr,0); /* Do the fitting */

}
//long seed = TKsetSeed();

long seed = —lS40; printf(”\n\n\n\nHARD CODING SEED \t\t\t\tWARNING!!!\t\t\n\n\n\n”);

long double usatO, toffset;

double **eheckResY;

double **resY, **resX, **resE;

FILE *fout, *foutPre , *foutPost;

int badFitFlagWeighted = 0; //a counter which measures how often the weighted post/it rms

is greater than the weighted prefit rms.

int badFitFlagNotWeighted = O; //a counter which measures how often the unweighted postfit

rms is greater than the unweighted prefit rms.
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int badFitFlag = 0; //a flag to tell us if there was a bad fit.

double prefitRMS, postfitRMS, postfitVAR, postfithightchAR; //the unweighted pre— and

post—fit rmses and the unweighted post/it variance.

char fnamc[100];

double tspan[*npsr], fnyq[*npsr]; //fnyq is the "average" Nyquist frequency, as used in the

Terriod program, which is the Nyquist frequency one obtains if the points are evenly

spaced over time.

double maszpan;

double minTspan;

long double minsat[*npsr], maxsat[*npsr], angspan=0.0;

double ***white; //a 3D array that contains all the white noise realisations I'll use.

//Allocte Memory

satO = (long double **)malloc(MAX_PSR*sizeof(long double *));

checchsY = (double **)malloc(MAX.PSR*sizeof(double *));

rch = (double **)malloc (MAXPSR*sizeof(double *));

rch (double **)malloc(MAXJ’SRxsizeoHdouble *));

rcsE = (double **)malloc(MAX_PSR*sizeof(double *));

white = (double ***)malloc (MAX_PSR*sizeof(double **));

for (i=0;i<MAX_PSR;i++)

{
checkResY[i] = (double *)malloc(MAX_OBSN*size0f(double));

rch[i] (double *)ma110c(MAX_OBSN*sizeof(double));

resX[i] (double *)ma110c(MAX.OBSN*sizeof(double));

rcsE[i] = (double *)malloc(MAX.OBSN*sizeof(double));

sat0[i] (long double *)malloc(MAX_OBSN*size0f(long double));

white[i] = (double **)malloc(nit*sizeof(double *));

for (j=0;j<nit;j++)

whitc[i][j] = (double *)malloc(MAX_OBSN*sizeof(double));

l|

//START PLUG/N

//following is essentially for splitting up the 1857 data set, though it could be generally

applicable.

double maxallowablegap = 2000.0; //in units of days. THIS IS AN ARBITRARY CHOICE, simply so

that we know 1857 gets split up.

long double maxgap[*npsr];

int locmaxgap[*npsr]; //the location of the biggest gap in the time series.

//Calculate timespans

{offset = psr[0].param[param_pepoch].val[0];

for (p=0;p<*npsr;p++)

{
minsat[p]=maxsat[p]=psr[p].obsn[0].sat;

maxgap[p] = 0.0L;

for (j=0;j<psr[p].nobs;j++)

{
if (psr[p].obsn[j].sat < minsat[p]) minsat[p] = psr[p].obsn[j]lsat;

if (psr[p].obsn[j].sat > maxsat[p]) maxsat[p] ' psr[p]lobsn[j].sat;

if (psr[p].obsn[j+l].sat — psr[p].obsn[j].sat > maxgap[p] &&j < psr[p].nobs—l)

{
maxgap[p] = psr[p].0bsn[j+l].sat — psr[p].obsn[j].sat;

10cmaxgap[p] = j; //so the biggest gap appears between the j—th and j+l—th

observations.

}
}

tspan[p] = (double) (maxsat[p] — minsat[p]);

fnyq[p] = psr[p]lnobs / 2.0 / (tspan[p] * 86400.0); //and now fnyq is the average

Nyquist frequency for this pulsar in sec‘—l
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angspan += (long double) tspan[p];

printf(”maxgap[p] = %Lg\n”,maxgap[p]);

angspan = angspan / (long double) *npsr;

maszpan = TKfindMax_d(tspan ,aknpsr);

minTspan = TKfindMin_d(tspan ,*npsr);

printf(“max time span present in data is %1g\n”,maszpan);

printf("min time span present in data is %1g\n",minTspan);

printf(”average time span present in data is %Lg\n\n”,angspan);

// Store residuals

int nres[*npsr];

for (p=0;p<*npsr;p++)

{
nres[p] = psr[p].nobs;

for (i=0;i<psr[p].nobs;i++)

{
if (psr[p].obsn[i]. deleted !=0)

{
printf("Must remove deleted points from the .tim file for psr %s\n",psr[p].name)

exit(1);

}
rch[p][i] = (double)psr[p].obsn[i].residual; //_/or 1857, this is MORE obsns than

we need, but will have to do truncating later on in the cadet

resX[p][i] (double)(psr[p].obsn[i].sat — toffset + 1000.0L);

resE[p][i] = (double)(psr[p].obsn[i].tanrr*l.0e—6);

}
printf(“\n");

makeIdealSats(psr,*npsr,parFile ,timFile); // Determine the idealised site arrival times

//Store ideal sats in sat0[][], TESTED that ideal sats really are ideal (rms of resid's is

0)

for (p=0;p<*npsr;p++)

i
for (i=0;i<psr[p].nobs;i++)

sat0[p][i] = psr[p].obsn[i].sat; //note these are the ideal site arrival times

//p0wer spectral estimation parameters and allocate memory

int MAX.SPEC = 2000 * (int)hifac;

double *specXPre,*spchPost,*specY, *angrcSpecY, *angostSpecY,*specY-re, *speeY_im;

double **allPrefitSpectra; //to store each iteration, thus enabling calculation of a

statistical error bar

double **allPostfitSpectra; //same as above.

specXPre = (double *)malloe(MAX_SPEC*sizeof(double));

specXPost = (double *)malloe(MAX.SPEC*sizeof(double));

specY = (double *)malloc(MAX_SPEC*sizeof(double));

specY-re = (double *)ma110c (MAX_SPEC*sizeof(double));

spch_im = (double *)malloc(MAX_SPEC*sizeof(double));

anPreSpeeY = (double *)malloc(MAXSPECtsizeoHdoubleD;

angostSpecY = (double *)malloc(MAXSPEC*sizeof(doub|e));

allPrefitSpectra = (double **)malloc(MAX_SPEC*sizeof(double*));

allPostfitSpectra = (double **)malloc(MAXSPEC*sizeof(double*));

for (i=0;i<MAX_SPEC;i++)

{
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allPrefitSpcctra[i] = (double *)malloc(nit*sizeof(double));

allPostfitSpectra[i] = (double *)malloc(nit*sizeof(douhle));

}

int nSpccPre,nSpccPosl; // if we are doing smoothing, then the pre— and post—fit, smoothing

, interpolation number of spectral estimates will be different.

double checkVar;

double crrPrefitSpcctra[MAX.SPEC];

double errPostfitSpcctra[MAXSPEC];

double errPrcfitSpcctraLowcr[MAXSPEC];

double crrPostfitSpcctraLower[MAX_SPEC];

FILE *allPre , *allPost, *xfer_funcs;

//SMO0TH1NG parameters and allocate memory.

double angau;

int nrcs_uniq[*npsr],nres_interp[*npsr];

double suml,currentday ,wcight,count1 ,meanl , separation;

double **resY-interp ,**resE_intcrp ,**rch_intcrp;

double **resY2,**rcsE2 ,**resX2;

double **rcsx_uniq ,**resE2_uniq ,**rch2_uniq;

if (smoot == 1)

{

resX_intcrp = (double **)malloc(MAX_PSR*sizeof(double *));

resXZ = (double **)malloc(MAX_PSR*sizeof(double *));

resX_uniq = (double **)malloc(MAXJ’SR*sizeof(double *));

rch-interp = (double **)ma110c(MAXJ’SR*sizeof(double *));

resE_intcrp = (double **)ma1|oc(MAX_PSR*sizeof(double *));

rch2 = (double **)malloc(MAX_PSR*sizeof(double *));

resY2_uniq = (double **)malloc(MAX.PSR*sizeof(d0uble *));

resEZ = (double **)mal]oc(MAX_PSR*sizeof(double *));

resE2_uniq = (double **)malloc(MAX_PSR*size0f(double *));

for (p=0;p<*npsr;p++)

{

resX_interp[p] = (double *)malloc(MAXOBSN*size0f(double));

resY_intcrp[p] = (double *)malloc(MAXOBSN*sizeof(double));

rcsE-interp[p] — (double *)ma110c(MAX_OBSN*size0f(double));

resX2[p] = (double *)malloc(MAX_OBSN*sizeof(d0uble));

resX_uniq[p] = (double *)malloc(MAX_OBSN*sizeof(double));

resY2[p] = (double *)malloc(MAX_OBSN*sizeof(double));

resY2_uniq[p] = (double =o<)malloc(MAX_OBSN=v=sizeof(double));

resE2[p] = (double *)malloc(MAX_OBSN*sizeof(d0uble));

resE2_uniq[p] = (double *)ma110c(MAX_OBSN*sizeof(d0uble));

double maxVariance[MAX_PSR], machightchariance[MAX_PSR]; //the maximum variance of the

white noise simulated for pulsar p;

double var; //for computational speed

double wtvar; //weighted variance

double wts[MA)LOBSN]; //the weights used in calculating the wtvar

double fixchhase = —15000.0 — (double)toffset + phase; //fixes the phase of the grid of

points for interpolation. The 0.0 is a variable that can change the results by shifting

which points are in the cross spectrum and which ones aren't

printf(”fixedPhase = %g, resX[0][0] = %g, xres[l][0] = %g\n",fixchhase , resX[0][0],resX

[1][0]);

//BEGIN iteration to find average pre— and post—fit spectrum.
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for (p=0;p<*npsr;p++)

{

badFitFlagWeightcd = 0;

badFitFlagNotWeightcd = 0;

sprintf(fname,"AllPrefitSpcctraidat-psr%s”,psr[p].namc);

sprintf(fnamc,”AllPostfitSpectra.dat_psr%s”,psr[p].namc);

if (useWcight == 1)

{

for (i=0;i<psr[p].nobs;i++)

wts[i] = 1.0 / resE[p][i] / rcsE[p][i];

 printf(”\n \n”);

printf(”Rcading data for psr %s\n”,psr[p].name);

for (it=0;it<nit;it++)

{

if ((it+l)%(nit/10) == 0)

{

printf("it: %d/%d Simulating white noise in array white[p][it][i]\r",it+l,

nit);

fflush(stdout);

//Fill up ”white" array with white noise realisations.

for (i=0;i<psr[p].nobs;i++)

{

white[p][it][i] = TKgaussDeV(&sced) * (double)(psr[p].obsn[i]itanrr*1.06—6);

// creates white noise consistent with error bars on each point. Note that I

CAN'T USE resE here because, if I'm doing an unweighted fit, resE gets

reset to [.0 (/1!!!) May not be true with my new TK_weightLSZ code.

// = TKgaussDev(&seed) *1.0e—7,' // creates 100ns of white noise.

}

if (uscWeight == 0) var = TKvariance-d(whitc[p][it],psr[p].nobs);

else if (useWcight == l) wtvar = TKfindWeightedVariancc_d(white[p][it],wts,psr[p].

nobs);

if (it == 0)

{

if (uscWeight == 0) maxVariance[p] = var;

else if (uscWeight == 1) machightchariancc[p] = wtvar;

}

else

{

if (uschight == && var > maxVariance[p]) maxVariancc[p] = var;

else if (uschight == 1 && wtvar > maxWeightchariance[p]) maxWeightchariance[

p] = wtvar;

}

}

if (uschight == 0) printf(”\nuscWeight = %d and maxVariancc[p] variance = %g\n”,

uschight , maxVariance [p]);

else if (uschight == 1) printf(”\nuscWeighl = “/od and maxWeightchariance[p]

variance = %g\n”,uschight,machightedVariance[p]);

//begin transfer function calculation.

for (it=0;il<nit;it++)

{

if ((it+l)%(nit/10) == 0)

{
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printf(”it: %d/%d setting residuals cqual to white noise and processing\r”,it

+1,nit);

fflush(stdout);

if (badFitFlag == 1) //if we had a bad fit last time, then

{
// Create some BRAND NEW white data

for (i=0;i<psr[p].nobs;i++)

{
resY[p][i] = TKgaussDev(&sced) * (double)(psr[p].obsn[i].tanrr*l.Oe—6);

PST[P]-0b5n[i].sat = sat0[p][i]+((long double)(rch[p][i]))/86400.0L;

}
badFitFlag = 0;

}
else if (badFitFlag == 0) //if the last fit was fine, use the next iteration of

stored white data

{
for (i=0;i<psr[p].nobs;i++)

{
fCSY[P][i] = White[P][it][i];
psr[p].0bsn[i].sat = sat0[p][i]+((long double)(rch[p][i]))/86400.0L;

psr[p].nJumps = O;

for(i=0;i<MAXJ’ARAMS;i++) //to avoid memory errors due to array size

overflow (e.g. Kin and Sin] are linked parameters, so every iteration we will

have a new link)

{
psr[p].param[i].nLinkT0 = O; //to avoid memory errors due to array size

overflow

psr[p].param[i].nLinkFrom = 0; //to avoid memory errors due to array size

overflow

}

readParfile(psr+p,parFile+p,timFi1e+p,l); /* Load the parameters for pulsar p

only Note that we are NOT re-reading the tim—file*/

vcctorPulsar(psr+p,l); /* 1. Form a vector painting at the pulsar */

calculate_bclt(psr+p,1);

formBats(psr+p,l); /* Form Barycentric arrival times */

formResiduals(psr+p,l ,0); //these are PREFIT residuals

//TRUNCATE prefit data set if it has a gap in it larger than MAMLLOWABLEGAP!!! if

maxgap for this pulsar is bigger than maxallowable gap, then choose the latest

portion of this pulsar and discard the first few observations.

if (maxgap[p] <= maxallowablegap)

{
locmaxgap[p] = —1;

}
if (it == 0) printf(”locmaxgap[p] =%d\n”,locmaxgap[p]);

if (i == 0) printf(”nrcs[p] = %d, psr[p].nobs =%d\n”,nrcs[p],psr[p].nobs);

for (i=0;i<psr[p]inobs — locmaxgap[p] — 1;i++) //from the other side of the

biggest gap onwards, start recording observations.

{
rch[p][i] = (double)(psr[p].obsn[i + locmaxgap[p] + l].sat — toffset + 1000.0L)

; //Recall toffset = psr[0].param[param_pepoch].val[0],

165



chccchsY[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + 1].rcsidual; // These

are the PREFIT residuals

resE[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + 1].tanrr*le-6; //so err is

in seconds now

if (maxgap[p] <= maxallowablcgap)

nrcs[p] = psr[p].nobs;

else

{
nrcs[p] = psr[p].nobs — locmaxgap[p] — l;

tspan[p] = resX[p][psr[p].nobs — 1] — resX[p][locmaxgap[p] + 1];

}
if (it == 0) printf(”nres[p] = %d, psr[p].nobs =%d, tspan[p] =%g\n”,nrcs[p],psr[p

].nobs, tspan[p]);

if (it == 0)

{
if (useWcight == 0) printf("\nvariance is %g and smooth = %d\n”,

TKvariancc_d(chcckResY[p] , nres [p]) ,smooth);

else if (uscWeight == 1) printf(”\nWGTED variance is %g and smooth = %d\n”

,TKfindWcightchariance _d(chcckResY [p] ,wts , nres [p]) ,smooth );

//Now smooth and interpolate the white not—tempoZ—fit data, calculate the power

spectrum after smoothing and interpolation and set this as the "PREFIT" power

spectrum.

if (smoot == 1) //do smoothing and then the interpolation

{
angau = 60.0; //this is the smoothing width

if (strcmp(psr[p].name,”1939+2134”)==0) avg'l'au = 30.0; //to

remove the bump near the end of the time series.

if (it == 0) printf(”FIXING!!! angau = %1g\n”,angau);

for (i=0; i<nres[p]; i++) //i is observation number in post—interpolated time

series.

suml=0.0;

rch-interp[p][i]=0; resE_interp[p][i]=0;

currentday = rch[p][i]; //smooth onto the same time points as the input

time series.

rch-interp[p][i] = currentday;

//D0 the smoothing. filterid controls whether to use gaussian or exponential

smoother — I = Gaussian, 2 = expnl.

for (k=0;k<nres[p];k++)

{
weight = cxp(—fabs(rch[p][k] - currentday)/angau) / pow(rcsE[p][k],2);

suml+=wcight;

resY-intcrp[p][i]+=wcight*chccchsY[p][k];

resE-intcrp[p][i]+=pow(weight*rcsE[p][k],2);

}
rch2[p][i] — rch_interp[p][i] / suml;

resE2[p][i] ’ sqrt(rcsE_intcrp[p][i] / pow(suml,2) );

rch2[p][i] currentday;

count] = 0; // Remove means UJVWEIGHTEDl/llllll
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mean] = 0.0;

for (i=0;i<nres[p];i++)

{

if (resY2[p][i] != 0)

{

meanl+=resY2[p][i];

countl++;

}

mean] /=( double)(countl );

for (i=0;i<nrcs[p];i++)

if (resY2[p][i] != 0) resY2[p][i]—=mcanl;

if (TKmean_d(rch2[p],(int)countl) > 1.00—10) {printf("ERROR!! mean of rchZ

[%d] =%g != 0, count] =%d\n“,p,Tchan_d(rch2[p],(int)countl), countl);

cxit(l);}

if (intcrp == I)

{

//now interpolate smoothed data onto a regular grid using a constrained

cubic spline — day separations given by "separation "

separation = 14.0; //2 weekly time series

if (it == 0) printf(”scparation =%1g\n”,separation);

//NOW run unique () code on resX2 and resYZ to get a list of unique SATs and

(SAT—sorted) residuals .'

unique(resX2[p],nrcs[p],rch-uniq[p],&nrcs_uniq[p]);

unique(resY2[p],nres[p],rch2_uniq[p],&nrcs_uniq[p]);

unique(rcsE2[p],nres[p],rcsE2_uniq[p],&nrcs_uniq[p]); //MAKE SURE ERRORS

AREN’T ALL EQUAL AT THIS POINT/l

//Now run the spline interpolation.

interpolateSplineSmoothFixchhasc(resX_uniq[p], rch2_uniq[p], nrcs_uniq[p],

separation , rch-intcrp[p], resY_intcrp[p], &nrcs_intcrp[p],fixchhasc)

//Now run the spline interpolation ON THE ERROR BARS using their variancet

need calculate variance of the err2_uniq[p] array

for (i=0;i<nrcs_uniq[p];i++)

rcsE2_uniq[p][i] = rcsE2_uniq[p][i] * resE2_uniq[p][i];

interpolateSplincSmoothFixchhase(resX_uniq[p], resEZ-uniq[p], nrcs_uniq[p],

separation , resX_interp[p], resE_intcrp[p], &nrcs_intcrp[p],fixedPhase)

//reset value of uniq error.

for (i=0;i<nrcs_uniq[p];i++)

rcsE2_uniq[p][i] = sqrt(rcsE2_uniq[p][i]);

//make the interpolated resEJnterp the standard deviation (error), not the

variance.

for (i=0;i<nres_intcrp[p];i++)

resE_interp[p][i] = sqrt(resE_intcrp[p][i]);

}

else //not performing interpolation

{

for (i=0;i<nres [p]; i++)
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llrch-intcrp[p][i] rch2[p][i];

resY-intcrp[p][i] = rch2[p][i];

rcsE_intcrp[p][i] resE2[p][i];ll

}
nrcs_interp [p] = nres [p];

if (smooth == 1)

1
if (specTypc!=4)

TKspcctrum(rch-interp[p],rch_interp[p],rcsE_interp[p],nres_interp[p

],0 ,0 ,0,0 ,0,spccTypc ,1 ,1 ,1 ,specXPrc ,spch,&nSpccPrc ,0 ,0, specY-rc,

spch-im, uschight);

else

TKspcctrum(rch_interp[p],rch-interp[p],rcsE_interp[p],nrcs-interp[p

],0,0,0,0,0,6,1,hifac ,1 ,specXPre ,spch,&nSpccPrc,0,0, spch-re,

spchJm, uschight);

}
else if (smooth == 0) //no smoothing done

1
if (spccType!=4)

TKspcctrum(rch[p] ,chcckResY[p] ,rcsE[p] ,nrcs[p] ,0,0,0,0,0,spccType ,1 ,1,1 ,

spchPre ,spch,&nSpccPrc,0,0, spchJC, spch-im,uschight);

else

1
TKspcctrum(rch[p],chccchsY[p],rcsE[p],nrcs[p],0,0,0,0,0,6,1,hifac ,1 ,

specXPrc,spch,&nSpecPrc,0,0, specY-re, specY-im, useWcight);

}
}

for (i=0;i<nSpccPrc;i++)

1
if (it == 0) angrcSpecY[i] = O;

angreSpch[i] += specY[i];

a11PrcfitSpectra[i][it] = specY[i];

}
//END OF SMOOTHING AND INTERPOLATING PREFIT DATA NOW Do fitting

d0Fit(psr+p,1,0); /* Do the fitting */

vectorPulsar(psr+p,l); /* 1. Form a vector pointing at the pulsar */

calculate_bc1t(psr+p,1); /* 3. Calculate belt */

formBats(psr+p,1); /* Form Barycentric arrival times */

forchsiduals(psr+p,1,0); /* Form the residuals */

if (maxgap[p] > maxallowablcgap) // so if there is a large gap in the data and we

will have to truncate the data set

1
for (i=0;i<psr[p].nobs;i++)

checkResY[p][i] = (d0uble)psr[p].obsn[i].residual;

if (useWcight == 0) postfitVAR = TKvariance_d(checkResY[p],psr[p].nobs);

//this is the unweighted post—fit variance!!/!!//

else if (uschigh == 1) postfitWeightchAR = TKfindWcightedVariance_d(

chcckResY[p],wts,psr[p].nobs); //this weighted post-fit variance!

}

//TRUNCATE postfit data set if it has a gap in it larger than M4X4LLOWABLEGAP!!!

choose the latest portion of this pulsar and discard the first few observationst
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for (i=0;i<psr[p].nobs — locmaxgap[p] — l;i++) //from the other side of the

biggest gap onwards, start recording observations.

resX[p][i] = (double)(psr[p].obsn[i + 10cmaxgap[p] + l].sat — toffset + 1000.0L)

; //Recall toffset = psr[0].param[param_pepoch].val[0],

chcckResY[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + l].rcsidual; // These

are the PREFIT residuals

rcsE[p][i] = (double)psr[p]iobsn[i + locmaxgap[p] + l].tanrr*lc—6; //so err is

in seconds now

if (maxgap[p] <= maxallowablegap)

nres[p] = psr[p].nobs;

else

{
nrcs[p] = psr[p].nobs — locmaxgap[p] — I;

tspan[p] = resX[p][psr[p].nobs — I] — rch[p][locmaxgap[p] + l];

}
if (it == 0) printf(”nrcs[p] = %d, psr[p].nobs =%d, tspan[p] = %g\n”,nrcs[p],psr[p

].nobs, tspan[p]);

if (maxgap[p] <= maxallowablcgap) //because we haven 't calculated the postfit

variance yet if it 's a normal data set.

{
if (uschight == 0) postfitVAR = TKvariancc_d(chccchsY[p],nrcs[p]); //

this is the unweighted post—fit variance Ill]!!!

else if (useWeight == I) postfithightedVAR = TKfindWcightchariancc_d(chcckResY[

p],wts,nres[p]); //this weighted post—fit variance/

}

if (uscWeight == 0 && maxVariancc[p] < postfitVAR) //i.e. if the fit has pushed

the variance to be greater than the largest variance we have input, then

{
++badFitFlagNothighted; //record a bad fit;

printf(”\nBAD UNWEIGH'IED VARIANCE FIT RECORDED, maxVariance[p] = %g, postfitVAR

= %g, it = %d\n",maxVariance[p] ,postfitVAR , it);

—it; //reset the iteration number;

badFitFlag = 1; //this was a bad fit.

continue; //return to start of iteration loop with iteration value reset.

}
else if (uscWeight == I && machightchariancc[p] < postfithightchAR) //i.e. if

the fit has pushed the variance to be greater than the largest weighted variance

we have input, then

{
++badFitF1achighted; //record a bad fit;

printf(”\nBAD WEIGHTED VARIANCE FIT RECORDED, maxWeightchariance[p] = %g,

postfithightedVAR = %g, it = %d\n”,maxWeightedVariance[p],

postfithightedVAR , it);

——it; //reset the iteration number;

badFitFlag = 1; //this was a bad fit.

continue; //return to start of iteration loop with iteration value reset.

}

//BEGIN SMOOTHING AND INTERP on post/it data

if (smooth == 1) //do smoothing and then the interpolation

{
angau = 60.0; //this is the smoothing width

if (strcmp(psr[p].namc,”l939+2134" ==0) angau = 30.0; //to

remove the bump near the end of the time series.

169



if (it == 0) printf(”FIXING!!! angau =%1g\n”,angau);

for (i=0; i<nrcs[p]; i++) //i is observation number in post—interpolated time

series.

{

sum]=0.0;

rch-intcrp[p][i]=0; rcsE_intcrp[p][i]=0;

currentday = rch[p][i]; //smooth onto the same time points as the input

time series.

resX_intcrp[p][i] = currentday;

//DO the smoothing. filterid controls whether to use gaussian or exponential

smoother — 1 = Gaussian, 2 = expnl.

for (k=0;k<nrcs[p];k++)

{

weight = cxp(—fabs(rch[p][k] — currentday)/angau) / pow(resE[p][k],2);

sum]+=wcight;

rch_intcrp[p][i]+=wcight*chccchsY[p][k];

rcsE_intcrp[p][i]+=pow(weight*rcsE[p][k],2);

}

rch2[p][i] — rch-intcrp[p][i] / sum];

rcsE2[p][i] sqrt(rcsE_intcrp[p][i] / pow(sum],2) );

rch2[p][i] currentday;

}

// Remove means

count] = 0;

mean] = 0.0;

for (i=0;i<nres[p];i++)

{

if (rch2[p][i] != 0)

{

mcan1+=resY2[p][i];

count]++;

}

mean] /=(doub]e)(count] );

for (i=0;i<nres[p];i++)

{

if (rch2[p][i] != 0) rch2[p][i]—=mean];

}

if (TKmean_d(rch2[p],(int)count]) > 1.0c—10) {printf(”ERROR!! mean of resYZ

[%d] = %g != 0, count] =%d\n”,p,TKmean_d(resY2[p],(int)count]), countl);

cxit(l);}

if (intcrp == ])

{

//now interpolate smoothed data onto a regular grid using a constrained

cubic spline — day separations given by ”separation "

separation = 7.0; //2 weekly time series

if (it == 0) printf(”scparation =%1g\n”,separation);

//NOW run unique () code on resX2 and resYZ to get a list of unique SATs and

(SAT—sorted) residuals;

uniquc(rch2[p],nrcs[p],rch-uniq[p],&nres_uniq[p]);

unique(rch2[p],nres[p],rch2_uniq[p],&nres_uniq[p]);

unique(rcsE2[p],nrcs[p],rcsE2_uniq[p],&nres_uniq[p]); //M4KE SURE ERRORS

AREN'T ALL EQUAL AT THIS POINT/l

//Now run the spline interpolation.
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interpolatesplineSmoothFixedPhasc(rch-uniq[p], resY2_uniq[p], nrcs_uniq[p],

separation, resX_interp[p], resY-interp[p], &nrcs_intcrp[p],fixchhasc)

//Now run the spline interpolation ON THE ERROR BARS using their variance.

//need calculate variance of the err2_uniq[p] array

for (i=0;i<nres_uniq[p];i++)

rcsE2_uniq[p][i] = rcsE2_uniq[p][i] * rcsE2_uniq[p][i];

interpolatcSplincSmoothFixedPhasc(resX_uniq[p], rcsE2_uniq[p], nrcs_uniq[p],

separation , rch-interp[p], rcsE-interp[p], &nrcs_interp[p],fixchhasc)

//reset value of uniq error.

for (i=0;i<nrcs_uniq[p];i++)

rcsE2_uniq[p][i] = sqrt(rcsE2_uniq[p][i]);

//make the interpolated resE_interp the standard deviation (error), not the

variance.

for (i=0;i<nres_interp[p];i++)

resE_intcrp[p][i] = sqrt(resE_intcrp[p][i]);

}
else //not performing interpolation

{
for (i=0;i<nrcs[p];i++)

{
rch_interp[p][i] = rch2[p][i];

resY_intcrp[p][i] = rch2[p][i];

resE_intcrp[p][i] resE2[p][i];

}
nrcs_interp[p] = nrcs[p];

11

//if no smoothing, then proceed straight to calculating pas/fit spectrum below.

if (smooth == 1)

{
if (specType!=4)

TKSpcctrum(resX_intcrp[p],rch_interp[p],rcsE_intcrp[p],nrcs-intcrp[p

],0 ,0 ,0 ,0 ,0 ,spccTypc,1,1,1,spchPost,spch,&nSpccPost,0 ,0 , SpCCYJ’C ,

specY_im, uschight);

else

TKspectrum(rch_intcrp[p],resY-intcrp[p],rcsE_intcrp[p],nrcs_intcrp[p

],0,0,0,0,0,6,1 ,hifac ,1 ,specXPost ,spch,&nSpccPost ,0,0 , specYJc,

specY_im, uschight);

}
else if (smooth == 0) //no smoothing done

{
if (specTypc!=4)

TKspectrum(resX[p] ,chccchsY[p] ,resE[p] ,nrcs[p] ,0 ,0,0,0,0,spccTypc ,1 ,1,1 ,

spchPost,spch,&nSpecPost,0,0, spch_re, spch_im, uschight);

else

TKspcctrum(rch[p],chccchsY[p],resE[p],nrcs[p],0,0,0,0,0,6,1,hifac ,1,

specXPost,specY,&nSpecPost,0,0, specYJc, spch_im, uschight);

for (i=0;i<nSpecPost ; i++)

{
if (it == 0) angostSpecY[i] = 0;
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anPostSpecY[i] += specY[i];

allPostfitSpcctra[i][it] = spch[i];

if (it == nit — 1)

{
//0UTPUT AVERAGE PREFIT SPECTRA

printf("For pulsar %s, badFitFlagNotWeightcd = %d, badFitFlachighted =%d, nit

= %d\n” ,psr[p]1namc,badFitFlagNothighted ,badFitFlachighted , nit);

if (spccType == 1)

sprintf(fnamc,"%s_Avg_Prefit_DFT_°/od”,psr[p].name,nit);

else if (spccType == 2)

sprintf(fname,"%s_Avg_Prcfit-Lomb_%d”,psr[p].name,nit);

else if (spccType == 4)

{
if (rcsE[p][0] == 1.00—7&& rcsE[p][l] == 1.06—7)

sprintf(fname,”%s_Avg_Prefit-UnWLS_°/od",psr[p].namc,nit);

else if (rcsE[p][0] == 1.0 && rcsE[p][l] == 1.0)

sprintf(fnamc,“%s_Avg_Prcfit_UnWLS_°/od”,psr[p].name,nit);

else

sprintf(fnamc,"%s-Avg_Prcfit_WLS_°/od”,psr[p].namc,nit);

}
printf(”\nwri[ing to file %52 FREQ—PREFIT MFAN—PREFIT UPPER—PREFIT LOWER—

PREF1T\n” , fname);

for (i=0;i<nSpccPrc;i++)

{
printf(”Sorting Prefit channel: %d/%d\r",i+l,nSpecPrc);

fflush(stdout);

angrcSpch[i] /= nit;

TKsortit(allPrefitSpcctra[i],allPrcfitSpcctra[i],allPrefitSpectra[i],nit);

errPrcfilSpcctra[i] = allPrcfitSpectra[i][(int)round(0.975*nit)]; //upper

error bar

crrPrefitSpeclraLower[i] = allPrefitSpectra[i][(int)round(0.025*nit)]; //

lower error bar

}
//0UTPUT ALL AVERAGE POSTFIT SPECTRA

if (spccType == 1)

sprintf(fname,”%s-Avg_Postfit_DFT_°/od",psr[p].namc,nit);

else if (spccTypc == 2)

sprintf(fname,”%s-Avg_Postfit_L0mb_°od”,psr[p]1namc,nit);

else if (spccTypc == 4)

{
if (rcsE[p][0] == 1.00—7&& rcsE[p][l] == 1.06—7)

sprintf(fnamc,”%s_Avg_Postfit_UnWLS_%d”,psr[p].namc,nit);

else if (rcsE[p][0] == 1.0 && resE[p][l] == 1.0)

sprintf(fname,”%s_Avg_Postfit_UnWLS_°/od”,psr[p].name,nit);

else

sprintf(fname,”%s_Avg_Postfit_WLS_°/od”,psr[p].name,nit);

}

printf("\nwriting to file %s: FREQ—POSTFIT MEAN—POSTFIT UPPER—POSTFIT LOWER—

POSTF1T\n” ,fnamc);

for (i=0; i<nSpecPost ; i++)

{
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return 0;

printf(”Sorting Postfit channel: °/od/%d\r“,i+l,nSpecPost);

fflush(stdout);

angostSpecY[i] /= nit;

TKsortit(allPostfitSpcctra[i],allPostfitSpcctra[i],allPostfitSpcctra[i],nit)

,

crrPostfitSpectra[i] = allPostfitSpcctra[i][(int)round(0.975*nit)]; //

upper error bar

crrPostfitSpcctraLowcr[i] = allPostfitSpcctra[i][(int)round(0.025*nit)]; //

lower

//0UTPUT TRANSFER FUNCTION— need to only calculate for whatever is the minimum

of nSpecPre and nSpecPost

sprintf(fname ,”Transfcr_function_SmoothlnPlacc . dat_psr%s”,psr[p].namc);

printf(”\nwriting to file %s: FREQ AVGPRE AVGPOST POST / PRE\n",fname

);

xfer_funcs = fopcn(fnamc,"w”);

for (i=0;i<nSpecPost;i++)

{

if (i >= nSpecPre) break; //ensures we get the minimum of nSpecPre or

nSpecPost

fprintf(xfer_funcs ,”%.45g %.15g %.15g %.15g\n”,spchPost[i] / 86400.0,

angreSpch[i], angostSpecY[i], angostSpch[i] / angreSpecY[i]);

}

fclose(xfcr_funcs);

printf(”DONE WRITING TO FlLE\n”); printf("\nCOMPLETE\n”);

//This code does a (can be weighted) least squares fit of "Asin(wt) + Bcos(wt)" to a data set.

This least squares fit is used to determine the amplitude of the real and imaginary parts

of the DFT.

/********The definition of the Discrete Fourier Transform used in this code is:************

* X_k = 2 =0: (I/numPts) * X_k(wikipedia) no:

a: where we have the following definitions and justification: ax

* "2" ==> the spectrum below is one—sided because all the —ve frequencies are *

* folded into the positive ones (so the DC term must be mull. by 2) *

* ”I/nPts" ==> makes the numbers match up — just one of the arbitrary definitions of DFT *

*"X_k(wikipedia)" ==> The definition of XJc given at the top of the wikipedia *

* article at "http://en.wikipedia.org/wiki/Discrete_Fourier_transform”*

* The definition given in this articles is: >o<

* X_k(wikipedia) = sum_{n=0}'{numPts} x_n * exp{—2*pi*i*k*n/numPts} *

******************************************************************************************/

//DANIEL'SALGOR1THM.’l Calculate weighted least squares fit of sinusoids to the data,

equivalent to a weighted Lomb—Scargle periodogram. Note that the returned amplitudes of

sines and cosines correspond to the imaginary and real parts of the dft, NOT the amplitude

of the bestfit sine or cosine that fits in the data.

void TK_wcightL52(double *x,double *y,double *sig2 ,int n,double *outX,double *outY,int *outN,

double *outYJc, double *outYJm, int useWeight)

int i,j,nfrcq = (int)floor((double)n / 2.0) — 1;

long

long

long

long

double

double

double

double

5] ,sZ,s3,s4,sS;

omega=0.0L;

si ,ci;

omegaO;

double sig[n];

double mean;
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double wt[n]; //an array of weights for calculating the weighted mean.

*outN = nfrcq;

if (useWcight == 0) //No weighting

{
for (i=0;i<n;i++)

sig[i] = 1.0;

}
else if (uscWeight == 1) //then use weighting

{
for (i=0;i<n;i++)

{
sig[i] = Sig21i];
wt[i] = 1.0 / (sig[i] >9: sig[i]); //preparing for taking weighted mean soon;

}

else

{
printf("Unknown value of ’uschight’ in TK_wcightLSZ\n");

cxit(1);

//zero mean input data — if it is a weighted fit, then the weighted mean must be zero.

if (uscWeight == 0)

mean = Tchan_d(y,n);

else if (useWcight == 1)

mean = TKWeightcdmcan_d(y,wt,n);

for (i=0;i<n;i++) y[i] —= mean;

//Assuming the input x values are in days, then tspan is in days:

double tspan = TKrange_d(x,n);

omegaO = 2.0L*M_P1/tspan; //this matches the freq sampling of TK-dft.

for (j=0;j<nfrcq ;j++)

{
omega = omcgaO*(long double)(j+1);

sl=52=s3=s4=55=0.01.;

for (i=0;i<n;i++)

{
si sinl(0mcga*x[i]);

ci cosl(omega*x[i]);

//19th Nov 2009 — DY has checked that these are the correct expressions for a

weighted least-squares

sl += y[i]*si/sig[i]/sig[i];

52 += si*si/sig[i]/sig[i];

53 += si*ci/sig[i]/sig[i];

s4 += y[i]*ci/sig[i]/sig[i];

55 += ci*ci/sig[i]/sig[i];

}
outY-rc[j] = (54*52 — 51*53) / (55*52 — 53*53); //the amplitude of the best fitting

cos wave.

outY_im[j] = (54*53 — 51*55) / (53*53 — s2*55); //amp of best fitting sine wave

outY_re[j] = outY_re[j] * (double)n / 210; //the real Fourier component

outY-im[j] = outY_im[j] * (double)n / 2.0; //imag Fourier component

outX[j] = omega/2.0/M_PI;

outY[j] = outY-re[j]*outY-re[j]+outY-im[j]*outY-im[j];
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//The following line assumes we want PSD output!

outY[j] = (outY[j]/pow(365.25*86400.0,2))*2*(tspan/365.25)/(double)n/(double)n;

//unique.‘ a function that returns the list of unique values in an array. NB!!! It assumes the

array has been sorted. the output array will always be smaller than or equal to the input

array.

void uniquc(double *in, int nln, double *out, int *nOut)

{

int i;

*nOut=0;

for (i=0;i<nIn—l;i++)

{

if (in[i] == in[i+l])

{

continue;

else

out[*n0ut] = in[i ];

++(*nOut);

}

out[*n0ut] = in [nIn -1];

++(*n0ut);

return;

//Adapted from Stefan / George 's plugin. interpolation (spline): this function interpolates a

data set using constrained spline

void interpolatcSplineSmooth(double *inX, double *inY, int inN, double separation , double *

interpX , double *intcer, int *nlntcrp)

//array needed by TKcmonot

double yd[MAX_OBSN][4];

//auxilary ’i'

int i;

TKcmonot(inN, inX, inY, yd);

*nlntcrp = 0;

do

{

interpX[*nInterp] = inX[0] + separation * (*nlnterp);

(*nlnterp)++;

} while (interpX[*nIntcrp — l] < inX[inN — 1]);

(*nlntcrp)——;

TKspline-interpolatc(inN, inX, inY, yd, interpX , inteer , *nintcrp);

} //interpolateSplineSmooth

//interpolation (spline): this function interpolates a data set using constrained spline onto

a fixed phase grid of points within the obseration baseline

void interpolatcSplincSmoothFixchhasc(double *inX, double *inY, int inN, double separation ,

double *interpX , double *inteer , int *nlnterp, double fixcdStart)

//array needed by TKcmonot

double yd[MAX_OBSN][4];
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,i,

//auxilary 1

int i;

TKcmonot(inN, inX, inY, yd);

*nlntcrp = 0;

i=0;

do

{

if (fixcdStart + separation * i > inX[0])

{

intcrpX[*nIntcrp] = fixcdStart + separation * i; //only put down a point if we're

within the observation baseline for this pulsar (we don’t want to EXTRAPOLATE,

just INTERPOLATE).

(*nIntcrp)++;

i++;

}

else

i++;

} while (interpX[*nIntcrp — l] < inX[inN — l]);

(*nlnterp)——;

TKsplinc_intcrpolatc(inN, inX, inY, yd, interpX, intcer , *nlnterp);

} //interpolateSplineSmoothFixedPhase

//TKfindWeightedVariance is a function to find the weighted Variance of an input series. x is

the array of values, wt is the array of weights, n is length of series.

double TKfindWcightedVariancc_d(double *x,double *wt,int n)

{

int i;

double mean,var=0i0,sumwt=0.0;

mean = TKWcightcdmcan_d(x,wt,n);

for (i=0;i<n;i++)

{

var += pow(x[i]—mcan,2)*wt[i];

sumwt += wt[i];

}

var/=sumwt;

var*=(double)n / (double)(n—l);

return var;

}

//TKfindWeightedRMS is a function to find the weighted RMS‘ of an input series. x is the array

of values, wt is the array of weights, n is length of series.

double TKfindWcightcdRMS_d(double *x,d0uble *wt,int n)

{

int i;

double mcan,sdcv=0.0,sumwt=0.0;

mean = TKWeightedmcan_d(x,wt,n);

for (i=0;i<n;i++)

{

sdcv += pow(x[i]—mcan,2)*wt[i];

sumwt += wt[i];

}

sdcv/=sumwt;

sdcv*=(double)n / (double)(n—l);

sdcv = sqrt(sdcv);

return sdcv;
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//make1dealSats: a function which replaces the sats in psr[p].obsn[*].sat with ideal site

arrival times (i‘e., the sats that give 0 residuals).

void makeIdcalSats(pulsar *psr,int npsr,char parFile[MAX_PSR.VAL][MAX_FILELEN],char timFile[

MAX_PSR.VAL] [MAX_FILELEN ] )

int j,p,i;

for (j=0;j<5;j++)

{
for (p=0;p<npsr;p++)

{
psr[p].nJumps = 0;

for(i=0;i<MAX_PARAMS;i++)

{
psr[p].param[i].nLinkTo = 0;

psr[p].param[i].nLinkFrom = 0;

}
}

readParfile(psr,parFilc ,timFilc ,npsr); /* Load the parameters */

formBatsA1|(psr,npsr); /* Form the barycentric arrival times */

forchsiduals(psr,npsr,0); /* Form the residuals */

for (p=0;p<npsr;p++)

{
for (i=0;i<psr[p].nobs;i++)

psr[p].obsn[i].sat —= (long double)psr[p].obsn[i].residual/86400.0L;
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B.2 The PSD_SIMULATOR_PLUG.C plugin

This plugin is described in Section 2.4.3 of this thesis. It has been slightly edited for its appear-

ance from the original source code.

/**************************************************************** */

/*

* This plugin takes in a powerlaw model (AnkF‘B for each freq F) for the low freq part of the

PSD, then extrapolates that model assuming you 've used a smoother of the form exp(—|t/tau

I) which has a known (and hard coded) transfer function, and then simulates regularly

spaced time series which are consistent with that PSD. There are options to use just the

power law model an not the smoother as well, or to use the George spectral model when he

was testing something. angau = 0.0 if no smoothing appliedi

* am now editing it so it can take in George's spectral density model.

*/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

#include ”tcmpoZeh”

#include ”GWsim.h”

#include ”T2toolkit.h”

#include "TKspcctrum.h”

#include ”TKfit.h"

using namespace std;

void makeldealSats(pulsar *psr,int npsr,char parFile[MAX_PSR_VAL][MAX_FILELEN],char timFile[

MAXJ’SKVAL] [MAXJILELEN ] ) ;

double TKfindWcightchariancc_d(double *x,double *wt,int n);

double TKWcightedmcan_d(double *x,d0uble *wt,int 11);

#define MAX_FLAG 10

#define MAX_FREQ 10000

/* The main function called from the TEll/fl’OZ package is 'graphicalInterface' */

/* Therefore this function is required in all plugins */

extern "C” int graphicallntcrfacc(int argc,char *argv[],pu1sar *psr,int *npsr)

{
short int dir;

int i,p,n,j ,k,pp;

double globalParamctcr;

//long seed = —125;

long sccd = TKsctSccd();

char fname[100];

int noRcd = 0; // =1 ==> don 't simulate red noise; =0 ==> do simulate rea’ noise.

int ycsClock = 0; // =0 ==> don 't simulate clock red noise (common red noise to all

pulsars); =1 ==> do simulate red noise component which is the same for all pulsars.

//GWB parameters

int ngw=1000;

double dist[MAX_PSR], alpha = —0.6666666666, gwamp = 1.06—15;

int distNum = 0;

char parFi1e[MAX_PSR][MAX_FILELEN], timFile[MAX_PSR][MAX.FILELEN];

double modelspcc-y[MA.X_PSR][2]; //stares the analytic power—law model spectrum for each

pulsar in the form (mean, exponent).

double clockspcc_y[2]; //the model of the clock spectrum.

int nspcc[MAX_PSR];

double tspan[MAX_PSR];

double maszpan;
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char 1ine[1000];

FILE *fin , *fout;

int nrcad;

char dummy[100]; //for ensuring the scanning in of spectral models goes in the right order

(the models match the pulsars they are supposed to match)

int nSpec;

double mean,mean2;

char spchodelFilc[MAX_FILELEN];

sprintf(specM0dc1Fi1c,"SpectralModels_Fina12_psr”); //this is the prefix that goes before

all the Spectral model files used.

*npsr = 0;

/* Obtain all parameters from the command line */

for (i=2;i<argc;i++)

{

if (strcmp(argv[i],”—f”)==0)

{

strcpy(parFilc[*npsr],argv[i+1]);

strcpy(timFi1c[*npsr],argv[i+2]);

(*DPSF)++;

}

else if (strcmp(argv[i],"—specModc1File")==0) //changes prefix of input file containing

the mean and the spectral exponent for each pulsar.

sscanf(argv[i+l],"%s”,&specM0delFilc);

else if (strcmp(argv[i],"—ngw")==0)

sscanf(argv[++i], "%d”, 8mgw);

else if (strcmp(argv[i],"—gwamp”)==0)

sscanf(argv[++i], ”%1f”, &gwamp);

else if (strcmp(argv[i],”-a1pha")==0)

sscanf(argv[++i], ”%lf”, &a1pha);

else if (strcmp(argv[i],”-secd”)==0)

sscanf(argv[++i], "%d”, &seed);

else if (strcmp(argv[i],“—noRed”)==0)

noRcd = 1;

else if (strcmp(argv[i],”—yesClock”)==0)

yesClock = 1;

else if (strcmp(argv[i],”—dist”)==0)

{

sscanf(argv[++i], "%]f”, &dist[distNum]);

dist[distNum]*=3.086cl9;

distNum++;

double *specX, *specY, *0utY-re, *outYJm;

double **frcq_in , **psd_in, **x, **y, **l, **angpch, **angpecY; //t is the array of x

values obtained from the inverse DFT for each p; the PSD of the input data I'm

simulating; AND x is real part of DFT, y is imag part of DFT

long double **sat0;

double **sat0_d;

//ALLOCATE lvflEMORYl/H!!!!

spch = (double *)malloc (MAX_FREQ*size0f(double));

specY = (double *)malloc (MAXFREQ*sizeof(double));

outY_re = (double *)malloc(MAXIREQ*size0f(double));

outY_im = (double *)malloc (MAX_FREQ*sizeof(double));

52110 = (long double x*)malloc(MAX_PSR*sizeof(long double *));

frcq_in = (double **)malloc((*npsr)*sizeof(double *));

psd_in = (double **)malloc((*npsr)*sizeof(double *));

x = (double **)malloc((#npsr)*sizeof(double *));
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lly (double **)malloc((*npsr)*sizeof(double *));

t (double **)malloc((*npsr)*sizeof(double *));

sat0_d = (double **)malloc(MAX_PSR*sizeof(double *));

angpch = (double **)malloc((*npsr)*sizeof(double *));

angpch = (double **)malloc((*npsr)*sizeof(double *));

for (p=0;p<*npsr;p++)

ll

{
frcq_in[p] = (double *)malloc(MAX_FREQ*sizeof(double));

psd_in[p] = (double *)malloc(MAX_FREQ*size0f(double));

x[p] = (double *)malloc(MAXIREQtsizeof(double));

y[p] = (double *)malloc(MAX_FREQ*sizeof(double));

t[p] = (double *)malloc(MAX_FREQ*sizeof(double));

angpch[p] = (double *)malloc(MAXFREQ*sizeof(double));

angpch[p] = (double *)malloc(MAXFREQ*sizeof(double));

satO[p] = (long double *)malloc(MAX_OBSN*sizeof(long double));

sat0_d[p] = (double *)malloc(MAX_OBSN*sizeof(double));

}

//Now read par and rims and form residuals. We need this for timespan of data and for

position of pulsars in GWB

readParfile(psr,parFilc ,timFile,*npsr); /* Load the parameters */

readTimfile(psr,timFi1c,*npsr); /=¢< Load the arrival times */

prcProccss(psr ,*npsr ,argc ,argv);

//printf("Number 0f pulsars = "/ad and psr[0].nobs = %d and noClock = %d and noPIot = %d\n",*

npsr, psr[0].n0bs, noClock, noPlot);

formBatsAll(psr,*npsr); /* Form the barycentric arrival times */

formResiduals(psr,*npsr,0); /* Form the residuals these are PREFIT residuals

*/

long double mcanVal;

long double kp[MAX_PSR][3];

long double gchs[MAX.PSR][MAX_OBSN];

ngrc *gw;

if ((gw = (ngrc *)malloc(sizeof(ngrc)*ngw))==NULL)

{
printf(”Unable to allocate memory for %dGW sources\n”,ngw);

cxit(l);

for (p=0;p<*npsr;p++)

sctupPu]sar-GWsim(psr[p].param[param_raj ].va1[0] ,psr[p].param[param_dccj ]. val [0] ,kp[p]) ;

if (distNum == 0) disl[p] = (0.91+p/10.0)*3.08568019;

}

//NOW read in Clock model if it was selected.

if (ycsClock == 1)

{
sprintf(fnamc,“SpectralModcl_Clock");

printf(”Scanning %s\n”,fnamc);

if ( (fin = fopcn(fnamc,”r")) == NULL)

{
printf(“Unablc to opcn/find file %s\n",fnamc);

exit(l);

while (! fc0f(fin))

{
if (fgcts(1inc ,1000 , fin ) !=NULL)

{
nread = sscanf(line ,”%5 %1g %1g",dummy,&clockspcc_y[1],&clockspec_y[0]);
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if (strcmp(”clock”,dummy)!=0)

{
printf("ERROR IN MODEL SCANNING! 'clock’ does not equal %s\n”,dummy);

fprintf(stdcrr ,”ERROR scanning %s\n”,fname);

cxit(l);

}
fclose ( fin);

//NOWREAD IN MODELS for each pulsar power spectrum to be able to simulate the PSD

for (p=0;p<*npsr;p++)

{
sprintf(fname,specModchile);

strcat(fnamc,psr[p].namc);

printf("Scanning %s\n”,fnamc);

if ( (fin = fopcn(fnamc,"r”) == NULL)

{
printf(”Unable to open/find filc %s\n"’,fnamc);

exit(1);

while (! fcof(fin))

{
if (fgets(1inc,1000,fin)!=NULL)

{
nrcad = sscanf(1ine ,”%s %1g %lg”,dummy,&modclspcc_y[p][1],&modelspcc_y[p][0]);

if (strcmp(psr[p].name,dummy)!=0)

{
printf(”ERROR IN MODEL SCANNING! %s does not equal %s\n",psr[p].name,dummy);

fprintf(stderr ,”ERROR scanning %s\n",fname);

cxit(]);

}
fclose(fin);

}
//now we have all the spectral models (maybe including the clock spectrum). Note these will

be multiplied by the transfer function of the expnl smoother to give the spectrum across

all freqsl

//Calculate timespan of each data set, needed for frequency value calculation

// the following section of code finds the first and last observations for each pulsar"

long double minsat[*npsr], maxsat[*npsr], angspan=0.0;

double achltaT = 0.0; //the average sampling time

for (p=0;p<*npsr;p++)

{
minsat[p]=maxsat[p]=psr[p]‘obsn[0].sat;

for (j=0;j<psr[p].nobs;j++)

{
if (psr[p].obsn[j].sat < minsat[p]) minsat[p] = psr[p].0bsn[j].sat;

if (psr[p].obsn[j].sat > maxsat[p]) maxsat[p] = psr[p].obsn[j].sat;

}
tspan[p] = maxsat[p] — minsat[p];

printf("tspan of pulsar %s = %g days\n”,psr[p].name,tspan[p]);

angspan += (long double) tspan[p];

achltaT += (tspan[p] / (psr[p].nobs — 1));
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}
maszpan = TKfindMax_d(tspan ,*npsr);

angspan = angspan / (long double) *npsr;

avDeltaT — achltaT / (double) *npsr;

long double [offset = psr[0],param[param_pepoch].val[0];

long double toffset2 = 7000.0L; //so that the smoothing algorithm doesn't mess up with

negative measured SATs.

double delta_t[*npsr]; //this is the timestep between days of simulated observation.

double numPts[*npsr]; //this is the number of points in the interpolated time series.

//for setting flo and fhi. we use Labs and also the average Nyquist frequency:

double flo;

double fhi;

flo = 1.0L/(20.0L * maszpan * 86400.0L); //lowest GW simulate freq is 20 times the data

span

fhi = l.0L/(l.0L * 8640001.); //highest GWsimulated freq is one day

gwamp>k= (pow(365.2425*86400.0,alpha));

//Now calculate time between consecutive observations

for (p=0;p<*npsr;p++)

{
numPts[p] = 256.0; //NB this needs to be a power of 2.

if (numPts[p] > MAX_FREQ) fprintf(stdcrr ,“Too many points in simulated time series —>

increase value of MAXJ‘REQ\n”);

delta_t[p] = tspan[p] / numPts[p];

printf(”delta t = %g and numPts = %g\n”,delta_t[p],numPts[p]);

}
double angau;

long nfreq_in[*npsr];

double weights[M.AX_OBSN];

angspan = (long double) Tchan_d(tspan,*npsr);

// Determine the idealised site arrival times

makeldealSats (psr,* npsr,parFi1c ,timFile);

//Store ideal sats in sat0[][] TESTED that ideal sats really are ideal (rms of resid’s is 0)

for (p=0;p<*npsr;p++)

{
for (i=0;i<psr[p].nobs;i++)

{
sat0[p][i] = psr[p].obsn[i].sat; //note these are the ideal site arrival times

sal0_d[p][i] = (double)psr[p].obsn[i].sat; //note these are the ideal site

arrival times

//FROM HERE ON we need to choose days vs. seconds. Choosing days.

//now calculate number of channels in psd_in and compute value of psd-in which depends on

the input spectral model and the smoothing filter used

for (p=0;p<*npsr;p++)

{
angau = 60.0; //60 day smoothing filter for most pulsars if smoothing used.

if (stremp(psr[p].namc,”l939+2134”)==0) angau = 30.0; //to remove the bump near

the end of the time series.

nfrcq_in[p] = (int)round((1.0 / delta-t[p]) / (1.0 / tspan[p]));
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for(i=0;i<nfreq_in [p]; i++)

{
freq_in[p][i] = i/tspan[p]; //this is in I/days; it is important that the

numerator is ”i”, so that we include a DC term.

if (i == 0)

{
psd_in[p][i] = 0.0; //no DC term

}
else if (i <= (nfrcq_in[p] / 2.0) )

{
psd-in[p][i] = modelspcc_y[p][0] * pow((frcq_in[p][i]/86400.0),modclspcc_y[p

][l]); //psd assuming freq is in days, psd measured in years

}
else

psd-in[p][i] = psd_in[p][ nfreq_in[p] - i ];

}
}

}
int it,nit = l;

for (it=0;it<nit;it++)

{
//NOW set up the GWB for this iteration!

GWbackground(gw,ngw,&sccd , flo , fhi ,gwamp, alpha , l);

for (k=0;k<ngw;k++)

setquW(&gw[k]) ;

for (p=0;p<*npsr;p++)

{
for (i=0;i<nfrcq_in[p];i++)

{
//FILL IN NEGATIVE FREQUENCIES

if (i <= (nfrcq_in[p] / 2.0) )

{
x[p][i] = TKgaussDev(&sccd) * sqrt(psd_in[p][i] / 4.0 / tspan[p] * 365.2425)

; //so x[p] in yr

y[p][i] = TKgaussDcv(&secd) * sqrt(psd_in[p][i] / 4.0 / tspan[p] * 365.2425)

; //s0 y[p] in yr

else

{
X[p][i] “ X[p][ nfrcq-in[p] — i ];

Y[P][i] = —l.0 * y[p][ nfTCCI-iMP] —i ];

}
}

//run the inverse FFT on complex array (x[p], y[p]) with x and y in units of years

—1

dir = —l; //—I = inverse FFT, I = normal FFT

/>« DESCRIPTION OF TK_fft This computes an in—place eomplex—to—complex FFT x and y

are the real and imaginary arrays of nres[p] = 2m points. It assumes the first

point is the DC term

*/

TK-fft(dir,nfrcq—inlp],x[p],y[p]);

//now x[p] is a complex time series measured in years and y[p] is an independent

complex time series in years. both are realisations of the PSD given by psd_irt.

The number of points in x[p] is nfreq_in[p].

//convert units of x[p] y[p] to seconds (same units as residuals) and find sample

times of x[p] and y[p]
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for (i=0;i<nfrcq_in[p];i++)

{
x[p][i] *= 86400.0*365.2425; //now x[p] measured in seconds.

{[p][i] = psr[p].obsn[0].sat + i =t< delta_t[p]; //t is measured in days

}

//NOW interpolate the derived time series function onto the grid of observations for

this pulsar.

TKintcrpolatcSplincSmoothFixedXPts(t[p],x[p],nfrcq_in[p],sat0_d[p],y[p],psr[p].nobs)

s

//so y[p] is now the same function as x[p] but sampled at the REAL observation times

of this pulsar.

//NOW calculate the effect of a GWB on the pulsars

for (i=0;i<psr[p].nobs;i++)

{
gchs[p][i] = 0.0L;

for (i=0;j<ngW;j++)
gchs[p][i] += calculateRcsidualGW(kp[p],&gw[j],(psr[p].obsn[i].sat——toffset+

toffsct2)*86400.01., dist[p]);

}
//zero mean the GWB residuals for this pulsar

mcanVa1=0.0L;

for (i=0;i<psr[p].n0bs;i++)

mcanVal+=gwRes [p][ i ];

meanVa1/=(double)psr[p].nobs;

//NOW add GWB + white noise + timing noise to the ideal site arrival times we made

earlier sat0[][].

for (i=0;i<psr[p].nobs; i++)

{
if (noRcd == 0)

{
psr[p].obsn[i].sat = satO[p][i] + (long double)(y[p][i]/SECDAY) + ((gchs[p

][i]—mcanVal)/SECDAY) + (TKgaussDcv(&sced) a: psr[p].obsn[i].tanrr a: 1.0

e—6 / SECDAY);

}
else

{ //don't simulate red noise from the model, just simulate white noise

consist. with error bars and a GWB.

psr[p].obsn[i].sat = sa10[p][i] + ((gchs[p][i]—mcanVal)/SECDAY) + (

TKgaussDcv(&sced) * psr[p].obsn[i].tanrr * 1.06—6 / SECDAY);

}
}

sprintf(fnamc ,"%s . Sim. sort . tim" ,psr[p ] . name);

writcTim ( fnamc , psr+p , ”tcmpoZ”);

}
if (it%1==0) {printf("COMPLETE, it+l/nit =%d/%d \r”,it+1,nit); fflush(stdout);}

}
printf("\nCOMPLETE\n”);
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B.3 The PTA_CORRELATIONJ’LUG.C plugin

The algorithm that is implemented by this plugin is described in Section 6.2.1 of this thesis. It

has been slightly edited for its appearance from the original source code.

/*************************************************************/

/* This plugin estimates the significance of a GWB signal in a set of data. The correlation is

performed in the frequency domain, It uses the frequency domain cross—covariance

recommended by Bill with WEIGHTING. It also uses the transfer function which can be

calculated in xfer.func or xfer_func[2,3,4] to improve the spectral analysis. It also uses

models for the power spectra which need to be in the specMoa’elFiles described below.

*/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <math.h>

#include "temp02.h"

#include ”GWsim.h”

#include "T2toolkit.h"

#include ”TKspcctrum.h”

#include "TKfit.h"

using namcspace std;

#define MAX_FLAG 10

#define MAX_FREQ 5000

double cachD(double angle);

double calcSignificance(double *corr,double *angle,int ncorr,int npsr);

double psrangle(double centre_long ,double ccntrc_lat ,double psr_long ,double psr_lat);

void averachts(float *x,f|oat *y,int n,int width,f|oat *mcanX,float *mcanY,int *nMcan);

void fitHDcurvc(double *x,double *y,double *e,int n,int wErr, int nharm,double *A2,int *outN,

double *cAZ, double *reduccd_chisq);

void HDfunc(double x,double afunc[],int ma);

void HDfuncClk(double xl,double afunc[],int ma); //used to fit the HD function AND a

constant

double TKfindWcightedRMS_d(double *x,double *wt,int 11);

double TKfindWcightedVariance_d(double *x,double *wt,int n);

void interpolateSplincSmooth(double *inX, double *inY, int inN, double separation, double *

interpX , double *intcer , int *nlntcrp);

void unique(double *in, int nln, double *out, int *nOut);

void TK-wcightLSZ(double *x,double *y,double *sig,int n,doub|e *outX,double *outY,int *outN,

double *outY_re, double *outY_im, int useWeight);

void TK-wcightLSorig(double *x,double *y,d0uble *sig,int n,double *outX,double *outY,int *outN

, double *outYJc, double *outY_im);

void intcrpolatcSplineSmoothFixedPhasc(double *inX, double *inY, int inN, double separation ,

double *interpX , double *inteer , int *nlntcrp, double fixedStart);

void interpolatcSplineSmoothFixedXPts(double *inX, double *inY, int inN, double *interpX ,

double *inteer , int nlntcrp);

float TKfindWeightedRMS_f(float *x,double *wt,int n);

/* The main function called from the TEMPOZ package is 'graphicallnterface' */

/* Therefore this function is required in all plugins */

extern ”C” int graphicallnterfacc(int argc,char *argv[],pulsar *psr,int *npsr)

{
char outFile[MAX_FlI_ELEN];

oulFile[0] ’A’;

outFile[l] ’\0‘;

char outFilcPairs[MAX-FILELEN];

outFilcPairs[0] = ’A’;
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outFilePairs[1] = ’2’;

outFilcPairs[2] ’\0’;

long idum = TKsctSccd();

int fast=0;

char parFile[MAX_PSR][MAX_FILELEN];

char timFilc[MAX_PSR][MAX_FILELEN];

int i,p,n,j ,k;

ll

double globalParametcr;

double **xrcs,**xrcs_uniq, ercs2, ercs3; //xres is the times of the input residuals,

xres3 is overlapping residuals

double firstday , lastday , minDiff;

double **xrcs_interp , **xres_intcrp_l , **xres_intcrp_2; //for testing the power spectra of

the 2—portion pulsars.

double **yrcs_intcrp ,**yrcs_intcrp_l , **yrcs_intcrp_2; //the interpolated y values, and _I

and _2 denote different sections of the time series with different white noise error

bars.

double **crr-intcrp , **err_intcrp_l , **err_intcrp_2 , **var-intcrp;

int nrcs_interp[MAX_PSR]; // number of points in interpolated series.

double *c]ock_x, *clock_y, *clock_crr; //the clock error time series.

int nclock;

double Pclock_up; //The upper bound on the power in the clock error.

double **XFER, **XFER-interp, **XFER_x, **mcanPrc; //meanPre is the average spectrum of

the white noise, used for plotting purposes

int nXFER[MAX_PSR];

double **yres,**yr052, **yresZ_uniq, *xyrcs3; //yres is the initial set of residuals, yres3

is the overlapping set.

double Herr, **err2, **crr2_uniq, Herr}, “weights; //same definitions as yres above

double uxspec;

double **yspcc_rc, **yspec_im; //for the real and imaginary parts of the Fourier transform.

double **yspec,mcan,mean1,mean2,**crrspec; //errspec is the error on the fit of the power

spectrum

double clockspec_x[MAX_FREQ],clockspcc_y[MAX_FREQ],clockspec_err[MAX_FREQ], clockspec_y_re[

MAXIREQ], clockspec_y_im[MAX_FREQ];

int nclockspcc;

double **crossspcc_x, **crossspcc_y_rc , **crossspcc_y_im, **crossspec_err; //the cross

spectrum of each pair of pulsars.

int numCrossspcc[MAX.PSR*MAX_PSR];

double **P_g; //this describes the gravitational wave power at that cross-spectral

frequency for use with the prewhitening

double modelspcc_y[MAX_PSR][2]; //stores the analytic power—law model spectrum for each

pulsar in the form (mean, exponent).

int autoFlag=0;

int nspcc[MAX_PSR];

double tspan[MAX_PSR];

double maszpan;

long double toffsct;

int nrcs[MAX_PSR], nres_uniq[MAX_PSR];

int nrcsZ [MAX_PSR] ,nrcs3 [MAXJ’SR] ,maeres;

float *fxl , *fy], *ycrr1,*yerr2 ,*fx2 ,*fy2 ,*fx3 ,*fy3;

float firstCommonX ,lastCommonX;

double minx ,maxx , miny ,maxy , minx2 ,maxx2 , minyZ , maxy2;

double rad2dcg = l80.0/M-Pl;

int rcadPar=0, rcadTim=0, noClock=1, noP10t=0, yesXSpec=0, ycsPlotXSpcc=O, noXFER=l, noEQUAD

=1, noSpchodel = I, noquad=l; // noClock = 0 ——>DO calculate clock errors; noPlot = 0

—> DO make a pgplot postscript file. noXFER = I ==> noXFER is false, so D0 CORRECT by

the transfer function. If noquad = 1, then D0 fit a quadratic.
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int regular = l; // regular = I ==> do smoothing IN PLACE, then interpolate onto a regular

grid using a constrained cubic spline interpolator.

int spccTypc = 4; //= 1 —> DFT (requires regular sampling/l). = 2 ——> Lomb periodogram, =

4 —> (can be weighted) least squares fit of Asinwt + Bcoswt

int useWcight = 1; //0 to not use a weighted spectral estimate, = 1 to use the weights in

the spectral estimate (only can use weights for specType = 4)

int nharm = l; //=1——> default is to fit ONLY for the 1-D curve; if nharm = 2 then fit for

clock error as well

int smooth = 1; //1==> default is to do smoothing, = 0 means no smoothing or interpolation.

int interp = l; //l==> default is to do interpolation, = 0 means no interpolation.

int ycsCalFac = 0; //1 = true, so we do do the calibration, 0 = false so we don't do it.

int numCal = 10; //the number of channels to be calibrated.

char str[1000];

double width = 100.0;

int ngw=0;

double dist[MAX_PSR], alpha = —0.6666666666, gwamp = 1.00—20;

double preWhAmp = 0.0; //the amplitude by which we will pre—whiten

double factor = 1.0;

int distNum = 0;

double separation = 14.0;

//What value of alpha (the gwb spectral exponent) are we hunting for when we convert the

estimate of A'2 into a limit etc.?

double alphaGWB = —2.0 / 3.0 ;

for (p=0;p<MAX_PSR;p++)

dist[p] = 0.91; //default distance is 0.91 kiloparsecs for all pulsars

int jmax;

double tk_var;

int nFreq;

float 1frqua1_f[MA.XJ7REQ],lpy-f[MAX_FREQ]; //log of frequency values and power values (for

pep/0t)
char line[1000];

FILE *fin;

int nrcad;

float meanPost[MAX_FREQ];

double suml ,sum2,sum3,sum4,sum5,sum6,weight;

int p1,p2,plotCol;

float fx[MAX_OBSN] ,fy[MAX_0BSN];

int ncorr=0,totalcorr;

double corr[MAX_PSR*MAX_PSR]; //correlation between pulsar pairs

double a226ta[MAX_PSR*MAX_PSR]; //covariance between pulsar pairs

double achta_im[MAX_PSR*MAX_PSR]; //imaginary part ofA‘Z zeta estimate for each pulsar

pair

double a2zcta_err[MAX_PSR*MAX_PSR]; //error in each covariance between pulsar pairs

double angle[MAX_PSR*MAX_PSR]; //angle on sky betw pulsar pairs

double Tovcrlap[MAX_PSR*MAX_PSR]; //overlapping time interval betw pulsar pairs

double avTovcrlap; //the weighted average of the overlap times.

float corr_f[MAX_PSR*MAX_PSR]; //correlation between pulsar pairs

float aZzeta_f[MAX_PSR*MAX_PSR]; //covariance betWeen pulsar pairs

float achta-err-f[MAX_PSR*MAX_PSR]; //covariance between pulsar pairs

float anglc_f[MAX_PSR*MAX_PSR];

float ymin,ymax; //axis limits for plotting

FILE *fout;

char fname[100];

char dummy[100]; //for ensuring the scanning in of spectral models goes in the right order

(the models match the pulsars they are supposed to match)

char spchodelFile[MAX_F1LELEN];

sprintf(specModchile ,”SpectralModels_Fina12_psr");

double phase = 13.0; //the phase offset in the "fixedPhase variable ”— defines where in

the fortnight we take each sample after interpolation.
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*npsr = 0;

printf("Graphical Interface: PTA_Correlalion\n”);

printf(”Author: D. Yardlcy\n");

printf(”Version: V2.0 \n”);

printf(” — type ‘tcmpoZ —gr PTA-Corrclation —h’ for help information\n”);

/* Obtain all parameters from [he command line */

for (i=2;i<argc;i++)

{
if (strcmp(argv[i],”—f”)==0)

{
strcpy(parFilc[*npsr],argv[i+l]);

strcpy(timFi1c[*npsr],argv[i+2]);

(*npsr)++;

rcadPar=0; readTim=0;

else if (strcmp(argv[i],”—par”)==0)

rcadPar=l;

readTim=0;

*npsr=0;

else if (strcmp(argv[i],”—tim”)==0)

readPar=0;

rcadTim=l;

*npsr=0;

else if (strcmp(argv[i],"—dist” ==0)

sscanf( argv[++i], ”%1f”, &dist [distNum ]);

dist [distNum]*=3.086619;

distNum++;

else if (strcmp(argv [ i ] ,"—ngw”)==0)

//printf(”ngw = %d 2\n",ngw);

sscanf(argv[++i], ”%d", &ngw);

//printf("ngw = "/1101 3\n".ngw);

}
else if (strcmp(argv[i],"—secd")==0)

sscanf(argv[++i], ”%d”, &idum);

else if (strcmp(argv[i],”-spchodchile”)==0) //input file containing the mean and the

spectral exponent for this range of pulsars.

sscanf(argv[i+l],"%s",&specModchile);

else if (strcmp(argv[i],”—alpha“)==0)

sscanf(argv[++i], ”%1f”, &a1pha);

else if (strcmp(argv[i],"—a1phaGWB" ==0)

sscanf(argv[++i], "Wolf", &alphaGWB);

else if (strcmp(argv[i],”-factor")==0) // factor to multiply rmses by.

sscanf(argv[++i], "%1f”, &factor);

else if (strcmp(argv[i],"—gwamp")==0)

sscanf(argv[++i], ”%1f", &gwamp);

else if (strcmp(argv[i],”-separation")==0)

sscanf(argv[++i], "%1f”, &separation);

else if (strcmp(argv[i],"—prcWhAmp")==0)

sscanf(argv[++i], ”%1f", &prcWhAmp);

else if (strcmp(argv[i],”-phase”)==0)
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sscanf(argv[++i], "Wolf”, &phase);

else if (strcmp(argv[i],”—ycsClock")==0)

noClock = 0; // carry out clock error estimation

else if (strcmp(argv[i],”—noPlot”)==0)

noPlot = l; // do not produce the pgplot postscript file

else if (strcmp(argv[i],”—n0XFER”)==0)

noXFER = 0; // do not correct by the transfer function

else if (strcmp(argv[i],”——n0quad”)==0)

noquad = 0; // do not fit out a weighted quadratic to each overlapping data span

else if (strcmp(argv[i],”—noSpecModcl")==0)

noSpecModel = 0; // do not include spectral models

else if (strcmp(argv[i],”—noEQUAD” ==0)

noEQUAD = 0; // do not correct by any EQUAD terms

else if (strcmp(argv[i],"-noSmooth”)==0)

smooth = O; // do not do smoothing or interpolation

else if (strcmp(argv[i],"—noIntcrp”)==0)

interp = 0; // do not do interpolation

else if (strcmp(argv[i],”—ychSpec”)==0)

yesXSpcc = I; // produce an output file with the first few harmonics of the cross

power spectrum (real and [mag parts) for each pair.

else if (strcmp(argv[i],"—yesPlotXSpec")==0)

yesPlotXSpcc = l; // produce plot of the cross power spectrum for each pair of

pulsars.

else if (strcmp(argv[i],"—ycsCa1Fac”)==0)

ycsCalFac = l; // Calibrate each cross spectrum using CalibrationFactors‘VosVas files

else if (strcmp(argv[i],”—numCal”)==0)

sscanf(argv[++i], ”%d”, &numCa1);

else if (strcmp(argv[i],"—norcgular” ==0)

regular = 0;

else if (strcmp(argv[i],"—spccTypc”)==0) //2 => Lomb Scarlge, 4 => Weighted Lomb

Scargle, 1==> DFT

sscanf(argv[++i], "%d”, &specType);

else if (strcmp(argv[i],"—nharm”)==0) //=l ——> only fit for HD curve. =2 —> fit for

HD curve and a constant simultaneously.

sscanf(argv[++i], ”%d", &nharm);

else if (strcmp(argv[i],"—nouschight”)==0) //=0 to do an unweighted LSQ fit of sin

and cos to determine spectrum, = I to do a weighted LSQ fit.

uscWeight = 0;

else if (strcmp(argv[i],"-outFile” ==0) //output file for estimate of A, A‘2,

significances and the reduced chi—squared.

sscanf(argv[i+l],"%s”,&outFi1c);

else if (strcmp(argv[i],"—outFilcPairs")==0) //output file for each cross spectrum of

each pair. Order is Re(l), Imag(l), Re(2), Imag(2), Re(3), Imag(3)... One row is

one iteration of the code.

sscanf(argv[i+l],"%s”,&outFilePairs);

else if (strcmp(argv[i],”—auto“)==0)

{
readPar=0;

rcadTim=0;

autoFlag=l;

}
else if (readPar==l)

{
strcpy ( parFilc[*npsr] , argv[i]);

(*HPSF)++;

}
else if (readTim==l)

{
strcpy ( timFilc [*npsr] , argv[i]);
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(*nPST)++;

}

else if (strcmp(argv[i],”—h” ==0||strcmp(argv[i],"—he1p”)==0)

{

printf(”\n TEMP02 PTA_Correlation plugin\n”);

p ri n t f ( "===================\ n”) ;

printf(”\nUSAGE: \n\t tempoZ —gr PTA_Correlation —par *.par -tim *rtim ...(as many

as desired) [options]\n”);

printf("\n Command line options:\n”);

printf(”—ycsClock: calculates clock errors (default is no clock corrections)\n”);

printf("—noPlot: does not produce the pgplot output\n");

printf("—outFile:\t choose output file for statistics (default is ’A’)\n");

printf(”—secd:\t change the random number seed (default = —123) \n”);

printf(“—dist:\t input the distance to the pulsar in kpc (default is 091 kpc)\n”);

printf("—specType:\t determines which kind of periodogram to do —> 1 gives DFT, 2

gives Lomb Scargle, 4 gives Weighted Lomb Seargle (default is 4)\n");

printf(”—noregular:\t regular = => do smoothing and interpolating together, and

don‘t interpolate across gaps that are larger than 2*tau (default is smooth in

place and then interpolate onto a regular grid)\n");

printf(”—nouseWeight:\t does not use weights to calculate the LSQ fit of sins and

cosines to determine the power spectrum (default is to use weights)\n");

printf(”—specMode1File: \t prefix of input file containing the mean and the

spectral exponent for this range of pulsars (default is ’SpectralModels_Fina12

’~\n");

printf(”—outFilePairs: \t prefix of output file for each cross spectrum of each

pair. Order is Re(l), lmag(l), Re(2), lmag(2), Re(3), Imag(3).\n”);

printf(”-noSmooth:\t don’t do smoothing or interpolation\n");

printf(”—nolntcrp:\t don’t do interpolation\n”);

printf("—noEQUAD:\t don’t use the EQUAD—like correction step\n");

prinlf(”=========GWB input stuff======\n");

printf("—ngw:\t Number of gws to put in simulated background.\n”);

printf(”-alpha:\t spectral exponent of background\n");

printf("—gwamp:\t dimensionless amplitude of background, but it assumes that ’f’ is

measured in 1/15, not l/lyr\n”);

printf(”—alphaGWB:\t spectral exponent of background when determining limits etc.

really this should be the same as alpha!!\n”);

exit(0);

}

/* Form pulsar timing residuals */

readParfile(psr,parFile ,timFile,*npsr); /* Load the parameters */

readTimfile(psr,timFile,*npsr); /* Load the arrival times */

prcProcess(psr ,*npsr , argc ,argv);

formBatsAll(psr,*npsr); /* Form the barycentric arrival times */

formResiduals(psr,*npsr,0); /* Form the residuals these are PREFIT residuals

*/

doFit(psr ,*npsr ,0);

formBatsAll(psr,*npsr); /* Form the barycentric arrival times */

formResiduals(psr,*npsr,0); /* Form the residuals these are POSTFIT residuals

*/

// Allocate memory

crossspec_x = (double **)malloc(MAX_PSR*MAX_PSR*sizeof(double *));

crossspec_y_re (double **)malloc(MAX_PSR*MAX_PSR*sizeof(d0uble *));

crossspcc_y_im = (double **)malloc(MAX_PSR*MAX_PSR*sizeof(d0ubIe *));

crossspcc_err = (double **)malloc(MAX_PSR*MAX_PSR*size0f(double *));

P-g = (double **)malloc(MAX_PSR*MAX_PSR*sizeof(d0uble *));

II
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xrcs = (double **)malloc(MAX_PSR*sizeof(double *));

xrcsZ = (double **)malloc(MAX_PSR*sizeof(double *));

erS3 = (double **)ma]loc(MAXPSR*sizeof(double *));

xrcs_intcrp = (double **)malloc(MAXPSRaksizeoHdouble *));

xrcs_interp_l = (double **)malloc(MAX_PSR*sizeof(double *));

xrcs-interp_2 = (double **)malloc(MAXPSR*sizeof(double *));

xrcs_uniq = (double **)malloc(MAXJ’SR*sizeof(double *));

yrcs_interp = (double **)malloc(MAX_PSR*sizeof(double *));

yrcs_intcrp_l = (double **)malloc(MAX_PSR*sizeof(double *));

yrcs-intcrp_2 = (double **)malloc(MAX_PSR*sizeof(double *));

crr-intcrp = (double **)malloc(MAX_PSR*sizeof(double *));

crr_interp_1 = (double **)malloc(MAX_PSR*sizeof(d0uble *));

crr-interp_2 — (double **)malloc(MAXPSR*sizeof(double *));

var_intcrp = (double **)malloc(MAX_PSR*sizeof(double *));

yrcs = (double **)malloc(MAX.PSR*sizeof(double *));

yrcsZ = (double **)malloc(MAX_PSR*size0f(double *));

yrc52_uniq = (double **)malloc(MAX_PSR*sizeof(double *));

yrcsS = (double **)malloc(MAX.PSR*sizeof(double *));

err = (double **)malloc(MAXJ’SRa:sizeof(double *));

crr2 = (double **)malloc(MAXJ’SR*sizeof(double *));

crr2_uniq = (double **)malloc(MAX_PSR*sizeof(double *));

err3 = (double **)malloc(MAX.PSR*sizeof(double *));

weights = (double **)malloc(MAX.PSR*sizeof(double *));

xspcc = (double **)malloc(MAXJ’SR*sizeof(double *));

yspcc = (double **)malloc(MAXPSR*sizeof(double *));

yspec-rc = (double **)malloc(MAX_PSR*sizeof(double *));

yspec_im = (double **)malloc(MAX_PSR*sizeof(double *));

meanPre = (double **)malloc(MAX.PSR*sizeof(double *));

XFER = (double **)malloc(MAX_PSR*sizeof(double *));

XFER_x = (double **)malloc(MAX_PSR*sizeof(double *));

XFER_intcrp = (double **)malloc(MAX_PSR*sizeof(double *));

crrspec = (double **)malloc(MAX_PSR*sizeof(d0uble *)); //errspec is the error on the fit of

the power spectrum

clock_x = (double *)malloc(MAX_OBSN*size0f(double));

clock_y = (double *)malloc(MAX_OBSN*sizeof(double));

c]ock_err = (double *)malloc(MAX_OBSN*sizeof(double));

for (p=0;p<MAX_PSR;p++)

{

xrcs[p] = (double *)malloc(MAX_OBSN*size0f(double));

xrcsZ[p] = (double *)malloc(MAXOBSNaksizeoHdoubleD;

xres3[p] = (double *)mal}0c(MAX_OBSN*sizeof(double));

xrcs_uniq[p] = (double *)malloc(MAX.OBSN*sizeof(double));

xres_interp[p] = (double *)malloc(10000*sizeof(double));

xres_intcrp_1[p] = (double *)malloc(10000*sizeof(double));

xres_interp_2[p] = (double *)malloc(10000*sizeof(double));

yrcs_interp[p] = (double *)malloc(10000xsize0f(doub|e));

yres_intcrp_l[p] = (double *)malloc(10000*sizeof(double));

yres_intcrp_2[p] = (double *)malloc(10000*sizeof(double));

err_intcrp[p] = (double *)mal]oc(]0000*sizeof(double));

crr_interp_l [p] = (double *)malloc(10000*sizeof(d0uble));

err-interp_2[p] = (double *)malloc(10000*sizeof(double));

var_intcrp[p] = (double *)ma110c(10000*sizeof(double));

yrcs[p] = (double *)malloc(MAXOBSN*sizeof(double));

yrcsZ[p] = (double *)malloc(MAX_OBSN*sizeof(double));

yresZ-uniq[p] = (double *)malloc(MAX_OBSN*sizeof(double));

yr653[p] = (double *)malloc(MAX_OBSN*sizeof(double));

err[p] = (double *)malloc(MAX_OBSN*size0f(double));

err2[p] = (double *)malloc(MAX_OBSN*size0f(double));
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crr2_uniq[p] = (double *)malloc(MAX_OBSN*sizeof(double));

crr3[p] = (double *)malloc(MAX_OBSN*sizeof(double));

weights[p] = (double *)malloc(MAX_OBSN*size0f(double));

xspcc[p] (double *)malloc(MAX_FREQ*sizeof(double));

yspcc[p] ‘ (double *)malloc(MAX_FREQ*sizeof(double));

yspcc_rc[p] (double *)malloc(MAXIREQ*sizeof(double));

yspec_im[p] = (double *)malloc(MAXfREQ*sizeof(d0uble));

errspcc[p] = (double *)malloc(MAXFREQ*sizeof(double));

mcanPrc[p] (double *)ma1loc(MAXIREQ*sizeof(double));

XFER[p] = (double *)malloc(MAXFREQ*size0f(double));

XFER_x[p] = (double *)malloc(MAX_FREQ*sizeof(double));

XFER-intcrp[p] = (double *)malloc(MAX_FREQ*sizeof(d0uble));

II

for (k=0;k<MAX_PSR*MAX_PSR; k++)

crossspcc_x[k] = (double *)malloc(MAXFREQ*sizeof(double));

crossspcc_y_re[k] = (double *)malloc(MAXfREQ*sizeof(double));

crossspcc-y_im[k] = (double *)malloc(MAXIREQ*sizeof(double));

crossspec_crr[k] = (double *)malloc(MAX_FREQ*sizeof(double));

P_g[k] = (double *)malloc(MAXFREQ*sizeof(double));

}

long double minsat[*npsr], maxsat[*npsr], angspan=0.0;

//following is essentially for splitting up the 1857 data set, though it could be generally

applicable.

double maxallowablcgap = 2000.0; //in units of days. THIS IS AN ARBITRARY CHOICE, simply so

that we know 1857 gets split up.

long double maxgap[*npsr];

int locmaxgap[*npsr]; //the location of the biggest gap in the time series.

for (p=0;p<*npsr;p++)

{

minsat[p]=maxsat[p]=psr[p].obsn[0].sat;

maxgap[p] = 0.0L;

for (j=0;j<psr[p].nobs;j++)

{

if (psr[p].obsn[j].sat < minsat[p]) minsat[p] = psr[p].obsn[j].sat;

if (psr[p].obsn[j].sat > maxsat[p]) maxsat[p] — psr[p].obsn[j].sat;

if (psr[p].obsn[j+l].sat — psr[p].0bsn[j].sal > maxgap[p] &&j < psr[p].nobs—1)

{

maxgap[p] = psr[p].obsn[j+l].sat — psr[p].obsn[j].sat;

locmaxgap[p] = j; //50 the biggest gap appears between the j—th and j+1-th

observations.

}

}

tspan[p] = maxsat[p] — minsat[p];

printf("tspan of pulsar %s = %g days\n”,psr[p].name,tspan[p]);

angspan += (long double) tspan[p];

Printf("maxgaplp] = %L3\n"amaxgap[p]);

}

[offset = psr[0].param[param_pepoch].val[0];

long double toffsth = 3100.0L; //so that the smoothing algorithm doesn 't mess up with

negative measured SATs. However, the GWB code freaks out if the day number is too big.

angspan = angspan / (long double) *npsr;

maszpan = TKfindMax-d(lspan ,*npsr);

//READ PULSAR DATA INTO WMORY and caluclate weighted variance of residuals

sprintf(fnamc , "Weightcd_VAR°/odpsrs_GWB" ,* npsr);

if ( (foul = fopen(fnamc,"a") == NULL)

{
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printf(”Unab1c to open/find file %s\n",fnamc);

cxit(1);

}
for (p=0;p<*npsr;p++)

{
printf(”Reading data for psr number %d\n”,p+1);

//now if maxgap for this pulsar is bigger than maxallowable gap, then choose the latest

portion of this pulsar and discard the first few observations.

if (maxgap[p] <= maxallowablcgap)

{
1ocmaxgap[p] = —1;

}
printf("10cmaxgap[p] = %d\n”,10cmaxgap[p]);

printf(”nrcs[p] = °/od, psr[p].nobs = %d\n",nrcs[p],psr[p].nobs);

for (i=0;i<psr[p].nobs —1ocmaxgap[p]— l;i++) //from the other side of the biggest

gap onwards, start recording observations.

xres[p][i] (double)(psr[p].obsn[i +1ocmaxgap[p] + 1].sat — toffsct + toffsth);

yres[p][i] (double)psr[p].obsn[i + 10cmaxgap[p] + 1].rcsidua1;

err[p][i] = (double)psr[p].obsn[i + 10cmaxgap[p] + 1].tanrr*1c——6; //so err is in

seconds now

weights[p][i] = 1.0 / crr[p][i] / err[p][i];

}
if (maxgap[p] <= maxa11owab1cgap)

{
nres[p] = psr[p].nobs;

}
else

nres[p] = psr[p].nobs — locmaxgap[p] — 1;

psr[p].nobs = nrcs[p];

tspan[p] = xres[p][psr[p].nobs — 1] - xres[p][0];

}
fprintf(fout,”%g ”,TKfindWeightchariancc_d(yres[p],wcights[p],psr[p].nobs));

}
fprintf(fout ,"\n");

fclosc(fout);

// Remove unweighted mean

for (p=0;p<*npsr;p++)

{
mean=0.0;

for (i=0;i<psr[p].nobs;i++)

mcan+=yrcs[p][i];

mcan/=(double)(psr[p].nobs);

for (i=0;i<psr[p].nobs;i++)

yres[p][i]—=mcan;

}

int filterid = 2; //filterid is an integer describing which kind of filter to

use: I = Gaussian filter, 2 = Exponential filter

int filterPlot = 0; //0 to not plot the filters, 1 to plot them.

double filtcr[(int)width]; //only take mean if there is more than 1 day between obsns.

double tau[*npsr];

double angau = 1.0; // this is needed for the calculation of separation (how far the

points are separated).

double invsdev = 2.5, bw;

double currentday; //describes which day in the interpolated data set we are looking

at.
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int count], countZ;

for (p=0;p<*npsr;p++)

{
tau[p] = tspan[p] / 2 / M_PI / 3; // time constant for filter, note different for

each pulsar. The "3" is because we want the filter to fall to —6dB at the 3rd point

in the spectrum, which occurs at 3 / tspan[p],'

angau *= tau[p]; //we want the geometric mean, not arithmetic...

for (i=0;i<(int)width;i++)

{
if (filterid==l) //Choose Gaussian filter

{
invsdcv = 700.0 / tau[p]; //changes (inverse of) standard deviation of filter (

default MATLAB value is 2.5)

filter[i]=cxp(—0.5*pow(invsdcv*((double)((i+l)—0.5*(width+l))/(width+l)/2.0),2))

}
else if (filterid==2) //form and plot exponential filter. Note we're using a

different expnl. filter for each pulsar

filter[i]=cxp(——fabs((i—width/2)/tau[p]));

if (noPlot == 0 && filtchlot == 1)

{
fx[i]

fy[i]

(float)i;

(float)filtcr[i];

}
angau = pow(angau, (double) (1.0 / (double)*npsr));

double fixedPhasc = —15000.0 — (double)toffsct + phase; //fixes the phase of the grid of

paints for interpolation.

//NOW PREPARE TIME SERIES using smoothing and interpolation

double varp_1 = 0.0, varp-2 = 0.0; //the variance of two different sections of time series

— e.g. if sudden change in white noise variance.

int count_l = 0, count_2 = O; //the number of points before and after the cutoff point for

the non—stationarity of the time series.

if (smooth == 1) //then do the smoothing and possibly also the interpolation.

{
for (p=0;p<*npsr;p++) //to analyse and plot all the timing resids etc.

{
angau = 60.0;

if (strcmp(psr[p].namc,”l939+2134” ==0) angau = 30.0; //to remove the

bump near the end of the time series.

if (p == 0) printf("fixing smoothing width to be angau = %1g\n”,angau);

if (regular == I) //SM0077-I pulsar p in place if we want ”regular"

resampling

{
for (i=0; i<nres[p]; i++)

{
sum1= 0.0; yres_interp[p][i] = 0.0; var_intcrp[p][i] = 0.0;

currentday = xrcs[p][i]; //smooth onto the same points as the input time

series

for (k=0;k<psr[p].nobs;k++)

{
if (filterid == 1) weight = cxp(—0.5 * pow(xres[p][k] — currentday, 2) /

angau);

else if (filterid == 2) weight = exp(—fabs(currcntday — xres[p][k]) /

angau) / err[p][k] / err[p][k];
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suml+=weight;

yrcs_interp[p][i]+=wcight*yrcs[p][k];

var_intcrp[p][i]+=(weight*wcight*crr[p][k]*crr[p][k]);

}
yrc52[p][i] = yrcs_intcrp[p][i] / sum];

err2[p][i] = sqrt(var_interp[p][i]) / suml;

xresZ[p][i] = currentday;

if (intcrp == 1)

{
//Now if any observations are too close together in time, we don‘t

really need them any more (since we‘ve already smoothed the data, we

've taken advantage of the multiple observations). The interpolation

step does not need lots and lots of observations to be more

accurate, so we can set the observations equal to each other, then

the unique () function which I run below will remove them.

if (xres2[p][i] — xrc52[p][i-l]<1.0e—3 && i > 0)

{
YFCSZ[P][i] = y1952[P][i-1];
crr2[p][i] = crr2[p][i——1];

xresZ[p][i] = xresZ[p][i—1];

}
// Remove means

count] = 0;

mean] = 0.0;

for (i=0;i<nres[p];i++) mean1+=yre52[p][i];

meanl/=(double)(nrcs[p]);

for (i=0;i<nres[p];i++) yresZ[p][i]—=meanl;

if (TKmean-d(yrcsZ[p],nrcs[p]) > 1.06—10) {printf(”ERROR!! mean of yrc52[%d]

=%g != 0, nrcs[p] =%d\n”,p,Tchan_d(yrcsl[p],nrcs[p]), nrcs[p]); exit(l);}

if (interp == 1)

{
//now interpolate smoothed data onto a regular grid using a constrained

cubic spline — day separations given by "separation "

unique(xresZ[p],nrcs[p],xrcs_uniq[p],&nrcs-uniq[p]);

unique(yrc52[p],nrcs[p],yrcsZ_uniq[p],&nres-uniq[p]);

unique(crr2[p],nres[p],crr2_uniq[p],&nrcs_uniq[p]); //M4KE SURE ERRORS AREN

‘T ALL EQUAL AT THIS POINT/l

//Now run the spline interpolation to get the residuals.

interpolateSplineSmoothFixchhase(xrcs_uniq[p], yrcsZ_uniq[p], nrcs_uniq[p],

separation , xrcs_interp[p], yres_intcrp[p], &nrcs_intcrp[p],fixedPhasc)

//Now run the spline interpolation ON THE ERROR BARS using their variance.

First calculate variance of the err2_uniq[p] array

for (i=0;i<nrcs_uniq[p];i++)

crr2_uniq[p][i] = crr2_uniq[p][i] * err2_uniq[p][i];

interpolateSplincSmoothFixedPhase(xres-uniq[p], crr2_uniq[p], nrcs_uniq[p],

separation , xres-interp[p], var_interp[p], &nrcs_intcrp[p],fixchhase);

//reset value of uniq error to be the standard deviation FOR COMPLETENESS’

SAKE

for (i=0;i<nrcs_uniq[p];i++)

err2_uniq[p][i] = sqrt(err2_uniq[p][i]);

//So the almost final data set is contained in xres_interp[p],yres_interp[p

],var_interp[p], nres_interp[p], where var_interp[p][i] is the SQUARE of

the error on the ith observation. This gets corrected below when we do
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the "error boosting"

else if (intcrp == 0) //don't do the interpolation

for (i=0;i<nrcs [p]; i++)

xrcs_intcrp[p][i] — xrcs2[p][i];

yreS-intchpHi] yr652[P][i];

var_intcrp[p][i] crr2[p][i] * err2[p][i];

}

nrcs_intcrp [p] = nrcs[p];

ll

}

else if (regular == 0) //don't smooth in place, rather smooth onto the

interpolated grid that we want (so smoothing and interp are done together)

angau = 60.0; //this is the smoothing width

if (strcmp(psr[p].name,”l939+2]34")==0)

{

angau = 30.0; //to remove the bump near the end of the time series.

printf(”FIX1NG!H angau =%lg for psr 1939\n”,angau);

}

firstday = ceil(TKfindMin_d(xres[p],psr[p].nobs));

lastday = floor(TKfindMax_d(xres[p],psr[p].nobs));

separation = 2.0 * angau; //resampling rate is just twice the smoothing width

count] = 0; //a counter to tell us how many observations are actually in the

post—interpolated time series.

nrcs_interp[p] = 1 + (int)floor((lastday - firstday) / separation); //this is

the first guess at the number of points in the post-interpolated series.

for (i=0; i<nres_intcrp[p]; i++) //i is observation number in post—interpolated

time series.

currentday = firstday + (double)i*scparation; //x—values are a time

series with samples separated by "separation "

minDiff = fabs(xres[p][0] — currentday);

//DO the smoothing and interpolation only if the new paint (xres2[p][i])

will be within tau/1.0 of a point in the original time series. filteria'

controls whether to use gaussian or exponential smoother — l = Gaussian,

2 = expnl.

for (k=0;k<psr[p].nobs;k++)

{

if (fabs(xrcs[p][k] — currcntday) < minDiff) minDiff = fabs(xrcs[p][k]

— currentday); //could use while loop here — faster.

}

printf(”minDiff = %g\n” ,minDiff);

//if the minimum difference is still more than tau/1.0, then DON'T put down

an interpolated point.

if (minDiff <= (angau / 1.0) ) //then do the interpolation

{

suml=0.0;

yrcs_interp[p][countl]=0; var-intcrp[p][countl]=0;

for (k=0;k<psr[p].nobs;k++)

{

if (filterid == 1) weight = cxp(—O.5 >9: pow(xres[p][k] —

currentday, 2) / angau);
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else if (filterid == 2) weight = cxp(—fabs(xres[p][k] — currentday)/

avg'l‘au) /pow(crr[p][k],2);

suml+=weight;

yrcs_interp[p][counll]+=wcight*yrcs[p][k];

var_interp[p][countl]+=pow(wcight*err[p][k],2);

}
yrcs_intcrp[p][countl] = yrcs_interp[p][countl] / suml;

var_intcrp[p][countl] = var_interp [p][countl] / pow(suml,2);

xrcs-intcrp[p][countl] = currenlday;

++countl; //one more observation in the post—interpolated series.

}
else //this point in the post—interpolated series is too far from the

nearest point in the raw data series.

continue; //return to start of loop over observation number in

interpolated series.

}
nres_intcrp[p] = countl; //count1 now measures the correct number of points.

}
//now adjust error bars using an EQUAD term, which may be different for the first

few years of data compared to the last few years for the "2—portion" pulsars.

varp_l = 0.0, varp_2 = 0.0; //the variance of two different sections of time series

— e.g. if sudden change in white noise variance.

count-l = 0, count-2 = 0; //the number of points before and after the cutoff point

for the non—stationarity of the time series.

if (noEQUAD == 1)

{
if (strcmp(psr[p].name,"1600—-3053")==0)

{
for (i=0;i<nres_interp[p];i++)

{
if (xrcs_interp[p][i] + toffsct — toffsth < 52654.0) { yrcs-intcrp_l[p

][count_1] = yres_intcrp[p][i]; ++count_l; }

else { yres_interp_2[p

][count_2] = yrcs_inlerp[p][i]; ++count-2; }

}
varp_l = TKvariance_d(yrcs_intcrp_l[p],count_l); varp_2 = TKvariance_d(

yres_interp_2[p],count-2);

//Correct error bar using unweighted variance of interpolated time series,

in 2 pieces:

for (i=0;i<nres_interp[p];i++)

{
if (xrcs_interp[p][i] + [offset — toffsct2 < 52654.0) { crr-interp[p][i]

= sqrt(var_interp[p][i]+varp_l); }

else { err-interp[p][i]

= sqrt(var_intcrp[p][i]+varp_2); }

else if (strcmp(psr[p].namc,"l7l3+0747”)==0)

for (i=0;i<nrcs_interp[p];i++)

if (xres-interp[p][i] + toffsct - toffsct2 < 52462.5) { yres_interp_l[p

][count-l] = yrcs_interp[p][i]; ++count-l;}

else { yres_intcrp_2[p

][count_2] = yres-intcrp[p][i]; ++count_2;}
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varp-l = TKvariancc_d(yrcs_intcrp_1[p],c0unt-1); varp_2 = TKvariance_d(

yrcs_intcrp_2[p],count_2);

//C0rrect error bar using unweighted variance of interpolated time series,

in 2 pieces:

for (i=0;i<nres_interp[p];i++)

{
if (xrcs_intcrp[p][i] + [offset — toffsth < 52462.5) { crr-intcrp[p][i]

= sqrt(var-interp[p][i]+varp_1); }

else { err_interp[p][i]

= sqrt(var-intcrp[p][i]+varp_2); }

else if (strcmp(psr[p].namc,”1744—ll34”)==0)

for (i=0;i<nrcs-interp[p];i++)

if (xrcs_intcrp[p][i] + toffsct — toffsct2 < 52462.61) { yrcs_interp_l[p

][count-1] = yres_intcrp[p][i]; ++count_1; }

else { yres_interp_2[p

][count_2] = yres_intcrp[p][i]; ++count_2; }

}
varp_l = TKvariance_d(yrcs_intcrp_1[p],count_1); varp_2 = TKvariance-d(

yrcs_intcrp_2[p],count_2);

//C0rrect error bar using unweighted variance of inrerpolared time series,

in 2 pieces:

for (i=0;i<nrcs_inlcrp[p];i++)

{
if (xrcs_intcrp[p][i] + toffsct — toffsct2 < 52462.61) { err_interp[p][i

] = sqrt(var_interp[p][i]+varp_1); }

else { err_intcrp[p][i

] = sqrt(var-intcrp[p][i]+varp_2); }

else if (strcmp(psr[p].name,”Jl732—5049” ==0)

for (i=0;i<nrcs_interp[p];i++)

if (xrcs_intcrp[p][i] + toffset — toffsetZ < 52967.5) { yrcs_intcrp_1[p

][counLl] = yrcs_interp[p][i]; ++count_l; }

else { yres_intcrp_2[p][

count_2] = yrcs-interp[p][i]; ++count_2; }

}
varp_l = TKvariance_d(yrcs_intcrp_l[p],count_1); varp_2 = TKvariancc-d(

yrcs_interp_2[p],count-2);

//C0rrecr error bar using unweighted variance of interpolated time series,

in 2 pieces:

for (i=0;i<nrcs_intcrp[p];i++)

{
if (xrcs_interp[p][i] + toffset - toffsetZ < 52967.5) { err_interp[p][i]

= sqrt(var_intcrp[p][i]+varp_1); }

else { err_interp[p][i

] = sqrt(var-intcrp[p][i]+varp_2); }

}
else if (strcmp(psr[p].namc,"2124—3358”)==0)

{
for (i=0;i<nres_interp [p]; i++)

{
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if (xres_intcrp[p][i] + toffset — toffsth < 52984.5) { yrcs_intcrp_l[p

][count_1] = yrcs-interp[p][i]; ++count-1; }

else { yrcs_intcrp-2[p][

count_2] = yrcs-intcrp[p][i]; ++count-2; }

}
varp_1 = TKvariancc_d(yres_intcrp_1[p],count-1); varp_2 = TKvariance-d(

yres_intcrp_2[p],count_2);

//C0rrect error bar using unweighted variance of interpolated time series,

in 2 pieces."

for (i=0;i<nres_intcrp[p];i++)

{
if (xres_interp[p][i] + toffsct — toffsetZ < 52984.5) { crr-intcrp[p][i]

= sqrt(var_interp[p][i]+varp_1); }

else { crr-intcrp[p][i

] = sqrt(var_interp[p][i]+varp_2); }

}
else if (strcmp(psr[p].namc,"2129—5721”)==0) //change in front end!!! not back

endlllrest are due to change in back end...

for (i=0;i<nres-intcrp[p];i++)

{
if (xrcs_interp[p][i] + toffsct — toffsth < 51410.0) { yrcs_interp_1[p

][count-1] = yres_intcrp[p][i]; ++count_l; }

else { yrcs_intcrp_2[p][

count_2] = yres_intcrp[p][i]; ++count_2; }

}
varp_l = TKvariancc_d(yres_intcrp_1[p],count_1); varp_2 = TKvariancc-d(

yres_interp_2[p],count-2);

//C0rrect error bar using unweighted variance of interpolaled time series,

in 2 pieces:

for (i=0;i<nres_interp[p];i++)

{
if (xrcs_interp[p][i] + toffsct — toffsct2 < 51410.0) { crr-intcrp[p][i]

= sqrt(var_interp[p][i]+varp_1); }

else { crr-intcrp[p][i

] = sqrt(var_intcrp[p][i]+varp_2); }

else if (strcmp(psr[p].name,”2145—0750“)==0)

for (i=0;i<nrcs-interp[p];i++)

if (xrcs_interp[p][i] + toffsel — toffset2 < 52975.5) { yrcs_interp_1[p

][count-1] = yres_interp[p][i]; ++count-1; }

else { yrcs_interp_2[p

][count_2] = yrcs-intcrp[p][i]; ++count_2; }

}
varp_l = TKvariance_d(yres_intcrp_l[p],count-1); varp_2 = TKvariancc-d(

yrcs_interp_2[p],count-2);

//Correct error bar using unweighted variance of interpolated time series.

in 2 pieces:

for (i=0;i<nrcs_interp[p];i++)

{
if (xres_interp[p][i] + toffsct — toffsct2 < 52975.5) { crr-intcrp[p][i]

= sqrt(var_interp[p][i]+varp_1); }

else { err_intcrp[p][i

] = sqrt(var_interp[p][i]+varp_2); }
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}

else //there are no significant sudden white noise changes in the data set, and

we prefer uniformity where possible.

varp_l = TKvariancc_d(yrcs_intcrp[p],nrcs_intcrp[p]);

varp_2 = 0.0;

//Correct error bar using unweighted variance of interpolated time series:

for (i=0;i<nrcs_intcrp[p];i++)

crr_interp[p][i] = sqrt(var-intcrp[p][i]+varp_l);

}

else //don't do the correction by an EQUAD term.

{

varp_l = 0.0;

0.0;

//Correct error bar using unweighted variance of interpolated time series:

for (i=0;i<nrcs_interp[p];i++)

crr-intcrp[p][i] = sqrt(var_intcrp[p][i]);

varp_2

}

else //dan't do any smoothing or interpolation, but DO do the error bar augmentation step

l!!! This makes the least squares fitter work better.

for (p=0;p<*npsr;p++)

{

for (i=0; i<nrcs[p]; i++)

{

xres_intcrp[p][i] = xrcs[p][i];

erS—intcrplpHi] = yreS[p][i];

err-intcrp[p][i] = crr[p][i];

var—intCTMPHi] = 0”[NH] * crr[P][i];

}

nrcs_intcrp[p] = nrcs[p];

varp_l = 0.0, varp_2 = 0.0; //the variance of two different sections of time series

— e.g. if sudden change in white noise variance.

count_l = 0, count_2 = 0; //the number of points before and after the cutoff point

for the non—stationarity of the time series.

if (noEQU == 1)

{

if (strcmp(psr[p].namc,"1600—3053”)==0)

{

for (i=0;i<nres_intcrp[p];i++)

{

if (xrcs-intcrp[p][i] + toffsct — toffsth < 52654.0) { yres_interp_1[p

][count_l] = yrcs_intcrp[p][i]; ++count_l; }

else { yrcs_interp_2[p

][count-2] = yres_interp[p][i]; ++count_2; }

}

varp_l = TKvariancc-d(yres_intcrp_l[p],count_l); varp_2

yres_interp_2[p],count_2);

TKvariance_d(

//Correct error bar using unweighted variance of interpolated time series,

in 2 pieces:

for (i=0;i<nrcs_intcrp[p];i++)

{

if (xrcs-interp[p][i] + toffset — [offsetZ < 52654.0) { crr-interp[p][i]

= sqrt(var_intcrp[p][i]+varp_l); }

200



else { crr_intcrp[p][i]

= sqrt(var-intcrp[p][i]+varp_2); }

else if (strcmp(psr[p].namc,”l7l3+0747”)==0)

for (i=0;i<nres_interp[p];i++)

if (xrcs_interp[p][i] + toffset — toffsct2 < 52462.5) { yrcs_intcrp_l[p

][count_l] = yrcs-interp[p][i]; ++count_l; }

else { yrcs_interp_2[p

][count-2] = yres_interp[p][i]; ++count_2; }

}
varp_1= TKvariance_d(yres_intcrp_l[p],c0unt_l); varp_2 TKvariancc_d(

yrcs_interp_2[p],count_2);

//Correct error bar using unweighted variance of interpolated time series,

in 2 pieces:

for (i=0;i<nrcs_intcrp[p];i++)

{
if (xres_intcrp[p][i] + [offset — toffsell < 52462.5) { crr-intcrp[p][i]

= sqrt(var_interp[p][i]+varp_1); }

else { crr-intcrp[p][i]

= sqrt(var_intcrp[p][i]+varp_2); }

else if (strcmp(psr[p].namc,"l744—l134”)==0)

for (i=0;i<nres_interp[p];i++)

if (xres_interp[p][i] + toffsct — toffsct2 < 52462.61) { yrcs-intcrp_l[p

][count_l] = yres_interp[p][i]; ++count_l; }

else { yres_intcrp_2[p

][count_2] = yrcs_intcrp[p][i]; ++count_2; }

}
varp_l = TKvariancc_d(yres_interp_l[p],count_l); varp_2 = TKvariance_d(

yrcs_intcrp_2[p],count_2);

//Correcl error bar using unweighted variance of interpolated time series,

in 2 pieces .'

for (i=0;i<nres_interp[p];i++)

{
if (xrcs_intcrp[p][i] + toffsct — toffsct2 < 52462.6l) { crr_interp[p][i

] = sqrt(var_interp[p][i]+varp_l); }

else { crr_intcrp[p][i

] = sqrt(var_intcrp[p][i]+varp_2); }

else if (strcmp(psr[p].name,”J1732—5049")==0)

for (i=0;i<nres_interp[p];i++)

if (xrcs_intcrp[p][i] + toffset — toffsct2 < 52967.5) { yrcs_intcrp-l[p

][count_l] = yrcs_intcrp[p][i]; ++count_l; }

else { yres_intcrp_2[p][

count_2] = yrcs_interp[p][i]; ++c0unt_2; }

}
varp_1= TKvariance_d(yrcs_interp_l[p],count_l); varp_2= TKvariance-d(

yres_intcrp_2[p],count_2);

//Correct error bar using unweighted variance of interpolated time series.

in 2 pieces:
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for (i=0;i<nrcs_interp[p]; i++)

{
if (xrcs_interp[p][i] + toffset — toffsetZ < 52967.5) { err_interp[p][i]

= sqrt(var_interp[p][i]+varp_1); }

else { crr_interp[p][i

] = sqrt(var-intcrp[p][i]+varp_2); }

}
}

else if (strcmp(psr[p].name,”2124-3358")==0)

1
for (i=0;i<nrcs_inlerp[p];i++)

{
if (xres_interp[p][i] + [offset — toffsth < 52984.5) { yres_interp_1[p

][count-1] = yres-intcrp[p][i]; ++count_l; }

else { yres_in[crp_2[p][

count-2] = yres_intcrp[p][i]; ++count-2; }

}
varp_1 = TKvariance_d(yrcs_interp_l[p],c0unt_1); varp_2 = TKvariancc_d(

yrcs-intcrp_2[p],count-2);

//Correct error bar using unweighted variance of interpolated time series,

in 2 pieces .'

for (i=0;i<nres_interp[p];i++)

{
if (xrcs_interp[p][i] + toffset — toffsct2 < 52984.5) { err_interp[p][i]

= sqrt(var_interp[p][i]+varp_1); }

else { err-interp[p][i

] = sqrt(var-intcrp[p][i]+varp_2); }

}
}

else if (strcmp(psr[p].name,”2129—5721”)==0) //change in front end!!! not back

end!!!rest are due to change in back end...

{
for (i=0;i<nrcs_intcrp[p];i++)

{
if (xres_intcrp[p][i] + toffset — toffsetZ < 51410.0) { yres_interp_1[p

][count_1] = yrcs_intcrp[p][i]; ++count_l; }

else { yrcs_interp_2[p][

count-2] = yrcs_interp[p][i]; ++count_2; }

}
varp_1 = TKvariancc_d(yrcs_interp_l[p],count-1); varp_2 = TKvariance_d(

yrcs_intcrp_2[p],count_2);

//Correct error bar using unweighted variance of interpolated time series,

in 2 pieces:

for (i=0;i<nrcs_interp[p];i++)

{
if (xrcs_interp[p][i] + toffset — toffsetZ < 51410.0) { crr-interp[p][i]

= sqrt(var-interp[p][i]+varp_l); }

else { crr_interp[p][i

] = sqrt(var_intcrp[p][i]+varp_2); }

}
}

else if (strcmp(psr[p].name,”2145-0750")==0)

{
for (i=0;i<nres_interp [p]; i++)

if (xres_intcrp[p][i] + toffsct — toffsth < 52975.5) { yres_intcrp_l[p

][count_l] = yres_intcrp[p][i]; ++count_l; }

else { yres_interp_2[p

][count-2] = yrcs_interp[p][i]; ++count_2; }
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}
varp_l = TKvariance_d(yres_intcrp_l[p],count_l); varp_2 = TKvariancc_d(

yres_intcrp_2[p],count_2);

//Correct error bar using unweighted variance of interpolated time series,

in 2 pieces :

for (i=0;i<nres-interp[p];i++)

{
if (xrcs_intcrp[p][i] + toffsct — toffsetZ < 52975.5) { crr_intcrp[p][i]

= sqrt(var-intcrp[p][i]+varp_l); }

else { crr_intcrp[p][i

] = sqrt(var_intcrp[p][i]+varp_2); }

}
}

else //there are no significant sudden white noise changes in the data set, and

we prefer uniformity where possible.

varp_l = TKvariance_d(yrcs_intcrp[p],nrcs_interp[p]);

varp_2 = 0.0;

//Correct error bar using unweighted variance of interpolated time series:

for (i=0;i<nrcs_intcrp[p];i++)

crr_intcrp[p][i] = sqrt(var-interp[p][i]+varp_l);

}
printf(”psr =%s, nrcs_interp[p] =%d, count_1 =%d, varp_l =%g, so unweighted rms

= %g, coun_2 = %d, varp_2 = %g, unw rms = %g\n",psr[p].name, nrcs_intcrp[p],

count_l, varp_l, sqrt(varp_l), count_2, varp_2, sqrt(varp_2));

}
}

//NOWREAD in transfer functions in preparation for the a22etaariance calculation. We care

about the prefit spectrum too, since this is a measure of the white noise described by

the error bars. The transfer functions go to much higher frequencies than the "average"

Nyquist frequency, because when we take the overlapping portions between different data

sets, that overlapping portion may correspond to a region with a much higher density of

points than the overall data set, meaning that the average Nyquist frequency is much

higher for the overlapping portion than for the overall dataset.

for (p=0;p<*npsr;p++)

nXFER[p]=0;

sprintf(fnamc ,”Transfer_function_SmoothInPlace . dat-psr%s" ,psr[p].namc);

if ( (fin = fopen(fname,”r”) == NULL)

{
printf(”Unable to open/find file %s\n”,fnamc);

exit(1);

}
while (lfe0f(fin))

{
if (fgets(1ine,1000,fin)!=NULL)

{
nread = sscanf(linc ,”%lg %lg °/of %lg”,&XFER_x[p][nXFER[p]],&mcanPre[p][nXFER[p

]],&mcanPosl[nXFER[p]],&XFER[p][nXFER[p]]);
XFER_x[p][n.XFER[p]] *= 86400.0L; //to convert back to cycles per day

nXFER[p]++;

}
}

fclosc(fin);

}
//NOW READ IN MODELS for each pulsar power spectrum in preparation for calculating errors on

the cross power spectrum.

for (p=0;p<*nPST;P++)
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sprintf(fnamc,spchodchilc);

strcat(fnamc,psr[p].namc);

if ( (fin = fopcn(fnamc,“r”) == NULL)

{

printf("Unablc to open/find file %s\n”,fname);

cxit(l);

}

while (!fcof(fin))

{

if (fgetsflinc,1000,fin)!=NULL)

{

nrcad = sscanffline ,"%s %1g %1g“,dummy,&modclspcc_y[p][1],&modclspcc_y[p][0]);

if (strcmp(psr[p].namc,dummy)!=0)

{

printf(”ERROR IN MODEL SCANNING! %s does not equal %s\n”,psr[p].namc,dummy);

fprintf(stdcrr ,"ERROR scanning %s\n“,fnamc);

exit(l);

}

}

fclosc(fin);

}

//NOW read in all the calibration factors from a file.

double calFac[*npsr * *npsr][numCal]; //this is the calibration factor

double calFrcq[*npsr * *npsr][numCal]; //this is the frequency of the first 10 factors

since we only care about the first 10 calibration factors.

double calFacErr[*npsr * *npsr][numCa1]; //probably don't need this, but it's good to read

it in since the CaIFac files will now be 10 columns wide.

char dummy2[100], dummy3[100];

ncorr = 0;

for (p2=1;p2<*npsr;p2++)

{

for (p1=0;pl<p2;pl++) //so pl is always less than 172, which makes more sense given

their names.

{

if (ycsCalFac == 1)

{

sprintf(fnamc,"CalibrationFactors-%s%s%s” ,outFilePairs ,psr[pl ].name,psr[p2].namc

);

if ( (fin = fopen(fnamc,”r")) == NULL)

{

printf(”Unable to open/find file %s\n”,fname);

exit(l);

}

i = 0;

while (i < numCal)

{

if (fgctsUinc,1000,fin)!=NULL)

{

nread = sscanf(1ine ,"%s %s %1g %1g %1g”,&dummy2, &dummy3, &calFreq[ncorr

][i],&calFac[ncorr][i],&calFacErr[ncorr][i]);

i++;

}

}

fclosc(fin);

else
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for (i=0;i<numCal ; i++)

{

calFac[ncorr][i] = 1.0;

}

ncorr++;

}

//NOW read in the errors obtained from simulation for each estimate of a22eta_err. This step

saves having to run my "fitHDfast.csh" script every time. It means that this code now

in a single pass produces the correct estimate of A'2 and the correct error bar on that

estimate.

double junk] , junk2;

int foundErrs = 0;

mean = 0;

spri ntf(fname , "REAL_PAIR_RESULTS“);

if ( (fin = fopen(fname,”r”)) == NULL)

{

printf(”Unable to open/find file %s\n”,fnamc);

}

else foundErrs = I; //yes, we found a file with errors in it.

if (foundErrs == 1) //i.e., if we've found a file containing the correct simulated errors

, then read it.

{

for (p2=1;p2<*npsr;p2++)

{

for (pl=0;p1<p2;pl++) //so p] is always less than p2, which makes more sense

given their names.

if (fgcts(1inc,1000,fin)!=NULI.)

{

nread = sscanf(1inc ,"%s %s %1g %1g %1g %1g %1g",&dummy2, &dummy3, &angle[

ncorr],&aZZeta[ncorr],&a22cta-err[ncorr], &junkl , &junk2);

}

ncorr ++;

}

fclose(fin);

}

//NOW CALCULATE CORRELATION AND AZZETAARIANCE BETWEEN DATA SETS IN THE FREQUENCY DOMAIN

int extraObsFlag = 0;

ncorr = 0;

double chisqsum = 0.0; //CONSISTENCY check/ll! this is the sum of the chisq of the

imaginary part of each a22eta estimate.

double chisq_im = 0.0; //the chisquared of the imaginary part (is chisqsum / totalcorr).

int start] , stari2 , cndl, endZ; //the starting and ending observations of each pulsar in

this pair. So, start] is the first observation from pulsar I which IS included in the

overlapping region (so "startl — I" will be the first [NOT to be included.)

FILE *fout2;

sprintf(fname,"Pulsar_Pairs_Rcsults“);

fout = fopen(fname,”a”);

for (p2=l;p2<*npsr;p2++)

{

for (pl=0;p1<p2;pl++) //so p] is always less than p2, which makes more sense given

their names.

{

printf("\n—— pl = "/05, p2 = "/05 ——\n”,psr[pl].name, psr[p2].namc);

//for each pulsar pair, there will be a different number of overlapping points:
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count] = 0;

countZ = 0;

//find earliest and latest common data points for these two pulsars

firstCommonX = xres_intcrp[pl][0];

lastCommonX = xrcs_intcrp[pl][nrcs_intcrp[pl]-l];

if (firstCommonX < xres_interp[p2][0])

{

firstCommonX = xrcs_interp[p2][0];

}

if (lastCommonX > xres_intcrp[p2][nrcs_intcrp[p2]—1]) lastCommonX = xrcs_interp

[p2][nres_intcrp[p2] — I];

//find overlapping portion of pulsar pl, and put into xres3, yresj', err3

for (i=0;i<nrcs_intcrp[pl];i++)

{

if (xrcs_intcrp[pl][i] — firstCommonX >= —l.0€—3 && xrcs-intcrp[pl][i] -

lastCommonX <= 1.0c—3)

{

//if the previous obs does NOTfall in the overlapping region, then set the

start] number.

if ((xrcs_intcrp[pl][i—l] — firstCommonX < —l.OC—3 && xres-intcrp[p1][i—-l] —

lastCommonX <= 1.06—3) H i == 0)

{

startl = i;

printf("startl = "/od\n" , start] );

}

//if the next obs does NOT fall in the overlapping region, then set the end]

number.

if ((xres-interp[pl][i+l] — firstCommonX >= —l.OC—-3 && xres_interp[pl][i+1]

—1astCommonX > 1.0c—3) |] i == nres_interp[pl]—l)

{

end] = i;

printf(”endl = %d\n",endl);

}

xrcs3[pl][count1] = xrcs_intcrp[pl][i];

yrcs3[pl][count1] = yrcs_interp[pl][i];

crr3[pl][count1] = crr_intcrp[pl][i];

++countl;

}

}

//a'o same for pulsar p2.

for (i=0;i<nrcs_intcrp[p2];i++)

{

if (xrcs-intcrp[p2][i] — firleommonX >= —1.0C—3 && xres_interp[p2][i] —

lastCommonX <= 1.0c—3)

{

//if the previous obs does NOT fall in the overlapping region, then set the

startl number.

if ((xrcs_intcrp[p2][i—l] — firstCommonX < -l.06-—3 && xrcs_interp[p2][i—1]—

lastCommonX <= 1.06—3) H i == 0)

{

start2 = i;

printf(”start2 =%d\n”,start2);

}

//if the next obs does NOT fall in the overlapping region, then set the endl

number.

if ((xrcs_intcrp[p2][i+l] — firstCommonX >= —I.0e—3 && xrcs_intcrp[p2][i+l]

— lastCommonX > 1.0c—3) H i == nres_intcrp[p2]—l)

{

endZ = i;
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printf("cnd2 = %d\n",cnd2);

}
xrcs3[p2][count2] - xrcs_intcrp[p2][i];

yres3[p2][count2] yres_intcrp[p2][i];

err3[p2][count2] = err-intcrp[p2][i];

++count2;

ll

}
nres3[p1] = count]; nrcs3[p2] = count2;

//NOW fit out a quadratic from both data sets in the overlapping portion if

requested.

if (noquad == 1)

{
TKremochtholy_d(xrcs3[p1],yres3[p1],crr3[p1],nrcsB[p1],3);

TKremochtholy_d(xrcs3 [p2] ,yrcsS [p2] , err3 [p2] , nres3 [p2] ,3);

}
//so now xres3,yres3,err3,nres3 describe the two smoothed, interpolated, overlapping

data sets we have for this pair, possibly including removal of a weighted

quadratic from the overlap region.

printf(”\n-— pl = %s, p2 = %s —\n numptsl = %d, numptsZ = %d, \nfirstdaypl

= %g, firstdaypZ = %g, lastdaypl = %g, 1astdayp2 = %g\nfirstCommonX = °/og,

lastCommonX =%g, \nnum overlapping: countl = %d, count2 = %d [may be different

due to differing gap size without the ’—regular’ option], \nspan of overlap =%g

years\n”,psr[pl].name,psr[p2].name, nrcs_interp[p1], nrcs-intcrp[p2],

xres-intcrp[p1][0], xres-interp[p2][0], xrcs_intcrp[p1][nres_intcrp[p1] — 1],

xrcs_interp[p2][nres_interp[p2]—1], firstCommonX, lastCommonX, nrcs3[pl], nres3[

p2], (lastCommonX — firstCommonX) / 365.25);

//NOW calculate the ONE—SIDED power spectrum of each of p] and p2 in the overlapping

portion.

double ofacpl=1.0, ofacp2=1.0, frer;

//now set the values of ofac such that the lowest frequency is at the SHORTER of the

two data spans

if ((xres3[p1][nresS[p1] — I] — xrcs3[p1][0]) — (xres3[p2][nrcs3[p2] — 1] — xrc53[p2

][0]) > 1.0c—8)

{
//then p1 has a longer data span than p2, so take the frequency that goes with

p2:

frer = 1.0 / ((xrcsB[p2][nre53[p2] — 1] — xrcs3[p2][0]) >o< 86400.0);

ofacpl = 1.0 / frer / ((xrcs3[p1][nrcs3[p1] — 1] — xrcs3[p1][0]) * 86400.0);

ofacp2 = 1,0;

}
else if ((xrcs3[p1][nr053[p1] — 1] -— xres3[p1][0]) — (xrcs3[p2][nrcs3[p2] — 1] —

xres3[p2][0]) < - 1.06—8)

{
//this means p2 has a longer data span than p], so take the freq that goes with

p].

frqu = 1.0 / ((xr653[p1][nres3[p1] — I] — xrcs3[pl][0]) * 86400.0);

ofacpl = 1.0;

ofacp2 = 1.0 / frer / ((xrcs3[p2][nres3[p2] — 1]— xres3[p2][0]) >0: 86400.0);

}
else

//this means they are the same length, so use ofacpl = ofacp2 = 1.0;

ofacpl = 1.0;

ofacp2 = 1.0;

}
TKspectrum(xres3 [p1],yrcs3 [pl] , err3 [p1 ] ,nres3 [p1 ] ,0 ,0 ,0,0 ,0 ,6 ,ofacp1,1.0 ,1 ,xspcc [p1

],yspec[p1],&nspec[p1],0 ,0 ,yspcc_re[p1] ,yspcc_im[pl ] ,useWcight);
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TKspcctrum(xrcs3[p2],yres3[p2],err3[p2],nres3[p2],0,0,0,0,0,6,ofacp2,l.0,l,xspec[p2

],yspec[p2],&nspec[p2],0,0,yspcc_re[p2],yspec_im[p2],useWeight);

//Check overlap has worked because they should have the same number of channels.

if (intcrp != O)

{
if (fabs(nspcc[pl] — nspcc[p2]) >= 1 ) {printf(”ERROR in overlapping data: nspcc

pl = %d, nspcc p2 = %d\n",nspec[pl],nspee[p2]); fprintf(stderr ,"ERROR in

overlap\n"); exit(1);}

}
//choose the maximum loop index to be the shorter of the two spectra

int maxloop = nspee[pl];

if (nspcc[pl] > nspcc[p2]) maxloop = nspcc[pZ];

//set number of cross spectral channels

numCrossspcc[ncorr] = maxloop;

//NOW interp Xfer func of each dataset onto x—values given by their power spectra

above if the data span has changed by taking the overlapping portion

if (TKrange_d(xres_interp[pl],nres_interp[pl]) — TKrangc_d(xrcs3[p1],nres3[pl]) >

1.0e—20)

{
//first check that XFER function is long enough for interpolation

if (TKrange-d(xrcsS[pl],nrcsS[pl]) — 1,0/XFER_x[pl][0] > l.0e—8)

{
fprintf(stderr ,"Huge problem with p1 because IDWFREQ transfer function is

too short —- code will crash: psr = %s, psr # = %d, datalength = %.20g,

lowest XFER_func frequency = %.20g\n", psr[pl].name, p1, TKrange_d(

xres_interp[pl],nrcs_interp[pl]), l.0/XFER-x[p1][0]);

exit(1);

}
printf("intcrpolating XFER "/05, since range has changed by %g days due to overlap

\n", psr[pl].name, TKrange_d(xres_interp[pl],nrcs_interp[pl]) — TKrange_d(

xres3[pl],nres3[pl]));

interpolateSplineSmoothFixedXPts(XFER_x[pl], XFER[pl], nXFER[pl], xspec[pl],

XFER_intcrp[pl], nspcc[pl]);

}
else //the range hasn't changed, so the frequency sampling is the same and the

value of the interpolated function is the same.

{
printf(”All pulsar %s data contained in overlapping portion\n",psr[pl].name);

for (i=0;i<nspec[pl];i++) XFER_intcrp[p1][i] = XFER[pl][i];

}
//NOW do the same for pulsar [72‘

if (TKrangc_d(xrcs_interp[p2],nres_interp[p2]) — TKrange_d(xres3[p2],nre53[p2]) >

1.06—8)

{
//first check that XFER function is long enough at the low frequency end

if (TKrangc-d(xre53[p2],nres3[p2]) - l.O/XFER_x[p2][0] > 1.0c—8)

{
fprintf(stderr ,”Huge problem with p2 because LOWFREQ transfer function is

too short -— code will crash: psr = %s, psr # = %d, datalength = %.20g,

lowest XFER_func frequency = %.20g\n”, psr[p2].name, p2, TKrange_d(

xres_intcrp[p2],nres_intcrp[p2]), l.0/XFER_x[p2][0]);

cxit(l);

}
printf("interpolating XFER "/05, since range has changed by %g days due to overlap

\n”, psr[p2].name, TKrange_d(xres_interp[p2],nrcs_interp[p2]) — TKrangc_d(

xre53[p2],nrcs3[p2]));

interpolateSplincSmoothFixedXPts(XFER_x[p2], XFER[pZ], nXFER[p2], xspec[p2],

XFER_intcrp[p2], nspcc[p2]);
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else //the range hasn‘t changed, so the frequency sampling is the some and the

value of the interpolated function is the same.

{
printf(”All pulsar %5 data contained in overlapping portion\n”,psr[p2].name);

for (i=0;i<nspee[p2];i++) XFER-interp[p2][i] = XFER[p2][i];

}
//the following variable is a bit of a fudge factor — sometimes there is a numerical

glitch with the last few channels of the cross spectra, or the high freqeuncies

in the transfer function are not sufficient because the irregular sampling

means that if, as part of an overlapping region, we encounter the higher than

average point—density, then the transfer function will suddenly be too short at

the high frequency end because the highest frequency in the transfer function is

calculated as the AVERAGE separation of points.

int extraSpecChans = 4;

if (xspec[pl][maxloop — extraSpecChans — l] — XFER_x[pl][nXFER[pl] - l] > 1.0e—8)

{
fprintf(stderr ,”Huge problem with pl because HIGHFREQ transfer function is too

short — code will crash: psr = %s, psr # = %d, pair # = %d, max xspec = %.20

g, max XFER_func freq = %.20g\n”, psr[p1].name, p1, ncorr, xspcc[pl][nspee[

pl] — extraSpecChans - 1], XFER_x[pl][nXFER[p1] — 1]);

exit(l);

}
if (xspee[p2][maxloop — extraSpecChans — l] - XFER_x[p2][nXFER[p2] - 1] > 1.06-8)

{
fprintf(stderr ,"Huge problem with p2 because HIGHFREQ transfer function is too

short — code will crash: psr = %s, psr # = %d, pair # = %d, max xspec = %.20

g, max XFER_func freq = %.20g\n”, psr[p2].name, p2, ncorr, xspec[p2][nspcc[

p2] — extraSpecChans — 1], XFER_x[p2][nXFER[p2] - 1]);

exit(l);

}
//NOWform cross spectrum of pulsars pi and p2, only need real part since when we

sum it to find the aZZetaariance, the imaginary parts will cancel out for

negative and positive frequencies: therefore Re{FT[p1]xFT[p2]*} = FT_re[pl] x

FT_re[p2] + FT_im[pI] x FT_im[p2]. However the imaginary part maybe useful for

giving us a good estimate of the noise on each pulsar (since it will not be

affected by GWIS' or clock errors)

for (i=0;i<maxloop;i++)

if (interp !=0)

{
if (fabs(xspec[pl][i] — xspcc[p2][i]) > le-3) {printf("ERROR in overlapping

data: i = %d, freq %s = %g, freq %s = %g\n",i,psr[p1].name,xspec[pl][i],

psr[p2].name,xspcc[p2][i]); fprintf(stderr ,“EMOR in overlap\n”); exit

(1);}

}
if (fabs(XFER_x[pl][i] — xspec[pl][i]) < 0 || fabs(XFER_x[p2][i] - xspec[p2][i])

< 0) {printf(”Transfer function has incorrect sampling — leads to

extrapolation not interpolation !! %g %g %g %g %g %g %g %g\n“,XFER_x[pl][i],

XFER[pl][i],xspee[pl][i], XFER_interp[pl][i],XFER_x[p2][i], XFER[p2][i],

xspec[p2][i], XFER_interp[p2][i]); fprintf(stderr ,"ERROR in overlap\n”);

exit(1);}

crossspec_x[ncorr][i] = xspcc[p1][i]; //p1 and p2 have same x—values

crossspec_y_re[ncorr][i] = yspec_re[pl][i] * yspec_rc[p2][i] + yspec_im[pl][i] *

yspec_im[p2][i]; //real part of 2-sided cross spectrum in (DFT units)?

crossspec_y_im[ncorr][i] = yspec_im[pl][i] * yspee_re[p2][i] — yspec_rc[pl][i] *

yspec_im[p2][i]; //imag part of 2—sided cross spect in (DFT units)?

//NOW convert the units of the real and imaginary parts of the Z—sia'ed cross

spectrum into units of l—sided PSD using the same conversion factor as we

use for the power spectra. This conversion for the power spectra is outY[j
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] = (outY[j]/pow(365.25*86400.0,2))*2*(tspan/365.25)/(double)n/(double)n;

note the factor of 2 that converts 2-sided to 1—sided spectrum.

crossspcc_y_rc[ncorr][i] = (crossspcc_y_rc[ncorr][i]/pow(365.25*86400.0,2))

*2*(1/sqrt(xspcc[p1][0]*xspcc[p2][0])/365.25)/(doub1e)nres3[p1]/(d0ub1e)

nrc53[p2];

crossspcc_y_im[ncorr][i] = (crossspcc_y_im[ncorr][i]/pow(365.25*86400.0,2))

*2*(1/sqrt(xspcc[p1][0]*xspec[p2][0])/365.25)/(d0uh1e)nres3[p1]/(doub1e)

nrcs3[p2];

//CONSISTENCY CHECK: real part of the cross spectrum can't exceed the sqrt of

the product of the 2 input power spectra. This is a consequence of the

identity (A—B)? >= 0, with A = Rp1*1p2,' B = Rp2*1p1.

if (crossspec_y_rc[ncorr][i] / sqrt(yspcc[p1][i] * yspec[p2][i]) > 1.01 )

{
fprintf(stderr ,"ERROR! Cross spectrum cxcccds sqrt of product of input power

spectra: frcqnum = “/od, cross spec =%g, sqrt(yspec[p1] 2k yspcc[p2] =%g

\n", i, crossspcc-y_rc[ncorr][i], sqrt(yspcc[p1][i] * yspcc[p2][i]));

cxit(1);

}
}

//NOW divide the I—sia’ed cross spectrum by the square root of the product of the

XFER functions. Also divide each pulsar spectrum by its own transfer function.

double sqrtprod; //for computational speed

for (i=0;i<maxloop;i++)

{
sqrtprod = sqrt(XFER-intcrp[p1][i] * XFER_intcrp[p2][i]);

if (noXFER == 0) sqrtprod = 1.0;

yspcc[p1][i] /= XFER_interp[p1][i];

yspcc[p2][i] /= XFER_intcrp[p2][i];

crossspcc-y-re[ncorr][i] /= sqrtprod;

crossspec-y_im[ncorr][i] /= sqrtprod;

P_g[nc0rr][i] = prcWhAmp * preWhAmp * pow( (double)(xspec[p1][i] * 365.2425)

,(2.0*alphaGWB - 3.0) ) / 12.0 / M_PI / M_PI;

crossspec_crr[ncorr][i]=sqrt( (modelspcc_y[p1][0] * pow(xspec[p1][i]/86400.0,

modelspec-y[p1][1]) + P_g[ncorr][i]) * (modelspec_y[p2][0] * pow(xspcc[p1][i

]/86400.0,modelspec-y[p2][1]) + P_g[ncorr][i]) / 2.0 );

//NOW INCLUDING THE CALIBRATION FACTOR/ll!!! remember to calibrate the error as

well.

if (i < numCal && ycsCalFac == 1)

{
crossspcc_y-rc[nc0rr][i] = 1.0 / ca1Fac[ncorr][i] * (crossspec_y_re[ncorr][i

]);
crossspcc_y_im[ncorr][i] = 1.0 / calFac[ncorr][i] * (crossspec_y_im[ncorr][i

1);
crossspcc_err[ncorr][i] = 1.0 / calFac[ncorr][i] * (crossspec_err[ncorr][i

1);

}
}

//Naw calculate the estimate of A‘Z times zeta (using the big summation formulae)

where the errors in the cross spectrum are NOT independent of frequency (because

the spectra are not white in general). Note there are 2 available versions here

- the pre—whitening version where we allow for the idea that the gravitational

wave signal might be large enough that P_G ~ P_N, and the non-pre—whitening

version where we assume P_G << P_N.

suml=0.0;

sum2=0.0;

sum4=0.0;

for(k=0;k<maxloop — cxtraSpccChans;k++)

sum1+= ( crossspcc_y_re[ncorr][k]*pow((doub1e)(k+1),—1.0*(3.0 — 2.0*a1phaGWB)) /

crossspec_crr[ncorr][k] / crossspcc_err[nc0rr][k] );
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sum2+= ( pow((double)(k+l),—2.0*(3.0 — 2.0*a1phaGWB)) / crossspcc-crr[nc0rr][k]

/ crossspcc-crr[ncorr][k] );

//CONSISTENCY CHECK— we don't expect the imaginary part to be correlated, so

the chi squared of the imaginary part should be I.

sum4 += ( crossspcc_y_im[ncorr][k]*pow((double)(k+1),—1.0*(3.0 — 2.0*a1phaGWB))

/ crossspec-err[ncorr][k] / crossspec_err[ncorr][k] );

a2zcta[ncorr] = 12.0*M_PI*M_PI*pow((xspec[p1][0] * 365.2425) ,(3.0 — 2.0*alphaGWB)) ax

suml / sum2;

//CONSISTENCY check with imaginary part of the cross power spectrum.

a2zeta_im[ncorr] = 12.0*M_PI*M_PI*pow((xspec[pl][0] * 365.2425) ,(3.0 — 2.0*a1phaGWB)

) * sum4 / sum2;

//NOW calculate the error on the estimate of a22eta given that the error on the

cross spectrum DOES vary with frequency.

sum3=0.0;

for (k=0;k<maxloop — extraSpccChans;k++)

{
//using the calibrated error estimate on the cross spectrum

sum3+= (1.0 / crossspec_err[ncorr][k] / crossspec_err[ncorr][k] / pow((double)(k

+1),2.0*(3.0 — 2.0*alphaGWB)));

}

//If we haven't found a file with the errors from our process contained in it, then

calculate the error analytically.

if (foundErrs == 0)

{
a22€ta-crr[nc0rr] = 12.0 * M_PI * M_PI >9: pow(xspec[pl][0] * 365.2425,(3.0 — 2.0a:

a1phaGWB)) / sqrt(sum3);

printf("calcu1ating errors from the spectral models!!!! DUE to no file called

REAL_PAIR_RESULTS !!!!!!!!!!!!!!!!!!\n”);

}
//CONSISTENCY CHECK with chisq of imaginary part

chisqsum += ( a22cta_im[ncorr] / aZzeta_err[ncorr]) an (a2zeta_im[ncorr] /

a22¢ta_err[ncorr]);

angle[ncorr] = psrangle(psr[p2].param[param_raj].val[0],psr[p2].param[param_dccj].

val[0],

psr[p1].param[param_raj].val[0],psr[p1].param[param_decj].

va1[0]);
printf(”A226taEstimatcs %s %s %d %g %g %g %g\n",psr[pl ].namc,psr[p2].name,ncorr,

angle[ncorr], a226ta[ncorr], a2zcta_err[ncorr], alzeta[ncorr] / a2zeta_crr[ncorr

1);
/* Quick correlation */

suml=0.0;

sum2=0.0;

sum3=0.0;

for (i=0;i<nrcsS[pl];i++)

{
suml += yres3[pl][i]*yres3[p2][i];

sum2 += yrcs3[pl][i]*yres3[p1][i];

sum3 += yrcs3[p2][i]*yrc53[p2][i];

}
corr[ncorr] = (float)(sum1/sqrt(sum2*sum3));

Tovcrlap[ncorr] = 1.0 / xspec[p1][0]; //ihe overlapping time interval of the two

pulsars, in units of days.

fprintf(f0ut, “%s %s %.8g %.8g %.8g %.8g %.8g %.8g\n”,psr[pl].name,psr[p2].namc,

angle[ncorr], a220ta[ncorr], a22€ta-err[ncorr], Tovcrlap[ncorr] / 365.2425, corr

[ncorr], aZzeta_im[ncorr]);

if (yesXSpe == 1)

{
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//NB!l If you change the name of the Calibration factor files, you need to

change the name of these ones tool!

sprintf(fname,outFilePairs);

strcat(fnamc,psr[p1].name);

strcat(fname,psr[p2].name);

fout2 = fopen(fname,”a”);

fprintf(fout2 , ”%.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %2g %.2g %.2g %.2g %.2g

%.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g

%.2g %.2g ”, crossspcc_y_re[ncorr][0], crossspec_y_im[ncorr][0],

crossspec_err[ncorr][0] , crossspcc_y_rc[ncorr][1], crossspec-y_im[ncorr][1],

crossspcc_err[ncorr][1] , crossspec_y_rc [ncorr][2] , crossspec_y_im[ncorr][2],

crossspec_crr[ncorr][2] , crossspcc_y_rc[ncorr][3] , crossspec-y_im[ncorr][3] ,

crossspcc_crr[ncorr][3] , crossspcc_y_re[ncorr][4] , crossspcc-y_im[ncorr][4] ,

crossspec-err[ncorr][4] , crossspec-y_rc[ncorr][5], crossspec_y_im[ncorr][5],

crossspcc_crr[ncorr][5] , crossspcc_y_re[ncorr][6], crossspec-y_im[ncorr][6],

crossspec_err[ncorr][6] , crossspec_y_re[ncorr][7] , crossspec_y_im[ncorr][7] ,

crossspcc_err[ncorr][7] , crossspec_y_rc[ncorr][8] , crossspcc_y_im[ncorr][8] ,

crossspec_crr[ncorr][8] , crossspec-y_rc[ncorr][9] , crossspcc_y_im[ncorr][9],

crossspcc_crr[ncorr][9]);

fprintf(fout2, ”\n");

fclosc(fout2);

}

ncorr++;

printf("************************END OF THIS PAIR********************\n");

}

fclose(fout);

totalcorr = ncorr; //this is the total number of estimates of the correlations, equal to

the nmber of pulsar pairs.

//CONSlSTENCY CHECK

chisq_im = chisqsum / (double)totalcorr;

printf(”chi squared of the imaginary part of the %d alzcta estimates is %g; this number

should be close to 1\n”,totalcorr ,chisq_im);

//Determine the weighted average T_overlap (in units of days) in the data set, weighted by

error on each A'Z zeta estimate.

double wts[tota1corr];

for (i=0;i<tota1corr;i++)

wts[i] = 1.0 / a22cta_crr[i] / achta_crr[i];

avTovcrlap = TKWcightcdmean_d(Toverlap ,wts,totalcorr);

printf("avcragc overlap time is %g years\n”, avToverlap / 365.2425);

// Calculate significance of detection using the Jenet et al. significance parameter "S"

double R_sig = calcSignificancc(corr,anglc,totalcorr ,*npsr);

//PERFORM Least Squares fit to A22etaariances...

//2 fit parameters if we are searching for the HD curve AND a constant. Just 1 if we are

only searching for I'm curves

printf(”nharm = %d\n”,nharm);

double A2[nharm], eA2[nharm], afunc[10], c[tota1corr];

int outN;

eA2[0] = 0.0;

if (nharm == 2) cA2[1] = 0.0;

// Do LSQ Fit of the l-Dfunction to the data.

for (i=0;i<totalcorr;i++)

{

}

int wErr = l; //with Error

e[i] ' a2zcta_crr[i];

if (wErr == 0) printf(”\n\n\n\nwErr = 0!!! This means not using errors\n\n\n");

double reduccd_chisq[l];

//DO THE FIT
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//FIT TO THE REAL PART (which contains the correlated signal).

fitHDcurve(ang1c ,a2zcta ,c,tota1corr ,wErr,nharm ,A2,&outN ,cAZ, rcduccd-chisq );

fout = fopen(outFile ,"a”);

char msg[100];

double B_sig = A2[0] / eA2[0]; //significance of detection

double gwAmp, UppchoundAmp;

if (A2[0] < 0) //if the estimate of A‘2 is negative, then:

gwAmP = 0;
else

gwAmp = Sqrt(AZ[0]);

if (ngw==0) gwamp = 0.0;

printf("dcrived gwAmp = %g, input gwAmp = %g \n”, gwAmp, gwamp/pow(365.2425*86400.0,alpha));

//the factor is to get the input gwamp normalised to 1 year (instead of] second)

if (B_sig < —l.7)

UpperBoundAmp = 0.0;

else

UpperBoundAmp = sqrt(A2[0] + 1.7 =o< eA2[0]); //the number [.7 comes from the erf function;

it gives us a 90% confidence interval: since we only want the upper side, this

corresponds to a 95% confidence upper bound.

//Now determine the equivalent values of omega for the estimate and the limit, using eq. 36

from Anholm et al. paper

double h = 0.72; //assumed value of H_0 = 72 km / s / Mpc

double a1pha0mega_GWB = 2 * alphaGWB + 2.0; //this is the spectral exponent of the omega

background

double H_0 = h * 100.0 * 1000.0 / 3.08568025622 * 365.2425 * 86400.0; //hubble constant

in 1 / years

double f-1yr = 1.0; // I / 1 year in years

double omega_GWB = A2[0] * 2.0 no: M_Pl * M_PI / 3.0 / H_0 / H_0 / pow(f_1yr,2,0*a1phaGWB) *

p0w((1.0 / avTovcrlap), 2.0*alphaGWB + 2.0 — alphaOmega_GWB);

double errOmcga_GWB = eA2[0] * 2.0 * M_P1 >1: M_P1 / 3.0 / 1-L0 / H_0 / pow(f_1yr,2.0*alphaGWB)

* pow((1.0 / avTovcrlap), 2.0*alphaGWB + 2.0 — alphaOmcga_GWB);

double UppcrOmcgaLGWB = omega_GWB + 1.64485 * crrOmchGWB;

if (gwamp > 0) //if we have added an input GWB with positive amplitude:

{
if (nharm == 2) //i.e. if we have fitted a clock error as well, then print out the

parameters of the estimated clock error

fprintf(fout ,"%.4g\t%.4g\l%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%d\t%.4g\t%.4g\t%.4g\n" ,

B-sig, gwAmp,gwamp*105,UppchoundAmp, A2[0], CA2[0], rcduccd_chisq[0],chisq_im,

totalcorr,A2[l], eA2[1],A2[1]/eA2[1]);

else if (nharm == 1)

fprintf(fout ,”%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%d\n", B_sig, gwAmp,

gwamp*1€5,UpperBoundAmp, A2[0], cA2[O],reduccd_chisq[0],chisq_im,totalcorr);

}
else //no simulated GWB added

{
if (nharm == 2) //i.e. if we have fitted a clock error as well, then print out the

parameters of the estimated clock error

fprintf(fout ,"%.4g\t%.4g\t%.4g\t%.4g\l%.4g\t%.4g\t%.4g\t%d\t%.4g\t%.4g\t%.4g\n”, B_sig

, gwAmp,UpperBoundAmp, A2[0], cA2[0], reduccd_chisq[0],chisq_im,totalcorr ,A2[1],

eA2[l],A2[1]/eA2[1]);

else if (nhar == 1)

fprintf(foul,”%.4g %.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%.4g\t%d\n", R_sig, B_sig

, gwAmp,UpperBoundAmp, A2[0], cA2[0],rcduccd_chisq[0],chisq_im,corr[0],tota1corr);

}
fclosc(fout);

return 0;
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}

//TKfindWeightedRMS is a function to find the weighted RMS of an input series. x is the array

of values, wt is the array of weights, n is length of series. This should agree with plk

but is DIFFERENT to finding the rms of the weighted mean!/

double TKfindWcightedRMS_d(double *x,double *wt,int n)

{

int i;

double mean,sdev=0.0,sumwt=0.0;

mean = TKWcightcdmcan_d(x,wt,n);

for (i=0;i<n;i++)

{

sdev += pow(x[i]—mcan,2)*wt[i];

sumwt += wt[i];

}

sdcv/=sumwt;

sdcv*=(double)n / (double)(n—1);

sdcv = sqrt(sdev);

return sdev;

}

//TKfindWeightedRMS is a function to find the weighted RMS of an input series. x is the array

of values, wt is the array of weights, n is length of series. NOT rms of weighted mean.

float TKfindWcightcdRMS_f(float *x,d0uble *wt,int n)

{

int i;

float mean;

double sdcv=0.0;

double sumwt=0.0;

mean = TKWcightcdmcan_f(x,wt,n);

for (i=0;i<n;i++)

{

sdcv += pow(x[i]—mcan,2)*wt[i];

sumwt += wt[i];

}

sdcv/=sumwt;

sdcv*=(double)n / (double)(n—l);

sdev = (float)sqrt(sdev);

return sdcv;

//psrangle: calculates angle on the sky between psr I and psr 2

double psranglc(double ccntrc_10ng ,double ccntreJat ,double psr-10ng,double psr_lat)

{

double dlon ,dlat ,a,c;

double dcg2rad = M-PI/180.0;

/* Apply the Haversine formula */

dlon = (psr_long — centreJong);

dlal = (psr_lat — ccntre-lat);

a = pow(sin(d1at/2.0) ,2) + cos(ccntrc-]at) *

cos(psr_lat)*pow(sin(dlon/2.0) ,2);

if (a==1)

c = M_Pl/dcg2rad;

else

c = 2.0 * atan2(sqrt(a),sqrt(l.0—a))/deg2rad;

return c;
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double calcSignificancc(double *corr,douhle *angle,int ncorr,int npsr)

{
double meanR,mcanR2 ,meanEta , mcanEtaZ , sigmaRho , sigmaR , sigmaEta;

double hd,rho,sig ,sigma_g2, rEta, clockcrr;

int i;

char str[100];

sigmaRho = sqrt(2)/sqrt(npsr*(npsr—l));

mcanR = 0.0;

meanRZ = 0.0;

mcanEta = 0.0;

meanEtaZ = 0.0;

rEta = 0.0;

for (i=0;i<ncorr;i++)

{
meanR += corr[i]; //meanR is average correlation

mcanRZ += corr[i]*corr[i];

hd = cachD(ang1c[i]); //rhe Hellings Dawns coefficient

mcanEta += hd;

meanEtaZ += hd*hd;

rEta += corr[i]*hd; //related to aZzetaariance between H) curve and our measured

correlations.

}
mcanR /= ncorr;

meanEta /= ncorr;

rEta /= ncorr;

sigmaR = mcanRZ - meanR*mcanR;

sigmaEta = meanEtaZ — mcanEta*mcanEta;

rho = 0.0;

/* Nate: subtracting the means implies that any Clock error gets removed */

for (i=0;i<ncorr;i++)

rho += (corr[i]—meanR)*(cachD(ang1c[i])—mcanEta)/sqrt(sigmaR*sigmaEta);

sig = rho/sigmaRho;

sigma_g2 = 0.0;

for (i=0;i<ncorr;i++)

sigma_g2 += corr[i]*cachD(anglc[i]);

sigma_g2 /= mcanEtaZ;

sprintf(str ,"Significance of GW background signal = %.2g",sig);

/* Calculate clock error */

{
clockerr = (mcanEtaZ*mcanR—meanEta*rEta)/sigmaEta;

printf(”Variancc of clock error =%g (s‘2)\n",clockcrr);

}
/* Srrengrh of gravity wave background */

printf(”GW background = %g (5‘2) sqrt() = %g (s)\n”,rho*sqrt(sigmaR/sigmaEta),sqrt(rho*sqrt(

sigmaR/sigmaEta)));

return Sig;

double cachD(double angle)

{
if (angle == 0) return 0.5;

double x,ctheta;

cthcta = cos(anglc*M_Pl/180.0);

x = (1.0—ctheta)/2.0;

return (x*log(x)—x/6.0+l,0/3.0)*3.0/2.0;

// This version does a fit of the HD curve only
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void fitHDcurve(d0uble *x,d0uble *y,d0uble *c,int n,int wErr, int nharm,double *A2,int *outN,

double *cAZ, double *reduced_chisq)

FILE *fout;

int i,j;

long idum2 = TKsetSeed();

double **CVm;

double chisq=0.0;

cvm = (double**)mal|oc(nharm*sizeof(double *));

for (i=0;i<nharm;i++)

cvm[i] = (double*)malloc(nharm*sizeof(double));

if (nharm == 1) TchastSquares_svd(x,y,e,n,A2,cA2,nharm,cvm,&chisq ,HDfunc,wErr);

else if (nharm == 2) TchastSquares_svd(x,y,e,n,A2,eA2,nharm,cvm,&chisq ,HDfuncClk,wErr);

for (i=0;i<nharm;i++)

for (j=0;j<nharm;j++)

printf("cvm[%d][%d] = %g\n”,i ,j ,cvm[i][j]);

for (i=0;i<nharm;i++)

for (j=0;j<nharm;j++)

printf(”correlation matrix[%d][%d] =%g\n",i,j,cvm[i][j] / sqrt(cvm[i][i]*cvm[j][j]));

*outN = nharm;

reduced-chisq[0] = chisq / (n — nharm); // the chi squared divided by the number of degrees

of freedom = npts — numfits

printf("chisq = %g & rcduced-chisq = %g and wErr = %d\n\n”,chisq ,rcduced-chisq[0],wErr);

//NOW Correct the error bars on the ”nharm" fitted parameters for the chi—squared value:

if (wErr == 1)

{
printf(”Correcting errors on fit using the square root of the reduced chisquarcd\n”);

for (i=0;i<nharm;i++)

eA2[i] *= (sqrt(rcduccd_chisq[0]));

}
if (nharm == 2) printf(”clock error =%g +/— %g, significance of clock error = %g\n”, A2

[I], cA2[1],A2[1] / cA2[1]);

//This function is used when fitting for a clock error as well as the GWB

void HDfuncC1k(d0uble xl ,double afunc[],int ma)

{
int i;

double x;

double ctheta;

ctheta = cos(xl*M_PI/180.0);

x = (l.0—ctheta)/2.0;

afunc[O] = (x*log(x)—x/6,0+l.O/3.0)*3.0/2.0;

afunc[l] II 1.0; //fits a constant simultaneously

//This function fits only for the GWB

void HDfunc(double x1,d0uble afunc[],int ma)

{
int i;

double x;

double ctheta;

ctheta = cos(xl*M_PI/180.0);

x = (1.0——ctheta)/2.0;

afunc[O] = (x*log(x)—x/6.0+l.0/3.0)*3.0/2.0;

//Adapted from Stefan / George ’s plugin
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//interpolation (spline): this function interpolates a data set using conxtrained spline onto

an input set of interpX and nInterp values

void interpolatcSplineSmoothFixchPts(double *inX, double *inY, int inN, double *intcrpX,

double *intcer, int nIntcrp)

//array needed by TKcmonot

double yd[MAX_OBSN][4];

//auxilary 'i'

int i;

double teme[MAX.OBSN];

int nTemp = nInterp;

for (i=0;i<nTcmp;i++)

{
tcme[i] = intcrpX[i];

}
TKcmonot(inN, inX, inY, yd);

TKspline_intcrpolate(inN, inX, inY, yd, tcme, inteer, nTcmp);

} //interpolateSplineSmoothFixedXPts
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