Role of Host Response to Hepadnavirus sAg in Immunity and Recovery

Robert Welschinger

A thesis submitted for the degree of Doctor of Philosophy
Department of Infectious Diseases and Immunology
Faculty of Medicine, University of Sydney

Under the supervision of
Dr. Karen Vickery \& Prof. Yvonne Cossart

ACKNOWLEDGEMENTS

I wish to thank my supervisors, Professor Yvonne Cossart, and Doctor Karen Vickery for providing support and guidance on the, sometimes wayward, journey that this tome represents. Their commitment and dedication are exemplary.

A debt that could never be repaid is owed to my parents, Rosmarie and Fritz, for providing an environment in which the pursuit of life and knowledge was nurtured; well beyond respectable limits of time, money, and patience.

All of the individuals within the Department of Infectious Diseases and Immunology, have contributed ideas, solutions, support, and most importantly friendship during the years. Colin Harbour provided initial supervisory support, and Ray Kearney always provided excellent advice. I hope that the bonds formed during this time will last for many years.

The financial assistance provided by an Australian Postgraduate Award from the University of Sydney, was extended with employment within the department, and in combination with my parents, permitted the continuance of my studies.

An important factor in any learning experience are fellow students. Many students have come and gone, but Aniko, Rachel, and Jean, provided long standing help. Several of the experiments were done in combination with Jim Pouliopoulos for his Masters, and his help was always forthcoming. Linda Bisset deserves special mention, for she has provided not only vast amounts of practical help, but also a joyous friendship.

Several people must be thanked for providing practical assistance. Anand Deva, Robert Dixon, and Karen Vickery, performed several surgical procedures. Scott Thomson kindly donated his DNA vaccine plasmid, and his expertise in the design of our own. Ted Wills donated his time to provide the histopathology results.

The experience of this marvellous o pportunity cannot be underestimated, a nd will stay with me for the rest of my days.

Animal Ethics

Animals were used during the studies described in this thesis.

Pekin-Ayelsbury crossbred ducklings were used in animal experiments. Ethical approval was obtained from the University of Sydney animal ethics committee. All ducks were handled with great care and respect, beyond that required by legislation. All animals were housed in designated animal care facilities at the University of Sydney.

The knowledge obtained by the sacrifice of these animals is appreciated.

DECLARATION

The study presented in this thesis contains original research performed by the author and has not been submitted previously for any other degree.

March 2004

Publications

Work incorporated in this thesis has been accepted for refereed publication.
Welschinger, R., Pouliopoulos, J., Cossart, Y.E., and Vickery, K. (2003). The T-cell response of ducks to duck hepatitis B virus (DHBV) and the production of an associated DNA vaccine. Proceedings 11th International Symposium on Viral Hepatitis and Liver Disease. Sydney. Australia.

Pouliopoulos, J., Welschinger, R., Deva, A., Dixon, R., Cossart, Y.E., and Vickery, K. (2003). The effect of bursectomy and thymectomy on DHBV infection. Proceedings 11th International Symposium on Viral Hepatitis and Liver Disease. Sydney. Australia.

Presentations

Work incorporated in this thesis has been presented at several International, and National, and University conferences.

Welschinger, R., Vickery, K., and Cossart, Y.E. Patterns of duck hepatitis B virus infection. International Congress of Virology, IUMS. Sydney, Australia. August 1999.

Welschinger, R., Vickery, K., and Cossart, Y.E. Patterns of duck hepatitis B virus infection. Molecular Biology of Hepatitis B Viruses, University of California, Santa Cruz, USA. July, 1999.

Vickery, K., Welschinger, R., and Cossart, Y.E. Comparison of early patterns of duck hepatitis B virus (DHBV) infection with sequence changes. 10th International Symposium on Viral hepatitis and liver disease. Atlanta, USA. April, 2000.

XIIth International Congress of Virology. Paris, France. 2002
Welschinger, R., Pouliopoulos, J., Cossart, Y.E., and Vickery, K. The T-cell response of ducks to duck hepatitis B virus (DHBV) and the production of an associated DNA vaccine. MicroNZ 2003: A combined annual scientific meeting of the Australian and New Zealand Societies for Microbiology, Auckland, New Zealand. September, 2003.

Faculty of Medicine Second Research Conference 2000: From Cell to Society 2. November, 2000.

Australian Centre for Hepatitis Virology Annual Workshop. March, 1999. April, 2000. April, 2001. March, 2002. June, 2003.

SUMMARY

Human Hepatitis B Virus (HBV) is a major global health problem affecting many millions of people. Individuals infected by perinatal transmission, become life long chronic carriers. They constitute a reservoir for the dissemination of infection, and many develop major health problems, such as cirrhosis, and hepatocellular carcinoma (HCC), later in life. Although new transmission can be limited by the use of a protein-based vaccine, the number of carriers continue to rise because the vaccine remains unavailable in many high prevalence, low-income areas. Treatment with nucleoside analogues and interferon is prolonged, expensive, and out of reach for most carriers. An inexpensive therapeutic vaccine which might be effective in established human carriers would have an immediate impact on a major global problem.

The first part of this study was undertaken to identify critical virus and host factors responsible for recovery from DHBV infection. The DHBV model has been pivotal in understanding the immunopathogenesis of hepadnaviral infections, and recent advances have opened the way to investigation of immunopathology.

Initially, the effect of age and dose on the kinetics, and outcome of infection was investigated, to define conditions where viral clearance could be studied. A biphasic pattern of infection was discovered, in which an initial peak of viraemia was cleared, only to be followed by rebound, and subsequent persistence. A mutation near the start of the surface open reading frame was identified in these cases, associated with attempted clearance of the infection. Transmission studies determined that the replication competency of the mutant genome was less than that of the wild type genome.

Because of earlier reports that immune response to DHBs predicted viral clearance, theoretical modelling of the surface gene was performed to determine the effect of the mutation on the genome, and associated polymerase protein. Immunogenic predictions for the S gene sequence were also undertaken and tested experimentally.

A lymphocyte proliferation assay was used to determine the CMI response of naïve, carrier, and protein vaccinated ducks to peptides spanning the surface protein. A DNA vaccine, was produced based on a polytope incorporating 7 peptides to which immune ducks selectively respond. This vaccine stimulated production of neutralising antibodies in naïve ducks, and also induced a 90% reduction in the average level of viraemia in chronically infected ducks. Such evidence suggests that co-operation of B- and T-cells occurs when these epitopes interact with the immune response.

A feature of the duck model system is that the cellular and humoral arms of the immune system can be modulated by surgical removal of the thymus, or bursa of Fabricius. The effect of reducing the total number of B- or T-cells on the outcome of DHBV infection was examined. Contrary to expectation, bursectomised ducks cleared the infection less efficiently than thymectomised ducks. While this indicates that antibodies play an essential role in clearance, such selective depletion of suppressor T-cells by thymectomy, may also promote removal of the virus.

The findings encourage further work into DNA v accines with the expectation that incorporating a broader repertoire of peptides, in combination with cytokine sequences, will increase efficacy, to a level greater than current antiviral therapy.

Contents

1. Literature Review 1
2. Methods and Materials 66
3. Persistence-Clearance Experiment 98
4. DNA Sequence changes during clearance of DHBV 123
5. Study of the infectivity of DHBV variant by Serum Transmission, and Direct DNA Injection 135
6. Theoretical Modelling of the DHBsAg 150
7. Cell Mediated Immune Response to DHBV 170
8. DNA Vaccination 200
9. Manipulation of Immune Mechanisms 226
10. General Discussion 253
11. Appendix A1
12. References R1

Table of Contents

1. Literature Review 1
1.1. Human Hepatitis B Virus 1
1.1.1. Discovery and Historical Aspects 1
1.1.2. Hepadnavirus Characteristics 2
1.1.3. Virion Characteristics 3
1.1.4. Characteristics of Genome 4
1.1.5. Infection Characteristics. 7
1.1.6. Clinical Features and Outcome of HBV Infection. 9
1.1.7. Immune Response to HBV 9
1.1.8. Mechanism of viral persistence 14
1.1.9. Mechanisms of Liver Injury 16
1.1.10. Diversity of HBV strains 19
1.1.11. Models of HBV 27
1.2. Duck Hepatitis B Virus 31
1.2.1. Discovery and Historical Aspects 31
1.2.2. Duck Breeds 31
1.2.3. DHBV Infection in Nature 32
1.2.4. Virion Structure of DHBV 33
1.2.5. Replication of DHBV 33
1.2.6. DHBV Infection 36
1.2.7. Humoral Immune Responses to DHBV 39
1.2.8. CMI Responses to DHBV Infection 42
1.2.9. Cytokine Response 43
1.3. The Avian Immune System 44
1.3.1. Introduction 44
1.3.2. Duck Lymphoid Organs and Ontogeny 44
1.3.3. Lymphocytes 46
1.3.4. The Immune Response 48
1.3.5. Immunoglobulins 49
1.3.6. Effects of Bursectomy 50
1.3.7. Effects of Thymectomy 51
1.4. Prevention and treatment of Hepadnaviral infections 53
1.5. DNA Vaccination 55
1.5.1. Historical Aspects 56
1.5.2. DNA Vaccine advantages 57
1.5.3. DNA Vaccination in Alternative Immunotherapies 58
1.5.4. DNA Vaccine Delivery 58
1.5.5. Direct DNA Injection 59
1.5.6. Mechanism of Immune Induction 60
1.5.7. CD8+ CTL Restricted Responses 62
1.5.8. MHC-II Restricted T-Cell Responses 62
1.6. Experimental Outline 64
2. Methods and Materials 66
2.1. General Experimental Procedures 66
2.1.1. Experimental Animals 66
2.2. Specific Experimental Procedures 66
2.2.1. Extraction of Viral DNA 66
2.2.2. Polymerase Chain Reaction 68
2.2.3. Dot Blot Hybridisation 71
2.2.4. DNA concentration by Spectrophotometry 73
2.2.5. Calculating the Mass of DNA in a DHBV genome 73
2.2.6. Calculation of DHBV DNA concentration as vge $/ \mathrm{mL}$ 74
2.2.7. Preparation of DHBV Positive Duck Serum Pools 74
2.2.8. Preparation of DHBV Negative Duck Serum Pools 75
2.2.9. Cell Counting 75
2.2.10. Tissue Processing for Histology 77
2.2.11. Preparation of the DHBV Protein Vaccine 77
2.2.12. Bacterial Media 78
2.3. Method Development: DNA Sequencing 78
2.3.1. Introduction 78
2.3.2. Aim 87
2.3.3. Experimental Design 87
2.3.4. Materials and Methods 88
2.3.5. Results 92
2.3.6. Discussion 96
2.3.7. Conclusions 97
3. Persistence-Clearance Experiment 98
3.1. Introduction 98
3.2. Aims 98
3.3. Materials and Methods 99
3.3.1. Ducks 99
3.3.2. Duck Hepatitis B Virus strain 99
3.3.3. Age and Dose of inoculation for duck groups 99
3.3.4. DHBV DNA detection 99
3.4. RESULTS 100
3.4.1. DHBV DNA detection 100
3.4.2. Infection Kinetics 111
3.4.3. Overview of Results 113
3.5. Discussion 115
3.5.1. Dose 115
3.5.2. Age at inoculation 117
3.5.3. Incubation period 117
3.5.4. Kinetics of Infection 118
3.5.5. Persistent Infection 119
3.5.6. Biphasic pattern 120
3.5.7. Clearance mechanisms 121
4. DNA Sequence changes during clearance of DHBV 123
4.1. Introduction 123
4.1.1. DNA Sequencing Methodology 124
4.2. Aim 124
4.3. Experimental Design 125
4.4. Materials and Methods 126
4.4.1. Persistence-Clearance Ducks 126
4.4.2. PCR and Sequencing 126
4.5. Results. 127
4.5.1. Clearance Sequencing Results 128
4.5.2. Description of Mutation 130
4.6. Discussion 130
5. Study of the infectivity of DHBV variant by Serum Transmission, and Direct DNA Injection 135
5.1. Introduction. 135
5.2. Aim 137
5.3. Materials and Methods 137
5.3.1. Production of a Full length infectious DHBV PCR Fragment 137
5.4. Experimental Protocol 139
5.4.1. Serum Passage Experiment 139
5.4.2. DirectDNA1 experiment 140
5.4.3. DirectDNA2 experiment 141
5.5. Results 141
5.5.1. Passage of DHBV by serum 141
5.5.2. DirectDNA1 experiment 143
5.5.3. DirectDNA2 experiment 144
5.6. Discussion 145
5.7. Section I Overview 148
6. Theoretical Modelling of the DHBsAg. 150
6.1. Aims 150
6.2. Experimental Design 150
6.3. Materials and Methods 151
6.3.1. Sequence Source. 151
6.3.2. Theoretical Modelling 151
6.4. Results 153
6.4.1. Determining Regions of Theoretical Antigenicity and selection of peptides 153
6.4.2. Comparison of Wild type and Mutant Surface ORF gene 155
6.4.3. Sequence Similarity Searching 157
6.4.4. Surface Sequence alignment for the Hepadnaviruses 159
6.4.5. Polymerase Sequence alignment for the Hepadnaviruses 160
6.4.6. Mapping the mutation to the DHBV genome. 160
6.4.7. Polymerase protein in relation to the Surface protein 162
6.4.8. Mapping of Antibody Responses to the Surface gene. 163
6.4.9. Mapping of CMI Responses to the Surface gene. 166
6.5. Discussion 168
6.6. Conclusion 169
7. Cell Mediated Immune Response to DHBV 170
7.1. Introduction 170
7.2. Aims 172
7.3. Materials and Methods 172
7.3.1. Animals 172
7.3.2. Lymphoblastogenesis assay 173
7.3.3. Response to Mitogens and Peptides 177
7.4. Results 177
7.4.1. DHBV DNA Analysis 177
7.4.2. Lymphoblastogenesis Assay 178
7.5. Discussion 192
8. DNA Vaccination 200
8.1. Introduction 200
8.2. Aims 202
8.3. Experimental Design 202
8.3.1. Vaccine production 202
8.3.2. Immunisation protocol: DNAvaccl - Immunogenicity and protective efficacy 202
8.3.3. Immunisation protocol: DNAvacc2 - Therapeutic vaccination 203
8.4. Materials and Methods 203
8.4.1. Preparation of DNA Vaccine 203
8.4.2. Immunogenicity of the DNA Vaccine in vivo 213
8.4.3. Therapeutic use of the DNA vaccine (DNAvacc2) 214
8.5. Results 215
8.5.1. DNA Vaccine Production 215
8.5.2. Efficacy of the DNA Vaccine in vivo (DNAvacc1) 215
8.5.3. Immunogenicity of DNAvacc 1 217
8.5.4. Neutralisation Assay 219
8.5.5. Therapeutic efficacy of the DNA vaccine (DNAvacc2) 221
8.6. Discussion 223
9. Manipulation of Immune Mechanisms 226
9.1. Introduction 226
9.2. Aims 227
9.3. Materials and Methods 227
9.3.1. Surgical Protocol 227
9.3.2. Control ducks 228
9.3.3. Bursectomised ducks 229
9.3.4. Thymectomised ducks 229
9.3.5. Assays performed on Samples 230
9.4. Results 231
9.4.1. Surgical procedures 231
9.4.2. Duck Body Weight 231
9.4.3. Outcome of Infection 232
9.4.4. Kinetics of Infection 235
9.4.5. Histology 237
9.4.6. Cell counts 239
9.4.7. CMI Response results 241
9.5. Discussion 247
10. General Discussion 253
11. Appendix A1
11.1. Chemicals. A1
11.2. Solutions A1
11.3. Rakbeta Scintillation Counter A3
11.4. Cycle Sequencing A4
11.4.1. Corbett Research GS-2000 A4
11.4.2 Thermo Sequenase cycle sequencing kit A4
11.4.3. Cycle Sequencing Optimisation data A5
11.5. DNA Sequencing of the Persistence - Clearance model experiment A10
11.5.1. Examples of the edited sequence data output A10
11.5.2. Multiple Sequence Alignments A10
11.6. ANGIS A42
11.6.1. Multiple Sequence Analysis A42
11.7. Sequence of DHBV A42
11.8. DNA Vaccine A43
11.9. Lymphoblastogenesis assay data A43
11.10. Manipulation of Immune Mechanisms A129
12. References R1
Table of Figures.
Figure 1. Schematic diagram of the Hepadnavirus genome. 4
Figure 2. Schematic view of the hepadnavirus life cycle 6
Figure 3. Time course of HBV infection. 11
Figure 4. Geographic Distribution and Endemicity of HBV genotypes 21
Figure 5. Two loop structure of the ' a ' determinant. 24
Figure 6. Experimental Outline 65
Figure 7. PCR Amplicons in relation to the DHBV genome 70
Figure 8. Calculations to determine the mass of a vge of DHBV DNA 74
Figure 9. Calculations to determine the DHBV vge $/ \mathrm{mL}$ of a serum sample 74
Figure 10. Formulae for the calculation of cell concentration 76
Figure 11. The Sanger Dideoxy Chain Termination Sequencing Technique 80
Figure 12. Location of the label for detection of DNA 81
Figure 13. Cycle sequencing explanation 83
Figure 14. Raw sequencing data output 84
Figure 15. Sequence alignment obtained from the GS-2000 of the Pre-S region of DHBV before manual editing 94
Figure 16. Sequence alignment obtained from the GS-2000 of the Pre-S region of DHBV after manual editing. 95
Figure 17. Graphic results for ducks injected on day 1 with 2.8×10^{3} vge. 105
Figure 18. Graphic results for ducks injected on day 1 with 2.8×10^{4} vge. 106
Figure 19. Graphic results for ducks injected on day 4 with 2.8×10^{3} vge. 107
Figure 20. Graphic results for ducks injected on day 4 with 2.8×10^{4} vge. 108
Figure 21. Graphic results for ducks injected on day 7 with 2.8×10^{4} vge. 109
Figure 22. Graphic results for ducks injected on day 7 with $2.8 \times 10^{5} \mathrm{vge}$. 110
Figure 23. Effect of age at inoculation on time to viraemia. 112
Figure 24. Effect of dose on time to viraemia. 113
Figure 25. Five different patterns of early DHBV infection. 114
Figure 26. Regions of DHBV sequenced and primers used. 125
Figure 27. Results of DNA sequencing from the Persistence-Clearance Experiment. 129
Figure 28. Location of the mutation in relation to the entire DHBV genome. 131
Figure 29. Full length PCR product and Multimer mixture. 138
Figure 30. Passaged serum samples relative to viral kinetics of infection. 139
Figure 31. Graphic results for the Serum Passage experiment ducks. 142
Figure 32. Example of the multiple banding seen in the PreC PCR for the DirectDNA1 experiment. 143
Figure 33. Schematic of non-optimal PCR priming for the PreCore PCR assay 147
Figure 34. DHBV genome showing location of the proteins and the mutation. 151
Figure 35. Computer Modelling of the DHBV Surface gene ORF. 154
Figure 36. Differences in the Computer Modelling of the wild type and mutant DHBV Surface ORF gene 156
Figure 37. Sequence similarity of peptide 176-195 with a Human and Murine TcR (Sequence and Position). 158
Figure 38. Sequence similarity of peptide 210-229, Streptococcus agalactiae and human HBV 158
Figure 39. Sequence alignment of the PreSurface protein of several Hepadnaviruses. 159
Figure 40. Phylogenetic tree of the PreSurface protein of several Hepadnaviruses. 160
Figure 41. Sequence alignment of the Polymerase protein of several Hepadnaviruses 161
Figure 42. Mapping of the mutation to the DHBV genome 162
Figure 43. Location of the mutation in relation to the Polymerase protein. 163
Figure 44. Conserved regions of the Polymerase protein and their relation to the end of the Surface protein. 163
Figure 45. Known Antibody epitopes in the Surface protein of DHBV 164
Figure 46. Known Antibody epitopes in relation to Computer Modelling of the DHBV Surface ORF gene 165
Figure 47. Aligned Surface protein sequences showing known HBV CMI epitopes. 166
Figure 48. Known CMI epitopes in relation to Computer Modelling of the HBV Surface gene 167
Figure 49. Schematic diagram of the Lymphoblastogenesis assay 174
Figure 50. Plot of response of ducks to peptides in relation to their position in the Surface ORF gene peptide (significant P / N). 190
Figure 51. CMI e pitopes in relation to C omputer M odelling of the DHBV S urface gene. 191
Figure 52. Known Antibody epitopes in the Surface protein of Hepadnaviruses 196
Figure 53. Aligned Surface protein sequences showing known HBV CMI epitopes 197
Figure 54. Comparison of the CMI epitopes for DHBV and HBV in relation to the Computer Modelling 198
Figure 55. DNA sequence of DuckPoly aligned with protein sequence and DP oligonucleotides 205
Figure 56. Photographs of the Polyacrylamide gel used to purify the DP oligonucleotides 207
Figure 57. DP PCR products. 208
Figure 58. Short section of the PCR sequence data for the full DP PCR product 208
Figure 59. Photograph of DP transformed colonies 210
Figure 60. Example of the differences found in the full DP from a clone 210
Figure 61. Plasmid map of pDVERA2 DNA vaccine 211
Figure 62. Graphic results for Bursectomy experiment ducks 236
Figure 63. Graphic results for Thymectomy duck (W126) 236
Figure 64. Histological example of neonatal thymus 238
Figure 65. Summary of the means of the Cell counts 239
Figure 66. PBMCs as a subpopulation of the total blood leukocytes 240
Figure 67. Photograph of the Corbett GS-2000 A4
Figure 68. Partial sequencing gels: Initial comparison of PCR and plasmid templates. A6
Figure 69. Partial sequencing gels: Effect of purification and Anneal / Extension temperature A7
Figure 70. Partial sequencing gels: Amount of primer and number of cycles A8
Figure 71. Partial sequencing gels: Amount of PCR product and amount loaded onto the gel A9
Table of Tables.
Table 1. Physical characteristics of the Hepadnaviridae family of viruses 2
Table 2. Taxonomic structure of the Hepadnavirus family 3
Table 3. Physicochemical properties of Hepadnaviruses. 3
Table 4. Geographic Distribution of HBV genotypes and subtypes. 20
Table 5. Amino acid residues specifying determinants of HBsAg subtypes 22
Table 6. Relative lymphoblastic CMI response related to outcome of DHBV infection 43
Table 7. Normal location of CD4, and CD8 cells in the Chicken 47
Table 8. Effect of Bursectomy or Thymectomy on immune cell composition in the Chicken 51
Table 9. Composition of Proteinase K Extraction Buffer 67
Table 10. Composition of Guanidinium Extraction Buffer 68
Table 11. DHBV PCR cocktail contents 69
Table 12. DHBV PCR primers 70
Table 13. Composition of $2 x$ PEG solution 71
Table 14. Dot blot hybridisation values 73
Table 15. DHBV serum pools used throughout the experiments 74
Table 16. Sources of Haemocytometer error. 75
Table 17. Composition of Trypan Blue. 76
Table 18. Components of Natt and Herrick's solution 76
Table 19. Contents of each cycle sequencing reaction 89
Table 20. Cycling conditions for DHBs gene sequencing on the GS-2000 89
Table 21. x 10 Sequencing Gel Solution 90
Table 22. Range of values tested during optimisation of the Sequencing reactions. 91
Table 23. Contents of each optimised cycle sequencing reaction 93
Table 24. Sequence cycling conditions. 93
Table 25. Calculated Sequencing Error Rates and Types. 93
Table 26. Dosage of DHBV given to 1,4 , and 7 day old ducks. 99
Table 27. Number of Ducks DHBV positive in the Serum and Liver following inoculation with DHBV on Days 1, 4, and 7. 100
Table 28. Dot blot hybridisation and PCR results for ducks inoculated with either 2.8×10^{3}, or 2.8×10^{4} vge of DHBV when 1 days old. 101
Table 29. Dot blot hybridisation and PCR results for ducks inoculated with either 2.8×10^{3}, or 2.8×10^{4} vge of DHBV when 4 days old. 102
Table 30. Dot blot hybridisation and PCR results for ducks inoculated with either 2.8×10^{4}, or 2.8×10^{5} vge of DHBV when 7 days old. 103
Table 31. Days post inoculation to first detection of DHBV DNA in serum by dot blot hybridisation 112
Table 32. Summary of DHBV infection outcome. 114
Table 33. PCR fragment used for sequencing data 127
Table 34. Klenow and Ligase Reaction Mixture. 138
Table 35. Ducklings of the Serum Passage experiment. 140
Table 36. Ducklings of the DirectDNA1 experiment. 140
Table 37. Ducklings of the DirectDNA1 Transmission experiment. 140
Table 38. Ducklings of the DirectDNA2 Transmission experiment. 141
Table 39. Summary of results for the DirectDNA1 experiment. 143
Table 40. Summary of the DirectDNA1 passage experiment 144
Table 41. Surface ORF gene peptides. 155
Table 42. Sequence similarity of the peptides from the Surface ORF gene 157
Table 43. Ducks used to determine the CMI response to DHBV 172
Table 44. Tabulated dot blot hybridisation and PCR results for the Positive control ducks. 178
Table 45. Summary of CMI response of Ducks to Mitogens (significant P/N) 179
Table 46. Summary of CMI response of Challenged Immune ducks to Surface ORF peptides ($>5000 \mathrm{cpm}$ increase) 181
Table 47. Summary of CMI response of Negative control ducks to Surface ORF peptides (greater than 5000 cpm increase) 182
Table 48. Summary of the Statistical analysis of the Protein vaccination response (greater than 5000 cpm increase) 183
Table 49. Summary of CMI response of Challenged Immune ducks to Surface ORF peptides (significant P / N) 184
Table 50. Summary of CMI response of Negative control ducks to Surface ORF peptides (significant P / N) 185
Table 51. Summary of CMI response of Positive control ducks to Surface ORF peptides (significant P / N) 186
Table 52. Summary of the Statistical analysis of the Challenged Immune group to that of the Negative control group (significant P/N) 187
Table 53. Summary of the Statistical analysis of the Challenged Immune group to that of the Positive control group (significant P / N). 188
Table 54. Summary of the Statistical analysis of the Positive and Negative control groups (significant P / N) 189
Table 55. Comparison of the Statistical analysis for the Challenged Immune group compared to the Negative control group ($>5000 \mathrm{cpm}$ and significant P / N). 194
Table 56. Antigenically Important Peptides. 203
Table 57. DP PCR cocktail contents. 207
Table 58. Ducks used to determine the immunogenicity of the DNA vaccine (DNAvaccl). 213
Table 59. Neutralisation Assay. 214
Table 60. Ducks used in the Therapeutic DNA vaccination experiment (DNAvacc2). 215
Table 61. Tabulated dot blot hybridisation and PCR results for the DNAvacc1 experiment. 216
Table 62. Summary of post-challenge CMI response to specific immunodominant epitopes in the DNAvacc 1 experiment ducks (significant P / N). 218
Table 63. Relationship of the CMI response to DHBV infection for the DNAvacc 1 experiment. 219
Table 64. Summary of dot blot hybridisation and PCR results for the Neutralising Antibody experiment. 220
Table 65. Tabulated dot blot hybridisation and PCR results for the DNAvacc2 experiment. 222
Table 66. Ducks used in the Bursectomy and Thymectomy experiments. 228
Table 67. Description of histological inflammation grading. 230
Table 68. Tabulated dot blot hybridisation and PCR results for the Positive control ducks. 232
Table 69. Tabulated dot blot hybridisation and PCR results for the Bursectomy experiment. 233
Table 70. Tabulated dot blot hybridisation and PCR results for the Thymectomy experiment. 234
Table 71. Summary of histopathological results for the Liver. 237
Table 72. Summary of histopathological results for spleen follicles 238
Table 73. Summary of CMI response of Bursectomy ducks to Surface ORF peptides (significant P / N) 242
Table 74. Summary of CMI response of Thymectomised ducks to Surface ORF peptides (significant P / N). 243
Table 75. Summary of the statistical analysis of the Bursectomy and Thymectomy groups (significant P / N) 244
Table 76. Summary of the statistical analysis of the Bursectomy and other CMI response groups (significant P / N). 245
Table 77. Summary of the statistical analysis of Thymectomy and other CMI response groups (significant P / N) 246
Table 78. Tritium and Phosphorus program for the scintillation counter A3
Table 79. Contents of the cycle sequencing kit A5
Table 80. Range of values tested during optimisation of the Sequencing reactions A5
Table 81. Running conditions for the PileUp software A42
Table 82. Alignment options for the ClustalW software A42
Table 83. Summary of the Statistical analysis of the DNAvacc1 experiment (significant P / N) A43
Table 84. Summary of Duck Numbers for the various groups A43

Table 85. Histopathology results for individual ducks.
Table 86. Cell counts for individual ducks.. A130

LIST OF AbBREVIATIONS

Abbreviation	
aa	amino acids
Ag	Antigen
cccDNA	Covalently Closed Circular DNA
CDx	Cell Differentiation marker x
CMI	Cell Mediated Immunity
conc	Concentration
DHBcAg	DHBV core Antigen
DHBsAg	DHBV surface Antigen
DHBV	Duck Hepatitis B Virus
ER	Endoplasmic Reticulum
FPV	FowlPoxVirus
HBV	Hepatitis B Virus
HCC	HepatoCellular Carcinoma
hr or hrs	Hour or Hours
id	intra-dermal
im	intra-muscular
ip	intra-peritoneal
IU	International Units
LB	Luria-Bertani media
MHC	Major Histocompatability Complex
min or mins	Minute or Minutes
o/n	Overnight
ORF	Open Reading Frame
PBMC	Peripheral Blood Mononuclear Cells
pi	post inoculation
RT	Room Temperature
s	Second
SMC	Spleen Mononuclear Cells
Th1 or Th2	T helper cell class 1 or 2
v/v	Volume per volume
vge	viral genome equivalents
vol	Volume
VV	Vaccinia Virus
w/v	Weight per volume

1. LITERATURE REVIEW

1.1. Human Hepatitis B Virus

1.1.1. Discovery and Historical Aspects

When acute icteric "serum hepatitis" was originally recognised as a complication of blood transfusion, it was attributed to transmission of a virus from the blood of healthy carriers (MacCallum and Bauer, 1944; MacCallum and Bradley, 1944). After more than 50 years of research there is still debate about basic mechanisms responsible for this dichotomy of clinical manifestations.

In 1963, a precipitating antibody from the blood of a haemophilia patient reacted with antigen in a serum sample from an Australian aborigine. It was named Australia antigen (Au), using the standard nomenclature for serum polymorphisms (Blumberg et al., 1965). Almost simultaneously, SH antigen was described in acute phase fever from patients with post transfusion hepatitis (Prince, 1968a). When the identity of the relationship between SH antigen and Australia antigen was discovered they were renamed Hepatitis B surface Antigen (HBsAg) (Prince, 1968b).

Normal a nd diseased populations were then surveyed and it was shown that HBsAg was persistently present in serum of some healthy individuals and that infectivity survived for years in frozen or freeze dried serum samples. Other studies determined that the antigen is rare in normal p opulations from Northern A merica a nd Northern E urope, but common in tropical and S outheast A sian, the Pacific region and A frican p opulations (Prince, 1970b). These studies also noted that in Western countries the antigen was frequently to be found in patients who had been infused with various blood products for leukaemia and haemophilia (Blumberg et al., 1967). Screening of blood donors was soon introduced (Prince, 1970a).

After observing laboratory transmission of Hepatitis B, Blumberg showed that HBsAg was present in serum from both acute hepatitis and various forms of chronic liver disease (Blumberg et al., 1967). Fluorescently labelled antisera from HBsAg positive carriers was found to bind to the nucleus of hepatocytes of patients with HBsAg in their serum (Millman
et al., 1969), and this led to elucidation of the Hepatitis B core antigen/antibody system (Nowoslawski et al., 1970).

Electron micrographs of Australia antigen were shown to have a 20 nm virus particle-like appearance, with the additional presence of "sausage-shaped" and larger 40 nm particles (Bayer et al., 1968; Dane et al., 1970).

In the late 1960 s, isolated and partially purified particles from serum were used to transmit infection to non-human primates (marmosets, infant African green monkeys, and chimpanzees), and was subsequently passaged (Deinhardt et al., 1967).

These studies opened the way to characterisation of the new agent and its disease associations. However, the virus remains uncultivatable in continuous systems, and the discovery of a related virus that infects ducks (DHBV) (Mason et al., 1980; Wildner et al., 1991), greatly facilitated studies of the molecular biology and pathogenic potential of the group. Hepadnaviruses have also been described in woodchucks, ground squirrels, herons, grey herons, snow geese, storks, cranes, and Ross Goose (Summers et al., 1978; Marion et al., 1980; Summers, 1981; Chang et al., 1999; Pult et al., 2001b; Prassolov et al., 2003; Shi et al., 2004).

1.1.2. Hepadnavirus Characteristics

1.1.2.1. Taxonomic Classification

HBV is the prototype of the Hepadnaviridae family of viruses characterised by a combination of morphological and genomic characteristics (ICTV, 2000) (Table 1, p.2), then subdivided into genus and species, on the basis of host range (Table 2, p.3).

Physical characteristics	Hepadnaviridae family
Nature of the genome	dsDNA-RT
Envelope	present
Morphology	Spherical
Genome configuration	circular
Genome size	3 kb
Host	Vertebrates

Table 1. Physical characteristics of the Hepadnaviridae family of viruses.

Hepadnavirus genomes consist of a partially double-stranded circular DNA of approximately $3000-3200 \mathrm{bp}$, with a complete negative strand and approximately $55-90 \%$ of the positive strand. The 5 ' end of the negative strand is covalently bound to the terminal protein, which is produced by cleavage of the viral polymerase. The circular DNA encodes four overlapping Open Reading Frames (ORF): Surface (S), Core (C), Polymerase (P), and the X
gene (X), and three associated upstream regions (preC, preS1, and preS2), which are all located on the same (+) strand of DNA (Figure 1, p.4).

Numbering of the DNA sequence of the genomes begins at the unique EcoRI site. This form of numbering has lead to some confusion, because various subtypes do not have exactly the same number of nucleotides in various reading frames due to inserts or deletions.

Family	Genus		Virus		Host Species
Hepadnaviridae	HBV 1	Human			
	Orthohepadnaviruses	GSHV	Ground Squirrel		
		WHV	Woodchuck		
		DHBV	Duck		
		HHV	Heron		
	Avihepadnaviruses	SGHV	Snow Goose		
		SHBV	Stork		
		CHBV	Crane		

${ }^{1}$ Prototype of the Hepadnaviruses; ${ }^{2}$ Prototype of the Avihepadnaviruses.
Table 2. Taxonomic structure of the Hepadnavirus family.

1.1.3. Virion Characteristics

The whole virion (Dane particle in HBV) is a $40-48 \mathrm{~nm}$ sphere, which is composed of an envelope of lipid and viral proteins encasing a core, or nucleocapsid which encloses the DNA and the virus encoded RT-DNA polymerase. The physicochemical properties are listed (Table 3, p.3).

Physicochemical properties of Hepadnaviruses
Sedimentation constant 280.
Buoyant density in CsCI, $1.24-1.26 \mathrm{~g} \mathrm{~cm}^{3}$.
Unstable at acid pH.
Ether soluble

Table 3. Physicochemical properties of Hepadnaviruses.
The icosahedral nucleocapsid is composed of 180 capsomers (mol. wt 22 kD) arranged in a $\mathrm{T}=3$ symmetry, which is surrounded by a 7 nm detergent-sensitive envelope composed mainly of two S molecules (24 and 27 kD) derived from the host cell with virus enveloped insertions. The 27 kD species has the same amino acid composition as the 24 kD molecule but is glycosylated by N -linked glycans. In addition there are two preS2 proteins of mol. wts 33 and 36 kD . These are composed of the 24 kD protein with an additional 55 amino acids at the N terminus and two preS1 proteins of mol. wt 39 and 42 kD , which have 120 extra amino acids. Host lipid is present in the virus and in the 22 nm surface antigen particles. The N terminus of the preS1 proteins is myristoylated. Other physicochemical properties have been described (Table 3, p.3).

The specific antigenic determinants of clinical and epidemiological importance include the ' a ' determinant, common to all HBsAg, and the d, y, w, and r determinants, located in the S region. The development of humoral immunity to HBsAg is protective, and recombinant HBsAg (S protein) provides the basis for the HBV vaccines currently available.

1.1.4. Characteristics of Genome

The hepadnaviruses have a characteristic genome (Figure 1, p.4), consisting of multiple overlapping reading frames encoding the Polymerase, Surface, and Core proteins, as well as the X protein in mammalian viruses.

Figure 1. Schematic diagram of the Hepadnavirus genome.
Note the overlapping reading frames. Modified from published figures (Tiollais et al., 1985; Bartenschlager and Schaller, 1993).

The long P gene encodes the DNA polymerase, which also serves a reverse-transcriptase function, since replication requires RNA intermediates. All three configurations of the HBV 'Surface' protein: large (preS1), middle (preS2), and major (S) proteins, are encoded by the Surface gene beginning transcription at nucleotide $2848,3172,155$, respectively. Human HBV core gene contains two in-frame start codons. The shorter ORF produces the nucleocapsid (or Core protein, C) which form the basis of the core particle (HBcAg). The second ORF produces the preCore protein (preC), which contains an N -terminus addition to the core protein. This precore protein undergoes several cleavage steps to become HBeAg . The preC region product is required for the synthesis and secretion of hepatitis Beantigen
(HBeAg) (Ou et al., 1986; Schlicht et al., 1987b; Standring et al., 1988). The X gene encodes two proteins that serve as transcriptional transactivators, aiding viral replication; these proteins may also play a part in the development of hepatocellular carcinoma. Several additional enhancer and promoter elements have also been identified within the genome.

1.1.4.1. Replication

Due to the strict species specificity and very restricted tissue tropism of HBV, conventional culture systems are not available for studies of replication. However, DHBV is more amenable, and the original description of hepadnavirus replication utilising reverse transcription of an RNA p regenome intermediate was made in this model (Figure 2, p.6) (Summers and Mason, 1982), followed by similar findings in HBV (Blum et al., 1984; Miller and Robinson, 1984; Will et al., 1987).

Following viral entry into the cell and uncoating, the viral DNA polymerase completes the plus strand of DNA leading to the formation of a covalently closed circular DNA that migrates to the cell nucleus. Cellular RNA polymerase transcribes the minus DNA strand, producing multiple copies of a 3.5 kb RNA (pre-genome), and two subgenomic transcripts (2.1 and 2.4 kb). In the cytoplasm the core protein encapsulates the pre-genomic RNA, the viral DNA polymerase and a DNA-linked protein.

The pre-genome forms a template for reverse transcription and production of new HBV minus DNA strands as well as the synthesis of core, e antigens and polymerase proteins. As the minus DNA strand is synthesised the pre-genome is degraded except for a small fragment used to prime the synthesis of the plus strand using the minus strand as a template (Lien et al., 1987; Will et al., 1987). Envelope proteins are synthesised from the subgenomic transcripts and partially translocated across the endoplasmic reticulum membrane. HBcAg-derived peptides are expressed on the surface of hepatocytes by use of a signal sequence in the preC region which targets the protein for secretion (Standring et al., 1988). The complete virion buds from the cell, receiving viral envelope proteins and host lipid simultaneously. DNA synthesis ceases when the virion is released from the cell containing the full length minus strand and a variable length plus strand. A small percentage of progeny viral cores containing relaxed circular DNA migrate to the nucleus to maintain the covalently closed circular (ccc) DNA pool (Miller and Robinson, 1984; Tuttleman et al., 1986).

Hepadnavirus-cell interactions have a number of possible molecular outcomes, which include a) replicative infection with the production of many copies of single-stranded cytoplasmic viral DNA, cytoplasmic HBcAg and virion synthesis (Gowans et al., 1985) and,
b) restricted infection of cells with limited viral genome expression, and, in mammalian hepadnaviruses c) integration of the viral genome into host cell DNA, with or without identifiable viral DNA replicative intermediates (Burrell et al., 1984).

Figure 2. Schematic view of the hepadnavirus life cycle.
Infectious enveloped virions bind via the preS domain of the L protein to an uncharacterised receptor; capsids enter the cytoplasm, the DNA genome is transported to the nucleus, where the partially double stranded genome is completed becoming cccDNA. This serves as a template for transcription of genomic and subgenomic mRNAs which are translated in the cytoplasm. Core and Pol protein from the pregenome interact with the RNA forming new capsids. The RNA is reverse transcribed and the matured capsids either recycle the DNA back to the nucleus or are exported via interaction with the surface proteins at the membrane of the endoplasmic reticulum (ER), or intermediate compartment (IC). Empty envelopes (subviral particles) are secreted in excess over virions (Nassal and Schaller, 1996).

The presence and order of the genes for the principal viral components Core, Pol, preS-S (Gag, Pol, Env) are shared by hepadnaviruses and retroviruses. However, their replicative strategy is quite distinct. The extremely small size of the hepadnavirus genome has resulted in a largely overlapping arrangement of both coding regions and regulatory elements (Figure 1. p.4). In contrast to retroviruses, hepadnaviruses contain DNA rather than RNA; integration is not an obligatory step in replication; functional mRNAs a re produced from several internal promoters on the circular DNA genome, and RNA splicing does not appear to play a critical role in the basic replication cycle.

1.1.4.2. Integration of Genome

Mammalian hepadnavirus integration in cellular DNA has been found in infected liver, as well as HCC. The possible role of integration in the development of HCC has been intensively investigated with much of the evidence of the structure of integration coming from investigation of HCC in humans (Nagaya et al., 1987) and woodchucks (Ogston et al., 1982), with less interest of viral integrations in non-tumourous liver (Ogata et al., 1990). No apparent difference in the structure of viral integrations of HCC and non-tumourous liver have been identified. Hepadnavirus integration does not occur at a specific section or sections of the host genome, but tend to be randomly distributed. However, cis-activation of cellular oncogenes N -myc and c -myc by viral promoter insertion has been a common finding in woodchuck hepatitis virus associated HCC (Martinez et al., 1994; Robinson, 1994). Some integrations consist of contiguous linear sections, while others are the result of complicated rearrangement and recombination (Matsubara and Tokino, 1990).

Complete viral genomes have not been found in any integrants, and deletions have been noticed in all integrants that have been sequenced, whether they arose from single or multiple genome integrations (Yaginuma et al., 1987). The long terminally redundant HBV transcript that serves as a template for viral genomic DNA synthesis cannot be synthesised from such viral integrations and virtually all integrants are defective for virus replication. Thus hepadnavirus integrants are not involved in virus replication as is the integrated DNA provirus of retroviruses, but transcription and translation from integrated S sequences a re observed in patients who have no evidence of ongoing productive infection (Yaginuma et al., 1984; Mason et al., 1998).

1.1.5. Infection Characteristics

Hepadnaviridae are capable of producing either acute self-limiting infection, or a persistent infection which may or may not be associated with liver disease (Robinson, 1977; Summers et al., 1980; Ganem et al., 1982; Marion et al., 1983b).

Although the liver is the primary site of virus replication, hepadnaviruses have been found in pancreas, spleen, kidney, bile duct epithelial cells, and even skin (Shimoda et al., 1981; Halpern et al., 1983; Dejean et al., 1984; Halpern et al., 1986; Jilbert et al., 1987b; Jilbert et al., 1988; Nicoll et al., 1997).

1.1.5.1. Acute Infection

Mammalian and avian hosts infected post-infancy develop acute hepadnavirus infection, which resolves in the face of a vigorous polyclonal and multi-specific host response. The appearance of surface antigen (and viral DNA in the serum), precedes the development of anti-core antibody. Elimination of infection is mediated by the immune response, through Tcell dependent activation of both antibody production and induction of immunomodulating factors such as Interferon (IFN). In acute infection, the disappearance of HBsAg is normally associated with the appearance of anti-HBs Antibody.

The absence of serum markers does not necessarily preclude virus persistence in the liver. This may be infectious as shown by reports of transmission of infection by transplantation of liver from a patient that has cleared their infection from the serum (Chazouilleres et al., 1994), and reactivation of viraemia in anti-HBs positive patients who undergo immunosuppressive treatment (Nagington, 1977; Nagington et al., 1984).

1.1.5.2. Persistent Infection

Persistence is conventionally defined as persistent viraemia of greater than six months duration whether or not it is a ssociated with p rogressive liver damage. The mechanisms which determine persistence or clearance of hepadnavirus infection remain controversial, and the reason for the occasional spontaneous elimination of virus after many years of persistence is also unclear.

The importance of host immunity on the outcome of infection is best illustrated by the difference in the level of persistence between infection as a neonate, or as an adult. Infants, (possessing a naïve immune system), that are perinatally infected will develop a persistent infection in $95-100 \%$ of cases, while a dults, (possessing a more mature immune system), develop persistence in only $5-10 \%$ of cases (Beasley et al., 1982). The same age-related effects have been d emonstrated with DHBV (Mason et al., 1980; O 'Connell et al., 1983; Urban et al., 1985; Jilbert et al., 1992; Vickery and Cossart, 1996; Jilbert et al., 1998), while self-limited acute infection has also been seen in woodchucks (Ponzetto et al., 1984).

Another interesting observation, is that irrespective of the cause of the T-cell deficiency, (natural, such as tolerance or MHC restriction, or induced, such as immunosuppressive drugs
for transplant recipients etc.), the outcome of infection and the development of persistence is invariable (Planz et al., 1996), while this is not the case for B-cell deficiencies.

1.1.6. Clinical Features and Outcome of HBV Infection

The clinical features and outcome of HBV infection differ according to the virus dose and the efficiency of the host response, both specific and non-specific. Early transmission studies in man revealed that the outcome and severity of hepatitis B is not dependent on the virus strain as some volunteers developed asymptomatic carriage while some developed severe hepatitis (MacCallum and Bauer, 1944; MacCallum and Bradley, 1944). Most adults infected with HBV develop an acute illness and recover within 6 months. A minority develop fulminant hepatitis and die, while up to 10% (mainly males), become chronic carriers. In contrast, chronic HBsAg carriage occurs in $90-100 \%$ of infected neonates (Beasley and Hwang, 1983), 20-30\% of young children (Beasley et al., 1982).

Natural clearance is frequently associated with changes in the hepatitis B core gene sequence. Core gene sequence is relatively stable and mutations are rarely detected in patients who are still in highly viraemic phase of infection but very high rates of changes were found during the immune clearance (Bozkaya et al., 1996). After HBsAb seroconversion, a progressive and sufficient decrease of hepatitis B core antibody can predict the disappearance of hepatitis B virus DNA in Japanese patients with hepatitis B surface antigen clearance (Kobyashi et al., 2000).

Serious sequelae can still develop in chronic HBV patients that clear sAg. A study in Taiwan of 1,355 chronic carriers from 1985 to 1997, found spontaneous HBsAg clearance in 55 patients. During a mean follow-up period of 23 months, 18 (all male) of the 55 developed serious complications, including 11 with HCC (9 underwent surgical resection), 6 with cirrhosis, and 1 with subfulminant liver failure (Huo et al., 1998).

1.1.7. Immune Response to HBV

1.1.7.1. Non-specific responses

The incubation period from exposure to hepatitis is between 2 to 6 months (Howard, 1986). During the first few weeks of acute hepatitis there is an increase in the natural killer cell (NK) activity (Chemello et al., 1986). Once viraemia occurs there is a transient increase in alpha-interferon (α-IFN) (Pignatelli et al., 1986). IFN- α induces the hepatocytes to display major histocompatibility complex 1 (MHC 1) in conjunction with viral peptides on the cell surface permitting cytotoxic T-lymphocytes to clear infected hepatocytes (Grandits et al., 1991), leading to elimination and recovery. IFN- α has been shown to decrease viral DNA levels in a few of the hepadnaviruses, such as woodchucks (Salucci et al., 2002), and the
transgenic mouse models. Large antigens are broken down into smaller fragments prior to the macrophage presenting specific regions of the antigen to the lymphocytes (Unanue, 1980). It is known that HBV can itself alter the cellular response to interferon inducing low expression of HLA molecules (Onji et al., 1989) and that the core protein of HBV can inhibit the production of interferon-beta (IFN-ß) (Whitten et al., 1991).

1.1.7.2. The Humoral immune response

HBsAg is the first marker to appear in the serum and remains until recovery making it the most s uitable and common serological marker for c linical d iagnosis of HBV (Nordenfelt, 1975). The HBV DNA, HBeAg, DNA polymerase and anti-HBc then appear signalling the presence of mature virus and infectivity. The different immune responses for acute and persistent infection are shown diagrammatically (Figure 3, p.11).

Pre-S1 and pre-S2 antibodies also appear early in infection (Neurath et al., 1985), and have a good correlation with HBV DNA detection. Pre-S1 binds the virus to the hepatocyte (Neurath et al., 1986c), and so these antibodies may help prevent spread of the virus to other uninfected hepatocytes (Grandits et al., 1991). The pre-S2 has a polymerised human serum albumin binding site (Michel et al., 1984) which also has been postulated to be involved in viral binding to the hepatocyte (Machida et al., 1984). Immunisation of chimpanzees with pre-S2 specific synthetic peptides or incubation of HBV with antibodies to these peptides was shown to be protective (Itoh et al., 1986; Neurath et al., 1986b; E mini et a l., 1989; Neurath et al., 1989).

High titres of IgM anti- HBc are indicative of acute HBV infection in most patients, in turn developing into IgG anti-HBc, which can persist for many years (Hoofnagle et al., 1973). IgM anti- HBc detected in chronic infection represents active viral replication (Sjogren and Hoofnagle, 1985) or induction by corticosteroid therapy for symptomatic flare in a chronic carrier (Alexander, 1990).

Development of anti-HBe correlates with the loss or a substantial reduction in viral replication, coincident with a rise in aminotransferase (ALT) levels, due to lysis of infected hepatocytes which is followed by a histologic improvement in liver disease. This recovery phase occurs weeks or months following anti- HBc production in acute hepatitis while it may never occur in chronic hepatitis (Realdi et al., 1980). In most murine strains HBcAg and HBeAg are equivalently immunogenic and crossreactive at the level of T-cell activation (Milich et al., 1988). HBcAg is both a T-cell dependent and independent antigen and as such can induce efficient antibody production in athymic mice (Milich and McLachlan, 1986) while HBeAg is strictly T-cell dependent, and thus less efficient at inducing an antibody response.

Figure 3. Time course of HBV infection.
(a) Acute infection, (b) Persistent infection. In chronic infection there is very little, if any, production of anti- HBeAg or anti-HBsAg.

The last antibody to appear is anti-HBs and its appearance usually indicates HBV recovery from infection and immunity. Anti-HBs antibodies are readily detectable in patients who clear the virus and recover from acute hepatitis, while they are usually undetectable in patients with chronic HBV infection, they are thought to play a critical role in viral clearance by complexing with free viral particles and removing them from circulation or possibly by preventing their attachment and uptake by susceptible cells. They also contribute to the pathogenesis of the extrahepatic syndromes associated with HBV infection (glomerulonephritis, cryoglobulinemia, polyarteritis nodosa) and to the prodromal syndromes of urticaria and arthralgias, by forming antigen-antibody complexes.

The role of the antibody response to the HBV nucleocapsid antigens (HBcAg and HBeAg) in HBV pathogenesis is not clear. It is generally accepted that they do not neutralise viral infectivity because they are present in high titres not only during acute hepatitis but also in
patients with chronic HBV infection. Interestingly, administration of anti- HBe antibodies, prolonged the incubation period of HBV in experimentally infected chimpanzees (Stephan et al., 1984), suggesting that they may play some currently obscure role in HBV neutralisation. Because the T-cell response to $\mathrm{HBc} / \mathrm{eAg}$ is strong during acute hepatitis and weak in chronically infected patients, the prevalence of a strong antibody response to HBcAg in chronically infected patients may be due in part to the fact that it can function as both a T-cell-independent and a T-cell dependent antigen (Milich and McLachlan, 1986).

Antibody responses to the polymerase and X proteins have been less well studied. The carboxy-terminus of polymerase, especially its RNAse H domain, appears to be immunodominant at the antibody level, and these antibodies may serve as early markers of infection and may reflect ongoing viral replication (Weimer et al., 1990). While antibody response to the viral transactivator protein (pX), is principally associated with chronic hepatitis and HCC (Moriarty et al., 1985; Stemler et al., 1990; Vitvitski-Trepo et al., 1990).

1.1.7.3. The Cell Mediated Immune Response

The CTL response to HBV is vigorous, polyclonal, and multispecific in patients with acute hepatitis who ultimately clear the virus, and it is weak or barely detectable in patients with chronic hepatitis (Bertoletti et al., 1991; Missale et al., 1993; Nayersina et al., 1993; Rehermann et al., 1995), except during acute exacerbations of chronic disease or after spontaneous or IFN- α induced viral clearance (Rehermann et al., 1996b). Despite the vigour of the T-cell response to HBV during acute viral hepatitis, very low levels of virus persist in the circulation for several decades after complete clinical and serological resolution of disease (Rehermann et al., 1996a). Long-term persistence of trace amounts of viral DNA is associated with equally long-term persistence of HBV-specific CTL that display recent activation markers. This suggests that transcriptionally active virions can apparently maintain the CTL response indefinitely after recovery, perhaps for life (Rehermann et al., 1996a). Clinical reports that occult HBV may be responsible for transmission of virus to liver transplant recipients (Chazouilleres et al., 1994), and after blood transfusions from HBV seronegative subjects (Thiers et al., 1988), support the notion of incomplete viral clearance after recovery from acute viral hepatitis.

Studies with overlapping synthetic peptides have delineated some of the HLA restricted Tcell epitopes (eg. an HLA-A2 restricted epitope has been mapped to aa 18-27 of HBcAg), and aa 141-151 to both HLA-A31 and HLA-Aw 68 (Penna et al., 1991). While study of Thelper cells (Th) has identified three HLA class II restricted immunodominant epitopes (Ferrari et al., 1991), a nd one of these partly o verlaps a HLA-A2 restricted CTL e pitope (Penna et al., 1991). These studies indicate that HBcAg can be a stimulus for both helper
and cytotoxic T-cells. Recent studies have suggested that treatment outcomes may depend on the development of type 1 T-helper responses, as activation of Th1 immunity accompanied by enhancement of CTL activity during therapy was a common immune mechanism associated with successful treatment not only of HBV, but also Hepatitis C Virus patients (Tsai et al., 2003).

Development of transgenic mice provided more evidence of an association between liver disease and the CTL response during acute HBV infection, suggesting an important role for CTL in the pathogenesis of acute viral hepatitis. In mice that express and replicate HBV in their hepatocytes, it was found that they develop an acute necro-inflammatory liver disease after adoptive transfer of HBs antigen-specific CTL lines and clones (Moriyama et al., 1990; Ando et al., 1993). It has been shown that HBV gene expression and replication can be completely abolished in all of the transfected hepatocytes in the liver by a non-cytopathic antiviral process in which the viral nucleocapsids disappear from the cytoplasm and the viral RNAs are degraded in the nucleus of the hepatocytes under conditions in which $<1 \%$ of the hepatocytes are destroyed (Guidotti et al., 1996b). Thereafter, all of the viral gene products and virions disappear from the liver and the serum in the absence of serum transaminase elevations or histological evidence of liver disease (Guidotti et al., 1996b). Viral clearance in this model is completely blocked when antibodies to IFN- γ and TNF- α are injected before the CTL, indicating that these cytokines are responsible for the antiviral effect.

A corollary of this observation would be that superinfection of the liver by other hepatotropic viruses might lead to the clearance of HBV if they induce the production of antiviral cytokines to which HBV is susceptible. These events have been shown to occur in the HBV transgenic mice during lymphocytic choriomeningitis virus infection (Guidotti et al., 1996a). Isolated case reports have been published suggesting that superinfection by HAV is sometimes associated with clearance of HBV in chronically infected patients (Davis et al., 1984). In contrast, co-infection of HBV and HCV has been associated with increased liver failure (Pouteil-Noble et al., 1995), hepatocarcinogenesis (Koike, 1999), and chronic liver disease (Bukhtiari et al., 2003).

These results suggest that a strong intra-hepatic CTL response to HBV during acute viral hepatitis can suppress HBV gene expression and replication and perhaps even "cure" infected hepatocytes of the virus in addition to killing them. Conversely, a weak immune response, such as that which occurs in chronically infected patients, could contribute to viral persistence and chronic liver disease by reducing the expression of viral antigens sufficiently for the infected cells to escape immune recognition but not enough for the virus to be eliminated. Therefore, the ability of CTL derived cytokines to inhibit HBV replication could
represent a survival strategy by the virus, contributing to persistence, or a tissue-sparing antiviral strategy by the host, contributing to viral elimination.

1.1.8. Mechanism of viral persistence

Elements of the innate, specific T-cell, and humoral responses are involved.

1.1.8.1. Specific T-cell response

Viral persistence is probably related to a specific failure of T-cells to recognise HBV antigens. This assumption is supported by the clinical observation that patients with a relative deficit in T-cell function (young, elderly, and immunosuppressed), are more prone to develop chronic HBV infection. In vitro peripheral blood T-cell activation is impaired in patients with chronic HBV infection but this is not associated with clinical evidence of immune deficiency, suggesting a redistribution of primed T-cells from the circulation to the liver.

1.1.8.2. Innate immunity

The finding of defective α-interferon production in patients with chronic HBV infection (Kato et al., 1982; Abb et al., 1985), and reduced capacity to produce α - and γ-interferon which is unrelated to the level of viral replication and the severity of liver disease (Ikeda et al., 1986), has led to the hypothesis that this may be a primary defect which could be instrumental in the early stages of infection leading to persistence (Ikeda et al., 1986). Alpha-interferon has immunomodulatory properties, and also stimulates the display of human leukocyte antigen class 1 (HLA-1) antigens on cell surfaces (Heron et al., 1978), and should thereby e nhance the presentation of viral a ntigens to c ytotoxic T-cells. However, there is conflicting data regarding the levels and role of IFN- α. IFN- α was rarely detected in the circulation during chronic hepatitis B and virus-stimulated production of IFN- α was reduced in circulating mononuclear cells (Ikeda et al., 1986) in one study. While in another study, IFN- α production was not significantly altered during HBV infection. IFN- α induces $2^{\prime} 5^{\prime}$-oligoadenylate synthetase, and levels of this enzyme in liver, and circulating mononuclear cells were found to be higher in patients with acute and chronic HBV infection, than in healthy controls, or interestingly, patients with HBV-related chronic active hepatitis, which have normal levels (Heathcote et al., 1989). An alternative could be that the production of IFN- α by circulating cells may have been down regulated during its passage through the liver (Nouri-Aria et al., 1991). Further complicating the issue, the HBV core gene has been found to suppresses the IFN- β gene in mouse fibroblasts (Twu et al., 1988; Twu and Schloemer, 1989).

HBV has also been shown to reduce the cell's sensitivity to IFN- α, as when a HBV containing vector was transfected into an IFN- α sensitive cell line, the response to exogenous IFN- α was reduced (Onji et al., 1989). Subsequently, it was found that the terminal protein of the HBV polymerase inhibited the response to not only IFN- α but also IFN- γ (Foster et al., 1991). This may be one of the reasons that perinatally infected HBV carriers take many years to seroconvert from HBeAg positive to HBeAb positive, which occurs during the teens with transient hepatitis and appearance of mutant virus (Shimoyama and Sekiguchi, 1996).

The high incidence of chronic HBV carriage in babies born to $\mathrm{HBeAg}+$ mothers suggests that circulating e antigen in the mother induces immunotolerance in the baby. In newborn transgenic mice that produce HBeAg , both HBeAg and HBcAg are tolerant at the T -cell level (Milich et al., 1990), however these mice produce core, but not e antibody. The maintenance of T-cell tolerance was broken only when HBeAg had been withdrawn for more than 16 weeks. The close resemblance in the chronology of immunological events in HBeAg-expressing transgenic mice and in human HBV infection suggests that one function of e antigen may be to induce immuno-tolerance in utero, favouring the persistence of HBV in infancy and childhood. It has been demonstrated that patients with HBeAg negative HBV infections have a high rate of mutations present in the Core region (Thakur et al., 2003), and the effect of these mutations on transmission rates is unknown. However transmission of preCore mutants does produce familial clustering of HBV infections (Santantonio et al., 1997), similar to wild-type.

1.1.8.3. Tolerance

Tolerance is when the host does not mount an immune response to an antigen that is not 'self', and can be achieved during the negative selection phase of immune cell maturation. The specificity of a host's immune cells is tested before they are allowed into the circulation, in such a way that immune cells which are found to react to the host's normal cells are eliminated before they are released, thus stopping the host from producing an immune response which would destroy its own cells. Tolerance to an infection is achieved by this negative selection, which eliminates immune cells capable of reacting to the infection, thus leaving the host unable to mount an effective immune response to the infection.

Tolerance leading to persistence is normally obtained by parenteral transmission of the virus to the host during the early stages of life, when the negative clonal selection is most vulnerable, but can also be induced later in life. It is considered that persistence is established by a lack of the immune response to effectively eliminate infected hepatocytes. Although an alternative reason for persistence may be that the virus is able to change its
physical characteristics, such as developing a mutant genome, which is able to evade immune recognition, such as the truncated preCore mutants of HBV. This tolerance, be it natural or induced, as in individuals with impaired CMI response (eg. dialysis and transplant patients), is generally associated with persistent high titre viraemia, however there is usually very little acute liver disease (Alexander, 1990). This would indicate that the host's immune response to the infection could sometimes do more damage to cells than that caused by the virus.

Tolerance is not an eternally stable situation, and can be altered at any time, which is clearly demonstrated by some of the autoimmune diseases of humans, such as celiac disease, which is triggered by the ingestion of gluten (Bizzaro et al., 2003), inducing an immune response that then targets the host's own antigens (Salaman, 2003). The onset of this intolerance is unknown, but can also be seen in HBV infection, when a chronic carrier spontaneously develops an immune response that is capable of clearing the virus (Hsu et al., 2002), which is aided with successful treatment (Heathcote, 2003).

1.1.8.4. Humoral responses

In addition to the cellular immune reactions responsible for clearance of infected hepatocytes, neutralising antibodies are required to prevent spread of released virions to uninfected liver cells. A defect in viral clearance could be responsible for persistence of virus infection in chronic carriers.

Alberti et al., first identified antibodies binding selectively to complete virions ('anti-Dane' antibodies) in sera early in acute hepatitis B (Alberti et al., 1978). Observations that polymerised human serum albumin bound to the preS2 region (Machida et al., 1984), lead to a hypothesis to explain the hepatotropism of HBV (Thung and Gerber, 1984), and anti-preS2 antibodies being neutralising. However, it is unclear whether such polymerised albumin exists in vivo in sufficient amounts to act as the proposed bridge between virions and hepatocytes (Yu et al., 1985).

Whether anti-preS2 antibodies appear at the time of virion clearance, or later, is unknown (Alberti and Pontisso, 1987). Neurath et al., using a model system to investigate hepatotropism of HBV, suggested that binding of virions to HepG2 cells is via sites predominantly in the pre-Sl region, and interestingly preS1 expression seems to be largely confined to envelope proteins of complete virions (Neurath et al., 1986c).

1.1.9. Mechanisms of Liver Injury

A significant minority (up to 25%) of persistently infected HBV carriers develop severe pathologic consequences, including chronic hepatitis, cirrhosis, and hepatocellular carcinoma
(HCC) (Ryu, 2003). D espite many a vailable treatment options, the p rognosis of patients with HCC remains poor; surgical resection or liver transplantation still represents the only potentially curative treatments for $\operatorname{HCC}($ Zhu, 2003).

There are major logistic and ethical problems in setting up studies of cytotoxic immune responses during early acute human HBV infection. Contact tracing was used to identifying five individuals in early stage acute HBV infection (Vento et al., 1987). The first cellular immune response in these patients was to pre-S antigen, followed by HBcAg 10 days later, at which time IgM anti- HBc antibodies appeared in the serum, and then just prior to liver damage a cellular immune response to HBsAg was discovered. This HBsAg cellular immune response is absent during persistent infection (Vento et al., 1985), and may be involved in not only the production of liver damage during acute HBV infection but also be of critical importance in determining recovery.

The search for an immune target in chronic HBV infection has centred on hepatocytes expressing HBcAg. Cytotoxic T-cells in the peripheral blood of chronic HBV carriers recognise nucleocapsid components of HBV on the surface of infected hepatocytes (Mondelli et al., 1982; Pignatelli et al., 1987; Bertoletti et al., 1991), these findings have been corroborated in the woodchuck model (Shanmuganathan et al., 1997). In cytotoxicity experiments, T-cells from patients with chronic liver disease lysed hepatocytes that expressed HBcAg, and this cytotoxicity could be blocked by antibody to HBcAg or by HLA class I molecules (Chu et al., 1988). There is some evidence that anti-HBe can also block cytotoxicity, while no response to HBsAg was demonstrated. Immunohistochemical studies showed that cytoplasmic expression of core, but not surface, correlates with disease activity (Chu and Liaw, 1987).

Examination of the peripheral blood may give an imperfect view of the cells directly involved in hepatocyte damage, and most studies have concentrated on a phenotypic and functional analysis of lymphocytes in areas of liver necrosis. Direct immunofluorescence examination of liver biopsies has shown that T-lymphocytes of the CD8+ cytotoxic/ suppressor type predominate in areas of liver cell destruction in chronic hepatitis B (Eggink et al., 1982).

Clonal expansion of cells from liver biopsies, has confirmed their cytotoxic potential. Tcells, incubated with IL-2 and a mitogen, were used to obtain clones which express cytotoxic effector function to heterologous rat hepatocytes and have suggested that secreted T-cell products may be responsible for hepatocyte injury whether or not the lymphocytes are recognising specific antigens on hepatocytes (Ramadori et al., 1987). Similar T-cell lines
have been established from liver biopsies by stimulation with IL-2 and HBV antigens (Ferrari et al., 1987). A mixture of CD4+ and CD8+ lines were obtained from which CD4+ HBcAg -specific T-cell clones have been derived. The full functional repertoire of these cells is still unknown.

The importance of T-cell responses to nucleocapsid antigens in the pathogenesis of liver damage in chronic HBV infection has overshadowed interest in the significance of T-cell responses to envelope antigens and their potential role in virus clearance.

Mediation of hepatocellular damage in chronic infection may also be attributed to the recruitment cells that form part of the non-specific immune response (Guidotti, 2002). NonT lymphocytes cytotoxicity can be blocked by liver-specific membrane lipoprotein (LSP), aggregated IgG, or the $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ fragment of anti-human IgG, suggesting that they may direct an antibody-dependent cell-mediated cytotoxicity against a component of LSP (MieliVergani et al., 1982). It has also been observed that when the HBV-specific CD8+ response is unable to control virus replication, it may contribute to liver pathology not only directly, but also by causing the recruitment of nonvirus-specific T-cells (Maini et al., 2000).

Cytokines are also likely to be involved (Lau et al., 1991; Schulte-Frohlinde et al., 2002); in patients with HBV-related active liver disease, IFN- α is produced locally in the liver, and production of IL-1 a nd TNF- α b y p eripheral blood mononuclear cells a re a lso increased. The possibility that these are non-specific consequences of inflammation remains to be excluded.

Abnormalities of lymphocyte proliferation in chronic HBV infection are well documented (Hanson et al., 1984; Anastassakos et al., 1987; Anastassakos et al., 1988), but the underlying mechanisms are poorly understood, and it remains to be determined whether they are of primary importance in the failure of viral clearance or secondary to chronic liver damage. Lymphocyte proliferation to mitogens and antigens is defective, but although IL-2 production is decreased (Saxena et al., 1985), exogenous IL-2 or IL-1 is unable to correct the low proliferative response (Anastassakos et al., 1987; Anastassakos et al., 1988).

Anastassakos et al., also demonstrated that IL-1 production by monocytes is high, particularly in those with cirrhosis (Anastassakos et al., 1987; Anastassakos et al., 1988). One of the recognised biological properties of IL-1 is to stimulate fibroblasts to produce collagen (Dinarello, 1984), and it is of some interest that there was a rather close correlation in this study between IL-1 production and severity of fibrosis.

Although the evidence strongly suggests that HBV causes hepatocellular damage through an immune-mediated mechanism, other factors may be involved. Furthermore, high-level expression of HBsAg is associated with hepatocellular degeneration and necrosis in transgenic mice (Chisari et al., 1987), and over-expression of HBcAg in a hepatoblastoma line induces cytopathic changes (Roingeard et al., 1990). In patients transplanted for chronic hepatitis B, recurrence of infection is associated with a novel histological pattern (fibrosing cholestatic hepatitis) and fulminant clinical course, and in this situation HBV may be directly cytopathic (Lau et al., 1992).

1.1.10. Diversity of HBV strains

The discovery of the Australia antigen by Blumberg, initiated systematic studies that eventually revealed that this antigen represented the surface protein of the hepatitis B virus (HBV) produced in excess as compared to the complete virions. Early on there were hints for the immunological heterogeneity of the antigen (Levene and Blumberg, 1969; Raunio et al., 1970), although the fact that these variants represented genetically stable variants of the virus was not realised until later.

The occurrence of nine different subtypes of HBsAg reflecting genetic variability of HBV has been documented for a long time. The subtypes were ayw1, ayw2, ayw3, ayw4, ayr, adw2, adw4, adrq ${ }^{+}$, and adrq${ }^{-}$(Courouce et al., 1976; Courouce-Pauty et al., 1978). The entire nucleotide sequences of 18 human HBV genomes of various subtypes were classified into four genetic groups designated A-D based on an intergroup divergence of 8% or greater of the complete nucleotide sequence (Okamoto et al., 1988). Two new genomic groups designated E , and F , were later identified on the basis of the variability in the Surface gene of genomes encoding the subtypes ayw4, and adw4 (Norder et al., 1992). The sequence divergence of a seventh genotype (G) was later determined (Kato et al., 2001).

The identification of the two pairs of allelic variations, d / y (Le Bouvier, 1971), and w / r in the following year (Bancroft et al., 1972), defined of the four major subtypes of hepatitis B surface antigen (HBsAg). These subtypes were $a d w$, adr, ayw and ayr, where a was defined as the common determinant of all the subtypes (discussed in more detail in 1.1.10.2.1, p.21). It was observed early that the ayw subtype was the one found among i.v. drug users worldwide, with other subtypes related to specific geographic regions (Section 1.1.10.1, p.20).

With the description of four subdeterminants of a, later redefined as subdeterminants of w (wl-w4) at an international workshop in Paris in 1975 (Courouce, 1976; Courouce et al., 1976), the issue of HBsAg subtypes acquired a considerable degree of complexity. These
subtypes were ayw1, ayw2, ayw3, ayw4, ayr, adw2, adw4 and adr. With the identification of the q determinant (Magnius et al., 1975) the number of subtypes increased from eight to nine, due to the subdivision of the $a d r$ subtype into a q-positive and a q-negative category (Courouce-Pauty et al., 1978). Due to lack of reagents and the demand for experience in techniques such a s i mmunodiffusion a nd IEOP, at that time mostly a bandoned a s r outine diagnostic procedures for the demonstration of HBsAg , typing for nine different serotypes never became introduced outside the laboratory where it was once established. Indirect evidence such as from signature analysis of monoclonal antibody reactivities have, however, confirmed the existence of nine different subtypes (Wands et al., 1984). Also the reactivity patterns obtained with sets of monoclonal antibodies provided an opportunity to identify some of them (Swenson et al., 1991).

1.1.10.1. Geographic diversity

Geographic prevalence of HBV was investigated (Prince, 1970b), and it was soon determined that various subtypes of HBV are associated with various geographical regions. The $a d w$ subtype was found to be the dominant type among the carriers in North-Western Europe (Schmidt et al., 1972; Magnius et al., 1973; Mazzur et al., 1974), while the r determinant subtypes were exclusively confined to populations of the Far East (Courouce and Soulier, 1974; Mazzur et al., 1974). A more precise study to define the worldwide distribution of HBV subtypes was undertaken in a large study during the early 1980s (Courouce-Pauty et al., 1983), while more recent data has been reviewed (Robertson and Margolis, 2002) (Table 4, p.20, and Figure 4, p.21).

Genotypic group	Subtype	Areas of high prevalence
A	adw2	North-Western Europe
	ayw1	Central Africa
B	adw2	China, Indonesia
	ayw1	Vietnam
C	adw2	East Asia
	adrq+	Korea, China, Japan
	adrq-	Polynesia
	ayr	Vietnam
D	ayw2	Mediterranean area
	ayw3	India
E	ayw4	West Africa
F	adw4	American Natives, Polynesia

Table 4. Geographic Distribution of HBV genotypes and subtypes.

1.1.10.2. Molecular Basis for the Major Subtypic Variations

Sequencing of complete genomes encoding $a d w 2$ and ayw3 subtypes revealed numerous substitutions throughout the genome (Galibert et al., 1979; Valenzuela et al., 1980; Ono et
al., 1983; Okamoto et al., 1988). A number of these substitutions in the S-gene were claimed to be associated with the expression of d and y specificity (Prince et al., 1982; Gerin et al., 1983; Ionescu-Matiu et al., 1983; Okamoto et al., 1986).

Figure 4. Geographic Distribution and Endemicity of HBV genotypes.
Endemicity based on WHO data (WHO), while genotype based on Robertson and Margolis (Robertson and Margolis, 2002).

From studies of HBV subtype infections of chimpanzees there is little difference in the infectivity of the various HBV subtypes (Barker et al., 1975).

1.1.10.2.1. Monoclonal Antibody Mapping

Analysis of reactivity patterns with monoclonal antibodies after chemical modification of HBsAg revealed the importance of Lys (K) 122 for the expression of the d determinant (Peterson et al., 1984). Later studies on two blood donors carrying surface antigens of compound subtypes, adyr and $a d r$ respectively, showed that amino acid substitutions at positions 122 and 160 alone explained the expression of d / y and w / r specificity, respectively (Okamoto et al., 1987). Both the d to y and w to r changes were mediated by a shift from Lys to Arg at the corresponding positions (Okamoto et al., 1987). The dependence of the w specificity on a Lys 160 was later also supported by site-directed mutagenesis (Okamoto et al., 1989). Previous failures to unambiguously identify the d / y site by synthetic peptides, may be partially explained by the reagents used to identify the subtypes not being entirely mono-specific, since they were obtained with antisera that were absorbed with antigens
differing at several positions outside residue 122 as compared with the immunogen. A summary of the molecular basis for the major subtypic variations is given in Table 5 (p.22).

Specificity	aa 122	aa 127	aa 160
d	Lys	-	-
y	Arg	-	-
$\mathrm{w} 1^{*}$	Arg	Pro	-
w 2	-	Pro	-
w 3	-	Thr	-
w4	-	Leu/Ile	-
w	-	-	Lys
r	-	-	Arg

Table 5. Amino acid residues specifying determinants of HBsAg subtypes. *w1 reactivity also requires Phe 134, and/or Ala 159.

1.1.10.3. Definition of HBV Genotypes

Once complete sequences for a number of HBV genomes became available, four genomic groups of HBV were defined based on a divergence of 8% or more of the complete genome (Okamoto et al., 1988). Genotyping parallels subtyping (Table 4, p.20): genomes encoding ayw were found in group D , those encoding both the $a d r$ and $a y r$ subtype occurred in group C alongside with $a d w$, which was also found in groups A-C. In a later study from Indonesia, genomes encoding $a y w$ w ere a lso encountered in group B (Sastrosoewignjo et al., 1991). The genomic groups E, and F, were identified as subtypes ayw4, and adw4 (Norder et al., 1992). At present it seems that the genotype designation has gained wider usage as compared to subtype group (Li et al., 1993; Naumann et al., 1993).

1.1.10.4. PreC Mutants

Recognition of a subgroup of patients with HBV that were HBeAg negative, and antiHBeAg positive, indicative of clearance, but were HBV DNA positive, and suffering from liver disease. This led researchers to ponder whether HBV genomes were capable of variation or deletions of a protein, and began a search for mutations or variations in the core gene. Three types of variant have yielded a viable HBe negative phenotype: inactivation of the start of transcription sequence (ATG) (Okamoto et al., 1990), insertions or deletions causing frame shifts (Okamoto et al., 1990), and mutations producing stop codons (Carman et al., 1989; O kamoto et al., 1990 ; Ulrich et al., 1990). The most common a re the stop codons, of which a G to A point mutation at nucleotide 1896 (M1896) creates a novel translation stop codon that prevents HBeAg production.

All three types of mutations prevent effective production of HBeAg , but do not affect HBcAg production.

The most common preC mutation is a $\mathrm{G} \Rightarrow \mathrm{A}$ at nt 1896 , which produces a stop codon ($\mathrm{TGG} \Rightarrow \mathrm{TAG}$). This mutation prevents synthesis of preC protein, but produces a short preC peptide, which has been demonstrated in the cytoplasm of infected hepatocytes. A similar mutant has been produced for WHV (Delaney et al., 1990). Hypermutation of $\mathrm{G} \Rightarrow \mathrm{A}$ is thought to be responsible for the high rate of mutations found at nt 1896.

Initially this mutation was found in individuals that were persistently infected with severe hepatitis, and it was thought that this mutation was the cause of their excessive hepatitis. It was considered that a random mutation, which was inevitable in a chronic carrier, or possibly by positive antibody selection during attempted clearance by the host, was selected for and eventually increased the severity of disease. This was corroborated by such observations that dual (B and C) and triple (B, C, and D) chronic hepatitis infections, which often present minimal hepatitis, did not appear to have preC mutant genomes in circulation. A preC mutant was also associated with post transfusion fulminant hepatitis (Kojima et al., 1991; Shimizu et al., 1995), and was found in HCC (Clementi et al., 1993; Ni et al., 2003). However, the incidence of preC mutations was determined to be relatively high in persistently infected individuals without associated risk of increased disease (Bozkaya et al., 1996).

Although technically defective, it appears that HBeAg is not essential for in vivo or in vitro replication in humans (Ulrich et al., 1990), Woodchucks (Chen et al., 1992), and DHBV (preCore) (Chang et al., 1987). The duck studies have indicated that an artificially constructed preC mutant (which has a lower replication rate than that of the wild type, and thus possibly different from that found naturally in humans), when injected as a mixed infection with wild type produces several outcomes. Either the mutant or the wild type slowly began to dominate, or there was a fluctuation in the ratio of variants. PreC mutant domination was not associated with a faster replicating variant of itself but retained its original replication rate, it was however associated with elevated anti-Core Ab, which could be analogous to selection of HBeAg negative mutants in humans.

The consequences of preC mutants on the competency and effect of infection is uncertain, with some studies indicating enhanced RNA encaspidation (Hasegawa et al., 1994; Baumert et al., 1998) and/or replication following cytotoxic treatment (Yoshiba et al., 1992), while others have shown no effect (Sterneck et al., 1998). One of the reasons for the uncertainty is that most studies have just looked at a short length of sequence, usually only a fraction of the $\mathrm{preC} / \mathrm{C}$. This leaves the vast majority of the genome as an unknown quantity, in which other factors affecting transcription rates are certainly located, and those studies that have used entire genome sequence data, suggest that there are many areas of variation.

1.1.10.5. Surface Mutants

Hepatitis B surface antigen (HBsAg) is not only critical to the biology of HBV, but is also the basis of current vaccines, detected in serum for diagnosis, and antibodies against it are used clinically to suppress infection of transplanted livers. All of these rely on antigenic interactions between HBsAg and HBsAb .

PreS1 and PreS2: Amino acids 21-47 of preS1 are involved in in vitro hepatocyte attachment (Petit et al., 1991), as such it is considered a conserved region in which no significant variants have been described either before or after liver transplant (Trautwein et al., 1996). Point mutations and deletions have been described downstream (Trautwein et al., 1996), and have been associated with severe disease. In vitro studies have shown that preS2 is not required for virus production (Santantonio et al., 1992; Fernholz et al., 1993a), and most in vivo cases have lost the preS2 ATG (start of translation), thus producing only small and large surface proteins. These mutations indicate an escape from antibody pressure, as the preS2 sequence is part of the large surface protein and still presentable to the cellular immune system. These variants are frequently seen in anti-HBeAg positive carriers, also often with preC mutants.

Small Envelope Surface Protein: The major protective epitope of HBV is highly conserved and found within 23 amino acids of the surface antigen (HBsAg). This ' a ' determinant, believed to form two loops on the outside of the virus (Figure 5, p.24), is found in all known subtypes of HBV, and binds most of the anti-HBs found in hyperimmune globulin.

Figure 5. Two loop structure of the ' a ' determinant.
The double arrows point to common point mutations that have been found in the ' a ' determinant (Torre and Naoumov, 1998). The shaded proteins are involved in HBV sub-typing (Table 5, p.22).

Adequate levels of anti-HBs produced by HBV vaccines do not prevent infection in all cases, but infection is normally transient, and rarely associated with disease.

Mutants of this epitope have appeared under pressure generated by antibodies, both vaccine induced (Wilson et al., 1999) and therapeutic (Carman et al., 1996; Shields et al., 1999). Most ' a ' determinant mutations are a substitution of $G>A$, at aa 145 of HBsAg. This mutation has been shown to inhibit most of the anti-HBsAg binding (Fujii et al., 1992; Chakravarty et al., 2002). Other 'a' determinant mutations have been found but seem less clinically important (Carman, 1997).

However one of the most important aspects of these ' a ' determinant mutations is that the majority of HBV diagnostic tests are based on serology which may have altered sensitivity in the detection of these mutations.

1.1.10.6. Polymerase Mutants

Several naturally occurring mutations alter the expression, structure, or function of the P protein. Deletions in the C gene may change the structure and expression of the P protein; deletions in the preS1, or preS2 regions remove sequences from the dispensable spacer region; and ' a ' determinant mutations lead to changes in the RT domain. There is little evidence that these mutations interfere with the usual functions of P . A single patient was found to have a mutation which prevented encapsidation of the pregenomic RNA (Blum et al., 1991).

The use of nucleoside analogues however, has been associated with functionally important mutations. Resistance to lamivudine therapy is associated with amino acid substitutions in the YMDD motif (located in the catalytic site of the RT) (Bain et al., 1996; Ling et al., 1996; Fischer et al., 2001a; Germer et al., 2003; Yu and K eeffe, 2003). In immunocompetent patients the cumulative incidence of mutations in the YMDD motif during lamivudine therapy was estimated to be as high as 39% after 1 year of treatment (Honkoop et al., 1997). Changes in the YMDD motif strongly decreased the polymerase activity in transfection assays (Fu and Cheng, 1998), viraemia rebounds to a lower level than that originally associated with the wild-type, and wild-type rapidly emerges again after cessation of antiviral treatment (Niesters et al., 1998). Resistance to famciclovir (FCV) has been documented, in which reduced sensitivity to FCV was associated with mutations upstream (in the template binding region of the RT) from the conserved YMDD motif in the HBV polymerase gene (Bartholomeusz et al., 1997).

1.1.10.7. Quasi-Species

Hepadnaviruses replicate by means of a reverse transcription step which is similar to that seen in RNA viral replication. The proof reading ability of these reverse transcription polymerases is poor, resulting in a high substitution rate, which leads to a heterogeneous
mixture of related genomes (quasispecies) within the one individual (Domingo et al., 1985). The quasispecies virus population share a consensus sequence but differ from each other and the consensus sequence by one, several, or many mutations. Le Bouvier first suggested the heterogeneity of HBV subtypes (Le Bouvier, 1971). Since then evidence for quasispecies has been mounting from individuals with heterogeneous subtype populations (Burda et al., 2001; Cacciola et al., 2002; Dong et al., 2002; Jeantet et al., 2002).

Mutant viruses have been associated with unusual hepatitis B virus serology: one patient, HBsAg and HBeAg positive, was also anti- HBc negative by radioimmunoassay (Zoulim et al., 1996). Hepatitis B virus genotype was determined by size polymorphism of the core gene and the pre-S region was found to be D / E and consistent with the results of serological subtyping (HBV ayw2-4). DNA sequence analysis of the pre-C/C region showed the presence of significant nucleotide changes: in association with a wild type hepatitis B virus strain, they detected at least four hepatitis B virus variants with nucleotide deletions leading to a frame shift in the core gene. According to the position of the mutations, these hepatitis B virus core variants were expected to be defective for B-cell epitopes and Th-cell epitopes (Zoulim et al., 1996).

Single strand conformational polymorphism analysis performed on PCR fragments of a conserved core region and a surface antigen region of HBV DNA from sera of 27 Korean chronic hepatitis B patients, was followed by DNA sequence analysis. The results showed that heterogeneous HBV mutants in both regions were present in a single as well as in various hepatitis B patients. Sequence analysis revealed a defective interfering particle with missense mutation in the core region. They also found that two subtypes of $a d r$ and $a d w$ coexisted in a single patient, as well as a point mutation causing a stop codon in the surface antigen region (Keum et al., 1998).

Mutation of the preS2 gene sequence of HBV was investigated to clarify the significance of HBV quasispecies groups in Chinese patients with chronic HBV infection. Quasispecies were d isplayed in the PCR p roducts from 52.9% (27/51) of patients. The phenomena of multiple bands in PAGE was detected in both HBeAg (36.1\%) and anti-HBe (93.3\%) positive patients. A deletion in the preS2 gene sequence may influence the recognition by neutralising antibodies (Huangfu et al., 2002). Pre-transplantation pre-S2 and S protein heterogeneity has been shown to predispose HBV recurrence after liver transplantation (Grottola et al., 2002).

1.1.11. Models of HBV

Although the clinical literature regarding human hepatitis B infection is now vast, critical data about the pathogenesis of infection has been very difficult to obtain for ethical and practical reasons. Animal models permit prospective studies using defined doses and timing of infection and have been used in pivotal molecular studies of viral replication as well as in prospective studies of the virus and host response at different stages of infection.

There are currently several well-characterised animal models that provide useful information for human HBV infection. Those most studied are the woodchuck, ground squirrel, and duck hepadnaviruses, each of which exhibit different advantages and limitations as an experimental model (Summers et al., 1978; Marion et al., 1980; Mason et al., 1980; Summers, 1981). Mice transgenic for HBV and individual HBV genes have also provided critical data about the mechanisms of regulation of hepadnavirus replication in vivo (Chisari et al., 1985; Uprichard et al., 2003; Wieland et al., 2003).

1.1.11.1. Woodchuck Hepatitis B Virus

The discovery of a naturally occurring hepadnavirus in woodchucks (Summers et al., 1978), and its a ssociation with a cute and chronic liver disease a nd HCC (Summers et al., 1978; Popper et al., 1981), laid the groundwork for much of our current understanding of hepadnavirus biology and pathogenesis. As with HBV, neonatal infection by WHV invariably leads to persistent infection while adult onset infection leads to acute self-limited hepatitis and viral clearance (Korba et al., 1989b). HCC is an almost invariable outcome. Discovery of the extrahepatic replication of WHV (Korba et al., 1990), especially its ability to replicate efficiently in lymphomononuclear cells (Robertson et al., 1981; K orba et al., 1986; Korba et al., 1987; Korba et al., 1989a; Chemin et al., 1992), reinforced the concept that HBV is not strictly hepatotropic and that extrahepatic reservoirs of virus may exist that can contribute to viral persistence and serve as a continuing source of virus and viral antigens to maintain the immune response long after seroconversion and recovery from acute viral hepatitis.

The WHV model has also greatly strengthened the concept that the antiviral T-cell response plays a critical role in viral clearance and disease pathogenesis, since cyclosporine A treated woodchucks with suppressed T-cell function fail to terminate WHV infection when infected as adults (Cote et al., 1991). This model also documented the dependence of the hepatitis delta virus (HDV) on coincident or preceding HBV infection (Negro et al., 1989). Furthermore, due to the ability to infect the woodchuck liver by direct intrahepatic injection of cloned WHV genomes, it has been shown that the precore protein is dispensable for viral
replication in vivo (Chen et al., 1992) but that the X protein is not (Chen et al., 1993; Seeger and Zoulim, 1994).

The woodchuck model has also been used to examine the physiological basis for viral clearance during acute WHV infection (Kajino et al., 1994). The results of these studies are compatible with a hypothesis from a transgenic mouse model of viral hepatitis (Guidotti et al., 1994), that, in addition to destroying infected hepatocytes, the immune response can also deliver a noncytolytic signal that eliminates the virus from the hepatocyte without killing it.

Perhaps the most important contribution of the woodchuck model was in the area of hepatocarcinogenesis. Not only was it shown that virtually 100% of neonatally woodchucks develop persistent WHV infection and chronic hepatitis that progresses to HCC, but the insertional or transcriptional activation of the myc family of oncogenes was established as a critical early element in hepatocarcinogenesis in these animals (Martinez et al., 1994).

Woodchucks, however, have not been imported into Australia, because of quarantine restrictions, which make the model unavailable to us.

1.1.11.2. Ground Squirrel Hepatitis Virus

During a search for a HBV-like virus in Californian relatives of the woodchucks, the Ground Squirrel Hepatitis Virus (GSHV) was discovered in Beechey ground squirrels (Marion et al., 1980). The GSHV shares many characteristics of the Orthohepadnaviruses including virus morphology, viral DNA size and structure, a virion DNA polymerase that repairs a singlestranded region in the viral DNA, crossreacting viral antigens, and persistent infection with viral antigen continuously in the blood. Although similar, GSHV and HBV are not identical. The ground squirrel virion has a slightly greater diameter, there are many unusually long filaments, the viral surface antigens crossreact only partially, and GSHV DNA has two restriction endonuclease EcoRI cleavage sites in contrast to the single site in HBV DNA (Marion et al., 1983b).

GSHV has been used to demonstrate many of the characteristics found in other hepadnaviruses such as: acute infection (Ganem et al., 1982), genomic organisation (Seeger et al., 1984b), replication by reverse transcription (Seeger et al., 1986), S gene products (Feitelson et al., 1981), preS gene products (Schaeffer et al., 1986), pregenomic mRNA (Enders et al., 1987), infectious cloned DNA (Seeger et al., 1984a), and genetic recombination (Seeger et al., 1987).

1.1.11.3. Transgenic Mice

Another useful model is the transgenic mouse system, in which DNA of various forms of HBV, from the whole genome of the virus to single proteins is transgenically introduced into a strain of mouse by embryonic microinjection. The transgenic mouse then has the viral DNA as part of its own genome and may also occasionally expresses some of the viral proteins to various degrees, which would allow direct study of some aspects of HBV immunobiology and pathogenesis. The expression of viral proteins by the mouse induces tolerance for the proteins, and the mouse then is a model for a chronically infected host. The mouse model is useful in determining the various effects of the CMI on hepatocytes, as allograph transfer of specific cells can be easily achieved.

Using constructs containing HBV derived regulatory sequences, several laboratories (Chisari et al., 1985; Farza et al., 1988; Araki et al., 1989) have produced transgenic mice that preferentially express all of the viral gene products, and even replicate the virus in the hepatocyte. These mice also express the viral gene products in kidney tubular epithelial cells, sometimes preferentially, and they also display sporadic and unpredictable expression in miscellaneous other tissues that are unique to each transgenic lineage, presumably reflecting integration site influences. It has also been demonstrated that most of the HBV gene products, and even the process of viral replication, are not directly cytopathic. Most importantly, the supercoiled form of HBV DNA (cccDNA) has not been detected in any of these lineages, and naïve hepatocytes cannot be infected.

Adoptive transfer of HBV specific CTL into such mice induced hepatocytes expressing HBV antigens to undergo apoptosis, representing a critical initiating event in the elimination of HBV particles (Ando et al., 1994). However; the direct cytopathic effect of the CTL was limited to very few hepatocytes; possibly because the Effector:Target (E:T) cell ratio in the liver was low and the free-ranging CTL movement was severely limited by the architectural constraints of solid tissue. There are several strains of transgenic HBV mice that reproduce various aspects of HBV infection, and some of these strains produce transient and relatively mild disease (like most cases of acute viral hepatitis in humans), which destroy no more than 5% of the hepatocytes. In acute necroinflammatory liver disease transgenic mice, injury can be completely prevented by the prior administration of neutralising antibodies to IFN- γ, it was assumed that most of the liver cell injury was mediated by non-specific inflammatory cells that the CTL recruited, most probably by IFN- γ mediated release of chemotactic and inflammatory cytokines (Ando et al., 1993; Guidotti, 2002).

Direct evidence for non-cytolytic clearance of hepadnavirus infection came from a series of experiments done by transferring HBsAg specific CTL into allogeneic HBV transgenic mice
(Guidotti et al., 1996b). Secretion of IFN- γ and TNF- α by CTLs were able to almost completely suppress the expression of HBsAg in hepatocytes by a noncytolytic mechanism. These findings confirmed earlier studies which revealed that IFN- γ and TNF- α suppress the liver specific expression of hepatitis B virus mRNA in transgenic mice (Maggi et al., 1992; Seder et al., 1992; Lenschow et al., 1996).

However, because of the intrinsic limitation of HBV transgenic mice as a non-infectious model; the further investigation of the role of cytokines in the clearance and pathogenesis of HBV infection has been greatly hampered and elucidation of the effect of these molecules on the outcome of hepadnavirus infection will require studies in model systems such as DHBV infected ducks.

Determinants of HBV Host Range and Tissue Specificity: Murine studies have demonstrated that HBV has the potential to be expressed and to replicate in many cells besides the hepatocyte. Together with evidence of extrahepatic viral DNA and virus expression in infected patients and the various hepadnaviruses, such data strongly suggests that the relative liver specificity of HBV must reflect multiple constraints at the levels of viral entry, replication and gene expression, and that none of these constraints individually, is absolutely specific for the human hepatocyte.

Assembly, Transport and Secretion of HBV Structural Proteins: An important byproduct of the murine studies was the demonstration that most of the HBV gene products, and the process of viral replication itself, is not directly cytopathic for the hepatocyte, at least at the levels attained in animals containing the complete viral genome (Farza et al., 1988; Araki et al., 1989). This was further examined, by production of an assortment of transgenic lineages that express each of the HBV gene products under the control of the native viral regulatory elements or liver specific cellular promoters.

Transgenic mice have been produced in which the envelope coding region was controlled either by the native HBV regulatory elements, the inducible liver-specific mouse metallothionein promoter, or the constitutively active mouse albumin promoter. In these studies, it was shown that the middle and major envelope proteins assemble into small 22 nm spherical particles that bud into the endoplasmic reticulum (ER) and are rapidly secreted by the cell (Chisari et al., 1986; Chisari et al., 1987). In contrast, the HBV large envelope protein assembles into long; branching, filamentous HBsAg particles that become trapped in the ER and are not secreted (Chisari et al., 1986; Chisari et al., 1987). It was subsequently shown that the progressive accumulation of these subviral filamentous particles leads to a dramatic expansion of the ER in the hepatocyte, eventually causing ultrastructural and
histologic changes that are characteristic of the ground glass hepatocytes found in the liver of chronically infected patients with integrated HBV DNA (Gerber et al., 1974b; Gerber et al., 1974a).

To examine factors that influence the intracellular localisation of nucleocapsid proteins and particles in the primary hepatocyte in vivo, transgenic mice that express the HBV core and precore proteins under the transcriptional control of the liver specific mouse major urinary protein (MUP) promoter were produced. In these studies it was learned that the pre-core protein is strictly secreted into the blood as HBeAg and that it is not detectable within any compartment in the hepatocyte by immuno-histochemical techniques.

There are many difficulties involved with the study of native human HBV proteins in transgenic animals, not least of which are the theoretical problems of having highly host specific viral proteins in a foreign environment, but the mouse model also suffers from the lack of ccc DNA presenting a practical problem when investigating viral clearance; as it is the cccDNA that is most resist to antiviral treatments. In, addition untransfected naïve mouse hepatocytes cannot be infected by HBV, so the spread by cell-to-cell transmission is not mimicked, and cannot be investigated. As such, animal models of HBV have been found to be highly effective and relatively simple to use, with one of the most valuable being DHBV.

1.1.11.4. Ducks

Experimental transmission of DHBV has provided an excellent system for in vivo studies of virus transmission, organ tropism, and dissemination in ducks (Mason et al., 1983; Omata et al., 1984; Freiman et al., 1988a). The cultivation of the virus in primary duck hepatocytes has been a very useful tool for studying replication and the effect of antiviral agents.

1.2. Duck Hepatitis B Virus

1.2.1. Discovery and Historical Aspects

Studies in both Chinese Pekin ducks, and American Pekin ducks (which were originally imported into America from China in the early $19^{\text {th }}$ Century) demonstrated the presence of a virus with similar morphology, genetic organisation and hepatotropism to human HBV (Mason et al., 1980).

1.2.2. Duck Breeds

The host range for DHBV is relatively restricted. DHBV was initially detected in the serum of Pekin ducks (Anas domesticus) from mainland China (Zhou et al., 1980), followed by
commercial flocks of Pekin crossbred ducks in the USA, Australia, and Europe, as well as, other duck breeds (Indian Runner, and Khaki Campbell) (Mason et al., 1980; Cova et al., 1985; Freiman and Cossart, 1986). The Pekin duck originated in China, and was introduced into other parts of the world towards the late $19^{\text {th }}$ century. DHBV has also been isolated from domestic geese (Anser domesticus), wild mallards (Anas platyrynchos), maned ducks (Chenonetta jubata), and other species of wild duck (Cova et al., 1986; Dixon et al., 1989). However there are distinct genotypes associated with the different duck species.

1.2.3. DHBV Infection in Nature

DHBV appears to be highly endemic in non-captive ducks from many parts of the world such as China, France, and Australia (Dixon et al., 1989). Very high levels are also found in some commercial flocks in the USA ($\sim 60 \%$) (Cova et al., 1985; Marion et al., 1991), and Australia (up to 70\%) (Freiman and Cossart, 1986).

Observations of duck HCC from Qidong, appeared to be more prevalent in domestic brown ducks, than Pekin ducks, so it was suspected that the brown duck was more susceptible to liver disease (Yokosuka et al., 1985). Further comparison of duck HCC in Qidong, and Shanghai, (which have similar carrier rates) showed that they had high and low rates of HCC respectively. The HCC rates correlate with the level of human liver cancer in the two areas, which indicates some form of environmental factors ($\mathrm{Gu}, 1992$) possibly toxin ingestion (Carnaghan, 1965).

The X gene in orthohepadnaviruses, encodes a multifunctional protein that can regulate cellular signalling pathways, interact with cellular transcription factors, and induce hepatocellular oncogenesis (Lee et al., 2002; Shamay et al., 2002; Kim and Seong, 2003). The effect of these diverse activities on HBV life cycle remains unclear, and while the X protein is not absolutely essential for HBV replication or maturation in transgenic mice, it can enhance viral replication by activating viral gene expression (Xu et al., 2002). Interestingly, variations in the production of antibodies to X have been associated with various outcomes (Stemler et al., 1990; Vitvitski-Trepo et al., 1990).

The avihepadnaviruses differ from the orthohepadnaviruses in the lack of an obvious X gene, lack of stable integration, and low levels of HCC. There has long been speculation on the existence of an incomplete ORF in DHBV that may be an analogue of the mammalian X gene (Kay et al., 1985; Feitelson, 1986). Until recently it was thought that DHBV was unable to express such a protein, but it is apparently able to do so from a hidden ORF (Chang et al., 2001), and has similar activities to the mammalian X protein (Schuster et al., 2002). The lack of integration into the host genome, may be another important factor in the low

HCC rate, as metastasis is often associated with the viral genome being incorporated into an oncogenic gene which is then either improperly regulated or increases its oncogenic potential. However, this property is more of an advantage for the study of persistence and clearance since it avoids consequences of viral DNA incorporated in the hepatocyte genome. For instance, the lack of integration has been u sed to determine the half life of c ccDNA (Civitico and Locarnini, 1994), and whether the cccDNA infects the stem cells of the liver or if it is diluted when the hepatocytes divide.

1.2.4. Virion Structure of DHBV

The whole infectious virion is a 40 nm sphere, which is composed of an envelope of lipid and viral proteins surrounding an 27 nm inner core structure which appears to be covered in spike-like projections (Marion et al., 1983a; Marion and Robinson, 1983). Similar to human HBV, the serum of infected ducks contains non-infectious, pleomorphic, roughly spherical particles, which vary from $35-60 \mathrm{~nm}$ in diameter (Mason et al., 1980). However, in contrast to human HBV infection, no filamentous forms have been described for DHBV.

1.2.5. Replication of DHBV

The 3021-7bp DHBV genome, is composed of similar characteristics, arranged in the same manner as for other hepadnaviruses (Mason et al., 1980). It, however, differs from mammalian hepadnaviruses by containing only S, C and P ORFs, ie. it lacks an obvious X gene (Mandart et al., 1984), although, recently an analogue to the X protein has been found expressed from a hidden ORF (Chang et al., 2001). Despite this possible difference the replication cycle of Hepadnaviruses was first elucidated by use of the DHBV model (Summers and Mason, 1982).

As described in section 1.1.4.1 (p.5), the main features of the replication cycle are repair of the single stranded region producing the double stranded, cccDNA which serves as a template for the synthesis of the RNA pregenome. The RNA pregenome is reverse transcribed to produce the DNA minus strand which is copied to produce the DNA positive strand.

The complete minus strand of DNA is covalently bound to a protein at the 5^{\prime} end (MolnarKimber et al., 1983). Reverse transcription in hepadnaviruses is primed by the viral reverse transcriptase (protein priming) and requires the specific interaction between the RT and a viral RNA signal termed epsilon, which bears the specific template sequence for protein priming (Bartenschlager and Schaller, 1992). The product of protein priming is a short oligodeoxynucleotide, which represents the 5 ' end of the viral minus-strand DNA and is covalently attached to the RT (Lien et al., 1986). The protein and the oligonucleotide are
fundamental to the protein-primed initiation of reverse transcription in hepadnaviruses (Wang and $\mathrm{Hu}, 2002$).

The number of copies of cccDNA in each infected hepatocyte appears to vary in relation to the type of infection. It has been found that in congenitally infected ducks, each hepatocyte was estimated to contain 20 copies of cccDNA from six weeks to 2 years of age (Jilbert et al., 1992). While, in ducks experimentally infected at one-day of age it was found that hepatocytes contained at least $2000 \mathrm{vge} /$ cell during acute infection, and 550vge/cell in hepatocytes from a chronic infection (Freiman et al., 1988b).

1.2.5.1. Surface protein

The pre-S reading frame (position 693-1283) contains up to 6 in frame AUGs (start codons) (Mandart et al., 1984). Just as in HBV, the S reading frame (position 1284-1785) encodes the major envelope protein of 167 amino acids, with a molecular weight of approximately 17 kDa (Marion et al., 1983a).

Although only one major DHBV pre-S mRNA has been described, which according to ATG mutants (Schodel et al., 1991), initiates at the second AUG (nt 801), and translates into a 36 kDa preS protein (Buscher et al., 1985), several other minor species of preS protein ranging from $28-37 \mathrm{kDa}$ have been detected in serum, as well as livers, of infected ducks. Various workers have described two Pre-S1 proteins of 34 and 36 kDa (Feitelson et al., 1983; Marion et al., 1983a; Pugh et al., 1987) or 35 and 37 kDa (Schlicht et al., 1987a). Additional bands ranging in size from 23 to 35 kDa w ith predominant bands at 30 and 35 kDa have been reported (Wen et al., 1990). Similarly, additional bands have been found and referred to as Pre-S1 (37 kDa) and Pre-S2 (28 kDa) (Yokosuka et al., 1988). In some liver extracts the 28 kDa appears to be the major preS (Lambert et al., 1990; Chassot et al., 1993). Mutational analysis suggests that the 28 kDa protein may be generated by proteolysis of the 36 kDa protein, and not initiated from an internal start codon of the preS/S open reading frame (Fernholz et al., 1993b).

The confusion that arises from the all of these multiple bands may arise from our incomplete knowledge of how and where the DHBV proteins are translated into proteins. DHBV does not translate its proteins in the standard eukaryotic manner as it does not contain the well established Kozak sequences at the start of any of the ORF (Kozak, 1981; Kozak, 1987). Although the first AUG codon is not immediately preceded by a TATA box, which is normally associated with the start of translation, it does not however exclude, the full ORF from being translated.

The preS/S protein is myristilated at its N-terminus (Macrae et al., 1991), at a conserved sequence for all hepadnaviruses (Persing et al., 1987).

As with HBV, DHBV envelope proteins function as the entry receptor and contain neutralising epitopes, as such DHBV infected ducks permit the study of neutralisation mechanisms both in vitro (Pugh et al., 1987; Cheung et al., 1989; Lambert et al., 1990), and in vivo (Lambert et al., 1991a; Chassot et al., 1993).. Adult ducks repeatedly inoculated with DHBV remained non-viraemic, but developed neutralising antibodies to envelope proteins (Vickery et al., 1989). Similar experiments demonstrated that there may be a more frequent and extensive response to the L , than the S protein, during convalescence of infected ducks (Cheung et al., 1990). Other experiments in which rabbits were immunised with undenatured S particles (consisting of both S and preS antigen) the major immune response was directed against the preS determinants (Schlicht et al., 1987a). This data fits well with a computer prediction in which the preS region is hydrophilic, while the S region contains two hydrophobic regions (Lambert et al., 1990). It has been shown that polyclonal antiserum raised against the first 131aa of bacterially expressed preS protein abolished infectivity of DHBV in vivo (Lambert et al., 1991a). Thus it can be seen that the preS region of DHBV is very important in the infectivity and neutralisation of infection, because antibodies induce protection to DHBV infection. Similarly it has been shown for HBV that antibodies to preS1 or preS2 protect chimpanzees against infection (Itoh et al., 1986; Emini et al., 1989; Neurath et al., 1989).

The sequence of HBs and DHBs are described and compared in more detail in the Theoretical Modelling chapter (Chapter 6, p.150).

1.2.5.2. Polymerase protein

The polymerase ORF (position 170-2528) encodes the viral polymerase (Sprengel et al., 1985), which consists of several regions with specific functions (Fourel et al., 1987). The Terminal protein is a primer for initiation of transcription of the RNA pregenome (Bartenschlager and Schaller, 1988; Bosch et al., 1988), the Spacer, the Reverse Transcriptase is an enzyme that transcribes the first DNA strand from the terminal proteinprimed RNA pregenome, and the RNase H which is an enzyme that degrades the RNA pregenome as the DNA is produced (Summers and Mason, 1982; Radziwill et al., 1990).

The polymerase gene participates in several steps in the viral life cycle: packaging of viral RNA, providing the primer for synthesis of minus-strand DNA, synthesising minus-strand DNA from an RNA template and plus-strand DNA from a DNA template, and degrading viral RNA in RNA-DNA hybrids. Experimental evidence demonstrated that the RNA
packaging function could be uncoupled from DNA synthesis, however RT could not be separated from RNase H activities, as has been done with human hepatitis B virus. (Chang et al., 1990). The viability of a mutant with a large insertion (123 amino acids) upstream of the RT and RNase H domain indicates that the spacer region may act as a hinge separating parts of the polymerase protein implicated in priming and polymerisation (Chang et al., 1990).

1.2.5.3. Other DHBV proteins

The C reading frame (position 2518-412) codes for the core protein (Sprengel et al., 1985) with a molecular weight of approximately 35 kDa (Halpern et al., 1984; Yokosuka et al., 1988). C terminally truncated core proteins (30 and 33 kDa) similar to HBeAg have been detected in the sera of DHBV infected ducks (Schlicht et al., 1987a). The Pre-C region does not appear to be essential for genomic replication, core particle morphogenesis, intrahepatic virus spread (Chang et al., 1987; Schlicht et al., 1987a) or viraemia (Schlicht et al., 1987a). A DHBV X protein has been found to be expressed from a hidden ORF (Chang et al., 2001).

1.2.6. DHBV Infection

Day old hatchlings infected with high doses of DHBV (intravenously or intraperitoneally), have detectable antigen and DNA in scattered single hepatocytes within 24 hours of inoculation (Vickery and Cossart, 1996), while slightly lower doses progressively increase this period to several days (Jilbert et al., 1987a; Jilbert et al., 1988; Vickery and Cossart, 1996). In humans, the incubation period appears to be longer, with Human Hepatitis B Surface Antigen (HBsAg) only being detected 21-77 days after subcutaneous inoculation, with clinical symptoms 21-66 days later (Hoofnagle et al., 1978). Virus dose was found to be inversely related to the incubation period for both antigenaemia and clinical illness (Barker and Murray, 1972).

Histological inspection of persistent DHBV infection of ducks reveals milder hepatic inflammation than woodchucks, or ground squirrels. In ducks it ranges from no lesions (in congenitally infected ducks) to portal inflammation and necrosis (in experimentally infected ducks) (Omata et al., 1983; Marion et al., 1984; Omata et al., 1984; Uchida et al., 1988; Lambert et al., 1991b).

Suggestions that duck HCC may take longer to develop were possible considering the initial data which came from ducks 2-4 years old, while the lifespan of a duck may be considered 10 years. However, after 10 years of investigation, no HCC was reported outside of China (Marion et al., 1991), while in China, HCC has been reported in ducks which were no more than 3 years (Yokosuka et al., 1985), suggesting a role for carcinogenesis, duck genetic variability, or environmental factors.

The route of administration also has a large effect on the dose of hepadnaviruses required to initiate infection; intraperitoneal inoculation requires a much higher dose of virus than intravenous inoculation. For the intravenous route the number of genomes in an infectious dose has been reported as low as a single genome (Jilbert et al., 1996; Anderson et al., 1997), while for intraperitoneal inoculation, the virion must negotiate added biological barriers to reach and infect hepatocytes.

One of the main contributing factors of the decreased susceptibility may be the genetic adaptation of the wild DHBV strains to their natural host. It is well known that hepadnaviruses have a narrow host specificity (Ganem et al., 1982; Davis and Woolcock, 1986), which is attributed to the PreS receptor sequences of the various hepadnaviruses. These are distinctive between the hepadnaviruses and approximately cover the PreS portion of the Surface gene ($1-180 \mathrm{aa}$). Because the PreS sequence is considered to contain the virus attachment factor, the variation may well cause this specificity.

Inoculating a range of avian species with DHBV from domestic duck species shows reduced susceptibility in parallel with phylogenetic relationships. A standard inoculum of DHBV was able to produce viraemia in all of 107 2-5 day old Pekin ducklings, while no evidence of viral infection was detectable in 2-5 day old chicks, or Muscovy ducklings, while two domestic geese breeds were infectable with delayed viraemia (Marion et al., 1987). Snow goose HBV was found to infect not only Pekin duck hepatocytes but also chicken hepatoma cells (Chang et al., 1999). Stork HBV infected primary Pekin duck hepatocytes very inefficiently which suggests a restricted host range, similar to other hepadnaviruses (Pult et al., 2001b).

Crane HBV is closely related to DHBV, even though phylogenetically, cranes are very distant from geese and ducks and are most closely related to herons and storks. Naturally occurring hepadnaviruses in the last two species are highly divergent in sequence from DHBV and do not infect ducks or do so only marginally. In contrast, CHBV from crane sera and recombinant CHBV produced from LMH cells infected primary duck hepatocytes almost as efficiently as DHBV did. This experimental data implies either the use of at least similar, if not the same entry pathways and receptors by DHBV and CHBV, unusual host/virus adaptation mechanisms, or divergent evolution of the host genomes and cellular components required for virus propagation (Prassolov et al., 2003).

There is an absence of a detectable viraemia in Muscovy ducklings experimentally infected with DHBV; one of the reasons for this may be that the Muscovy hepatocytes have decreased susceptibility to infection with DHBV in vitro. As it has been shown in vitro that

DHBV is initially able to infect approximately 1% of Muscovy duck hepatocytes in culture, and that virus spread does occur so that by 3 weeks approximately $5-10 \%$ of hepatocytes are infected (Pugh and Simmons, 1994). An interesting feature to be observed from the Muscovy duck hepatocyte experiment was that although the cells had decreased susceptibility, their rate of DHBV replication was similar (Pugh and Simmons, 1994).

The ID_{50} of different DHBV isolates is relatively consistent in a particular duck variety. For instance, Japanese ducks can be infected with a Chinese strain of DHBV (Omata et al., 1984). Ducks from one hatchery can be infected by different strains of DHBV with similar outcomes (Lenhoff et al., 1998).

Hepadnaviruses originally isolated from species of wild ducks (geese, mallard, maned duck) generally have reduced infectivity in domestic ducks routinely used for experimentation, but many are still susceptible. A Duck Hepatitis B Virus isolated from wild mallards in France was able to produce a persistent infection in not only mallards, but also Pekin ducklings (Cova et al., 1986). Grey heron virus was found to be able to infect Pekin ducks when injected as a cloned genome (Wildner et al., 1991). It has also bee shown that a particular strain of a hepadnavirus obtained from Mallards produces higher serum titres than a normal strain in Mallards, then it also produced higher serum titres in Pekin ducks (Lambert et al., 1991b).

Human (Will et al., 1982), ground squirrel (Seeger et al., 1984b), and duck (Sprengel et al., 1984) hepadnavirus infections have been produced from the direct injection of DNA into the liver of susceptible hosts. For Hepadnavirus infection a full length genome has been either ligated to itself to form a covalently closed circular genome (similar to the bacterial plasmid) (Will et al., 1985), or has been ligated to another full length genome to produce a dimer (Will et al., 1983), of which a head to tail dimer will contain at least one complete copy of every gene. Both methods have produced patent infections with complete viral particles and the same pathogenesis as natural infection.

HBV infection from direct DNA injection has been achieved in chimpanzees (Will et al., 1982; Will et al., 1983). Both dimerised and closed circular DNA of three different serotypes was injected intravenously, directly into the liver, and intramuscularly. Seven weeks after inoculation, the chimpanzee developed a typical, mild self-limited, acute hepatitis. HBsAg (subtype ay) appeared a week before an increase in aspartate aminotransferase (AST) and alanine aminotransferase (ALT), followed by the first signs of the typical histology of a mild, a cute hepatitis in liver biopsies. R esolving hepatitis w as eventually seen with no further pathological changes. HBeAg appeared two weeks after

HBsAg, with both disappearing three weeks later. Development of $\mathrm{HBsAg}, \mathrm{HBeAg}$, and HBcAg antibodies was detected with usual kinetics. The HBV DNA detected in both liver and serum during the acute phase of infection, differed significantly (by Southern blot), from the material injected, which indicates selective replication.

Direct DNA injection has not only been shown to produce DHBV infection in vitro (Yang and Summers, 1998), but also in vivo recombination (Sprengel et al., 1987). Again both dimerised and closed circular DNA were used, and both produced an infection. In the DHBV experiment, three different sequences were all separately injected into ducklings, to determine if their sequence variation would affect the infection produced by the different types. After 3-5 weeks most of the injected ducklings showed, low-titre and transient viraemia, by dot blot. R estriction a nalysis showed that the produced virus had the same pattern as the injected cloned material, and as the naturally occurring DHBV on which the cloned material was produced. The infectivity of the virus was tested by injection of the serum into new ducklings, which also became infected, proving that the clone produced virus was replication competent. Dot and southern blot were used to analyse the liver and showed that cloned DHBV DNA had initiated a normal replicative cycle, with the morphology of the natural and cloned viruses indistinguishable.

Further analysis of the early stages of DHBV infection have shown that the conversion of relaxed circular (RC) DNA into covalently closed circular (ccc) DNA does not require the viral polymerase. Primary duck heptocytes from embryonated eggs, were infected with DHBV and at the same time treated with a potent inhibitor of the viral polymerase. It was determined, by selective PCR, that c ccDNA w as produced in the a bsence of a e effective viral polymerase, indicating that the genome repair of the viral DNA is or can at least be undertaken by the hosts natural polymerases (Kock and Schlicht, 1993). This has also been correlated with cell cycle progression (Borel et al., 2001) and cccDNA is reduced when a cell cycle blocker is used (Turin et al., 1996). This would allow the production of an infection simply by somehow inserting into cells the complete DHBV viral genome, as has been done (Sprengel et al., 1984; Sprengel et al., 1987).

1.2.7. Humoral Immune Responses to DHBV

Humoral responses to DHBV infection were initially performed by testing sera of naturally, or experimentally infected ducks for anti-core and anti-surface antibodies. Anti-core antibodies were present in the sera of experimentally infected ducks as detected in the serum by immunohistochemical assays to detect DHBV antigens in infected duck tissues (Halpern et al., 1987). Anti-surface antibodies were detected by indirect radioimmunoassay (RIA), using polyclonal anti-sera from rabbits, which were immunised with purified DHBsAg
particles, and by in vivo neutralisation assays (Vickery et al., 1989). These studies demonstrated that 6 week old ducks (which were inoculated 4 times) produced detectable anti-surface antibodies by RIA at 17 days post-inoculation (pi). Further investigations determined that serum, which had been collected 40 days pi (after 3 doses of DHBV), was able to neutralise DHBV infection in 1 day old ducklings. RIA assays have also been used to study serological responses to DHBV infection in ducks of different ages (Qiao et al., 1990) where variable levels of a nti-surface antibodies were detected in 20-40\% of ducks inoculated with DHBV from 3 to 8 weeks of age. Further studies employed in vitro DHBV neutralisation assays in primary duck hepatocytes that detected neutralising activity in the serum of adult ducks inoculated with DHBV from as early as 7 days pi (Jilbert et al., 1992).

ELISAs have been developed for detection of anti-surface and anti-core antibodies (Jilbert et al., 1996; Vickery and Cossart, 1996; Jilbert et al., 1998; Triyatni et al., 1998) using antiDHBV PreS/S monoclonal antibodies (Pugh et al., 1995) and recombinant DHBcAg (Jilbert et al., 1992). However these assays do not distinguish between $\operatorname{IgM}, \operatorname{IgY}$, and $\operatorname{IgY}(\Delta \mathrm{Fc})$ responses, because only anti-duck Ig is detected. IgY and $\operatorname{IgY}(\Delta \mathrm{Fc})$ were previously referred to as IgG (Zimmerman et al., 1971).

In congenitally infected ducks anti-core antibodies can be detected in the serum from ~ 80 days posthatch, while experimentally infected ducks with persistent DHBV infection, anticore antibodies are detected from as early as 7-10 days $p i$ and persist throughout the course of infection (Vickery and Cossart, 1996; Jilbert et al., 1998). These ducks do not resolve their DHBV infection and do not develop anti-DHBs antibodies.

Humoral immune responses to DHBV infection have been investigated in adolescent ducks; increasing the virus inoculum, decreased the time required for antibodies to become detectable (Vickery and Cossart, 1996; Jilbert et al., 1998). The increased inoculum also saw an increase in anti-core Ab titre, which reflected by a more extensive infection of the liver. Ducks receiving lower doses of DHBV had lower levels of anti-core Ab, and no detectable replication in liver tissue collected between days $7-12$ pi. Two of three, 4 month old ducks, which received the larger dose of DHBV ($2 \times 10^{11} \mathrm{vge}$), were able to resolve their infection, and developed anti-surface, and anti-core Ab , despite extensive viral replication in the liver, histological evidence of moderate to severe acute hepatitis on days $9-12$ pi., and detectable viraemia early after infection (Jilbert et al., 1998).

In humans with persistent HBV infection, liver damage is associated with HBeAg in serum (Niederau et al., 1996), as such it is disappointing that assays for the DHBeAg and antiDHBe antibodies are not currently available.

Several studies have defined neutralising a nd non-neutralising e pitopes within the DHBV $\mathrm{preS} / \mathrm{S}$ and S proteins. These have been generally mapped within the preS domain (Cheung et al., 1989; Cheung et al., 1990; Lambert et al., 1990; Yuasa et al., 1991), with only a single epitope mapped to the S domain (Cheung et al., 1990; Pugh et al., 1995).

1.2.7.1. Antibody Mapping of Neutralising Epitopes

The preS epitopes involved in DHBV neutralisation have been investigated by the use of murine monoclonal antibodies (Marion et al., 1983a; Chassot et al., 1993). Work based on in vitro competitive binding assays, identified three non-overlapping preS epitopes (Cheung et al., 1989). Using peptide mapping and a preS/S fusion protein, three epitopes on the DHBV preS sequence were localised to aa 58-66, 91-99, and 139-145 (Yuasa et al., 1991). Although the third epitope was recognised by a neutralising MAb, it does not appear to be directly involved in viral neutralisation. It has since been demonstrated that antibodies against a preS peptide lacking this epitope were able to completely neutralise DHBV infectivity (Lambert et al., 1991a), and that mutants carrying deletions (aa 138-141, and 143147) within this epitope were still infectious (Li et al., 1989). Other preS epitopes have been recognised by MAb 900 and SD20, which reduce infectivity in vivo by 90% and 75% respectively (Lambert et al., 1990; Chassot et al., 1993). Subsequently, it was found that Mab900 mapped to residues $82-95$, which is the same section that protective polyclonal serum recognised (Lambert et al., 1991a), and MAb SD20 mapped slightly downstream (aa100-107). One of epitopes previously described aa91-99 is located between MAb 900 and SD20 (Yuasa et al., 1991). Using single amino acid replacement, it has been demonstrated that W88 is a key reside for binding MAb 900, since it could not be replaced by any other naturally occurring amino acids in Pepscan analysis (Chassot et al., 1993). This is in accordance with other studies that have described the importance of aromatic residues in the antigenic determinants of peptides (Appel et al., 1990).

The preS domain containing the three neutralisation epitopes has been shown to be highly conserved among all cloned DHBV isolates (Lambert et al., 1990), and to be immunodominant in infected ducks (Cheung et al., 1990). This area is located within the main antigenic and hydrophilic site (a275-100) of DHBV, as computer model predicted (Lambert et al., 1990).

The identification of preS epitopes had not demonstrated that these epitopes were involved in the viral attachment to hepatocyte receptors. However, in other studies it has been demonstrated that the preS sequence aa81-120 was important for the in vitro binding of DHBV to hepatocyte membranes. This would suggest that some of the previously described neutralisation epitopes (Cheung et al., 1989; Lambert et al., 1990; Yuasa et al., 1991;

Chassot et al., 1993) could be part of the cell receptor binding site on DHBV since they appear to be the same region.

1.2.8. CMI Responses to DHBV Infection

Neutralising antibodies play an important role in recovery from infection with lytic viruses by containing the spread of infection in the infected host, facilitating the removal and destruction of viral particles, and prevent re-infection by blocking the ability of virus particles to bind to receptors on target cells. While the cell mediated immune (CMI) responses are most important in the elimination of viruses that do not have a lytic cycle in the host and for any tissue damage seen during either transient and/or persistent infection.

The demonstration that HBV specific CTLs were present in HBV infected patients was consistent with this view. As such, it has been assumed that viral clearance was mediated chiefly by destruction of infected cells by viral antigen specific CTLs (Chisari et al., 1989) and that pathogenesis of persistent hepadnavirus infection is also m ediated by these cells (Chisari and Ferrari, 1995). Recent studies in HBV transgenic mice provided some experimental evidence for this view, but it was evident that a non-cytolytic mechanism was more important in clearance of hepadnavirus infection from the liver, a nd several in vivo studies of transient DHBV and WHV infections (Jilbert et al., 1992; Kajino et al., 1994; Jilbert et al., 1998) have also suggested a non-cytolytic mechanism. At the peak of infection, $>95 \%$ of hepatocytes were shown to support viral replication, but infections were rapidly cleared from the liver, anti-surface antibodies became detectable in serum, and although viral replication was accompanied by mild to moderate mononuclear cell infiltration of the liver and increases in levels of liver enzymes in the serum, histological evidence of significant cell regeneration was not observed.

Although there have been several studies on humoral immunity to DHBV, there are very few studies examining cellular immunity. The development of an antigen specific blastogenesis assay for DHBV (Vickery et al., 1997), opened an opportunity to observe the natural CMI response in the various outcomes of infection. This lymphoblastogenesis a ssay has been successfully utilised to examine the group cellular immune responses to native DHBV surface (DHBsAg) and core (DHBcAg) antigens in uninfected, acute or chronically infected, and immune ducks (Vickery et al., 1999a), as well as the kinetics of CMI response in ducks that have differing outcomes to DHBV infection (Vickery et al., 1999b).

The CMI response correlates well with the outcome of infection (Table 6, p.43) (Vickery et al., 1999a). The study indicated that the CMI response in immune animals differs from
acute, and chronically infected ducks, and that the response of peripheral cells is different to that of splenic cells (Vickery et al., 1999a).

Antigen	Cells		Controls	Immune	Acute
Chronic					
DHBsAg	PBMC	-	+++	++	+
	SMC	-	+++	+	+
DHBcAg	PBMC	-	++	+	+
	SMC	-	++	--	+

Table 6. Relative lymphoblastic CMI response related to outcome of DHBV infection.
The kinetics of the PBMC CMI response to DHBsAg and DHBcAg was determined using the lymphoblastogenesis assay for both infected and immune ducks. Acutely infected ducks that failed to clear the infection also failed to develop a significant cellular immune response to both antigens, while ducks with chronic infection acquired as neonates or as the result of the failure to clear acute infection had an increasing cellular immune response over time. Immune ducks demonstrated significant cellular responses following challenge with DHBV irrespective of the level of their responses prior to challenge. There was however, a reduction in the response of their PBMC over a 4-week-period postchallenge (Vickery et al., 1999b).

The results of the above investigations into the CMI response of ducks to DHBV by Vickery et. al, (Vickery et al., 1999a; Vickery et al., 1999b) have been reproduced and confirmed by (Tang et al., 2001).

1.2.9. Cytokine Response

IFN- γ is one of the most important mediators in the immune system. It is known to exert inhibitory effects on viral replication (Farrar and Schreiber, 1993; Boehm et al., 1997). Recently, duck interferon gamma (DuIFN- γ) cDNA was cloned from a phytohaemaglutininstimulated duck spleen cDNA library screened using a chicken IFN- γ (ChIFN- γ) cDNA probe (Kaiser et al., 1998; Schultz and Chisari, 1999; Huang et al., 2001). Curiously, duck IFN- α (DuIFN- α) was initially found to have little cross-reactivity when tested on chicken cells, although it shows 50% identity to its chicken homologue at the amino acid level (Ziegler and Joklik, 1981a; Schultz et al., 1995; Huang et al., 2001). Later, functional homology between chicken and duck lymphokines produced by PHA stimulated lymphocytes was observed in an in vitro proliferation assay system (Bertram et al., 1997), and pre-treatment of chicken cells with COS-derived DuIFN- $\gamma 15 \mathrm{~h}$ prior to challenge with VSV induced a significant degree of antiviral activity (Schultz and Chisari, 1999). Experimental investigations have revealed that IFN- γ inhibits the synthesis of progeny DHBV cccDNA in vitro (Schultz and Chisari, 1999), while in combination with TNF- α
suppresses the liver-specific expression of HBV mRNA in transgenic mice (Guidotti et al., 1994).

1.3. The Avian Immune System

1.3.1. Introduction

Despite the importance of the duck as an economic species, and its ability to act as a reservoir for several important agents, such as Influenza A virus (Shortridge, 1982), information on the duck immune system is relatively simplistic. In comparison, the chicken is well studied. However, more recently, the intricacies of the duck immune system are starting to be unravelled.

1.3.2. Duck Lymphoid Organs and Ontogeny

The avian and the mammalian lymphoid systems developed from a common reptilian past with approximately 160 million years of evolutionary dichotomy (Welty and Baptista, 1988). Similar to mammals, the avian immune system is divided into the humoral and cellular arms.

The bursa of Fabricius (bursa) is a primary lymphoid organ that is associated with the humoral immune response, and was crucial to the discovery of the two arms of the immune system; the humoral and cellular (Cooper et al., 1966a). Mammals lack a comparable anatomical structure but maintain a similar division of humoral and cellular components.

In the chicken the bursa is a spherical lymphoepithelial organ that is formed by a dorsal diverticulum of the cloacal proctoderm at day 4 of incubation and attains a maximum size 10 weeks post hatch (Kollias, 1986). In the duck it is long and cylindrical in shape and attached to the cloaca by a narrow stalk. The bursa contains 10,000 follicles that are colonised by 2-3 stem cells which proliferate until 2-4 weeks post-hatching (Lydyard et al., 1976; Olah and Glick, 1978). By day 12 of incubation, the B-cells are capable of secreting antibodies (initially IgM). By the 20th day of incubation a more specific and diversified immunoglobulin, IgG is produced (Kollias, 1986). In the chicken, the bursa provides the proper environment for immunoglobulin gene rearrangement and diversification (McCormack et al., 1991). The post bursal stem cells do not require the bursal environment for differentiation and are responsible for the maintenance of the B-cell pool following bursal involution (Toivanen et al., 1974). The resulting postbursal stem cells leave the bursa for secondary lymphoid tissues from 3 weeks post hatching and are responsible for the maintenance of the B-cell repertoire following bursal involution at 5-6 months of age (Toivanen and Toivanen, 1987).

The importance of the bursa in humoral immunity has been shown by manipulation. Early surgical bursectomy (Huang and Dreyer, 1978) or chemical ablation by testosterone treatment (Meyer et al., 1959), results in B lymphocytes with a very restricted diversity. Post-hatch cyclophosphamide treatment of ducks lead to lymphoid follicle loss, and a lack of specific antibody to Salmonella pullorum (Hashimoto and Sugimura, 1976a).

Bone marrow develops between days 8-9 of incubation and may also be a derivative of cells from the yolk sack membrane (Kollias, 1986). Post bursal stem cells migrate to the bone marrow and form a life long source of B-cells.

In the duck the thymus consists of multiple lobes (3-5) on either side of the neck, close to the jugular vein, extending from the pharyngeal region to the thoracic inlet and occasionally into the thoracic cavity. In both the duck and the chicken, the thymus consists of an outer cortex containing a large number of thymic lymphoblasts, an inner cortex containing smaller lymphocytes and a pale medulla with fewer lymphocytes. The thymus is essential for the maturation of T lymphocytes, the principal cells of cellular immunity (Sharma, 1991).

Development of the thymus in birds begins at day 5 of incubation as an outgrowth of the pharyngeal pouches (Kendall, 1980). Precursor cells originating from blood-borne lymphoblasts within the yolk sac, enter the thymus from 7 days of incubation (Jotereau et al., 1980), differentiate into T-lymphocytes within the special microenvironment of the thymus. The T-lymphocytes that are incapable of recognising self-antigen undergo extensive proliferation within the thymus independently of antigenic stimulation. Successive waves of thymocyte precursors enter the thymus and undergo both positive and negative clonal selection. The T-cells then populate the lymphoid organs. The thymus reaches its maximum size by 4 months of age, it then involutes with most of the thymic parenchyma bring replaced by a dipose tissue (Kollias, 1986). H owever, the lymphoid tissue that remains retains the same function.

The important role of the avian thymus is readily shown by neonatal thymectomy, which results in loss of cell-mediated responses such as delayed hypersensitivity reactions and skin allograft rejection (Cooper et al., 1966a).

Although lymphoid stem cells develop in the cloacal bursa and the thymus, none of these organs contain pure populations of T- and B-cells (Kollias, 1986). During embryonic development the spleen is involved in granulopoiesis and erythropoiesis. The principal role of the spleen is blood filtration and antibody production post hatch. Active proliferation of immunologically competent B-cells occurs in the germinal centres where there is close
contact between B-cells and dendritic reticular cells (Toivanen and Toivanen, 1987). Germinal centres appear approximately 10 days post hatch and contain dendritic reticulum cells, macrophages and B and T lymphocytes (Vainio et al., 1987). Plasma cell are found adjacent to the germinal centres.

Shortly after hatching these immature post-bursal precursor cells from the bursa infiltrate the spleen and thereafter settle in bone marrow and thymus (Toivanen et al., 1974). Although stem or precursor lymphoid cells infiltrate the spleen, they do not mature sufficiently enough to reconstitute the B-cell lineage in cyclophosphamide bursectomised embryonic or day old recipients (Toivanen et al., 1972; Toivanen et al., 1976).

Maturation of the immune system to competently mount sufficient c ell-mediated immune responses in chickens occurs at one to three weeks after hatching. One day old chicks are capable of antibody production to certain antigens, however a complete adult level response with immunoglobulin production is usually not observed until six weeks of age (Kollias, 1986).

Histocompatibility genes control the diversity of immune function. In ducks, limited knowledge of this gene, combined with the unavailability of inbred duck strains, has limited research into DHBV immunology. In avian species the B-histocompatibility locus is responsible for controlling such functions as skin graft rejection, graft versus host reactions, complement p roduction, leukocyte a ntigen p roduction, resistance to certain viral diseases, tumour r egression of lymphoid leukosis and regulation of autoimmune reactions (Kollias, 1986).

1.3.3. Lymphocytes

Lymphocytes are the most frequently occurring leukocyte in avian blood (approximately 60 66%) (Soliman et al., 1966). Of the lymphocytes in the chicken spleen, approximately 55% are T-cells, which are located in the red pulp, while B-cells are located in the germinal centres (Boyd and Ward, 1978; Ellsworth and Ellsworth, 1981). The B-cells are principally located in the Haderian gland, the bursa, and the caecal tonsil, while the T-cells predominantly located in the thymus (Albini and Wick, 1974).

Monoclonal antibodies have differentiated chicken T lymphocytes into functionally diverse subpopulations. Remarkable similarity has been revealed between the surface antigens of T lymphocytes of chickens and mammals (Sharma, 1991). The chicken T-cell markers include CD2, CD1, CD5, CD4 and CD8 (Cooper et al., 1991). As in mammals, thymic T-cells express both CD4 and CD8 molecules, while more mature cells in the peripheral lymphoid
tissues express either CD4 or CD8 molecules. CD4 cells have helper cell functions and CD8 cells have cytotoxic activity (Chen et al., 1988).

The normal location of the two cell types (CD4, and CD8) is tabulated from various investigators (Table 7, p.47) (Lillehoj, 1991; Hala et al., 1992). At one month post hatch approximately 80% of thymocytes are CD4+ (Lillehoj, 1991).

Chicken	CD4+	CD8+
Blood	$40-45 \%$	15%
Spleen	$10-20 \%$	50%

Table 7. Normal location of CD4, and CD8 cells in the Chicken.

Surface membrane antigen receptors on chicken cells appear as CD3/TcR (antigen-specific T-cell receptor) complex. Three types of CD3 positive cells have been recognised, two correspond to their mammalian counterparts: TcR-1 (mammalian TcR-gamma/delta), and TcR-2, (mammalian TcR-alpha/beta) (Chen et al., 1988; Cihak et al., 1988; Sowder et al., 1988), while the third sublinage is unique to birds (Chen et al., 1989), and may be a subfamily with TcR-2 (Char et al., 1990).

The T-cell occupies a central role in antigen-dependent immunoregulation in mammals, and appears to have a similar function in the chicken. The major functional T-cells are helper or inducer T-cells, suppressor T-cells, cytotoxic T-cells and delayed type hypersensitivity Tcells. The recognition of antigen by avian T-cells is restricted to the MHC-II for cells of delayed hypersensitivity (Ewert et al., 1984; Vainio and Lassila, 1989), graft rejection (Cooper et al., 1966a), and B-cell help (Ratcliffe et al., 1987). In reticuloendotheliosis virus, cytotoxic T-cells recognise MHC-I antigens (Maccubbin and Schierman, 1986).

1.3.3.1. Other Avian Leukocytes

Other cells important to the cellular immune response include macrophages, dendritic cells, natural killer cells and effector cells of antibody dependent cellular cytotoxicity (Qureshi et al., 2000). Important mediators of non-specific immunity include thrombocytes and heterophils.

Avian macrophages are derived from bone marrow stem cells, which differentiate into monoblasts, promonocytes and monocytes. The monocytes are continually released from the bone marrow into the blood stream where they remain for 3 to 5 days before migrating into the tissues to become macrophages. Macrophage phagocytic function appears as early as day 12 (in liver) or 16 (in spleens) of chicken embryonic development (Jeurissen and Janse,
1989). The tissue macrophage has a limited capacity to divide during its lifetime of around 5 weeks (Powell, 1987).

The natural killer cell system is well developed in birds (Fleischer, 1980) and its role against some poultry diseases is very important (Lillehoj, 1991). The NK cell activity increases in activity with age (Sharma, 1981). Chicken NK cells are thermolabile, non-phagocytic, and non-adherent to the plastic normally utilised for tissue culture (Sharma and Coulson, 1979). They lack immunological memory and are not MHC restricted (Petit et al., 1985; Carman et al., 1986; Ernst et al., 1986).

1.3.4. The Immune Response

Development of an immune response requires interactions between T- and B-lymphocytes in which the macrophage cooperates as an initiator and a moderator. Interactions between B and T lymphocytes and macrophages are essential for development of humoral immunity to thymus-dependent antigens that involve both physical contact and interleukins (Powell, 1987).

In mammals activated macrophages present antigen in conjunction with MHC determinants to antigen specific T-cells and secrete $\mathrm{IL}-1$, which serves as a signal to activate T helper cells. The activated T-cells then secrete IL-2 and other factors eg gamma interferon which mediates a variety of functions critical to the progression of the immune response.

In chickens, a dherent spleen cells, peritoneal macrophages, blood monocytes and cells of macrophage lineage may be stimulated in vitro to secrete IL-1 by mitogens (Vainio and Ratcliffe, 1984), and bacterial endotoxins in the presence of suboptimal doses of mitogens (Sharma, 1991). In the chicken, the binding of IL-1 to the receptor on T-cells initiates production of IL-2, IL-3 and the IL-2 receptor (Hagiwara et al., 1987) and results in clonal expansion.

Chicken macrophages were also shown to be required for in vitro IgM antibody production by chicken B-cells (Evans and Ivanyi, 1975), and mitogen presentation (Vainio and Ratcliffe, 1984) and subsequent in vitro transformation of peripheral duck lymphocytes to mitogens (Higgins, 1992). Induction of cell mediated immunity in avian T-cells requires MHC-II antigen presentation by macrophages (Ewert et al., 1984; Vainio and Lassila, 1989).

Antibody dependent cell mediated cytotoxicity requires antibody (IgG) to attach to antigen displayed on cell surfaces via its Fab portion and to an effector cell (macrophage) by its Fc
portion (Powell, 1987). This type of cytotoxicity has been reported in the chicken (Fleischer, 1980), and in the duck (Bubenik et al., 1970).

Lymphokines are important in the regulation and differentiation of cells responding to antigens as well as in inflammatory and physiological interactions between immune and nonimmune cells (Lillehoj, 1991; Lowenthal et al., 2000).

1.3.5. Immunoglobulins

Ducks have three types of serum immunoglobulins, $\operatorname{IgM}, \operatorname{IgG}$, and IgY, plus an immunoglobulin of bile and intestinal secretions, IgA (Zimmerman et al., 1971; Higgins and Warr, 1993; Magor et al., 1998).

Immunoglobulins a re composed of Constant (C) a nd V ariable (V) regions. B irds are the most primitive extant species to have recognisable orthologues of three mammalian C region genes. Three C region genes (μ-, v-, and α-chain) are in translocus arrangement (Du Pasquier, 1993), with the μ-chain gene located adjacent to, and downstream of, the J_{H} region (Kitao et al., 1996). Studies at the cDNA level indicate that the α-chain gene of birds, despite having four exons, is homologous to the α-chain gene of mammals (Mansikka, 1992; Magor et al., 1998). The v-chain gene of birds shares structural features of γ - and ε-chain gene of mammals, and was probably the evolutionary precursor of both these genes (Parvari et al., 1988; Warr et al., 1995).

IgY antigenically resembles an $\mathrm{F}(\mathrm{ab})_{2}$ fragment of IgG . Lacking an Fc portion IgY is unable to fix complement or bind to Fc receptors (Zimmerman et al., 1971). Originally described as IgX (Ng and Higgins, 1986; Higgins et al., 1987), and more accurately defined as IgA (Magor et al., 1998), and studies revealed physical and antigenic similarities between duck bile immunoglobulin (IgX) and serum IgM. Differential screening was used to clone, from a duck spleen library, the cDNA encoding the heavy (H) chains of IgM and the IgX, which was identified as IgA, occurring in duck secretions (Magor et al., 1998). Several chains of the C region were related closest to chicken regions. The previously noted antigenic overlap of duck IgM and IgA, was found to be in the C4 domains. IgA was first detected in ducks 26 days of age, and its appearance was unrelated to serum levels of IgG or $\operatorname{IgM}(\mathrm{Ng}$ and Higgins, 1986). It has since been determined that messenger RNA for IgA is most abundant in the respiratory, alimentary and reproductive tracts, and first appears around 14 days of age and reaches adult levels of expression only at 35-50 days (Magor et al., 1998). As such, the duck has a mucosal immune system, which utilises IgA; however, the delayed expression and secretion of IgA explains the susceptibility of ducklings to mucosal pathogens.

1.3.6. Effects of Bursectomy

Bursectomy is the removal of the bursa of Fabricius, which has several important implications for the duck. In birds, B-lymphocytes undergo maturation in the bursa, and its role in B-cell differentiation makes it essential for expansion and creation of the antibody repertoire (Jalkanen et al., 1984). Dipping of eggs in testosterone (Glick, 1970), or injection of embryos with 19-Nortestosterone (Meyer et al., 1959), by day 5 of incubation prevented development of the bursa. In the murine system depletion of the B-cells can be achieved by γ-irradiation, and reconstitution by allograph transplant of T-cells, or destruction of B-cells by injection of anti-B-cell antibodies. In the duck, surgical removal of the bursa at embryonic day 18 (three days prior to hatch) completely abrogates B-cells, while bursectomy at hatch may not completely remove all traces of B-cells, it does significantly reduce the Bcell population.

Splenic lymphoid tissue has been shown to be bursa dependent in chickens that have been neonatally surgically or chemically bursectomised with colchicine or cyclophosphamide. Chemical bursectomy (cyclophosphamide treatment) of ducks post hatch severely decreased the immune response to Salmonella pullorum (Hashimoto and Sugimura, 1976a). The reduced antibody titre was related to the reduction in the number of bursal follicles (Sato and Glick, 1970). Similar in ovo surgically bursectomised birds lacked specific responses to nine different antigens (Jalkanen et al., 1984) despite the production of $\operatorname{IgM}, \mathrm{Ig} G$ and IgA. Prebursal stem cells enter the bursa between 8 and 12 days of embryonic development but have also been found in the spleen by day 14 and the bone marrow by day 16 (Back et al., 1973), suggesting these sites might function to produce Ig, but as they failed to undergo maturation in the bursa they lack Ab specificity. This phenomenon also resembles human patients, which suffer antibody deficiencies but have a normal level of serum immunoglobulin (Rothbach et al., 1979).

After bursectomy, germinal centre formation in the spleen and caecal tonsils are significantly decreased (Jalkanen et al., 1984), the amount of white pulp tissue and its compartments, periellipsoidal lymphoid tissue and periarteriolar lymphoid tissue were also decreased (Romppanen and Sorvari, 1981). The periellipsoid lymphoid tissue contains splenic dendritic cells which trap and process antigen and then migrate to the periarteriolar lymphatic sheath where they associate with T and B -cells. Bursectomy at hatch produced extensive necrosis of the periellipsoid tissue and the dendritic cells failed to act as splenic messengers (Olah et al., 1985), perhaps explaining the reduction in plasma cells after antigen injection reported by others (White and Timbury, 1973). However, no difference was found in body weight, weight of the thymus or spleen in ducks hormonally bursectomised by testosterone at day 5 of incubation (Sugimura et al., 1975).

Immunoglobulin switching from IgM to IgG (Andersson et al., 1978), and the amount of immunoglobulin secreting precursors and B-lymphocytes are thought to be bursa dependant (Lawton et al., 1975). Surgical bursectomy of chickens at 60 hours of incubation has a marked negative effect on the frequency of cytoplasmic IgA positive cells (c-IgA ${ }^{+}$) with minimal changes to the frequency of $\mathrm{c}-\mathrm{IgG}^{+}$and $\mathrm{c}-\mathrm{IgM}^{+}$cells (Veromaa et al., 1987). In contrast, interaction with T-cell systems are needed (Romppanen and Sorvari, 1981), showing that heavy chain class switching is not bursa dependant (Jalkanen et al., 1984). However, bursectomised birds can reject skin grafts and develop normal cell mediated immunity.

In ducks, surgical bursectomy at 1 day post hatch resulted in a significant decrease in antibody responses to viral antigens (Di et al., 1987). Successful bursectomies were verified by immunising ducks with bovine serum albumin (BSA) or Newcastle disease virus (NDV), which resulted in lower a ntibody titres. A summary of the effect of bursectomy on cell numbers is tabulated (Table 8, p.51) (Wick et al., 1975).

Immunomodulation	Peripheral blood			
B-cell	T-cell	B-cell	Tpleen	
untreated	22	58	36	55
Bursectomised	1	89	18	81
untreated	22	58	36	55
Thymectomy 2 lobes left	38	57	65	31
Thymectomy 1 lobe left	76	1	71	15
Complete thymectomy	-	-	84	6

Table 8. Effect of Bursectomy or Thymectomy on immune cell composition in the Chicken.
Values given are percentage. Top: In ova bursectomised chickens (day 18). Bottom: Neonatal thymectomised chickens and sublethal radiation at 7 days.

1.3.7. Effects of Thymectomy

Both birds a nd mammals have developed dual immune systems however only birds have separate organs for B and T-cell maturation which are the bursa of Fabricius and thymus respectively. While the association between the bursa and the humoral response in chickens was crucial to the discovery of the duality of the immune response, the early experiments in mice were pivotal to determining the role of T lymphocytes in the cell mediated immune response.

In these experiments thymectomy in mice resulted in diminished CMI specific responses including graft rejection. Due to loss of T- and B-cell collaboration, the mice were a lso limited in their capacity to generate primary antibody responses to certain antigens, such as sheep erythrocytes. The peripheral lymphoid tissues became depleted. The cortex of lymph
nodes, including the germinal centres and medulla with its foci of plasma cells remained unaffected yet a significant depopulation of the deep cortex or tertiary nodules occurred. Within the spleen, the white pulp around the central arterials became deficient of lymphocytes (White and Timbury, 1973).

Similarly the important role of the avian thymus is shown by the loss of the CMI responses following thymectomy. Thymectomised chickens fail to reject skin allografts (Warner and Szenberg, 1962; Aspinall et al., 1963; Cooper et al., 1965; Cooper et al., 1966a). Furthermore, there was a rough correlation between graft rejection time and the number of circulating lymphocytes (Warner and Szenberg, 1962). Chickens lost their ability to mount a delayed hypersensitivity reaction (Jankovic and Isakovic, 1963; Cooper et al., 1966a). The development of the chicken peripheral lymphatic organs, such as the spleen and caecal tonsil were shown to be dependent on the thymus (Cooper et al., 1965; Cooper et al., 1966a) and neonatal thymectomy plus irradiation significantly depleted numbers of lymphocytes in the white pulp of the spleen. One group of researchers (Hoshi and Mori, 1973) found that Xradiation of chicken thymuses resulted in loss of germinal centres while another found no significant difference (Cooper et al., 1966a). A summary of the effect of thymectomy on cell numbers is tabulated (Table 8, p.51) (Wick et al., 1975).

The effect of thymectomy on the antibody response is more variable. In chickens neonatal thymectomy may result in loss of antibody production to thymus-dependent antigens (Bhogal et al., 1984), without any change in serum antibody levels (Baba et al., 1978). Thymectomy with irradiation resulted in significantly decreased total leukocyte counts (Cooper et al., 1966a). Thymectomy significantly reduced the white blood cell count (Warner and Szenberg, 1962; Sugimura et al., 1975).

In ducks no significant change in body weight (Sugimura et al., 1975), weight of bursa or spleen was detected between control ducks and ducks surgically thymectomised at hatch (with or without X radiation) (Sugimura et al., 1975; Hashimoto and Sugimura, 1976b; Hashimoto and Sugimura, 1976a). However, $1 / 5$ ducks thymectomised without radiation showed a decrease in the size of bursal lymphoid follicles (Sugimura et al., 1975). Similar to the chicken, thymectomy in ducks results in prolonged survival of skin grafts (Vojtiskova et al., 1963).

Impairment of T-cell responses in individuals with DiGeorge's syndrome (congenital athymic aplasia), acquired immunodeficiency syndrome, leukaemia, or immunosuppressive therapy, enhances the frequency and severity of viral infections (White and Timbury, 1973). In most instances, some impairment of antibody response is observed (White and Timbury,
1973). Even with adoptive transfer of hyperimmune immunoglobulin, viral infection can be moderated but not cleared.

1.4. Prevention and treatment of Hepadnaviral infections

Evidence from contacts of HBV infected individuals led to the recognition that antibodies to HBsAg were protective, and that HBsAg possibly could be used as a vaccine (Almeida and Waterson, 1975). This concept was investigated in both people and chimpanzees, using both heat inactivated and formalin fixed sAg preparations (Soulier et al., 1972; Krugman, 1975; Prince et al., 1975).

The original vaccines were derived from purified proteins that had been extracted from the plasma of chronic carriers of HBV and inactivated with formalin (McAuliffe et al., 1980). Eventually, HBsAg purified from transformed bacteria became available (Charnay et al., 1980). Several vaccine trials were undertaken (Bergamini et al., 1983; Coutinho et al., 1983; Desmyter et al., 1983), and finally a subunit protein vaccine incorporating the ' a ' determinant became widely available.

The protective properties of specific anti-HBs immunoglobulin were tested for prevention of HBV transmission (Courouce-Pauty et al., 1975), and would become the basis of Hyperimmune Hepatitis B Immune Globulin (HBIG) therapy. HBIG was originally derived from human serum of patients that contained anti-HBsAg antibodies. HBIG was, and still is, used for prophylactic treatment of HBV. If administered soon after exposure, either perinatally, or by needlestick injury, the HBsAg antibodies effectively neutralise the virions, preventing establishment of infection. Original trials in Taiwan demonstrated its efficacy in preventing perinatal transmission of HBV infection (Beasley et al., 1983).

Finally combination therapy of protein based vaccine and simultaneous HBIG administration was shown to be effective at providing immediate followed by longer term protection, which was useful for immunocompromised patients (Goudeau et al., 1983), and prevention of mother to baby transmission.

Several years after the commercial HBV protein vaccine became available, escape mutants were discovered. Escape mutants are not neutralised by the antibodies produced to the normal ' a ' determinant. A Japanese child born to an HBeAg-positive carrier mother received both HBIG and protein vaccine, but developed chronic hepatitis by 12 months of age. Unusual serology was noticed: HBsAg , anti- HBs and HBeAg were all positive. The
nucleotide sequences of the S region of HBV DNA obtained from the patient, the mother and a HBeAg -positive brother were completely identical except for one nucleotide at position 587, giving an amino acid change: Gly to Arg at position 145 of the major HBs protein (Fujii et al., 1992). Several other studies produced similar findings (Okamoto et al., 1992; Waters et al., 1992; Yamamoto et al., 1994; Carman, 1997; Chakravarty et al., 2002; Shizuma et al., 2003). The findings that such escape mutants are infectious (Okamoto et al., 1992), is evidence that although the ' a ' determinant is immunodominant, it is not absolutely required for infection.

The discovery of vaccine escape mutants lead to the consideration of inducing an immune response to the viral cell receptor, considered to be contained within the preS region. Escape mutations would then be very much restricted, as the virus would need to mutate away from the immune response but still be able to bind the cell. Experiments using rabbit antisera to the preS protein were shown to protect chimpanzees (Neurath et al., 1986b; Neurath et al., 1989), similar results were obtained with preS2 region Ab (Emini et al., 1989).

The use of protein vaccines has generally been considered unsuccessful in the treatment of already chronic infections; a form of tolerance prevents a successful immune response form being generated. However, there is some evidence that after protein vaccination of chronic patients without cirrhosis, they may eliminate DNA from the serum ($\sim 20 \%, 3 / 14$ patients), or significantly decrease replication ($\sim 28 \%, 4 / 14$ patients), within 3 months of the final inoculation (Pol et al., 1993), but no long term data has been produced. This has lead to the use of both antiviral and immune boosting treatments.

Nucleoside analogues originally developed for use with retroviral infections were tested because hepadnaviruses also utilise an RT step in replication. Several drugs (eg. Lamivudine, a defovir, a nd entecavir), all with varying degrees of c ytotoxicity, have been trialled with various degrees of success (Bain et al., 1996; Foster et al., 2003; Le Guerhier et al., 2003; Okamoto et al., 2003; Yu and Keeffe, 2003). The drawback of antiviral therapy is quick development of resistance (Fischer et al., 2001a), and combination therapy is now being evaluated (Soemohardjo, 2003).

IFN is now being successfully used to treat HBV (Bahar et al., 2003; Yalcin et al., 2003). It was shown to u pregulate expression of viral peptides in conjunction with MHC-1, which leads to elimination and recovery from infection (Grandits et al., 1991).

Most of the currently available treatments were originally investigated in the animal models of HBV (Zoulim et al., 2002). DHBV has been used for the testing of most of the antivirals
(Sherker et al., 1986; Tsiquaye et al., 1986; Zuckerman, 1987; Wang et al., 1995), as well as combination therapy (Chen et al., 2001), and immune modulating therapies are starting to be tested as well (Huang et al., 2001).

The major drawbacks of current HBV therapy are the relatively low effectiveness, the high cost, and toxicity of the treatments used. Successful treatment of persistent infection is measured not by complete eradication of the virus from the liver of the individual, but rather seroconversion and removal of virus from the bloodstream. Even so, current treatments can be 12 months, or longer, followed by rebound soon after cessation of treatment. Even in combination therapy utilising IFN and an antiviral for twelve months, only 45% (15/33) had decreased DNA levels, while IFN monotherapy had an even lower effect with only 19% (3/16) of patients responding with lower DNA levels (Yalcin et al., 2003). Even so, there was no significant difference in rates of sustained suppression between the 2 groups at the end of follow-up (Yalcin et al., 2003). As such, therapeutic treatment currently has much to improve upon, and even partially effective treatments, may be used in combination to produce a better outcome. A therapeutic vaccine based on low cost DNA vaccine technology would offer a realistic alternative for the many established carriers who are resident in the poorer countries of the world.

1.5. DNA VACCINATION

Genetic immunisation is a novel vaccine strategy that combines many of the most desirable characteristics of standard vaccine approaches. Although traditional live-attenuated or killed vaccines have proven their effectiveness in the eradication, or minimisation of many microbial infections, current safety requirements and specific pathogens require vaccine actions of significant complexity that will overcome current technological inadequacies.

Increasingly, successful vaccination against many infectious diseases, particularly viral infections, including HSV, and HIV, but also parasitic infections such as malaria, will require the induction of strong, specific CMI, particularly cytotoxic CD8+ T-cell (CTL) responses. Such CTLs may respond early after infection by recognising specific peptides presented in MHC-I molecules on the cell surface, but may also secrete a variety of soluble factors that help to control infection.

Improved vaccination strategies for humoral immunity, especially at mucosal surfaces where most pathogens are first encountered is also desired. Such improvements would not only benefit responses against pathogens, but also for the treatment of both allergic and autoimmune diseases.

1.5.1. Historical Aspects

Since the inception of DNA vaccine technology in the early 1950s, (Stasney et al., 1950), a period of about three decades elapsed before it was demonstrated that the administration of recombinant DNA into an animal resulted in the expression of the protein encoded by that plasmid (Will et al., 1982; Dubensky et al., 1984; Wolff et al., 1990; Gheit et al., 2002). It was subsequently shown that the expression of foreign protein from applied DNA elicited a humoral immune response that was specific for the encoded antigen, (Tang et al., 1992). These results were furthered by observations that immunisation with a DNA plasmid could protect mice against a lethal influenza challenge (Fynan et al., 1993; Ulmer et al., 1993). Moreover, Wang et al., demonstrated that a plasmid vaccine could induce protective immune responses against HIV-1 antigen-expressing targets (Wang et al., 1994). Altogether, the implications of these findings served to establish genetic immunisation as an approach to induce a n i mmune reaction a gainst infectious a gents. S ince then, it has been shown that DNA vaccines induce strong immune responses against proteins from infectious agents such as malaria (Wang et al., 1998), tuberculosis (TB) (Lowrie et al., 1997), rabies virus (Xiang et al., 1994), HSV (Kriesel et al., 1996), Ebola virus (Xu et al., 1998), HIV (Boyer et al., 1999), and hepatitis B virus (Davis et al., 1994; Tacket et al., 1999).

The strategy of most of these investigations is relatively simple: A DNA plasmid encoding a desired protein is injected into the muscle or skin of an animal, where it enters host cells and directs the synthesis of its polypeptide antigen. Once the plasmid-antigen is processed and presented by transfected host cells, a cellular and humoral immune response against the antigen is provoked. The plasmid's immunogenicity may be enhanced in part by the presence of repeated immunostimulatory motifs that are recognised by the immune system as foreign. The DNA vector is bacterial-derived and equipped with eukaryotic or viral promoter/enhancer transcription elements that direct the high-efficiency transcription of the plasmid-antigen within the nucleus of the host cell.

Increased knowledge of the roles of different T-cell subsets in protection against infectious diseases, and pathology associated with allergic responses has allowed a rational approach to the development of vaccines against these conditions. The application of such knowledge has facilitated the design of vaccination strategies capable of selectively stimulating different classes of immune responses optimal for the treatment of a variety of infectious, and allergic diseases.

Such a vaccine has the possibility of breaking the tolerance that is found in persistent infections. It is thought that if important antigens are delivered to the host by a new pathway that it may be possible to develop an immune response that may clear the infection.

1.5.2. DNA Vaccine advantages

Genetic immunisation exhibits many advantages over traditional vaccines that use liveattenuated or killed pathogen, proteins, or synthetic peptides. Humoral and cellular-immune responses can be achieved in animal models at extremely low dosages of DNA vaccine. Unlike immunisation with proteins, the intracellular synthesis of plasmid protein results in antigen likely to be folded in its native conformation, correctly glycosylated, a nd normal posttranslational modifications to occur similar to natural infection, favouring the production of relevant neutralising antibodies. In addition, they are safer conceptually than live vaccines because of the inability to revert into virulence, and they do not require the use of toxic chemical inactivation methods. C urrent techniques in molecular biology e nable the easy manipulation of plasmid vectors, which are able to accommodate virtually any gene or its derivatives. At relatively low costs, these recombinant plasmids can be produced at large scale in bacteria and isolated simply using commercially available reagents. DNA vaccines are also considered more temperature stable than conventional vaccines, boasting a longer shelf life. This is of significance because it would impact the requirement of the cold chain, a costly and difficult issue, and thereby enhance vaccine storage and mobility.

1.5.2.1. DNA vaccine safety

The risks associated with DNA plasmid inoculation are currently being assessed in many animal models and Phase I clinical trials. The suspicions that plasmid DNA may cause tumourgenesis, integrate into the host chromosome (Nichols et al., 1995), or induce antiDNA autoimmune responses in the host (Donnelly et al., 1997) raise concern, yet little evidence has substantiated the occurrence of these phenomenon, particularly in humans or primate experimental models. Mutation rates occurring from the integration of plasmid DNA into the host chromosome have been calculated in animal studies and found to be much lower than the spontaneous mutation rate for mammalian genomes (Nichols et al., 1995; Martin et al., 1999). A study conducted in fish has also confirmed that the administration of DNA plasmids can elicit immunity effectively without the initiation of nucleic-acid autoimmunity or host chromosome integration (Kanellos et al., 1999).

Administration of HIV-1 DNA plasmid constructs has been described as safe and welltolerated in adult, pregnant, and infant chimpanzees, with the induction of humoral and cellular immunity (Bagarazzi et al., 1998). The first human trial of a therapeutic DNA vaccine for HIV-1 infection generated reassuring results, in fifteen patients, vaccine administration induced no local or systemic reactions, no anti-DNA antibody, nor muscleenzyme elevations, but increased cytotoxic T lymphocyte activity against HIV surface antigen-bearing targets (MacGregor et al., 1998; Ugen et al., 1998; Boyer et al., 1999). These results suggest that the inoculation of plasmid DNA into animals and humans is
considerably safe and an effective means of generating immune responses against plasmidencoded antigen.

In another clinical study, twenty healthy adult volunteers demonstrated that intramuscular (im) administration of a malaria DNA vaccine of up to three doses of $2500 \mu \mathrm{~g}$ plasmid DNA was well tolerated, thereby expanding the safety limits of genetic vaccine dosages in humans (Le et al., 2000).

1.5.3. DNA Vaccination in Alternative Immunotherapies

Another facet of DNA vaccine technology focuses on immune related diseases, such as autoimmunity and cancer (Chen et al., 1999). By manipulating the balance of T helper (Th) 1 and 2 lymphocytes using DNA plasmid immunisation, many of the pathogenic qualities of autoimmune disease may be potentially addressed. Protective immunity against an experimental autoimmune encephalomyelitis (EAE) model has been induced by using a DNA vaccination method that favours the induction of a Th2-type response (Ramshaw et al., 1997). Conversely, suppression of a Th2 response by the induction of a Th1-type response against allergens associated in an IgE antibody-mediated allergic response has been shown to neutralise the dysregulated production of Th2 cytokines and diminish allergic reactions (Raz et al., 1996). These findings demonstrate the functional utility of DNA vaccines in the realm of autoimmune therapy.

1.5.4. DNA Vaccine Delivery

The most popular method of administering DNA vaccines has been parenterally, which includes needle injection into muscle or skin and gas-powered, DNA-covered particle bombardment using a "gene-gun". Although these forms of delivery require either a needle or ballistic device to mechanically force plasmid through or into the skin, non-invasive routes of delivery have been demonstrated, they entail the topical application of pure DNA plasmid to skin or mucosa. Each one of these methods of delivery introduces vaccine to distinct areas of immune surveillance and therefore primes the immune system in distinct ways.

The use of a needle to inject an aqueous solution of DNA plasmid into tissue is a relatively simple a nd effective way of vaccine a dministration, resulting in the direct transfection of some cells and the uptake by others in the vicinity of the inserted needle. Injection intradermally (id) results in the transfection of mainly skin fibroblasts and keratinocytes, whereas intramuscular (im) injection transfects largely myocytes. In gene-gun-mediated delivery, gold particles covered with plasmid DNA are propelled by helium or CO_{2} pressure into tissue (Williams et al., 1991; Tang et al., 1992). This method of delivery is very
effective at driving plasmid into the cells of the epidermis and requires far less DNA than needle injection.

Non-invasive methods of plasmid delivery involve the topical application of plasmid to the skin or mucosa. The induction of antigen-specific immune responses has been shown following the application of a plasmid solution to various mucosal surfaces including intranasal (Klavinskis et al., 1999), oral (Etchart et al., 1997), and intravaginal (Bagarazzi et al., 1998). It has also been shown that the topical application of DNA plasmid directly to the skin transfects the s uperficial layers of the epidermis surrounding hair follicles, g enerates reporter-gene activity at levels comparable to that of id injection (Yu et al., 1999), is dependent on the presence of normal hair follicles, and induces antigen-specific immune responses that display Th2 features (Fan et al., 1999). This technique of delivery may be ideal for targeting genes to the skin for the treatment of cutaneous disorders.

The immunity resulting from each of these methods of delivery are determined usually by the mode and site of plasmid administration. Forms of delivery targeting the skin, including id injection, gene-gun b ombardment, a nd topical a pplication, have been shown to e licit a humoral response primarily, characterised by a rapid p rogression to a Th2-type response, associated with the production of an IgA and IgG1 antibody isotype (Boyle et al., 1997). Conversely, injection into muscle results in the induction of a strong cellular-mediated response, or Th1 type, that primes antigen-specific CTLs and is associated with the production of IgG2a antibody (Sin et al., 1999a).

The extent of protection elicited by these various modes of vaccine administration is determined most likely by the network of a ntigen-presenting cells (APCs) residing in the target tissue and the quantity of DNA plasmids administered (Takashima and Morita, 1999). APCs are more prevalent in the skin than in muscle, so less plasmid DNA may be required to induce a response of similar magnitude. However, the quality of the immune responses suggests that the APCs transfected in these different locations are functionally distinct and therefore prime the immune response uniquely. These particular features suggest further evaluation of each compartment could be important for future vaccine design.

1.5.5. Direct DNA Injection

Direct DNA injection has been previously shown to produce expression of proteins in animals and humans. Usually the injected material consists of the sequence for the protein of interest coupled to a promoter or enhancer and some sort of expression system. The method usually utilised to obtain the large quantities of DNA required for injection is the insertion of viral DNA into bacteria. T his has several consequences: 1) firstly the DNA
itself is slightly different from that found in eukaryotic cells in that it is methylated, which may change the physical shape of the DNA and thus affect regulatory properties, 2) the actual structure of the DNA is different because usually a linear strand of DNA is inserted into a plasmid, a nd this lacks many of the physical characteristics of virion encapsidated DHBV DNA, such as the covalently linked terminal protein, and the nick-gap structure, and 3) it is devoid of associated proteins which may affect packaging. The mechanism of uptake of the DNA in direct injection is unknown, but may be some remnant of the prokaryotic plasmid transfer system. Apart from the usual injection to express a single protein, multiple proteins and even complete viral particles have been expressed. Direct DNA injection in relation to the hepadnaviruses has been described in 1.2.6 (p.36).

1.5.6. Mechanism of Immune Induction

DNA vaccines elicit strong and long-lasting humoral and cell-mediated immune responses in many animal models. Although there has been much speculation regarding the complex mechanisms underlying DNA vaccine function, these have yet to be fully elucidated. Progressively dissecting the cellular and immunological processes of genetic immunisation that are responsible for the induction of immune responses will lead ultimately to further advances in this technology. At the cellular level, the efficacy of DNA vaccination depends on the interaction between their polypeptide products and the two major groups of cells that mediate immunity: lymphocytes and APCs.

The intracellular transcription and translation of plasmid DNA are thought to mimic the replication of a virus during infection. Both systems must traverse the plasma membrane initially and require the cellular machinery to translate their encoded proteins. In transfected nonhaematopoietic cells, intracellularly synthesised plasmid product is processed effectively via the transporters associated with antigen processing (TAP)-dependent, endogenousprocessing pathway. In addition, soluble or secreted vaccine antigen may be phagocytosed by APCs and gain entry into the major histocompatibility complex (MHC) class II exogenous pathway. So, like the viral proteins produced by a replicating virus, plasmid product may gain access to both pathways simultaneously, affecting its presentability to the immune system.

1.5.6.1. Manipulating Immune Responses

Vaccines that elicit prophylactic immune responses are specifically constructed and administered to provide optimal protection at the sites most frequently encountering pathogens. For example, effective mucosal immunity is desired when protecting against infectious agents transmitted by aerosols, such as TB. Ideally, vaccine regimens must be tailored to neutralise pathogens before the onset of infection and disease. Because
experiments in primates suggest that DNA vaccines alone may not be as immunogenic in these species as they are in rodents (Wang et al., 1998), their co-administration with genetic and chemical adjuvants may bolster their immunogenicity and efficacy. In addition, the use of particular adjuvants can help direct the magnitude and direction of prophylactic and therapeutic immune response that target microorganisms at pivotal points within the pathogen/host interaction.

Many strategies involving the combination of DNA immunisation and adjuvants are under investigation. Specifically, vaccine immunogenicity can be modulated by factors that attract professional APCs, provide additional co-stimulation, or heighten the uptake of plasmid DNA. In these ways, the direction of an immune response can be guided toward a cellmediated, Th1-type response or an antibody-mediated, Th2-type response, driven by the differential expression of cytokine patterns by their distinctive T-cell subsets (O'Garra and Murphy, 1994).

1.5.6.1.1. Cytokine-encoding plasmids

Cytokines are molecules secreted by bone marrow-derived cells that regulate the intensity and duration of the immune response in lymphocytes and other immune cells expressing a particular cytokine receptor.

In 1993, Raz et al., inoculated a group of mice with several DNA plasmids encoding cytokines in an effort to improve the approaches of somatic gene therapy involving the direct administration of cytokines (Raz et al., 1993). Expression of these plasmids was observed to induce systemic immunological effects characteristic of the specific functions of the respective cytokine proteins and also could enhance the immune response to an exogenous antigen that was delivered at a different site.

The co-administration of DNA vaccines with cytokine-encoding adjuvants can manipulate the differentiation and expansion of Th1 and Th2 cytokine producers effectively.

Protection from certain viruses or tumours w ould require the production of Th1-inducing cytokines, such as IL-2, IL-12, IL-15, IL-18, and IFN- γ, which promote cell-mediated immune responses. Plasmid co-delivery of $\operatorname{IL}-12$ with DNA immunogens can drive the immune responses toward a Th1 phenotype and increase the survival rate of mice, following a lethal dose challenge in an HSV-2 model (Sin et al., 1999b).

Conversely, protection from antibody-mediated pathologies may benefit from the use of Th2-inducing cytokines such as IL-4, IL-5, and IL-10 to drive humoral immunity. It has
been demonstrated that increased levels of antigen-specific antibodies were associated with co-delivery of IL-4, IL-10, with a HIV-1 and SIV construct (Kim et al., 1999).

Another method of enhancing the immune response using genetic cytokine adjuvants is the expansion of the professional APC pool, particularly DCs and macrophages, at the site of inoculation. The expression of the haematopoietic growth factor granulocyte-macrophage colony-stimulating factor (GM-CSF) and a DNA vaccine have been shown to boost the activity of B- and T-helper cells toward rabies glycoprotein and improves the protective response against a lethal challenge (Xiang and Ertl, 1995). This boosting effect of plasmidexpressed GM-CSF on immune responses against vaccine antigen has also been seen for HIV-1 env protein constructs (Kim et al., 2000).

1.5.7. CD8+ CTL Restricted Responses

CD8+ CTLs are known to be important mediators of protective immunity against many viruses, intracellular bacteria, parasites, and tumours (Kasper et al., 1995; Zerrahn et al., 1996; Ahmed et al., 2001; Blaszczyk-Thurin et al., 2002; McShane et al., 2002; Nakamura et al., 2003; Tsuji and Zavala, 2003). Such CTLs are normally restricted to recognition of peptides associated with MHC-I molecules and usually recognise small epitopes of 8-10aa in length, which are predominantly derived from the target antigen by proteasome-dependent proteolytic processing.

Artificial recombinant vaccines comprising multiple contiguous minimal CTL MHC-I epitopes can induce CTL responses to each epitope within the polytope construct. This strategy uses relatively small recombinant constructs to induce multiple CTL responses that target multiple antigens and/or induce CTLs that are restricted by multiple HLA alleles (Thomson et al., 1995; Thomson et al., 1998b).

Various proteases may be involved in breaking down the polytope gene product into the individual CTL epitopes, which will be subsequently associated and expressed with MHC-I molecules. It has been shown that e ach e pitope within several polytope constructs made without spacers or linkers may be processed and presented, suggesting that proteolysis and transport of epitopes into the cellular ER is governed primarily by the intrinsic qualities of the epitope rather than by flanking sequences (Niedermann et al., 1996).

1.5.8. MHC-II Restricted T-Cell Responses

The ability of polytope constructs to deliver class II MHC-restricted CD4+ T-cell epitopes was demonstrated by delivering Th -cell epitopes in a polytope construct in a recombinant Vaccinia Virus (An and Whitton, 1997). Whilst this approach was successful, the simple
inclusion of MHC class II-restricted epitopes in cytoplasmically expressed polytopes delivered by non-lytic vectors, such as DNA vaccines or FowlPoxVirus (FPV), is unlikely to reliably generate effective CD4+ T-cell responses in vivo (Thomson et al., 1998a). However, ER targeting is an alternate strategy which does not involve cell lysis or antigen secretion, but which significantly enhances the presentation of contiguous class II-restricted T-cell epitopes from polytope constructs, has been shown to be effective (Thomson et al., 1998a).

1.5.8.1. ER-targeted Antigen Processing

ER-targeted antigen processing differs from normal DNA vaccination, by the addition of an ER signal sequence to the beginning of the polytope gene. This allows the polytope proteins to access MHC-II processing compartments in antigen-presenting cells directly from the cytoplasm, thus significantly enhancing CD4+ T-cell responses generated by polytope DNA vaccines. An important design requirement, however, is that the synthetic protein be long enough to delay its removal from the ER following translation (Thomson et al., 1998a). The delay in the ER appears to be important for efficient epitope presentation and may enhance autophagy or may allow unfolded polytope proteins to compete with the invariant chain for binding to newly synthesised class II MHC antigens. Interestingly, the presentation of CD4 T-cell epitopes from polytope proteins does not appear to require the natural flanking sequences, nor does presentation seem to suffer from a lack of conformation-dependent processing signals (Thomson et al., 1998a).

DNA vaccination appears to be the most practically useful, and effective method of therapeutic vaccination that is capable of stimulating a specific cellular immune response. Such stimulation is particularly useful for persistent infections, such as the hepadnaviruses, in which persistence has been shown to be associated with a poor cellular immune response. Because there is evidence of non-cytopathic clearance of hepadnavirus infected cells, a therapeutic vaccine that stimulates the cellular arm of the immune response could be designed to eliminate the infection without excessive side effects, such as massive cell death which would lead to hepatitis.

1.6. EXPERIMENTAL OUTLINE

The aims of this study were to identify critical virus and host factors responsible for recovery from hepadnavirus infection, and to use this knowledge to design and test a therapeutic vaccine, which would promote virus clearance in carriers.

Many factors contribute to the outcome of hepadnavirus infection. These factors can be assigned to two competing forces; the host response aimed at elimination of the virus; and the viral evasion of the response. The host response is complex and multifactorial, which is difficult to analyse in the outbred populations, which are the only available models of hepadnaviral infections. Although the general pathway of the production of specific antibodies and CMI response is well known, it is now clear that the ultimate outcome is also dependent on the exact epitope specificity and effector capability of the response. One of the reasons that one individual develops a different response from another can be explained by the various HLA types. In many infections, not just viral, it has been shown that individuals with certain HLA types either fare better or worse against certain organisms because they either accentuate a specific response or have a repertoire defect that the infecting organism can exploit. Many microorganisms have developed specific mechanisms to facilitate evasion of the host response. These include mutation to alter the immune target antigens, alteration in display of host recognition antigens required for antigen presentation to the immune system, and inhibition of cytokine production.

The host and virus responses are a delicately balanced association, so that relatively minor changes to either may modulate the outcome of infection.

An initial experiment was undertaken to establish experimental conditions that reliably lead to persistent or acute DHBV infection, and to develop a method for nucleotide sequencing which would be useful in studies of specific virus variants.

Viruses from ducks with different patterns of DHBV infection were sequenced and a particular nucleotide substitution in the pre-S gene was identified in association with virus clearance. These strains were cloned and shown to lack infectivity.

Published sequences for the S region of DHBV were analysed to identify epitopes with physiochemical properties associated with antigenicity and these predictions were tested by comparing lymphocyte proliferation responses to short synthetic peptides in naïve, inoculated, and immune ducks.

Seven immunologically dominant peptides were selected for incorporation into a DNA vaccine. The DNA vaccine was tested for immunogenicity and efficacy in ducklings. It was found to confer protective immunity through generation of neutralising antibody and caused a $2 \log _{10}$ reduction in the level of viraemia in established carrier ducks.

To ascertain the relative roles of humoral and cellular immunity the ability of ducks to clear DHBV was investigated after neonatal bursectomy or thymectomy.

The experimental procedures undertaken during this investigation are summarised (Figure 6 p.65).

Figure 6. Experimental Outline.
Yellow boxes indicate experimental procedures.

On the basis of these experiments a model of DHBV clearance is proposed in which innate cellular immunity causes prolonged down regulation of virus replication, during which a neutralising humoral response develops and prevents ongoing infection of hepatocytes. This model would be consistent with observation on patients treated with antiviral drugs and interferon, and can be tested experimentally in the duck model.

2. METHODS AND MATERIALS

2.1. General Experimental Procedures

General experimental procedures were used throughout the project, while more specific protocols are described in their own sections.

2.1.1. Experimental Animals

Pekin-Aylesbury crossbred ducks were purchased as unsexed male and female day-old ducklings from a commercial supplier that was known to have DHBV negative flocks (Ingham, Tahmoor, Australia). All ducks were, however, bled on day of hatch to determine if any DHBV DNA was present. No duck was ever found to have DHBV DNA in their serum on day of hatch.

All ducks were housed in specially designed animal house facilities, and were looked after and fed by specially trained animal house attendants, who would monitor the animals on at least a daily basis, and inform the researchers of any slight deviation from normal behaviour. Researchers monitored the animals at least twice a week, although daily visits would normally be undertaken.

2.2. Specific Experimental Procedures

2.2.1. Extraction of Viral DNA

Viral DNA was extracted from liver and serum samples by a standard method of proteinase K digestion followed by purification using phenol and chloroform (Sambrook et al., 2001). If re-extraction was required for sequencing, then the Casas et al. method of digestion using guanidinium hydrochloride followed by glycogen facilitated, isopropanol precipitation was adapted for use (Casas et al., 1995).

Samples were extracted in groups of up to 24 , including one DHBV negative duck serum control and one DHBV positive duck serum control. The negative serum served as a control for contamination during the extraction procedure, as well as for the subsequent PCR assays.

Where possible, $50 \mu \mathrm{~L}$ of sample was extracted, if there was insufficient sample it was made up to $50 \mu \mathrm{~L}$ with PBS for extraction. All the extracted DNA was resuspended in the same volume of TE (0.1 mM EDTA, 10 mM Tris, pH 8.0) as the original serum sample volume. The pellet was resuspended at RT for approximately 1 h prior to use, or stored at $-20^{\circ} \mathrm{C}$.

2.2.1.1. Proteinase K / Phenol / Chloroform Extraction Method

The extraction buffer was made up as per Table 9 (p.67). An equal volume of buffer was added to serum, or for tissue extraction $275 \mu \mathrm{~L}$ of buffer was added to a small cube of liver ($3 \times 3 \times 3 \mathrm{~mm}$ or $\sim 27 \mu \mathrm{~L}$). It was then incubated overnight at $37^{\circ} \mathrm{C}$, or for 3 hrs at $65^{\circ} \mathrm{C}$.

Reagent	Concentration
Tris/HCL pH 7.5	50 mM
NaCl	150 mM
EDTA	2 mM
SDS	1%
Proteinase K	$1 \mathrm{mg} / \mathrm{mL}$

Table 9. Composition of Proteinase K Extraction Buffer.
A volume of phenol ($\mathrm{pH} 7.5-8.0$) equal to the total volume of digestion buffer and sample was added, mixed, and centrifuged at 15000 rpm for 3 mins in a bench microfuge. The supernatant was carefully removed and placed into a clean, labelled eppendorf. This step was repeated if necessary. A volume of phenol / chloroform ($1: 1 \mathrm{v} / \mathrm{v}$) equal to that of the supernatant was added, mixed, and again centrifuged at 15000 rpm for 3 mins . The supernatant was carefully removed and placed into a clean eppendorf. A volume of chloroform / isoamylalcohol (24/1) equal to that of the supernatant was added, mixed, and again centrifuged at 15000 rpm for 3 mins . The supernatant was carefully removed and placed into a clean eppendorf. A $1 / 10$ th volume of 3 M Sodium Acetate (pH 5.2) was added, then 2 volumes of cold ethanol was added, mixed and incubated at $-20^{\circ} \mathrm{C}$ overnight, or $70^{\circ} \mathrm{C}$ for 3 hrs . It was then centrifuged at 15000 rpm in a bench top centrifuge at $4^{\circ} \mathrm{C}$ for $20-$ 30 mins . The supernatant was aspirated and the pellet dried. A volume equal to that of the initial serum extracted, or $100 \mu \mathrm{~L}$ for liver, of TE $(0.1 \mathrm{mM}$ EDTA, 10 mM Tris, pH 8.0$)$ was added and stored at $-20^{\circ} \mathrm{C}$ until required.

2.2.1.2. Guanidinium Extraction Method

The adaptations of Casas et al. method included using Dithiothreitol instead of 2mercaptoethanol, and incubation of the specimen with the lysis buffer at $60^{\circ} \mathrm{C}$ (instead of RT) (Casas et al., 1995). Procedure: Four volumes of extraction buffer (Table 2) was mixed with the serum, and glycogen (Boehringer Mannheim, Mannheim, Germany) added to a final concentration of $80 \mu \mathrm{~g} / \mathrm{mL}$. The mixture was incubated at $60^{\circ} \mathrm{C}$ for 10 mins .

Reagent	Concentration
Guanidinium thiosocyanate	4 M
Sodium citrate $(\mathrm{pH} 7)$	25 mM
N-laurylsarcosine (sarcosyl)	$0.5 \% \mathrm{w} / \mathrm{v}$
dithiothreitol	1 mM

Table 10. Composition of Guanidinium Extraction Buffer.

A volume of cold ethanol equal to the total volume of digestion buffer and serum was added and mixed and centrifuged at 15000 rpm in a bench top centrifuge at $4^{\circ} \mathrm{C}$ for 10 mins . The supernatant was aspirated and the pellet washed with 70% ethanol by centrifugation at $4^{\circ} \mathrm{C}$ for 10 mins . The supernatant was aspirated and the pellet dried. A volume equal to that of the initial serum extracted of TE $(0.1 \mathrm{mM}$ EDTA, 10 mM Tris, pH 8.0$)$ was added and stored at $-20^{\circ} \mathrm{C}$ until required.

This method of extraction failed to remove PCR inhibitors which necessitated the dilution of the sample by $1: 10$, therefore, it was only used when the sample had already been found to be positive for DHBV DNA (by dot blot hybridisation), and PCR was required for sequencing data.

2.2.2. Polymerase Chain Reaction

PCR assays were performed following published recommendations aimed at minimising carry-over contamination (Kwok and Higuchi, 1989). Four physically separate areas, with separate ventilation, were used: a "clean" area for the storage of reagents and the preparation of the PCR reaction mixture; an area for the storage of specimens and extraction of viral nucleic acid; an area where the thermocyclers were kept and used; and an area for the handling and storage of products from PCRs. In the first area all handling of reagents was within a dedicated class II biohazard safety cabinet; in the last area, where possible, products from PCR were handled within a class I biohazard safety cabinet. Each of these areas had equipment and consumables, which were stored and used, only within those areas. Restrictions on workflow were also adopted to minimise contamination.

Reagents for PCR were prepared as a master mix cocktail (Table 11, p.69), aliquots were placed into individual reaction tubes and used immediately, or frozen at $-70^{\circ} \mathrm{C}$ and used within 48 hours. After template addition (equal to $5 \mu \mathrm{l}$ of serum) the tubes were immediately placed into the thermocycler. Amplified DNA was stored at $-20^{\circ} \mathrm{C}$ within 12 hours of cycling.

Reagent	Final concentration		
	Full length	PreS-S	PreCore
10xBuffer	1x	1 x	1 x
MgCl_{2}	2.5 mM	2.5 mM	2.5 mM
dNTP	200 nM	200 nM	200 nM
Primer (each) forward + reverse	$0.4 \mu \mathrm{M}$	$0.4 \mu \mathrm{M}$	$0.4 \mu \mathrm{M}$
Polymerase	$2 \mathrm{U} / 25 \mu \mathrm{~L}$	$1 \mathrm{U} / 25 \mu \mathrm{~L}$	$2 \mathrm{U} / 25 \mu \mathrm{~L}$
$\mathrm{dH}_{2} \mathrm{O}$	to $25 \mu \mathrm{~L}$	to $25 \mu \mathrm{~L}$	to $25 \mu \mathrm{~L}$

Table 11. DHBV PCR cocktail contents.

When possible a full length PCR fragment was produced, which enabled the two ends of the Surface gene, and the preCore region, to be sequenced from the same PCR fragment. The more sensitive PreS-S PCR was used when necessary, and in combination with the preCore PCR.

2.2.2.1. DHBV Full-length PCR assay

A full-length DHBV PCR product ($\sim 3 \mathrm{~kb}$) (nt 2753-2752) (Figure 7, p.70) was produced from the DHBV_C2fP and DHBV_CrP (Table 12, p.70) primers, and the cocktail (Table 11, p.69). This set of primers was 5 ' phosphorylated to enable cloning, or ligation to other fragments of DNA. Phosphorylation has no effect on the normal PCR assay. The ends of these primers are next to each other on the DHBV genome but elongate in the opposite direction thus producing a full length PCR product. Cycling conditions consisted of an initial denaturation at $94^{\circ} \mathrm{C}$ for 2 min , thence 30 s , a nnealing at $55^{\circ} \mathrm{C}$ for 30 s , extension at $68^{\circ} \mathrm{C}$ for 4 min , with a final extension at $72^{\circ} \mathrm{C}$ for 10 min after 40 cycles.

The full-length DHBV PCR had a sensitivity of approximately $100-500 \mathrm{vge}$ per reaction, which was equivalent to approximately $1 \times 10^{5} \mathrm{vge} / \mathrm{mL}$ in the original serum.

2.2.2.2. DHBV PreS-S PCR assay

(Figure 7, p.70) (Table 12, p.70) (Table 11, p.69)
A 1.1 kb PCR amplicon was produced spanning the entire surface gene (nt 686-1824) (Figure 7, p.70), using a single primer from the PreS PCR (DHBV_PreS1_f), developed by Zhang, and a single primer from the S PCR (DHBV_S_r), also developed by Zhang (Zhang, 1994) (see Table 12, p.70). The PCR cocktail is detailed in (Table 11, p.69). Cycling conditions consisted of an initial denaturation at $94^{\circ} \mathrm{C}$ for 4 min , thence 30 s , annealing at $60^{\circ} \mathrm{C}$ for 1 min , extension at $72^{\circ} \mathrm{C}$ for 1.5 min , with a final extension at $72^{\circ} \mathrm{C}$ for 10 min after 40 cycles.

The DHBV PreS-S PCR was the most sensitive DHBV PCR used. It was able to detect 1-10 vge per reaction, which was equivalent to approximately $2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$ in the original serum.

2.2.2.3. DHBV PreCore PCR assay

A 304bp PCR fragment was produced spanning the two Direct Repeat sites and the PreCore (nt 2456-2760) (Figure 7, p.70) using primers DHBV_PreC_f and DHBV_PreC_r (Table 12, p.70), and the cocktail (Table 11, p.69). The DHBV PreCore was modified from the assay originally developed by Zhang (Zhang, 1994). The numbers of cycles was increased to 40 , the magnesium concentration was decreased to 2.5 mM , and the amount of polymerase was decreased to 1 U . Cycling conditions consisted of an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min , thence 30 s , annealing at $55^{\circ} \mathrm{C}$ for 1 min , extension at $72^{\circ} \mathrm{C}$ for 1 min , with a final extension at $72^{\circ} \mathrm{C}$ for 10 min after 40 cycles.

The DHBV PreCore PCR had a sensitivity of approximately 100-250 vge per reaction, which was equivalent to approximately $5 \times 10^{4} \mathrm{vge} / \mathrm{mL}$ in the original serum.

Figure 7. $\quad P C R$ Amplicons in relation to the DHBV genome.

Primer Set	Amplicon	Primer	Sequence
Full-length	$\begin{gathered} 3 \mathrm{~kb} \\ \text { nt } 2753-2752 \end{gathered}$	DHBV_C2fP	TAGAACCTTATTGGAAATCAG
		DHBV CrP	AAGCGTCTTTAGCATCCCTTACAA
PreS-S	$\begin{gathered} 1.1 \mathrm{~kb} \\ \text { nt } 686-1824 \\ \hline \end{gathered}$	DHBV PreS1_f	GGCTCTATGAAGCAGGAATCC
		DHBV S r	GGCGTGGTTTTGTCAAAGTT
PreC	$\begin{gathered} \text { 304bp } \\ \text { nt } 2456-2760 \end{gathered}$	DHBV PreC f	CGGAATTCGATTGGACGGCTGTTACATACACC
		DHBV PreC_r	CGGGATCCAAGCGTCTTTAGCATCCCTTACAA

Table 12. DHBV PCR primers.
The full-length PCR primers were 5' phosphorylated to enable cloning or ligation. For GS-2000 sequencing the DHBV_PreS1_f primer was 5' labelled with HEX. The preS-S and preC primers were designed by Zhang (Zhang, 1994).

2.2.2.4. Visualisation of PCR bands

The products from the PreCore PCR assay, were run on a 2% (w/v) agarose gel, while the products from the full length and PreS-S PCR were run on a $1 \%(\mathrm{w} / \mathrm{v})$ agarose gel (Biotech, Perth, Australia, or Promega, Madison, USA), containing $1 \mu \mathrm{~g} / \mathrm{mL}$ ethidium bromide (in $\mathrm{dH}_{2} \mathrm{O}$). $5 \mu \mathrm{~L}$ samples of the PCR reaction (20% reaction volume) were electrophoresed for $20-40 \mathrm{mins}$ at $100-140 \mathrm{~V}$ at room temperature, in the presence of 2 x PCR loading buffer. Each gel also contained a marker or DNA ladder (100 bp or 1 kb PLUS DNA ladder, Life Technologies, Hilden, Germany), and positive and negative controls. Following electrophoresis, DNA bands were visualised by exposure to ultra-violet light in a standard manner (Sambrook et al., 2001). A permanent record of the PCR reaction was made by photographing the gel.

2.2.2.5. PEG Precipitation of PCR products

Procedure: $45 \mu \mathrm{~L} 2 \mathrm{x}$ PEG solution (Table 13, p.71) was added to $45 \mu \mathrm{~L}$ PCR reaction and incubated at $4^{\circ} \mathrm{C}$ for 1 hr , centrifuged at 15000 rpm for 25 min at $4^{\circ} \mathrm{C}$. The supernatant was discarded and $300 \mu \mathrm{~L}$ of 95% ethanol was added and re-centrifuged at 15000 rpm for 25 min at $4^{\circ} \mathrm{C}$. The supernatant was again discarded and the pellet further washed with $300 \mu \mathrm{~L}$ of 70% and re-centrifuged at 15000 rpm for 25 min at $4^{\circ} \mathrm{C}$. The pellet was dried in a heating block at $42^{\circ} \mathrm{C}$, and resuspended in $25 \mu \mathrm{~L}$ TE (0.1 mM EDTA, $10 \mathrm{mMTris}, \mathrm{pH} 8.0$). 5 pmol $(5 \mu \mathrm{~L})$ primer and $11 \mu \mathrm{~L}$ PEG precipitated PCR product was sent for sequencing (SUPAMAC, Sydney, Australia) or done in-house.

Reagent	Volume ($\mu \mathrm{\mu L})$
40% PEG $6000(\mathrm{w} / \mathrm{v})$	3338
3 M Sodium Acetate $(\mathrm{pH} 5.2)$	1000
$1 \mathrm{M} \mathrm{MgCl}_{2}$	32.5
$\mathrm{dH}_{2} \mathrm{O}$	629.5

Table 13. Composition of $2 x$ PEG solution.

2.2.2.6. Analysis of Sequence Data

Sequence data was visually inspected and corrected for any slight errors or miscalled bases. The sequences were then aligned using ClustalW or PileUp (ANGIS). Any discrepancies from the consensus sequence were again manually inspected and assessed.

2.2.3. Dot Blot Hybridisation

The dot blot hybridisation assay was used as a semi-quantitative measure of DHBV DNA in both serum and liver.

The serum was normally serially diluted (neat, 1:2, 1:4, 1:8). DNA standards of positive and negative duck serum, as well as $200,100,50,25,10$, and 1 pg of DHBV DNA (2.2 .3 .2, p.73)
were placed into column 1. $25 \mu \mathrm{~L}$ of sample or standard were denatured with $25 \mu \mathrm{~L} 1 \mathrm{M}$ NaOH and dot blotted onto GeneScreen (Amersham, Buckinghamshire, England) hybridisation membrane using a BioDot ${ }^{\star}$ (BioRad, Hurcules, USA) apparatus. The membrane was removed from the apparatus and washed in 2 xSSC for 5 min , blotted dry and stored in a desiccator until hybridised.

2.2.3.1. Dot Blot Hybridisation

Prehybridisation: The membrane was prehybridised overnight at $65^{\circ} \mathrm{C}$, in 20 mL prehybridisation solution (2 x SSC, BLOTTO, $1 \% \mathrm{SDS}, 25 \mathrm{mg} / \mathrm{mL}$ Calf Thymus DNA).

Probe preparation: An Amersham MegaPrime kit was used (Amersham, Buckinghamshire, England) to label $25 \mathrm{ng}(2.5 \mu \mathrm{~L})$ of full length DHBV DNA (as per Dot Blot Hybridisation Standards, 2.2.3.2, p.73) according to manufacturers instructions. The DNA was denatured by boiling for 5 mins in $25.5 \mu \mathrm{~L} \mathrm{dH}_{2} \mathrm{O}$, and $5 \mu \mathrm{~L}$ random primer solution, cooled to RT before addition of $10 \mu \mathrm{~L}$ of 5 x Buffer, $2 \mu \mathrm{~L}$ Enzyme (Klenow), and $5 \mu \mathrm{~L} \alpha-{ }^{32} \mathrm{P}$ labelled dCTP (PerkinElmer, Boston, USA, or ICN, Irvine, USA). The reaction was incubated at $37^{\circ} \mathrm{C}$ for 10 min then left at RT for $1 \mathrm{hr}, 5 \mu \mathrm{~L} 0.5 \mathrm{M}$ EDTA (pH 8.0) was added to stop the reaction. Large labelled DNA fragments were separated using a self made Sephadex G50 column. Duplicate $2 \mu \mathrm{~L}$ samples of labelled probe were counted using a RakBeta scintillation counter (LKB Wallac, Stockholm, Sweden), to determine cpm $/ \mu \mathrm{L}$ probe.

Hybridisation: The membrane was incubated in prehybridisation solution (2 x SSC, BLOTTO, 1% SDS, $25 \mathrm{mg} / \mathrm{mL}$ Calf Thymus DNA) containing $5 \times 10^{6} \mathrm{cpm}$ of labelled probe for 20 hr at $65^{\circ} \mathrm{C}$.

Washing and autoradiography of hybridised membranes: The membranes were washed twice with low stringency wash solution ($2 \mathrm{xSSC}, 1 \% \mathrm{SDS}$) for 15 min , then twice with high stringency wash solution $(0.1 \mathrm{xSSC}, 1 \% \mathrm{SDS})$ for 15 min and 30 min , before being wrapped in cling wrap and placed in an autoradiography cassette with intensifying screens and X-ray film (BioMax MR, Kodak, Rochester, USA), for between 1 and 4 days at $-70^{\circ} \mathrm{C}$. The X-ray film was processed using a Kodak or DuPont automatic processor.

The sensitivity of the dot blot hybridisation assay was $1 \mathrm{pg} / 25 \mu \mathrm{~L}$ which was equivalent to 3.1×10^{5} vge per $25 \mu 1$ or $1.3 \times 10^{7} \mathrm{vge} / \mathrm{mL}$. The specificity of the dot blot hybridisation assay was good, as no DHBV negative duck serum or HBV positive human serum ever produced any result.

2.2.3.2. Dot Blot Hybridisation Standards

The standards for the dot blot membranes were full-length DHBV PCR fragments (2.2.2.1, p.69), purified by PEG precipitation (2.2.2.5, p.71), followed by column purification (Qiagen, Melbourne, Australia). All steps were checked by running on an agarose gel to confirm a single c lean b and of DNA of the correct size. The DNA c oncentration of the resultant solution was determined by spectophotometry ($2.2 .4, \mathrm{p} .73$), and the solution was diluted such that $25 \mu \mathrm{~L}$ of standard contained $200,100,50,25,10$, or 1 pg . DHBV positive and negative duck serums were also included in the standards, to provide specificity controls.

2.2.3.3. Dot Blot Hybridisation Values

The semi quantitative values given to serum and liver samples were based on comparison of the size and density of the sample dot with that of the standards in the dot blot hybridisation assay as described in Table 14 (p.73).

Value	vge $/ \mathrm{mL}$	Comparison
0	$\leq \times 10^{6}$	Not detected
1	1.25×10^{7}	Sample (neat $)=1 \mathrm{pg}$ standard
2	1.25×10^{8}	Sample (neat $)=10 \mathrm{pg}$ standard or Sample $(1: 8$ dilution $)=1 \mathrm{pg}$ standard
3	1.25×10^{9}	Sample (neat) $)=100 \mathrm{pg}$ standard or Sample $(1: 8$ dilution $)=10 \mathrm{pg}$ standard
4	1.00×10^{10}	Sample $(1: 4)=200 \mathrm{pg}$ standard Sample $(1: 8)=100 \mathrm{pg}$ standard
5	$>2.01 \times 10^{10}$	Sample $(1: 8$ dilution $)>200 \mathrm{pg}$ standard

Table 14. Dot blot hybridisation values.

2.2.4. DNA concentration by Spectrophotometry

DNA concentration of a solution was determined using a spectrophotometer (DU640, Beckman, Palo Alto, USA). The absorbance of a sample containing DNA was determined at wavelengths 260,280 , and 320 nm , when compared to a control solution consisting of the sample diluent (normally $\mathrm{dH}_{2} \mathrm{O}$, or TE). The ratio of $\mathrm{A}_{260} / \mathrm{A}_{280}$ was used to determine the purity of the sample, optimally around a value of approximately 1.8 . The A_{320} value was used as a background control. The sample was diluted in such a manner that the A_{260} value was between 0.1 and 1.0. Three A_{260} readings were taken, and averaged. The average A_{260} was then multiplied by the dilution factor and by 50 to obtain the amount of DNA in the original sample as $\mu \mathrm{g} / \mathrm{mL}$ (Sambrook et al., 2001).

2.2.5. Calculating the Mass of DNA in a DHBV genome

The mass of a viral genome equivalent of DHBV was calculated from the average of the 4 nucleotides (A, C, G, and T) in Daltons, which was then converted to grams and multiplied by the number of base pairs in the DHBV genome (Figure 8, p.74).

	$\mathrm{MW}_{(\mathrm{ave})} 1 \mathrm{bp}$	$=635$ Daltons \quad and $\quad 1$ Dalton $=1.66 \times 10^{-24} \mathrm{~g}$
therefore: \quad	1 bp	$=635$ Daltons $\times 1.66 \times 10^{-24} \mathrm{~g}$
	$=1.05 \times 10^{-21} \mathrm{~g}$	
so : \quad1 vge $=3027 \mathrm{bp}=3027 \mathrm{bp} \times 1.05 \times 10^{-21} \mathrm{~g} / \mathrm{bp}$ $=3.19 \times 10^{-18} \mathrm{~g}$		

Figure 8. Calculations to determine the mass of a vge of DHBV DNA.

2.2.6. Calculation of DHBV DNA concentration as vge/mL

The quantification of DHBV DNA in serum was achieved by dot blot. Viral Genome Equivalents (vge) were determined by visually comparing dots produced by $25 \mu \mathrm{~L}$ samples of serial dilutions of serum with the dots produced by the DNA standards. From this comparison, calculations were performed to determine the concentration of DHBV in serum as vge $/ \mathrm{mL}$ (Figure 9, p.74).

eg. DHBV051094

$25 \mu \mathrm{~L}$ of $1: 8$ dilution serum $\equiv 10 \mathrm{pg}$ DNA standard
(visual comparison to standards from X-ray film)
therefore : $25 \mu \mathrm{~L}$ undiluted serum $=10 \mathrm{pg} \times 8$ (Dilution Factor) $=80 \mathrm{pg}$ DNA
so: $\quad 1 \mathrm{~mL}$ undiluted serum $=80 \mathrm{pg} / 0.025 \mathrm{~mL}=3200 \mathrm{pg}$

$$
\begin{aligned}
& =3200 \times 10^{-12} \mathrm{~g} / 3.19 \times 10^{-18} \mathrm{~g} / \text { viral genome } \\
& =1.0 \times 10^{9} \mathrm{vge} / \mathrm{mL}
\end{aligned}
$$

Figure 9. Calculations to determine the DHBV vge/mL of a serum sample.

2.2.7. Preparation of DHBV Positive Duck Serum Pools

Pooled DHBV positive duck serum was produced by injecting day old ducklings with $200 \mu \mathrm{~L}$ of the Australian strain of DHBV, isolated by Freiman and Cossart (Freiman and Cossart, 1986). Several serum pools, quantitated by dot blot hybridisation, were used throughout the experiments as detailed in Table 15 (p.74).

Serum Pool	Viral titre (vge/ml)
DHBV051094	1.4×10^{9}
DHBV200197	2.0×10^{10}
DHBV200499	2.0×10^{10}
DHBV201299	2.5×10^{10}

Table 15. DHBV serum pools used throughout the experiments
$1 \mathrm{ID}_{50}$ of serum pool DHBV051094 was $100 \mu \mathrm{~L}$ of a $10^{-5.5}$ dilution (corresponding to 450 vge) for ducklings when injected intraperitoneally at day 1 or day 4 (Dr. Karen Vickery, personal communication).

2.2.8. Preparation of DHBV Negative Duck Serum Pools

Six week old ducks were obtained from a DHBV negative farm and subjected to veterinary health checks for one week. Ducks were anaesthetised by iv pentobarbitone, and exsanguinated by heart puncture. Blood was collected, placed into 50 mL centrifuge tubes and allowed to stand overnight at RT. The tubes were then centrifuged at 5000 rpm in a Beckman JA-14 rotor for 5 min (Beckman, Palo Alto, USA). The serum was pipetted off and pooled, then frozen and stored at $-20^{\circ} \mathrm{C}$. The serum was tested by both dot blot hybridisation and PCR to ensure that it was DHBV negative. The same batch of negative serum was used throughout the experiments.

2.2.9. Cell Counting

This technique is used to determining cell numbers. The haemocytometer consists of two chambers, each of which is divided into nine 1.0 mm squares, which are divided into 16 smaller squares. A cover glass is supported 0.1 mm over these squares so that the total volume over each square is $1.0 \mathrm{~mm} \times 0.1 \mathrm{~mm}$ or $0.1 \mathrm{~mm}^{3}$, or $10^{-4} \mathrm{~cm}^{3}$. Since $1 \mathrm{~cm}^{3}$ is approximately equivalent to 1 mL , the cell concentration per mL will be the average count per square $\times 10^{4}$.

Haemocytometer counts are subject to various sources of error (Table 16, p.75). Careful attention to detail can reduce the overall error to approx. 15%. It is assumed that the total volume in the chamber represents a random sample. These will not be a valid assumption unless the suspension consists of individual well separated cells. Cell distribution in the haemocytometer chamber depends on the particle number, not the particle mass. Thus, cell clumps will distribute in the s ame manner as single c ells and c an d istort the final result. Unless 90% or more of the cells are free from contact with other cells, the count should be repeated with a new sample. A sample will not be representative if the cells are permitted to settle before a sample is taken. Always mix the cell suspension thoroughly before sampling. In order to fill the haemocytometer chamber properly by capillary action, the cover slip, chamber and pipette used to fill the chamber must be scrupulously clean. The chamber and cover slip are cleaned first with distilled water and then with absolute alcohol, and wiped dry.

Error source
Unequal cell distribution in the sample
Improper filling of chambers
Failure to adopt a convention for counting cells in contact with boundary lines or with each other
Statistical error

Table 16. Sources of Haemocytometer error.

The average of 3 large, 1 mm squares was used to calculate the cell concentration. The cell concentration is determined as being the average number of cells counted multiplied by the dilution factor divided by the volume (Figure 10, p.76).

$$
\begin{array}{ll}
\text { (a) } & \mathrm{C}=\left(\mathrm{N}_{\mathrm{ave}} \times \mathrm{DF}\right) / \mathrm{vol} \\
\text { (b) } & \mathrm{C}=\left(\mathrm{N}_{\mathrm{ave}} \times \mathrm{DF}\right) \times 10^{4}
\end{array}
$$

Figure 10. Formulae for the calculation of cell concentration.
(a) General formula (b) Formula for the modified Neubauer rulings haemocytometer. C= cell concentration (cells $/ \mathrm{mL}$), $\mathrm{N}_{\mathrm{ave}}=$ average number of cells counted, and vol= volume counted (mL), and $\mathrm{DF}=$ dilution factor.

2.2.9.1. Cell viability determined using Trypan Blue exclusion

Cell viability was determined by diluting the sample in 1x Trypan blue (Table 17, p.76). Non-viable cells were stained as blue.

Reagent	Concentration
Trypan Blue	$0.3 \%(\mathbf{w} / \mathbf{v})$
NaCl	0.15 M
dH	

Table 17. Composition of Trypan Blue.

2.2.9.2. Avian White Blood Cell counting using Natt and Herrick's solution

The Natt and Herrick's method was used to enumerate total leukocytes (Natt and Herrick, 1952). Leukocytes and lymphocytes stain darkly while erythrocytes and thrombocytes are lightly stained.

A volume of $10 \mu \mathrm{~L}$ of blood was mixed with $990 \mu \mathrm{~L}$ of Natt and Herrick's solution. The solution was well mixed and further diluted by $1: 10$ to facilitate easier counting. The leukocyte counts were averaged and cell counts per mL were calculated as follows: Total leukocyte $/ \mathrm{mL}=$ average number of leukocytes x dilution factor $\times 10^{4}$.

Dissolve chemicals in order described (Table 18 p.76), bring volume to 1 L with $\mathrm{dH}_{2} \mathrm{O}$. After standing o/n, filter through fine filter paper (Watman No. 2). Solution should have a pH of 7.3.

Component	Amount
NaCl	3.88 g
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	2.50 g
$\mathrm{Na}_{2} \mathrm{PO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	2.91 g
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	0.25 g
Formalin $(\sim 37 \%$ Gluteraldehyde $)$	7.50 mL
Methyl Violet 28	0.10 g

Table 18. Components of Natt and Herrick's solution.

2.2.10. Tissue Processing for Histology

Samples were immediately placed into 10% formalin, and left for $24-36 \mathrm{hrs}$. The samples were then placed into labelled plastic mounting blocks in 70% ethanol. The samples were dehydrated overnight by slowly increasing the percentage of ethanol to 100%. The samples were mounted into paraffin blocks, and sections of $10 \mu \mathrm{~m}$ were sliced and placed onto silanecoated slides (2.2.10.1, p.77). Slides were stained with Haemotoxylin and Eosin (Sigma, St. Louis, USA).

2.2.10.1. Silane Coated Slides

Coated slides were produced by cleaning glass slides with pyroneg, followed by washing with water, then $\mathrm{dH}_{2} \mathrm{O}$, and finally ethanol for 10 min , and air dried. The slides were placed into 2\% 3-aminopropyltriethoxysilane (Sigma, St. L ouis, USA) in a cetone for 2 min , then fresh acetone for 2 min , and finally running tap water for 2 min , air dried and placed into a dustproof container.

2.2.11. Preparation of the DHBV Protein Vaccine

A sAg based vaccine was produced in a similar manner to that which has previously been shown to provide effective immunity from DHBV challenge (Vickery et al., 1989).

DHBsAg was purified from serum containing high titre DHBV by a previously described method (Marion et al., 1983a). Serum (0.5 mL) was layered over 7 ml of $10 \%(\mathrm{w} / \mathrm{v})$ sucrose in TNE in Beckman Quick-Seal centrifuge tubes. The tubes were spun in a Beckman 70.1 Ti rotor at 45000 rpm at $4^{\circ} \mathrm{C}$ for 1 hr in a Beckman L8-M ultracentrifuge (Beckman, Palo Alto, USA). The viral pellet was resuspended overnight in $250 \mu \mathrm{~L}$ TNE. The volume was made up to 1 mL by adding TNE containing CsCl to a density of $1.2 \mathrm{~g} / \mathrm{ml}$ and then layered over a discontinuous gradient of $\mathrm{CsCI} 0.5 \mathrm{ml}(1.4 \mathrm{~g} / \mathrm{ml})$ and $0.5 \mathrm{ml}(1.25 \mathrm{~g} / \mathrm{ml})$ in TNE. The tubes were filled with $\mathrm{CsCl}(1.1 \mathrm{~g} / \mathrm{ml})$ in TNE and centrifuged in an SW55Ti rotor at 45000 rpm for 48 hrs at $10^{\circ} \mathrm{C}$. Fractions of $200 \mu \mathrm{~L}$ were collected from the bottom of the tube with a homemade fraction collector. These fractions were tested for solution density in an Abbe Refractometer and for absorbance at 280 nm in a spectrophotometer (DU640, Beckman, Palo Alto, USA). Fractions in the density range of $1.13-1.19 \mathrm{gCsCl} / \mathrm{mL}$ have previously been found to contain viral particles by electron microscopy (EM) (Vickery et al., 1989). These fractions contained a corresponding higher concentration of protein. The fractions containing peak viral absorbency were then pooled and centrifuged through a second discontinuous CsCI gradient. The fractions were collected a nd their refractive index and absorbency measured. Fractions containing viral antigen were pooled and found to have a refractive index of 1.3450 corresponding to a density of $1.17 \mathrm{~g} / \mathrm{ml}$. The pooled fractions
were then dialysed against PBS for 24 hours, changing the PBS 4 times. The purified DHBsAg was stored in aliquots at $-20^{\circ} \mathrm{C}$.

The DHBV sAg protein vaccine differed from that originally described (Vickery et al., 1989), in that it was inactivated by treatment with 1:4000 formalin for 36 hrs at $37^{\circ} \mathrm{C}$ (Tabor et al., 1983), prior to use. The amount of protein vaccine to be inoculated was dispersed into TitreMax adjuvant (SIGMA, St. Louis, USA), by repeated introduction into a 2 mL syringe, such that a $200 \mu \mathrm{~L}$ inoculum would contain the appropriate amount of purified DHBsAg. A 1 mL syringe with 26 G needle was used for inoculation.

2.2.12. Bacterial Media

All bacterial cultures were grown on or in Luria-Bertani (LB) media (1% Tryptone, 0.5% Yeast extract, $1 \% \mathrm{NaCl}, \mathrm{pH} 7.0$). All bacterial work was carried out in a C 2 cabinet, or on a bench within 30 cm of a lit Bunsen burner, for sterile conditions.

2.2.12.1. LB broth

10 g tryptone, 5 g yeast extract, and 10 g NaCl , was dissolved and made up to 950 mL with $\mathrm{dH}_{2} \mathrm{O}$. The pH was adjusted to 7.0 , and the volume made up to 1 L with $\mathrm{dH}_{2} \mathrm{O}$. Autoclaved for 20 min at $121^{\circ} \mathrm{C}$, stored at $4^{\circ} \mathrm{C}$ for up to 1 month. If antibiotics were required to produce selective LB media, they were added to the required concentration just before use.

2.2.12.2. LB Agar plates

LB broth was made up as per 2.2.12.1, (p.78). Prior to autoclaving agar was added to a concentration of $15 \mathrm{~g} / \mathrm{L}$. After autoclaving for 20 min at $121^{\circ} \mathrm{C}$, the solution was allowed to cool to $50-55^{\circ} \mathrm{C}$, and if required antibiotics were added to produce selective LB plates, at the concentration required. The agar solution was poured into standard 100 mm Petri-dishes (Interpath, Sydeny, Australia), half filling the dishes, and allowed to cool and set. The set plates were stored upside down at $4^{\circ} \mathrm{C}$ until required, for up to 2 weeks.

If necessary, X-Gal was added to the plates, just prior to use. The plates were warmed up to $37^{\circ} \mathrm{C}$ for approximately 30 mins . $40 \mu \mathrm{~L}$ of $40 \mathrm{mg} / \mathrm{mL}$ X-Gal stock solution was added, and spread evenly over the plate. The plates were protected from light by wrapping in aluminium foil, and let dry for another 15 mins before use.

2.3. Method Development: DNA SEQUENCING

2.3.1. Introduction

The ability to sequence long stretches of DNA rapidly and accurately has become an essential technique in molecular biology. This is clearly evident from the growth of

GenBank, a genetic sequence database, which has grown from only 5 million nucleotides in 1984 (Burks et al., 1985), through 85 million in 1991, almost doubling in size every 2 years (Burks et al., 1992), and now 29 billion nucleotides and doubling every 10 months (Benson et al., 2004). The database currently holds 23 million sequences from over 140,000 distinct organisms. Most of the sequence data that is now being obtained comes from automated DNA sequencers.

2.3.1.1. History

DNA was originally discovered as "Nuclein" around 1870 (Miescher, 1871), termed Nucleic Acid (Altmann, 1889), and found to be composed of 4 nucleotides (Kossel, 1893). It was observed to induce pathogenic transformation of Pneumococcal types (Griffith, 1928), and was proposed to be genetic material (Avery et al., 1944). Its double helical structure was elucidated in 1953 (Watson and Crick, 1974). Although its structure was defined, most of the sequencing work before 1965 was carried out using RNA and chromatographic techniques, which finally yielded an 80bp yeast tRNA (Holley et al., 1965). Around 1970, the discovery of restriction enzymes (Arber and Linn, 1969) and DNA polymerases (Patel et al., 1967), made DNA sequencing possible (Sanger and Coulson, 1975). Methods based on primed synthesis (Wu and Taylor, 1971) and gel electrophoresis separation led to the first sequence of a genome, the 5.4 kb of bacteriophage $\phi \mathrm{X} 174$, in 1976 (Sanger et al., 1977a). The introduction of chemical degradation (Maxam and Gilbert, 1977) and dideoxy chain termination (Sanger et al., 1977b) methods dramatically increased the rate of sequencing, with the analysis of the 40 kb bacteriophage T7 (Dunn and Studier, 1983) by chemical degradation, and the 16.5 kb human mitochondria genome (Anderson et al., 1981) by the dideoxy chain termination method. The dideoxy chain termination method forms the basis of current automated fluorescent sequencing instruments.

2.3.1.2. The Sanger Dideoxy Chain Termination Method

The dideoxy chain termination method of Sanger (Sanger et al., 1977b) is based on the use of chain terminating dideoxy nucleoside triphosphates which are base analogues of the deoxynucleoside triphosphates that are incorporated into a growing DNA chain (Figure 11, p.80). Ordinarily the growth of DNA chains proceeds from the 5^{\prime} to the 3^{\prime} end by addition of a new nucleoside triphosphate to the 3^{\prime} position of the previous pentose ring. Since the dideoxy triphosphates lack the 3^{\prime} as well as the 2^{\prime} hydroxyl groups in the pentose ring, chain growth cannot occur, and DNA synthesis is terminated. These agents can be used for sequencing in the following way. T he primer is hybridised to the template in a reaction mixture containing all 4 deoxy nucleoside triphosphates, one in the radioactive form, $\left(\alpha^{32} \mathrm{P}\right.$ deoxynucleoside triphosphate), one dideoxy analogue (eg. ddATP), and DNA polymerase. When T residues are encountered in the template strand at the 3 ' end of the heterogeneous,
newly synthesised strands, there is a chance of inserting either the deoxy or the dideoxy nucleoside triphosphate. If the deoxy ATP is incorporated, DNA synthesis will proceed until the next position where A is to be inserted. The chain may grow further if deoxy ATP is inserted or terminate if the dideoxy analogue ddATP is inserted. In another growing molecule, that same position may be filled with the deoxy ATP, and synthesis would proceed to another A position where again there is a chance of inserting either dideoxy ATP or deoxy ATP. The result is the synthesis of a series of DNA fragments, all radioactive, and representing all possible lengths from the 5^{\prime} end to each position of A. In the mixture of molecules, chain termination occurs at all A positions, and therefore the preparation will contain newly synthesised fragments, all radioactive, and ending at each A residue. Likewise, chain termination is done with the other three dideoxy nucleoside triphosphates, giving newly synthesised chains ending with their corresponding nucleoside triphosphates, eg. C, G, and, T. Products of the reactions are examined by gel electrophoresis (PAGE), the autoradiograph is read from the bottom going upwards in the $5^{\prime} \rightarrow 3^{\prime}$ direction.

" T " reaction
$5 \square A C T$
ACTGGT
ACTGGTCCT

- ACTGGTCCTT
- ACTGGTCCTTAT
- actggtccttatct

Figure 11. The Sanger Dideoxy Chain Termination Sequencing Technique.
Chain termination occurs with the incorporation of a dideoxy nucleotide, and when run on a polyacrylamide gel a band is visualised for that termination. The sequence is read from the bottom up. If multiple labels are used, as in dye terminator chemistry, then all four reactions can be run on the same lane.

2.3.1.3. Dye-Primer Chemistry

Dye-primer chemistry was originally designed to detect the short fragments of DNA generated by sequencing reactions. The primer is simply modified to aid detection, originally this was done with radioactive ${ }^{32} \mathrm{P}$ labelled deoxy nucleosides, which were detected by autoradiography, but may also include other labels such as DIG, and fluorescent dyes (Figure 12, p.81). In dye-primer sequencing, four separate reactions are carried out for each sample, and loaded into 4 separate lanes on a gel. Dye-primer tends to have a slightly higher accuracy at longer read lengths than dye terminator chemistry, however it requires a different primer to be labelled for each different tract of DNA to be sequenced.

Dye Primer

Dye Terminator

Primer Synthesized DNA Terminating Dideoxy Nucleotide

Figure 12. Location of the label for detection of DNA.
Dye Primer labelling involves labelling the primer, while Dye Terminator labelling involves labelling the terminating dideoxy nucleotides. The label may be fluorescent, radioactive, or a protein eg. DIG.

2.3.1.4. Dye-Terminator Chemistry

Dye-terminator chemistry is more flexible because it is the dideoxy nucleosides that are labelled (Figure 12, p.81). Fluorescent labels are most commonly used as they are the easiest to detect by automated methods, however other labels such as ${ }^{32} \mathrm{P}$ may also be used for manual sequencing. If the different dideoxy nucleotides are labelled with a different label then all four reactions can be combined into one, and run on a single polyacrylamide gel lane (Figure 11, p.80).

2.3.1.5. Fluorescent Nucleoside Triphosphates

Fluorescence detection of the DNA fragments is usually accomplished by covalently attaching a fluorophore (molecule that fluoresces when exposed to UV light) to the primer used in DNA sequence analysis (Smith et al., 1985; Smith et al., 1986). A different fluorophore is used for each of the reactions specific for the bases A, C, G, and T. The fluorophores are differentiated on the basis that they will reflect a different frequency (or colour) of light, eg. A may be green, and C blue. The combined reaction mixture is electrophoresed down a single polyacrylamide gel lane; the separated fluorescent bands of DNA are detected and analysed. The use of fluorescence detection is intimately related to the development of dye synthetic chemistry necessary to create appropriate fluorescent oligonucleotide primers. It is necessary to have fluorescent dyes that have high quantum
efficiencies and effective detection optics. For example, background reduction can be improved by adjustment of the plane of polarisation of the incident laser light and the glass should be of high optical quality with little or no fluorescence (Ansorge et al., 1987).

Automated DNA sequences based on laser induced fluorescent dye primer chemistry have been reported by several research groups (Connell et al., 1987; Prober et al., 1987; Hunkapiller et al., 1991; Du et al., 1993). Fluorescence chemistries for automated primerdirected DNA sequencing (Hawkins et al., 1992) are important because the dye labelled terminators are constituents of an overall package (Lee et al., 1992) which must be completely compatible, including such aspects as the laser (fluorescence excitation) wavelength and the detection optics.

2.3.1.6. Thermal Cycle Sequencing

Thermal cycle sequencing is a method of dideoxy sequencing in which a small number of template DNA molecules are repetitively utilised to generate a sequencing ladder (Carothers et al., 1989; Murray, 1989; Lee, 1991). A dideoxy sequencing reaction mixture (template, primer, dNTPs, ddNTPs, and a thermostable DNA polymerase) is subjected to repeated rounds of denaturation, annealing, and synthesis steps, similar to PCR, using a commercially available thermal cycling machine (Figure 13, p.83).

Cycle sequencing offers a number of advantages over manual protocols: (i) since the reactions are carried out by an automated thermal cycler, a large number of sequencing reactions can be performed simultaneously; it is also convenient to set up a large number of sequencing reactions for this protocol; (ii) since chain-termination reactions are repeated 30 times or more, the sequence ladders generated are of high intensity; (iii) a small quantity of template DNA is adequate to generate high-intensity sequence ladders (as low as 10 fmol or 6 ng of a $1-\mathrm{kb}$ template are adequate); (iv) DNA sequence can be obtained from a crude DNA sample, eg. from individual plaques or colonies (Krishnan et al., 1991); (v) cycle sequencing is not limited to only the PCR amplified DNA templates; it can also be used for generating DNA sequence from conventional templates such as phage M13 single-stranded DNA, supercoiled double-stranded plasmid DNA, or phage DNA; and (vi) several modifications of this protocol would allow determination of DNA sequence directly from a very low copy number sample (as low as 1 molecule per sample). Cycle sequencing also offers two very important features. With cycle sequencing, it is easier to control strand annealing and random priming reactions that generate background in sequence ladders. Second, random priming events can be minimised by designing appropriate primers and performing sequencing reactions at a stringent annealing temperature of $55-60^{\circ} \mathrm{C}$ and an extension temperature of $72^{\circ} \mathrm{C}$.

Figure 13. Cycle sequencing explanation.
Cycle sequencing is based on a combination of Sanger dideoxy chain termination sequencing and PCR. Thermophillic polymerases are used in the termination reaction, the products are then heat denaturated and reannealed to primers and termination is repeated just as for PCR. This effectively increases the amount of labelled product, greatly increasing the sensitivity of the reaction.

2.3.1.7. Manual Sequencing

Manual sequencing is a method by which no automation is used in the sequencing technique. It has been made redundant by the Human Genome Research Project, which has invested vast sums of money into automation to increase the speed and reliability of sequence data through automation of the time consuming and repetitive nature of DNA sequencing. Simply considered, manual sequencing is the radioactively labelled dideoxy chain termination method of Sanger, in which all steps are completed by manual handling.

2.3.1.8. Automated Sequencing

DNA sequencing is a time and labour-consuming task, which is full of repetitive steps, thus making it amenable to automation. Automation allows simple tasks to be performed by machines rapidly and continuously. A number of new DNA sequencing techniques, which include the application of fluorescent dyes in combination with automated DNA sequencers,
have been developed (Smith et al., 1986; Ansorge et al., 1987; Prober et al., 1987; Brumbaugh et al., 1988). Automated DNA sequencing can be a misleading phrase; it actually means automated analysis of DNA sequencing reactions. The enzymatic process to produce the DNA sequence is the Sanger dideoxy chain terminator system, however it is the electrophoretic separation and detection of the products of the Sanger method that have become automated. Manual sequencing utilises large gels and electrophoretic separation for a specified time, followed by autoradiography. The sequence is read from the bottom of the gel to the top, because in a given period of time the smaller fragments will have migrated farther than the larger ones. The autoradiogram presents a detailed view of the separation achieved at a certain time-point. All automated sequencers also utilise electrophoresis, but in a fundamentally different way. Automated sequencers, instead of looking at the whole gel at one point in time (as in an autoradiogram), look at one point of the gel over time. They measure the time it takes a band to traverse a specified distance in the gel. Smaller bands traverse the gel more rapidly than larger ones, and arrive at the detection window in a shorter period of time. Thus, the output is very different from the "ladder" observed in the manual sequencing autoradiogram. Instead, an electrophoretogram is produced, presenting the detected bands as peaks on the Y axis, and time of electrophoresis on the X -axis. Each peak is then identified as an A, T, G, or C depending upon the detection system (Figure 14, p.84).

Figure 14. Raw sequencing data output.
Comparison of visual output of Manual sequencing, Corbett sequencing, and ABI automated sequencing. The same sequence data is shown as (a) Manual sequence data, (b) Corbett sequencing, which is a combination of manual and automated sequencing methods, note the visual bands corresponding to the Sanger dideoxy nucleotide chain termination, overlapped with the chromatophraphic representation of the various bands, and (c) Chromatographic output of the ABI automated sequencing system.

2.3.1.9. Manual Versus Automated Sequencing

Manual sequencing was originally considered the "Gold Standard" by which all other sequencing methods have been judged. It has now been superseded by automation of most of the manual handling and physical manipulations. However, the critical skill of sequencing requires the interpretation of the results obtained. Automated sequencing is increasingly reliant on computer programs to interpret the data obtained. This can lead to error, as most base calling programs, despite increasingly sophisticated algorithmical engines, sometimes misidentify a base. In general, automated sequencing still needs to be manually verified to validate any mutation or sequence variation.

2.3.1.10. Sequencing Errors

PCR can give rise to two types of discrepancies between the target sequence (to be amplified) and that of individual PCR products: Point mutations and mosaic alleles, generated by in vitro recombination between different amplified products.

When estimated by a fidelity assay using M13, the frequency of base substitution errors (1/ $10,000)$ and frame shift errors $(1 / 40,000)$ of Taq polymerase is considerably higher than for Klenow polymerase ($1 / 29,000$ base substitution errors, $1 / 65,000$ frameshift errors) and T4 DNA polymerase (1/ 160,000 base substitution errors, 1/280,000 frameshift errors) (Eckert and Kunkel, 1989; Eckert and Kunkel, 1990). However, since the processivity and rate of the DNA polymerase are affected by changes in MgCl_{2}, buffer components, dNTP concentrations and the temperature profile of the cycle, and because these assays were not performed under the same conditions as a standard PCR, the absolute numbers may not apply directly to PCR. The actual error rate in the PCR, estimated by sequencing of individual PCR products after 30 cycles starting from 100-1000 ng of genomic target DNA, suggested that two random PCR products might be expected to differ once every 400-4000 bp (Saiki et al., 1988). The tenfold range in this estimate is due to differences between different studies and different amplified regions. The mosaic PCR products are the result of partially extended DNA strands that c an a ct as primers on o ther a llelic templates in later cycles. Both of these artefact products are likely to accumulate primarily at the endpoint of PCR because of insufficient enzyme to extend all available templates and an abundance of DNA strands for annealing.

Both types of errors have to be considered when PCR products are cloned and allelic sequences inferred from individual PCR products. In direct sequencing, by contrast, these artefact PCR products will not be visible against the consensus sequence on the gel. For example, even when starting from a single DNA copy like that found in a single sperm, a mis-incorporation that arises in the very first PCR cycle will only appear with, at the most,
25% of the intensity of the consensus nucleotide, given that all templates have equal probability of being replicated (Gyllensten and Erlich, 1988). Thus, direct sequencing is to be preferred, unless the primer sequences do not allow sufficient specificity to amplify only a single target, or the individual allelic sequences cannot be determined due to genetic polymorphism (heterozygosity) at multiple positions between the primers. Allelic variants may be separated prior to the sequencing using denaturing gradient gel electrophoresis (Myers et al., 1988; Gyllensten, 1989; Gyllensten and Erlich, 1989; Gyllensten and Erlich, 1990), or the polymorphic positions at the ends of the amplified fragments may be used to selectively amplify or sequence one allele at a time (Gyllensten and Erlich, 1988). The relatively high error rate of Taq polymerase may however, create problems when individual products are to be used for expression studies, or analysis of mutation frequencies. Unless a population of linear PCR products can be used in the expression system, several molecules have to be cloned and sequenced to identify the unmodified clones.

In general, one of the most serious errors in PCR is that of carryover of product from previous amplification reactions into unamplified samples. Since an amplification reaction of $100 \mu \mathrm{l}$ may result in 10^{12} copies of a DNA fragment, $0.1 \mu \mathrm{l}$ will contain 10^{9} copies, or 10^{3} copies more than that found in an unamplified sample of 3 pg of genomic DNA. To prevent product carryover, preparation of reagents and reactions should be isolated from analysis of the PCR products. This can be achieved by using several sets of pipetteman with disposable positive-displacement tips and by separating physically the preparation of reactions and the analysis of products.

2.3.1.11. Commercial Approaches to Automated Sequencing

Applied Biosystems Incorporated (ABI) was one of the first companies to produce automated sequencers. It took advantage of the Sanger dideoxy nucleoside chain termination method, in combination with fluorescent chemistry to produce a range of machines that enabled fast and efficient DNA sequencing. Its dominance of the scientific field is almost total and has become the new standard by increasing its reliability, reproducibility, and most importantly the length of useable sequence per reaction. Most sequencing reactions are now able to return 500 or more base pairs of sequence.

2.3.1.12. Corbett Sequencing

Corbett Research is Australian company specialising in the manufacture of scientific instrumentation for Life Science research. Corbett Research products include a full range of thermal cyclers and Automated DNA Fragment Analysis and DNA Sequencing systems. One of these systems is the Gel-Scan 2000 (GS-2000), a real-time gel electrophoresis system. Samples are loaded onto an ultra-thin vertical gel, a laser scans the base of the gel
and detects DNA fluorescence. During the run a 2-dimensional gel image is built up on the screen, similar to a manual sequencing gel autoradiograph. The GS-2000 utilises dye primer chemistry and therefore uses four lanes of a gel per sample, ie. one lane per nucleotide. It is considered an automated sequencing system because after the gel is run a computer program is used to a utomatically determine the sequence from the 2 -dimensional gel image. The major advantage to this system is that it enables many sequencing reactions to be done using the same primer, it has a high throughput of specific reactions. This would permit rapid sequencing and mutant determination of a relatively large number of samples in a given time, if the placements of the mutant or changes were known. Another advantage of this system is that to scan for a known mutation, ie. $\mathrm{C} \rightarrow \mathrm{A}$ it simple requires only two of the four sequencing reactions to be performed and run on the gel, increasing again the number of samples that can be run and analysed on a given gel by two fold.

The GS-2000 was considered to be an excellent investment to investigate and detect mutations a nd sequence variation for a single section of genome with a large number of samples.

As such, it would be an invaluable tool for the epidemiological study of virus variation. HBV with its many overlapping reading frames is relatively restricted in its ability to successfully mutate, in either increasing its functionality, eg. increased infectivity or replication, or to evade immune pressure. It has been observed that the virus tends to mutate in selected sites of the genome to selected bases, which produce changes in only one of the reading frames, when under certain circumstances, such as drug or immune pressure. If these regions are known then a method such as restriction enzyme digestion may be used to observe whether a sequence has changed, however, sequencing provides the extra information of what the sequence has changed to, and thus provides information on the effect of the change on the associated protein/s.

2.3.2. Aim

(1) To establish and evaluate a method for automated sequencing of DHBV DNA using the Corbett GS-2000S machine.

2.3.3. Experimental Design

Automated cycle sequencing using a Corbett's Research GS-2000 gel scanner, was developed and several parameters optimised. The parameters included the type and amount of template required, the amount of labelled primer, the number of reaction cycles, the annealing / extension temperature, and the amount loaded on the gel.

Plasmid DNA of known sequence was used for optimisation purposes. It was used directly, and also compared with PCR fragments from the same plasmid. Both were used as the basis to determine the parameters required for efficient and accurate DNA sequence data.

2.3.4. Materials and Methods

2.3.4.1. Corbett Sequencing Method

The C orbett G S-2000 sequencing machine was designed to be used with a ny dye primer chemistry sequencing kit. The manufacturers recommended the Amersham Life Science Thermo Sequenase fluorescent-labelled primer cycle sequencing kit (personal communication) (Amersham, Buckinghamshire, England). They also recommended that the standard kit protocol was effective in producing an accurate and reproducible result. However, optimisation of reaction conditions was attempted to obtain the best results possible for the selected primer reaction.

The primer chosen for the Corbett GS-2000 sequencing method was the forward primer of the DHBV PreS-S PCR. This primer was chosen because it was known to be very effective in the PCR reaction and would provide sequence data for the start of the DHBV Surface gene, which is where we would expect immune pressure to drive mutants. The primer used in the sequencing reaction had to be labelled with a HEX dye (available Research Genetics, Huntsville, USA).

Plasmid DNA of known sequence was used directly, or PCR fragments from the plasmid, were used as the basis to determine the parameters required for efficient and accurate DNA sequence data.

2.3.4.1.1. Sequencing Reaction

PCR fragments were produced (2.2.2, p.68) and PEG precipitated (2.2.2.5, p.71). The resuspended PCR sample was run on a gel for visual confirmation, and concentration determined by spectrophotometry (2.2.4, p.73); it was then diluted with $\mathrm{dH}_{2} \mathrm{O}$ to $10-500$ $\mathrm{ng} / \mu \mathrm{L}$. Plasmid DNA was produced by either MINIprep or MAXIprep (Qiagen, Melbourne, Australia), and was then diluted with $\mathrm{dH}_{2} \mathrm{O}$ to $0.25-2 \mu \mathrm{~g} / \mu \mathrm{L}$. The sequencing reactions were carried out using the Amersham Life Science Thermo Sequenase fluorescent labelled primer cycle sequencing kit (RPN 2436, Amersham, Buckinghamshire, England) (11.4.2, p.A4).

The procedure followed was similar to normal PCR (2.2.2, p.68), in that the cocktail was made up in the clean room to avoid contamination of the cocktail with extraneous DNA, and all subsequent steps were performed in the PCR room.

The 4 reagent tubes (A, C, G, and T), a nd the HEX labelled DHBV PreS1f primer w ere removed from the $-20^{\circ} \mathrm{C}$ freezer and allowed to thaw. All were thoroughly mixed prior to use, and stored on ice. A cocktail of each sequencing reaction was produced (Table 19 p.89).

Reagent	Concentration	$\mu \mathrm{L}$
Template DNA		
PCR product	$10-500 \mathrm{ng} / \mu \mathrm{L}$	5
Plasmid	$0.25-8 \mu \mathrm{~g} / \mu \mathrm{L}$	5
Fluorescent primer	$0.5-20 \mathrm{pmol} / \mu \mathrm{L}$	1
A, C, G, or T reagent	4 x	2

Table 19. Contents of each cycle sequencing reaction.

Each tube was overlaid with 1 drop of paraffin oil. The tubes were cycled with conditions specified in Table 20 (p.89). After cycling was completed the oil was removed and the sequencing cocktail aspirated into a new Eppendorf ${ }^{\mathrm{TM}}$ tube. If required the sample was ethanol precipitated by addition of 2 volumes of 95% ethanol, and incubation at $-20^{\circ} \mathrm{C}$ for 15 mins, before centrifugation at 1500 rpm for 15 mins in a bench centrifuge at $4^{\circ} \mathrm{C}$, the supernatant was removed and the remaining DNA pellet dried. Either 1 volume or $5 \mu \mathrm{~L}$ of formamide loading dye was added. The samples were then denatured into single strands of DNA by incubation for 2 minutes at $90^{\circ} \mathrm{C}$ and placed on ice prior to gel loading.

Cycle	Temperature $\left({ }^{\circ} \mathrm{C}\right)$		Cycle 2-n			$\mathbf{n + 1}$
Denaturation	$95^{\circ} \mathrm{C}$	$2: 00$	$0: 30$	$0: 30$		
Annealing / Extension	$50-70^{\circ}{ }^{\circ} \mathrm{C}^{\mathbf{a}}$	$0: 30$	$0: 30$	$0: 30$		
Post cycling	$4{ }^{\circ} \mathrm{C}$			$0: 00$		

${ }^{2}$) Only 1 temperature was used for the Annealing / Extension phase in any single reaction. $n=$ number of cycles (10-40).
Table 20. Cycling conditions for DHBs gene sequencing on the GS-2000.

2.3.4.1.2. Gel Formation

Utmost care was taken to thoroughly clean the glass sequencing gel plates with pyroneg and tap water, to reduce the amount of background and non-specific fluorescence detected by the gel scanner. Gloves were not worn during the cleaning of the glass, because the powder in the gloves fluoresces under the gel scanner. It was also important to wash hands carefully before cleaning the glass as to remove any oil from the hands, which will later smear and streak the glass. Gloves had to be worn after the glass is cleaned because of the acrylamide used for the gel. The plates were rinsed several times with tap water, several times with $\mathrm{dH}_{2} \mathrm{O}$, and dried with lint free wipes, 100% ethanol was used to polish the plates, before finally being dried with lint free wipes.

The gel pouring apparatus, spacers, and comb were also rinsed. The gel pouring apparatus was assembled by placing the heavier back plate into the pouring apparatus face up, placing
the spacers at both side edges, closing the front clamps the front plate was finally placed face down on the back plate. The 5% gel was prepared with 3 mL of $\times 10$ sequencing gel solution (Table 21 p. 90), 4 mL of 40% Acrylamide:bis-Acrylanmide (19:1) (Sigma, St. Louis, USA) and 23 mL of $\mathrm{dH}_{2} \mathrm{O}$ in a small beaker.

Components	Final Conc	1L	30mL (1 gel)
Urea	5 M	420 g	12.6 g
10 x TBE	0.6 x	60 mL	1.8 mL
$\mathrm{dH}_{2} \mathrm{O}$ (fill to)	-	815 mL	24.6 mL

Table 21. $x 10$ Sequencing Gel Solution.
After adding urea and TBE, the solution was placed onto a heating block stirrer until dissolved, adjusted to final volume, filtered and autoclaved. Stored at RT. The solution was not used if precipitate was present.

The gel was sucked into a 50 mL syringe and degassed by placing under negative pressure, ie. the tip was temporarily sealed with a melted yellow pipette tip and the plunger drawn. The syringe was tapped a few times on the bench, the pressure released, air was evacuated, and the procedure repeated.

Ammonium PerSulphate (APS) and TEMED were used to increase the speed of polymerisation. A 10% APS solution was freshly made by a dding $1 \mathrm{~mL} \mathrm{dH} \mathrm{H}_{2} \mathrm{O}$ to 100 mg APS. A $150 \mu \mathrm{~L}$ aliquot of 10% APS and $15 \mu \mathrm{~L}$ TEMED were carefully mixed into the gel solution. Polymerisation occurred within a few minutes.
The gel was slowly poured onto the back plate, leaving approx. 3 mL in the syringe. Very carefully, the front plate was lowered down onto the back plate, ensuring that no bubbles were trapped in the gel. If bubbles did appear, the front plate was carefully lifted and lowered again. When completely down, the well former (comb) was inserted backwards to the level indicator, ie. with the teeth pointing away from the gel. The remaining gel was poured onto the comb to seal the area and produce a good even well shape. Polymerisation occurs only under anaerobic conditions. The lid of the gel forming apparatus was put in place and securely clamped. The gel was left for approx. 1 hr before being removed.

The gel was then unclamped, the well former removed, the excess gel wiped away with paper towel, and the glass plates washed with pyroneg and tap water. The plates were rinsed with tap water, then $\mathrm{dH}_{2} \mathrm{O}$, dried with KimWipes, and polished with 100% ethanol. The gel was then placed into the bottom buffer tank of the GS-2000, the top buffer tank was screwed in at the top, all knobs were tightened, but not overly. The tanks were filled with 0.6 x TBE to the indicated levels. The well cavity was flushed with TBE to evacuate any water that was present.

2.3.4.1.3. Gel Running

The GS-2000 was turned on, temperature set to $45^{\circ} \mathrm{C}$, pre-run for 30 mins at 900 V and then flushed with TBE, to remove excess urea.

The shark tooth comb was inserted into the well cavity, with the teeth only just into the bottom of the gel. The wells are formed between the teeth of the shark tooth comb. The denatured samples $(0.25-8 \mu \mathrm{~L})$ were added with a specialised flat duck billed pipette tip, and pulse loaded for 40 s. The wells were again flushed, to remove any excess sample that would cause trailing of the bands. The gel was run for 5 hrs at 1500 V .

2.3.4.2. Analysing Corbett Sequence Data

The .FLF file was converted to a .TIFF file, before being analysed by DNAscan ${ }^{\text {TM }}{ }^{(8)}$ (Scanalytics ${ }^{\mathrm{TM}}$, Bilerica, USA). The lanes were manually marked on the screen using the software before the program interpreted the bands. Any ambiguous base calls were manually checked and corrected if necessary. The sequence was then output as a text sequence file to be analysed further with ANGIS.

2.3.4.3. Corbett Sequencing Optimisation

The Corbett sequencing technique was optimised for several parameters (Table 22 p. 91). The type and amount of template is an important factor in that the samples to be sequenced were direct from PCR fragments, while the use of plasmid was excellent for optimisation because one single batch could be used for the entire optimisation procedure reducing the sample-to-sample variation in the starting material.

Condition	
Type / amount of template	
PCR fragment	$10,25,50,75,100,200$, and $500 \mathrm{ng} / \mu \mathrm{L}$
Plasmid product	$0.25,0.5,0.75,1,2,4,6$, and $8 \mu \mathrm{~g} / \mu \mathrm{L}$
Labelled primer concentration	$0.5,1,2.5,5,7.5,10,15$, and $20 \mathrm{pmol} / \mu \mathrm{L}$
Number of reaction cycles	$10,15,20,25,30,35$, and 40 cycles
Annealing / Extension temperature	$50,55,58,60,62,64,68$, and $70^{\circ} \mathrm{C}$
Amount of sample loaded on the gel	$0.25,0.5,1,2,2.5,4,5,6$, and $8 \mu \mathrm{~L}$

Table 22. Range of values tested during optimisation of the Sequencing reactions.

The labelled primer concentration is just as, if not more important in the sequencing reaction as it is in the normal PCR reaction. This is because the label that is detected by the GS-2000 is directly attached to the primer, so that too little primer and the signal is weak and or not present, while too much primer will saturate the early reads of the sequence.

The number of cycles for the cycle sequencing reaction is important, as too few cycles will also lead to the signal becoming too weak or not present. The dynamics of the reaction mean that the greater the number of cycles the greater the percentage of short fragments produced
which could lead to saturation of the early sequence read, which may smear bands together, making it more difficult to accurately interpret. Too many cycles also increase the number of mismatched primer pairings, which could lead to inaccurate sequence data.

The annealing and extension temperature of the cycle sequencing reaction are extremely important and should be as high as possible to allow for the most stringent primer annealing conditions. Stringent conditions should minimise the non-specific binding, and increase selectivity, but should be low enough to allow efficient extension of the DNA fragment so that the signal produced is strong enough to be read.

The amount of sample loaded onto the gel is determines the signal strength; too much and the signal is saturated, which blurs the bands and prevents early sequence data from being obtained.

Purification of the sequencing reaction is required to remove as much of the non-extended primer as possible, which produces a dense black smear, but the gel is also sensitive to the amount of salt placed into the wells, so the reaction should be as clean as possible to allow the wells to run straight and parallel. The samples were loaded after ethanol precipitation or straight from the sequencing reaction.

2.3.5. Results

The sequencing reactions were compared for band compactness, separation, sharpness and amount of background. Visual inspection of the gel provided a good basis of the quality of the sequence data that could be obtained after computer interpretation. The better the gel looked visually, the less manual interpretation was required. Comparison of the partial gel pictures provides a good indication of sequencing quality (Figure 68 - Figure 71, p. 6-9).

2.3.5.1. Optimised Cycle Sequencing protocol

The final optimised cycle sequencing protocol is given below.

The PCR fragments were PEG precipitated (2.2.2.5, p.71). The concentration of the resuspended sample was determined by spectrophotometry ($2.2 .4, \mathrm{p} .73$), and diluted with $\mathrm{dH}_{2} \mathrm{O}$ to a final concentration of $200 \mathrm{ng} / \mu \mathrm{L}$.

The 4 reagent tubes (A, C, G, and T), and the HEX labelled DHBV PreS1f primer were removed from the $-20^{\circ} \mathrm{C}$ freezer and allowed to thaw. All were thoroughly mixed prior to use, a nd stored on ice. A cocktail of each sequencing reaction was produced (Table 23, p.93).

Reagent	Concentration	$\mu \mathrm{L}$
Fluorescent primer	$5 \mathrm{pmol} / \mu \mathrm{L}$	1
Template DNA PCR product	$200 \mathrm{ng} / \mu \mathrm{L}$	5
A, C, G, or T reagent	4 x	2

Table 23. Contents of each optimised cycle sequencing reaction.
Each tube was treated as per Sequencing Reaction (2.3.4.1.1, p.88). The tubes were cycled with specific conditions (Table 24, p.93). The optimised gel formation method was as described in Gel Formation (2.3.4.1.2, p.89). The optimised gel running method was as described Gel Running (2.3.4.1.3, p.91). The gel was loaded with $2 \mu \mathrm{~L}$ of denatured sample.

Cycle	Temperature (${ }^{\circ} \mathrm{C}$)	Cycle		
		1	2-29	30
Denaturation	$95^{\circ} \mathrm{C}$	2:00	0:30	0:30
Annealing / Extension	$60^{\circ} \mathrm{C}$	0:30	0:30	0:30
Post cycling	$4^{\circ} \mathrm{C}$			0:00

Table 24. Sequence cycling conditions.

2.3.5.2. Comparison of GS-2000 and Automated Sequencing

The accuracy of the sequence obtained from the GS-2000 was calculated by comparison of the same template under the same conditions. The sequences were then aligned using PileUp or ClustalW (Appendix 11.6.1, p.A42), and the differences before (Figure 15, p.94) and subsequent to manual editing (Figure 16, p.95) were calculated (Table 25, p.93) for the fist 200 nucleotides of the sequence data.

Bases		Automated	GS-2000 Before edit	
After edit				

Reverse: indicates that two or more bases have been mixed up ie. instead of CT the sequence was called TC. Duplicate: refers to where there are two of the same bases sequentially, + then denotes an extra base called, while - a base missed.

Table 25. Calculated Sequencing Error Rates and Types.

Figure 15. Sequence alignment obtained from the GS-2000 of the Pre-S region of DHBV before manual editing.
(a) PCR product, (b) Plasmid, DHBV: sequence of cloned Australian DHBV (Triyatni et al., 2001), ABI: Sequence obtained from an ABI 377. DASH: represents a missing base, BLACK: at that point there are no other bases called, GREY: another bases has been called at that spot different to the consensus.

Figure 16. Sequence alignment obtained from the GS-2000 of the Pre-S region of DHBV after manual editing.
(a) PCR product, (b) Plasmid, DHBV: sequence of cloned Australian DHBV (Triyatni et al., 2001), ABI: Sequence obtained from an ABI 377. DASH: represents a missing base, BLACK: at that point there are no other bases called, GREY: another bases has been called at that spot different to the consensus.
NOTE: After manual editing there are fewer errors and a more consistent sequence.

2.3.5.3. Assessment of Sequencing Techniques

Although the GS-2000 sequence data was slightly less accurate than the automated method (Table 25, p.93), it is still capable of producing excellent results. However, the time required to do the sequencing and then analyse the data obtained was much more labour intensive than for the automated method.

This would not be a problem for targeted sequencing, in which a specific mutation is to be found. The initial phase of the project endeavoured to find some sequence variation in the Surface gene, which is approximately 1.1 kb long. This would require the use of many different primers along the length of the gene, which would all require separate optimisation.

So the advantages of the automated sequencing methods (longer reads, and shorter editing analysing time) were considered to be of use when sequencing the large areas of the genome for unknown mutations. If mutations were found to occur and specifically looked for then the GS-2000 sequencing method could be employed.

2.3.6. Discussion

The sequence data obtained by the Corbett's GS-2000 sequencer was considered acceptable for general use. It did however, have a slightly higher rate of errors than the automated ABI system, but it was still a reasonably low error rate.

Combined with sequence alignment, which makes errors much more visually observable, the Corbett sequencing method would provide a good basis from which to analyse a large number of samples for sequence variation at specific points in a genome.

The advantage of the Corbett's GS-2000 sequencer is the cost per sequencing reaction, which is approximately a third of the automated ABI sequencing. This cost benefit is obtained when five or more sequence reactions are done at the same time, because they can be done as a batch and run on a single gel. This makes the time required a lot more productive, as the entire method was very labour intensive and required a lot of time in setup preparation and cleaning up afterwards.

It was decided that all future sequencing be a combination of the Corbett's GS-2000 sequencing, and automated ABI sequencing depending on which would the most efficient at the time. A larger proportion of the sequence data was obtained using the automated ABI sequencing method because often only a few samples were ready to be sequenced at any one time, and that they required slightly less time to manually edit, which allowed more time for sequence data analysis.

2.3.7. Conclusions

A method for DNA sequencing using the GS-2000 was established and found to be comparable to the automated method.

Although more labour intensive, the method would be useful in situations in which batch orientated processing and selective sequencing of specific areas is required.

Section I

3. PERSISTENCECLEARANCE EXPERIMENT

3.1. InTRODUCTION

The mechanisms which determine whether the outcome of hepadnavirus infection will be acute self-limited clearance or persistence are still unclear. It has been observed that the age at which the infection occurs plays a large role in the outcome. Ducks infected or inoculated at a young age tend to develop a persistent infection, while older ducks (3 weeks plus) tend to develop a self-limiting acute infection. However, older ducks can become persistently infected with a large enough dose. A few young ducks have been observed to clear infection, and so it should be possible to manipulate the dose age combination to produce both outcomes, ie. clearance, or persistence. By evaluating the response of ducks that clear with those that do not, any pattern that predicts clearance or persistence should be evident.

It has also been observed that in individual ducklings early onset of high level viraemia generally leads to chronic infection, while low level viraemia developing later tends towards an acute infection (Vickery and Cossart, 1996).

We have previously shown clearance in ducks infected at 11 days of age (Freiman et al., 1990) but already at this age the logistics of holding ducks are considerable. In this chapter we are investigating the conditions needed to achieve clearance in the experimentally more convenient younger ducks, and charting the kinetics of viraemia during the critical early phase of infection.

3.2. AIMS

(1) To establish experimental conditions which reliably lead to acute DHBV infection in neonatal ducks. Two parameters were tested: age at inoculation, and virus dose.
(2) To determine whether the pattern of viraemia early in infection predicts the final outcome of infection in neonatal ducks.

3.3. Materials and Methods

3.3.1. Ducks

Pekin-Aylesbury crossbred ducks, as described in Methods and Materials (2.1.1, p.66), were used.

3.3.2. Duck Hepatitis B Virus strain

Positive serum pool DHBV051094 (containing $1.4 \times 10^{9} \mathrm{vge} / \mathrm{mL}$) was used for this experiment (Methods and Materials, 2.2.7, p.74). This serum had an ID_{50} of ~ 450 vge when intraperitoneally injected into 1 or 4 day old ducks (Vickery and Cossart, 1996).

3.3.3. Age and Dose of inoculation for duck groups

Ducklings were randomly divided into 3 groups and inoculated with DHBV positive serum at day 1,4 , and 7 , respectively (Table 26, p. 99). The dose is shown in Viral Genome Equivalents (vge) rather than ID_{50} because the ID_{50} progressively increases with age (Vickery and Cossart, 1996).

inoculation	Dose (vge)	No. ducks
Day 1	2.8×10^{3}	6
	2.8×10^{4}	6
Day 4	2.8×10^{3}	7
	2.8×10^{4}	7
Day 7	2.8×10^{4}	7
	2.8×10^{5}	7

Table 26.
Dosage of DHBV given to 1, 4, and 7 day old ducks.

The doses for the Day 1 and Day 4 groups were 2.8×10^{3} and 2.8×10^{4} vge which were approximately 6 and $60 \mathrm{ID}_{50}$ respectively, and were chosen to ensure that the majority of ducks become infected, but low enough so that some of the ducks would be able to clear the infection. The Day 7 groups were inoculated with a one $\log _{10}$ larger dose (Table 26, p.99), because of their increased resistance to infection. DHBV051094 was diluted in PBS, such that a $200 \mu \mathrm{~L}$ inoculum would contain the vge dose of DHBV for inoculation.

3.3.4. DHBV DNA detection

The ducks were bled three times a week for seven weeks $(0.1-1.0 \mathrm{~mL}$ was drawn from the external jugular vein using a 1 mL syringe with 26 G needle, depending on the size of the duck). The blood was allowed to coagulate overnight, spun for $1-5 \mathrm{~min}, 13000 \mathrm{rpm}$ at RT, the serum was removed and stored at $-20^{\circ} \mathrm{C}$ until required. Two liver samples were obtained at euthanasia; one sample ($3 \times 3 \times 3 \mathrm{~mm}, 27 \mathrm{~mm}^{3}$) was used for extraction while a second larger aliquot was stored at $-20^{\circ} \mathrm{C}$ until required.

The level of DHBV DNA in serum samples was estimated by dot blot hybridisation as described in (Methods and Materials, 2.2.3, p.71). The limit of detection for the dot blot hybridisation assay was approximately 1 pg of DHBV DNA ($\sim 3 \times 10^{5}$ vge) in a $25 \mu \mathrm{~L}$ sample which is equivalent to $\sim 1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, but allowed semi-quantitation up to $>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$.

If sufficient serum remained, samples negative by dot blot hybridisation, as well as all prebleed samples were assayed by PCR as described in Methods and Materials (2.2.2, p.68). Liver samples from the ducks were DNA extracted, dot blot hybridised, and assayed by PCR as described in Methods and Materials (p.66). The limit of detection for the PCR assay was less than 10 vge in a $5 \mu \mathrm{~L}$ sample which is equivalent to $\sim 2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$, which is approximately $4 \log _{10}$ greater than dot blot hybridisation.

3.4. RESULTS

3.4.1. DHBV DNA detection

Samples were initially tested by dot blot hybridisation to obtain semi-quantitative data in the range of 1×10^{7} to $>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$ (Methods and Materials, 2.2.3.3, p.73). In negative samples this was augmented by PCR to increase sensitivity (which had a lower level of sensitivity of $2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$, Methods and Materials, 2.2.2.2, p.69).

The outcome of infection in the various groups is shown in Table 27 (p.100). If DHBV DNA was detected in any sample (serum or liver) at any experimental time point by either dot blot hybridisation or PCR, the particular duck was classified as "infected".

	DHBV positive			DHBV negative	
Day 1	2.8×10^{3}	6	5	5	1
	2.8×10^{4}	6	6	6	0
Day 4 4	2.8×10^{3}	7	4	6	1
	2.8×10^{4}	7	7	7	0
Day 7 7	2.8×10^{4}	7	7	7	0
	2.8×10^{5}	7	5	5	2

Table 27. Number of Ducks DHBV positive in the Serum and Liver following inoculation with DHBV on Days 1, 4, and 7.
The doses used for the day 1 and day 4 ducks were ~ 6 and $60 \mathrm{ID}_{50}$.

The sequential results of DHBV DNA detection in serum and liver for individual ducks are shown in Table 28 (p.101) (Day 1 inoculation groups), Table 29 (p.102) (Day 4 inoculation groups), and, Table 30 (p.103) (Day 7 inoculation groups).

Day	Dose	Legband	Sex	$\begin{array}{\|c} \hline \text { Day } \\ 0 \\ \hline \end{array}$	4	6	8	11	13	15	18	20	22	25	27	29	32	34	36	39	41	43	L
					3	5	7	10	12	14	17	19	21	24	26	28	31	33	35	38	40	42	
1	2.8×10^{3}	P19	M	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		P20	F	0	0	0	0	0	5	2	2	3	4	3	4	4	5	5	4	4	4	4	5
		P21	M	0	0	0	1	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
		P22	F	0	0	0	0	3	5	4	4	3	3	4	4	5	5	4	5	5	5	4	5
		P23	F	0	0	0	4	5	5	5	4	4	4	4	5	5	5	5	5	5	5	5	5
		P24	F	0	0	0	0	4	5	5	5	4	4	2	2	4	5	3	4	4	4	4	5
1	2.8×10^{4}	P13	M	0	0	0	5	4	5	5		4	4	4	5	5	5	5	5	5	5	5	5
		P14	M	0	0	0	0	4	5	4	5	5	5	5	5	5	5	5	5	5	5	5	5
		P15	M	0	0	0	5	4		5		4	5	5	4	5	5	5	5	5	5	5	5
		P16	M	0	0	0	0	5		5	5	5	5	2	4	5	5	5	5	5	4	5	5
		P17	F	0	0	0	0	5	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5
		P18	M	0	0	0	0	4	5	5	4	1	1	3	1	3	4	3	4	4	4	4	5

Table 28. Dot blot hybridisation and PCR results for ducks inoculated with either 2.8×10^{3}, or 2.8×10^{4} vge of DHBV when 1 days old.
Dark shaded numbers indicate days post inoculation. Dot blot results are the numerical value ($0=$ not detected ($\leq x 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}, 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}$, $\left.4=1 \times 10^{10} \mathrm{vg} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}\right)$. Shaded blocks indicate DHBV PCR results: $\mathrm{red}=$ positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, green $=$ negative $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, clear $=$ not tested. Sex: $\mathrm{M}=$ male, $\mathrm{F}=$ female. Empty blocks indicate that no sample was available for that day.

Day	Dose (vge)	Legband	Sex	$\begin{array}{\|c} \hline \text { Day } \\ 0 \end{array}$	4	6	8	11	13	15	18	20	22	25	27	29	32	34	36	39	41	43	L
					0	2	4	7	9	11	14	16	18	21	23	25	28	30	32	35	37	39	
4	2.8×10^{3}	W18	M	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		W19	F	0		0	0	0	5	5	4	4	4	4	4	5	5	5	5	5	5	5	5
		W20	M	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		W21	F	0		0	0	0	2	5	4	4	0	4	4	5	5	5	5	5	5	5	5
		W22	F	0		0	0	0		5	0	0	0	0	0	0	4	5	5	5	5	5	5
		W23	M	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		W24	F	0		0	0	0		5	0	0	2	2	2	5	5	5	5	5	5	5	5
4	2.8×10^{4}	W11	M	0		0	0	0	5	5	5	5	3	3	4	5	5	5	5	5	5	5	5
		W12	M	0		0	0	0	0	5		4	4	4	4	5	5	5	5	5	5	5	5
		W13	F	0		0	0	0		0	0	3	0	3	2	5	4	0	4	0	4	1	5
		W14	M	0		0	0	0	5	5	4	4	3	2	2	5	5	5	5	5	5	5	5
		W15	M	0		0	0	3	5	4	4	0	0	0	0	0	0	0	0	0	0	0	0
		W16	F	0		0	0	0	5	5	5	4	1	3	4	5	5	5	5	4	5	5	5
		W17	M	0		0	0	0	1	5	4	4	2	3	3	5	5	5	4	4	0	2	5

Table 29. Dot blot hybridisation and PCR results for ducks inoculated with either 2.8×10^{3}, or 2.8×10^{4} vge of DHBV when 4 days old.
Dark shaded numbers indicate days post inoculation. Dot blot results are the numerical value ($0=$ not detected ($\leq x 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vg} / / \mathrm{mL}, 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{\circ} \mathrm{vge} / \mathrm{mL}$, $\left.4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}\right)$. Shaded blocks indicate DHBV PCR results: red = positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, green $=$ negative $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, clear $=$ not tested. Sex: $\mathrm{M}=$ male, $\mathrm{F}=$ female. Empty blocks indicate that no sample was available for that day.

Day	Dose	Legband	Sex	$\begin{array}{\|c\|} \hline \text { Day } \\ 0 \end{array}$	8	11	13	15	18	20	22	25	27	29	32	34	36	39	41	43	L
					1	4	6	8	11	13	15	18	20	22	25	27	29	32	34	36	
7	2.8×10^{4}	B33	M	0		0	0	0	0	0	0	1	5	5	5	5	5	5	4	5	5
		B34	F	0		0	0	3	4	0	1	0	3	4	4	5	5	5	5	5	5
		B35	F	0		0	0	0	4	4	0	0	0	0	0	0	4	2	3	4	5
		B36	M	0		0	0	0	0	0	0	5	5	5	5	5	5	5	5	5	5
		B37	M	0		0		0	0	0	0	0	0	0	0	0	0	0	0	0	5
		B38	M	0		0	0	0	5	5	3	4	1	0	4	5	5	5	5	5	5
		B39	M	0		0	0	5	3	4	2	4	4	5	5	5	5	5	5	5	5
7	2.8×10^{5}	B26	F	0		0	0	4	1	0	0	0	0	0	3	3	5	3	4	4	5
		B27	M	0		0	0	5	5	5	5	5	5	5	5	5	5	5	5	5	5
		B28	F	0		0		4	4	0	2	0	1	2	3	4	4	4	3	4	5
		B29	F	0		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
		B30	M	0		0		5	0	0	0	3	3	4	4	5	5	5	5	5	5
		B31	F	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		B32	M	0		0	0	0	5	0	0	0	0	1	4	5	5	5	5	5	5

Table 30. Dot blot hybridisation and PCR results for ducks inoculated with either 2.8×10^{4}, or 2.8×10^{5} vge of $D H B V$ when 7 days old.
Darli shaded numbers indicate days post inoculation. Dot blot results are the numerical value ($0=$ not detected ($\leq x 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}, 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}$, $\left.4=1 \times 10^{\circ} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}\right)$. Shaded blocks indicate DHBV PCR results: red $=$ positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, green $=$ negative $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, clear $=$ not tested. Sex: $\mathrm{M}=$ male, $\mathrm{F}=$ female. Empty blocks indicate that no sample was available for that day.

3.4.1.1. Group Results

In most infected ducks, DHBV DNA was detectable by PCR 2-4 days before dot blot hybridisation became positive.

For the Day 1 groups, 5 of 6 ducks of the 2.8×10^{3} vge subgroup (equivalent to $6 \mathrm{ID}_{50}$), and all 6 ducks of the 2.8×10^{4} vge subgroup (equivalent to $60 \mathrm{ID}_{50}$) became infected. For this age group, the ID_{50} was less than 2.8×10^{3} vge, or less than $200 \mu \mathrm{~L}$ of a 1×10^{-5} dilution, which correlates closely with the original determination of the infectivity of the DHBV041094 positive serum pool for day old ducks.

In the Day 4 groups, 6 of 7 ducks from the 2.8×10^{3} vge subgroup, and all 7 ducks of the 2.8×10^{4} vge subgroup became infected, as determined by DHBV DNA. Two ducks (W20, and W23, both 2.8×10^{3} vge), were only PCR positive in the liver, and may have eventually cleared the infection completely, given further time. The ID_{50} for this group was less than 2.8×10^{3} vge.

In the Day 7 groups, all 7 ducks of the 2.8×10^{4} vge subgroup, while only 5 of 7 ducks of the 2.8×10^{5} vge subgroup became infected. The ID_{50} for this group was less than 2.8×10^{4} vge.

The persistence of DHBV in ducks infected at an early age is quite remarkable; only four ducks cleared DHBV DNA from the liver.

3.4.1.2. Individual Duck Results

In Figure 17 - Figure 22 (p.105-110) DHBV DNA results have been graphed to describe the course of infection in individual ducks. They are presented group by group.

DHBV was never detected in either the serum or liver of four ducks: P19 (Day 1, 2.8×10 vge), W18 (Day $4,2.8 \times 10^{3}$ vge), B29, and B31 (both Day $7,2.8 \times 10^{5}$ vge). They were completely dot blot hybridisation negative, and were found to be PCR negative in the liver and at various time points, two ducks were male and two female.

In a further two male ducks; W20 and W23 (Day 42.8×10^{3} vge), DHBV DNA was not detected in the serum throughout the experimental period. In the liver these ducks were only DHBV DNA positive by the more sensitive PCR assay. Fourteen serum samples from each duck, were assayed by PCR (not enough serum was available to test day 11,14 , and 43), and all were found to be PCR negative.

Figure 17. Graphic results for ducks injected on day 1 with $2.8 x 10^{3}$ vge.
Dot blot results are the plotted numerical value: $0=$ not detected ($\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$.
The blue arrow indicates when the ducks were inoculated.
PreS-S PCR results are indicated by large data points: green $=P C R$ negative $\left(<2 \times 10^{3}\right.$ vge/mL), red $=$ PCR positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, small black $=$ not tested.

Figure 18. Graphic results for ducks injected on day 1 with 2.8×10^{4} vge.
Dot blot results are the plotted numerical value: $0=$ not detected ($\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}$) , $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$.
The blue arrow indicates when the ducks were inoculated.
PreS-S PCR results are indicated by large data points: green $=P C R$ negative ($<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$), red $=$ PCR positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, small black $=$ not tested.

Figure 19. Graphic results for ducks injected on day 4 with $2.8 x 10^{3}$ vge.
Dot blot results are the plotted numerical value: $0=$ not detected ($\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$.
The blue arrow indicates when the ducks were inoculated.
PreS-S PCR results are indicated by large data points: green $=\mathrm{PCR}$ negative $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, red $=$ PCR positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, small black $=$ not tested.

Figure 20. Graphic results for ducks injected on day 4 with $2.8 x 10^{4}$ vge.
Dot blot results are the plotted numerical value: $0=$ not detected ($\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}$) , $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$.
The blue arrow indicates when the ducks were inoculated.
PreS-S PCR results are indicated by large data points: green $=P C R$ negative ($<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$), red $=$ PCR positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, small black $=$ not tested.

Figure 21. Graphic results for ducks injected on day 7 with 2.8×10^{4} vge.
Dot blot results are the plotted numerical value: $0=$ not detected ($\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$.
The blue arrow indicates when the ducks were inoculated.
PreS-S PCR results are indicated by large data points: green $=P C R$ negative ($<2 \times 10^{3}$ vge $/ \mathrm{mL}$), red $=$ PCR positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, small black $=$ not tested.

Figure 22．Graphic results for ducks injected on day 7 with 2.8×10^{5} vge．
Dot blot results are the plotted numerical value： $0=$ not detected（ $\leq x 10^{6} \mathrm{vge} / \mathrm{mL}$ ）， $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$ ， $2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$ ．
The blue arrow indicates when the ducks were inoculated．
PreS－S PCR results are indicated by large data points：green $=\mathrm{PCR}$ negative（ $<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$ ）， red $=$ PCR positive $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$ ，small black $=$ not tested.

An additional male duck, W15 (Day 4, 2.8×10^{4} vge), had a peak of viraemia detectable by dot blot hybridisation, followed by clearance from the serum by dot blot hybridisation and PCR. Despite clearing DHBV DNA from the serum, PCR, but not dot blot hybridisation, revealed the presence of DNA in the liver.

One male duck, B37 (Day 7, 2.8×10^{4} vge), which was strongly positive for DHBV DNA in the liver, had no detectable levels in the serum by dot blot hybridisation. PCR showed that three consecutive samples (days 34-39) contained DNA.

In Duck W13 (Day 4, 2.8×10 ${ }^{4}$ vge), which developed a fluctuating viraemia, DHBV DNA was found much later than the rest of the group at 16 days pi (day 20) (Table 29, p.102). This duck had several episodes of high viraemia, remained constantly PCR positive until the end of the experiment, and was DHBV DNA positive in the liver by dot blot hybridisation.

All the other ducks, remained PCR positive from the date of first detection of viraemia until the end of the experiment.

3.4.2. Infection Kinetics

Most Day 1 group ducks showed the characteristic rapid rise in viraemia, but ducks inoculated later (Day 4 and 7 groups) (ducks W22, W24, B34, B35, B38, B26, B28, B30, and B32) (6 female, 3 male), exhibited a previously unreported biphasic pattern. This pattern consists of a short but high serum viral DNA level followed by several logs reduction for a short period of a few days, then a subsequent rebounding and persistence.

Of the 11 ducks that developed early onset of viraemia, ten went on to develop persistent with a high level viraemia. However, although developing an early onset of high level viraemia duck W15 (Day 4, 2.8×10 ${ }^{4}$ vge), went on to clear the infection from the serum and was only positive in the liver by PCR suggesting that this duck was clearing the infection.

In contrast, all four ducks that produced undetectable or low level viraemia, cleared DHBV from the serum and in the liver.

The incubation period before initial viraemia is detected, has been summarised (Table 31 p.112).

inoculation	$\begin{aligned} & \text { Dose } \\ & \text { (vge) } \end{aligned}$	$\begin{gathered} \text { 7-8 days } \\ \text { pi } \end{gathered}$	$\begin{gathered} 9-10 \text { days } \\ \text { pi } \end{gathered}$	$\begin{gathered} \text { 11-12 } \\ \text { days pi } \end{gathered}$	$\begin{gathered} \text { 16-18 } \\ \text { days pi } \end{gathered}$	Not detected
Day 1	2.8×10^{3}	2	2	1	-	1
	2.8×10^{4}	2	4	-	-	-
Day 4	2.8×10^{3}	-	2	2	-	3
	2.8×10^{4}	1	4	1	1	-
Day 7	2.8×10^{4}	2	-	2	2	1
	2.8×10^{5}	4	-	1	-	2

Table 31. Days post inoculation to first detection of DHBV DNA in serum by dot blot hybridisation.
NB: Table indicates days post inoculation (pi). ie. 7-8 days pi for the Day 1,4 and 7 groups is day 8 , day 11, and day 15 respectively. DHBV DNA was generally detected by PCR 2-5 days previous to dot blot hybridisation detection.

The three inoculation groups (Day 1, 4, and 7) can be directly compared with the 2.8×10^{4} dose, which was given to all groups. As the age of inoculation increased, onset of viraemia was delayed (Figure 23, p.112). Significantly more of the Day 1 ducks were viraemic by 10 days $p i$ than the Day 7 group $(\mathrm{P}=0.021)$.

Figure 23. Effect of age at inoculation on time to viraemia.
The dose of $2.8 \times 10^{4} \mathrm{vge}$ is compared across all three groups.

When the low dose groups are combined and compared with the high dose groups a pattern emerges in that the higher doses appear to produce a shorter incubation period (Figure 24, p.113). Unfortunately, due to the low numbers of ducks used in the experiment, the results are non-significant; however, for 10 days $p i$ they are only just non-significant ($\mathrm{p}=0.055$).

Figure 24. Effect of dose on time to viraemia.
The low dose of all three groups combined (Day 1, 4, and 7) is compared to the high dose of all three groups combined.

3.4.3. Overview of Results

In ducks that remained DHBV DNA positive in the liver, five different patterns of viraemia are evident: (a) classic persistence, (b) self-limiting acute, (c) biphasic, (d) fluctuating, and (e) non-viraemic, demonstrated in Figure 25 (p.114). These are summarised in Table 32 (p. 114).

Clearance from the liver following viraemia was only found in ducks showing pattern (b).

Figure 25. Five different patterns of early DHBV infection.
(a) Classic persistence, (b) Self-limiting acute, (c) Biphasic, an acute infection followed by persistence, (d) Fluctuating viraemia, in which the host appears to clear the virus many times only for it to rebound, and (e) non-viraemia.

Inoculation	Dose (vge)	Total ducks	(a) Persistent	(b) Cleared	(c) Biphasic		(d) Fluct. Vir
dayl	2.8×10^{3}	6	5	-	-	-	(e) Uninfected
	2.8×10^{4}	6	6	-	-	-	-
day4	2.8×10^{3}	7	2	2	2	-	1
	2.8×10^{4}	7	5	1	-	1	-
day7	2.8×10^{4}	7	3	1	3	-	-
	2.8×10^{5}	7	1	-	4	-	2

Table 32. Summary of DHBV infection outcome.
Outcome of infection is based on DHBV DNA presence in serum and liver at euthanasia as depicted in Figure 25 (p.114). (a) Persistent infection: serum and liver positive, (b) Cleared: serum negative, liver positive or negative, (c) Biphasic: Single peak of viraemia followed by persistence, liver positive, (d) Fluctuating viraemia: several peaks of viraemia, liver positive, (e) Uninfected ducks: Negative in both serum and liver throughout the experiment.

3.5. DISCUSSION

Following the original description of the experimental transmission of DHBV (Mason et al., 1980), many studies have confirmed that experimental transmission with DHBV is easily achieved, producing high level viraemia in ducks infected at an early age (Mason et al., 1983; Tagawa et al., 1985; Fukuda et al., 1987; Marion et al., 1987; Freiman et al., 1988a).

The outcome of DHBV infection is related to several factors: the dose of the inoculum, age of duck at inoculation, the route of administration, the DHBV isolate, and the duck strain. The size of the inoculation dose is an important variable with a high dose producing quick viraemia and persistence, while a smaller dose is associated with low or non viraemia, and acute self-limiting infection. The age at inoculation is important because infection at a young age leads to persistence while inoculated adults tend towards an acute infection. The infectious dose depends on route of administration, with an intravenous inoculation, requiring fewer virions to produce an infection than intraperitoneal inoculation. The DHBV isolate may affect the infectivity dose, however for the current experiment a single DHBV isolate was utilised. The final factor that may play a role is the genetic composition of the duck strain used, with ducks from different suppliers having different susceptibility. The one source of ducks was used through the present study.

Experimentally, the outcome can be manipulated by either the dose used and/or the age at which the ducks are infected (Vickery and Cossart, 1996; Jilbert et al., 1998). In older ducks, a larger DHBV dose normally produces persistence, while a lower dose leads to a higher proportion of self-limited acute infection (Vickery and Cossart, 1996; Jilbert et al., 1998). This dose relationship is also evident in other hepadnaviruses such as Woodchuck Hepatitis B V irus (Cote et al., 2000). In the neonatal period infection almost invariably leads to persistence even at very low virus doses.

In this study we investigated the inter-relationship between dose and age in more detail.

3.5.1. Dose

In earlier studies we determined the ID_{50} of the serum pool DHBV051094 for day old ducks, based on dot blot assay of the ducks 5 weeks after intra peritoneal inoculation (Vickery and Cossart, 1996). For our present study, we selected doses that were predicted to infect most ducks, while allowing a few to clear the infection. Although both transient and persistent infections were observed, the proportion of transient infection was lower than anticipated. This is partially due to the detection of residual viral DNA by PCR analysis of the serum and liver rather than the less sensitive dot blot hybridisation method used in earlier studies. The PCR assay is approximately $4 \log _{10}$ more sensitive than the dot blot hybridisation assay, and
is able to detect the small amount of virus that is still being produced, and finally, the long lasting $\operatorname{ccc} D N A$ in the liver.

Previous studies in adult ducks (Vickery and Cossart, 1996; Jilbert et al., 1998), have determined that reduction of DHBV to undetectable levels by dot blot hybridisation was associated with detection of anti-DHBs antibody. After a short period, the serum would then become and remain PCR negative. Although non-viraemic, the duck may not yet have completely cleared the infection, as the liver may be dot blot hybridisation negative, the liver may still remain PCR positive for many months. Similar findings have been reported for both humans and woodchucks (Kajino et al., 1994; Penna et al., 1996).

The original ID_{50} was based on ducks inoculated on day 1 with dot blot hybridisation results of the liver at 5 weeks (35 days) of age. The infectivity of the serum pool DHBV051094 for Day 1 ducks was originally calculated as $1 \mathrm{ID}_{50}$ being $100 \mu \mathrm{~L}$ of a $10^{-5.5}$ dilution. This calculation was based on groups of five ducklings and analysed by the method of Reed and Muench, which equalises chance variations and defines an accurate end point (Reed and Muench, 1938). The serum pool used for this experiment was identical to that used to determine the ID_{50} in the original experiment, and has been stored at between -20 and $-70^{\circ} \mathrm{C}$. In the present study the ID_{50} could be estimated by using the dot blot hybridisation results, as was used for the original calculation, however this would just be an approximation, as there are only two dilutions to compare. The dose approximates that of the original study, considering the low number of ducks and doses used in this experiment and that the ducks were also about two weeks older when tested. Another important consideration is that the difference in infectivity between the original and the present experiment may also be attributed to the genetic differences in the ducks available after an eight-year difference. Although the ducks were obtained form the same hatchery as those of the original experiment; the hatchery has undertaken a program of selective breeding to select for ducks of commercial benefit during the period between the experiments.

The delicate balance of the infectious dosage is evident when comparing the two doses used on the Day 4 ducks. The lower dose, $\left(2.8 \times 10^{3}\right.$ vge $)$, ended up producing either persistent, or non-viraemic infection (two ducks had only PCR detectable DHBV DNA in the liver). The non-viraemic infection with low level DNA present in the liver, has been shown to eventually clear completely (Jilbert et al., 1998). While the higher dose, although producing persistence in $5 / 7$ ducks, produced two ducks that were evidently attempting clearance of the infection (W13, and W15), with temporary high level viraemia, that was eventually cleared from 1 duck. The lower dose in Day 4 ducks (2.8×10^{3} vge) produced more biphasic and
cleared ducks than persistent infections, while the higher dose (2.8×10^{4} vge) produced mainly persistent infection with a higher level of viraemia.

3.5.2. Age at inoculation

The susceptibility of ducks to DHBV decreases rapidly after hatching and by day 11 a significantly higher dose is required to produce an infection (Freiman et al., 1990). Ducklings injected on day 1 were 100% (20/20) infectable and 17/20 remained viraemic for greater than 6 months, while the same dose only persistently infected $1 / 7$ ducks when injected at 3 weeks of age (Omata et al., 1984). When ducks inoculated on day 1 and day 26 are compared, it has been shown that the ID_{50} for the 26 day old ducks is approximately $3 \log _{10}$ larger (Vickery and Cossart, 1996). While four month old ducks have been shown to be require $5 \log _{10}$ higher doses than day 1 ducks, and even such a dose only caused persistent infection in $1 / 3$ ducks while the other two where only transiently infected (Jilbert et al., 1998). This age related decrease in susceptibility is also paralleled in the woodchuck model (Cote et al., 2000).

In this experiment the increasing a ge of ducks was associated with a lower frequency of persistently infected ducks. Eleven of the twelve ducks inoculated on Day 1 were persistently infected, with 1 duck remaining uninfected. In Day 4 ducks, $7 / 14$ produced classic persistent infection, while only $4 / 14$ of the Day 7 ducks were found to have the classic persistent infection pattern. The older ducks tended to develop a biphasic pattern in which an initial spike of viraemia was followed by several days of dot blot hybridisation negative serum samples, after which viraemia returned and persisted until the end of the experiment. This biphasic pattern may be due to an initial immune response that was able to contain the infection temporarily, but ultimately failed to eliminate it; however, it might also reflect selection of an "escape" mutant able to evade the host response.

3.5.3. Incubation period

The incubation period of virus infections is usually related to the size of the infecting dose, and this has been shown for HBV (Barker and Murray, 1972). Similar observations have been reported with DHBV (Tagawa et al., 1985; Jilbert et al., 1996). Our experimental results confirmed such observations, as the ducks given the larger dose developed viraemia sooner than ducks given the lower dose (Figure 24, p.113). However the increase in incubation time with increasing age at inoculation has a greater influence than can be explained simply by the difference in the D_{50} and has been attributed to other factors such as decreased permeability of the more mature hepatocyte or to the increased maturation of nonspecific immunity. Decreased permeability of the more mature hepatocytes is unlikely as these were baby ducks with rapidly dividing hepatocytes, even so, hepatocytes from older
ducks can be easily infected in vitro, and in vitro infection is enhanced by maintaining the differentiated cell state (Galle et al., 1989). Other immune mechanisms may be more developed in the older ducks than the young ducks, such as there may be a greater number of mature T- and B-cells which are able to produce a greater response quicker, which may contain the infection until it can be eliminated.

Although a similar level of viraemia was reached by the three age groups, the younger the ducks were inoculated, the sooner they became viraemic (Figure 23, p.112). A non-specific mechanism involved may be the physical growth pattern of the ducks in which the weight of the ducks in the first four days of life is relatively stable but doubles every week for about four weeks and then slows until about 3-4 months old when they reach their maximum size. This rapid growth after the first few days is associated with a rapid increase in hepatocytes. The virus may be quickly taken up by the new hepatocytes, while the slower growth rate of the Day 1 ducks means fewer hepatocytes to take up the virus. This may also relate to the cell cycle, in which it has been observed that rapidly dividing, or mature hepatocytes are more easily infected, and the very young ducks have lower numbers of these cells. Another possibility is of a physical dilution, in which the multiplicity of infection is much higher for the day old ducks (which have fewer hepatocytes) as it is for the older ducks (which have undergone weight and hepatocyte gain).

3.5.4. Kinetics of Infection

In almost every case, the amount of virus in the serum increased exponentially to a level of approximately $2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$, regardless of initial dose, incubation period, or age of ducks. This high level of virus in the serum has been correlated with infection of $>95 \%$ of all hepatocytes (Jilbert et al., 1988), and occurs before the specific immune system is able to mount a reasonably large response.

The DHBV infection can be classified into five distinct patterns:
(a) The classic persistent infection pattern, in which a high level viraemia is maintained throughout, was found in representatives of each experimental group. Both innate and specific immune responses are ineffective.
(b) The self-limiting acute infection was found in older ducks, which were given the lower virus dose. This requires a combination of innate and specific immune responses but the exact mechanisms remain speculative.
(c) The newly observed biphasic pattern may reflect a successful down regulation of viral replication by innate immunity, which is not supported by an adequate specific response. It would however, also be consistent with emergence of a virus escape mutant. It is a
combination of the acute and persistent infection in which the initial viraemia is controlled but cannot be eliminated leading to persistence.
(d) The fluctuating viraemia most likely reflects a partially effective immune response that either cannot be sustained, or is avoided by the virus.
(e) The uninfected pattern (no viraemia, or liver infection), can be produced by ducks that are either not susceptible, or have been able to mount an extremely effective immune response.

In two ducks infection did not conform to the dogma that a high titre early viraemia lead to persistent infection. Duck W15 (Day 4, 2.8×10 0^{4} vge), had a high viraemia early during infection, at a level which was found to predict persistence in all other ducks, but was subsequently able to clear the infection from the serum, and only residual DHBV DNA was found in the liver. The other duck was B37 (Day 7, $2.8 \times 10^{4} \mathrm{vge}$), in which very low level of DHBV DNA was found in the serum for a few days, but at the end of the experiment the liver was found to contain high levels of DHBV DNA. This might be due to selection of defective genome, which was able to persist and accumulate in the liver, but was unable to export virions into the circulation. This possibility is explored in Chapter 4.

These exceptions show that prediction of clearance is not as evident, or well defined, in very young ducks as for the adults (Vickery et al., 1989; Vickery and Cossart, 1996), and suggests that both virus and host related mechanisms are involved.

3.5.5. Persistent Infection

The persistence of perinatal infections in ducks is likely to be attributed to the mechanism of tolerance. It was originally believed that the secondary lymphoid organs of ducklings are devoid of lymphocytes until two days before hatching, but has since been shown that several waves of immune cells pass through the secondary lymphoid organs before hatching. At hatching the secondary lymphoid organs are functional (Hashimoto and Sugimura, 1976b), but tolerance to the virus leading to persistence is readily achievable eg. Duck Plague Virus (Burgess and Yuill, 1982).

The relatively stable level of DHBV DNA in serum of high titre persistent infection demonstrates that viral loss is equal to viral replication and virion production. The consistently high levels of DHBV DNA of both surface and core antigen in the liver, suggest that viral production is maintained at high levels indefinitely. The spleen plays an important role in sequestering virus form the circulation (Freiman et al., 1987; Jilbert et al., 1987b), but there may also be excretion in the bile or through the kidneys. Other non-specific immune mechanisms may also be able to remove at least some of the virions from the bloodstream. The virions may be taken up by new hepatocytes which are replacing hepatocytes lost
through natural old age, or a cytotoxic immune response. Hepatocytes already infected may take up more virus producing a superinfection (Chuang et al., 1994; Zhang and Summers, 1999), but the efficiency of this reaction is low as the viral cellular receptor is down regulated in infected cells (Breiner et al., 2001). A combination of the above factors is most likely the reason that the level of viraemia is relatively stable and maintained during the course of persistent infection.

3.5.6. Biphasic pattern

This previously unrecognised pattern of infection occurred only in the older ducks inoculated at 4 and 7 days of age. The trough could arise by rapid removal of virus from the circulation, which subsequently fails, as this mechanism becomes saturated, or from direct inhibition of virus synthesis by a mechanism which is only transiently effective.

Virus removal form the serum is often associated with antibody production and the generation of immune complexes. The timeline is consistent with antibody production as the fall in serum DHBV DNA is observed 10 days or m ore post inoculation. The a ntibodyantigen complexes, are subsequently removed by the kidneys, or antibody assisted endocytosis. If antibody is the main pressure that forces the removal of virus from the serum then the rebound may be due to the production of mutants that are able to escape from this antibody pressure. These mutants may be able to avoid the antibody-mediated destruction, but still able to infect hepatocytes, which would lead to a new round of infection and replication, which would result in the rebound observed.

Another reason for the viral rebound could be the very high level of virus production in the liver where almost all the hepatocytes are infected. The serum level of $\sim 10^{10} \mathrm{vge} / \mathrm{mL}$ may be beyond the capacity of the B-cells to produce enough antibody. If the antibody production is unable to match the viral production anergy may occur, which could result in persistence. As the duck increases in size over the first few weeks the number of hepatocytes also increases, and if the antibody production is able to keep up with virion production then the DHBV virions should not be able to infect new hepatocytes. However, if antibody production is insufficient new hepatocytes may be infected which results in increased virion production compounding the problem.

Another hypothesis for the trough in viraemia proposes that infection induces immune mediating agents such as IFN- γ that reduce viral production. The effectiveness of these mediators to remove the cccDNA from the cell nucleus is somewhat uncertain as the down regulation of viral products does not necessarily lead to decreased cccDNA. Down regulation of viral products may lead to, or promote the development of tolerance, and the
failure to completely clear the infection. The inability of these mediators to rid every cell of viral DNA, and the prolonged production of these mediators, which constitute this immune response, may lead to a depletion of its effectiveness. If the mediators are depleted or their concentration reduced to levels that are unable to contain viral production, then the unaffected pool of cccDNA may rapidly enable virion production to rebound to initial levels.

3.5.7. Clearance mechanisms

The mechanisms involved in viral clearance have not been fully elucidated. In DHBV the classic explanation for removal of infected cells by antigen-specific cytotoxic T-cells is not supported by histological studies of the liver which show only minimal cell damage or regeneration and little lymphocyte infiltration. Lymphokines and possibly other mediators are believed to play a large role in non-cytolytic clearance of virus. In the transgenic mouse model of human HBV it has been shown that cytotoxic T lymphocytes are able to use a noncytopathic mechanism for the elimination of viral DNA from infected cells, achieved by cell mediators (Guidotti et al., 1994), later determined to be IFN- γ and TNF- α (Guidotti et al., 1996b). The lack of reagents for identification of duck lymphokines has retarded investigation of this mechanism in DHBV.

Another mechanism that plays an important role in clearance or persistence is the emergence of e scape mutants. O ther viruses that have shown the mechanism of e scape mutants a re human HCV, and BVDV (Bovine pestivirus). The hallmark of these RNA viruses is their plasticity (Domingo et al., 1985; Domingo, 1992). The absence of an efficient exonuclease to correct misincorporated bases results in a high frequency of base substitutions, approaching one error for every $10,000 \mathrm{nt}$ polymerised. The term quasispecies was coined to describe the concept of genomic variability (Eigen, 1971). Many genomes in the quasispecies will not be viable because of the lethality of certain base substitutions. RNA viruses use this strategy to generate genomes with potentially greater fitness and ability to survive under certain altered environmental conditions. The RT replication mechanism of hepadnaviruses means that they too can take advantage of this mechanism. The consequences of this process are seen in the form of neutralisation escape mutants, or the selection for viruses that are antigenically different from vaccine strains (Donis et al., 1991; Paton et al., 1992). In BVDV the gp53/E2 protein is the target of neutralising antibodies and becomes a source of antigenic hypervariability. This variability constantly changes the protein and thus enables it to escape the immune response (Donis, 1995).

Although the hepadnaviruses are not RNA viruses, their replication cycle involves the use of an endogenous reverse transcriptase (Summers and Mason, 1982). However they are very much constrained in their variability by the distinct overlapping reading frames (Sprengel et al., 1985; Uchida et al., 1989), ie. a nucleotide change in one position of the genome may
effect two proteins. If there is a change in the sequence of one ORF, such as the surface protein, cause by immune pressure, it may cause a change in the overlapping polymerase protein. Such a change in the polymerase protein may well be lethal as it could affect the virus replication cycle.

Investigation of the role of virus variation in determining the different outcomes in HBV has shown that many different point mutations have been identified in patients and associated with different clinical outcomes (Carman, 1997). Regions of the genome which encode viral structural antigens (such as the surface protein of DHBV), or regulatory regions (such as the preCore) have been intensively studied, and functional analysis of the mutants has shown substantial differences in replicative capacity and/or antigenic structure. This falls short of demonstrating a cause and effect relation because of the lack of a suitable experimental model.

Persistence may be due to the selection of a sub-population of the initial inoculum. If sequence variability does occur, then the serum from infected ducks should contain several subspecies of virions, some of which could have increased infectivity, and/or replication rate, or may contain a different epitope to which the host cannot mount an effective immune response, as epitopes may be HLA class restricted (Penna et al., 1991). As such, a subspecies of the heterogeneous inoculum may evade immune system and develop tolerance which may lead to persistence by selection of a more replication competent sub-species, which while then become the majority of the viral species in the bloodstream. In a recent human investigation, the sequence of the HBV genome before, during and after acute exacerbations was examined. Most exacerbations were preceded by an upsurge of serum HBV identical to the pre-existing HBV strain. After exacerbation however, about half of the patients were repopulated by a different viral variant, which was likely a result of immune selection (Liu et al., 2003). Classic escape mutants emerge in liver transplant patients by treatment with hyperimmune hepatitis B immunoglobulin (Carman et al., 1996; Fischer et al., 2001b; Germer et al., 2003).

If v irus variation is a major mechanism of persistence in the DHBV system, it should be possible to verify this by identifying mutations of interest and testing their effect on infectivity and pathogenicity.

In the next chapter we investigate the role of antigenic variation in determining the pattern of viraemia and outcome of infection in DHBV. Because of the known association between specific immune responses to the surface gene and viral clearance this gene was targeted for study.

4. DNA SEQUENCE CHANGES DURING CLEARANCE OF DHBV

4.1. INTRODUCTION

In millions of carriers worldwide hepatitis B persists in stable equilibrium with its host. Over the long term some of these carriers (about 5% per annum) do clear the virus at least from the serum without ever developing symptoms of hepatitis. In patients under observation in liver clinics seroconversion from HBe positive (when the virus is replicating at high levels) to anti-e (with low or absent viraemia) is characteristically associated with an inflammatory "flare" in the liver. A proportion of carriers, variously estimated at 20-40\%, proceed along a different, apparently inexorable path of liver destruction, and eventually develop cirrhosis and/or hepatocellular carcinoma. There have been many attempts to fit these observations into a unified hypothesis involving cell mediated immune responses to different viral antigens, but in practice the only useful prognostic indicators remain ongoing viraemia which is linked to liver damage as shown by ALT elevation.

During hepadnavirus infection the virus population is not homogeneous, but consists of quasispecies, distinguishable by gene sequence and often by phenotypic characters including antigen production and specificity, viral enzyme activity, infectivity and immunogenicity (Blum, 1993; von Weizsacker et al., 1995; Mathet et al., 2003).

It has been hypothesised that recovery from infection can be achieved either by selection of defective mutants (when little liver damage ensues) or by emergence of highly replicative, highly immunogenic variants which stimulate cell mediated immune clearance (and induce hepatitis). Immunological selection directly affects replication because of the overlap of the polymerase open reading frame with that of the core, and the surface genes (also X gene in mammalian hepadnaviruses).

Interpretation of the significance of mutations in HBV is hampered by the intrinsic difficulties of human studies with their limited scope for manipulation of conditions, ready
availability of only secreted particles from serum, and the complexity of a virus replication system where both episomal and integrated genomic material may be transcriptionally active in the same cell. The duck virus, which does not integrate, has been widely used to elucidate the functional significance of hepadnavirus mutants because it can be manipulated experimentally in vivo as well as in vitro. Knowledge of the effects of mutation on viral polymerase, packaging and infectivity are mainly derived from mutagenesis experiments using the DHBV system. To date this has not been extended to study of naturally occurring mutation during the course of infection in individual birds or flocks, although DHBV strains with distinctive sequence differences from the prototype have been isolated from wild ducks and different commercial flocks.

From the previous chapter it is evident that there is a wide range of outcomes within groups of ducks inoculated under the same circumstances (age at inoculation, virus strain, virus dose, route of administration). Although differences in the dose and age at inoculation are important factors, in which younger ducklings and larger doses tend to develop persistent infection it does not account for the variability of all of the outcomes. One of the factors that many infectious agents have utilised to escape the immune response is by varying their genetic material. This mechanism may lead to a change in amino acid sequence of the viral protein or affect the interaction of viral and cellular regulatory mechanisms.

It was evident from ducks that produced a biphasic infection that the return of viral DNA to the serum and establishment of persistence was at a time when a specific immune response should have been generated. We decided to investigate changes to the S region of the viral genome because we had previously observed that immune responses to S were good predictors of virus clearance.

4.1.1. DNA Sequencing Methodology

The data presented below were obtained by automated sequencing. The background to sequencing techniques and details of development of an alternative method are given in Methods and Materials (2.3, p.78).

4.2. AIM

(1) To investigate whether DHBV viral clearance is associated with the appearance of specific mutations

4.3. EXPERIMENTAL DESIGN

Samples from seven ducks representing the characteristic infection patterns described in the previous chapter were selected for study (Chapter 3, p.98). The initial inoculum was sequenced several times to determine the heterogeneity of the viral population.

Duck samples were limited because of an Ethics Committee restriction on bleeding frequency and sample size. Samples were chosen to cover a relatively broad spectrum of the infection, but were also chosen either before or after large changes in the viral DNA level in the serum.

Two areas of the DHBV genome were selected for sequencing; the Core gene as a control, and the Surface gene, where changes may affect the immune response (Figure 26 p.125). Where possible, the full-length PCR product was sequenced ensuring that both the core and surface sequence data would be obtained from a single genome. Otherwise, individual PreSS and Core PCR reactions were carried out directly on the extracted serum, and these products sequenced.

Figure 26. Regions of DHBV sequenced and primers used.
The location of the primers used and the direction of sequence data obtained is indicated by the magenta arrowheads. PreSif (nt 686 forward), Sr (nt 1824 reverse), PreCf (nt 2760 reverse). The black lines around the outside of the genome represent the PCR fragments that were used to obtain sequence data as described in Methods and Materials (2.2.2, p.68).

The sequences obtained were manually edited and aligned (Appendix 11.6.1, p.A42) to make observation of changes more visually observable.

4.4. Materials and Methods

4.4.1. Persistence-Clearance Ducks

Seven ducks were selected from the Persistence-Clearance experiment (Chapter 3, p.98), for detailed sequence study, two classic persistent (P13, P14, both Day 12.0×10^{5} vge), two biphasic (B26, Day $72.0 \times 10^{6} \mathrm{vge}$, and B 35, Day $72.0 \times 10^{5} \mathrm{vge}$), t wo acute self limiting (W15, Day $42.0 \times 10^{5} \mathrm{vge}$, and B37, Day $72.0 \times 10^{5} \mathrm{vge}$), and one fluctuating viraemia (W13, Day $42.0 \times 10^{5} \mathrm{vge}$). The serum samples selected from the course of infection for each of the ducks is represented graphically in the Results section (Figure 27, p.129).

4.4.2. PCR and Sequencing

During the course of the entire experimental period the serum that was used as the original inoculum was also sequenced (15 times): full length (4 times), PreS-S (8 times), and preCore (3 times) PCR fragments.

Full-length PCR could not be produced for all samples. The PCR fragment from which sequence data was obtained for each sample is summarised (Table 33, p.127).

Direct PCR sequencing was performed. Serum samples were extracted by the Phenol/Chloroform Proteinase K method (2.2.1.1, p.67), or by the Guanidinium method (2.2.1.2, p.67). Liver samples were extracted by the Proteinase K Phenol/Chloroform method only.

PCR fragments were obtained as described in (2.2.2, p.68). Production of full-length PCR fragments was initially attempted, and if unsuccessful, generation of PreS-S and PreCore fragments was attempted.

The 1.1 kb Surface gene PCR fragment was sequenced from both ends using the PreS1f and Sr primers (Figure 26, p.125). In most cases the sequence data obtained overlapped by only a few bases because of the distance that these primers are apart from each other. The 304bp PreCore region was sequenced using the PreCf primer.

Duck	day	Full	PreS-S	PreCore
P13	6			-
	11			
	27			
	43			
	L			
P14	6			-
	11			
	27			
	43			-
	L			
W13	20			
	29			
	34			-
	39			-
	41			
	L			
W15	13			
	18			
	L			-
B26	15			
	25			
	27			-
	36			-
	L			
B35	15			
	25			
	27			-
	36			-
	L			
B37	36			-
	L			
DHBV051094				

Table 33. $\quad P C R$ fragment used for sequencing data.
Surface and Core region sequence data was generated from every duck in which the full-length PCR fragment was obtained. Light shading: no sequence data available. L: Liver (day 43). DHBV051094: initial inoculum, italic number: number of times the inoculum was sequenced.

4.5. Results

The higher sensitivity of the PreS-S PCR enabled sequence data for the Surface gene to be obtained for all samples. However, due to the lower sensitivity of the PreCore PCR, not all of the selected serums have data for this region (Table 33, p.127). Examples of the edited sequence data output appear in the Appendix (11.5.1, p.A11-A25). The PreC PCR covers the 'nick' region (that may not be completely double stranded) and thus has a lower amplification efficiency.

The sequencing of the Surface gene of the original inoculum serum was performed on the full length, and PreS-S PCR fragments, at least 4 and 8 times respectively, and no difference was ever seen. For the PreCore region the original inoculum serum was sequenced at least 3 times, and no difference was ever seen.

From the three areas that were sequenced (Surface forward and reverse, and Core forward), it was apparent that the DHBV genome is highly conserved, which is evident in the multiple sequence alignments (Appendix 11.5.2, p.A26-A36), which show a highly conserved genome, with few changes.

4.5.1. Clearance Sequencing Results

Only one type of sequence variation was seen in the three areas sequenced (Surface forward and reverse, and Core forward). It was a double substitution of $T \Rightarrow A$ at nt 731 and 732. This mutation was found in two ducks infected on day 4 with 2.0×10^{5} vge, these ducks however exhibited different patterns of infection. Duck W15 showed an acute self-limiting infection, while duck W13 had viraemia that fluctuated (Figure 27 p.129). In both cases the appearance of the mutation was not a distinct change in the whole population, but rather appeared as peaks in conjunction with the wild-type sequence, suggesting a quasi-species relationship.

In duck W13 (Day 42.0×10^{5} vge) viraemia was first detected by PCR and dot blot hybridisation on day 20 (16 days post inoculation). From day 20 until the end of the experiment duck W13 remained PCR positive. However, it had several episodes of being dot blot hybridisation negative: day 22,34 , and 39 , which were 18,30 , and 35 days post inoculation respectively. Immediately before and after each of these episodes, relatively high levels of DHBV DNA were present (dot blot hybridisation values of at least 3 , ie. $\sim 1 \times 10^{9} \mathrm{vge}$). Five samples, three of which were during peaks of viraemia (days 20, 29, and 41), and two of which were during episodes when dot blot hybridisation negative (days 34 , and 39) were sequenced, as well as the liver (day 43). The initial peak at day 20 (16 days post inoculation) was found to only contain wild type virus, while 7 days later the day 29 serum sample (25 days post inoculation) and all subsequent serum samples (days 34,39 , and 41) (30,35 , and 37 days post inoculation respectively) were found to contain the mutation. The liver (day 43) was found to only contain the wild-type virus.

In duck W15 (Day 42.0×10^{5} vge) viraemia was first detected by PCR on day 8 (4 days post inoculation), and by the next bleed (day 11) it was detectable by dot blot hybridisation. Viraemia lasted until day 18 (10 days), and by next bleed (day 20) was both PCR and dot blot hybridisation negative. The liver (day 43) was dot blot hybridisation negative, but PCR positive. Two samples in the peak of viraemia were sequenced (day 13 and 18), as well as the liver (day 43). The mutation was discovered in the day 13 (9 days post inoculation) sample, while both the day 18 (14 days post inoculation and just before clearance) and liver sample (day 43) contained only the wild-type virus.
(a) Classic Persistent Infection

Figure 27. Results of DNA sequencing from the Persistence-Clearance Experiment.
Dot blot results for selected ducks from the Persistence-Clearance Experiment. Dot blot results are the numerical value: $0=$ not detected ($\leq x 10^{6} \mathrm{vge} / \mathrm{mL}$), $\quad 1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}, \quad 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}$, $3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL} ; \mathrm{L}=$ liver sample. The blue arrow indicates when the ducks were inoculated. Large dots indicate the samples DNA sequenced: Bluc= Wild type, Yellow= Mutant.

In an attempt to determine the relative amounts of the wild and mutant virus limiting dilutions (10^{-3} to 10^{-6}) were made and amplified. Even with re-amplification, in both cases where the mutation was found, it was not found as a single predominant species of DHBV, but rather, in conjunction with the wild-type species. Limiting dilutions were not successfully sequenced, so no data is available on the frequency of the mutation in relation to the wild-type population.

4.5.2. Description of Mutation

The double $\mathrm{T} \Rightarrow \mathrm{A}$ substitution at nt 731 and 732 would encode a silent nucleotide change at amino acid 13 (ATT \Rightarrow ATA), and a Tryptophan (W) to Arginine (R) substitution at amino acid $14(\mathrm{TGG} \Rightarrow \mathrm{AGG})$ of the Surface protein. Due to the overlapping reading frame this sequence change also affects the Polymerase protein in which a single substitution of Leucine (L) to Lysine (K) would occur at aa 188 (TTG \Rightarrow AAG). The mutation is described in more detail in Chapter 6 (p.150).

4.6. DISCUSSION

Samples were obtained from ducks exhibiting the five patterns of viraemia. For each duck individual samples for sequencing were chosen either before or after large changes in the viral DNA level in the serum. It was considered that these large fluctuations could have been the result of the selection of a mutant population that was either rapidly removed or was able to rapidly escape the immune response. The initial inoculum was sequenced several times to determine its composition and the heterogeneity of the viral population within it. There was never any evidence that the initial inoculum contained subspecies of virus, as all of the sequence data was quite clean, but the limited number of samples sequenced means that subspecies comprising less than $5-10 \%$ of the population would not be detected.

The stability of the DHBV genome is evident from the limited variation of sequence in the current study. This has also been demonstrated in vitro (Stevens et al., 1995), and is similar to neonatal infection in humans (Ridge et al., 1996; Cacciola et al., 2002), or in an immunocompromised host (Samuel and Kimmoun, 2003).

A region of DHBV that has been shown to be highly immunogenic to both the humoral and cellular arms of the immune system is the surface gene (Vickery et al., 1989; Vickery et al., 1999a; Vickery et al., 1999b). The surface gene encodes the surface protein, which would be expected to be under immune pressure from both the adaptive humoral and CMI arms of the immune response. This was the basis for investigating the surface gene for sequence changes. The other region investigated was the beginning of the core gene (preCore), which
is relatively conserved in the avihepadnaviruses and was considered to be stable enough to act as a sequencing control. The region of the preCore that was sequenced included the two Direct Repeats (DR) which although not absolutely essential are required for efficient replication. There were no changes discovered in the preCore region of the DHBV genome in this experiment.

The only mutation discovered in the surface gene was found in ducks (W13 and W15) and is located at nt 731 and 732 which is at the very start of the surface ORF gene (Figure 28 p.131). The overlapping genome of DHBV means that these nucleotides are also translated into the polymerase gene, which might affect the replicative capacity of the mutant genome.

The changes that the mutation would have on the surface ORF protein may decrease the immunological recognition of the protein, which would allow the virus to persist. The changes may also affect the attachment of the virion to the viral cell receptor, as the exact region responsible for attachment has not been fully mapped to the DHBV surface protein. Although a different region has been shown to be important in neutralisation (aa 83-107, as counted from the second ATG in the Surface ORF, or aal19-143 from the first ATG) (Sunyach et al., 1999), this does not exclude an additional role for our mutated region.

Figure 28. Location of the mutation in relation to the entire DHBV genome.
The relative location of the mutation (*) discovered in two ducks attempting to clear the DHBV infection. The mutation is a double substitution of $\mathrm{T} \Rightarrow \mathrm{A}$ at nt 731 and 732 affecting both the Surface and Polymerase genes.

The sequence variation of both the self-limiting acute and the fluctuating viraemia indicates that the change of sequence is associated with clearance of the virus, or at least attempted clearance. The exact origin of this mutation is difficult to discover, as direct PCR
sequencing of the initial inoculum was unable to discern any trace of the mutant, however this does not discount the possibility that it was in the starting population. As, even if the mutant was present in as much as 1% of the whole virus population finding evidence of the mutant would require several hundred sequencing reactions which is practically difficult to achieve. The Surface ORF gene of the starting inoculum was sequenced at least twelve times, with no changes discovered, this would indicate that if the mutant was present in the starting inoculum it was present in less than 10% of the total population.

An interesting consideration is that individual hepatocytes of the ducks liver may be coinfected with both the wild type and mutant DHBV genomes. It has been shown that heterogeneous mutant populations simultaneously exist in Korean hepatitis B patients (Keum et al., 1998), and also in persistent infection (Zoulim et al., 1996). As such it would be possible for virions to be produced that contain the less immunogenic surface protein, but the cell would still contain the replication efficient polymerase. More likely the co-infection would lead to the production of a virion that has both mutant and wild type surface antigen. This may lead to a situation in which the wild type antigen may allow antibody attachment but leave enough mutant antigen to bind to the viral cell receptor, and penetrate the cell and continue the infection. This reduced antibody attachment may also lead to antibodymediated endocytosis, which may then infect immune cells. The mutant virus could not be identified in the liver samples, but these were obtained a week after the mutant was found in the serum. Moreover the pool of DHBV DNA may have contained a large pool of variants, which would make it difficult to identify the presence of a minor species. Preferential export of one or two strains from this quasispecies, would yield a simpler picture in the circulation.

The preCore/Core gene represents what should be a relatively strictly regulated region, which is unlikely to exhibit too much sequence variation. The core gene was used as the basis of a control for the sequencing reaction, and was sequenced using the DHBV PreCf primer. The preCore region was only sequenced in one direction (forward), this was considered sufficient because it was relatively short PCR fragment (256 bp), which was well within the length of what should be clean sequence data.

Sequence variation associated with hepadnaviruses has been observed when they were under various pressures. One type of pressure that hepadnaviruses has been shown to escape from is drug therapy (nucleoside analogues). Drug escape mutants have been seen for human HBV (Bain et al., 1996; Ling et al., 1996; Bartholomeusz et al., 1997; Doo and Liang, 2001; Ono et al., 2001; Lok et al., 2002; Yu and Keeffe, 2003), and are generally associated with the YMDD motif of the polymerase protein, and caused by a small amino acid change (Ling et al., 1996). The same mutational changes in the duck polymerase produce drug escape
mutants that have the same properties as the human equivalents (Fischer and Tyrrell, 1996; Seigneres et al., 2001), again showing that the duck model reflects that which is found in humans (Zoulim et al., 2002). CMI escape mutations are also possible; most acute infections are associated with a multi-specific response, but if the response is much narrower and the virus is able to mutate it may escape the CMI response. Chronic patients that had a narrow CMI response were found to respond well to a wild-type e pitope of the PreCore protein; however, when the HBV genomes present in the serum were sequenced it was found that most had mutational changes. The changes found in this region were substitutions that were not as immunogenic as the wild-type in the individuals (Bertoletti et al., 1994).

The selection of a sequence variant is usually the result of selection of an advantageous clone within the quasi-species repertoire. The characterisation of quasi-species in chronic HBV infection is well documented for humans (Dong et al., 2002; Huangfu et al., 2002; Jeantet et al., 2002). The clones present within these quasi-species populations appear to be the result of prolonged persistence with the accumulation of mutations; that provide an immunological advantage. The effect of quasi-species in perinatal infection is not as clear, as it has been observed that HBV genomic heterogeneity may not be primarily involved in the evolution of the infection, or failure of neonatal HBV immunoprophylaxis (Cacciola et al., 2002). The effect of quasi-species during acute human infection is also unclear, as it is difficult to obtain sequential samples soon after infection. These quasi-species are obviously important in DHBV infection, as mutants were observed soon after inoculation, and were associated with attempted clearance.

Immune pressure plays an important role, but even vaccination and the presence of antibodies before infection is not absolutely protective as vaccine associated escape mutants have been discovered (Lu and Lorentz, 2003; Shizuma et al., 2003). These escape mutants can be associated with a little as a single amino acid change (Karthigesu et al., 1994; Yamamoto et al., 1994; Carman et al., 1996). Other antibody escape mutations have been produced in the duck model system in which a neutralising antibody was used to place pressure on the virus (Sunyach et al., 1997), this is similar to the situation in humans that are give prophylactic immunoglobulin (Shields et al., 1999).

The region of the DHBV genome that the mutational changes were found is at the very beginning of the Surface ORF, and also the spacer region of the Polymerase protein, which is in the overlapping reading frame. Further analysis and discussion of the theoretical consequence of the mutations effects are to be described in a later chapter (Chapter 6, p.150).

Understanding the evolutionary process of viral genetic changes would allow us to develop ways to accelerate viral clearance by treatment with novel therapeutic vaccines and/or antivirals and hence to drive this virus to extinction.

The mutation discovered was associated with attempted clearance, which would indicate immune pressure on DHBV by the host. It is interesting to consider that in one duck, (W13), the mutation is associated with a fluctuating viraemia which would indicate several fundamental shifts in the balance between the effectiveness of the immune response and the capacity of the virus to avoid the response. The second occurrence of the mutation was associated with Duck W15 in which the mutation appears during the initial rise of viraemia only to be replaced by the wild-type just before clearance. The mutational changes in the DHBV also affect the polymerase protein, which may effect the replicative capacity of the virus. It would be possible to determine if this mutation, which was selected by the host response to the infection affects the ability of Duck Hepatitis B Virus to survive in the host and to spread from duck to duck.

Because the mutant was associated with attempted clearance and was also absent from the liver, the next experimental stage was to determine the replication competency of the mutant genome in relation to the wild-type genome, by in vivo passaging.

5. STUDY OF THE INFECTIVITY OF DHBV VARIANT BY SERUM Transmission, and Direct DNA InJection

5.1. INTRODUCTION

The serum of hepadnavirus infected hosts can consist of quasispecies, in which more than one type of virion, is being produced by the host, at the same time. The occurrence of quasispecies is usually associated with persistent infection in which small mutations are accumulated over time. Results from the previous chapter indicate that the serum of infected ducks can consist of DHBV quasispecies of both wild-type and mutant genomes, and the appearance of quasi-species occurs soon after inoculation. The replicative capacity of many mutant genomes has been shown to be lower than that of the wild-type, and is not preferentially selected, except when under immune pressure.

Three different methods of initiating studies of viral variation are in common use: direct serum transmission, cloning, and direct DNA injection. Direct serum transmission is perhaps the simplest and most effective at examining the overall in vivo difference. From such studies the interactions of the complex biological systems can be observed as a whole. While serum transmission would be a more natural infection, the serum used may contain many quasi-species which would affect the immunological and replication capacity of the infection. Cloning and expression of the mutant proteins allows the individual components to be investigated, such as the effect that the mutation would have on the polymerase protein, if it affects initiation, elongation, etc. A curious phenomenon that has been observed is that injecting DNA directly into cells can transform the cells, and they can start to produce the encoded protein/s, with transformation of bacterium being known for a long time (Griffith, 1928). T his has been shown to function for several proteins at a time, and eventually a whole productive viral infection was achieved by direct DNA injection of a complete
hepadnavirus genome (Will et al., 1982). Thus the directly injected DNA was able to transfect the hepatocytes, which produced all of the required viral proteins to form infectious virions.

Hepadnavirus patent infections have resulted from ligation of a full length genome to itself which forms a covalently closed circular genome (similar to the bacterial plasmid) (Will et al., 1985), or ligation to another full length genome to produce a dimer (Will et al., 1983), of which a head to tail dimer will contain at least one complete copy of every gene.

HBV infection from direct DNA injection has been achieved in chimpanzees. Both dimerised and closed circular DNA of three different serotypes was injected intravenously, directly into the liver, and intramuscularly into a single chimpanzee, producing typical, mild self-limited, acute hepatitis. Development of $\mathrm{HBsAg}, \mathrm{HBeAg}$, and HBcAg antibodies was detected with usual kinetics. HBV DNA was detected in both the liver and serum during the acute phase of infection, and found to have similar restriction digestion patterns to the mixture inoculated. The DNA extracted from the liver differed significantly, when compared by southern blot analysis, to that of the material injected, indicating selective replication (Will et al., 1982).

Direct DNA injection has not only been shown to produce DHBV infection in vitro (Yang and Summers, 1998), but also in vivo and in vivo recombination (Sprengel et al., 1987). Again both dimerised and closed circular DNA were used, and both produced active infection. Restriction analysis showed that the progeny virus had the same pattern as the injected head-to-tail cloned dimer, and as the naturally occurring DHBV on which the cloned material was produced. The infectivity of the virus was tested by injection of the serum of the transfected ducks into naive ducklings, which also became infected, proving that the clone produced replication competent progeny virus in vivo. Dot blot and southern blot were used to analyse the liver and showed that cloned DHBV DNA had initiated a normal replicative cycle. The morphology of the natural and cloned viruses was also indistinguishable (Sprengel et al., 1984).

The molecular methods usually utilised for study of genomes require insertion of viral DNA into bacteria. This has many consequences: 1) firstly the DNA itself is slightly different from that found in eukaryotic cells in that it is methylated, which may change the physical shape of the DNA and thus affect regulatory properties, 2) the actual structure of the DNA is different because usually a linear strand of DNA is inserted into a plasmid, and this lacks many of the physical characteristics of virion encapsidated DHBV DNA, such as the
covalently linked terminal protein, and the nick-gap structure, and 3) it is devoid of associated proteins which may affect packaging.

Direct DNA injection provides a means in which a pure population of virus may be used to infect a host. In this study we used serum transmission and direct DNA injection to determine the relative replication and possibly immunologic efficiency of the wild-type and naturally occurring mutant versions of DHBV (Chapter 4, p.123), in baby ducks.

5.2. AIM

We hypothesise that the naturally occurring mutant is less able than the wild type to replicate in vivo, but that this does not preclude infectivity.
(1) To compare the transmissibility and kinetics of infection of the wild type virus with that of the naturally occurring mutant virus in vivo.

This would be achieved by:
(a) Passaging serum containing a mixture of the wild type and mutant virus and determine if this alters the outcome of infection.
(b) Producing an infectious PCR product of the wild type and mutant DHBV genome, which will allow the passage of the single species (wild type, or mutant) of virus to determine its replicative efficiency.
(c) Determining if mutations selected by the host response to infection affect the ability of DHBV to survive in the host and to spread from duck to duck.

5.3. Materials and Methods

5.3.1. Production of a Full length infectious DHBV PCR Fragment

Full length PCR amplification was carried out as previous (2.2.2.1, p.69), using primers DHBV_C2fP, and DHBV_CrP, which were 5' phosphorylated to enable ligation. This PCR reaction produces a full length copy of the DHBV genome. When ligated to either itself or other fragments it produces circular monomers, dimers, or multimers; of which approximately half should be head to tail dimers that contain a complete Open Reading Frame of all DHBV proteins. The PCR was performed on Phenol / Cholorform extracted serum, which was either used neat or diluted between 1:10 and 1:1000, such that it produced a bright distinct band without excessive smearing. The wild type DHBV PCR fragment was
obtained from the DHBV051094 serum pool, while the mutant virus PCR fragment was obtained from duck W13 (Day 42.8×10^{4} vge) serum sample of day 29 (see Figure 30, p.139).

Eight $25 \mu \mathrm{~L}$ full length PCR reactions were set up (2.2.2.1, p.69). The reactions were pooled, divided into 4 tubes, and PEG precipitated (2.2.2.5, p.71) (Figure 29, p.138). Upon electrophoresis a 3 kb fragment was produced as expected (Figure 29, p.138). Sequencing of this fragment was found to contain either pure wild type or mixture of mutant and wild type as originally seen (4.5.1, p.128). T he pellets were then resuspended in $10 \mu \mathrm{~L}$ of K lenow reaction mixture (Table 34, p.138), and incubated at $30^{\circ} \mathrm{C}$ for 15 mins . The four tubes were re-pooled and split into 8 tubes of $5 \mu \mathrm{~L}$ each, $5 \mu \mathrm{~L}$ of ligation reaction mixture added (Table 34 , p. 138), and incubated at $4^{\circ} \mathrm{C}$ or $15^{\circ} \mathrm{C}$ for 24 hrs or 8 hrs , respectively.

1x Klenow	Vol ($\mu \mathrm{L})$
10x Buffer	1
Klenow $(5 \mathrm{U} / \mu \mathrm{L})$	1
$\mathrm{dH}_{2} \mathrm{O}$	8

1x Ligase	Vol ($\mu \mathrm{LL})$
10x Buffer	1
T4 DNA Ligase $(400 \mathrm{U} / \mu \mathrm{L})$	1
dH 2 O	3

Table 34. Klenow and Ligase Reaction Mixture.

The eight tubes were re-pooled, and several DNA species were seen following electrophoresis on an agarose gel (Figure 29, p.138). The original 3kb unligated fragments remain, while new 6 , and 9 kb fragments representing dimers, and trimers can been seen, as can a heavy smear near the well, indicating multimers. Also seen are smaller bands that may represent circular monomers and supercoiled circular monomers. The DNA concentration of the wild type and mutant multimer mixture was found to be $12.63 \mathrm{mg} / \mathrm{mL}(1.01 \mathrm{mg} / 80 \mu \mathrm{~L})$, and $11.50 \mathrm{mg} / \mathrm{mL}(0.92 \mathrm{mg} / 80 \mu \mathrm{~L})$, respectively, as determined by spectrometry $(2.2 .4$, p.73).

Figure 29. Full length PCR product and Multimer mixture.
ml : marker1, 1: Peg purified, 2: Full length PCR product, m2: marker2, 3: Multimer mixture, 4: Peg purified PCR product.

5.3.1.1. Injection of DHBV DNA

Fifty micrograms of dextran sulphate was added to $50 \mu \mathrm{~g}$ of the multimer mixture and made up to $200 \mu \mathrm{~L}$ with PBS. This was directly injected into three sites of the day old duckling liver, using a 1 mL syringe with a 26 G needle. This was equivalent to approximately 1×10^{13} vge.

5.4. EXPERIMENTAL PROTOCOL

5.4.1. Serum Passage Experiment

Serum from the Persistence/Clearance experiment - Chapter 3 (p.98) was directly passaged into ducklings. The wild type and mutant viruses were passaged directly by inoculation of ducklings with the serum containing both the wild-type and mutant genomes. Due to the limited amount of serum available; three samples from ducks W13, and W15 (Chapter 3, p.98), were selected: one wild type and two mutant. Serum from duck W13 (Day 42.8×10^{4} vge) on day 20 (found to only contain wild type virus), and on day 34 (found to contain the mutant virus), and serum from duck W15 (Day 42.8×10^{4} vge) on day 13 (mutant virus). The serum selected to be passaged relative to the viral kinetics of infection is highlighted (Figure 30, p. 139).

Figure 30. Passaged serum samples relative to viral kinetics of infection. Bluc= Wild type, Yellow= Mutant.

Two ducklings for each group were intraperitoneally injected on day 1 with $10 \mu \mathrm{~L}$ of the original serum which was diluted with PBS to $200 \mu \mathrm{~L}$ (Table $35, \mathrm{p} .140$). Serum, liver, and other organs were obtained on day 28, and were extracted for PCR analysis and sequencing.

The ducks of the Serum Passage experiment were kept for 1 month (28 days) and bled 9 times throughout this period (days $0,4,7,11,14,18,21,25$, and 28). Liver, spleen, pancreas, and kidney samples were obtained at euthanasia. Both serum and organ samples were subjected to dot blot hybridisation and PCR (both preS-S, and preC). Sequence data was also obtained from selected samples.

Original duck	Day		Type	vge	Ducks
W13	20	wt	2×10^{6}	2	W81, W82
	34	mut	$<2 \times 10^{5}$	2	B40, B47
W15	13	mut	5×10^{7}	2	G86/92, G94

Table 35. Ducklings of the Serum Passage experiment.
wt: wild type. mut: mutant virus. vge: viral genome equivalents injected into ducks. Both W13, and W15 were Day 42.8×10^{4} vge ducks.

5.4.2. DirectDNA1 experiment

The directDNA1 experiment was performed on 4 ducks (2 wild-type, 2 mutant) (Table 36, p.140). The ducklings were injected with $50 \mu \mathrm{~g}$ of DNA (as per $5.3 .1 .1, \mathrm{p} .139$), and euthanased 14 days later, when both serum and liver samples were obtained. The DNA from the serum and liver were extracted for dot blot hybridisation, PCR analysis, and sequencing.

Batch	Type	Ducks	Number
DirectDNA1	wild type	2	RH
		2	RB
			BH

Table 36. Ducklings of the DirectDNA1 experiment.
Note DirectDNA1 Transmission experiment involved the inoculation of serum from DirectDNA1 ducks ($\mathrm{RH}, \mathrm{RB}, \mathrm{BH}$, and BB) into three 1 day old ducklings each (5.4.2.1, p.140).

5.4.2.1. Passage of Serum from DirectDNA1 (DirectDNA1 Transmission experiment)

The DirectDNA1 Transmission experiment involved the serum from the DirectDNA1 experiment ducks, which was passaged into naïve 1 day old ducks. For each of the four DirectDNA1 ducks ($\mathrm{RH}, \mathrm{RB}, \mathrm{BH}$, and BB), three naïve ducks were intraperitoneally injected on day 1 with $100 \mu \mathrm{~L}$ of serum from day 14 of the DirectDNA1 experiment (Table 37, p.140). Two positive control ducks were injected with pooled DHBV positive serum, and two negative ducks were injected with PBS). Serum and liver samples from these ducks were obtained at day 14 , and subjected to dot blot hybridisation, and PCR (both preS-S, and preC). Sequence data was also obtained from selected samples.

| Batch | Type | | Serum | |
| :---: | :---: | :---: | :---: | :---: | Ducks | DirectDNA1 |
| :---: |
| Transmission |$|$

Table 37. Ducklings of the DirectDNA1 Transmission experiment.

[^0] ducks ($\mathrm{RH}, \mathrm{RB}, \mathrm{BH}$, and BB) into three 1 day old ducklings each (5.4.2.1, p.140).

5.4.3. DirectDNA2 experiment

The directDNA2 experiment was performed on 14 ducks (10 wild-type, 4 mutant) (Table 38, p.141). Essentially this experiment was a repeat of the DirectDNA1 experiment with larger numbers of ducks. The ducklings were treated as per the DirectDNA1 experimental protocol (5.4.2, p.140), the same multimer mixture was used as previous, it was stored at $-20^{\circ} \mathrm{C}$, as the in house PCR protocols restricted storage of the mixture to the PCR room where a $-70^{\circ} \mathrm{C}$ freezer was not available.

Batch	Type	Ducks	Number
DirectDNA2	wild type	10	dd2A, dd2B, dd2C, dd2D, dd2E, dd2F, dd2G, dd2H, dd2I, and dd2J.
	mutant	4	dd2O, dd2P, dd2Q, and dd2R.

Table 38. Ducklings of the DirectDNA2 Transmission experiment.

5.5. RESULTS

5.5.1. Passage of DHBV by serum

Of the six ducks in the Serum Passage experiment (Table 35, p.140), three died prematurely. Duck W82 died on day 3 of no definable cause and most likely a genetic defect. Ducks B40, and G94 died on day 18, also of no definable cause. Liver samples for each of these three ducks were still obtained. The dot blot and PCR data for the Serum Passage experiment have been graphed (Figure 31, p.142).

Several samples from ducks B47 (W13 mut), G86/92 and G94 (W15 mut) were sequenced (Figure 31, p.142), all were found to be wild type. Although W82 was found to be PCR positive in the liver, no sequence data could be obtained.

Figure 31. Graphic results for the Serum Passage experiment ducks.
Dot blot results are the plotted numerical value. PreS-S PCR results are indicated by data points: green= negative, red= positive. DNA Sequencing results are indicated by the Bluc dots, all samples tested were wild-type. $\mathrm{L}=$ liver, $\mathrm{S}=$ spleen, $\mathrm{P}=$ pancreas, $\mathrm{K}=$ kidney. Ducks W81 and W82 were injected with wild type serum while ducks B40, B47, G86/92,and G94 were injected with mutant serum (Table 35, p. 140).

5.5.2. DirectDNA1 experiment

Only one duck from the DirectDNA1 experiment was dot blot hybridisation positive: duck RH. T he PCR results for the liver and serum of the D irectDNA1 batch a re summarised (Table 39, p.143).

Original Duck	Duck	Dot blot		PreC PCR		PreS-S PCR	
		Serum	Liver	Serum	Liver	Serum	Liver
Wild type	RH	+	$+$	\#	\#	+	
	RB	-	-	\#	\#	-	-
Mutant	BH	-	-	\#	\#	-	-
	BB	-	-	\#	\#	-	-

Table 39. Summary of results for the DirectDNA1 experiment. \# PreC PCR produced multiple bands, which could not be interpreted.

Curiously, the PreC PCR produced multiple bands for all of the DirectDNA1 experiment ducks (Figure 32, p.143); bands of various sizes were observed (100-200, ~450-500, ~ 650 800 , and $\sim 1000 \mathrm{bp}$). The positive control produced the expected clean band at approximately 304bp.

Figure 32. Example of the multiple banding seen in the PreC PCR for the DirectDNA1 experiment. neg: DHBV negative duck serum. pos: DHBV positive duck serum producing a 304 bp PCR product.

Sequence data from the PreS-S region was obtained from serum and liver of duck RH, and was shown to be the wild type virus. No sequence data were able to be obtained from the PreC PCR reactions, even though several bands were cut out of the gel.

5.5.2.1. DirectDNA1 transmission experiment

Serum from each of the four ducks of the DirectDNA1 experiment was injected intraperitoneally into three ducklings. The results for ducks used in the DirectDNA1 passage experiment are summarised (Table 40, p.144).

Original Duck	Duck	Dot blot		PreC PCR		PreS-S PCR	
		Serum	Liver	Serum	Liver	Serum	Liver
RH	RH1			-	-		
	RH2	-		-	-		
	RH3			-	-		
RB	RB1	-	-	-	-	-	
	RB2	-		-	-		
	RB3	-	-	-	-	-	-
BH	BH1	-	-	-	-	-	-
	BH2	-	-	-	-	-	-
	BH3	-	-	-	-	-	-
BB	BB1	-	-	-	-	-	-
	BB2	-	-	-	-	-	-
	BB3	-	-	-	-	-	-
-	neg1	-	-	-	-	-	-
	neg2	-	-	-	-	-	-
	pos1						
	pos2						

Table 40. Summary of the DirectDNA1 passage experiment.
\#\#\# PreS-S DNA sequencing data obtained.

All of the PreC PCR were negative, except for pos1, and pos2 ducks. There was no indication of multiple bands as found in the original DirectDNA1 experiment.

The sequence data for the DirectDNA1 passage experiment was shown to be only wild type DHBV. No sequence data was available for RB1 liver, and RB2 serum.

5.5.3. DirectDNA2 experiment

The DirectDNA1 experiment was repeated with a larger number of ducks (Table 36, p.140). The same multimer mixtures were used, they had been stored at $-20^{\circ} \mathrm{C}$ as no lower temperature freezer was available. All ducks in the DirectDNA2 experiment were dot blot hybridisation negative for both serum and liver. Only one duck was found to be PCR positive (dd2R), and it was only positive for the PreS-S PCR. Unfortunately, no sequence data was able to be obtained from this sample.

5.6. DISCUSSION

Several examples of human hepatitis B virus strains with enhanced replication in vitro have been described, but whether this characteristic is a general phenomenon of the hepadnaviruses is unclear. In this study we compared the infection kinetics of a naturally occurring mutant with that of the wild type of the closely related duck hepatitis B virus. In vivo the variant was quickly outcompeted by the wild type even with the immature immune response.

The passage of DHBV by serum experiment included inoculating four ducks with serum that was known to contain a combination of wild type and mutant virus. Three of the four ducks developed a high-level viraemic infection, which when sequenced was found to only contain the wild-type form of the virus. The mutant form of DHBV was unable to e stablish an infection as a single dominant species, which would indicate that the wild-type has a much better complete package that is capable of establishing and maintaining a DHBV infection.

The stability of the DHBV genome is again evident from the passage of DHBV by serum study in which all of the sequence data obtained was again wild type. Other studies of hepadnaviruses have shown that reversion to more replicative efficient genomes happens quickly. An example of reversion can be seen in experiments involving the Direct Repeats, which produce aberrant replication when the $5^{\prime} \mathrm{DR}$ is eliminated (Loeb et al., 1991). However, if the 3^{\prime} DR is eliminated it was shown to rapidly convert to wild type (Condreay et al., 1992). This apparently occurred as a consequence of conversion of newly synthesised Relaxed Circular to cccDNA, which might then serve as a template for the synthesis of wild type viral RNAs.

The preCore mutant hepatitis B virus often emerges from a mixed infection with combined wild type and preCore mutant viruses, but mutant does not seem to be an evolutionarily favoured strain. Competition between an e antigen-defective mutant and wild type DHBV found that the preCore mutant replication was less active than wild-type duck hepatitis B virus, and it could be overgrown by wild-type virus during the course of coinfection (Chuang et al., 1994).

Study of a DHBV variant that had enhanced levels of cccDNA accumulation, was shown to be cytopathic in vitro, similar to a human HBV mutation species. In vivo liver damage caused by this variant (G133E) occurred only during the first 2 weeks pi, after which time cccDNA levels and liver histology returned to near normal despite continued virus replication (Lenhoff et al., 1999). A shift from mutant to wild type infection has been seen in a mixed infection of ducklings with G133E and a small amount of wild-type virus, the
wild-type virus was detected as the predominant genotype after recovery of normal liver histology. Recovery from liver damage in G133E-infected ducklings was due to the emergence of spontaneous noncytopathic revertants rather than to host suppression of virus cytotoxicity (Lenhoff et al., 1998). Acute liver injury may result from infection with a cytopathic hepadnavirus but that such viruses may be rapidly replaced by noncytopathic variants during persistent infection.

The frequency of revertants was found to by mixing the cytopathic virus with known amounts of a genetically marked wild-type virus, which was injected into ducklings. Virus outgrowth was accompanied by a co-selection of wild type and spontaneous revertants during recovery of the ducklings from the acute liver injury caused by death of the G133Einfected cells. The frequency of individual revertants in the selected noncytopathic virus population was estimated by determining the ratio of each revertant to the wild-type virus. Spontaneous revertants were found to be present at frequencies of 1 to 6×10^{-5} per G133E genome inoculated (Pult et al., 2001a), and a mathematical model was used to estimate that the mutation rate was 0.8 to 4.5×10^{-5} per nucleotide per generation. If this data is accurate for all other forms of reversions then it is most likely that the majority of the outgrowth that we observed was due to the selection of the wild type virus.

The failure to consistently produce a productive infection by direct DNA infection is summed up by the dot blot positive infection that produced multiple bands for the PreCore PCR. There is no evidence that there was a problem with the PCR assay as the positive, and negative controls were as expected, and other samples run at the same time (data not shown) were also shown to either be negative or have a single tight band. The multiple bands of the PreCore PCR of the DirectDNA1 ducks can be accounted for by non-optimal priming by the forward primer at various sites of the DHBV genome (Figure 33, p.147).

When the ligated full length DNA mixture enters the hepatocyte, in theory the DNA starts to produce an infection. This infection should be similar to the natural and experimental infection produced by virions. But as has been seen for other DHBV research, DNA recombination does occur and may have produced some form of defective genome, which leads to ineffective infection. Yang and Summers have shown "illegitimate replication" in which linear hepadnavirus DNA in primary hepatocyte cultures efficiently participates in nonhomologous recombination at its ends (Yang and Summers, 1995). The products of this recombination are (a) monomeric covalently closed circular DNAs (cccDNAs) with deletions and insertions around the site of joining, and (b) oligomeric forms in which monomers are joined near the ends in random orientation. Further research, utilising linear DHBV DNA with engineered insertions, demonstrated that they could infect hepatocytes in
vivo, and that these hepatocytes proceeded to carry out illegitimate replication (Yang and Summers, 1998). The PreCore region of the DHBV has been shown not to be essential for viral replication (Chang et al., 1987). If recombination altered one of the primer sites for the preCore PCR (by as little as a single nucleotide at the end of the primer), then it would explain the lack of the normal 304bp PCR fragment, and at the same time it is possible that non-optimal priming may occur producing the multiple bands seen in the PCR reaction (Figure 32, p.143). The difference in the multiple bands seen in the DirectDNA1 ducks may be due to random priming early in the reaction, which is multiplied by amplification during cycling. A small change to the nucleotide sequence may allow replication, producing a dot blot hybridisation positive infection, which is also preCore PCR negative, because the primers do not recognise the sequence.

Figure 33. Schematic of non-optimal PCR priming for the PreCore PCR assay.
Sites listed are where the last 5 bases of the 3^{\prime} end of the primer and the DHBV genome are exact. Red: normal priming and PCR fragment. Magenta: possible aberrant fragments (a tail to tail dimer would produce a $\sim 1 \mathrm{~kb}$ fragment from site 2542 ; other dimer forms would only produce fragments larger than observed). 2753: where the full length PCR starts and ends.

Duck RH, produced a dot blot positive infection that also had multiple bands for the PreCore PCR, and when serum from this duck was passaged, it again produced a dot blot positive infection in $3 / 3$ ducks (RH1, RH2, and RH3). However in the passaged ducks the infection was unable to produce any PreCore PCR positive bands. This would indicate that some form of defective replication was being carried out. It may be as simple as a change in the PreCore PCR priming site, and this mutation may lead to inefficient replication or a virus that is not able to infect new hepatocytes as well as the wild type. PreCore deficient mutants of DHBV have been produced and are replication competent, albeit at a reduced rate, and the current results appears to add evidence that a wild type preC region is not required for replication.

In the next chapter we investigate the theoretical implications of the mutation on replication, and the Surface protein, which would play a large role in the immune response to the mutant virus.

5.7. Section I Overview

When neonatal ducks are injected at 1,4 , and 7 days of age, five patterns of viraemia are evident: classic persistence, self-limiting acute, biphasic, fluctuating, and non-viraemic.

The variable outcomes may be due to the balance of the immune response and viral replication. Non-specific immunity is the main contributing host response in the first few days of infection. After about a week, specific immune mechanisms should be actively contributing to the immune response.

The biphasic pattern was only seen in ducks when injected at 4 , or 7 days of age, and was associated with an unsuccessful attempt at clearance of the virus. The biphasic pattern consisted of an initial spike of viraemia, in which viral DNA was only present for a few days, followed by a period of low level viraemia (which was only PCR detectable), lasting for a bout a w eek, a fter which viraemia r ebounded to p revious high levels. T he biphasic pattern is associated with reduction and subsequent rebound of viral DNA in the serum of several orders of magnitude, within a few days.

The rebound of viral DNA in the biphasic pattern is in the presence of the specific host immune response.

Key effectors of clearance may be to specific epitopes of DHBV.

The DHBV genome is highly conserved, with almost no change in the sequence throughout the course of infection. However, a double $\mathrm{T} \Rightarrow \mathrm{A}$ substitution mutation at nt 731 and 732 was found to be associated with two ducks that either cleared or were attempting to clear the DHBV infection. This mutation affects both the surface ORF and the polymerase protein.

The unsuccessful clearance attempt, in which the mutation was observed, consisted of several episodes. In each episode, the level of viral DNA in the serum increased, and subsequently decreased by several $\log _{10}$ within a few days. Indicating several shifts in the balance of the immune response, and viral replication. The second observation of the mutation, was seen in a self-limiting acute infection, in which the mutation was present during the initial viraemia, but absent just before clearance from the serum.

Attempts to transmit this mutation to baby ducks either by inoculation of serum, or by direct DNA injection were unsuccessful.

Injection of mixtures of the wild-type a nd mutant virions, produce an infection of p urely wild type virions, suggesting that the mutant genome is not as replication efficient as the wild type.

The lack of a detectable preCore region in the directDNA experiments confirms previous evidence that the preC region is not essential for replication.

Section II

6. Theoretical Modelling of the DHBsAG

6.1. AIMS

(1) To identify putative antigenic epitopes on the Surface ORF gene of DHBV and select the optimal fragments (peptides) for use in a lymphoblastogenesis assay.
(2) To model the difference between the wild type and the mutant virus described in Chapter 4.
(3) To compare the putative DHBV epitopes with those described for other hepadnaviruses
(4) To examine the similarity of the selected peptides to known proteins.
(5) To examine the possible effect of the mutation on the replicative capacity of the mutant virus.

6.2. EXPERIMENTAL DESIGN

The nucleotide sequence of the Australian DHBV strain was used for the Surface ORF gene and the Polymerase gene. Two forms of the genes were translated into their respective proteins; the wild type and the mutant form ($\mathrm{T} \Rightarrow \mathrm{A}$ double substitution mutation at nt 731 and 732), described in Chapter4 (p.123) were used for modelling purposes.

Several computer programs were used to determine models of the Surface ORF protein in terms of the Antigenic Index, Hydrophilicity, and Surface Probability. Similar models have been utilised in the study of HBV (Lambert et al., 1990; Berting et al., 1995). From these models the Surface ORF protein was divided into smaller peptides of 15-20 amino acids, for use in the lymphoblastogenesis assay.

The same parameters were also used to analyse possible effects of the amino acid substitution on the sAg of the mutant protein.

The peptides were then placed into several sequence similarity matching programs to seek any sequence homology with all other known proteins.

The mutation was also mapped onto the Polymerase gene to determine what, if any, effect the mutation might have on its function.

6.3. Materials and Methods

6.3.1. Sequence Source

The nucleotide source sequence was obtained from the NCBI GenBank (accession number AJ006350) (Triyatni et al., 2001). A second sequence was produced from the original wild type by changing nucleotides 731 and 732 from T to A to produce a mutant genome. The location of the proteins and the mutation can be seen in Figure 34 (p.151).

Figure 34. DHBV genome showing location of the proteins and the mutation.
The translated proteins were obtained by use of the computer program Flip ORFs (ANGIS), which translates locates ORFs by finding regions that code for at least 20 amino acids in a row. The DNA sequence was translated into a protein sequence, by the computer program Translate (GCG), which uses a codon translation table to convert the three nucleotide codon sequence into the protein sequence. The Surface ORF protein was translated for both the wild type and mutant form of DHBV.

6.3.2. Theoretical Modelling

To assess the secondary structure of both the wild type and mutant forms of the Surface ORF proteins, several algorithms were used. PeptideStructure (GCG), uses the original ChouFasman method to predict helices, sheets, and turns (Chou and Fasman, 1978). It resolves overlapping regions of alpha-helices and beta-sheets with the overall probability procedure introduced by Nishikawa (Nishikawa, 1983). This same procedure also locates turns that are not in conflict with other secondary structures. The Chou-Fasman rules are slightly modified
as follows: Sheet: a minimum length of five residues is required. Secondary structure was also predicted according to a slightly modified method of Robson-Garnier, in which the minimum length of an alpha-helix was six and of a beta-sheet, four (Garnier et al., 1978). Regions without adequate predictions are replaced by the conformational state of the next best probability.

6.3.2.1. Hydrophilicity

Hydrophilicity values for individual amino acids were calculated using the well-established algorithm (Kyte and Doolittle, 1982). The algorithm was used to assess the hydrophilic character of individual amino acids from the target sequence with a method that utilises predetermined hydrophilicity values for individual amino acids based upon water-vapour transfer free energies. It also uses empirical data based on the partitioning of individual amino acids to the exterior of the proteins with known structures. The aggregation of nonpolar side chains in the interior of a protein is favoured by the increase in entropy of the water molecules that would otherwise form ordered "cages" around the hydrophobic groups. The greater the hydrophilicity of a side chain, the more likely it is to occupy the exterior of a protein and vice versa. A window of 7 residues was used to lower the noise without smoothing out significant peaks. This effect is the major determinant of native protein structure.

Two computer programs PeptideStructure (GCG) and Grease (Pearson and Lipman, 1988) were used to obtain the hydrophilicity results, and the results averaged.

6.3.2.2. Surface Probability

The propensity of amino acids to reside exposed on the surface of the protein was modelled using the Emini algorithm (Emini et al., 1985), which was developed to assess surface probability. P redictions a re based on values for individual a mino a cids that have in turn been derived from experimentally determined side-chain solvent accessibility values (Janin and Wodak, 1978).

6.3.2.3. Antigenicity

The antigenic index (AI) is a measure of the probability that a region is antigenic. Antigenicity is related to peptide surface features that are hydrophilic and have a high degree of exposure to the surrounding aqueous fluid. These regions have a high number of turns. It combines weighted measures of several predictions of secondary structure: hydrophilicity, surface probability, flexibility, Chou-Fasman values (Chou and Fasman, 1978), and RobsonGarnier values (Garnier et al., 1978). The output of the algorithm is the result of a linear antigenic surface contour of the protein (Jameson and Wolf, 1988).

6.3.2.4. Sequence Similarity Searching

Several computer programs were used for searching sequence databases for similar sequences. BlastP (Altschul et al., 1997), was used to search a protein sequence database with a protein query sequence, while PSI-Blast (Altschul et al., 1997) was used to search for distant protein homologs in a sequence database by iterated profile search. The FastA (Pep) computer program (Pearson and Lipman, 1988) scans a protein or nucleotide sequence database for sequences similar to the input sequence. Ssearch (Pearson and Lipman, 1988) searched a sequence database with a query sequence.

6.4. Results

6.4.1. Determining Regions of Theoretical Antigenicity and selection of peptides Graphs of antigenicity, hydrophilicity and surface probability were produced (Figure 35, p.154). The peaks of antigenicity, hydrophilicity, and surface probability from the computer modelling output were correlated to estimate regions of high immunogenicity, and used to divided the Surface ORF into smaller peptides of 15 or 20aa.

The region of approximately 110-180aa demonstrates high values and peaks in all models, and therefore has the highest likelihood of inducing a helper immunogenic response. Subsequently shorter 15 aa peptides with 5 aa overlaps with both the previous and subsequent peptide (Table 41 p .155) were then derived for this stretch of sequence. Although most CTL epitopes are between 8 and 12 amino acids, the use of peptides of 15 amino acids long is based on antigen presentation in which peptides of up to 15 aa are processed and incorporated into the MHC complex (Niedermann et al., 1996).

The very start of the Surface ORF gene contained the T to A double substitution mutation (nt 731 and 732), which would encode a single amino acid change of Tryptophan (W) to Arginine (R) (aa 14). Two peptides were produced for this region, a wild type peptide, 7-14W-27 (ISGYLNIWLHSKASLIIGNFN) and a mutant peptide, 7-14R-27 (ISGYLNIRLHSKASLIIGNFN).

(c) Surface Probability

Figure 35. Computer Modelling of the DHBV Surface gene ORF.
(a) Antigenicity: (Jameson and Wolf algorithm)
(b) Hydrophilicity: (Kyte and Doolittle algorithm)
(c) Surface Probability: (Emini algorithm)

Peptide	Pize		Position
$1-15$	15	$1-15$	Peptide Sequence
$7-14 W-27$	21	$7-27$	ISGYLNIWLHSKASLIIGNFN
$7-14 \mathrm{R}-27$	21	$7-27$	ISGYLNIRLHSKASLIIGNFN
$22-41$	20	$22-41$	IIGNFNTLSSNIKFLMGQQP
$37-56$	20	$37-56$	MGQQPAKSMDVRRIEGGELL
$54-73$	20	$54-73$	ELLLNQLAGRMIPKGTVTWS
$71-90$	20	$71-90$	TWSGKFPTIDHLLDHVQTME
$87-106$	20	$87-106$	QTMEEVNTLQQQGAWPAGAG
$101-120$	20	$101-120$	WPAGAGRRLGLTNPAPQEPP
$116-130$	15	$116-130$	PQEPPQPQWTPEEDQ
$126-140$	15	$126-140$	PEEDQKAREAFRRYQ
$136-150$	15	$136-150$	FRRYQEERPPETTTI
$146-160$	15	$146-160$	ETTTIPPTSPTPWKL
$156-170$	15	$156-170$	TPWKLQPGDDPLLEN
$166-180$	15	$166-180$	PLLENKSLLETHPLY
$176-195$	20	$176-195$	THPLYQNPEPAVPVIKTPPL
$191-210$	20	$191-210$	KTPPLKKKKMAGTFGGILAG
$210-229$	20	$210-229$	GLIGLLVGFFLLIKILEILR
$229-248$	20	$229-248$	RRLDWWWISLSSPKGKMQCA
$248-267$	20	$248-267$	AFQDTGAQISPHYAGFCPWG
$267-286$	20	$267-286$	GCPGFLWTYLRLFIIFLLIL
$287-306$	20	$287-306$	LVTAGLLYLTDNMSIILGKL
$307-326$	20	$307-326$	QWESVSALFSSISSLLPSDQ
$327-346$	20	$327-346$	KSLVALMFGLLLIWMTSSSA
$347-366$	20	$347-366$	TQTLVTLTQLATLSALFYKN

Table 41. Surface ORF gene peptides.
Peptide 7-27 has a wild type and mutant version called 7-14W-27 and 7-14R-27 respectively. The difference is indicated in bold (W to R substitution). Overlap with previous peptide is indicated in light font. Size and position are indicated as amino acids.

6.4.2. Comparison of Wild type and Mutant Surface ORF gene

When the output from the computer modelling predictions of both the wild type and mutant Surface ORF gene are overlaid onto the same graph only a slight difference is apparent (Figure 36 p .156).
(a) Antigenicity

(b) Hydrophilicity

(c) Surface Probability

Figure 36. Differences in the Computer Modelling of the wild type and mutant DHBV Surface ORF gene.
(a) Antigenicity: (Jameson and Wolf algorithm)
(b) Hydrophilicity: (Kyte and Doolittle algorithm)
(c) Surface Probability: (Emini algorithm)

The red line indicates the modelling difference of the mutant.

6.4.3. Sequence Similarity Searching

All of the peptides of the Surface ORF protein were submitted to the various computer programs and compared with the sequences in the databases. All of the peptides were found to be s imilar to other DHBV species. M ost were then found to be decreasing related to Snow Goose, Crane, Heron, and Stork hepadnaviruses, respectively.

6.4.3.1. Hepadnavirus relationships

Peptides 1-15, 7-14W-27, 7-14R-27, 22-41, and 166-180, were only found to be related to DHBV. Peptides 210-229, 229-248, and 267-286, were found to be slightly related to the human HBV envelope protein.

Table 42. Sequence similarity of the peptides from the Surface ORF gene.
NB: The numbers indicate the ranking of similarity. (1 the greatest similarity, 2 less, and so on, equal numbers indicate an equal similarity). AGS: Arctic Ground Squirrel. GS: Ground Squirrel.

6.4.3.2. Other relationships

Peptide 176-195 was found to have similarity to a rearranged T-cell Receptor (TcR) of a murine cytotoxic T lymphocyte (Chien et al., 1984; Saito et al., 1984b) (SwissProt TCA_MOUSE P01849) and a human cytotoxic T lymphocyte (Schneider et al., 1977) (SwissProt TCA_HUMAN P01848). Other rearrangements of the murine TcR were
previously described (Saito et al., 1984a), the TcR was sequenced from the alloreactive CTL clone 2C, of BALB.B origin and specific for products of the D end of BALB/c H-2 complex (d haplotype) (Kranz et al., 1984). The human TcR was isolated from the human leukaemic T-cell line Jurkat. In both the human and murine TcR the similarity occurred in the beginning of the C region of the TcR (Figure 37, p.158), the human was further characterised into the alpha subunit (Yanagi et al., 1985).

Figure 37. Sequence similarity of peptide 176-195 with a Human and Murine TcR (Sequence and Position).
The location of the sequence similarity of the central amino acids of peptide 176-195 on the murine TcR is indicated by the red dot in the schematic diagram of an Antigen Presenting Cell (APC) and a T-cell. It is located at the start of the Constant (C) region; V: the variable region. Black square: Peptide. red: Identical amino acids. Yellow: Similar amino acids.

Peptide 210-229 was found to have similarity to a peptide of the bacterium Streptococcus agalactiae serotype III (GenBank Q8E3S), and V (GenBank Q8DY59). Peptide 210-229 overlaps a region in human HBV that contains both a CD 4 and CD8 epitope (Figure 48, p.167). The similarity is demonstrated diagrammatically (Figure 38, p.158).

```
Peptide 210-229 : 1 GLIGLLVGFFLLIKILEILR 20
    ::-.::..-::
Q8E3S5 & Q8DY59 : 84 GLLGLMIGFFAKKLAIQLSG 103
    :: : :::
Human HBV :184 PLLVLQAGFFLLTKILEILR 204
```

Figure 38. Sequence similarity of peptide 210-229, Streptococcus agalactiae and human HBV.
Red: Identical amino acids. Yellow: Similar amino acids.

6.4.4. Surface Sequence alignment for the Hepadnaviruses

The sequence of the PreSurface protein was obtained from Embank for several hepadnaviruses and aligned with ClustalW, and PileUp (11.6.1, p.A42). From the alignment it is obvious that there are differences in the PreSurface region (Figure 39, p.159). The PreS region is considered to provide the specificity of the viral attachment factor (Chouteau et al., 2001).

Figure 39. Sequence alignment of the PreSurface protein of several Hepadnaviruses. Note Black boxes indicate peptides that are conserved in all hepadnaviruses. Grey boxes indicate conservation in most of the hepadnaviruses.

From the sequence alignment a phylogenetic tree can be produced for the surface protein (Figure 40, p.160), which is closely related to trees produced using the polymerase protein, and complete genomes (data not shown).

Figure 40. Phylogenetic tree of the PreSurface protein of several Hepadnaviruses.

6.4.5. Polymerase Sequence alignment for the Hepadnaviruses

The sequence of the Polymerase protein was obtained from Embank for several hepadnaviruses and aligned with ClustalW, and PileUp (11.6.1, p.A42) (Figure 39, p.159). The PreSurface protein overlaps the Polymerase protein from approximately aa 175 to 541 for the DHBV genome.

6.4.6. Mapping the mutation to the DHBV genome

The double $\mathrm{T} \Rightarrow \mathrm{A}$ substitution at nt 731 and 732 would encode a silent nucleotide change at amino acid 13 (ATT \Rightarrow ATA), and a Tryptophan (W) to Arginine (R) substitution at amino acid 14 ($\mathrm{TGG} \Rightarrow \mathrm{AGG}$) of the Surface protein. Due to the overlapping reading frame this sequence change also affects the Polymerase protein in which a single substitution of Leucine (L) to Lysine (K) would occur at aa 188 (TTG $\Rightarrow \mathrm{AAG}$). The location of the mutation can be seen on the DHBV genome (Figure 42, p.162).

Other non-coding sequences that serve as attachment sites for various enzymes and proteins, are not found in the region of DHBV between nucleotides 730 and 735 , which would indicate that replication should not necessarily be affected. It is interesting to note that there is a TATA box (nucleotide sequence TTTATA) approximately one hundred nucleotides before the predicted start of the DHBV Surface protein, which is upstream of the start of the Surface ORF. The TATA box is associated with the start of translation, but this does not however exclude the full ORF from being translated into a protein.

Figure 41. Sequence alignment of the Polymerase protein of several Hepadnaviruses. Note Black boxes indicate peptides that are conserved in all hepadnaviruses. Grey boxes indicate conservation in most of the hepadnaviruses. PreSurface protein overlaps the Polymerase protein from approximately aa 175 to 541 for DHBV.

Figure 42. Mapping of the mutation to the DHBV genome.
Turquoise: start of the Surface ORF gene. Yellow: wild type. Red: mutant. Green: Predicted start of translation of the Surface protein.

It is interesting to note that DHBV does not make use of the usual non-coding regions that are associated with transcription in vertebrates in general. The lack of a well established Kozak sequences at the start of any of the ORF demonstrates this very clearly. The Kozak sequence is the nucleotide sequence that is from -6 of the ATG to +4 and is usually GCCACCatgG (Kozak, 1981; Kozak, 1987). Although this is generally considered to be required for transcription, the sequence is not absolutely rigidly required, as it has been shown that the +4 nucleotide may be substituted (but the substituted nucleotides are not as efficient as the G) (Kozak, 1997). The original Kozak sequences were associated with proteins that were expressed in abundance and thus required extremely efficient transcription, however many proteins that are being discovered are more tightly regulated and/or do not need to be transcribe as efficiently (Kozak, 1996). As such, care must be taken when interpreting theoretical modelling of proteins and their expression, as there are no simple absolute rules governing the processes.

6.4.7. Polymerase protein in relation to the Surface protein

The Polymerase gene overlaps the entire Surface gene. The Polymerase protein (Kaplan et al., 1973; Sprengel et al., 1985), consists of several regions of specific function (terminal protein, spacer reverse transcription, and RNaseH) (Fourel et al., 1987). The mutation is found in the spacer region of the Polymerase (Figure 43, p.163). The spacer region does not appear to have any function; as large insertions into this area do not effect replication (Chang
et al., 1990), and the only other point of interest is that it contains a protease cleavage site, which has yet to be shown to be physiologically important (Lin et al., 1995).

Figure 43. Location of the mutation in relation to the Polymerase protein. green: Polymerase protein. Blue: Surface protein. (*) location of the mutation. TP: Terminal Protein region. RT: Reverse Transcriptase region. S: Surface region - note that the PreS protein includes both the PreS and S regions.

There are several functionally essential regions of the Reverse Transcriptase section of the Polymerase protein that are conserved in many hepadnaviruses and overlap with the end of the Surface gene (Figure 44, p. 163).

Figure 44. Conserved regions of the Polymerase protein and their relation to the end of the Surface protein.
Yellow: conserved regions of the Polymerase protein (Chang et al., 1990). Green: peptide 287-306. Red: peptide 307-326.

6.4.8. Mapping of Antibody Responses to the Surface gene.

The surface proteins of the Hepadnaviruses tend to have distinct PreS regions, while more conservation is observed in the S region. The known antibody epitopes for several hepadnaviruses are shown on a sequence alignment (Figure 45, p.164) and in relation to the computer models of antigenicity, hydrophilicity, surface probability (Figure 46, p.165).

Light Blue: Surface ORF protein. Dark green: Known DHBV Antibody Epitopes - both naturally occurring (Chassot et al., 1994), and Neutralising MAb epitopes (Yuasa et al., 1991; Chassot et al., 1993). Yellow: Position of peptides selected for this study. M: Predicted start of translation of the PreS protein, and S respectively.

Figure 46. Known Antibody epitopes in relation to Computer Modelling of the DHBV Surface ORF gene.
(a) Antigenicity: (Jameson and Wolf algorithm), (b) Hydrophilicity: (Kyte and Doolittle algorithm), (c) Surface Probability: (Emini algorithm). The Dark green line indicates known DHBV antibody epitopes.

6.4.9. Mapping of CMI Responses to the Surface gene.

The surface proteins of the Hepadnaviruses tend to have distinct PreS regions, while more conservation is observed in the S region (Figure 39, p.159). The known CMI epitopes for human HBV are shown on a Surface protein sequence alignment with DHBV (Figure 47, p.166), and in relation to the computer models of antigenicity, hydrophilicity, surface probability (Figure 48, p.167).

| AusDHBV_S : EVNT--LQQQGAWPAGAGRRLGLTNPAPQEPPQPQWTPEEDQKAREAFRR | $: 138$ |
| :---: | :---: | :---: |
| HBV_env $:$ GPGFTPPHGGLLGWSPQAQGILTTVPAAP-PPAST----NRQSGRQPT $: 106$ | |
| T PA PP | |

AusDHBV_S : YQEERPPETTTIPPTSPTPWK----LQPGDDPLLENKSLLE--THPLYQN : 182
HBV_env : PISPPLRDSHPQA-- QWNSTTEHQALIDPRVRGLYFPAGGSSSGTVNPV : 154
MOWNSTTFHQALIDP

AusDHBV_S	PEPAVPV--IKTPP-LKKK1	FGGILAGLIGLLVGFFLLIKILEILR	: 229
HBV_env	PTTASPISSIFSRTGDPAQN	ENTTSGFLGPLLVLQAGFELLTKILTIPQ	: 204
		FLLTKILTIPQ	
	P A P I	T G L L L GFFLL KIL I	

AusDHBV_S	$:$	RLDWWWISLSSPKGKMQCAFQDTGAQISPHYAGFCPWGCPGFLWTYLRLF	$:$	279					
HBV_env	$:$	SLDSWWTSLNFLGGAPTCPGQNSQSPTSNHSPTSCPPICPGYRWMCLRRF	$:$	254					
		LD WW SL	G	C	Q	S H	CP	CPG	W LR

Figure 47. Aligned Surface protein sequences showing known HBV CMI epitopes.
Red: MHC-II, CD4 epitopes. Blue: MHC-I, CD8 epitopes. Black: 'a' determinant of HBV. Yellow: Conserved regions in the Polymerase protein (Figure 44, p.163). Letters under the sequences indicate conserved amino acids. M: Predicted start of translation of the PreS protein, PreS2, and S respectively.

Figure 48. Known CMI epitopes in relation to Computer Modelling of the HBV Surface gene.
(a) Antigenicity: (Jameson and Wolf algorithm). (b) Hydrophilicity: (Kyte and Doolittle algorithm).
(c) Surface Probability: (Emini algorithm). The Dark Blue line indicates the CMI epitopes. Neutralising antibodies are directed against the ' a ' determinant located between aa 121 and 150 . Note the similarity of the overall pattern of the HBV computer model in relation to that for the DHBV Surface ORF protein (Figure 35, p. 154).

6.5. DISCUSSION

Overall, the S region of the large DHBV surface protein sequence resembles that of HBV and the other hepadnaviruses, however DHBV does not contain a homologue of the ' a ' determinant region (between HBsAg aa 284-336 Figure 47, p.166), which is the immunodominant area of the surface protein of the mammalian hepadnaviruses. The preS regions differ, as would be expected because the region is considered to contain the virus receptor, providing the high-level tissue and species specificity. Although sequence differences are apparent, it is likely that the overall conformation of the large DHBV surface protein resembles that of HBV and the other hepadnaviruses. This reflects their sharing the same functions in the virion structure.

Several immunodominant epitopes are shared by the two arms of the CMI response in human HBV infection (Figure 48, p.167), it is unknown whether this overlap exists in other hepadnavirus systems. These epitopes have been associated with both the MHC-I (CD4) and MHC-II (CD8) presentation pathways. It is however, possible that antibody responses associated with an event such as clearance, may in fact be surrogate markers of the T-cell response, which is actually producing the effect.

Phylogenetic analysis of the a mino a cid sequences of the surface (Figure 40, p.160), and polymerase proteins, show similar relationships amongst the hepadnaviruses, to that derived form the nucleotide sequences of the entire genome.

The two peptides that were shown to contain homology with non-hepadnavirus proteins are of interest (176-195, and 210-229). Peptide 176-195 has sequence homology with the TcR of a human and murine cytotoxic T lymphocyte, and this could provide an immune evasion mechanism for the virus. The significance of this similarity is currently unknown but could well be a mechanism in which DHBV is able to subvert and modulate the immune response directed against it. Peptide $210-229$ has sequence similarity to a protein produced by S. agalactiae, and this bacterium may be present in such things as the feed that was given to the ducklings. This homology may be advantageous because it mimics an antigen widely available in the environment. It is interesting that this DHBV region closely resembles that of human HBV, and may well have similar functional significance in the human infection.

The mutant virus does not appear to create a large conformational difference, in antigenicity, hydrophilicity, and surface probability, as the differences apparent in Figure 36 (p.156), are slight and unlikely to affect antibody production. Its effect may be more pronounced for the CMI response, which cannot be effectively modelled.

The mutant is unlikely to have a direct effect on replicative capacity because the mutation is in the spacer region of the DHBV polymerase. However it may affect regulation of replication as the region of the genome near the mutation was shown to be necessary for efficient replication. Template switching, which is required for synthesis of plus-stranded DNA, has been shown to require the region of nt 723-833 (Havert and Loeb, 1997).

6.6. CONCLUSION

These theoretical predictions need to be tested - by the ability of putative peptides of interest to induce a measurable CMI, and by the association with biological events.

7. Cell Mediated Immune Response to DHBV

7.1. InTRODUCTION

The recovery from hepadnavirus infection with its massive hepatocellular involvement (Jilbert et al., 1992) is usually attributed to the cellular arm of the immune response (Rehermann et al., 1996b; Tang et al., 2001). The effector response can involve either cytotoxic (Grandits et al., 1991), or helper T-lymphocytes (Hellstrom et al., 1985). The specificity of these responses is still being elucidated. Most work has so far concentrated on the cytotoxic response to the Core protein, as seen in humans (Mondelli et al., 1982), woodchucks (Menne et al., 1997), and by a lymphoblastic CMI response in ducks (Vickery et al., 1999a). CMI responses to HBsAg have been found in humans, associated with previous exposure, but the significance of DHBV surface CMI responses is unknown. Earlier work has shown that there is a good temporal relation between the appearance of anti-DHBS antibody and S-specific CMI response (Vickery et al., 1989; Vickery et al., 1999b).

The humoral arm of the immune response, in contrast, is responsible for immunity from infection. It has been shown that antibodies to the Surface protein provide effective immunity from duck hepatitis B infection (Vickery et al., 1989), although the role of antiDHB core antibody in the pathogenesis of infection remains unknown.

The persistence of HBV has been attributed to weak or negligible CMI in patients (Bertoletti et al., 1991; Missale et al., 1993; Nayersina et al., 1993; Rehermann et al., 1995). There is also evidence that suppresser T-lymphocytes can be found in patients with persistent infection (Barnaba et al., 1985), these suppressor cells have been found to inhibit the responsiveness other HBV specific lymphocytes.

Immunosuppressive drugs used in transplantations, have profound effects on hepadnavirus infection (Samuel and Kimmoun, 2003). Reactivation of hepadnavirus infection is a well
documented complication of cytotoxic or immunosuppressive therapy in asymptomatic HBV carriers (Vento et al., 2002), even in patients who are HBsAg negative (Nagington, 1977; Nagington et al., 1984). Its clinical manifestation include fulminant hepatitis (Kumagai et al., 1993) but generally a high level of viraemia coexists with little liver damage in these patients.

The striking effect of age on the pathogenesis of hepadnavirus infection is presumed to relate to the progressive increase in the effectiveness of CMI responses after birth.

Anti-DHBS antibody appears in conjunction with the S-specific CMI response, and the current study has revealed a mutation in the S gene which might be attributable to immune pressure. It was decided to extend these findings by dissecting the specificity of the lymphoproliferative response to DHBs.

The lymphoblastogenesis assay involves incubating mononuclear cells (which are generally T-cells), with a peptide. Incorporation of labelled thymidine is used to measure proliferation of cells which recognise the peptide. This technique has been previously used to determine the CMI response of vaccinated ducks to the core, and surface protein as a whole (Vickery et al., 1997; Vickery et al., 1999a). This assay is capable of determining the Th immune response, but not the Tc response.

It is interesting to note that in both humans and murine models, it has been found that several T-cell immunogenic epitopes are both CTL and T helper. Human T-cells from HBV vaccine recipients that expressed a short peptide from the amino terminus of HBsAg induced both a proliferative and cytotoxic response in hepatitis B-specific T-cells (Celis et al., 1988). In euthymic mice, HBcAg efficiently induces IgM and IgG antibodies, in spite of the absence of T-cells in nude mice, and also stimulates T-cell proliferation in vitro and helper T-cell function in vivo (Milich and McLachlan, 1986).

In this experiment synthetic peptides which had been selected on the basis of the theoretical modelling process, described in the previous chapter, were used to stimulate duck SMC purified from DHBV naïve, infected and immune ducks in a lymphoblastogenesis assay to determine the specific parts of the S ORF gene that are important in immunity to DHBV.

7.2. AIMS

(1) To determine the sAg immunodominant epitopes in immune ducks challenged with DHBV.
(2) To show whether chronically infected ducks have specific defects in their CMI response repertoire to sAg peptides.
(3) To determine if the T-cell immune response to the peptide from the mutant sAg is different from that of the corresponding wild type peptide.

7.3. Materials and Methods

7.3.1. Animals

The CMI response to DHBsAg peptides was tested in three types of ducks: naïve uninfected controls, protein vaccinated DHBV immune, and DHBV inoculated positive controls ducks. The animals used in this experiment are summarised (Table 43, p.172).

Group	Ducks	Number
Negative	24	P24P53, V2T, V2U, 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I
Vaccinated	15	G51, G53, G63, G99, P63, W45, V2J, V2K, V2L, V2M, V2N, V2O, V2P, V2Q, V2S
Positive	12	G531, G58, P631, G631, G72, G89, P72W48, V2R, W105, W106, W107, W111

Table 43. Ducks used to determine the CMI response to DHBV.

At euthanasia ducks were bled to purify PBMC (7.3.2.1, p.174), for whole blood counts (2.2.9.2, p.76) and DHBV DNA analysis from serum. Liver samples from all ducks were obtained at euthanasia and tested for DHBV DNA by dot blot and PCR. Small sections of spleen, liver, pancreas, and kidney were placed into 10% formalin and treated (Methods and Materials, 2.2.10, p.77) for later histological analysis.

7.3.1.1. Naïve uninfected Negative control ducks

Twenty one ducks (1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 2A, 2B, 2C, 2D, 2E, 2F, $2 \mathrm{G}, 2 \mathrm{H}, 2 \mathrm{I}$) were obtained from a DHBV negative flock at 6 to 8 weeks of age. Blood and tissue samples were obtained at euthanasia, which was within a week of arrival.

Three ducks were obtained as day-old ducklings and were maintained separately from other ducks until euthanasia at day 44 (V2T, and V2U) or day 70 (P24P53).

7.3.1.2. DHBV Immune ducks

Fifteen Ducks were immunised with an inactivated protein vaccine as described in Methods and Materials (2.2.11, p.77). These ducks were challenged with $100 \mu \mathrm{~L}$ DHBV200197 $\left(2.0 \times 10^{9}\right.$ vge) 2 to 6 weeks prior to euthanasia and harvesting of lymphocytes to maximise the chance of detecting the short lived duck CMI responses (Vickery et al., 1999b; Higgins et al., 2000; Tang et al., 2001).

The vaccine was prepared as described previously (Vickery et al., 1989). It contained complete native DHBsAg, and thus all the protein sequences used in the test plates.

Two vaccination regimes were used:
a) Six ducks (G51, G53, G63, G99, P63, and W45), were inoculated on days 10, 17, and 24 , with $15 \mu \mathrm{~g}$ of protein vaccine in TitreMax adjuvant im in two sites each time. They were bled twice per week post challenge, until euthanasia on day 70 when tissue samples were taken.
b) Nine ducks (V2J, V2K, V2L, V2M, V2N, V2O, V2P, V2Q, and V2S) were inoculated on days 7,14 , and 21 , initially with $10 \mu \mathrm{~g}$ of protein vaccine in PBS $i p$, while the second and third boosters were $20 \mu \mathrm{~g}$ of protein vaccine in TitreMax adjuvant im in two sites each time. They were bled at challenge, and prior to euthanasia on day 43-44 when tissue samples were also taken.

7.3.1.3. DHBV inoculated Positive control ducks

Twenty five ducks were infected with DHBV at 4 weeks of age. Twelve ducks were used for the positive control group for the CMI response (G531, G58, G631, G72, G89, P72W48, P631, V2R, W105, W106, W107, and W111). The other ducks were used for histology, and cell counts (G86, G511, G991, P17, P54, P57, P531, W34, W43, W48, W103, W139, and W451), and are described in more detail in Chapter 9 (p.226). Most ducks were inoculated with 2.0×10^{9} vge of DHBV from serum pool DHBV200197 (equivalent to $1^{1 D_{50}}$), while ducks G631, G72, G89, were inoculated with 2.0×10^{10} vge of DHBV from serum pool DHBV200197.

7.3.2. Lymphoblastogenesis assay

The lymphoblastogenesis assay was used to measure the lymphocyte response to mitogens and antigens and is schematically depicted in Figure 49 (p.174).

Figure 49. Schematic diagram of the Lymphoblastogenesis assay.

7.3.2.1. Purification of Peripheral Blood Mononuclear Cells (PBMC)

Blood (10 mL) was collected from the jugular vein into an equal volume of $10 \mathrm{IU} / \mathrm{mL}$ Heparin in PBS. The syringe was inverted several times to facilitate mixing and prevent localised clotting of the blood.

The blood/heparin mixture was placed into a sterile plastic Petri dish and aliquots of approximately 7 mL were layered onto 3 mL of Ficoll-Paque (Pharmacia, Uppsala, Sweden) and centrifuged at 1200 rpm for 25 min in a Super Minor centrifuge (MSE, England). The interface layer, containing the mononuclear cells was harvested, while the pellet, containing red blood cells, was discarded. The cells were then washed 3 times: each wash consisted of resuspending the cells in 10 mL media, followed by centrifugation at 1200 rpm for 10 min . After each wash the cells were re-suspended in approx. half the number of tubes, so that by the third wash there was a single pellet of cells. After the final spin the cells were resuspended in exactly 10 mL of media, counted and viability tested by exclusion of Trypan blue dye (2.2.9.1, p.76).

The cells were diluted to a concentration of 4.0×10^{6} cells $/ \mathrm{mL}$, and $200 \mu \mathrm{~L}$ of cell suspension (i.e. 2.0×10^{5} cells) was pipetted into the prepared tissue culture plates.

7.3.2.2. Purification of Spleen Mononuclear Cells (SMC)

After blood was taken for PBMCs, Valabarb (Jurox, Silverwater, Australia) was injected, using the same needle, until euthanasia. The ducks ventral abdomen was soaked in 70% ethanol, to reduce airborne feathers and down, prior to being plucked. The abdomen was again washed in 70% ethanol, opened and the spleen removed aseptically using a fresh set of sterile instruments. The spleen was sliced and briefly washed in medium (7.3.2.3, p.175) to remove some of the red blood cells still present in the spleen.

The spleen was then diced with scissors and gently passed through a 120 -mesh stainless steel sieve into approximately 50 mL of medium. Aliquots of 7 mL were layered onto 3 mL of Ficoll-Paque (Pharmacia, Uppsala, Sweden) and centrifuged at 1200 rpm for 25 min in a Super Minor centrifuge (MSE, England). The interface layer, containing the mononuclear cells, was harvested, while the pellet, containing red blood cells, was discarded. The cells were then washed, counted, and viability tested in the same manner as for PBMCs (7.3.2.1, p.174).

The cells were diluted to a concentration of 2.5×10^{6} cells $/ \mathrm{mL} .200 \mu \mathrm{~L}$ of cell suspension (ie. 5.0×10^{5} cells/well) was pipetted into the prepared tissue culture plates.

7.3.2.3. Tissue Culture Conditions

RMPI 1640 (Sigma, St. Louis, USA) was buffered with $2 \mathrm{~g} / \mathrm{L} \mathrm{NaHCO}_{3}$, and contained 100 $\mathrm{IU} / \mathrm{ml}$ benzyl-penicillin, $100 \mathrm{mg} / \mathrm{ml}$ di-hydrostreptomycin sulphate (both Sigma, St. Louis, USA) and was supplemented with 10% PDS (Pooled negative Duck Serum, 2.2.8, p.75) and 5\% FCS (CSL, Melbourne, Australia) (Vickery et al., 1997). A pool of DHBV negative duck serum (Methods and Materials, 2.2.8, p.75) was produced and used throughout the experiments, as was the same single batch of FCS.

Solutions of antigens or mitogens at 11 times the required concentrations were made up with media (7.3.2.3, p.175). $20 \mu \mathrm{~L}$ of the antigen or mitogen solution, (or $20 \mu \mathrm{~L}$ of media in the case of controls) were added to 6 wells of a 96 well flat-bottomed microculture plates (Nunc, Denmark). The trays could then be frozen for storage, for a maximum of two weeks, thawed and warmed up to RT before use. Freezing the trays prior to use did not influence the effectiveness of the antigens or mitogens prior to the addition of $200 \mu \mathrm{~L}$ of cell suspension, but allowed them to be prepared prior to cell harvesting.

The cells were incubated at $40^{\circ} \mathrm{C}$ (near duck body temperature), in an atmosphere containing $5 \% \mathrm{CO}_{2}$, and a relative humidity of 95%. The mitogenic and antigenic responses were measured after 3 and 6 days incubation respectively.

7.3.2.4. Mitogens

Used as a control of cell viability for the antigen-specific assay to determine if the harvested cells were capable of producing a response.

Lipopolysacharride (LPS, E.coli serotype 011:B4) (Sigma, L2630, St. Louis, USA) and Red mung bean Phytohaemagglutinin (PHA, Phaseolus vulgaris) (Sigma, L9132, St. Louis, USA), were dissolved in sterile $\mathrm{dH}_{2} \mathrm{O}$ to a concentration of $5 \mathrm{mg} / \mathrm{mL}$. Concentrations of 1,5 , and $10 \mu \mathrm{~g} / \mathrm{mL}$ where used for PHA, while concentrations of $1,5,10,20$, and $40 \mu \mathrm{~g} / \mathrm{mL}$ were used for LPS. Six replicates were used for each concentration of mitogen.

7.3.2.5. DHBV Surface Antigens

Computer modelling techniques were used to analyse several parameters: Hydophilicity, Antigenicity, and Surface probability. These parameters were used to divide the sAg into smaller segments of between 15-20 aa peptides that would be used in a lymphoblastogenesis assay. The Surface ORF gene was divided into 24 segments (Chapter 6, p.150). Twentythree peptides were synthetically produced, the final two segments (327-346 and 347-366) were not tested because there was difficulty in producing such hydrophobic peptides, and segment 7-27, was synthesised in two forms: a wild type (7-14W-27), and a mutant form (7-14R-27) (Chapter 4, 123).

The peptides (Auspep, Parkville, Australia), were dissolved in sterile $\mathrm{dH}_{2} \mathrm{O}$ to a concentration of $1 \mathrm{mg} / \mathrm{mL}$.

7.3.2.6. Radiolabelling and Harvesting of Cells

Cell were radiolabelled by the addition of $20 \mu \mathrm{~L}$ of media containing $0.5 \mu \mathrm{Ci}$ of methyl ${ }^{3} \mathrm{H}$ labelled thymidine (Amersham, Buckinghamshire, England) to each well. The cells were then incubated for 6 h before being harvested onto GF/C glass-fibre mats (Whatman, Maidstone, USA) using a semi-automated harvester (Skatron, Lierbyen, Norway).

The mats were air dried at RT overnight, the individual discs placed into 3 ml of Biodegradable Counting Scintillant (Amersham, NBCS104, Buckinghamshire, England) in plastic vials. The vials were then read in a 1214 Rakbeta Counter (LKB Wallac, Stockholm, Sweden), using the parameters detailed in Appendix 11.3 (p.A3).

The response was measured by ${ }^{3} \mathrm{H}$-labelled tritium uptake, measured in cpm . All cultures included unstimulated unlabelled and unstimulated labelled controls.

7.3.3. Response to Mitogens and Peptides

The response to mitogens and the peptides was determined in two ways, initially a simple method was used, while later a more powerful method was utilised. The latter significant P/N method, was also used for all CMI responses detailed in further chapters.

7.3.3.1. Initial analysis (>5000 $\mathbf{~ c p m}$)

A specific lymphoblastogenesis response to a peptide occurred when the mean cpm of stimulated labelled wells was $>5000 \mathrm{cpm}$ above the mean of the unstimulated labelled controls.

7.3.3.2. Final analysis (sig \mathbf{P} / \mathbf{N})

A specific lymphoblastogenesis response to a peptide occurred when the mean cpm of stimulated labelled wells was $>1000 \mathrm{cpm}$ above the mean of the unstimulated labelled controls and these means were shown to be significantly different by the Students t-test (2 tailed, 2 sample). This more powerful analysis of the data removes mathematically significant, but biologically insignificant responses.

7.3.3.3. Statistical Analysis

The Fisher's exact test was used to compare the number of vaccinated and negative control ducks that respond to each peptide. The difference in response to a peptide was considered to be significant if the P value was less than 0.05 .

7.4. RESULTS

7.4.1. DHBV DNA Analysis

7.4.1.1. Naïve uninfected Negative control group

All ducks (24/24) were dot blot hybridisation and PCR negative throughout.

7.4.1.2. DHBV Immune group

The protein vaccine was well tolerated with no apparent side effects or sequelae.

All ducks (15/15) were immune to challenge with 2.0×10^{9} vge of DHBV on day 29 , or 30 (59 days after the third vaccine inoculation). All ducks were dot blot hybridisation and PCR negative throughout; as such this group was successfully immunised against DHBV, using the protein vaccine.

7.4.1.3. DHBV infected control group

All but one (G531), of the twelve infected ducks tested for CMI response were viraemic at some point in the experiment. This duck and two others, (P72W48, and W106) were dot blot hybridisation negative in the liver at euthanasia. The other ducks (G58, G631, G72, G89, P631, V2R, W105, W107, and W111), were all viraemic and found to be DHBV positive in the liver at euthanasia, day 45 (V2R) or day 70 (G531, G58, G631, G72, G89, P72W48, P631, W105, W106, W107, and W111). The dot blot hybridisation and PCR results for the positive control group are tabulated (Table 44, p.178).

Duck	Days post inoculation												
	0-1	t	7-8	10-11	13-14	16-19	20.23	27	29.31	34	37-38	+0-43	L
G58	0	0	0		0	0	0		0			0	5
G531	0	0	0	0	0	0	0		0			0	0
P631	0	0	0	0	0	0	0		0			2	5
G72	0		3		5		0		1				5
G89	0		0		0		0		3				5
G631	0		0		0		0		5				5
P72W48	0	0			0	0	0	0	0	0	0		O
V2R	0					0							
W105		0			0	0	0	0	0	0	0	0	
W106		0			0	0	0	0	0	0	0	0	0
W107		0			0	0	0	0	0	0	0	0	
W111		0			0	0	0	1	2	1	1	2	

Table 44.
Tabulated dot blot hybridisation and PCR results for the Positive control ducks.
Dot blot results are the numerical value ($0=$ not detected ($\leq x 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, \quad 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, \quad 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, \quad 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}, \quad+=$ positive $\left.>1 \times 10^{7} \mathrm{vge} / \mathrm{mL}\right)$. Shaded blocks indicate DHBV PCR results: ($>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$), Hegative ($<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$), clear $=$ not tested. $\mathrm{L}=$ Liver.

7.4.2. Lymphoblastogenesis Assay

Ten millilitres of blood normally yielded between 1×10^{7} and 5×10^{8} viable PBMCs. On the trypan blue exclusion test the proportion of dead cells varied between 5 and 10% but was usually around 5% depending on the time required for processing.

The spleen yielded between 1×10^{7} and 2×10^{9} viable SMC. On the trypan blue exclusion test the proportion of dead cells varied between 5 and 20% but was usually around 10% depending on the time required for processing.

The full results for each individual duck are in the Appendix (11.9, p.A43).

7.4.2.1. Mitogen Results

Both SMC and the PBMC from all the negative control and immune ducks responded well to PHA stimulation in vitro demonstrating the viability of the purified cells. However, not all the cells that were able to respond to PHA were able to respond to LPS (Table 45, p.179).

All but one (duck P631) of the 12 DHBV infected ducks PBMC responded to PHA, but the response of SMC to PHA was depressed in 5 ducks (G531, G58, G631, P631, and W105). Despite the SMC poor response to PHA, the cells from these ducks (all but W105) were able to respond to antigenic stimulus demonstrating their viability. The SMC PHA depressed ducks showed several infection patterns; no detectable viraemia and liver negative (G531), PCR only viraemia and liver positive (G58, and W105), and both viraemia and liver positive (G631, and P631).

The response to LPS was even poorer, with only two ducks SMC (ducks P72W48, and W111), and 2 different ducks PBMC (ducks W105, and W106) responding. LPS is apparently less effective than PHA, because it is only a really potent inducer of lymphoblastic responses in mice.

Overall, the naïve and vaccinated groups responded significantly better than the infected positive control group in both SMC PHA ($\mathrm{p}=0.002, \mathrm{p}=0.010$, respectively), and SMC LPS ($p<0.001, p=0.006$, respectively). There was no significant difference between the PBMC results for either of the three groups.

Table 45. Summary of CMI response of Ducks to Mitogens (significant P / N).
\square Positive response. - negative response. Empty shaded box (${ }^{(1)}$) not tested.

7.4.2.2. Antigen Response

7.4.2 2. 1. Initial method of analysis

The results from the protein vaccinated and negative control ducks for the greater than 5000 cpm change have been summarised, Table 46 (p.181), and Table 47 (p.182), and the statistical a nalysis of the greater than 5000 cpm increase h as b een s ummarised (Table 48 , p.183).

From the initial interpretation of the lymphoblastogenesis assay, both the wild type and mutant form of peptide 7-27 (7-14W-27, and 7-14R-27), as well as peptides 37-56, 71-90, 101-120, 229-248 and 307-326, were found to be significant in ducks immune response to DHBV. Peptide 267-286, although not significant ($\mathrm{P}<0.09$) in this experiment, might also be important.

From this initial analysis of the results seven peptides were selected to be incorporated into a DNA vaccine: $1-15,7-14 \mathrm{~W}-27,71-90,101-120,229-248,267-286$, and 307-326. Peptide $1-$ 15 was included because it added only an extra 6 amino acids to the sequence (the end overlaps with peptide $7-14 \mathrm{~W}-27$), and was intended to be a spacer region for the DNA vaccine (explained in Chapter 8, p.200).

Note that peptide $37-56$ was not included in the DNA vaccine because at the time of the initial interpretation of the results, the statistical data for this peptide was lacking.

Increase of $>5000 \mathrm{cpm}$																			
Peptide	$\overline{\mathrm{c}_{3}}$	$\stackrel{N}{6}$		B	3	$\frac{10}{8}$	$\overline{\mathrm{N}}$	$\stackrel{Y}{\mathrm{~N}}$	5		\sum_{8}^{7}	K	¢	$\stackrel{4}{5}$	-	\%	Peptide	¢	$\xrightarrow{\sim}$
1-15											+	+					1-15	2	13
7-14W-27	$+$			+		$+$	+	+	+		+	+	$+$	$+$			7-14W-27	10	5
7-14R-27	$+$			$+$	+	+		$+$	+			+		+			7-14R-27	8	7
22-41		$+$						$+$									22-41	2	13
37-56				+				$+$						$+$			37-56	3	12
54-73				+													54-73	1	14
71-90	+							+	+								71-90	3	12
87-106				+					$+$								87-106	2	13
101-120				+							+	+	+	+			101-120	5	10
116-130	+			$+$													116-130	2	13
126-140														+			126-140	1	14
136-150							$+$										136-150	1	14
146-160				+													146-160	1	14
156-170																	156-170	0	15
166-180				+													166-180	1	14
176-195				+													176-195	1	14
191-210																	191-210	0	15
210-229	+					+		$+$				+		+	+		210-229	6	9
229-248	+			+		+			+		+			+	+		229-248	7	8
248-267	+								\pm					$+$			248-267	3	12
267-286				+					+					+	+		267-286	4	11
287-306															$+$		287-306	1	14
307-326	$+$			$+$	+						$+$				+		307-326	5	10
SMC PHA	+	$+$	+	+		+	+	+	+		$+$	+	+	+	+	$+$	SMC PHA	15	0
SNIC LPS	+						+	$+$	+			+		+	$+$		SMC LPS	7	8
PBMC PHA	+	+	+	$+$		+		\%									PBMC PHA	5	1
PBMC LPS												-					PBMC LPS	0	6

Table 46. Summary of CMI response of Challenged Immune ducks to Surface ORF peptides (>5000cpm increase).
Resp: Number of ducks that responded (increase of $>5000 \mathrm{cpm}$ over background) (+). NonR: Non-responders (blank box). Empty shaded box (漛): not tested.

Table 47. Summary of CMI response of Negative control ducks to Surface ORF peptides (greater than 5000cpm increase).
Resp: Number of ducks that responded (increase of $>5000 \mathrm{cpm}$ over background) ++). NonR: Non-responders (blank box). Empty shaded box ($\left(\begin{array}{l}\text {) }) \text { not tested. }\end{array}\right.$

	Protein vaccinated group		Negative Control group			Fisher Exact	
	Resp	NonR	Resp	NonR		P	<0.05
1-15	2	13	0	24	1-15	0.142	
7-1+11-27	10	5	2	22	7-1+1-27	0.001	*
7-1+R-27	8	7	1	23	7-1+R-27	0.001	*
22-11	2	13	2	22	22-11	0.631	
37.56	3	12	0	24	37.56	0.050	*
5+73	1	14	1	23	5+73	1.000	
71-90	3	12	0	24	71-90	0.050	*
87.106	2	13	0	24	87.106	0.142	
101-120	5	10	1	23	101-120	0.024	*
116-130	2	13	0	24	116-130	0.142	
126-140	1	14	0	24	126-140	0.385	
136-150	1	14	0	24	136-150	0.385	
$1+6-160$	1	14	1	23	1+6-160	1.000	
156-170	0	15	1	23	156-170	1.000	
166-180	1	14	0	24	166-180	0.385	
176-195	1	14	0	24	176-195	0.385	
191-210	0	15	0	24	191-210	ns	
210-229	6	9	4	20	210-229	0.141	
229-248	7	8	2	22	229-248	0.015	*
2-48-267	3	12	1	23	248-267	0.279	
267-286	4	11	1	23	267-286	0.062	
287.306	1	14	1	23	287-306	1.000	
307-326	5	10	1	23	307-326	0.024	*
SMC PIIA	15	0	24	0	SNIC PIIA	ns	
smelips	7	8	6	18	smC Lips	0.185	
Pbic Pios	5	1	14	4	pbic Pins	1.000	
pbackips	0	6	0	18	Pbacles	ns	

Table 48. Summary of the Statistical analysis of the Protein vaccination response (greater than 5000 cpm increase).
The asterisk indicates a significant difference ($\mathrm{P}<0.05$) while the shade indicates a possible trend ($\mathrm{P}<0.10$). ns: non significant.

7.4.2.2.2. Final analysis using sig \mathbf{P} / \mathbf{N} method of assessment

The results from the negative, challenged immune, and infected positive control ducks, for the significant P/N analysis have been summarised, Table 49 (p.184), Table 50 (p.185), and Table 51 (p.186), and the statistical analysis of the significant P/N values has been summarised (Table 52, p.187).

None of the DHBV positive infected ducks responded significantly to any of the peptides (see individual results in Appendix 11.9, p.A43).

							Sign	ifican	P/N									
Peptide	$\overline{4}$	$\stackrel{N}{6}$	ت	ì	3	$\stackrel{14}{4}$	$\overline{\mathrm{N}}$	$\frac{\text { N }}{N}$	$\stackrel{\rightharpoonup}{2}$	$\bar{\gg}$	$\underset{~ K ~}{\gtrless}$	+	-	288	-	Peptide	¢	$\stackrel{\cong}{\cong}$
1-15																1-15	4	11
7-14W-27											π					7-14W-27	10	5
7-14R-27																7-14R-27	11	4
22-41																22-41	6	9
37-56																37-56	4	11
54-73																54-73	5	10
71-90																$71-90$	3	12
87-106																87-106	3	12
101-120																101-120	6	9
116-130																116-130	3	12
126-140																126-140	3	12
136-150																136-150	5	10
146-160																146-160	1	14
156-170																156-170	3	12
166-180																166-180	2	13
176-195																176-195	4	11
191-210																191-210	2	13
210-229																210-229	9	6
229-248																229-248	9	6
248-267																248-267	4	11
267-286																267-286	7	8
287-306																287-306	4	11
307-326																307-326	7	8
SMC PHA																SMIC PHA	15	0
SMC LPS																SMC LPS	11	4
PBMIC PHA								[8								PBMC PHA	6	0
PBMC LPS									是							PBMC LPS	0	6

Table 49. Summary of CMI response of Challenged Immune ducks to Surface ORF peptides (significant P/N).
Resp: Number of ducks that responded (significant P/N) DonR: Non-responders (blank box). Empty shaded box (曾): not tested.

Table 50. Summary of CMI response of Negative control ducks to Surface ORF peptides (significant P/N).
Resp: Number of ducks that responded (significant P/N) NonR: Non-responders (blank box). Empty shaded box (堛): not tested.

Table 51. Summary of CMI response of Positive control ducks to Surface ORF peptides (significant P/N).
Resp: Number of ducks that responded (significant P/N) NonR: Non-responders (blank box). Empty shaded box (iin): not tested.

	Protcin vaccinated group		Negative Control group			Fisher Exact	
	Resp.	NonR	Resp	NonR		P	<0.05
1-15	4	11	1	23	1-15	0.062	
7-14W-27	10	5	5	19	7-14W-27	0.007	
7-14R-27	11	4	4	20	7-14R-27	0.001	
22-41	6	9	4	20	22-41	0.141	
37-56	4	11	1	23	37-56	0.062	
54-73	5	10	2	22	54-73	0.085	
71-90	3	12	0	24	71-90	0.050	
87-106	3	12	4	20	87-106	1.000	
101-120	6	9	1	23	101-120	0.008	
116-130	3	12	2	22	116-130	0.354	
126-140	3	12	3	21	126-140	0.658	
136-150	5	10	1	23	136-150	0.024	
146-160	1	14	4	20	146-160	0.631	
156-170	3	12	4	20	156-170	1.000	
166-180	2	13	3	21	166-180	1.000	
176-195	4	11	3	21	176-195	0.396	
191-210	2	13	0	24	191-210	0.142	
210-229	9	6	9	15	210-229	0.203	
229-248	9	6	7	17	229-248	0.094	
248-267	4	11	2	22	248-267	0.180	
267-286	7	8	3	21	267-286	0.027	
287-306	4	11	2	22	287-306	0.180	
307-326	7	8	4	20	307-326	0.068	
SMC PHA	15	0	24	0	SMC PHA	ns	
SMC LPS	11	4	18	6	SMC LPS	1.000	
PBMC PHA	6	0	18	0	PBMC PHA	ns	
PBMC LPS	0	6	4	14	PBMC LPS	0.539	

Table 52. Summary of the Statistical analysis of the Challenged Immune group to that of the Negative control group (significant P/N).
The asterisk indicates a significant difference ($\mathrm{P}<0.05$) while the shade indicates a possible trend ($\mathrm{P}<0.10$). ns: non significant.

For the naïve and immunised groups there was good correlation between the $>5000 \mathrm{cpm}$ analysis results and the significant P / N analysis. After significant P / N analysis of the challenged immune compared to the negative control ducks, both the wild type and mutant form of peptide 7-27 (7-14W-27, and 7-14R-27), as well as peptides 71-90, 101-120, 136150 , and 267-286 were found to be significant ($\mathrm{P}<0.05$) in ducks immune to DHBV. Peptides 1-15, 37-56, 54-73, 229-248, and 307-326 were found to possibly be important ($\mathrm{P}<0.10$). Four of the peptides that were placed into the DNA vaccine on the basis of the >5000 count analysis (7-14W-27, 71-90, 101-120, and 267-286), were again shown to be significant ($\mathrm{P}<0.05$), while the other three ($1-15,71-90$, and 101-120), were at least important ($\mathrm{P}<0.10$).

The statistical analysis of the significant P / N values between the challenged immune and the infected control groups has been summarised (Table 53, p.188). These results very much mirror the comparison of the challenged immune and negative control groups.

	Protein vaccinated group		Positive Control group			Fisher Exact	
	Resp	NonR	Resp	NonR		P	<0.05
1-15	4	11	1	5	1-15	1.000	
7-14W-27	10	5	1	5	7-14W-27	0.063	
7-14R-27	11	4	1	5	7-14R-27	0.046	
22-41	6	9	1	5	22-41	0.613	
37-56	4	11	0	12	37-56	0.106	
54-73	5	10	0	12	54-73	0.047	
71-90	3	12	0	12	71-90	0.231	
87-106	3	12	1	11	87-106	0.605	
101-120	6	9	0	12	101-120	0.020	
116-130	3	12	0	12	116-130	0.231	
126-140	3	12	0	12	126-140	0.231	
136-150	5	10	1	11	136-150	0.182	
146-160	1	14	0	12	146-160	1.000	
156-170	3	12	0	12	156-170	0.231	
166-180	2	13	0	12	166-180	0.487	
176-195	4	11	0	12	176-195	0.106	
191-210	2	13	0	12	191-210	0.487	
210-229	9	6	2	10	210-229	0.047	
229-248	9	6	0	6	229-248	0.019	
248-267	4	11	1	10	248-267	0.356	
267-286	7	8	0	12	267-286	0.008	
287-306	4	11	0	12	287-306	0.106	
307-326	7	8	0	6	307-326	0.061	
SMC PHA	15	0	7	5	SMC PHA	0.010	
SMC LPS	11	4	2	10	SMC LPS	0.006	
PBMC PHA	6	0	7	1	PBMC PHA	1.000	
PBMC LPS	0	6	2	6	PBMC LPS	0.473	

Table 53. Summary of the Statistical analysis of the Challenged Immune group to that of the Positive control group (significant P / N).
The asterisk indicates a significant difference ($\mathrm{P}<0.05$) while the shade indicates a possible trend ($\mathrm{P}<0.10$). ns: non significant.

The only difference between the infected ducks a nd n egative c ontrol groups was that the negative control group responded significantly better in both SMC PHA and SMC LPS.

	Positive Control group		Negative Control group			Fisher Exact	
	Resp	NonR	Resp	NonR		P	< 0.05
1-15	1	5	1	23	1-15	0.366	
7-14W-27	1	5	5	19	7-14W-27	1.000	
7-14R-27	1	5	4	20	7-14R-27	1.000	
22-41	1	5	4	20	22-41	1.000	
37-56	0	12	1	23	37-56	1.000	
54-73	0	12	2	22	54-73	0.543	
71-90	0	12	0	24	71-90	ns	
87-106	1	11	4	20	87-106	0.646	
101-120	0	12		23	101-120	1.000	
116-130	0	12	2	22	116-130	0.543	
126-140	0	12	3	21	126-140	0.536	
136-150	1	11		23	136-150	1.000	
146-160	0	12	4	20	146-160	0.278	
156-170	0	12	4	20	156-170	0.278	
166-180	0	12	3	21	166-180	0.536	
176-195	0	12	3	21	176-195	0.536	
191-210	0	12	0	24	191-210	ns	
210-229	2	10	9	15	210-229	0.268	
229-248	0	6	7	17	229-248	0.290	
248-267	1	10	2	22	248-267	1.000	
267-286	0	12	3	21	267-286	0.536	
287-306	0	12	2	22	287-306	0.543	
307-326	0	6	4	20	307-326	0.557	
SMC PHA	7	5	24	0	SMC PHA	0.002	
SMC LPS	2	10	18	6	SMC LPS	0.001	
PBMC PHA	7	1	18	0	PBMC PHA	0.308	
PBMC LPS	2	6	4	14	PBMC LPS	1.000	

Table 54. Summary of the Statistical analysis of the Positive and Negative control groups (significant P / N).
The asterisk indicates a significant difference ($\mathrm{P}<0.05$) while the shade indicates a possible trend ($\mathrm{P}<0.10$). ns: non significant.

When the percentage of ducks from the challenged immune and negative control groups that responded to the various peptides is plotted in relation to where that response is in the Surface ORF gene the significant peptides can be seen, as can a correlation in which the overall pattern of the negative ducks follows that of the protein vaccinated ducks (Figure 50, p.190).

Figure 50. Plot of response of ducks to peptides in relation to their position in the
Surface ORF gene peptide (significant P/N).
Peptides 7-27, 71-90, 101-120, 136-150 and 267-286 are significantly different ($\mathrm{P}<0.05$) (large font). Peptides 1-15, 54-73, and 307-326 may be important ($\mathrm{P}<0.10$) (small font). The thin line indicates the response to the mutant version of peptide 7-27 (7-14R-27).

When the response of the ducks to the peptides (Figure 50, p.190) are compared to the computer modelling predictions of Antigenicity, Hydrophilicity, and Surface probability (Chapter 6, p.150), there is not much similarity. An interesting difference between the computer modelling predictions and the experimental determined values is seen in the case of peptide $210-229$, in which the experimental values are much higher than the modelling values.

Figure 51. CMI epitopes in relation to Computer Modelling of the DHBV Surface gene.
(a) Antigenicity: (Jameson and Wolf algorithm). (b) Hydrophilicity: (Kyte and Doolittle algorithm).
(c) Surface Probability: (Emini algorithm). Dark Blue line indicates the CMI epitopes selected for DNA vaccine. Red line is the difference of the mutation. (d) Peptide response Blue line vaccinated. Green negative controls. Red mutant (7-14R-27).

7.5. DISCUSSION

The results of this study emphasise the inability of hepadnavirus infected individuals to respond to a ny of the surface antigen-derived peptides, which are significant in the CMI induced by S protein immunisation. The aim of a therapeutic vaccine would be to overcome this unresponsiveness, by using a different mechanism of antigen presentation to the immune system.

Clearance of hepadnaviruses during acute hepatitis is associated with a strong, polyclonal, multi-specific cytotoxic T lymphocyte (CTL) response to the viral envelope, nucleocapsid and polymerase proteins that persists for decades after clinical recovery. It has been demonstrated that chronically infected patients who experience a spontaneous or interferoninduced remission develop a CTL response to HBV that is similar in strength and specificity to patients who have recovered from acute hepatitis (Rehermann et al., 1996b). This suggests that specific immunotherapeutic enhancement of the CTL response to hepadnaviruses should be possible in chronically infected patients, and that it could lead to viral clearance in these individuals with resolution of chronic liver disease.

DNA vaccines have been known to produce effective immune responses in other persistent infections. For instance, healthy adult volunteers were enrolled in a Phase I safety and tolerability clinical study of a DNA vaccine encoding a malaria antigen. The study determined that there were no severe or serious adverse events, and that excellent CTL responses were induced by intramuscular injection of the DNA vaccine (Le et al., 2000). The DNA vaccine technique has also been used for prophylaxis of HBV, but the very small doses used appeared to act only as a booster (Tacket et al., 1999). In the tree shrew model, good antibody responses that reduced experimental transmission, were obtained (Zhou et al., 2003), while both humoral and cellular immunity were strongly stimulated in the mouse model (Du et al., 2003).

In the present experiment the use of a DHBV challenge on the protein vaccinated ducks was two-fold: To show that the vaccination was indeed protective, and to re-stimulate the CMI response, which is known to be transient. The T-cell response in ducks has been shown to decrease rapidly after resolution of DHBV infection (Vickery et al., 1999b; Tang et al., 2001), a nd vaccination to Riemerella a natipestifer (Higgins et al., 2000). In all of these studies the CMI response was reduced almost to undetectable levels after approximately 4-5 weeks. In humans it has been shown that a CMI response is detectable much longer, for 2 to 13 years after clinical resolution of disease (Penna et al., 1996). But the long lasting response in humans may be due to incomplete clearance of HBV from the host (Rehermann et al., 1996a). This low level persistence may be a constant stimulus, which maintains the
activity of the T-cell response. This low level persistence suggests that sterilising immunity to HBV frequently fails to occur after recovery from acute hepatitis and that traces of virus can maintain the CTL response for decades following clinical recovery, apparently creating a negative feedback loop that keeps the virus under control, perhaps for life. In the current experiment the challenge inoculum contained sufficient antigenic mass to serve as a booster dose in its own right.

The use of two methods in analysing the protein vaccinated ducks and the negative controls ($>5000 \mathrm{cpm}$, and significant P / N) produced similar results (Table $55, \mathrm{p} .194$). Four of the six epitopes selected for the DHBV DNA vaccine on the basis of the >5000 counts method were significant ($\mathrm{P}<0.05$) by the P / N analysis and the other two were important $(\mathrm{P}<0.10)$. It was observed that a large difference between SI and P / N values was seen when the background (unstimulated unlabelled) a nd the controls (unstimulated labelled) had similar values, but these large SI values were completely non-physiological. The original $>5000 \mathrm{cpm}$ was chosen to be a physiological size response in the assay, based on the average of the negative control ducks. Due to time constraints this less complicated analysis was used as the basis for determining the peptides for u se in the DHBV DNA vaccine. L ater deliberation and research suggested a more mathematically significant method in which the peptide results were compared with the unstimulated labelled controls using a Student's t-test (2 tailed, 2 sample), this was further limited by only including samples in which a greater than 1000 cpm increase over the unstimulated labelled controls was obtained. This 1000cpm limitation was used to remove mathematically significant differences that were not considered to be physiologically relevant (most of the discarded results had a P/N of less than 2.1). These results were then analysed using a Fisher's exact test. The combination of these statistical tests provided greater confidence in assigning biological significance to the results.

The CMI response to the Surface peptide in challenged immune ducks was polyclonal with 6 epitopes (7-14W-27, 7-14R-27, 71-90, 101-120, 136-150, and 267-286), having significantly better responses than the negative controls by the significant P / N analysis ($\mathrm{P}<0.05$), and another 4 (1-15, 37-56, 54-73, and 307-326), that show importance ($\mathrm{P}<0.10$). All six of the peptides that were selected by the $>5000 \mathrm{cpm}$ method were significant $(4 / 6)$, or at least important (2/6). It is interesting to note that many ducks in all groups responded to the 210229 peptide which was modelled to have similarity to the bacterium Streptococcus agalactiae serotype III and V , which could have been present in the stock feed given to the ducks.

	$>5000 \mathrm{cpm}$			Sig P/N	
	P	<0.05		P	<0.05
1-15	0.142		1.15	0.062	
7-14W-27	0.001	*	7-14W-27	0.007	
7-14R-27	0.001	*	7-14R-27	0.001	
22-41	0.631		22-41	0.141	
37-56	0.050	*	37-56	0.062	
54-73	1.000		54-73	0.085	
71-90	0.050	*	$71-90$	0.050	
87-106	0.142		87-106	1.000	
101-120	0.024	*	101-120	0.008	
116-130	0.142		116-130	0.354	
126-140	0.385		126-140	0.658	
136-150	0.385		136-150	0.024	
146-160	1.000		146-160	0.631	
156-170	1.000		156-170	1.000	
166-180	0.385		166-180	1.000	
176-195	0.385		176-195	0.396	
191-210	ns		191-210	0.142	
210-229	0.141		210-229	0.203	
229-248	0.015	*	229-248	0.094	
248-267	0.279		248-267	0.180	
267-286	0.062		267-286	0.027	
287-306	1.000		287-306	0.180	
307-326	0.024	*	307-326	0.068	

Table 55. Comparison of the Statistical analysis for the Challenged Immune group compared to the Negative control group ($>5000 \mathrm{cpm}$ and significant P / N).
The asterisk indicates a significant difference ($\mathrm{P}<0.05$) while the shade indicates a possible trend ($\mathrm{P}<0.10$). ns: non significant. The peptides selected for the DHBV DNA vaccine are in black text with light blue background.

The present study has found overlap of CMI and antibody epitopes. The Surface protein is highly antigenic in all hepadnaviruses, and when injected as a protein, most vaccinees produce high levels of antibody. Some of these antibodies are neutralising, and in humans this is the basis of the HBV vaccine; these neutralising antibodies and have been mapped to various regions of the Surface protein (Figure 52, p.196). One of the epitopes of the human antibody response is the hepatocyte attachment region (aa 32-47) (Petit et al., 1991). This hepatocyte attachment region has also been found to overlap with both CD4 and CD8 epitopes (Jin et al., 1988; Ferrari et al., 1992). The present study has found that the epitopes 101-120, and 136-150 overlap with previously determined antibody epitopes (Figure 52, p.196).

The SMC of the positive controls responded significantly less to PHA and LPS than the naïve or vaccinated groups. It is possible that the DHBV infection, is able to induce tolerance by down regulating the immune response in a general way, and thus we observe a significant reduction in response of SMC to PHA and LPS. There is a lack of human SMC
experimental data, but PBMCs of human chronic carriers have been shown to become insensitive to PHA (Scudeletti et al., 1986; Nouri-Aria et al., 1988), while others have demonstrated that lymphocyte transformation by PHA was normal in patients with Hepatitis B, chronic active hepatitis, asymptomatic carriers, and patients with chronic persistent hepatitis (Wicks et al., 1975). CMI suppression, implicating defective T-cells, or accessory inhibitory cells or pathways, may be associated with ducks exhibiting evidence of prolonged liver infection.

The immunogenicity of the mutant peptide is approximately equal to the wild-type form in immune challenged ducks (10 of 15 ducks responded to the wild-type, while 11 of 15 responded to the mutant). This indicates that the lymphoblastogenesis assay is unable to determine any difference between the immunogenicity of the mutant and wild-type forms, but does not exclude the possibility that the mutant has some other immunomodulating effect that we have not been a ble to d etermine. The difference in the response of the negative controls to the wild-type and mutant forms was also negligible (5 of 24 verses 4 of 24 , respectively). The number of responders from the negative controls for each form was approximately average for all of the peptides (which ranged from 0 to 9 responders). Although the number of responders is significantly lower for the negative controls compared to the immune challenged group, it is interesting to note that there were responders to most of the-peptides, indicating that the immune repertoire present in the ducks is capable to responding to several epitopes quite quickly.

Overall the positive control ducks responded to very few epitopes, this may be due in part to the a ssay technique which uses cells from the spleen. If, during persistent infection, the majority of the cells that are able to respond to DHBV, leave the spleen and travel to the main site of infection (liver), then a low response from the spleen would be expected, and a better response would be obtained from T-cells obtained from the liver. It has been observed that in persistent HBV infections, that higher than normal number of CD8+ cells are found in the liver (Tang et al., 2003), and that they may be recruited from their normal locations (such as the spleen). It has long been known that the absolute number and the percentage of T lymphocytes are significantly decreased in persistently infected patients (Thomas, 1981; Thomas et al., 1982), and in patients with active liver disease (Del Vecchio-Blanco et al., 1980). The distribution of specific immune cells may be modulated by Lamivudine treatment, which in chronic hepatitis B patients, leads to the reconstitution of virus-specific T-cells in the circulation, which may originate from precursor cells within lymph nodes (Malacarne et al., 2003).

Figure 52. Known Antibody epitopes in the Surface protein of Hepadnaviruses.
Dark Blue: Naturally occurring DHBV Ab epitopes (Chassot et al., 1994). Light Blue: DHBV Neutralising MAb epitopes (Yuasa et al., 1991; Chassot et al., 1993). Red: HBV Ab epitopes (Neurath et al., 1986a; Neurath et al., 1986b; Neurath et al., 1986c; Petit et al., 1991). Black: 'a' determinant of HBV. Green: Conserved regions in the Polymerase protein (6.4.5, p.160). Yellow: the position of selected peptides. M: Predicted start of translation of the PreS protein, PreS2, and S respectively.

When the known CMI epitopes of HBV are compared with the determined CMI epitopes of DHBV, there is very little overlap (Figure 53, p. 197). The only complete overlap was with peptide 307-326 and a MHC-I restricted CD8 epitope (Nayersina et al., 1993). Peptide 229248 overlaps with the end of a MHC-II restricted, CD4 epitope (Barnaba et al., 1994).

	1-10 7-27	
$\begin{aligned} & \text { AusDHBV_S : } \\ & \text { HBV_env } \end{aligned}$	MKQESFISGYLNIWLHSKASLIIGNFNTLSSNIKFLMG---QQPAKSMDV	47
	MGGWSSKPRQGMGT	14
	71-90	
AusDHBV_SHBV_env	RR-IEG--GELLLNQLAGRMIPKGTVT-WSGKFPTIDH--LLDHVQT-ME	90
	NLSVPNPLGFFPDHQLDPAFGANSNNPDWD-FNPNKDHWPEANQVGAGAF PLGFFPDHEL	63
	101-120	
AusDHBV_S : HBV_env :	EVNT--LQQQGAWPAGAGRRLGLTNPAPQEPPQPQWTPEEDQKAREAFRR	138
	GPGFTPPHGGLLGWSPQAQGILTTVPAAP-PPAST------NRQSGRQPT	106
$\begin{aligned} & \text { AusDHBV_S } \\ & \text { HBV_env } \end{aligned}$	YQEERPPETTTIPPTSPTPWK----LQPGDDPLLENKSLLE--THPLYQN	182
	PISPPLRDSHPQA--- MQWNSTTFHQALLDPRVVRGLYFPAGGSSSGTVNPV MQREALLDP	154
$\begin{aligned} & \text { AusDHBV_S } \\ & \text { HBV_env } \end{aligned}$	PEPAVPV--IKTPP-LKKKKMGTFGGILAGLIGLLVGFFLLIKILEILR	229
	PTTASPISSIFSRTGDPAQNMENTTSGFLGPLLVLQAGFFLLTKILTIPQ	204
	FLLTKILTIPQ	
	229-248 267-28	
$\begin{aligned} & \text { AusDHBV_S } \\ & \text { HBV_env } \end{aligned}$	RLDWWWISLSSPKGKMQCAFQDTGAQISPHYAGFCPWGCPGFLWTYLRLF	279
	SLDSWWTSLNFLGGAPTCPGQNSQSPTSNHSPTSCPPICPGYRWMCLRRF	254
$\begin{aligned} & \text { AusDHBV_S } \\ & \text { HBV_env } \end{aligned}$	IIFLLILLVTAG-LLYLTD--NMSIILGKL	306
	IIFLFILLLCLIELLVLLDYQGMLPVCPLLPGTTTTSTGPCKTCTIPAQG	304
$\begin{aligned} & \text { AusDHBV_S : } \\ & \text { HBV_env } \end{aligned}$	307-326	
	-QWESVSALFSSISSLLPSD	325
	TSMFPSCCCTKPSDGNGTCIPIPSSWAFARFLWEWASVRFSWLSLLVPFV	354
AusDHBV_S :	QKSL-VALMFGLLLIWMTSSSATQTLVTLTQLATLSALFYKN---- : 36	
HBV_env	QWFVGLSPTVWLSVIWMMWYWGPSLYNILSPFIPLLPIFFCLWVYI : 40	

Figure 53. Aligned Surface protein sequences showing known HBV CMI epitopes. Red: MHC-I, CD8 epitopes. Blue: MHC-II, CD4 epitopes. Black: 'a' determinant of HBV. Green: Conserved regions in the Polymerase protein (6.4.5, p.160). Yellow: the position of CMI epitopes that were included in the DHBV DNA vaccine. M: Predicted start of translation of the PreS protein, PreS2, and S respectively.

Existing computer modelling techniques of proteins cannot be used for the prediction of Tcell epitopes because of the way in which the epitopes are processed for recognition, and so experimental evidence must be produced. However, when the CMI epitopes of both Human and Duck HBV are compared in relation to the computer modelling of the Surface protein an interesting feature is evident. It appears that the CMI epitopes are peptide sequences that seem to have vastly different modelling characteristics over the length of the epitope ie. they have a hydrophilic end and are hydrophobic at the other. This concurs with studies using overlapping peptides of sperm whale myoglobin which have shown a direct correlation
between MHC class II and T-cell receptor binding of epitopes and secondary structure conformation (Berzofsky et al., 1986). The results suggested that MHC class II restricted Tcell epitopes are usually amphipathic structures perhaps so that MHC anchor residues are hydrophobic while the hydrophilic side may interact with the T-cell receptor.

Figure 54. Comparison of the CMI epitopes for DHBV and HBV in relation to the Computer Modelling.
DHBV models (CMI epitopes selected for the DHBV DNA vaccine) are on the Left, while HBV models are on the Right. (a) Antigenicity: (Jameson and Wolf algorithm). (b) Hydrophilicity: (Kyte and Doolittle algorithm). (c) Surface Probability: (Emini algorithm). The Dark line indicates the CMI epitopes.

The possibility that the some of the DHBsAg peptides may in fact inhibit the proliferation of the lymphocytes was also investigated using the response data. Several methods were utilised to determine if any down regulation occurred. For the most powerful test used, inhibition was determined to be when the mean cpm of stimulated labelled wells was

Section III

8. DNA VACCINATION

8.1. INTRODUCTION

Increased knowledge of the roles of different T-cell subsets in protection against infectious diseases and in the pathology associated with allergic responses has allowed a rational approach to the development of novel preventive and therapeutic vaccines. It is now possible to design vaccination strategies capable of selectively stimulating different classes of immune responses to specific antigenic epitopes by varying the mode of presentation of antigens and the use of only some of the antigenic repertoire of the infecting agent.

DNA vaccination has been demonstrated to have many functional characteristics. A humoral immune response can be induced to a specific encoded antigen (Tang et al., 1992). An immune response can be generated that is large enough to protect against a lethal influenza challenge (Fynan et al., 1993; Ulmer et al., 1993), or HIV-1 antigen-expressing targets (Wang et al., 1994). It has since been demonstrated that DNA vaccines induce strong immune responses against proteins from infectious agents such as malaria (Wang et al., 1998), tuberculosis (TB) (Lowrie et al., 1997), rabies virus (Xiang et al., 1994), HSV (Kriesel et al., 1996), Ebola virus (Xu et al., 1998), HIV (Boyer et al., 1999), and hepatitis B virus (Davis et al., 1994; Tacket et al., 1999).

The method of administration of a DNA vaccine is very important in determining efficacy. Several methods have been utilised: needle injection into muscle or skin, "gene-gun" bombardment, or topical application to skin or mucosa. Each one of these methods of delivery introduces vaccine to distinct areas of immune surveillance and therefore primes the immune system in distinct ways. Forms of delivery targeting the skin, including id injection, gene-gun bombardment, and topical application, have been shown to elicit a humoral response primarily, characterised by a rapid progression to a Th2-type response, associated with the production of an IgA and IgG1 antibody isotype (Boyle et al., 1997). Conversely, injection into muscle results in the induction of a strong cellular-mediated response, or Th 1 type, that primes antigen-specific CTLs and is associated with the production of IgG2a antibody (Sin et al., 1999a).

The plasmid pDNAVACC, has been tested while encoding a polytope protein, which contained multiple contiguous minimal murine CTL epitopes (Thomson et al., 1998b). Mice vaccinated with this plasmid made MHC-restricted CTL responses to each of the epitopes, and protective CTLs were demonstrated in recombinant vaccinia virus, influenza virus, and tumour challenge models. CTL responses generated by polytope DNA plasmid vaccination lasted for 1 year (Thomson et al., 1998b). A refinement to pDNAVACC was the incorporation of an Endoplasmic Reticulum signal to enhance the efficiency of class IIrestricted endogenous presentation of minimal class II-restricted CTL epitopes by specifically targeting a polyepitope protein to class II processing compartments through the endosomal and/or lysosomal pathway. A significantly enhanced stimulation of virus-specific CD4+ T-cell clones by antigen-presenting cells (APC) expressing the recombinant polyepitope protein targeted to the endocytic/secretory pathway was readily demonstrated in cytotoxicity assays (Thomson et al., 1998a). Such vaccines may even be able to break the immunologic 'tolerance' which characterises many persistent infections including hepatitis B.

Recently, several articles have been published, in which the DNA vaccination approach was used with hepadnaviruses, producing varying results. The DHBV model was used to evaluate the e fficacy of combination therapy; a defovir a nd DNA-immunisation (using the entire preSurface gene) were compared with respective monotherapies. Eight weeks after the third DNA boost, viraemia within the combination therapy group tended to be lower than that of the other groups. An additive effect was also observed since there was a 51% decrease of DHBV DNA in liver at autopsy, while only 38 and 14% during pCI-preS/S or adefovir monotherapies, respectively. This effect was sustained for 12 weeks after the end of therapy (Le Guerhier et al., 2003). Another study was designed to test the efficacy of antiviral treatment with entecavir in combination with DNA vaccines expressing DHBV antigens (preSurface, Surface, preCore, and Core) as a therapy for persistent DHBV infection in ducks. Intramuscular administration of five doses of a DNA vaccine, both alone and concurrently with ETV treatment, did not result in any significant effect on viral markers (Foster et al., 2003). A murine model was used to examine the functionality of a DNA vaccine expressing the HBV surface antigen, in combination with various cytokines. It was determined that the HBV DNA vaccine was strongly antigenic for both humoral and cellular immunity, which can be promoted by a plasmid expressing IL-2 or IL-12. It was also elucidated that it was the CD8+ cells that executed the CTL activities (Du et al., 2003).

We therefore undertook p roduction of a DNA vaccine that contained the T-cell e pitopes, which we had shown to be important in the response to DHBV (Chapter 7, p.170). The immunogenicity of the DNA vaccine was determined in naïve ducks, by measuring the T-
cell response in a lymphoblastogenesis assay. Its protective efficacy was determined by challenge and its mechanism further investigated by determining whether neutralising antibodies were induced. The therapeutic efficacy was determined by observing the effect of vaccination on viraemia in persistently infected ducks.

8.2. AIMS

(1) To characterise the response of naïve ducks to DNA vaccination by measuring the production of a CMI response to the epitopes used in the DNA vaccine, protection from challenge, and production of neutralising antibodies.
(2) To determine the effect of the DNA vaccine when used therapeutically in persistent carrier ducks.

8.3. EXPERIMENTAL DESIGN

8.3.1. Vaccine production

A DNA vaccine was designed incorporating the seven antigenically important T-cell epitopes identified in the previous chapter. Published methods (Thomson et al., 1995) were used and Dr. Scott Thomson very kindly helped in the design of the DNA vaccine, and provided the DNA vaccine plasmid pDVERA2.

A Duck Poly (DP) DNA fragment encoding the T-cell epitopes was produced, and then cloned into a bacterial vector. The DP was then subcloned into the DNA vaccine vector pDVERA2.

8.3.2. Immunisation protocol: DNAvacc1 - Immunogenicity and protective efficacy.

Fourteen ducks were divided into two equal groups. One group was vaccinated with the DNA vaccine once a week for three weeks, while the second was treated in the same manner but with PBS. In the fourth week, the CMI response of the ducks to the peptides incorporated into the DNA vaccine was determined, and then the ducks were challenged with 2.5×10^{10} vge of DHBV (this was equivalent to approximately $10 \mathrm{ID}_{50}$, Dr. Karen Vickery, personal communication). The ducks were then bled twice a week for another four weeks before the CMI response was again determined and samples taken from serum and the liver.

8.3.2.1. Mechanism of protection

The serum from two protected, and one unprotected duck was then used to determine the presence of neutralising antibodies by inoculating day old ducklings with the mixtures of serum and virus after a one hour incubation at room temperature in vitro.

8.3.3. Immunisation protocol: DNAvacc2 - Therapeutic vaccination.

The therapeutic potential of the DNA vaccine was determined by vaccination of six persistently infected ducks and comparing the outcome with another five unvaccinated persistently infected ducks.

8.4. Materials and Methods

8.4.1. Preparation of DNA Vaccine

The seven antigenically important epitopes identified in the previous experiment were peptides 1-15, 7-14W-27, 101-120, 136-150, 229-248, 267-286, and 307-326 (Table 56, p.203).

| Peptide | Size (aa) | Protein Scquence | nt |
| :---: | :---: | :--- | :--- | :---: |
| $1-15$ | 15 | MKQESFISGYLNIWL | $693-737$ |
| $7-14 W-27$ | 21 | ISGYLNIWLHSKASLIIGNFN | $711-773$ |
| $101-120$ | 20 | TWSGKFPTIDHLLDHVQTME | $903-961$ |
| $136-150$ | 20 | WPAGAGRRLGLTNPAPQEPP | $992-1051$ |
| $229-248$ | 20 | RRLDWWWISLSSPKGKMQCA | $1376-1435$ |
| $267-286$ | 20 | GCPGFLWTYLRLFIIFLLIL | $1490-1549$ |
| $307-326$ | 20 | QWESVSALFSSISSLLPSDQ | $1610-1669$ |

Overlap of RW1 and RW2 is indicated by bold lettering
Table 56. Antigenically Important Peptides.

8.4.1.1. Artificial Duck Polytope

The protein sequences of these epitopes were lined up to form a single chain of amino acids, the Duck Polytope (DP). The overlap of peptide 1-15 and 7-14W-27 (Table 56, p.203) was removed, producing a single peptide of 127 aa .

8.4.1.1.1. Design of the Duck Polytope

Normal T-cell epitopes vary between 8-12 aa, and require spacer regions between them to allow enhanced processing and presentation, however, because our epitopes were nonminimal CD8 epitopes (ie. between 15-21 aa), it was considered that no spacer regions were required between the epitopes. The large size of our epitopes are an advantage in this case, as they eliminate the need for unnatural flanking regions which may have unforeseeable effects on processing of the DP peptide and the immune response to it.

When the DNA is translated into mRNA it must have a sequence that specifies ribosome binding upstream of or overlapping the initiation, AUG codon. In eukaryotes, there is a consensus sequence called the Kozak sequence (CCACC). This sequence was placed immediately before the ATG codon, on the DuckPolytope.

A requirement of an artificial polytope is that the peptide must begin with the normal start site of translation, an ATG (Methionine, Met, or M), again, our DP already had a start codon, and as such, one did not have to be added. Translation must also be stopped, and this was achieved by placing a stop codon (TGA) at the end of the DP.

Because certain codons for the individual amino acids are preferentially found in nature, the aa sequence for the DP was reverse transcribed to produce a DNA sequence that contained the highest frequency codons for vertebrates. This technique should allow for the most efficient translation of the DP, and was achieved using the program BackTranslate (GCG).

After reverse translation the DNA sequence was checked for restriction enzyme sites using Map and MapPlot (GCG). Any common sites are removed to allow the use of cheap, common restriction enzymes in the cloning process (Figure 55, p.205). The sequence of the DP did not have to be altered.

Restriction enzyme (RE) sites were added to the DNA sequence to allow it to be cut out of the c loned vector and then subcloned into the DNA vaccine vector p DVERA2. The RE chosen were NotI a nd XbaI for the DP, a nd NotI a nd A vrII for the DNA vaccine vector pDVERA2. XbaI (TCTAGA) and AvrII (CCTAGG) are related by having the same cohesive overlap (CTAG) so that when the two pieces of DNA, which are cut with an enzyme each, are joined, the resulting sequence is not recognised by either RE (TCTAGG). The RE map of the DP was double checked to make sure that it did not contain any sequences that would be recognised by the RE.

Figure 55. DNA sequence of DuckPoly aligned with protein sequence and DP oligonucleotides.
Blue: Protein sequence of DP. Yellow: DNA sequence of DP (optimised codons - not necessarily the sequence of the original DHBV). Green: The ER signal sequence (which is part of pDVERA2 plasmid). pDVERA2 and DP were joined by ligating AvrII-cut and XbaI-cut fragments respectively, and at the other end by ligation of NotI-cut fragments. DPx_r (where $x=2-5$) indicates the reverse complement of the oligonucleotide to more easily see the alignment. DPf is the forward primer. DPr is the reverse primer. The red indicate the restriction enzyme sites XbaI (TCTAGA), and NotI (GCGGCCGC).

8.4.1.1.2. Production of the DP gene

After the DP was designed and optimised it was 410 nt long. It is currently not technically possible to artificially produce such a long strand of DNA, so the sequence was then divided into approximately equal length oligonucleotides (approx. 100 nt each), each overlapping the next by $10-20 \mathrm{nt}$.

These oligonucleotides were then synthetically produced (SigmaGenosys, www.sigmagenosys.com.au) at the $0.02 \mu \mathrm{M}$ scale, in the same manner that normal PCR primers are produced. However, there is a high error rate when such long fragments are produced and the number of shorter fragments is very high, and the fragment also tends to branch p roducing o ther a rtefacts. P urification is required b efore further manipulations a re attempted.

8.4.1.1.3. Purification of the DP oligonucleotides

The DP oligonucleotides were purified by running on a polyacrylamide gel and then cut out. The lyophilised DP oligonucleotides were resuspended in $200 \mu \mathrm{~L}$ of TE (1 mM EDTA, 10 mM Tris, pH 8.0). A 5% polyacrylamide gel was produced (2.3.4.1.2, p.89), incorporating $1 \mathrm{mg} / \mathrm{mL}$ Ethidium bromide. The DP oligonucleotides were diluted $1: 10$ with $\mathrm{dH}_{2} \mathrm{O}$, and $5 \mu \mathrm{~L}$ was mixed with $5 \mu \mathrm{~L} 2 \mathrm{x}$ PCR loading buffer, and loaded onto the gel. The gel was run at $90-100 \mathrm{~V}, 250 \mathrm{~mA}$, for $50-90 \mathrm{mins}$. The gel was photographed and the DP oligonucleotide bands cut out.

The fragment of gel that was removed was placed into an Eppendorf and homogenised with the plunger of a 1 mL syringe. The eppendorf was spun in a benchtop centrifuge at 15000 rpm for 15 mins . The supernatant was used to produce the full length DP by PCR.

The synthesised DP oligonucleotides were found to contain many smaller, and even larger fragments, which are branched forms of DNA, all of these are artefacts of the synthetic production technique (Sigma-GenoSys, personal communication). Without purification there is little likelihood of successfully producing the full DP by PCR because only a smear would result (Figure 56, p.207).

8.4.1.1.4. Production of the full length DP by PCR

The full length DP is produced by stepwise asymmetric PCR (Sandhu et al., 1992). Basically, all the overlapping primers are placed into a single PCR reaction, and eventually a full-length fragment is produced.
(a)

(b)

Figure 56. Photographs of the Polyacrylamide gel used to purify the DP oligonucleotides.
(a) Gel after run. (b) Gel after DP oligonucleotides cut out.

1-7: DP oligonucleotides - DPf, DP1, DP2, DP3, DP4, DP5, and DPr, respectively.
The quantity of the internal primers is highly limited, and the resultant reaction causes an asymmetric single-stranded amplification of the total sequence due to an excess of the two flanking primers. In subsequent PCR cycles, the asymmetrically amplified fragments, which overlap each other, yield a double-stranded, full-length product. A PCR cocktail was produced (Table 57, p.207), that contained all of the purified oligonucleotides. HiFi polymerase mixture (Boehringer Mannheim, Mannheim, Germany, or Roche, Mannheim, Germany), was utilised to limit the amount of incorrectly incorporated nucleotides. The fidelity of the HiFi mixture is quoted as an error rate of 8.5×10^{-6}, which is approximately a third of that for $\mathrm{Taq}\left(2.6 \times 10^{-5}\right)$ (Boehringer Mannheim, Mannheim, Germany). Cycling conditions consisted of an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min , thence 30 s , annealing at $55^{\circ} \mathrm{C}$ for 1 min , extension at $72^{\circ} \mathrm{C}$ for 1 min , with a final extension at $72^{\circ} \mathrm{C}$ for 10 min after 30 cycles.

Reagent	DP PCR	DP ReAmp
10 xBuffer	1 x	1 x
MgCl_{2}	2.5 mM	2.5 mM
dNTP	200 nM	200 nM
Primer (each)	$4 \mu \mathrm{~L}$	$0.4 \mu \mathrm{M}$
DP1-DP5	DPf +DPr	
Polymerase	$2 \mathrm{U} / 25 \mu \mathrm{~L}$	$2 \mathrm{U} / 25 \mu \mathrm{~L}$
$\mathrm{dH}_{2} \mathrm{O}$	to $25 \mu \mathrm{~L}$	to $25 \mu \mathrm{~L}$

Table 57. DP PCR cocktail contents.
The DP PCR was re-amplified using the DP ReAmp cocktail (Table 57, p.207), and the same cycling conditions as per DP PCR. The DP ReAmp reaction consisted of only the outer two primers (DPf, and DPr) (Figure 55, p.205), which should only amplify a full-length copy of
the DP gene. The DP and ReAmp PCR fragments were visualised on a 2% agarose gel as per normal PCR (2.2.2.4, p.71). The DP ReAmp product was PEG purified as per Sequencing (2.2.2.5, p.71).

The DP PCR and DP ReAmp PCR had to be optimised to obtain a cocktail and cycling combination that was adequate to produce amplification of the required DNA fragment: the optimised reaction is given in Table 11 (p.69). When both of the reactions were run on a gel, a band of ~ 400 bp was found as expected in the ReAmp reaction (Figure 57, p.208).

Figure 57. DP PCR products.
m: marker, (1) DP PCR, (2) DP ReAmp.

When the DP ReAmp PCR product was sequenced it was found to have the correct sequence, but was not perfectly clean (Figure 58, p.208). Because of the use of the high fidelity polymerase mixture, it is unlikely that the errors were due to the PCR reaction, but rather the synthesis of the oligonucleotides.

Figure 58. Short section of the PCR sequence data for the fill DP PCR product. Note: Many peaks can be seen which contain more than 1 type of nucleotide.

8.4.1.2. Cloning of the DP

The DP ReAmp product was cloned into E. coli using a TOPO TA Cloning kit (Invitrogen Life Technologies, Carlsbad, USA), using the directions supplied. Briefly, the purified DP ReAmp product was incubated with TOPO treated plasmid (pCR 2.1-TOPO). The cloning reaction was then used to transform TOP10' E. coli cells. The cells were then plated onto Xgal treated $50 \mu \mathrm{~g} / \mathrm{mL}$ Ampicillin LB agar plates. After overnight incubation at $37^{\circ} \mathrm{C}$ the transformed bacteria with the DP insert are a white colour, while blue coloured colonies do not contain a copy of the DP (Figure 59, p.210). Several clones were selected for sequence verification, and a colony with the correct sequence was used further.

8.4.1.2.1. MiniPrep DNA extraction from Bacteria

Colonies of bacteria were picked off the selective plates and incubated in 5 mL of LB broth ($50 \mu \mathrm{~g} / \mathrm{mL}$ Ampicillin) at $37^{\circ} \mathrm{C}, 255 \mathrm{rpm}$ for 8 hrs .1 .5 mL was spun in a benchtop centrifuge at 13000 rpm , for 30 s , and the supernatant discarded. $100 \mu \mathrm{~L}$ of TELT solution and $1 \mu \mathrm{~L}$ of DNase free RNase A added, and the pellet resuspended. The cells were incubated at $37^{\circ} \mathrm{C}$ for $10 \mathrm{mins}, 100 \mu \mathrm{~L}$ of Phenol:chloroform (1:1) were added, vortexed, and spun in a benchtop centrifuge for 1 min at 13000 rpm . The top aqueous phase was removed to a new tube and 2 volumes of cold absolute ethanol added, and incubated at $-20^{\circ} \mathrm{C}$ for 30 mins . It was then spun for 30 mins at 13000 rpm in a benchtop centrifuge, the supernatant aspirated, and the pellet dried at $42^{\circ} \mathrm{C}$. The pellet was resuspended in $25 \mu \mathrm{~L}$ of $\mathrm{dH}_{2} \mathrm{O}$. The DNA could then be used to verify the insert by restriction enzyme digestion, as previous, or used for DNA sequencing.

The cloning of the full DP into TOP10' E. coli was repeated several times because of the difficulty in inserting the full DP into the pCR2.1-TOPO plasmid. Once transfected, bacterial colonies with the full DP insert remained white when grown on X-gal treated selective LB agar plates (Figure 59, p.210).

Figure 59. Photograph of DP transformed colonies.

21 colonies were sequenced and only two contained the correct 410 bp sequence expected for the full DP. The minor differences in the sequence of the other 19 consisted of one or two incorrect base substitutions, or deletions (Figure 60, p.210). This was expected, as the large 100 nt synthesised oligonucleotides are at the limit of what is currently technically possible to synthesise.
(a)

Figure 60. Example of the differences found in the full DP from a clone.
(a) Correct sequence (ССTGGAGC). (b) Incorrect sequence (ССTAGAGC)

8.4.1.3. Subcloning the DP to produce the DHBV DNA vaccine

To facilitate the processing and presentation of the DP protein, a DNA vaccine vector that contained an ER (Endoplasmic Reticulum) signal was used. The ER signal was expressed before the DP protein and was derived from Adenovirus, however also includes a few extra amino acids at the carboxyl end to act as a spacer before the DHBV epitopes. The DNA vaccine plasmid chosen was pDVERA2 (Figure 61, p.211), (a kind gift of Dr Scott

Thomson), which is a modified ampicillin resistant DNA vaccine plasmid of pDNAVACC (Thomson et al., 1998b).

Figure 61. Plasmid map of pDVERA2 DNA vaccine.
Blue: DuckPolytope. Red: Restriction enzyme sites (* indicates unique site)

The cloned DP extracted DNA was double digested with 1 U of each of two restriction enzymes Xbal, and NotI, in $1 \mu \mathrm{~L}$ of 10 x buffer (XbaI), and $8 \mu \mathrm{~L}$ of purified DP at $4^{\circ} \mathrm{C}$ for 20 hrs . The reaction was PEG purified as previous (2.2 .2 .5, p. 71).

The pDVERA plasmid was obtained from Dr. Scott Thomson (kind gift), on a glassfibre mat. The DNA spot was cut out and resuspended by placing it into $10 \mu \mathrm{~L}$ of $\mathrm{TE}(0.1 \mathrm{mM}$ EDTA, 10 mM Tris, pH 8.0) at RT for 2 hrs . It was double digested with 1 U of each of two restriction enzymes AvrII, and NotI, in $1 \mu \mathrm{~L}$ of 10 x buffer (AvrII), and $8 \mu \mathrm{~L}$ of resuspended pDVERA plasmid at $4^{\circ} \mathrm{C}$ for 20 hrs . The reaction was PEG purified as previous (2.2.2.5, p.71).

The cut DP was inserted into the cut pDVERA plasmid to form the DHBV DNA vaccine. The fragments of DNA were joined by incubating $4 \mu \mathrm{~L}$ of each purified cut fragment with 200 U of T4 DNA ligase (New England Biolabs, www.neb.com), and $1 \mu \mathrm{~L}$ of 10 x buffer at $16^{\circ} \mathrm{C}$ for 20 hrs .
$2 \mu \mathrm{l}$ of the cloning reaction was added into a vial (2×10^{6} cells) of chemically competent E. coli (F- mcrA .(mrr-hsdRMS-mcrBC) Ф80lacZ.M15 .lacX74 recA1 deoR araD139 .(araleu) 7697 galU galK rpsL (StrR) endA1 nupG) (Invitrogen Life Technologies Carlsbad, USA), mixed gently, and incubated on ice for 5 to 30 minutes. The cells were heat-shocked for 30 seconds at $42^{\circ} \mathrm{C}$ without shaking. The cells were then immediately transferred to ice, and $250 \mu \mathrm{l}$ of room temperature SOC medium added (2% Tryptone, 0.5% Yeast Extract, 10 $\mathrm{mM} \mathrm{NaCl}, 2.5 \mathrm{mM} \mathrm{KCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM} \mathrm{MgSO}{ }_{4}, 20 \mathrm{mM}$ glucose). The cells were shaken at $37^{\circ} \mathrm{C}, 200 \mathrm{rpm}$ for 1 hr . $10-50 \mu \mathrm{l}$ was spread on a prewarmed selective LB plate $\left(50 \mu \mathrm{~g} / \mathrm{mL}\right.$ Ampicillin) and incubated overnight at $37^{\circ} \mathrm{C}$.

Several colonies were selected for sequencing as before. A bacterial colony with the correct sequence was then selected and a large amount of plasmid (now DHBV DNA Vaccine) was recovered by MaxiPrep (Qiagen, Melbourne, Australia).

After the full DP was inserted into pDVERA2 to produce the DHBV DNA vaccine 10 clones were sequenced of which 8 were found to have the correct sequence. One clone was selected and several batches of MaxiPreps were produced. They were individually sequenced, and all found to be correct. The pooled DNA vaccine was sequenced both forwards and in reverse, and again found to be correct.

8.4.1.4. Large scale production of DHBV DNA Vaccine

A Qiagen MaxiPrep kit (Qiagen, Melbourne, Australia) was used for large-scale plasmid purification, as per manufacturers recommendations. Briefly, a starter culture was produced from a colony on LB agar ($50 \mu \mathrm{~g} / \mathrm{mL}$ Ampicillin) inoculated into 5 mL of LB broth $(50 \mu \mathrm{~g} / \mathrm{mL}$ Ampicillin), and incubated at $37^{\circ} \mathrm{C}, 255 \mathrm{rpm}$ for $5-8 \mathrm{hrs} .150 \mu \mathrm{~L}$ of the starter culture was added to 100 mL LB broth ($50 \mu \mathrm{~g} / \mathrm{mL}$ Ampicillin), and incubated at $37^{\circ} \mathrm{C}, 255 \mathrm{rpm}$ for 20 hrs . The plasmid was then released from the bacteria by chaotropic salt treatment, and adhered to a DEAE-Sepharose column. The column was washed with buffer. The DNA was released from the DEAE-Sepharose column by a buffer with a higher pH . The DNA was then precipitated with isopropanol, and washed with ethanol. The dried DNA pellet was resuspended with $250 \mu \mathrm{~L}$ of TE (1 mM EDTA, 10 mM Tris, pH 8.0). Several batches were produced and individually sequenced to confirm the correct sequence, before being pooled into a large single batch, which was a gain sequenced. T his single b atch w as used in all experiments. The concentration of the purified DNA vaccine was then determined by spectroscopy (2.2.4, p.73).

8.4.2. Immunogenicity of the DNA Vaccine in vivo

8.4.2.1. Vaccination of naïve ducks (DNAvacc1)

Fourteen ducks were randomly divided into two groups: DNA vaccinated, and Control group (Table 58, p.213). They were prebled and tested for DHBV to ensure negativity on day of hatch. On day 7 the DNA vaccinated group was injected intramuscularly in 3 sites with $20 \mu \mathrm{~g} /$ duck of DNA vaccine plasmid dissolved in $300 \mu \mathrm{~L}$ PBS. On day 14 the DNA vaccinated group was injected intramuscularly in 2 sites, and intradermally in 1 site with $10 \mu \mathrm{~g} /$ duck of DNA vaccine plasmid dissolved in $300 \mu \mathrm{~L}$ PBS. On day 21 the DNA vaccinated group was injected intramuscularly, and intradermally in 1 site each with $10 \mu \mathrm{~g} /$ duck of DNA vaccine plasmid dissolved in $300 \mu \mathrm{~L}$ PBS. The control group was similarly injected each time with PBS.

Group		
Ducks	Number	
DNAvacc1	7	B67, B68, G57, G97, G98, W39, and W133
Dv1 Controls	7	G92, G93, G100, W42, W118, W120, and W124

Table 58. Ducks used to determine the immunogenicity of the DNA vaccine (DNAvaccl).

On day $28,10 \mathrm{~mL}$ of blood was drawn into 10 mL Heparin/PBS for determination of the PBMC CMI response to the peptides incorporated into the DNA vaccine. The method used was the same as for PBMC previous (7.3.2.1, p.174).

On day 32 , all ducks were challenged with 1 mL of DHBV201299 serum pool $\left(2.5 \times 10^{10} \mathrm{vge}\right.$, approximately $10 \mathrm{DP}_{50}$) injected intravenously. The ducks were bled on days $36,40,43,46$, $49,53,56$, and $60-62$. The spleens were harvested between days 60 and 62 . The spleen was processed as previous (7.3.2.2, p.175). The CMI response was also determined as previous (7.3.2, p.173). All serum and liver samples were tested by dot blot hybridisation and PCR.

8.4.2.2. Neutralisation Assay

A neutralisation assay was performed to determine if DNAvacc1 ducks that were protected from challenge had produced neutralising antibody in response to DNA vaccination. Two challenge protected ducks (G97, and W133), and an unprotected control duck (W39) were chosen. Pre-vaccination test bleeds were tested in parallel for the two protected ducks, and their pre-challenge serum was tested neat and at a $1 / 10$ dilution.

The neutralisation test was set up as follows: Virus from the DHBV051094 serum pool was diluted with PBS in such a way that $100 \mathrm{ID}_{50}$ for a day old duckling was contained in a volume of $20 \mu \mathrm{~L}$. Equal $20 \mu \mathrm{~L}$ volumes of test serum and virus were mixed and allowed to stand at RT for 1 hour. The serum/virus mixture was then made up to $300 \mu \mathrm{~L}$ with PBS and
intraperitoneally injected into a duckling, with 3 ducklings per group. The ducks were then bled on days $4,8,11$, and finally on day 15 for groups 1-6. Liver was obtained at sacrifice on day 15 . Ducks in groups $7,8,9$, and 10 (Table 59, p.214), were not killed at this time but were determined to be DHBV positive, and used for the Therapeutic DNA vaccine experiment (DNAvacc2) (8.4.3, p.214). Liver was obtained from group 7, 8, 9, and 10 ducks at sacrifice on day 70 .

A virus titration was performed in parallel with the neutralisation assay, to confirm the approximate dosage. Three ducks were inoculated for each amount of DHBV051094 serum pool virus as per Table 59 (p.214). The day old ducks were inoculated by $i p$ injection.

Original Duck	Serum	Virus ID_{50} (vge)	Group	Ducks
G97	Pre-vacc	$100\left(1 \times 10^{5}\right)$	1	P4, P5, P6
	Pre-chall 1:10		2	G56, G57, G58
	Pre-chall		3	Y70, Y72, Y75
W133	Pre-vacc	$100\left(1 \times 10^{5}\right)$	4	W37, W38, W39
	Pre-chall 1:10		5	B50, B57, B58
	Pre-chall		6	R57, R58, R59
W39	Pre-vacc	$100\left(1 \times 10^{5}\right)$	7	G90, G91, G92
	Pre-chall		8	Y89, Y90, Y91
Controls	DHBV051094	$100\left(1 \times 10^{5}\right)$	9	Y58, Y94, Y95
		$10\left(1 \times 10^{4}\right)$	10	G93, G94, G95
		$1\left(1 \times 10^{3}\right)$	11	P74, P75
		0.1 (100)	12	R95, R96
		0.01 (10)	13	B83, B84
		nil (0)	14	W98, W99

Table 59. Neutralisation Assay.
Ducks G97 and W133 were found to be protected from challenge, while duck W39 was susceptible. Pre-vacc: Serum taken before DNA vaccination (day 0). Pre-chall: Serum taken before DHBV challenge (day 28). Pre-chall 1:10: A 1 in 10 dilution of the day 28 serum. Note: the ID_{50} dose is for day old ducks.

8.4.3. Therapeutic use of the DNA vaccine (DNAvacc2)

The eleven persistently infected ducks from groups $7,8,9$ and 10 of the neutralisation assay experiment (8.4.2.2, p213) were used to determine the therapeutic efficacy of the DNA vaccine. Two groups were formed: one DNA vaccinated, and a control group (Table 60, p.215). DNA sequence data from selected serum and liver samples were obtained for both the core and surface regions as previously described (4.4.2, p.126).

New group	Group	Ducks	Virus ID
(vge)			
	7	G90, G91, G92	$100\left(1 \times 10^{5}\right)$
	9	Y58, Y94, Y95	
Dv2 Control	8	Y89, Y90, Y91	
	10	G93, G95	$10\left(1 \times 10^{4}\right)$

Table 60. Ducks used in the Therapeutic DNA vaccination experiment (DNAvacc2).
The ducks were treated as per the neutralisation assay experiment until day 15. Ducks were inoculated with either $10 \mathrm{ID}_{50}\left(1 \times 10^{4} \mathrm{vge}\right)$ or $100 \mathrm{ID}_{50}\left(1 \times 10^{5} \mathrm{vge}\right)($ Table $60, \mathrm{p} .215)$. The ducks were bled and shown to be DHBV DNA positive, then vaccinated on days 19, 26, and 34. The DNA vaccinated group was injected with $50 \mu \mathrm{~g}$ DNA vaccine in $300 \mu \mathrm{~L}$ PBS per duck in 2 sites, once intramuscularly, and once intradermally. The controls were injected with PBS alone. The ducks were then bled on days $41,49,55$, and 70 . Liver samples were also obtained on day 70. Serum and liver samples were tested by PCR and dot blot hybridisation.

8.5. Results

8.5.1. DNA Vaccine Production

After production of the DP, it was cloned into E. coli, and of 21 clones sequenced, two were found to be correct, one of which was selected and used further. After subcloning of the DP into pDVERA2, 10 clones were sequenced, eight of which were found to be correct, one of which was used for large-scale production.

Once a single clone containing the correct sequence DNA vaccine was selected, large-scale production and purification were simple procedures. The pooled DNA vaccine was determined to have a concentration of $1.8 \mathrm{mg} / \mathrm{mL}$ of plasmid DNA vaccine.

8.5.2. Efficacy of the DNA Vaccine in vivo (DNAvacc1)

8.5.2.1. Toxicity of the DNA Vaccine

The DNA vaccine was well tolerated by all ducks, without any obvious side effects.

8.5.2.2. Detection of DHBV DNA

As expected all the unvaccinated ducks became infected by the challenge dose of approximately $10 \mathrm{ID}_{50}$. In contrast, two of the 7 vaccinated ducks (G97, and W133), were completely protected against this reasonably large dose.

The dot blot hybridisation and PCR results are tabulated in Table 44 (p.178). PCR results are unavailable for days 53 and 56 , because the serum from these days was collected into

Heparin/PBS to allow separation of PBMC and serum. Unfortunately, this method was found to inhibit the PCR reaction but it had no effect on the dot blot hybridisation results.

Group	Duck	Day 0	28	36	40	43	46	49	53	56	60-62	L
DNAvacc 1	B67	0	0						4	4		
	B68	0	0	0	0	0	0	d	0	0	0	
	G57	0	0		1	,	1		0	0		
	G97	0	0	0	0	0	0	0	0	0	0	
	G98	0	0	It	\square	1	1	1	0	0		
	W39	0	0		-	18	(1)	,	0	0		
	W133	0	a	,	0	,	0)	0	0	0	
Dv1 Controls	G92	0	0			1			4	4		
	G93		0			4	,		0	0		
	G100		0		If	+			0	0		
	W42	0	10			II			3	3		
	W118	0	0			.			0	0		
	W120		0		0	1	0	0	0	0	0.	
	W124		0						0	0		

Table 61. Tabulated dot blot hybridisation and PCR results for the DNAvacc1 experiment.
Dot blot hybridisation and PCR results for the DNAvacc1 experiment. Dot blot results are the numerical value ($0=$ not detected ($\leq \times 10^{6} \mathrm{vg} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}, 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}$, $4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$). Shaded blocks indicate DHBV PCR results: ($>2 \times 10^{3}$ $\mathrm{vge} / \mathrm{mL})$, leqative $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, clear $=$ not tested by PCR.

The dot blot hybridisation assay and PCR results from the controls indicates that the inoculated dose, although not able to produce high titre persistent infection, was large enough to infect 32 day old ducks, and remain in the liver until the end of the experimental period (day 60-62). All of the control ducks were found to be viraemic by PCR on day 36, with all but two ducks remaining viraemic until the end of the experiment. Duck W118 was found to clear the virus from the serum and be PCR negative on the final bleed (day 62). Duck W120 was only PCR positive in the serum on day 36 , and then negative for the rest of the experimental period. All but one of the control ducks were found to be dot blot hybridisation positive in the liver, and the remaining duck (W120), was PCR positive.

In contrast to the control ducks, which were all PCR positive, viraemia was never detected in 3 vaccinated ducks (B68, G97, and W133). Two of these ducks (G97, and W133) were also DHBV negative in the liver, while the third duck (B68), was positive by PCR only, indicating a very low level infection.

Although this result is not statistically significant, it appears that the DHBV DNA vaccine did provide protection to at least two of the seven ducks vaccinated even though the vaccine had not been primarily designed to achieve a humoral response.

8.5.3. Immunogenicity of DNAvacc1

The character of the specific CMI response to DNAvacc1 was assessed by lymphoblastogenesis assays and the humoral response by neutralisation tests.

8.5.3.1. Pre-challenge PBMC CMI response

The post-vaccination, pre-challenge PBMC CMI responses to epitopes incorporated in the DNA vaccine were very poor as measured by the lymphoblastogenesis assay (7.3.2, p.173). The only detectable CMI response was in control duck (W124), which was found to significantly respond to peptides 101-120, and 307-326 ($\mathrm{p}<0.05$). Individual duck results are in Appendix 11.9 (p.A43).

8.5.3.2. Post-challenge CMI response

Mitogen response: PBMC and SMC purified from all the ducks were able to respond to PHA stimulation in vitro indicating their viability (Table 47, p.182).

Antigen response: One month, (28-30 days) after challenge, the spleen was used to determine the CMI response to the epitopes in the DNA vaccine in the lymphoblastogenesis assay. The results for each duck have been summarised (Table 47, p.182). The full individual duck results are in Appendix 11.9 (p.A43).

There were no significant differences in the in vitro response of purified SMC between the vaccinated and the control group. See Appendix (Table 83, p.A43) for statistical analysis. Peptide 7-14W-27 elicited the best in vitro response with all of the control group and three of the 7 vaccinated group responding. None of the ducks responded significantly to peptide 7190.

$\begin{gathered} \text { Peptide } \\ 1-15 \end{gathered}$	DNAvacel group							$\begin{gathered} \text { Peptide } \\ 1-15 \end{gathered}$	Resp	nonR
	1367	368	G57	697	G98	W39	W133			
									1	6
7-14W-27								7-14W-27	3	4
$71-90$								71-90	0	7
101-120								101-120	0	7
229-248								229-248	0	7
267-286								267-286	1	6
307-326								307-326	0	7
SIIC PIIA								SMIC PIIA	7	0
SIIC LPS								SMC L.PS	5	2
PBIIC PIIA								PBNIC PIIS	7	0
PBNIC LPS								PBIIC L.PS	6	1

Peptide 1-15	DV1 Control group							Peptide	Resp	nonR
	G92	G93	G100	W +2	W118	W120	W124			
									3	4
7-1+1V-27								$7-1+\mathrm{W}-27$	7	0
71-90								$71-90$	0	7
101-120								101-120	1	6
229-248								229-248	2	5
267-286								267-286	3	4
307-326								307-326	1	6
SNIC PIIA								SNIC PIIA	7	0
SMC L.PS								SNIC L.PS	4	3
PBMC PIIS								PbMIC PIIA	7	0
PBMC LPS								PBMC LPS	7	0

Table 62. Summary of post-challenge CMI response to specific immunodominant epitopes in the DNAvacc1 experiment ducks (significant P/N).
Resp: Number of ducks that responded (significant P/N). NonR: Non-responders.
The response to the peptides appears to be more related to the DHBV status of the duck rather than whether they were vaccinated or not. Vaccinated ducks G97 and W133, which had been protected from infection by the vaccination showed little response to the peptides. Similarly, SMC purified from vaccinated duck B67 and control duck W42 with high level of viraemia, responded poorly to in vitro peptide stimulation. Better responses appeared to be related to reduction in DHBV DNA levels. Three (W118, B68 and W120) of the four ducks that demonstrated vigorous polyclonal blastogenesis in vitro, had cleared DHBV from the serum but not the liver. The remaining duck with a vigorous blastogenesis response (G93) had low-level viraemia, and may have cleared the infection if the experiment had been carried out for a longer period.

The relationship of the CMI response to DHBV infection is summarised (Table 63, p.219).

			Peptide						
Group	Duck	Infection	$\stackrel{n}{1}$		$\stackrel{\overleftarrow{~}}{\underset{\sim}{4}}$	$\frac{\overline{1}}{\frac{1}{E}}$	$\begin{aligned} & \stackrel{\infty}{\text { }} \\ & \text { శ్ิ } \end{aligned}$	\%	-
	G97								
	W133	not infected							
	B68	seronegative							
DNAvacc 1	G57								
	G98	persistent							
	B67	infection							
	W39								
	W120								
	W118	seronegative							
	G93								
Dv1 Controls	G100	persistent							
	W124	infection							
	G92								
	W42								

Table 63. Relationship of the CMI response to DHBV infection for the DNAvaccl experiment.
DHBV infection is defined as DHBV DNA in serum and liver at euthanasia. Not infected: serum and liver negative throughout. Seronegative: serum negative, liver positive. Persistent infection: serum and liver positive.

8.5.4. Neutralisation Assay

The DNA results of the neutralisation assay have been summarised (Table 64, p.220). They indicate that DNAvacc1 duck G97 was protected from challenge using the DHBV DNA vaccine by means of neutralising antibodies. The neat post-challenge serum of duck G97 was able to neutralise $100 \mathrm{ID}_{50}$ of DHBV , with none of the 3 ducks injected becoming positive, either by dot blot hybridisation or PCR. The 1:10 dilution and the pre-vaccination serum were not neutralising.

The serum from DNAvacc1 duck W133 was unable to prevent DHBV infection, even with neat serum. T his would indicate e ither, that very low levels of a ntibody a re b iologically effective in achieving clearance, or that protection from infection was mediated by different mechanisms.

The serum from DNAvacc1 duck W39 was unable to prevent DHBV infection, as expected.
It is evident that the dose of DHBV for this test was well calculated as the two ducks injected with $10 \mathrm{ID}_{50}$ (ducks G93, and G95) (duck G94 died on day 4) both had viraemic infections. One (duck P75) of the two ducks (P 74 , and P 75) injected with $1 \mathrm{D}_{50}$ had a viraemic infection; the other was not only dot blot hybridisation, but also PCR negative. Both of the ducks (R95, and R96) that were injected with $0.1 \mathrm{D}_{50}$ were dot blot hybridisation and PCR negative.

Ducks G94 (control $10 \mathrm{ID}_{50}$) and W99 (control nil) died on day 4. No cause could be determined but most likely due to some genetic abnormality.

Table 64. Summary of dot blot hybridisation and PCR results for the Neutralising Antibody experiment.
Dot blot hybridisation and PCR results for the Neutralising Antibody experiment. Dot blot results are the numerical value ($0=$ not detected $\left(\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}\right.$), $\quad 1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}, \quad 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}$, $\left.3=1 \times 10^{9} \mathrm{vg} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vg} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}\right)$. S haded blocks indicate DHBV PCR results: - ($>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}$), hegative $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$. Black blocks indicate that no sample was available. The liver results for groups $7,8,9$, and 10 are for day 70 (these ducks were used for the DNAvacc2 experiment). Ducks G94, and W99 died on day 4.

8.5.5. Therapeutic efficacy of the DNA vaccine (DNAvacc2)

All of the ducks in the DNAvacc2 experiment were viraemic by dot blot hybridisation previous to DNA vaccination or PBS injection. The controls and the DNA vaccinated groups had a similar average level of viraemia prior to treatment at 4.2×10^{8} and 2.3×10^{8} $\mathrm{vg} / \mathrm{mL}$ respectively. None of the ducks in the DNAvacc2 experiment were able to completely remove DHBV DNA from the serum and all were dot blot hybridisation positive in the liver at the end of the experimental period.

The maximum viraemia in the DNAvacc2 ducks was either before or during treatment. Three of the six vaccinated ducks (G92, Y58, and Y95) were dot blot hybridisation negative in the serum by day 70, compared with one (G93) of the five control ducks. The average viraemia of the DNA vaccinated ducks decreased by almost a $\log _{10}$ (to $\sim 20 \%$ of the pretreatment level), while the controls increased by a $\log _{10}$ (to $\sim 1000 \%$ of the pre-treatment level).

One of the Dv2 control ducks had a biphasic pattern of infection, although it was not dot blot hybridisation negative, it did have very low level viraemia between days 19 and 26 .

DNA sequence data for both the preC and Surface forward regions were obtained from the liver of all ducks, as well as from serum of DNAvacc2 ducks G92 (days 11, 19, and 55), Y58 (day 55), Y95 (days 19, and 26), and Dv2 control duck G93 (days 19, and 26). All sequence data obtained from the DNAvacc2 experiment were found to be wild type.

Table 65. Tabulated dot blot hybridisation and PCR results for the DNAvacc2 experiment.
Dot blot hybridisation and PCR results for DNAvacc2 experiment. Dot blot results are the numerical value ($0=$ not detected $\left(\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}\right), 1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}, 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}$, $3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$). Shaded blocks indicate DHBV PCR results: \qquad $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, cegativi $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, clear $=$ not tested. Asterisks indicate DNA vaccination injection 1, 2, and 3.

8.6. DISCUSSION

This pilot experiment has a number of technical limitations. In particular the number of ducks used was restricted by the housing facilities available as well as ethical considerations. In retrospect the control injections should have been made with a pDVERA2 plasmid with a nonsense insert, but this could not be achieved in time to take advantage of animal house availability. However, there is no reason to expect that the plasmid itself (without the DHBV epitopes) would have enhanced the immune response to the DHBV epitopes.

An intrinsic problem in using the DHBV model is the increase in natural resistance to DHBV infection as ducklings age. The selection of challenge doses is based on limited data and the very large virus doses needed may in themselves a ffect the immune response directly by their antigenic mass. The decreased susceptibility of the older ducks (inoculated on day 32) is evident from these results. Even though a much higher dose was used ($\left.2.5 \times 10^{10} \mathrm{vge}\right)$, compared to the young ducks, inoculated on day 1,4 , or 7 , with $2.8 \times 10^{3}-2.8 \times 10^{5}$ vge, none of the older ducks developed the classic highly viraemic persistence which is characteristic of infection in young ducks. Even the administration of the challenge inoculum by the intravenous route did not produce a persistent infection with high level viraemia. This reinforces the observations that the older animals tend towards self-limiting acute infection, which is the opposite of the young, where persistence is the norm. This is an intractable limitation of vaccination studies in the DHBV model.

The small animal numbers restricted the ability to sample CMI responses at different time periods after vaccination and challenge. The CMI response is evanescent so this may well have accounted for the negative outcome of the proliferation assays post vaccination. The low CMI responses of the DNAvaccinated2 ducks may be due to the fact that the CMI becomes undetectable soon after resolution of infection in the ducks (Vickery et al., 1999b).

Despite these limitations the experiment yielded several pieces of useful information.

The protective efficacy was unexpected since immunity to DHBV is attributed to antisurface antibodies. The vaccine was based on surface epitopes but these had been selected for their putative T-cell importance and the overlap with known B-cell epitopes is minor. Moreover, DNA vaccines present peptides mainly via the Th1 pathway and their ability to generate conformational epitopes characteristic of Th2 responses in regarded as poor. However, we were able to demonstrate neutralising antibody in one of the two ducks protected by the vaccine. This ability of DNA vaccination, to protect against hepadnavirus infection, has been shown by others (Triyatni et al., 1998; Du et al., 2003; Zhou et al., 2003). The effectiveness of neutralising protection however, depends on the gene used for DNA
vaccination; a complete preS gene was found to stimulate antibody production similar to a complete S gene construct, but effective protection was significantly lower (Triyatni et al., 1998). Careful consideration must be given to the choice of epitopes expressed by the DNA vaccine.

The average quantity of virus present in serum at day 70 was $2 \log _{10}$ lower in the DNAvaccinated group when compared with the unvaccinated controls (ie. the level of viraemia in the DNA vaccinated group was $\sim 1 \%$ of that of the control group). This result is not statistically significant due to the low number of ducks used in the experiment. The decision to use only epitopes from the S gene was made on the observation that S -specific responses presaged clearance and supported by the consideration that a CMI response to the surface gene would place extra immune pressure on a single part of the genome already targeted by the humoral response. As such, the virus would have to evade both arms of the immune system in a short region of the genome, and this is more likely to result in a defective mutation.

Much of the CMI research done with hepadnaviruses has focused on the response to the Core gene. However, here too a vigorous immune response does not necessarily lead to elimination of infection. For instance, the CMI response has been mapped for the woodchuck model, in which persistently infected woodchucks were found to be able to respond to several epitopes of the nucleocapsid core protein (Shanmuganathan et al., 1997). So even though there is an experimentally determinable response, it is insufficient to produce clearance of the infection.

The inability of a DNA vaccine to eradicate persistent DHBV infection does not discount that the DNA vaccine may be used therapeutically, as recent research indicates that the use of antivirals in combination with DNA vaccines provide better results (Le Guerhier et al., 2003). The efficacy of the combination of adefovir with DNA-immunisation was compared with the respective monotherapies. DHBV chronically infected Pekin ducks received Adefovir treatment alone or in association with intramuscular immunisation with a plasmid (pCI-preS/S) expressing the DHBV large envelope protein. All of the animals treated with Adefovir demonstrated a marked drop in viraemic titres during administration, but, as appears usual for hepadnavirus drug therapies, was followed by a rebound of viral replication after drug withdrawal. After the third and final DNA boost, the median of viraemia within the duck group receiving the combination therapy tended to be lower compared to that of the other groups. The researchers also suggested that the combination produced an additive effect as a 51% decrease in DHBV DNA was observed in autopsy liver samples from combination therapy group, whereas the monotherapies were found to have
decreased intrahepatic viral DNA by 38 (pCI-preS/S) and 14%, (Adefovir). This effect was found to be sustained for a reasonable length of time as it was observed 12 weeks after the end of therapy (Le Guerhier et al., 2003).

However there is still much to be learned about the administration of combination therapies, which has been demonstrated, by Entecavir and DNA vaccine combination experiments. The drug Entecavir, was orally administered to persistently infected young ducks, from 21 days posthatch for 244 days, which caused a $4 \log _{10}$ drop in serum DHBV DNA levels within 80 days, and a slower $2-3 \log _{10}$ drop in serum DHBV surface antigen levels within 120 days. However, the addition of DNA vaccination did not result in any significant effect on viral markers (Foster et al., 2003).

The use of drugs to effectively lower the viral load in combination with other therapies appears to be the next step for most of the therapeutic approaches to clearing hepadnavirus infections, and is not limited to DNA vaccines. Conventional protein vaccines have been found to be partially effective in increasing both the CMI and humoral response of persistently infected woodchucks, in combination with drug therapy (Menne et al., 2002).

However, the concept that virus down regulation and clearance is exclusively achieved by specific a nti-viral CMI may be a n o versimplification a nd b oth specific humoral and n onspecific T-cell activity may be required to act in tandem with virus-activated T-cells. Reagents for examining the duck CMI a re very limited, so we decided to investigate the relative roles of the two arms of the immune response by studying the effect of bursectomy and thymectomy on the ability of ducks to control hepadnavirus infection.

9. Manipulation of IMMUNE MECHANISMS

9.1. InTRODUCTION

Modulation of the immune system has been achieved by many different methods such as irradiation to remove all of the cells of the immune system (Mumcuoglu et al., 1987; Bocher et al., 1999), selective breeding and transgenic manipulation to produce specialised species (Chisari et al., 1985), use of monoclonal antibodies that target destruction of specific cells (Naessens et al., 1998), and surgical removal of important immune organs (Sugimura and Hashimoto, 1980; Sreter et al., 1996). The immune system of avian species is basically the same as that of mammals but does have some distinct anatomical and developmental features, which permit a surgical approach to experimental modulation of the immune response.

In birds, maturation of B-cells occurs in the Bursa of Fabricius, which is located perianally where it is readily accessible as a compact encapsulated organ. At hatching the secondary lymphoid organs are already populated (albeit minimally), with functional B-cells (Hashimoto and Sugimura, 1976b), however, they are not yet fully matured. In consequence viral infections acquired soon after hatching tend to become persistent. Removal of the Bursa on the day of hatching should retard maturation of the humoral response, and this has been amply demonstrated in the extensive studies on the chick, which originally defined the T- and B-cell lymphocytes and their function (Warner and Szenberg, 1962; Cooper et al., 1965; Magor et al., 1998).

As in mammals, avian T-cell lineages are derived from the thymus. In ducks the thymus is multi-lobed and located in close proximity to the trachea. Removal of the thymus to deplete the mature T-cell population thus presents a technical challenge.

At the time of experimentation there were no immunological markers available to identify duck T- and B-cells, except in flow cytometry where duck T-cells can be identified with anti-human CD3 antibody (Bertram et al., 1996). Despite this limitation the course of

DHBV infection in ducklings after bursectomy and thymectomy can shed light on the relative significance of humoral and cellular immunity in achieving clearance.

If specific CMI to S epitopes is the key response leading to DHBV clearance, impairment of the lymphoblastic response to the immunologically important peptides identified in immunologically intact animals should correlate with an inability to clear DHBV.

9.2. AIMS

(1) To determine the effect of neonatal bursectomy or the thymectomy on the outcome of DHBV infection in 4 week old ducklings.
(2) To correlate the ability of individual 4 week old ducklings to clear DHBV with the CMI response to peptides of the Surface protein and their bursectomised or thymectomised status.

9.3. Materials and Methods

These experiments were done in conjunction with Jim Pouliopoulos, as part of his Masters degree program, and so the day-to-day animal duties, harvesting of cells, and the lymphoblastogenesis assay work was shared.

9.3.1. Surgical Protocol

All anaesthesia and surgery was kindly performed by Dr. Anand Deva, Dr. Robert Dixon, and Dr. Karen Vickery.

Ducks were premedicated with $1 \mathrm{mg} / \mathrm{kg}$ of ketamine hydrochloride, intramuscularly. They were induced and maintained on inhalational anaesthetic (Isofluorane). The immediate surgical area was plucked and the surrounding area shaved and the skin surgically prepared with 70% ethanol, and povidone-iodine (Faulding Pharmaceuticals Salisbury, South Australia). All surgical instruments were autoclaved before use (holding time $121^{\circ} \mathrm{C}, 15 \mathrm{lbs}$, 20mins).

Postoperatively all ducklings were given 2 mL Hartmans' solution intraperitoneally. Postoperative analgesia was provided by wound infiltration with 0.25% bupivacaine with adrenalin $(2.5 \mu \mathrm{~g} / \mathrm{mL})$. An aerosol dressing spray (Opsite, Smith and Nephew Hull, UK) was applied to wounds and ducklings were left to recover in a heated room. Postoperative antibiotic prophylaxis was provided by Tetracycline in the drinking water for 7 days.

The surgical methods outlined in the Handbook of Experimental Immunology (Weir, 1978) were followed.

9.3.2. Control ducks

The twenty-four naïve negative control ducks were the same ducks as described in detail in Chapter 7 (7.3.1.1, p.170). These ducks were never in contact with DHBV (Table 66, p.228).

There were twenty-five positive control ducks (Table 66, p.228). Twelve ducks (G531, G58, G631, G72, G 89, P 72W48, P631, V2R, W 105, W106, W 107, and W111) were the same ducks as described in detail in Chapter 7 (7.3.1.3, p.170). Another thirteen ducks (G86, G511, G991, P17, P54, P57, P531, W34, W43, W48, W103, W139, and W451) were similarly treated. Ducks were infected with DHBV at 4 weeks of age and euthanased 43 days later. Ducks G86, G511, G991, P54, P57, P531, W34, W43, W48, W103, and W451, were inoculated with 2.0×10^{9} vge (ID_{50} equivalent) of DHBV from serum pool DHBV200499, while ducks G58, G531, P17, P631, P72W48, V2R, W105, W106, W107, W111, and W139, were inoculated with the same amount of DHBV from serum pool DHBV200197. The two different serum pools contained the same concentration of DHBV DNA ($2.0 \times 10^{10} \mathrm{vge} / \mathrm{mL}$), and were found to have the same experimental properties.

Ducks G72, G89, and G631, were inoculated with ten times the standard dose (2.0×10^{10} vge from serum pool DHBV200197, approximately $10 \mathrm{ID}_{50}$). These ducks were used for histological and cell count data, as well as the lymphoblastic antigen response (Chapter 7, p.170), as they were found to be similar to the normal positive controls. However, these ducks could not be used for the outcome results, because they have received a larger dose of DHBV and dose is an important factor in the outcome of the infection.

Type	Batch	Ducks	Number
Bursectomised	Bursect	10	W101, W109, W131, W132, W140, and W104, W110, W121, W130 and W145
Thymectomised	Thymect1	4	W122, W125, W126, and W147
	Thymect2	9	W151, W152, W153, W156, W157, W160, W167, W168, and W170
Positive Control		25	G86, G511, G 991, P 54, P 57, P 531, W 34, W43, W48, W103, and W451 (DHBV200499) G58, G531, P17, P631, P72W48, V2R, W105, W106, W107, W111, and W139 (DHBV200197)
			G72, G89, and G631 (high dose group)
Negative Control		24	$1 \mathrm{~A}, 1 \mathrm{~B}, 1 \mathrm{C}, 1 \mathrm{D}, 1 \mathrm{E}, 1 \mathrm{~F}, 1 \mathrm{G}, 1 \mathrm{H}, 1 \mathrm{I}, 1 \mathrm{~J}, 1 \mathrm{~K}, 1 \mathrm{~L}$, $2 \mathrm{~A}, 2 \mathrm{~B}, 2 \mathrm{C}, 2 \mathrm{D}, 2 \mathrm{E}, 2 \mathrm{~F}, 2 \mathrm{G}, 2 \mathrm{H}, 2 \mathrm{I}, \mathrm{P} 24 \mathrm{P} 53$, V2T, and V2U

Table 66. Ducks used in the Bursectomy and Thymectomy experiments.
Ducks G72, G89, and G631, were given 10x the standard inoculum; as such they could not be used for the outcome of infection results, leaving 22 ducks in the positive control group.

9.3.3. Bursectomised ducks

Ducks (W101, W104, W109, W110, W121, W130, W131, W132, W140, and W145) (Table 66, p.228) were bursectomised in ventral recumbency, on day of hatch. A horizontal 5 to 7 mm long incision was made just ventral the tail where the lower edge of the last vertebra could be felt. The bursa was grasped with dissecting forceps and gently freed from its attachments to the upper surface of the cloaca, with care not to the damage blood vessels or the overlying ureters and genital tubes. The bursa was excised as close as possible to its cloacal attachment. The incision was closed with 3 simple interrupted stitches using monofilament $4 / 0$ suture.

All bursectomised ducks were challenged on day 28 with 2.0×10^{9} vge of DHBV: ducks W101, W109, W131, W132, and W140, were inoculated with serum pool DHBV200197, while ducks W104, W110, W121, W130, and W145, were inoculated with serum pool DHBV200499. Both serum pools contained the same concentration of DHBV (2.0×10 ${ }^{10}$ vge $/ \mathrm{mL}$) (Methods and Materials, 2.2.7, p.74). This dose was interpolated to be equivalent to IID_{50}, as based on previous data for 26 day old ducks (Vickery and Cossart, 1996). Serum samples were obtained pre challenge and twice weekly (every 3-4 days) post challenge. The spleen was harvested and a liver sample obtained at euthanasia on day 70 .

9.3.4. Thymectomised ducks

The one day old ducks were thymectomised in two batches (Table 66, p.228), due to surgical time constraints.

For thymectomy, the day old ducklings were placed ventral side down and a pillow of gauze was placed under the neck so that the cervical spine was horizontal to the table. A dorsal midline incision was made from the scapular region to the base of the skull. A skin flap was made on one side of the neck. Each thymic lobe was separated from the surrounding fascia and removed. The last lobe was visualised and removed by gently pulling the jugular vein from the thoracic cavity. The lobes on the other side of the neck were removed in a similar fashion. The wound was closed using monofilament (4/0) continuous subcuticular suture. In a few ducks there was difficulty in removing the last thymic lobe.

The ducks were inoculated on day 29 or 30 , with $100 \mu \mathrm{~L}$ of DHBV200197 ($2.0 \times 10^{9} \mathrm{vge}$, an ID_{50} equivalent), bled twice weekly (every 3-4 days) until day 69 or 70 , when the spleen was harvested, and blood and liver samples obtained at euthanasia (day 43).

9.3.5. Assays performed on Samples

All serum and digested liver samples were serially diluted and tested for DHBV DNA by dot blot hybridisation to determine level of viraemia. If negative by dot blot hybridisation, serum was tested by PCR (if sufficient serum remained).

Ducks were weighed to assess whether the surgery adversely affected their growth.

The CMI response to peptides and mitogens was determined by the lymphoblastogenesis assay as previously described (7.3.2, p.173).

The whole spleen minus a small section for histopathological analysis was purified. An estimate of the total splenic lymphocytes was obtained by counting SMC following purification for cell culture.

9.3.5.1. Histopathology

Liver, spleen, as well as residual thymic and surrounding fascial tissue were obtained for histopathology at euthanasia. The tissues were processed as described (2.2.10, p.77).

Histopathology was also performed on duck groups from Chapter 7: Negative control group, Protein vaccinated group, and the Positive control group.

The grading of liver, thymus, and spleen samples by code was generously performed by Dr. Ted Wills from Anatomical Pathology (Central Area Health Services). Inflammation of the liver was graded in accordance to that previously described (Marion et al., 1984) (Table 67, p.230).

Inflammation	Description
Normal	No inflammatory cells or occasional foci of inflammatory cells in portal tracts or parenchyma.
Slight	Occasionally observed in normal uninfected ducks.
Mild	Conspicuous accumulation of inflammatory cells in portal tracts with or without scattered focal necrosis, increase in bile ductules and increase in sinusoid cells.
Moderate	Inflammation as above, but including inflammatory cell extension into the parenchyma along septae with or without piecemeal necrosis.
Severe	Accompanied by regenerative nodules, extensive septae formation, or areas of collapse.

Table 67. Description of histological inflammation grading.
Interpretation was fairly strict: one or two portal tracts with a few inflammatory cells in them may be within normal limits, but was graded as slight. Statistical comparisons using the

Fisher's exact test were performed utilising the combined normal and slight changes as normal, and mild to severe changes as an indication of inflammation.

Splenic architecture was graded as having normal or reduced follicles.

9.3.5.2. Cell counts

A Whole Blood Cell count (WBC) was performed to determine the total leukocytes in the blood. Natt and Herrick's method was used to enumerate total leukocytes (2.2.9.2, p.76). Leukocytes and lymphocytes stain darkly while erythrocytes and thrombocytes are lightly stained.

The SMCs and PBMCs were counted by Trypan blue exclusion (2.2.9.1, p.76). These counts were primarily used to determine the cell concentration for plating, but were also analysed.

9.3.5.3. Statistical analysis

The lymphoblastogenesis assay was analysed, and interpreted, in the same manner as described previously (7.3.3, p.177). B riefly, F isher's e xact test was u sed to compare the number of responders for each group; a responder being statistically higher (Student's t-test, 2 tailed, 2 sample) than the control wells by greater than 1000 cpm . A p value of <0.05 was considered significant.

For histopathology and cell counts, a Student's t-test, (or Mann-Whitney Rank Sum test, when normality failed), was used comparing the mean of the individual counts; p value of <0.05 was considered significant.

9.4. Results

9.4.1. Surgical procedures

Almost all ducks that underwent the surgical procedures of either bursectomy, or thymectomy, survived and were observed to be healthy and exhibited normal behaviour. One bursectomised duck died while being operated on, while ten survived to provide experimental data.

9.4.2. Duck Body Weight

Bursectomised and thymectomised ducks grew at the same rates as controls, indicating that the surgery did not adversely affect their growth.

9.4.3. Outcome of Infection

9.4.3.1. Negative control ducks

None of the twenty-four naïve negative control ducks were found to be DHBV DNA positive by dot blot hybridisation or PCR for any of the samples tested. A more detailed description was given in Chapter 7 (7.4.1.1, p.177).

9.4.3.2. Positive control ducks

At sacrifice, ten of the twenty-two positive control ducks (G86, G511, G531, G991, P17, P54, P57, P72W48, W103, and W106), were liver negative, while the other twelve ducks (G58, P531, P631, V2R, W34, W43, W48, W105, W107, W111, W139, and W451), were found to be liver positive for DHBV DNA (Table 68, p.232).

Of the ten DHBV DNA liver negative ducks, six (ducks G991, P17, P54, P72W48, W103, and W106) were found to be viraemic on at least one occasion by PCR, indicating that the ducks were at least transiently infected. The other four liver negative ducks remained uninfected throughout. All of the twelve DHBV DNA liver positive ducks were viraemic on one or more occasions. The dot blot hybridisation and PCR results for the positive control group are tabulated (Table 68, p.232).

Ducks	Days post inoculation													
Liver negative	0	4	7	11	14	19	21	24	27	29	34	37	43	L.
G86	0	0	0	2	0	0	0			0			0	6
G511	0	0	0	0	0	0	0			0			0	1)
G531	0	0		0	0	0	0			0			0	0
G991	0	0		0	0	0	0			0			0	0
P17	0	0		1	0	0	0			0			0	4
P54	0	0		0	0	0	0			0			0	0
PS7	0	0	0		0	0	0			0			0	0
W103		0		6	0	0	0	0	0	0	0	0	0	0
W106		0			0	0	0	0	0	0	0	0	0	0
P72W48	0	0			0	0	0	0	0	0	0	0		1
Liver positive	0	4	7	11	14	19	21	24	27	29	34	37	43	L.
G:58	0	0	0		0	0	0			0			0	5
P531	0	0	0		2	0	2			3			0	5
P631	0	0	0	a	0	0	0			0			2	4
W34	0	0	0		0	3	1			2			4	5
W 43	0	0			0	2	2			2			2	5
W 48	0	0	0		0	0	1			3			0	4
W139.	0	0			0	0	0			0			0	
W451	0	0	5		5	5	2			3			5	5
V2R	11					0								
W105		0			0	0	0	0	0	0	0	0	0	
W 107		0			0	0	0	0	0	0	0	0	0	
W111		0			0	0	0	0	1	2	1	1	2	

Table 68. Tabulated dot blot hybridisation and PCR results for the Positive control ducks.
Liver negative ducks are in the top table, while liver positive ducks are in the bottom table. Dot blot results are the numerical value ($0=$ not detected ($\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}, 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}$, $3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL},+=$ positive $>1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$). Shaded blocks indicate DHBV PCR results: $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, 艮ectiva $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, clear $=$ not tested. $\mathrm{L}=$ Liver.

9.4.3.3. Bursectomised ducks

All of the bursectomised ducks (10/10) were DHBV positive in the liver at euthanasia. All bursectomised ducks were positive for DHBV DNA in the serum on multiple occasions, 9 were quantifiable by dot blot hybridisation; viraemia in one duck (W110) was only detectable by PCR. Four of the ducks (W104, W110, W132, and W145) cleared viraemia prior to euthanasia. Most of the bursectomised ducks $(8 / 10)$ had viraemia levels that reached $10^{7} \mathrm{vge} / \mathrm{mL}$. The Bursectomy duck results are summarised (Table 44, p.178).

Duck	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{8}$	Days Post Inoculation								
W101	0	0	1	4	5	1	1	1	5			
W104	0	0	2	0	1	1	0	0	5			
W109	0	0		5	2	1	1	1	5			
W110	0			0	0	0	0	0				
W121	0	0	5	1	1	2	2	2	5			
W130	0	0	5	0	2	4	4	4	5			
W131	0	0	0	4	1	1	1	1	5			
W132	0	0	0	1	1	0	1	0	5			
W140	0	0	1	1	1	2	1	2	5			
W145	0	0	1	3	1	0	1	0	5			

Table 69. Tabulated dot blot hybridisation and PCR results for the Bursectomy
experiment.
Dot blot results are the numerical value ($0=$ not detected ($\leq x 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $\left.2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, \quad 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}\right)$. Shaded blocks indicate DHBV PCR results: $\left(>2 \times 10^{3} \mathrm{vg} / \mathrm{mL}\right)$, erativa $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, clear $=$ not tested. $\mathrm{L}=$ Liver.

9.4.3.4. Thymectomised ducks

Only three of the thirteen thymectomised ducks (W126, W152, and W160) were DHBV positive in the liver at euthanasia. Only one of the three liver positive thymectomised ducks (W126) was viraemic throughout the experimental period while the other two ducks were never viraemic. This duck had an initially high peak, followed by a trough and a second peak approximately one $\log _{10}$ lower than the original. The amount of circulating virus then fell and was maintained at less than $1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$ until the termination of the experiment. Five of the ducks (W122, W147, W153, W157, and W170) that were DHBV negative in the liver at euthanasia were transiently viraemic by PCR 4 to 11 days post inoculation. The Thymectomy results are summarised (Table 70, p.234).

Duck	Days Post Inoculation												
	0	4	7	11	14	17	20	27	30	34	37	40	L
W122	0	0			0	0	0	0	0	0	0	0	0
W125	0	0	0	0	0	0	0	0	0	0	0	0	0
W126	0	0	0	5	5	1	2	2	3	3	1	1	5
W147	0	0			0	0	0	0	0	0	0	0	0
Duck	0	5	7	11	14	18	22	26	29	34	36	40	L
W151	0	0	0	0	0	0	0	0	0	0	0	0	0
W152	0			0	0	0	0.	0	0	0	0	0	
W153	0		U	0	10	0	0	0	0	0	0	0	0
W156	0			0		0	0	0	0	0	0	0	
W157	0				0	0		0	0	0	0	0	
W160	0			0	0			0	0	0	0	0	
W167	0				9.	0	0	0	0	0	0	0	
W168	0		,	0.		.	0	0	0	0	0	0	0
W170	0		0	0	0	0	0	0	0	0	0	0	0

Table 70. Tabulated dot blot hybridisation and PCR results for the Thymectomy experiment.
Dot blot results are the numerical value ($0=$ not detected ($\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}$), $\quad 1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $\left.2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, \quad 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, \quad 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}\right)$. Shaded blocks indicate DHBV PCR results: $\left(>2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, 兯egativi $\left(<2 \times 10^{3} \mathrm{vge} / \mathrm{mL}\right)$, clear $=$ not tested. $\mathrm{L}=$ Liver.

9.4.3.5. Analysis of the Outcome of Infection

No significant difference in the infectivity of serum pools DHBV200197 and DHBV200499 was found either within the positive control group ($\mathrm{p}=0.434$), or the bursectomy group ($\mathrm{p}=1.000$).

All ten of the bursectomised ducks (10/10) failed to clear DHBV infection from the liver, while $66 \%(12 / 18)$ of positive controls that were ever found to be viraemic, remained infected; although this was not quite significant ($\mathrm{p}=0.062$). When the outcome of the infection in the bursectomised duck groups was compared with the positive groups given the same DHBV serum pool, there was no statistical difference; DHBV200197 (7/11) ($\mathrm{p}=0.245$), DHBV200499 ($5 / 11$) $(\mathrm{p}=0.093)$. However, by combining the results of both serum pools, the bursectomised group (10/10) was significantly more likely to remain infected when compared with the inoculated control group $(12 / 22)(\mathrm{p}=0.013)$.

Only 23% of thymectomised ducks (3/13), remained infected, which was significantly better than the positive controls that were ever found to be viraemic $(12 / 18)(\mathrm{p}=0.029)$; but when
compared with positive control ducks administered with the same serum (7/11), was not significant ($\mathrm{p}=0.095$), neither was it significant when compared to the total positive control ducks $(12 / 22)(\mathrm{p}=0.089)$.

The bursectomised ducks were significantly more like to remain infected that the thymectomised ducks ($\mathrm{p}<0.001$).

9.4.4. Kinetics of Infection

9.4.4.1. Bursectomised ducks

Nine of the ten bursectomised ducks had serum titres of DHBV quantified by dot blot hybridisation. All of the bursectomised ducks had high levels of DHBV DNA in the liver at euthanasia. When the course of infection is more closely analysed by graphing the dot blot hybridisation results (Figure 62, p.236), the bursectomised ducks exhibited four patterns of viraemia: (a) Single large peak followed by persistent viraemia of approximately 1×10^{6} vge/mL, (b) Biphasic, (c) low level highly variable viraemia, and (d) low level, only PCR positive viraemia.
(a) Four ducks (W101, W109, W121, and W131), developed a single high peak of viraemia with titres above $1 \times 10^{10} \mathrm{vge} / \mathrm{ml}$; the level of DHBV DNA then gradually fell to approximately $1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$.
(b) Duck W130 exhibited a biphasic response, similar to that originally described in Chapter 3.
(c) Low level highly variable viraemia was demonstrated by ducks W104, W132, W140, and W145. These ducks exhibited fluctuating viraemia with peaks of up to $1 \times 10^{7}-1 \times 10^{8}$.
(d) The only detectable viraemia for duck W110 was by PCR, indicating a low level infection, however the liver contained high levels of DHBV DNA.

Figure 62. Graphic results for Bursectomy experiment ducks.
Ducks with similar patterns of viraemia (as described in 9.4.4.1, p.235) are grouped. All ducks were liver positive. Dot blot results are the plotted numerical value ($0=$ not detected ($\leq \times 10^{6} \mathrm{vge} / \mathrm{mL}$), $1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}, 2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}$). The blue arrow indicates when the ducks were inoculated. PreS-S PCR results are indicated by large data points: mreei $=$ PCR negative, $\mathrm{Eed}=$ PCR positive, small black $=$ not tested.

9.4.4.2. Thymectomised ducks

Of the six viraemic thymectomised ducks, DHBV DNA could be quantified in only duck W126 (Figure 63, p.236). This duck had an initial high peak of $1.2 \times 10^{8} \mathrm{vge} / \mathrm{mL}$, followed by a trough and a second peak approximately one $\log _{10}$ lower than the first peak. The amount of circulating virus then fell and was maintained at approximately $10^{6} \mathrm{vge} / \mathrm{mL}$ until the termination of the experiment.

Figure 63. Graphic results for Thymectomy duck (W126).
Dot blot results are the plotted numerical value ($0=$ not detected $\left(\leq x 10^{6} \mathrm{vge} / \mathrm{mL}\right), 1=1 \times 10^{7} \mathrm{vge} / \mathrm{mL}$, $\left.2=1 \times 10^{8} \mathrm{vge} / \mathrm{mL}, 3=1 \times 10^{9} \mathrm{vge} / \mathrm{mL}, 4=1 \times 10^{10} \mathrm{vge} / \mathrm{mL}, 5>2 \times 10^{10} \mathrm{vge} / \mathrm{mL}\right)$. The blue arrow indicates when the duck was inoculated.

9.4.4.3. Positive control ducks

As expected for a relatively low inoculation dose of approximately $1 \mathrm{DD}_{50}$ about half (55%) were DHBV DNA positive in the liver at euthanasia. Another characteristic of the low dose was relatively low viraemia, however several of the infection patterns seen in Chapter 3, are evident. Ducks G72, and W451, both developed a biphasic pattern, while duck P531 developed a fluctuating viraemia.

9.4.5. Histology

Results for individual ducks can be found in the Appendix (Table 85, p.A129).

9.4.5.1. Liver histology

The results of histopathological examination of the liver have been summarised (Table 71, p.237).

Group	Total	Normal No. (\%)	Inflamed No. (\%)
Negative control	23	$22(96 \%)$	$1(4 \%)$
Positive control	17	$12(70 \%)$	$5(30 \%)$
Bursectomised	9	$4(44 \%)$	$5(56 \%)$
Thymectomised	13	$11(85 \%)$	$2(15 \%)$

Table 71. Summary of histopathological results for the Liver.
All ducks considered to have liver inflammation were also DHBV DNA positive in the liver (except for negative control duck). Inflammation was considered mild or above, as described in Table 66 (p.228).

In comparison to normal non-challenged ducks (negative control group), only the bursectomised ($\mathrm{p}=0.003$) group showed evidence of increased inflammatory changes due to the infiltration of portal tracts by lymphocytes. However the infected control (positive control group) ($\mathrm{p}=0.067$) demonstrated a possible trend.

A greater proportion of bursectomised ducks had inflammatory infiltrates within the liver than positive control ducks, however no significant difference can be demonstrated between these groups $(p=0.234)$. The bursectomised ducks did not statistically have increased inflammation compared to the thymectomised ducks, but a trend was evident ($\mathrm{p}=0.074$).

DHBV infection was significantly associated ($\mathrm{p}<0.001$) with liver disease. Except for the negative control duck, all ducks that had inflammation of the liver were also DHBV DNA positive in the liver. Of the ducks considered to have normal liver histology, half of the positive control group (6/12), all of the bursectomised group (4/4), and only one of the thymectomised group (1/11), were DHBV DNA positive in the liver.

9.4.5.2. Spleen histology

The results of histopathological examination of the spleen have been summarised (Table 72, p.238).
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Group } & \text { Total } & \text { Normal } \\
\text { No. (\%) }\end{array}
$$ \begin{array}{c}Reduced

No. (\%)\end{array}\right]\)| Negative control | 18 | $15(84 \%)$ |
| :---: | :---: | :---: |
| Positive control | 17 | $9(53 \%)$ |
| Bursectomised | 9 | $4(44 \%)$ |
| Thymectomised | 12 | $8(67 \%)$ |

Table 72. Summary of histopathological results for spleen follicles.

The splenic architecture in the bursectomised ducks showed a reduction in follicles in comparison to negative control ducks, but was not significant $(\mathrm{p}=0.072)$. The frequency of positive control ducks with splenic alterations was also elevated, but not statistically significant from the negative controls $(p=0.075)$.

Of the 8 p ositive control ducks with reduced follicles, 3 were liver positive (only one of these three also had liver inflammation). The one negative control duck with mild liver inflammation also had reduced splenic follicles. All five of the bursectomised ducks with reduced follicles were liver positive, and two of these also had liver inflammation. None of the thymectomised ducks with reduced follicles were liver positive, or had liver inflammation.

9.4.5.3. Thymus histology

All thymic lobes that were extracted from the day old ducks were similar to that observed in Figure 64 (p.238).

Figure 64. Histological example of neonatal thymus.
(a) Low power 100 x (b) High power 400 x showing Hassal's corpuscles.

There are some notable structures that show structural similarity to the human thymus. The densely stained cortex (peripheral zone) lobes are clearly separated by connective tissue septa and a lighter staining central region, the medulla. Within the medulla, Hassal's corpuscles were prominent features.

Both the thymectomised and positive control groups exhibited thymic involution indicated by replacement of the thymic parenchyma with adipose tissue. All that remains of thymus from adult ducks are small irregular strands of tissue composed of shrunken epithelial cells and lymphocytes. Hassal's corpuscles are not easily discernible. None of the thymectomised ducks was found to contain any thymic tissue at euthanasia, while only 1 of the 13 positive control ducks as found to contain any thymic tissue at euthanasia: there was no statistical difference.

9.4.6. Cell counts

Results for individual ducks can be found in the Appendix (Table 86, p.A130), as can the summarised group mean results. For easy comparison the summarised group mean cell counts has been graphed (Figure 65, p.239).

Leukocyte Counts

Figure 65. Summary of the means of the Cell counts.
Total leukocyte counts (WBC) were significantly elevated in bursectomised ducks when compared with the negative controls ($\mathrm{p}<0.001$). The WBC was significantly depressed in thymectomised ducks in comparison to the positive control ($\mathrm{p}=0.005$), immune (protein vaccinated ducks) $(\mathrm{p}=0.003)$, and the negative control groups ($\mathrm{p}=0.048$). Although the DHBV positive ducks appeared to have a greater number of leukocytes than DHBV negative
ducks, it was not quite significant $(\mathrm{p}=0.055)$. The average WBC for the immune group (protein vaccinated ducks), was between that of the positive and negative controls.

This trend was maintained when the results of the negative, positive, and immune groups are pooled and considered to be a group with a normal immune system, then the bursectomised ducks have elevated WBC counts ($\mathrm{p}<0.001$), and the thymectomised ducks have decreased WBC counts ($\mathrm{p}=0.001$).

There was no significant difference in the PBMC counts between any of the groups, as they were all approximately equivalent.

The thymectomised group had an elevated SMC count in relation to all other groups; negative control ($\mathrm{p}=0.001$), positive control ($\mathrm{p}<0.001$), bursectomised ($\mathrm{p}<0.001$), and immune ($\mathrm{p}=0.004$).

Again, when the results of the negative, positive, and immune groups are pooled and considered to be a group with a normal immune system, then the bursectomised ducks have similar SMC counts ($\mathrm{p}=0.546$), while the thymectomised ducks have an elevated number of splenic cells ($\mathrm{p}<0.001$).

When the composition of the circulating leukocytes is analysed, an interesting picture emerges. Although all groups had roughly the same number of circulating mononuclear cells (PBMC), the WBC counts varied enormously. Thus the percentage of PBMC in the total blood leukocyte population is different (Figure 66, p.240). In ducks, the non-PBMC cells in the blood circulation are considered to be mostly heterophils.

Circulating Leukocytes

Figure 66. PBMCs as a subpopulation of the total blood leukocytes.

It is clearly demonstrated in Figure 66 (p.240), that approximately half of the total leukocytes in the blood of the negative controls are PBMCs, while in the positive controls they are only about 15% of the total population. For the bursectomised group the PBMCs are only approximately 5% of the total population, while in the thymectomised group they comprise approximately 75% of the cells. It is interesting to note that the counts for the immune ducks (protein vaccinated) are in between that of the negative and positive control groups.

9.4.7. CMI Response results

9.4.7.1. Bursectomised Ducks

The results from the Bursectomised ducks, for the significant P / N analysis have been summarised, (Table 73, p.242). The full results for each duck are in the Appendix (11.9, p.A43).

The bursectomised response to mitogens cannot be fully appreciated as data were only available for three ducks (W109, W121, and W130).

Due to a problem with obtaining enough of peptides 1-14, 7-14W-27, 7-14R-27, 22-41, 229248, and 307-326, there is no CMI response data for these peptides. CMI response data were only available for seven ducks (W101, W109, W121, W130, W131, W132, and W145). There was no clear pattern of response to any of the peptides tested, however one point to keep in mind, is that none of the bursectomised ducks responded to peptide 71-90 (one of the immunologically important peptides incorporated into the DNA vaccine). Only one duck responded well to peptide stimulation (W132). In this duck, in vitro testing corresponded with dot blot hybridisation seroconversion from positive to negative.

Bursectomy										
Peptide	\bar{E}	$\frac{3}{3}$	$\stackrel{\bar{y}}{\stackrel{\text { IN}}{2}}$	$\frac{\stackrel{\rightharpoonup}{7}}{2}$	$\stackrel{\overline{\mathrm{m}}}{\stackrel{2}{2}}$	$\frac{\mathrm{O}_{2}^{2}}{2}$	$\frac{45}{x}$	Peptide	\%	合
1-15								1-15	-	-
7-1+w-27								7-14W-27	-	-
7-1+R-27								7-1+R-27	-	-
22-41								22-41	-	-
37-56								37-56	0	7
54-73								5-73	1	5
71-90								71-90	0	7
87-106								87-106	0	7
101-120								101-120	1	5
116-130								116-130	1	6
126-140								126-140	1	6
136-150								136-150	1	6
1+6-160								146-160	2	4
156-170								156-170	2	5
166-180								166-180	0	6
176-195								176-195	0	6
191-210								191-210	2	5
210-229								210-229	1	6
229-248								229-248	-	-
248-267								2-8-267	1	5
267-286								267-286	1	6
287-306								287-306	1	6
307-326								307-326	-	-
SIIC PIIA								SNC PIIA	2	1
SNIC LPS								SwIC LPS	0	3
PBMIC PIIA								PBMIC PIIA	3	0
PBNIC LPS								PBMC LPS	1	2
Serum DNA	+	+	+	+	+	++	+	Serum DNA		
Liver DNA	$+$	+	+	+	+	+	++	Liver DNA		

Table 73. Summary of CMI response of Bursectomy ducks to Surface ORF peptides (significant P / N).
Resp: Number of ducks that responded (significant P/N) NonR: Non-responders (blank box). Empty shaded box ($)$: not tested. DHBV DNA summary: Dot blot hybridisation positive (++), negative (-). The peptides selected for the DHBV DNA vaccine (Chapter 7, p.170), are in black text with light blue background.

9.4.7.2. Thymectomised Ducks

The results from the Thymectomised ducks, for the significant P / N analysis have been summarised, (Table 74, p.243). The full results for each duck are in the Appendix (11.9, p.A43).

The response to the mitogen PHA, was good and compares well with the other CMI response experiments. The LPS response was poor, but comparable to that of the positive controls.

The one thymectomy duck with quantifiable viraemia (W126), did not respond to a single peptide, but the SMC were viable and able to respond to PHA. This correlates with the positive controls which did not respond well to the peptides either.

More than half (7/13), of the thymectomised ducks responded to peptide 210-229; considered non-specific as several of the other CMI groups also responded to this peptide (negative, and protein vaccinated). This epitope was found to have sequence similarity to a streptococcal species (Chapter 6), which could result in cross reactivity with the DHBV peptide. The immune response to this peptide may be humoral, with the production of antibodies, and it is possible that the thymectomised ducks (with higher proportion of Bcells), are able to respond to a B-cell epitope in the lymphoblastogenesis assay.

Thymectomy																
Peptide	$\frac{\text { 돌 }}{3}$	$\stackrel{\text { 㿟 }}{x}$	$\stackrel{\cong}{4}$	$\frac{5}{3}$	$\stackrel{\overline{\bar{c}}}{\bar{z}}$	$\stackrel{F}{F}$	$\stackrel{i \pi}{=}$	$\frac{\%}{i}$	$\frac{\text { ir }}{\frac{1}{2}}$	$\frac{\mathrm{s}}{\mathrm{~s}}$	$\frac{5}{5}$	$\frac{\text { or }}{6}$	$\frac{\stackrel{\rightharpoonup}{x}}{x}$	Peptide	$\stackrel{\bar{y}}{\underset{y}{x}}$	皆
1-15														115	2	11
7-14W-27														7-14w-27	4	9
7-1+R-27														7-1+R-27	2	11
22-41														22-41	3	10
37-56														37-56	1	12
5--73														5+-73	0	13
71-90														71-90	4	9
87-106														87-1106	0	13
101-120														101-120	0	13
116-130														116-130	2	11
126-140														126-140	1	12
136-150														136-150	3	10
1+6-160														1+6-160	0	13
156-170														156-170	0	13
166-180														166-180	2	11
176-195														176-195	0	13
191-210														191-210	2	11
210-229														210-229	7	6
229-248														229-248	0	13
248-267														248-267	4	9
267-286														267-286	0	13
287-306														287-306	0	13
307.326														307-326	0	13
SMC PIIS														SNIC PIIA	12	1
Suc LPs														SNC LPS	4	9
PBMC PIIA														PBMC PIIS	11	2
PBMIC LPS														PBMC LPS	3	10
Scrum DNA	+	-	++	+	-	-	+	-	+	-	-	-	+	Serum DNA		
Liver DNA	-	-	+	-	-	+	-	-	-	++	-	-	-	Liver DNA		

Table 74. Summary of CMI response of Thymectomised ducks to Surface ORF peptides (significant P/N).
Resp: Number of ducks that responded (significant P/N) NonR: Non-responders (blank box). DHBV DNA summary: Dot blot hybridisation positive (+), PCR positive only (+) , negative (-). The peptides selected for the DHBV DNA vaccine (Chapter 7, p.170), are in black text with light blue background.

None of the thymectomised ducks responded to the antigenically important peptides 101120, 229-248, 267-286, 307-326. This lack of response is expected, as these should be Tcell epitopes, and the thymectomised ducks have a reduced ability to respond to such
epitopes. Interestingly, several ducks (4/13), responded to peptide 71-90, which could be a B-cell epitope (as none of the bursectomised ducks responded to this peptide).

The results from both the Bursectomy and Thymectomy experiments were analysed and compared to each other (Table 75, p.244), and compared to other CMI response experiments (Table 76, p.245, and Table 77, p.246).

Peptide	Thymectomy group		Bursectomy group		Peptide	Fisher Exact	
	Resp	nonR	Resp	nonR		P	<0.05
1-15	2	11	-	-	1-15	-	
7-14W-27	4	9	-	-	7-14W-27	-	
7-14R-27	2	11	-	-	7-14R-27	-	
22-41	3	10	-	-	22-41	-	
37-56	1	12	0	7	37-56	1.000	
5--73	0	13	1	5	54-73	0.316	
$71-90$	4	9	0	7	71-90	0.249	
87-106	0	13	0	7	87-106	ns	
101-120	0	13	1	5	101-120	0.316	
116-130	2	11	1	6	116-130	1.000	
126-140	1	12	1	6	126-140	1.000	
136-150	3	10	1	6	136-150	1.000	
146-160	0	13	2	4	146-160	0.088	
156-170	0	13	2	5	156-170	0.111	
166-180	2	11	0	6	166-180	0.544	
176-195	0	13	0	6	176-195	ns	
191-210	2	11	2	5	191-210	0.587	
210-229	7	6	1	6	210-229	0.158	
229-248	0	13	-	-	229-248	-	
248-267	4	9	1	5	248-267	1.000	
267-286	0	13	1	6	267-286	0.350	
287-306	0	13	1	6	287-306	0.350	
307-326	0	13	-	-	307-326	-	
SMC PHA	12	1	2	1	SMC PHA	0.350	
SMC LPS	4	9	0	3	SMC LPS	0.529	
PBMC PHA	11	2	3	0	PBMC PHA	1.000	
PBMC LPS	3	10	1	2	PBMC LPS	1.00	

Table 75. Summary of the statistical analysis of the Bursectomy and Thymectomy groups (significant P / N).
The red shade indicates a possible trend $(\mathrm{P}<0.10)$. ns: non significant. The peptides selected for the DHBV DNA vaccine (Chapter 7, p.170), are in black text with light blue background.

Bursectomy			Negative		Fisher Exact		Positive		Fisher Exact		Protein Vace		Fisher Exact		
Peptide	$\underset{\underset{\sim}{z}}{\substack{2}}$		$\begin{aligned} & \hat{5} \\ & \underline{y y} \end{aligned}$	$\underset{B}{\cong}$	P	<0.05	$\underset{\substack{\bar{y} \\ \hline}}{ }$	\cong	P	<0.05	$\stackrel{\hat{y}}{\underline{y}}$	$\frac{\cong}{\bar{E}}$	P	<0.05	Peptide
1-15	-	-	1	23	-		1	5	-		4	11	-		1-15.
7-14w-27	-	-	5	19	-		1	5	-		10	5	-		7-14W-27
7-14R-27	-	-	4	20	-		1	5	-		11	4	-		7-14R-27
22-41	-	-	4	20	-		1	5	-		6	9	-		22-41
37-56	0	7	1	23	1.000		0	12	ns		4	11	0.263		37-56
54-73	1	5	2	22	0.501		0	12	0.333		5	10	0.623		5+-73
71-90	0	7	0	24	ns		0	12	ns		3	12	0.523		71-90
87-106	0	7	4	20	0.550		1	11	1.000		3	12	0.523		87-106
101-120	1	5	1	23	0.366		0	12	0.333		6	9	0.613		101-120
116-130	1	6	2	22	0.550		0	12	0.368		3	12	1.000		116-130
126-140	1	6	3	21	1.000		0	12	0.368		3	12	1.000		126-140
136-150	1	6	1	23	0.406		1	11	1.000		5	10	0.616		136-150
1+6-160	2	4	4	20	0.571		0	12	0.098		1	14	0.184		146-160
156-170	2	5	4	20	0.596		0	12	0.123		3	12	0.637		156-170
166-180	0	6	3	21	1.000		0	12	ns		2	13	1.000		166-180
176-195	0	6	3	21	1.000		0	12	ns		4	11	0.281		176-195
191-210	2	5	0	24	0.045		0	12	0.123		2	13	0.565		191-210
210-229	1	6	9	15	0.379		2	10	1.000		9	6	0.074		210-229
229-248	-	-	7	17	-		0	6	-		9	6	-		229-248
248-267	1	5	2	22	0.501		1	10	1.000		4	11	1.000		248-267
267-286	1	6	3	21	1.000		0	12	0.368		7	8	0.193		267-286
287-306	1	6	2	22	0.550		0	12	0.368		4	11	0.637		287-306
307-326	-	-	4	20	-		0	6	-		7	8	-		307-326
SIIC PIIS	2	1	24	0	0.111		7	5	1.000		15	0	0.176		SIIC PIHA
SIIC LPS	0	3	18	6	0.029		2	10	1.000		11	4	0.043		SNC LIPS
PBMIC PIIA	3	0	18	0	1.000		7	1	1.000		6	0	1.000		PBMC PIIA
PBNIC LPS	1	2	4	14	1.000		2	6	1.000		0	6	0.333		PBNIC LPS

Table 76. Summary of the statistical analysis of the Bursectomy and other CMI response groups (significant P/N).
The asterisk indicates a significant difference ($\mathrm{P}<0.05$) while the red shade indicates a possible trend $(\mathrm{P}<0.10)$. ns: non significant. The peptides selected for the DHBV DNA vaccine (Chapter 7, p.170), are in black text with light blue background.

Negative		Fisher Exact	
$\underset{\substack{\hat{y}}}{ }$		P	<0.05
1	23	0.278	
5	19	0.691	
4	20	1.000	
4	20	0.678	
1	23	1.000	
2	22	1.000	
0	24	0.011	
4	20	0.276	
1	23	1.000	
2	22	0.602	
3	21	1.000	
1	23	0.115	
4	20	0.276	
4	20	0.276	
3	21	1.000	
3	21	0.538	
0	24	0.117	
9	15	0.489	
7	17	0.038	
2	22	0.157	
3	21	0.538	
2	22	0.532	
4	20	0.276	
24	0	0.351	
18	6	0.015	
18	0	0.168	
4	14	1.000	

Positive		Fisher Exact	
$\begin{aligned} & \text { 佥 } \\ & \hline \end{aligned}$	$\stackrel{\approx}{\text { 气 }}$	P	<0.05
1	5	1.000	
1	5	1.000	
1	5	1.000	
1	5	1.000	
0	12	1.000	
0	12	ns	
0	12	0.096	
1	11	0.480	
0	12	ns	
0	12	0.480	
0	12	1.000	
1	11	0.593	
0	12	ns	
0	12	ns	
0	12	0.480	
0	12	ns	
0	12	0.480	
2	10	0.097	
0	6	ns	
1	10	0.327	
0	12	ns	
0	12	ns	
0	6	ns	
7	5	0.073	
2	10	0.645	
7	1	1.000	
2	6	1.000	

Protein Vace		Fisher Exact		
	$\underset{\underline{E}}{\underline{E}}$	P	<0.05	Peptide
4	11	0.655		1-15
10	5	0.128		7-14W-27
11	4	0.003		7-1+R-27
6	9	0.435		22-41
4	11	0.333		37-56
5	10	0.044		54-73
3	12	0.670		$71-90$
3	12	0.226		87-106
6	9	0.018		101-120
3	12	1.000		116-130
3	12	0.600		126-140
5	10	0.686		136-150
1	14	1.000		146-160
3	12	0.226		156-170
2	13	1.000		166-180
4	11	0.102		176-195
2	13	1.000		191-210
9	6	1.000		210-229
9	6	0.001		229-248
4	11	1.000		248-267
7	8	0.007		267-286
4	11	0.102		287-306
7	8	0.007		307-326
15	0	0.464		SIIC PIIA
11	4	0.056		SNIC LPS
6	0	0.544		PBIIC PIIA
0	6	0.517		PBMC LPS

Table 77. Summary of the statistical analysis of Thymectomy and other CMI response groups (significant P/N).
The asterisk indicates a significant difference ($\mathrm{P}<0.05$) while the red shade indicates a possible trend $(\mathrm{P}<0.10)$. ns: non significant. The peptides selected for the DHBV DNA vaccine (Chapter 7, p.170), are in black text with light blue background.

9.5. DISCUSSION

We hypothesised that co-ordination of the cellular and humoral arms of the immune system are required for hepatitis B virus clearance. The lack of coordination of the two arms, or abrogation of either arm, should result in persistence of HBV and the development of chronic infection.

In this study we investigated the effect of the abrogation of either the humoral arm (by bursectomy) or the cellular arm (by thymectomy) of the immune system. In studies of mouse immunology, T-cell deficiency is achieved by combining thymectomy, subjecting the animal to irradiation, and re-constituting the B-cell population by allograft from the same mouse strain to re-establish B-cell competence. This method confers total ablation of intra or extra-thymic T-cells, however, it was impractical for use in these experiments due to the unknown degree of genetic variability in our outbred animal population, and limited knowledge of cell markers for the in vitro expansion and selection of lymphocyte subsets. Consequently, the effect of residual thymic function has not been entirely excluded. Development of the thymus in birds begins at day 5 of incubation as an outgrowth of the pharyngeal pouches. Precursor cells originating from blood-borne lymphoblasts within the yolk sac, enter the thymus from 7 days of incubation (Jotereau et al., 1980), and differentiate into T-lymphocytes within the special microenvironment of the thymus. The T-lymphocytes that are incapable of recognising self-antigen undergo extensive proliferation within the thymus independently of antigenic stimulation. Successive waves of thymocyte precursors enter the thymus and undergo both positive and negative clonal selection, and subsequently populate the lymphoid organs.

Within the developing chick, in situ expansion of cortical TcR1 cells is minimal. These cells however, rapidly disperse throughout the body, and are found in the spleen by embryonic day 15 , and intestine and bursa a day later. TcR1 cells comprise approximately $20-50 \%$ of circulating T-cells in adult chickens, and are located in the red pulp of the spleen; two thirds of the cells express CD8 (Cooper et al., 1991). TcR1 cells do respond to PHA, but not as well as other T-cells, they can be cytotoxic, and may include a subset of suppressor cells (Quere, 1992). Development of TcR2, and TcR3 T-cells, is moderately compromised by thymectomy, however, TcR1 cells are severely compromised, suggesting a continual thymic seeding of the peripheral TcR1 population (Chen et al., 1989).

In ducks, bursectomy can be successfully performed surgically, whereas in the mouse it is achieved by γ-irradiation, or antibodies to B -cells. Surgical removal in ovo has been shown to severely limit B-cells from the chicken (Huang and Dreyer, 1978). Bursectomy at embryonic day 18, leads to complete elimination of B-cells, while our bursectomy was
performed at day of hatch (embryonic day 21), which should significantly reduce the number of B-cells.

The positive control ducks were given a dose of DHBV that would result in approximately half of the control ducks becoming chronically infected as characterised by DHBV infection of the liver at euthanasia. The outcome of the dose was very close to that expected, with 12/22 ducks liver positive.

As expected, the abrogation of the humoral arm of immunity led to persistence of infection in all ten ducks. Thymectomy had a marginal but non-significant $(p=0.089)$ effect on the prevention of persistent infection with 10/13 thymectomised ducks liver negative, compared with 10/22 control ducks clearing DHBV infection.

The bursa in the duck is a long cylindrical organ attached to the dorsum of the cloaca by a thin stalk and there is little difficulty in ensuring its complete removal; up to 98% of ducks have no residual bursal material following neonatal bursectomy (Hasek et al., 1972). The thymus is however more difficult to completely remove as like the chicken, it is a lobulated organ lying along the jugular vein, and both the number of lobes and their location can vary from duck to duck, which increases the chance that some thymic material may remain post thymectomy. It has been found that about 5% of neonatally thymectomised chickens had detectable thymic tissue at autopsy (Cooper et al., 1966b). We found little evidence of residual thymic material in our thymectomised ducks, although there was clear evidence of major thymic involution in the adult positive control ducks. Residual thymic material has been reportedly found in all thymectomised chickens (Warner and Szenberg, 1962). Despite this, these chickens still failed to reject implanted homografts in the normal fashion. Even without the complete removal of all thymic material, all thymectomised ducks would have suffered a relative loss of T-cells compared to the normal controls or the bursectomised group. Since the thymectomised duck lymphocytes were able to responded sufficiently to PHA, it is possible that some of the thymectomised ducks had sufficient thymic material to produce effective T-cells, that a lymphocyte population which had already migrated through the thymus prior to hatch was able to produce the response, or that duck PHA sensitive lymphocytes can originate from extrathymic sources such as the liver and spleen (although such cells may not be sufficiently matured). It has been shown that stimulated cultures from normal ducks were supported by macrophage adhesion whereas cultures deficient of macrophages were less c apable of p roliferating; a vian macrophages a lso respond to PHA (Higgins and Teoh, 1988). Although PHA is a polyclonal antigen which is capable of stimulating and re-stimulating multiple T-cells, it was suggested that survival was dependent on cell to cell contact (Higgins and Teoh, 1988), and induction of lymphokine release
including IL-2 resulting in transformation and prolonged survival (Vickery and Cossart, 1996).

Neonatal thymectomy has previously been reported to cause depression of the total leukocyte count in ducks (Sugimura et al., 1975). This was evident in our results from a significant decrease in the total leukocyte count in the thymectomised ducks when compared with immunologically normal positive control ducks ($\mathrm{p}<0.005$) and the negative control ducks ($\mathrm{p}=0.048$), indicating a reasonably successful removal of the thymus. In comparison, the total leukocyte count was elevated in bursectomised ducks ($\mathrm{p}<0.001$) possibly indicating a status of ongoing infection.

In an endeavour to determine whether the change in total leukocyte count was due to a decrease in circulating lymphocytes, the PBMC counts following cell culture purification were used. There are several sources of error for these counts, such as occasionally 10 mL of blood could not be obtained, and cells are lost during the purification procedure, but overall these e rrors should have b een e qual for all groups, making the data u sable. Overall, the circulating lymphocyte number was unaffected by bursectomy, or thymectomy, when compared to controls. This was similar to experiments in the chicken where depletion in Tcells caused a compensatory increase in B-cells, and visa versa (Wick et al., 1975). So, although thymectomised chickens had decreased T-cells, a nd bursectomised chickens had decreased B-cells, the overall number of circulating lymphocytes remained the same. Due to a technical difficulty, blood smears for counting the blood cell percentages were lost, preventing a detailed comparison of T-cell numbers.

A correlation between the patterns of acute infection and outcome was established. Ducks that had low level viraemia, were more likely to clear the virus from the serum and/or liver, than ducks with high, or prolonged viraemia. The biphasic pattern was again seen and was associated with a failure to clear the infection from the liver. Although viraemia was more pronounced in the bursectomised group than the positive controls, the peak level of viraemia was comparable. Ongoing infection was characterised by a higher incidence of inflammatory responses within the liver: all ducks with liver inflammation were DHBV DNA liver positive (except for the single negative control duck). Little evidence of inflammation was seen in ducks that cleared the infection, which suggests clearance by curing rather than cell death, and inflammation caused by cellular (Th1 or macrophage) rather than antibody induced mechanisms.

The hypothesis currently proposed by Chisari, is that control of hepadnaviral replication, and clearance of infection occurs before liver damage and is mediated by soluble factors such as

IFN, or TNF. The experimental evidence for this theory is based on transgenic mouse studies, and a limited number of chimpanzee studies (Guidotti et al., 1994; Chisari and Ferrari, 1995; Guidotti et al., 1999; Thimme et al., 2003; Wieland et al., 2003). Although no severe liver damage was seen in our ducks, limited inflammation was associated with the thymectomised, and positive control ducks that failed to clear the infection, suggesting that the cells are cured, not destroyed. DHBV infection was significantly associated ($\mathrm{p}<0.001$) with hepatitis, as has previously been shown (Vickery et al., 1989).

High viral titres early in the infection phase, particularly within the first two weeks were found to be an early marker of chronic infection, while viraemia was self-limiting by no later than 3 weeks following inoculation in control ducks in which DHBV was cleared from the liver. B-cell production of sAg neutralising antibody is known to correlate with a reduction of viraemia late in the time course of acute infection. However, the production of this virus specific antibody, which is critical for complexing and clearing viral particles and preventing reinfection of susceptible cells, is a T-cell dependent process. Although neonatally thymectomised chickens are incapable of rejecting homografts, they are able to mount a nonspecific antibody response (Warner and Szenberg, 1962; White and Timbury, 1973), but the level of specific viral antibodies is decreased (White and Timbury, 1973).

No statistical difference in response to mitogens was observed between PBMC and SMC cells except from the thymectomised ducks, (excluding the bursectomised group, which only consisted of three ducks). A quantitative increase in response to PHA was observed with ducks that have cleared DHBV from serum in comparison to ducks with infected livers. PBMCs of human chronic carriers have been shown to become insensitive to PHA (Scudeletti et al., 1986; Nouri-Aria et al., 1988), while others have demonstrated that lymphocyte transformation by PHA was normal in patients with Hepatitis B, chronic active hepatitis, asymptomatic carriers, and patients with chronic persistent hepatitis (Wicks et al., 1975). CMI suppression, implicating defective T-cells, or accessory inhibitory cells or pathways, may be associated with ducks exhibiting evidence of prolonged liver infection.

Persistent infection is normally associated with low level immune response, however in the immune modulated ducks, although the bursectomised ducks were viraemic and liver positive, the number of lymphoblastic responses was not less than the thymectomised ducks, most of which had cleared the infection. Unexpectedly, the bursectomised ducks even showed a trend towards responding to peptide 146-160, however the relatively small numbers involved do not make any conclusions possible. Whether the low response from the thymectomised ducks was due to the rapid decrease in cellular response over time, or
indicative of other clearance mechanisms is unknown. Further studies involved in measuring the immune response of thymectomised ducks sooner after challenge are required.

The bursectomised ducks were only able to produce a significantly different response to one peptide (peptide 191-210, when compared to the negative control group) (Table 76, p.245). The small number of ducks in the bursectomised group decreases the significance of any difference.

Analysis of the lymphoblastic response of the thymectomised ducks with that of the other groups produces some interesting differences (Table 77, p.246). The thymectomised ducks responded significantly better to peptides 71-90, a nd 229-248, than the negative controls. The protein vaccinated ducks responded similarly to peptide 229-248, when compared with the negative controls, but they did not significantly respond to peptide $71-90$, when analysed by the sig P/N method. However, both of these peptides were incorporated into the DNA vaccine (8.3, p.202). Further comparison of the thymectomised ducks with the protein vaccinated ducks, indicates that the thymectomised ducks did not respond as well to peptides 7-14WR-27, 54-73, and 101-120, as the protein vaccinated compared to negative controls. Even though the outcome of the protein vaccinated and the thymectomised ducks was similar, their lymphoblastic response to various epitopes on the DHBsAg was significantly different. These studies are unable to determine what the difference in the response is due to, but it may be that the removal of the majority of TcR1 T-cells (by thymectomy), may have led to the removal of suppressor cells (the majority of which are TcR1 cells), which allowed a more effective immune response to be generated.

The lack of response by the thymectomised ducks to peptides 101-120, 229-248, 267-286, and 307-326, is a good indication that these epitopes are T-cell epitopes, or at least T-cell dependent. The lack of response by the bursectomised ducks to peptide 71-90, is not significant as the group as a whole did not respond well to any peptides, but as the thymectomised ducks responded quite well (4/13), it is possible that this peptide contains a B-cell epitope, and that the lymphoblastogenesis assay was able to detect B-cell proliferation, rather than just for T-cells. Peptide 71-90 is in the preS region that contains may other B-cell epitopes, and it may have been detected in the thymectomised ducks because of an increased B -cell response.

The down regulation of costimulatory molecules expressed on APC may indicate T-cell suppression, which may be associated with the role of activated T suppressor cells; found to have a specific phenotype in the murine model (Sakaguchi et al., 1996). These suppressor cells have an IL-2 receptor alpha-chains (Roitt and Delves, 2001), this phenotype of T-cell
inhibits the up-regulation and production of IL-2, thus suppressing the proliferation of responding CD4+ and CD8+ T-cells and ultimately, effecting production of TNF- α and IFNγ which mediate the mutual antagonism of Th1 and Th2 subsets. The mechanism of suppression is considered to be cell-contact dependent (Dieckmann et al., 2002), and also impairs co-stimulatory pathways for activated B-cells. The co-stimulation of activated Bcells by T helper cells (Th2) may be thus blocked and could explain the absence of anti-HBs in chronically infected patients.

In conclusion the loss of the humoral immune system by bursectomy leading to persistent infection with higher levels of virus replication suggests that the CMI response alone is insufficient to clear hepadnavirus infection. However, thymectomy at hatch had little effect on the outcome of infection. This unexpected result may indicate that sufficient thymic material remained, the T-cell effectors of clearance have already passed through the thymus prior to hatch, the innate immune responses are increased in thymectomised animals, or as has been shown in the chicken thymectomy results in augmentation of humoral immunity.

10. GENERAL DISCUSSION

These studies were initiated to gain insight into the interaction between the surface protein of DHBV and the immune system. It was hoped that this would lead to a new understanding of the mechanism of virus clearance and possibly even to the design of a therapeutic vaccine which might be effective in established carriers.

A temporal association between the appearance of DHBV surface antigen specific lymphoblastic proliferation and clearance had already been observed using native S protein as the test antigen (Vickery et al., 1997; Vickery et al., 1999a; Vickery et al., 1999b). These findings were extended in an experimental system where inoculation of ducks at a defined age with a specific virus dose would reliably produce virus clearance in some members of the cohort and persistence in others. During standardisation of this model system a novel biphasic pattern of infection was observed in a proportion of inoculated ducks. The rapid fluctuation, both up and down, in the level of viraemia in the absence of massive liver damage i mplied a dynamic interaction between the immune system a nd virus replication. The literature provided some support for this hypothesis, particularly studies of hepatitis B transgenic mice where very rapid suppression of viral synthesis was achieved by administration of interferon (Guidotti et al., 1996b; Guidotti et al., 2002). In the duck the detailed histological studies by Jilbert and co-workers, showed dramatic reduction of DHBV antigens and DNA in the liver without massive lymphocyte infiltration, or cell death (Jilbert et al., 1992). They therefore attributed this down regulation to cytokine activity rather than cell mediated cytotoxicity.

To investigate the mechanism of this regulation and how it might lead to viral clearance it was decided to compare the sequence of viruses circulating at different phases of infection. It was hypothesised that immune pressure might select virus variants of either enhanced or diminished replicative efficiency. A particular mutation ($\mathrm{T}=>\mathrm{A}$ double substitution at nt 731 and 732) was found in two different ducks both of which had self-limited infection. No other nucleotide substitutions were observed in any of the 38 other ducks. This mutant could not be passaged directly from the serum of these ducks, nor could it be transmitted by inoculation of a full length clone. Taken together this implies that immune selection of a defective variant may be one mechanism of hepadnavirus clearance.

The location of this mutation at the extreme 5^{\prime} end of the pre-S gene outside the normal coding sequence suggests that it may have a regulatory role on virus replication, and it would be expected to interact with IFN, the putative effector cytokine. Little is currently understood about duck cytokines or their response elements, though gradual progress is being made in cloning and sequencing duck immunoglobulin and cytokine genes (Ziegler and Joklik, 1981a; Higgins et al., 1993; Higgins and Warr, 1993; Schultz et al., 1995; Schultz and Chisari, 1999; Huang et al., 2001). The cDNA of Duck IFN-gamma contains a 495 bp ORF that encodes a putative 164 aa protein that shares 67% identity with chicken IFN-gamma, but only 30-35\% identity with mammalian IFN-gamma (Huang et al., 2001). This low sequence homology between duck cytokines and chicken or mammalian cytokines has been experimentally paralleled in showing that chicken or mammalian cytokines have low cross-reactivity with the duck system (Higgins et al., 1993; Huang et al., 2001). Commercially available cytokines are therefore not particularly useful in the investigation of DHBV a nd until duck IFN can be obtained by gene expression the n on-specific i mmune response, which is highly significant in hepadnavirus clearance, cannot be investigated further.

The mutation of interest was not present in all of the ducks with virus clearance, so the peptides important in the specific sAg CMI response associated with clearance was defined using the lymphoblastogenesis assay. This approach was dictated by the lack of reagents for ELISPOT or identification of T cell lineages in the duck. The Surface protein sequence of DHBV was initially subjected to computational analysis based on hydrophobicity, surface probability, and antigenicity, to attempt to select immunogenic peptides. This showed that there were several hydrophobic regions towards the end of the S region which are considered to be the transmembrane domains, while the preS region was predominantly hydrophilic, in keeping with the current consensus that it is the region responsible for receptor binding.

A battery of twenty-three overlapping peptides was synthesised, including the native and mutant variant sequence for peptide 7-21 (7-14W-27 a nd 7-14R-21, respectively). W hen these peptides were tested using peripheral blood mononuclear cells and splenic mononuclear cells from naïve, infected and immunised ducks stimulatory responses were found in individual ducks in all three groups. Database similarity searches of all the peptides revealed that they all had homology with other DHBV strains, while a few were found to have varying degrees of relation to Snow Goose, Crane, Heron, Stork, Human (and other mammalian hepadnaviruses). It was interesting to discover that peptide 176-195 had some similarity with a murine T-cell receptor, while peptide 210-229 was related to a streptococcal protein. The significance of these relationships was not determined, but does open some intriguing possibilities, such as it may be possible that the Surface protein is able to interfere
with the host's immune response. Immunomodulation is known for several viruses and may explain the lack of immune response in persistent infection.

The persistently infected ducks failed to significantly ($\mathrm{p}<0.05$) respond to any of the $s A g$ peptides when compared with the negative controls. Two different methods of analysis ($>5000 \mathrm{cpm}$ and sig P/N, section 7.3 .3 , p.177) both showed that immune and challenged ducks had a significant ($\mathrm{p}<0.05$) response to peptides $7-14 \mathrm{~W}-27,7-14 \mathrm{R}-27,71-90,101-120$, and other peptides that where found to be also important ($\mathrm{p}<0.10$) were $1-15,37-56,229$ -$248,267-286$, and $307-326$. The significant peptides included the peptide spanning the mutant (7-14R-27), described above. After initial interpretation of the results ($>5000 \mathrm{cpm}$) peptides $1-15,7-14 \mathrm{~W}-27,71-90,101-120,229-248,267-286$, and 307-326 were designated "peptides of immunological importance" and it was decided to test this interpretation by incorporating them in a DNA vaccine which was designed to stimulate a specific CMI response. It was noted that one of these peptides (101-120) overlapped known DHBV B cell motifs defined as naturally occurring DHBV antibody epitopes (Chassot et al., 1994).

The DNA vaccine was constructed in the plasmid pDVERA2 (generously provided by Scott Thomson) by a three step process of producing the DuckPoly (containing the coded peptides), cloning of the DP, and subcloning of the DP into the DNA vaccine plasmid. It was tested for T cell immunogenicity in naïve ducks by assaying the response of PBMCs to the seven "immunologically i mportant peptides" in the lymphoblastogenesis assay 7 days after a third injection of vaccine at which time they were challenged with 2.5×10^{10} vge of DHBV. They were euthanased and their SMC assayed by lymphoblastogenesis assay a month (28-30 days) later. Persistently infected ducks were vaccinated with a similar schedule and observed for three subsequent weeks before they were killed and lymphoblastogenesis assays performed on the splenic mononuclear cells. The CMI response on all occasions was disappointing, but in retrospect this might have been predicted by the choice and timing of the tests. The use of PBMC means that only low cell numbers are available and there is the probability that stimulated cells will be localised in the liver and hence underrepresented in the circulation. The decision to observe challenge results on the naïve vaccinated ducks and to follow the effect of vaccination on viraemia in the persistently infected groups resulted in a significant time lapse between the last antigenic stimulus and testing. This probably exceeded the limits of detectability of responses using in vitro testing, because antigen-specific responses quickly fall to baseline levels (Vickery et al., 1999b).

An unexpected outcome of the DNA vaccination experiment was the generation of protective immunity to challenge. Although noted in the modelling process, the overlap of a
single neutralising B cell epitope (Chassot et al., 1994), within one of the T cell epitopes (peptide 101-120) used in the DNA vaccine, was not considered to be enough to elicit such a strong response. However, neutralising antibody was formally detected in the serum of one of the two protected ducklings but insufficient serum was available to pursue this issue further. A DHBV DNA vaccine has previously been shown to provide protective immunity (Triyatni et al., 1998), and it seems probable that our DNA vaccine was able to stimulate Bcells, as well as the anticipated T-cell response, and that a very effective protective DNA vaccine could be developed by incorporating a better spectrum of B cell epitopes. It could be an advantage to design a polytope with both T and B cell epitopes to induce a cooperative humoral and cellular response.

The effector mechanism responsible for hepadnavirus clearance has long been assigned to a cell mediated immune response, but it has not been clear if the same antigenic specificity is responsible for clearance and hepatocyte damage. In HCV infection, virus-specific CTLs limit viral replication in patients with chronic HCV infection (Freeman et al., 2003). There are good indications that capsid antigens induce hepatitis and cirrhosis in both human hepatitis B and woodchuck HBV (Burrell et al., 1984; Zoulim et al., 1996). The situation regarding clearance is less defined, but there is almost certainly a need for an anti-surface response capable of protecting uninfected hepatocytes whatever the mechanism of down regulation of virus replication. An experiment using antiviral treatment to inhibit virus growth in established DHBV carriers, followed by DNA vaccination could clarify this issue, and within the last year several groups have attempted this with varying degrees of success (Foster et al., 2003; Le Guerhier et al., 2003).

Treatment of HBV in man uses a strategy of antiviral treatment plus administration of interferon over a long period (Bahar et al., 2003; Cooksley et al., 2003; Heathcote, 2003; Yalcin et al., 2003). There is no consensus about the detection of a specific CMI in individuals responding to treatment. The lack of reagents for identification of duck lymphocyte classes has been a great impediment to studies of this type in experimental DHBV infection, but the practicability of modulating the immune response by surgical removal of the bursa or thymus makes it possible to assign effector roles to the different arms of the immune system.

Bursectomised ducklings were unable to clear DHBV, whereas paradoxically, thymectomised and control birds cleared infection at comparable rates. These findings provide substantial support for the hypothesis that production of neutralising antibodies is an essential component of viral clearance. The observed Surface protein specific lymphoblastogenesis response could therefore be significant in the context of B cell
stimulation rather than in effecting clearance of infected cells, or directly down-regulating virus replication.

The technical difficulties of surgical thymectomy in duck hatchlings may have permitted survival of a T cell population (Cooper et al., 1966b), sufficient to a chieve clearance by generation of specific T cell responses, but a more probable explanation is the over riding importance of non-specific CMI in down regulating virus replication (Wieland et al., 2003). The T cells involved in innate immune responses escape from the thymus in significant numbers pre-hatch and would thus be available in even rigorously thymectomised ducks. Effective therapeutic vaccines may therefore need to stimulate IFN responses by incorporating appropriate motifs, and viral polytopes encoding B cell rather than T cell peptides alone (Min et al., 2001).

The findings from this investigation raise many new questions, and there are several pathways along which further research could be directed. The current findings have limited statistical significance because of the considerable variation in individual response of ducks in the same experimental group. While larger numbers may well increase the statistical significance, it would also be influenced by the outbred state of the ducks presently available. Currently, there are no commercially available lineages of ducks that can be used for experimental purposes, which means that the individual responses of the currently used outbred ducks vary substantially. The use of better genetically defined ducks would allow fewer to be used in each experiment, and allow more specific research to be undertaken on individual components of the immune system.

There is a growing understanding of the molecular biology of the duck immune system (Jacobs et al., 1997; Magor et al., 1999). Duck interferons have been under investigation for a long time, initially by use of partially purified supernatant (Ziegler and Joklik, 1981b), and more recently by using recombinant proteins produced in E. coli (Schultz et al., 1995), which include duck IFN gamma (Schultz and Chisari, 1999).

However, the burgeoning discovery, and characterising of duck lymphokines (Higgins et al., 1993; Huang et al., 2001), opens a new world of possibilities. Many of the techniques that have so far been unavailable are or will soon be open to use in the duck model system. One of the most powerful techniques that would become available with the discovery of these duck proteins will be the ability to produce monoclonal antibodies to them. The production of such MAb would allow for a more detailed breakdown of the composition of the types of PBMCs that are in the liver and circulation during the various time periods of the various infection patterns. It is possible that certain subsets of PBMCs will be associated with
different liver pathology, and such information would allow for better prognosis of the infection in individuals. Knowing the cell types associated with clearance would lead to a better understanding of the mechanisms involved, and may lead to the use of certain cytokines (those secreted by cell types associated with clearance) in more effective treatment.

The expression of the new duck lymphokines in the liver would be of interest. Microchip gene arrays have opened up many new opportunities to observe the regulation of genes and the produced proteins (Schlaak et al., 2002). Utilising such a system would enable us to examine the genes that are up regulated during infection in not only the white blood cells of the duck but also in hepatocytes, which may lead to discovering which genes are affected by the various cytokines, and what role they play in clearing the infection from the cell.

Another interesting aspect that was discovered during the current study was the possible sequence similarity of peptide $176-195$ with part of a murine TcR. Other research found that a synthetic hydrophobic peptide (called core peptide) derived from the transmembrane sequence of the TcR alpha chain has been shown to inhibit T-cell mediated inflammation, shown to suggest that peptide inhibition is affected by its structure and charge interactions, and may involve common signalling molecules in T, B and natural killer cells (Huynh et al., 2003). The concept that hepadnaviruses could be immunomodulatory has not been given much consideration, and would have implications for design of newer therapeutic treatment, and may be another factor in determining the outcome of infection.

The discovery of "newer" duck interleukins will open the door for studies of IL-12, which is of great interest in other chronic infections. IL-12 production is reduced in HIV infection, and recombinant human IL-12 (rhIL-12) augments in-vitro HIV-specific proliferative responses in PBMC from HIV-seropositive individuals. Later studies also demonstrated that rhIL-12 (recombinant human IL-12) augments in-vitro HIV-specific CTL activity (Young et al., 2001). The use of naturally occurring antivirals should produce treatments that are less toxic than the current nucleoside analogues, and hopefully decrease the rate of treatment failure (Okamoto et al., 2003).

The use of DNA vaccines has many advantages, and the current study encourages further work towards a therapeutic vaccine. The preliminary findings from this study are that our unadjuvanted DNA vaccine was able to induce both a CMI and protective antibody response. The 90% reduction in serum DHBV DNA levels a month a fter cessation of treatment, is comparable with early trials of therapeutic agents (Omata et al., 1986; Sherker et al., 1986; Tsiquaye et al., 1986). One of the greatest challenges to DNA vaccination is delivery. In the
current study, the vaccine was injected with a standard syringe and administered on an intramuscular and intradermal schedule, similar to the first full viral DNA infections (Will et al., 1982). In hindsight, neutralising antibodies may have been induced by the id injection. Production of neutralising antibody has been shown to be enhanced by id injection of a HBV protein vaccine, above that of the normal im administration (Wilkins and Cossart, 1990), which would indicate that administration id generally provides better immunogenicity that im . Future experiments should be used to test the two different administration methods to determine which produces a better response. The role of administration in the use of DNA vaccines cannot be underplayed, as much time and money has been invested in different delivery systems, such as the gene gun approach (Williams et al., 1991; Tang et al., 1992).

The DNA vaccine could also be combined with some of the newly discovered duck cytokines. The use of cytokines such as IFN is the new standard for treatment of chronic hepatitis infections, and it inclusion in the DNA vaccine could provide the necessary mechanism for an effective response, although careful selection of the appropriate IFN would have to be investigated as the closely related chicken appears to have several forms of IFN (Sick et al., 1996). The use of the DNA vaccine could also be combined with drug therapy. Drug therapy could be used to lower the level of viraemia, and then the DNA vaccine could be used to augment the immune response.

Although HBV has had an effective vaccine for preventative treatment for many years now, there are still a large number of carriers in the world. Treatment of these carriers may allow for decreased morbidity of individuals, and decreased morbidity of the carrier community as a whole, a nd w ould be a worthwhile e ndeavour for its o wn sake. B ut the study of viral interaction with the immune system has produced much of the knowledge that we currently understand of our own immune systems, and has allowed use to consider new approaches to treatment and prevention.

The delicate balance between the host and the virus appears to be a highly complicated affair, of which no one single component is central to the outcome of infection. It is also clear that the balance between the host and virus is not static, but rather in a constantly dynamic equilibrium.

11. APPENDIX

11.1. CHEMICALS

Chemical	Company	Cat No.	Chemical	Company	Cat No.
$\alpha-{ }^{32} \mathrm{P}$ labelled dCTP	PerkinElmer ICN	$\begin{aligned} & \mathrm{ADC} 32 \mathrm{~L} \\ & \mathrm{ADC}-2 \end{aligned}$	$\mathrm{Na}_{2} \mathrm{HPO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	ICN	191441
			NaCl	ICN	152575
Agar	OXOID	L11	NaOH	Sigma	S0899
Agarose	ICN	193983	Nonfat dried milk	Diploma	935725
Ampicillin	ICN	194526	PEG 6000	ICN	195445
Chloroform	Sigma	C2432	Phenol	ICN	802516
CsCl	ICN	160041	Proteinase K	Sigma	P6556
DTT	Sigma	D8255	RMPI 1640	Sigma	R6504
EDTA	ICN	194822	Sarcosyl	Sigma	L5125
Ethanol	Sigma	E7148	SDS	ICN	194831
Glacial acetic acid	Sigma	A0808	Sodium acetate	ICN	194012
Glutaraldehyde	Sigma	F1635	Sodium azide	Sigma	S8032
Glycogen	Roche	901393	Sodium citrate	Sigma	S4641
Guanidine thiocyanate	ICN	820991	Thymidine methyl ${ }^{3} \mathrm{H}$	ICN	24067
HCl Hydrochloric acid	ICN	194054	Tris base	Sigma	T8524
			Trypan Blue	Sigma	T5526
Isoamyl-alcohol	Sigma	I0640	Tryptone	OXOID	L37
Kanamycin	ICN	194531	X-Gal	ICN	194811
KCl	ICN	194844	Yeast Extract	OXOID	L21
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	ICN	195453			
MgCl_{2}	Sigma	M9272			

11.2. SOLUTIONS

11.2.1.1.1. Bovine Lacto Transfer Technique Optimiser (BLOTTO)

11.2.1.1.2. Calf Thymus ($3 \mathrm{mg} / \mathrm{mL}$)

Calf thymus added to TE buffer (11.2.1.1.18, p.A2) to a concentration of $3 \mathrm{mg} / \mathrm{mL}$, solubilised by a heated magnetic stirrer. DNA was fragmented by sonication, aliquoted into 20 mL volumes, stored at $4^{\circ} \mathrm{C}$.

11.2.1.1.3. $\mathbf{d H}_{2} \mathrm{O}$

Tap water was treated in a Modulab LS reverse osmosis filter (LiquiPure, Warrendale, USA) until purified to a level where electrical resistance was $15-20 \mathrm{M} \Omega$. The purified water was then autoclaved for 20 min at $121^{\circ} \mathrm{C}$, and stored at RT until required.

11.2.1.1.4. DTT

3.1g Sodium DiThioThreitol (DTT) added to 15 mL of Sodium Acetate (10 mM pH 8.0), dissolved, then made up to 20 mL with Sodium Acetate (10 mM pH 8.0). Filter sterilised and stored at $-20^{\circ} \mathrm{C}$.

11.2.1.1.5. EDTA ($\mathbf{0 . 5 M} \mathbf{~ p H ~ 8 . 0) ~}$

18.61 g EDTA added to 80 mL of $\mathrm{dH}_{2} \mathrm{O}$, dissolved, pH adjusted to 8.0 (with NaOH pellets ~ 2 grams), then made up to 100 mL with $\mathrm{dH}_{2} \mathrm{O}$. Autoclaved for 20 min at $121^{\circ} \mathrm{C}$, stored at RT.

11.2.1.1.6. Foetal Calf Serum

Foetal Calf Serum (FCS) was obtained from CSL laboratories. It was heat inactivated at $56^{\circ} \mathrm{C}$ for 40 mins , then alloquoted and stored at $-20^{\circ} \mathrm{C}$ until required.

11.2.1.1.7. Formalin (10%)

10 mL of 100% Formalin ($40 \% \mathrm{w} / \mathrm{v}$ Glutaraldehyde in water) was made up to 100 mL with PBS (11.2.1.1.9, p.A2). Stored at RT for up to 1 week.

11.2.1.1.8. Heparin PBS

1 mL of Heparin ($100 \mathrm{IU} / \mathrm{mL}$) was made up to 100 mL with PBS (11.2.1.1.9 p.A2). This produced a solution containing $10 \mathrm{IU} / \mathrm{mL}$.

11.2.1.1.9. Phosphate Buffered Saline (PBS)

Chemical	Stock solution 10x conc $(\mathbf{g} / \mathbf{L})$	Working solution 1x conc $(\mathbf{m M})$
KCl	2.0	2.7
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	2.0	1.4
$\mathrm{Na}_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	11.5	4.3
NaCl	80.0	137.0

All chemicals were added to 700 mL of $\mathrm{dH}_{2} \mathrm{O}$, dissolved, then the solution made up to 1 L with $\mathrm{dH}_{2} \mathrm{O}$. Autoclaved for 20 min at $121^{\circ} \mathrm{C}$, stored at RT. $1 \mathrm{xPBS}(\mathrm{pH} \sim 7.3)$ was prepared by diluting $10 \times \mathrm{xPBS} 10$-fold with $\mathrm{dH}_{2} \mathrm{O}$.

11.2.1.1.10. Sarcosyl ($10 \% \mathrm{w} / \mathrm{v}$)

10 g Sarcosyl added to 80 mL of $\mathrm{dH}_{2} \mathrm{O}$, dissolved, then made up to 100 mL . Filter sterilised and stored at RT.

11.2.1.1.11. Sodium Acetate (3M pH 5.2)

$40.81 \mathrm{~g} \mathrm{NaAcetate} .3 \mathrm{H}_{2} \mathrm{O}$ or 24.61 g anhydrous Na Acetate added to 80 mL of $\mathrm{dH}_{2} \mathrm{O}$, dissolved, pH adjusted to 5.2 (with Glacial Acetic acid), then made up to 100 mL with $\mathrm{dH}_{2} \mathrm{O}$. Autoclaved for 20 min at $121^{\circ} \mathrm{C}$, stored at RT.

11.2.1.1.12. Sodium Dodecyl Sulphate (10\% SDS)

Dissolve 100 g SDS (also known as Sodium Lauryl Sulphate) in $900 \mathrm{~mL} \mathrm{dH} \mathrm{H}_{2} \mathrm{O}$, heat to $68^{\circ} \mathrm{C}$, adjust pH to 7.2 with HCl , make up to 1L. Stored at RT.

11.2.1.1.13. Sodium Sodium Citrate (20xSSC)

Chemical	Stock solution (g/L)
NaCl	175.3
Sodium citrate	88.2

All chemicals were added to 700 mL of $\mathrm{dH}_{2} \mathrm{O}$, dissolved, pH adjusted to 7.0 , then made up to 1 L with $\mathrm{dH}_{2} \mathrm{O}$. Autoclaved for 20 min at $121^{\circ} \mathrm{C}$, stored at RT. Required concentration of SSC made by diluting 20 xSSC with $\mathrm{dH}_{2} \mathrm{O}$.

11.2.1.1.14. Sodium Sodium Citrate (2xSSC)

100 mL of 20 xSSC was made up to 1 L with $\mathrm{dH}_{2} \mathrm{O}$. Stored at RT.

11.2.1.1.15. Sodium Hydroxide ($\mathbf{1} \mathbf{M ~ N a O H}$)

40 g NaOH pellets made up to 1 L with $\mathrm{dH}_{2} \mathrm{O}$. Stored at RT.

11.2.1.1.16. TAE (50x)

242 g Tris base added to 500 mL dH 2 O , dissolved, 57.1 mL glacial acetic acid, and 100 mL EDTA (pH 8.0) a dded, then made up to 1 L with $\mathrm{dH}_{2} \mathrm{O}$. A utoclaved for 20 min at $121^{\circ} \mathrm{C}$, stored at RT.

11.2.1.1.17. TAE (1x)

100 mL of 50 xTAE was made up to 5 L with $\mathrm{dH}_{2} \mathrm{O}$. Stored at RT.

11.2.1.1.18. TE (pH 8.0)

TE (1 mM EDTA, 10 mM Tris, pH 8.0). 10 mL Tris ($1 \mathrm{M}, \mathrm{pH} 8.0$) and 2 mL EDTA (0.5 M pH 8.0) was added to 988 mL autoclaved $\mathrm{dH}_{2} \mathrm{O}$. Stored at RT.

11.2.1.1.19. TE for PCR ($\mathbf{p H} 8.0$)

TE (0.1 mM EDTA, 10 mM Tris, pH 8.0). 10 mL Tris ($1 \mathrm{M}, \mathrm{pH} 8.0$) and $200 \mu \mathrm{~L}$ EDTA (0.5 M pH 8.0) was added to 989.8 mL autoclaved $\mathrm{dH}_{2} \mathrm{O}$. Stored at RT.

11.2.1.1.20. TELT

TELT solution comprised of $2.5 \mathrm{M} \mathrm{LiCl}, 50 \mathrm{mM}$ Tris $/ \mathrm{HCl}(\mathrm{pH} 8.0), 62.5 \mathrm{mM} \mathrm{Na} 2$ EDTA, and $4 \%(w / v)$ Triton X-100.

11.2.1.1.21. TNE

10 mM Tris $/ \mathrm{HCl}, 0.1 \mathrm{M} \mathrm{NaCl}$, and 5 mM EDTA. Stored at RT.

11.2.1.1.22. Tris ($1 \mathrm{M} \mathrm{pH} 7.0-8.0$)

121.1g Tris base added to 800 mL of $\mathrm{dH}_{2} \mathrm{O}$, dissolved, pH adjusted as required (with concentrated $\mathrm{HCl} \sim 20-40 \mathrm{~mL}$), then made up to 1 L with $\mathrm{d}_{2} \mathrm{O}$. A utoclaved for 20 min at $121^{\circ} \mathrm{C}$, stored at RT.

11.2.1.1.23. X-Gal ($40 \mathrm{mg} / \mathrm{mL}$)

400 mg X-Gal added to 10 mL dimethylformamide in a brown bottle. The solution was mixed until dissolved, wrapped in aluminium foil to protect from light, and stored at $-20^{\circ} \mathrm{C}$ until required.

11.3. Rakbeta Scintillation Counter

The LKB 1214 Rakbeta Counter was used to quantitatively determine the amount of ractioactivity in a given sample. Two forms of radioactive isotope were used throughout the experimental procedures: Tritium $\left({ }^{3} \mathrm{H}\right)$, and Phosphorus $\left({ }^{32} \mathrm{P}\right)$. Both required different programs to be specifically counted.

11.3.1.1. Tritium Program

The tritium program was used in the lymphoblastogenesis experiments in which ${ }^{3} \mathrm{H}$ radiolabelled thymidine was used. The program for the scintillation counter is given below (Table 78 p.A3).

11.3.1.2. Phosphorus Program

The phophorus program was used for DHBV dot blot hybridisation in which a ${ }^{32} \mathrm{P}$ radiolabelled deoxycytidine DNA probe was used. The program for the scintillation counter is given (Table 78 p.A3).

PARAMETER GROUP 02	PARAMETER GROUP 08
ID: 3 H	ID: 32P
01 MODE 3	01 MODE 3
02 TIME 00060	02 TIME 00060
03 COUNTS 900000	03 COUNTS 900000
04 LCR 0000	04 LCR 0000
05 HCR 1	05 HCR 1
06 BG 10000	06 BG 10000
07 BG 20000	07 BG 20000
08 CH 1 008-110	$08 \mathrm{CH} 1110-212$
$09 \mathrm{CH} 2 \quad 000-000$	$09 \mathrm{CH} 2110-212$
$10 \mathrm{CH} 3100-135$	$10 \mathrm{CH} 3100-135$
11 CH 4 135-184	11 CH 4 135-184
12 STD TIME 030	12 STD TIME 030
13 PRINT 01,02,04,06,08	13 PRINT 01,04,08
14 REP 01	14 REP 01
15 EFF1\% RATIO	15 EFF1\% RATIO
70.501 .510	
$60.28 \quad 1.212$	
$46.94 \quad 1.002$	
35.49 . 844	
27.11 . 745	
20.83 .649	
16.64 . 589	
13.82 .558	
12.23 . 526	
11.20 .502	

Table 78. Tritium and Phosphorus program for the scintillation counter. Parameter group 02: Tritium $\left({ }^{3} \mathrm{H}\right)$. Parameter group 08: Phosphorus $\left({ }^{32} \mathrm{P}\right)$.

11.4. CyCLE SEQUENCING

Cycle sequencing was performed using the Corbett Research GS-2000 (http://www.corbettresearch.com) and a cycle sequencing kit.

11.4.1. Corbett Research GS-2000

The Corbett Robotics Gel-Scan 2000 is a gel electrophoresis system for real-time DNA fragment analysis (Figure 67 p.A4).

Samples a re loaded onto an Ultra-Thin vertical gel, a laser scans the base of the gel and detects DNA fluorescence. During the run a 2-dimensional image of the gel is built up on the screen. Ultra thin gels result in a dramatic decrease in run times over competitors systems, with no reduction in resolution.

Figure 67. Photograph of the Corbett GS-2000.

11.4.2. Thermo Sequenase cycle sequencing kit

The Amersham Life-Science Thermo Sequenase ${ }^{\mathrm{TM}}$ fluorescent-labelled primer cycle sequencing kit (Amersham, Buckinghamshire, England) is recommended for fluorescent dye primer sequencing of single stranded or double stranded DNA templates.

Thermo Sequenase is a new thermostable DNA polymerase specifically engineered for DNA sequencing. Amersham have used a recent discovery (Reeve and Fuller, 1995; Tabor and Richardson, 1995) to construct this exonuclease-free thermostable DNA polymerase. Like Sequenase ${ }^{\text {TM }}$ T7 DNA polymerase, Thermo Sequenase generates uniform (and therefore easy to read) sequence band patterns. However, the thermostability of this enzyme also makes it suitable for cycle sequencing. Thermo Sequenase therefore combines accuracy comparable with Sequenase T7 DNA polymerase with the sensitivity of cycle sequencing. The contents of each pack are described in Table 79 (p.A5).

Reagent pack	Contents
A reagent	Tris-HCI (pH9.5), magnesium chloride, Tween 2-mercaptoethanol, dATP, dCTP, dGTP, dTTP, ddATP, NonidetTM P-40, pyrophosphatase and Thermo Sequenase DNA polymerase.
C reagent	Tris-HCI (pH9.5), magnesium chloride, Tween
2-mercaptoethanol, dATP, dCTP, dGTP, dTTP, ddCTP, thermostable P-40,	
pyrophosphatase and Thermo Sequenase DNA polymerase.	

Table 79. Contents of the cycle sequencing kit.
The loading dye used for sequencing consisted of a denaturing agent to ensure that the DNA was run through the gel as single stranded products. The denaturing agent was Formamide, and the other components of the loading dye were EDTA, and methyl violet.

11.4.3. Cycle Sequencing Optimisation data

The various conditions tested for cycle sequencing optimisation are represented by some of the gels run on the GS-2000. The ranges of conditions tested for optimisation are tabulated (Table 80 p.A5).

Condition	
Type / amount of template	
PCR fragment	$10,25,50,75,100,200$, and $500 \mathrm{ng} / \mu \mathrm{L}$
Plasmid product	$0.25,0.5,0.75,1,2,4,6$, and $8 \mu \mathrm{~g} / \mu \mathrm{L}$
Labelled primer concentration	$0.5,1,2.5,5,7.5,10,15$, and $20 \mathrm{pmol} / \mu \mathrm{L}$
Number of reaction cycles	$10,15,20,25,30,35$, and 40 cycles
Annealing / Extension temperature	$50,55,58,60,62,64,68$, and $70^{\circ} \mathrm{C}$
Amount of sample loaded on the gel	$0.25,0.5,1,2,2.5,4,5,6$, and $8 \mu \mathrm{~L}$

Table 80. Range of values tested during optimisation of the Sequencing reactions.
The final optimised reaction conditions are described in Optimised Cycle Sequencing protocol (Section 2.3.5.1, p.92).

Examples of the sequencing gels used to determine the optimal conditions are provided in Figure 68 - Figure 71 (p.A6-A9).

Figure 68. Partial sequencing gels: Initial comparison of PCR and plasmid templates.
Conditions for these gels were $5 \mathrm{ng} / \mu \mathrm{L}$ primer, 30 cycles, $60^{\circ} \mathrm{C}$ anneal/extend, and $2 \mu \mathrm{~L}$ loaded onto each gel. All gels are loaded with sequencing reactions for $\mathrm{A}, \mathrm{C}, \mathrm{G}$, and T from left to right.
(a) All five reactions are identical; $500 \mathrm{ng} / \mu \mathrm{L}$ PCR product
(b) All six reactions are identical; $1 \mu \mathrm{~g} / \mu \mathrm{L}$ plasmid

Figure 69. Partial sequencing gels: Effect of purification and Anneal / Extension temperature.
Conditions for these gels were $1 \mu \mathrm{~g} / \mu \mathrm{L}$ plasmid, $5 \mathrm{ng} / \mu \mathrm{L}$ primer, 30 cycles, and $60^{\circ} \mathrm{C}$ anneal/extend (gel a). All gels are loaded with sequencing reactions for $\mathrm{A}, \mathrm{C}, \mathrm{G}$, and T from left to right.
(a) lanes 1-3: non-purified sequencing reaction (5,1 , and $2 \mu \mathrm{~L}$ loaded) lanes 4-7: Ethanol purified sequencing reaction ($5,2,1$, and $0.5 \mu \mathrm{~L}$ loaded)
(b) $58^{\circ} \mathrm{C}, 60^{\circ} \mathrm{C}, 62^{\circ} \mathrm{C}, 64^{\circ} \mathrm{C}$ anneal/extend temperature (2 and $1 \mu \mathrm{~L}$ loaded)

Figure 70. Partial sequencing gels: Amount of primer and number of cycles.
Conditions for these gels were $1 \mu \mathrm{~g} / \mu \mathrm{L}$ plasmid (gel a), $5 \mathrm{ng} / \mu \mathrm{L}$ primer (gel b), 30 cycles (gel a), and $60^{\circ} \mathrm{C}$ anneal/extend. All gels are loaded with sequencing reactions for $\mathrm{A}, \mathrm{C}, \mathrm{G}$, and T from left to right.
(a) $0.5,1,2.5,5,7.5,10,15$, and $20 \mathrm{ng} / \mu \mathrm{L}$ primer
(b) lanes 1-2: 20 cycles (1 and $2 \mu \mathrm{~L}$ loaded), lanes 3-4: 25 cycles (1 and $2 \mu \mathrm{~L}$ loaded), lanes 5-6: 30 cycles, $1 \mu \mathrm{~g} / \mu \mathrm{L}$ plasmid (1 and $2 \mu \mathrm{~L}$ loaded),), lanes $7-8$: 30 cycles, $2 \mu \mathrm{~g} / \mu \mathrm{L}$ plasmid (1 and $2 \mu \mathrm{~L}$ loaded)
lane

1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8

Figure 71. Partial sequencing gels: Amount of PCR product and amount loaded onto the gel.
Conditions for these gels were $200 \mathrm{ng} / \mu \mathrm{L}$ PCR product (gel 2), $5 \mathrm{ng} / \mu \mathrm{L}$ primer, 30 cycles, and $60^{\circ} \mathrm{C}$ anneal/extend. All gels are loaded with sequencing reactions for $\mathrm{A}, \mathrm{C}, \mathrm{G}$, and T from left to right.
(a) $50,100,500$, and $200 \mathrm{ng} / \mu \mathrm{L}$ PCR product (1 and $2 \mu \mathrm{~L}$ loaded)
(b) $0.25,0.5,0.75,1,2,4,6$, and $8 \mu \mathrm{~L}$ loaded

11.5. DNA SEQUENCING OF THE PERSISTENCE Clearance model experiment

This section is the appendix for Chapter 4: DNA Sequencing of the Persistence - Clearance model experiment.

11.5.1. Examples of the edited sequence data output

Examples of the edited sequence data output of the Persistence - Clearance model experiment are demonstrated.

Core forward - Inoculum (p.A11).
Core forward - P13 day 27 (p.A12).
Surface forward - Inoculum (p.A13).
Surface forward - P13 day 27 (p.A14).
Surface forward - W13 day 20 (p.A15).
Surface forward - W13 day 29 (p.A16).
Surface forward - W13 day 34 (p.A17).
Surface forward - W13 day 39 (p.A18).
Surface forward - W13 day 41 (p.A19).
Surface forward - W13 liver day 43 (p.A20).
Surface forward - W15 day 13 (p.A21).
Surface forward - W15 day 18 (p.A22).
Surface forward - W15 liver day 43 (p.A23).
Surface reverse - Inoculum (p.A24).
Surface reverse - P13 day 27 (p.A25).

11.5.2. Multiple Sequence Alignments

The automated or computer estimated sequence was manually checked (and altered if necessary) before being aligned using PileUp or ClustalW (Appendix 11.6.1, p.A42). After alignment, it was again manually checked (and altered if necessary).

Core forward region (p.A26-A29).
Surface forward region (p.A30-A35). Surface reverse region (p.A36-A41).

$$
\text { of duck WI3 on day } 34 .
$$

Multiple Sequence Alignment of the forward Core region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample. inoculumcf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : 112 p13_d11_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTNTACATTGCTGNTGNC p13_d27_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : p13_d43_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : p13_liv_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC p14_dil_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : p14_d27_cf : GCAATATNNATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC p14_liv_cf : GCAATATATATTNCACATANGCTANGTGGANCTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : w13_d20_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : w13-d29 cf : GCAATATATATTNCACATANGCTANGTGGANCTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC w13_d41_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : w13_liv_cf : GCAATATANATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : w15 d13-cf : GCAATATATATTNCACATANGCTATGTGGNNCTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC w15_d18_cf : GCAATNTANATTNCACATANNCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : b26_d15_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : b26_d25_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGNTGTC b26_liv_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : b35_d15_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC : b35-d25-cf : GCAATATATATTCCACATAGGCTATGNGGAACTTAAGAANTACACCCCTCTNCTTCGGAGCTGCCTGCCAAGGTATTNTTACGNCTACANTGCTGNTGTC b35_liv_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTTACGTCTACATTGCTGTTGTC : b37_liv_cf : GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC GCAATATATATTCCACATAGGCTATGTGGAACTTAAGAATTACACCCCTCTCCTTCGGAGCTGCCTGCCAAGGTATTTTTACGTCTACATTGCTGTTGTC
continued - Multiple Sequence Alignment of the forward Core region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

* 2620 * 2640 * 2660 * 2680 *

 w13_d41_cf : AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT w13_liv_cf : AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT w15_d13_cf : AGCCTTGACTGTACCTTTGGTATGTACCATTGNTTATNATTCTTGNTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT w15_d18_cf : AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT b26_d15_cf : AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT $\mathrm{b} 26 \mathrm{~d} 25 \mathrm{cf}:$: AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT b26_liv_cf : AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT b35_d15_cf : AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT b35 d25 cf : AGCCTTGACTGNACCTNTGNTNTGTACNNTTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT b35_liv_cf : AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT b37_liv_cf : AGCCTTGACTGTACCTTTGGTATGNNCCATTGNTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT AGCCTTGACTGTACCTTTGGTATGTACCATTGTTTATGATTCTTGCTTATATATGGATATCAATGCTTCTAGAGCCTTAGCAAATATATATGATCTGCCT
continued - Multiple Sequence Alignment of the forward Core region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.
GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTTAGAACCTTATTGGAAATCTGATTCAATAAAGAAACATGTTTTAATTG: 2800inoculumef : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA273
p13_d11_cf : GATGATNTNTTTCCTAANATNNATGATCTTGNAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
p13_d27_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 273
p13_d43_cf GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
pl3_liv_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
pl4_d11_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
p14_d27_cf GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 271
p14_liv_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
w13_d20_cf : GATGATTTCTTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
w13- d29 ${ }^{-} \mathrm{cf}$: GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTTG-GATCCCGA 271
w13_d41_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
w13_liv_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 273
w15-d13-cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCG 271
w15_d18_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 273
b26_d15_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
b26 d25 cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA- 272
b26_liv_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
b35_d15_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272
b35_d25_cf : GATGATTTCTTTCCTAAAATNGANGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCG- 269
b35_liv_cf : GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 273
b37_liv_cf GATGATNTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTG-GATCCCGA 272GATGATTTCTTTCCTAAAATAGATGATCTTGTAAGGGATGCTAAAGACGCTTg GAtCCcga

continued - Multiple Sequence Alignment of the forward Core region.

adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

* 760

inoculumsf p13_d06_sf p13_d11_sf p13_d27_sf p13_d43_sf p13-liv_sf p14_d06_sf p14_d11_sf p14_d27_sf p14_d43-sf p14_liv_sf w13- $220^{-} \mathrm{sf}$ w13_d29_sf w13_d34_sf w13_d39_sf w13 ${ }^{-}$d41-sf w13 liv sf w15 d13 s w15_d18_sf w15 liv-sf b26_d15_sf b26_d25_sf b26 ${ }^{-}$d27 ${ }^{-}$sf b26 d36 sf b26_liv_sf b35_d15_sf b35_d25_sf b35_d27_sf b35_d36_sf b35-liv-sf b37_d36_sf b37_liv_sf

GGAATCCTTTATAAGCGGATATCTAAACATTTGGTTGCATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG ----------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGACTTCAATACCTGTCAMCAACATCAAGTTCCTG ---------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG --------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG --------------GCGGATATCTAAACATTNGGTTACNTTCAAAGGCANGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG ------------------TNTNNAANCNTTNGNTTACNTTCAANGN-AANCCNTNNNNTTNGGNNCTTCANNNCCNNGNNNANCAACATNNNGNTNCTG ----------------------ANCATNNGGTTACNTTCAAAGGCNNNCCTTATCATTGGGAACTTNAATACCTTGTCAAGCAACATCAAGTTCCTG -----------AGCGGATATCTAAACATTTGGTT-CATTCAAAGGCANNCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG ------------------------TTTGGTTACATTCAAAGG-NNNCCTNATCATNNNGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG
--------------AGCGGATATCTAAACATTNGGTTACATTCAAAGGCANNCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG --------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCANNCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------GCGGATATCTAAACATNAGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------AGCGGATATCTAAACATNAGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------AGCGGATATCTAAACATNAGGTTACATTCAAAGGCANGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG ------------AGCGGATATCTAAACATNAGGTTACATTCAAAGGCANNCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------AGCGGATATCTAAACATTTGGTTACATTCAAAGGNAANCCTTATCATNGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG ------------AGCGGATATCTAAACATNAGGTTACATTCAAAGGCANGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG --------------GCGGATATCTAAACATTTGGTTACATTCAAAGGNANGCCTNATCATNGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------AGCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------- CGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG ---------------------NCATTTGGTT-CATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------AGCGGATATCTAANCNTTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCANTACCTNGTNAAGCAACATNAAGTTNCTG ---------------CGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -------------- GGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG --------------GCGG-TATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG --------------GCGGA-ATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG --------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG --------------GCGGATATCTAAACATTTGGTTACATTCAAAGGCAAGCCTTATCATTGGGAACTTCAATACCTTGTCAAGCAACATCAAGTTCCTG -----------------------------------1GTTANNTTCAAAGGCANGCCTTATNATTGGGAACTTCAATACCTTGNCN-GCNNCATNAAGTTNCTG --------------GCGGATATCTAAACNTTTGGTTACATTCAAAGGCNNGCCTTATCATTGGGAACTTCANTACCTNGTCAAGCAACATCANGTTNCTG cggatatctaaacatttGGTTaCATTCAAAGGcAAGCCTTATCATTGGGAACTTCAATACCTTGTCAaGCAACATCAAGTTCCTG

Multiple Sequence Alignment of the forward Surface region.

adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

* 820 * 840 * 800
adhbv_f : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG inoculumsf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG pl3_d06_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 p13_d11_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 p13 d27 sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 p13_d43_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 p13_liv_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 p14_d06_sf : ATNGGNCAACANCCTNNAAAATNAATGGNNNNGCNGNNAATNGANGGNGGNAAACTCNTNNTNNNTCAATTNNNNGGCNGNNNGANACCNANAGGNNNTN : 180 p14_d11_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTNNTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 175 p14 d27 sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG p14_d43_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 170 p14_liv_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 187 w13_d20_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 w13_d29_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 w13 d34 sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG 187 w13 d39 sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 187 w13-d41 sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 187 w13_liv_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 187 w15_d13_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 187 w15 d18 sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG w15 liv sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 187 b26_d15_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 b26_d25_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGNATGATACCAAAAGGGACTG : 185 b26_d27_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATNGAANGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 173 b26 d36 sf : ATGGGACAACANCNTGNAAAATCAATGGACNTGCGGNGAATCGAAGGAGGAGAACTCCTGCTNANTCAATTAGCAGGCCGNATGATACCAAAAGGGACTG : 187 b26_liv_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 185 b35_d15_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCNTGCTAANTNAATTAGCAGGCCGNATGATACCAAAAGGGACTG : 185 b35_d25_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 185 b35 d27 sf : ATGGGACAACANCCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAANTNAATTANNNGGCCGNATGATACCAAAAGGGACTG b35 d36 sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATNAATTAGCAGGCCGNATGATACCAAAAGGGACTG : 186 b35_liv_sf : ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAGAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG : 186 b37_d36_sf : ATGGGACANCNACCTGCAAAATCAATGGACGTGCGGAGAATCNNAGGAGGNNAACTCCNGCTNNNN-NATTNNNNNGCCGCNTGATNNCNNAAGGNNCTG : 166 b37_liv_sf : ATGGGACAACANCCTGCAAAATCAATGGACGTGNNNNNNATCGANGGNGGAGAACTCCTGCTNAATCAATTANCAGGCCGNATGATNCCAAAAGGNACTG : 186 ATGGGACAACAACCTGCAAAATCAATGGACGTGCGGAGAATCGAAGGAGGAgAACTCCTGCTAAATCAATTAGCAGGCCGCATGATACCAAAAGGGACTG
continued - Multiple Sequence Alignment of the forward Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.
* 920 * 940 * 960 * 1000
adhbv_f : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 1000 inoculumsf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 p13 d06 sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 p13_dll_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 p13_d27_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 p13_d43_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 pl3_liv_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 pl4 d06 sf : TTAGNCGGANCCACNCNNTT-CAACAACAGATCACCTATTNGATNATGTGCNNACAATGGGGGNGGTNTATACTNTTCCT-NNCAAGGCGCATGGNCTGC : 278 pl4_dl1_sf : TNACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGNCTGC : 275 p14_d27_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTNAGCAACAAGGCGCATGGCCTGC : 286 p14_d43_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 270 p14 liv sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 287 w13 d20_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 w13_d29_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 w13_d34_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 287 w13_d39_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 287 w13_d41_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 287 w13-1iv-sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 287 w15 d13-sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 287 w15_d18_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 w15_liv_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 287 b26 d15 sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 $\mathrm{b} 26^{-} \mathrm{d} 25^{-} \mathrm{sf}:$ TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 285 b26_d27_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 273 b26_d36_sf : TTACATGGTCNGGCANATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 287 b26 liv sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 285 b35 ${ }^{-}$d15 ${ }^{-} \mathrm{sf}:$ TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 285 b35_d25_sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 285 b35_d27_sf : TCACATGGNCGGGCANATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 285 b35 d36 sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 b35 liv sf : TCACATGGTCGGGCAAATTTCCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 $\mathrm{b} 37^{-} \mathrm{d} 36^{-} \mathrm{sf}:$ TCCCATGGNCGGTCNAATTTCCAACAATAGATNACNTATTAGANCATGTGCAAGCTGNGGATGCTGTNAATGCTCTTCAG-AACANGGCGCATGGCCTGC : 265 b37_liv_sf : TCACATGGTCGGGCANATTTNCAACAATAGATCACCTATTAGATCATGTGCAAACAATGGAGGAGGTAAATACTCTTCAGCAACAAGGCGCATGGCCTGC : 286 TcacAtGGtCgggCAaATTTcCAACAAtAGATCACCTATTAGATCATGTGCAAaCaaTGGagGagGTAaATaCTCTTCagcAACAAGGCGCATGGCCTGC
continued - Multiple Sequence Alignment of the forward Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.
* 1020 * 1040 * 1060 * 1080
adhbv $f:$ TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT inoculumsf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT p13 d06 sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT : p13 d11 sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT p13_d27_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT pl3_d43_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT p13_liv_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT p14_d06_sf : TGGGGCAGGAAGACGTTTGGGGTTTACCAATNCGGNACCCCAANAACCTNCTTNNCCCCAGTNGNCTCCCGNNGAAGATTNTAAAGCACGGGAAGCCTTT p14 d11 sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTTCTTAG-CCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT p14_d27_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTNCTNAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT pl4_d43_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTNCTNAGCCCCAGTGGACTTCCGAAGAAGATNANAAANCACGGGAAGCCTTT pl4_liv_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w13_d20_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w13 d29 sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTTCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w13_d34_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w13_d39_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w13_d41_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w13 liv sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w15 ${ }^{-}$d13-sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w15_d18_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT w15_liv_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b26_d15_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b26 d25_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b26_d27_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTNCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b26_d36_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCANAAAGCACGGGAAGCCTTT b26_liv_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b35_d15_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b35 d25 sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b35_d27_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTNCTCAGNCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b35_d36_sf : TGGGGCANGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAAAAAGCACGGGAAGCCTTT b35_liv_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT b37_d36_sf : TGGGGCACGAAGANATTNNGGGNTTACCAATCNGNCACCNCATGAACCTTCTTAGCCCCANTGGACT-CCGAATAATATCAAAGAGCANGNGNAGNCTTT b37_liv_sf : TGGGGCAGGAAGACGTTTGGGGTTAACCAATCCGGCACCCCAAGAACCTCCTCAGCCCCAGTGGACTCCCGAAGAAGATCAGAAAGCACGGGAAGCCTTT TGGGGCAgGAAGACgTTTGGGGTTaACCAATCCGGCACCCCAaGAACCTcCTCAGcCCCAGTGGACTCCCGAAgAAgATCAgAaAGCACGGGAAGCCTTT
continued - Multiple Sequence Alignment of the forward Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.
* 1120 * 1140 * 1160 * 1180 *
ahbvf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTCCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA : 1200 inoculumsf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTCCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA : 486 p13_d06_sf : CGTCGTTATCAAGAAGAGAGACC-CCGGAAACCACCACAATTTCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATTCCCTACTCGAGA : 485 p13_d11_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGAT-CCCTACTCGAGA : 485 p13_d27_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTCCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA : 486 p13-d43 sf : CGTCGTTATCAAGAAGAGAGACC-CCGGAAACCACCACAATTTCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA p13 liv sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTCACCAACTNCGTGGAAACTACAACCAGGGGACGATCCCCTACTNGAGA p14_d06_sf : TTTNNTTTTAAAGAANAGAGACC-CCCGGNACCACCACAATTCCACCAACGT-ACCAACTTCGNGGNAACTNCNACCNAGGGGCGATCCCCTTNTNNNGN p14_d11_sf : CGTCCGTTNCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCCACGTTACCAACTTCGTGGAAACTACACCNAGGGGACGATCCCCTACTCNAGA p14_d27_sf : CGTCGTTATCAAGAAGAGAGACC-CCGGAAACC-CCACAATTTC-CCAACGTNACCAACTTCGTGGAAACTACAACCAGGGGACGAT-CCCTACTNGAGA p14 d43 sf : CGTCGTTATCAAGAAGAGAGACC-CCGGAAACCCCCACAATTTCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGAT-NCCTACTNGAGA p14 ${ }^{-}$liv-sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w13_d20_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w13_d29_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTNCACCAACGTCACCAACTCCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w13_d34_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTNCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w13 d39 sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTNCACCAACGTCACCAACTCCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w13 ${ }^{-}$d41-sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTNCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w13_liv_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTNACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w15_d13_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTCACCAACTCCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w15 d18 sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTNCACCAACGTCACCAACTNCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA w15 liv sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTCCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA b26-d15_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTNACCAACTTCGTGGAAACTACAACCAGGGGACGAT-CCCTACTNGAGA b26_d25_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTNGAGA b26_d27_sf : T-TNGTTATCAAGAAGAGAGACCACCGGAAACCACC-CAATTTCACCAACGTGACCAACTTCGTGGAAACTACAACCAGGGGACGAT-CCCTACTCGAGA b26 d36 sf : NGTNGTTATCAAGAAGAGAGACC-CCGGAAACCACCACAATTTCACCAACGTGACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTNGAGA b26 ${ }^{-}$liv sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGAT-CCCTACTCGAGA b35_d15_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA b35_d25_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTCCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA b35-d27 sf : CGNCGNTATCAAGAAGAGAGACCACCGGAAACCACCACAATTNCACCAACGN-ACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA b35-d36-sf : NGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTTCACCAACGTGACCAACTTCGTGGAAACTACAACCAGGGGACGATNCCCTACTCGAGA b35_liv_sf : CGTCGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTCGAGA b37_d36_sf : TTNGGNTATCNGANAGAGAGACCACCGCAAACCACCACNATTTCNCCTACGNAGACNANTTCNNGGAANANACAAGCCTNNNACGAATCCCTTNTGCNAA b37-liv_sf : CGTNGTTATCAAGAAGAGAGACCACCGGAAACCACCACAATTCCACCAACGTCACCAACTTCGTGGAAACTACAACCAGGGGACGATCCCCTACTNGAGA cgTcgtTaTcAagAAGAGAGACCaCCggaAACCaCCaCAATT CaCCaACGTcacCAACT CGTGGAAAcTACAacCagGGGaCGAt CCCTaCTcgAgA
continued - Multiple Sequence Alignment of the forward Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

Abstract

adhbv_f: ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTC-CTCCCCT-CAAGAA-GAAGAA : 1288 inoculumsf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCCT-CAAGAA-GAAGAA : 574 p13_d06_sf : ACAAA-TCTCT-GCTCGAG-ACTCATTCTTCTTAC-CAGAA-TCCGGAGCC-CGCC-CTGCCTTGTGATAAAA-ACTA-CTTCCCTTAAAGAA-GAAGAA : 575 p13_d11_sf : ACAAA-TCTCT-GCTCGAG-ACTCATTCT-CTTTC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACT--CTTCCCTTAA-GAA-GAAGAA : 571 p13_d27_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCCT-CAAGAA-GAAGAA : 574 pl3_d43_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCT-CTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCTTGTGATAAAG-ACTA-CTTCCCTTCA-GAA-GAAGAA : 573 p13 liv sf : ACAAA-TCTCT-GTTCGAG-ACTNATCCTCTTTAC-CAGAAATCCGGAGCC-GGCCCGTGCCTTGTGATAAAG-ACTA-CTNCC-T-CAAGAAAGAANAA : 577 pl4_d06_sf : ACNAAATCTTTTGGTTTNGGAATATTCTTTTTTAN-CAGAATTCCGGAGNC-GGCC-GTGCCTTGTGATAAAAANTTN--NNCCCTCCAAGAAAAAANAA : 571 p14_d27_sf : ACAAA-TCTNT-GNTNGAG-ACTCATC-T-NTTTC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAA-ACTA-CTCCC-TTAA-GAA-AAAAAA : 567 p14_d43_sf : ACAAATNTTTT--GTNGAG-ACTNATTCTTTTTAC-CAGAA-TNCGGAGNC-GGNCCGTGCCTTGTGATAAAAAACTA-CTCCCCT-NAAGAA-NAANAA : 559 p14_liv_sf : ACAAA-TCTNT-GNTCGAG-ACTCATTCT-NTTTC-CAGAA-TTCGGAGCC-GGCC-GTGCCT-GTGATAAAAGACTA-CTTCCCTTAANAAN-AAAAAA : 576 W13-d20-sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCCT-CAAGAA-GAAGAA : 574 w13_d29_sf : ACAAA-TCTCT-GCTCGAG-ACTCATNCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCNT-CAAGAA-GAAGAA : 574 w13_d34_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCCT-CAAGAA-GAAGAA : 575 w13_d39_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCCT-CAAGAA-GAAGAA : 575 w13_d41_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCCT-CAAGAA-GAAGAA : 575 w13_liv_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTNCCCTTCAAGAA-GAAGAA : 576 w15_d13_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTNCCCT-CAAGAA-GAAGAA : 575 w15_d18_sf : ACAAA-TCTCT-GCTCGAG-ACTCATNCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCCT-CAAGAA-GAAGAA : 574 w15 liv sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTCCCCT-CAAGAA-GAAGAA : 575 b26_d15_sf : ACAAA-TCTNT-GGTCGAG-ACTCATCCT-CTTTC-CAGAA-TC-GGAGCC-GGCC-GTGCCT-GTGATAAAN-ACTA-CTCCCCTNAA-AAA-AAANAA : 571 b26_d25_sf : ACAAA-TCTNT-GCTCGAG-ACTCATCCTNTTTAC-CAGAATCCCGGAGCC-GGCC-GTGCCTTGTGATAAAG-ACTA-CTCCC-T-CAAGAA-GAAGAA : 574 b26_d27_sf : ACAAAATTTCT-GCTCGAGGACTCATCCTCTTTAC-CAGAA-TTCGGAGCCGGGCC-GTGCCT-TTGATAAAAGACTA-CTCCCCT-CAAGAA-GAAGAA : 562 b26 d36 sf : ACAAA-TNTNT-GCTCGAG-ACTCATNCTNTTTAC-CAGAA-TNCGGAGCC-GGGCCGTGCCT-GTGATAAAN-ACTA-CTTCCCT-CAAGAA-NAAGAA : 575 b26 liv sf : ACAAAATCTCT-GCTCGAG-ACTCATNCTCTTTAC-CAGAAATCCGGAGCCCGGNCCGTGCCT-GTGATAAAA-ACTA-CTTCCCTTAAAAAAAAAANAA : 578 b35-d15 sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTNTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAA-ACTA-CTCCCCTCAAAGAA-GAANAA : 574 b35_d25_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGCC-GTGCCT-GTGATAAAG-ACTA-CTNCCCT-CAAGAA-GAAGAA : 573 b35_d27_sf : ACAAA-TCTCT-GCTCGAG-ACTCATCCTNTTTAC-CAGAA-TCCGGAGGC-GGGCCGTGCCTTGTGATAAAG-ACTA-CTNCCCT-CAAGAA-GAAGAA : 574 b35 d36 sf : ACAAA-TCTCT-GCTCGAGGACTCATCCTCTTTTC-CAGAA-TCCGGAGGC-CGGCCGTGCCT-GTGATAAAN-ACTA-CTCCCCT-CAAGAAGAAAGAA : 577 b35 liv sf : ACAAA-TCTCT-GCTCGAGGACTCATCCTCTTTAC-CAGAA-TCCGGAGCC-GGNC-GTGCCTTGTGATAAAG-ACTA-CTNCCCT-CAAGAA-GAAGAA : 576 b37_d36_sf : NCTAA-TATTT-GCNCGAG-AGTTNCCCNCNTTNCNCNTAATTCTTGAGGCGGGGC-GGGCCTTGATANAAAAGACNA-CTCCCCT-CCGGANTAATGAA : 558 b37_liv_sf : ACAAA-TNTTTTGNTCGAG-ACTCATCCTNTTTAC-CAGAA-TCNNGGAGC-CGGCCGGGCCT-GTGATAAAG-ACTA-CTTCCCT-CAAGAA-GAANAA ACaAA TcTcT gcTcgAG AcTcatccT tTTaC CAgAA tccgGagcC gGcC gtGCCT gtgAtAAA AcTa cTcCCcT caagAA gAagAA

continued - Multiple Sequence Alignment of the forward Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

 13 ,
 p14 d06_sr p14_d11_sr p14_d27_sr p14_d43_sr p14_1iv_sr w13_d20_sr w13_d29_sr $13-129-8$ w13_d34_sr w13_d39_sr w13_d41_sr w13_liv_sr w15 d13 sr w15-d18-sr w15_liv_sr _d15_sr . b26_d25_sr : -----------------------------nCACTCCTAATTCTTGTAGAAAAGTGCAGACAGCGTGGCTAATTGAGTTAAGGTGACGAGCGTTTGGGTGGC

 b35 d25 sr : ---------------------------------CTCCTAATTCTTGTAGAAAAGTGCAGACAGCGTGGCTAATTGAGTTAAGGTGACGAGCGTTTGGGTGGC

 b35_liv_sr :

 c ctcctaattcttGTAGAAAAGTGCAGACAGCGTGGCTAATTGAGTTAAGGTGACGAGCGTTTGGGTGGC

Multiple Sequence Alignment of the reverse Surface region.

adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

* $\quad 1320$ * 1340 * 1360 * 1300

Ino : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT inoculumsr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAAGGGCT p13_d11_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT p13_d27_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT p13-d43-sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT p13-liv_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT p14_d06_sr : CNAGGANGANGNANCCCATATAGGTGAAAGTCCANTNNTNTTTTTNACGNGCGAACCNTGNNNNGNNGGCNGNNNTNGAGAANAGGANNACNAACGGNCN p14_d11_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT p14_d27_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT p14 d43 sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT p14-liv_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT w13_d20_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT w13_d29_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT w13_d34_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT w13 d39 sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT w13- 441^{-}sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT w13_1iv_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTANTNAAGAGATGGAGGAGAAAAGGGCT w15_d13_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT w15_d18_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTNTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT w15_liv_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTNTAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT b26 di5-sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT b26_d25_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTNTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT b26_d27_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT $\mathrm{b} 26^{-} \mathrm{d} 36^{-} \mathrm{sr}$: NGAGGAGGAAGTCATCCATATAAGTNAAAGTCCAAACATTAAAGCGACGAGCGATTTTTTGATNCGAGGGCAGTCNTGAAGAGATGGAGGAGAAAAGGGCT b26 liv sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT b35_d15_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT b35_d25_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTANTGAAGAGATGGAGGAGAAAAGGGCT b35_d27_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTANTNNAGAGATGGAGGAGAAAAGGGCT b35_d36_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT b35-liv-sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGAGGGCAGTAGTGAAGAGATGGAGGAGAAAAGGGCT b37_d36_sr : AGAGGAGGAAGTCATCCATATAAGTAAAAGTCCAAACATTAAAGCGACGAGCGATTTCTGATCCGNGGGCAGTNNTGAAGAGNTGGAGGAGAAAAGGGCT b37_liv_sr : NNAGGAGGANGTCATCCATATAAGTNANAGTCCAAACNTTAAANNGACGAGCGANNNNTGANNCGAGGGCAGNNNTGAAGAGATGGAGGANAAAAGGGCT : 173 aGAGGAGGAAGTcAtCCATATAaGTaAAAGTCCAAaCATTaaagcGACGAGCGAtttcTGATCCGAGGGCAGTaGTGaAGAgAtGGAGGAgAAAaGGGCT
continued - Multiple Sequence Alignment of the reverse Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

* 1420 * 1440 * 1460 * 1480 *
adhb_r : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGTTACTAGCAGGATTAAGAGGAAGATGATAA : 1500 inoculumsr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 274 p13_d06_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 274 pl3_d11_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 274 p13_d27_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 269 p13_d43_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 271 p13_liv_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 264 p14_d06_sr : GNGACCGNCCCCCANAGGAGCNNTTCNAAAANAATCCACATGTTGTCTNANAGATACAGCAAGCCNGGTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 266 pl4_d11_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 272 p14_d27_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 274 p14_d43_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 274 pl4_liv_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 263 w13_d20_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 274 w13_d29_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 274 w13_d34_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : 274 13 - 41 w13_liv_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : w15_d13_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA w15_d18_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA : w15_liv_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b26_d15_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b26_d25_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b26_d27_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b26_d36_sr : GANACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b26-liv_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b35_d15_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b35_d25_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b35_d27_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b35 d36 sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b35_liv__sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA b37_d36_sr : GAGACCGACTCCCATTGGAGCTTTCCTAAAATAATAGACATGTTGTCCGTCAGATACAGNAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATNA b37_liv_sr : GANACCGACTCCCATTGGAGCTTTNCTAAAATAATAGACATGTTGTCCGTCAGATACAGCAAGCCTGCTGCTACTAGCAGGATTAAGAGGAAGATGATAA GAGACCGACtCCCATtGGAGCTTTCCTAAAATAATagACATGTTGTCcGtCAGATACAGCAAGCCTGcTGcTACTAGCAGGATTAAGAGGAAGATGATAA
continued - Multiple Sequence Alignment of the reverse Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

$$
\begin{array}{ccccccccc}
* & 1520 & * & 1540 & * & 1560 & * & 1580 & *
\end{array}
$$

adhbv r : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCIGCGTAGTGTGGAGAGAITMGGGCTCCAGTATCTTGGAAAGCGCATTG : 374 _d06_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATIG . 374 p13_d11_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG 374 p13_d27 sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 369 p13-d43_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 371 p13_liv_sr : AAAGCCTGAGATAGGTCCAGAGAAATNCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTC-AGTATCTTGGAAAGCGCATTG : 363 p14_d06_sr : AAAGCCTGAGATAGG-CCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGCGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 365 p14_d11_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATTCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 372 p14_d27_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 374 p14_d43-sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 374 pl4_liv_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 363 w13_d20_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 374 w13_d29_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 374 w13_d34_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 374 w13 d39 sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG w13_d41_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG w13_liv_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATNCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG w15_d13_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG w15_d18_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG w15-liv-sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b26_d15_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b26_d25_sr : AAAGCNTGAGATAGGTCCAGAGAAATCNTGG-CATCCCCACGGGCAGAATCCTGCTTAGNGNGGANAGATTTGGN-TCCAGTNTNTTGGAAAGCGCATTG b26_d27_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b26_d36 sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b26-liv_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b35_d15_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b35_d 25 _sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b35 d27_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCNTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b35_d36_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b35_liv_sr : AAAGCCTGAGATAGGTCCAGAGAAATNCTGGGCATCCCCACGGGCANAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b 37 _d 36 _sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG b37_liv_sr : AAAGCCTGAGATAGGTCCAGAGAAATCCTGGGCATCCCCACGGGCAGAATCCTGCGTAGTGTGGAGAGATTTGGGCTCCAGTATCTTGGAAAGCGCATTG : 373 AAAGCCTGAGATAGGtCCAGAGAAATCCTGGgCATCCCCACGGGCAGAATCCTGCgTAGtGTGGAGAGATTTGGGcTCcAGTATCTTGGAAAGCGCATTG
continued - Multiple Sequence Alignment of the reverse Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

* 1620 * 1640 * 1660 * 1680
adhbv r : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTITTATCAACAAGAAAAAGCCTACCAGTAATCC- : 1699 inoculumsr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 473 13 d06 sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 473 13^{-}d11-sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 473 p13-d27-sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 468 p13-d43-sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 470 p13 liv sr : CATTTTTCC-TTTGGAGAACTGAGAGAAATCCCCACCAAATCTAGCCCCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATNCG : 462 $14^{-} \mathrm{d} 6^{-} \mathrm{sr}$. GATTTTCCCTTTGGAGAACTGNNAGAAATNCACCACCAATCTAGCCTCCGTAGTATTTCCAGAATTTTTATCAACAAGAAAAAGCCTACCNGTAATCC- : 464 p14-d11-sr : CATTTTTCCTTTTGGAGAACTGAGAGAAATNCACCACCAATCTAGCCTCCGTAGTTTTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCNGTAATCCC : 472 p14-d27-sr : CATTTTTTCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 473 p14 d43 sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 473 p14 liv sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCCG : 463 13 - Ar : 473 1-w13-d34-sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCCC : 474 w13-d39-sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATNCG : 474 w13 d41 sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- 472 13 liv sr : CATTTTTCC-TTTGGAGAACTGAGAGAAAT-CACCACCAATCTAGCCTCCNTAGTNTTTNGAGAATTTTTATNAACAAGAAAAAGCCTNCCAGTTATTCG : 472 15 d13-sr : ATTTGTGAGAACTGAGAGAAATCCACCACCAATCTAGCCTTCGTAGTATTTCGAGAATTTTTATNAACAAGAAAAAGCCTACCAGTAATCCC : 473 w15-d18-sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 473 w15 ${ }^{-1} \mathrm{liv}^{-} \mathrm{sr}$: CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 473 26 d15 sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- . 26 d 25 sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACC-CCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATNAACAAGAAAAAGCCTCCCAGTAATCC- : 469 2- 472 b26-d36-sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATTCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCTA-CCAGTAATCCG : 470 b26 liv ${ }^{-} \mathrm{sr}$: CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATNCC : 476 b35 d15 sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 47 35 d 25 sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- 472 35-427- 472 b35-d36-sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTCCCAGTAATNC- : 470 b35 liv sr : NATTTTTCCCTTTGGAGAACTGAGAGAAATNCNCCACCAATCTAGCCTCCGNAGGATTTCGAGAATTTTTATTCACAAGAAAAAGCCTCCCAGTAATNCC : 45 b37 d36 sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 473 b37_liv_sr : CATTTTTCCCTTTGGAGAACTGAGAGAAATCCACCACCAATCTAGCCTCCGTAGTATTTCGAGAATTTTTATCAACAAGAAAAAGCCTACCAGTAATCC- : 472 сATTTTTcCcTTTGGAGAACTGAGAGAAATcCaCcaCcAATCTAGCCtcCGTAGtaTTTCgAGAATTTTTATcaACAAGAAAAGGCctaCCAGTaATCC
continued - Multiple Sequence Alignment of the reverse Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.
* 1720 * 1740 * 1760 * 1780
adhbv_r : GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGTACCAGCCA-TTTTCTTCTTCTTGAGGGG-AGGA-GTCTTT-ATCA-CAGGCAC-GGCC-GGCT-CCG inoculumsr : GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGTACCAGCCA-TTTTCTTCTTCTTGAGGGG-AGTA-GTCTTT-ATCA-CAGGCAC-GGCC-GGCT-CCG p13_d06_sr : CCC-GAAGGT-CCAGCCA-TITTCTTCTTCTTGAGGGG-AGTA-GTCTTT-ATCA-CAGGCACCGGCC-GGCTTCCG 13 . p13-liv sr: GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGTACCAGCCA-TTTTCTTCTTCTTGAGGGG-AGTA-GTCTTT-ATCA-CAGGC-CCGGCC-GGCTTCCG p14_d06_sr : GATTAGGCC-AGCTN-GGATTTCCCCCGAAGGNACCAGCCA-TTTTTCTTCTTCTTGGGGGG-AGNA-GTCTTTT-ATTACA-CAGGCCCCNGGCC-GGNTTCCG p14_d11_sr : GANTAAGGCCAGCTAAGTANTTCCCCCGAANGNACCAGCCATTTTNTTTTTTTTTGANGGGGAGNA-GTCTTT-ATTACAAGGCACCGGCCGGNTTCCGG p14_d27_sr : GATTAGGCC-AGCTA-GTATTTCCCCCGAANGTACCAGCCA-TTTTNTTNTTNTTGAGGGGGAGTA-GTCTTT-ATTA-CAGGCCCCGGNCGGNTTNCGG p14_d43_sr : CATTAGGCC-AGCTA-GTATTTCCCC-GAANGT-CCAGCCA-TTTTNTTNTTTNTTGGGGGGAGTA-GTCTTT--ATA-CAGGCCC--GGCCGGNTCCGG p14_liv_sr : -ATTAGGCC-AGCTA-GTATTTCCCCCGAAGGTACCAGCCATTTTTTNTTTNTTTGAGGGG-AGTAAGTNTTTTATCACAAGGCCNCGGGCGGCTTTCGG w13_d20_sr : GATTAGGCC-AGCTA-GTATTTCCCC-GAAGGT-CCAGCCA-TTTTNTTNTTNTTGAGGGG-AGTA-GTCTTT-ATCA-CAAGCACCGGNC-GGNTTC-N w13_d29_sx : -ATTAGGCC-AGCTA-GTATT--TCCCGAAGGTACCAGCCA-TTTTTNTTNTTNTTGAGGGG-AGTA-GTCTTT-ATCA-CAGGCACCGGCC-GGCTTCGG w13_d34_sr : GATTAGGCC-AGCTA-GTATTTCCCC-GAAGGT-CCAGCCA-TTTTCTTNTTNTTGAGGGG-AGGA-GTCTTT-ATNA-CAAGCAC-GGGC-GGCTTC-G w13_d39_sr : -ATTAGGGC-AGCTA-GTATT--CNCCGAAGGNACCAGCCA-TTTTNTTNTTTTTGAGGGG-AGNA-GTCTTT-ATTA-CAGGCACCGGCC-GGNTTCGG w13_d41_sr : GANTAGGCC-AGCTA-GTATTTCCCC-GAAGGT-CCAGCCA-TTTTNTTNTTNTTTAGGGG-AGTA-GTCTTT-ATTA-CAAGCAC-NGGC-GGCTTC-G w13_liv_sr : -ATTAGGCC-AGCTA-GTNTT--CCCCGAAGGTNCCAGCCA-TTTT-NTTTTTTTGAGGGG-AGTN-GTNTTTTATNACAAG-CACCGGCC-GGCTTCGG : w15_d13_sr : GATTAGGCC-AGCTA-GTATTTCCCC-GAAGGTACCAGCCA-TTTTTNTTNTTTTTGAGGGGGAGTA-GTCTTTTATNA-CAAGCCCCGGCCGGGTTCCGG w15_d18_sr : GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGTACCAGCCA-TTTTCTTNTTNTTGAGGGG-AGTA-GTCTTT-ATCA-CAGGCACCGGCC-GGCT-CCG w15_liv_sr : GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGT-CCAGCCA-TTTTCTTCTTCTTGAGGGG-AGTAGGTCTTT-ATCA-CAGGCAC-GGCC-GGCT-CCG : b26-d15_sr : GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGT-CCAGCCA-TTTTCTTNTTNTTGAGGGG-AGTA-GTCTTT-ATNA-CAGGCAC-NGNC-GGCTTCCG : b26_d25_sr : GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGTCCCAGCCA-TTTTNTTTTTTTTGAGGGG-AGNA-GTCTTT-ATTA-CAGGCCC-GGNCGGCTTNCGG : b26_d27_sr : GATTA-GGCCAGCTA-GTATTT-CCCCGAAGGTACCAGCCATTTTCTTNTTNTTTGAGGGG-AGNA-GTCTTT-ATTA-CAGGCACCGGCC-GGCTTCCG b26_d36_sr : -ATTANGCC-AGCTT-GTATTTCCCCC--AANGTCCAGCCATTTTTNTTTTTTTTTGAGGGGGNGGA-GGCTTT-ATTACAAGGCCCGGGCG-GGTTTCCG b26_liv_sr : -ATTAGGCC-AGCTA-GTATTT-CCCCGAAGGTCCCAGCCATTTTCTTNTTTTTTGAGGGGAGGTA-GTCTTTT-ATTACAAG-CACCGGC--GGCTNCCN b35-d15-sr : GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGTACCAGCCA-TTTTCTTCTTCTTGAGGGG-AGTA-GTCTTT-ATCA-CANGCACCGGCC-GGCTTCCG : b35_d25_sr : GATTAGGCC-AGCTA-GTATTCCCCC-GAAGGTACCAGCCA-TTTTCTTCTTCTTGAGGGG-AGTA-GTCTTT-ATCA-CAGGCACCGGCC-GGCT-TCG : b35_d27_sr : GATTAAGGCCAGNTA-GTATT--CCCCGAAGGT-CCAGCCATTTTCTTCTTNTT-GAGGGG-AGTA-GTCTTT-ATCA-CAGGCACCGGCC-GGCTTCCG : b35_d36_sr : GATTAGGCC-AGCTA-GTATTTCCCC-GAANGN-ACCACCA-TTTTCTTNTTNTTGANGGG-AGTA-GTCTTT-ATTA-CANGCAC-GGCC-GGCTCC-G b35_liv_sr : -ATTANGCCCAGCTAAGTATTTCCCCCGAANGGACCAGNCATTTTNTTTTTTTTTGAGGGGGAGNA-GNCTTTTATTNCAAGGCACGGGCCCGGNTCCCG : b37_d36_sr : GATTAGGCC-AGCTA-GTATTTCCCC-GAAGGT-CCAGCCA-TTTTCTTCTTCTTGAGGGG-AGTA-GTCTTT-ATCA-CAGGCACGGGCC-GGCTCCCG : b37_liv_sr : GATTAGGCC-AGCTA-GTATTTCCCC-GAAGGTACCAGCCA-TTTTCTTCTTCTTGAGGGG-AGTA-GTCTTT-ATCA-CAGGCACCGGCC-GGCT-CCG : ATTAgGcC AGCTa Gtatt ccCC gaAgGt cCagCCa TTTt Tt TT TtgaggGg agta GtCTTT at A cAggC C gGcc Ggct c g
continued - Multiple Sequence Alignment of the reverse Surface region.
adhbv: Australian Duck Hepatitis B Virus (GenBank DHV6350, AJ006350); inoculum: starting inoculum; all others ducknumber_dayofsample.

11.6. ANGIS

The computational analysis of all sequence data was obtained using the Australian National Genomic Information Service (ANGIS) subscription service (http://www.angis.org.au) (Reisner, 1995). This service allows variously licensed computer software to be used by subscribers, of which the Department of Infectious Diseases and Immunology was a member. All analysis was performed via, 2D ANGIS, WebANGIS, or BioManager (previously BioNavigator) portals.

11.6.1. Multiple Sequence Analysis

Multiple sequence analysis is when sequence data from various samples is lined up to enable comparison with other samples. It was performed by obtaining the sequence data from samples and converting or uploading (depending on which portal was used, as BioManager was capable of automatically converting data when uploaded) via the portal, and setting up the program to analyse the data. The two programs that were used were PileUp (GCG), and ClustalW (Thompson et al., 1994), they both produce very similar output, and were both used to average out any differences in the alignment of the data.

11.6.1.1. PileUp

PileUp was used under default conditions (Table 81, p.A42).

Options	
Gap creation penalty	8
Gap extension penalty	2
End gap penalty same as internal gap penalty	No
Choose default strand for gap insertion	No preference
Number of sequence symbols per line	50
Number of sequence symbols per block	10

Table 81. Running conditions for the PileUp software.

11.6.1.2. ClustalW

ClustalW was used under default conditions (Table 82, p.A42).

	Pairwise alignment options	Multiple alignment options
DNA weight matrix	IUB	IUB
Gap opening penalty	10	10
Gap extension penalty	0.1	0.05
Gap separation distance	8	8
End gap separation penalty	-	Yes

Table 82. Alignment options for the ClustalW software.

11.7. SEQUENCE OF DHBV

The sequence of DHBV as determined from cloned DNA by Alison Jilbert (Triyatni et al., 2001). Obtained from GenBank and/or EMBL.

11.8. DNA VACCINE.

Statistical analysis from Chapter 8 is summarised in Table 83 (p.A43).

	DNAvacel group		Dvi Control group			Fisher Exact	
	Resp	NonR	Resp	NonR		P	<0.05
1-15	1	6	3	4	1-15	0.315	
7-1+10-27	3	4	7	0	7-1+1V-27	0.070	
71-90	0	7	0	7	71-90	ns	
101-120	0	7	1	6	101-120	1.000	
229-248	0	7	2	5	229-248	0.462	
267-286	1	6	2	5	267-286	1.000	
307-326	0	7	1	6	307-326	1.000	
SMIC PIIA	7	0	7	0	SNIC PIIA	ns	
suc ips	6	1	5	2	swle lips	1.000	
PBMC PIIA	7	0	7	0	PBMIC PIIA	ns	
PBMC LPS	7	0	7	0	PBMC LPS	ns	

Table 83. Summary of the Statistical analysis of the DNAvaccl experiment (significant P / N).
Shade indicates a possible trend ($\mathrm{P}<0.10$). ns: not significant.

11.9. LYMPHOBLASTOGENESIS ASSAY DATA

Contained in the following tables are the raw data used for statistical analysis. The duck numbers for the various groups have been summarised (Table 84 p.A43).

Group	Total	Duck numbers
Negative control	24	1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L $2 \mathrm{~A}, 2 \mathrm{~B}, 2 \mathrm{C}, 2 \mathrm{D}, 2 \mathrm{E}, 2 \mathrm{~F}, 2 \mathrm{G}, 2 \mathrm{H}, 2 \mathrm{I}$ P24P53 V2T, V2U
Protein vaccination	15	$\begin{aligned} & \text { G51, G53, G63, G99, P63, W45 } \\ & \text { V2J, V2K, V2L, V2M, V2N, V2O, V2P, V2Q, V2S } \\ & \hline \end{aligned}$
Positive control	12	P72W48 V2R G531, G58, P631 G631, G72, G89 W105, W106, W107, W111
DNAvacc1	7	B67, B68, G57, G97, G98, W39, W133
Dv1 controls	7	G92, G93, G100, W42, W118, W120, W124
Bursectomy	7	W101, W109, W121, W130, W131, W132, W145
Thymectomy	13	W122, W125, W126, W147, W151, W152, W153, W156, W157, W160, W167, W168, W170

Table 84. Summary of Duck Numbers for the various groups.

Raw data for Negative control duck 1A

Raw data for Negative control duck 1B

Raw data for Negative control duck 1C

Raw data for Negative control duck 1D

Raw data for Negative control duck 1E

Raw data for Negative control duck 1F

Raw data for Negative control duck 1G

Raw data for Negative control duck 1H

Raw data for Negative control duck 1I

Raw data for Negative control duck 1J

Raw data for Negative control duck 1 K

Raw data for Negative control duck 1L

Raw data for Negative control duck 2A

Raw data for Negative control duck 2B

Raw data for Negative control duck 2C

Raw data for Negative control duck 2D

Raw data for Negative control duck 2E

Raw data for Negative control duck 2F

Raw data for Negative control duck 2G

Raw data for Negative control duck 2H

Raw data for Negative control duck 2I

Raw data for Negative control duck P24P53

Raw data for Negative control duck V2T

Raw data for Negative control duck V2U

Raw data for Protein vaccinated duck G51

Raw data for Protein vaccinated duck G53

Raw data for Protein vaccinated duck G63

		$0 \cdot$	\bigcirc	0
${ }^{2}$		0.5	0.6	${ }_{0}^{132}$
	\ldots			
${ }^{4181}$		0	$\frac{0.2}{0}$	0,2,
		0.12		ion
,		$\frac{0}{0} 2$	$\stackrel{\%}{\circ}$	-
	!			
			$0 \cdot 3$	
		0.1	\% $\%$ \%	(int
${ }^{\text {Pa }}$	\%im	0.2	0	0.2
${ }^{182}$		\%it	\because	0
18.	(1)	$\%$	\because	
		.	\%	\ldots
${ }^{\text {Bion }}$		0.1	0	(in
		0	\% $\%$	(i.22
\%		\because	\% $\%$	0.23
	.			
${ }^{2181}$		0.2	\%: 2	O., 04
		${ }_{1 / 2}^{1.2}$	${ }_{\text {din }}^{1.12}$	${ }_{\text {coic }}^{0.0}$
		0	\% $\%$	0.24
		$\%$		
20.20		$\frac{0.1}{0}$	\% 0.2	\%ot
${ }_{3}{ }^{\text {棌 }}$: $\%$	\%:	0.0 .75
		\%	\% $\%$	\%
20:29		0.0	$\%$	${ }_{0}^{0.23}$
a	(1020			
-		${ }_{\text {2, }}^{1.1}$	${ }_{\text {che }}^{1.2}$	\%:\%
		\%:	\%:3	
		\% $\%$ \%	$\%$	
			$0 \cdot \frac{2}{2}$	${ }_{\text {a }}^{0.2 i}$
	(in	0.0	$\% \%$	
${ }^{\prime \prime}$				
			$\begin{aligned} & i, 3 \\ & 0.0 \\ & 0.1 \\ & i: 1 \end{aligned}$	

Raw data for Protein vaccinated duck G99

Raw data for Protein vaccinated duck P63

Raw data for Protein vaccinated duck W45

Raw data for Protein vaccinated duck V2J

Raw data for Protein vaccinated duck V2K

Raw data for Protein vaccinated duck V2L

Raw data for Protein vaccinated duck V2M

Raw data for Protein vaccinated duck V2N

Raw data for Protein vaccinated duck V2O

Raw data for Protein vaccinated duck V2P

Raw data for Protein vaccinated duck V2Q

Raw data for Protein vaccinated duck V2S

Raw data for Positive control duck P72W48

Raw data for Positive control duck V2R

Raw data for Positive control duck G531

Raw data for Positive control duck G58

Raw data for Positive control duck P631

Raw data for Positive control duck G631

Raw data for Positive control duck G72

Raw data for Positive control duck W106

Raw data for Positive control duck W107

Raw data for Positive control duck W111

Raw data for DNAvaccl duck B67

Raw data for DNAvacc1 duck B68

Raw data for DNAvacc1 duck G57

Raw data for DNAvaccl duck G97

Raw data for DNAvacc1 duck G98

Raw data for DNAvacc1 duck W39

Raw data for Dv1 control duck G92

Raw data for Dv1 control duck G100

Raw data for Dv1 control duck W118

Raw data for Dv1 control duck W120

Raw data for Dv1 control duck W124

Raw data for Bursectomy duck W101

Raw data for Bursectomy duck W109

Raw data for Bursectomy duck W121

Raw data for Bursectomy duck W130

Raw data for Bursectomy duck W131

Raw data for Bursectomy duck W145

Raw data for Thymectomy duck W122

Raw data for Thymectomy duck W125

W125	Yean	SD															
Fotal ${ }^{\text {a }}$	169	136															
Rotal 3M	1382	1624							CFM-3H		5.1.		P/M		Test		
	\%1	\%2	R3	R8	K5	R6	Mean	SD		75000		\$2.1		32.		0.05	
1-15 [1]	925	538	755	334	521	981	676	253	-706		0.4		0.5		0.30		1-15 [1]
${ }^{1-15}$ [19]	2081	752	179	3415	400	613	1240	1257	-142		0.9		0.9		0.84		1-15 [10]
1-15 (20)	6538	7301	1033	1577	2459	794	3284	2884	1,902		2.	.	2.4	.	0.03	-	1-15 [20]
7-14*-27 [1]	371	829	80	1177	296	372	521	404	-861		0.3		0.4		0.21		7-14w-27 [1]
7-14*-27 [10]	844	1808	17947	3326	7914	23214	9176	9312	7,794		7.4		6.6	-	0.00	-	7-14W-27 [10]
7-14*-27 [20]	69961	5014	13837	769	13881	66274	28289	31289	26,908	-	23.2	-	20.5	-	0.00	,	7-14w-27 [20]
7-14R-27 [1]	194	3640	301	857	8629	333	2326	3354	944		1.8		1.7		0.29		7-14R-27 [1]
$7^{7-14 R-27 ~[10]}$	2072	489	758	316	737	2495	1145	907	-237		0.8		0.8		0.73		7-14R-27 (10)
7-14R-27 [20]	817	881	977	4194	326		1439	1560	57		1.0		1.0		0.94		7-14R-27 [20]
22-41 [1]	141	560	235	1597	208	925	661	527	- 721		0.4		0.5		0.29		22-41 [1]
22-41 [10]	389	2962	1586	329	219	328	969	1102	-413		0.7		0.7		0.56		22-41 [10]
22-41 [20]	1508	3733	370	1378	574	2798	1727	1305	345		1.3		1.2		0.63		22-41 [20]
37-56 (1]	706	5992	3704	595	2108	249	2226	2248	${ }^{844}$		1.7		1.6		0.28		37-56 [1]
37-56 [10]	1804	529	1258	2162	690	390	1139	126	-243		0.8		0.8		0.72		37-56 [10]
37-56 [20]	1891	1146	1241	750	755	491	1029	492	-353		0.7		0.7		0.61		37-56 [20]
54-73 [1]	1007	568	640	1035	892	831	829	191	-553		0.5		0.6		0.42		54-73 [1]
	454	407	430	605	447	1965	718	615	-664		0.5		0.5		0.34		54-73 [10]
54-73 (20)	329	377	1087	364	699	879	623	316	-759		0.4		0.5		0.27		54-73 [20]
71-90 [1]	2224	415	900	${ }^{230}$	344	2897	1168	1123	-213		0.8		0.8		0.76		71-90 [1]
71-90 [10]	245	1149	676	3279	656	307	1052	1138	-330		0.7		0.8		0.64		71-90 [101
71-90 [20]	47	588	753	316	1548	3488	1123	1265	-258		0.8		0.8		0.72		71-90 [20]
${ }^{87-106}$ [1]	1784	${ }^{223}$	540	1960	484	2810	1300	1033	-82		0.9		0.9		0.91		87-106 [1]
87-106 [10]	2242	393	549	698	571	819	879	683	-503		0.6		0.6		0.47		87-106 (10)
${ }^{87-106}$ [20]	550	521	791	470	1182	592	684	268	-697		0.4		0.5		0.31		87-106 [20]
101-120 [1]	592	1252	1380	701	200	918	841	438	-541		0.6		0.6		0.43		101-120 [1]
101-120 [10]	291	364	1877	237	334	174	546	656	-836		0.3		0.4		0.23		101-120 [10]
${ }^{101-120}$ [20]	3060	2053	5569	1522	848	450	2250	1868	869		1.7		1.6		0.25		101-120 [20]
116-130 [1]	333	5733	2557	1412	755	167	1826	2102	448		1.4		1.3		0.56		116-130 [1]
116-130 [10]	313	183	270	3513	736	3004	1337	1510	-45		1.0		1.0		0.95		116-130 (10)
116-130 [20]	4818	836	470	5261	986	1003	2229	2190	847		1.7		1.6		0.28		116-130 (20)
126-140 [1]	394	${ }^{8}$	705	769	202	260	390	297	-992		0.2		0.3		0.15		126-140 [1]
126-140 [10]	865	1839	340	312	634	292	714	596	-668		0.4		0.5		0.33		126-140 [10]
126-140 [20]	695	717	396	696	820	2201	931	640	-451		0.6		0.7		0.51		126-140 (20)
136-150 [1]	2760	1090	215	204	761	701	953	948	-427		0.6		0.7		0.54		136-150 [1]
136-150 [10]	679	456	2783	1211	2044	7860	2506	2763	1,124		1.9		1.8		0.18		136-150 [10]
136-150 [20]	5834	2268	1099	557	629	16763	4525	6312	3,143		3.6	.	3.3	.	0.02	-	136-150 [20]
146-160 [1]	891	943	801	543	4322	2645	1691	${ }^{1493}$	309		1.3		1.2		0.67		146-160 [1]
146-160 (10)	4668	487	1814	${ }^{368}$	286	2281	1734	2632	352		1.3		1.3		0.63		146-160 (10)
146-160 [20)	2120	516	460	785	1038	397	886	650	-496		0.6		0.6		0.47		146-160 [20]
${ }^{156-170}$ [1]	788	1110	1413	1254	394	4273	1532	${ }^{1392}$	150		1.1		1.1		0.83		156-170 [1]
156-170 [10]	340	331	583	1088	718	278	556	311	-825		0.3		0.4		0.23		156-170 (10)
156-170 [20]	2727	597	774	2557	2788	206	1608	1202	226		1.2		1.2		0.75		156-170 [20]
166-180 (1)	139	1100	866	536	1375	1465	914	509	-468		0.6		0.7		0.49		166-180 [1]
166-180 [10]	128	1123	1018	1846	1836	2378	1388	798	${ }^{6}$		1.0		1.0		0.99		166-180 [10]
166-180 (20)	14613	1209	792	1051	3919	1122	3784	5430	2,403		3.0	-	2.7	.	0.04	.	166-180 [20]
176-195 [1]	920	802	977	1249	438	1628	1002	405	-379		0.7		0.7		0.58		176-195 [1]
176-195 (10]	1132	1632	632	747	745	2569	1243	747	-139		0.9		0.9		0.84		176-195 [10]
176-195 [20]	1616	456	1706	1162	423	1719	1280	609	-201		0.8		0.9		0.77		176-195 [20]
191-210 [1]	1983	172	326	913	626	1274	882	670	-499		0.6		0.6		0.47		191-210 [1]
191-210 [10]	233	3272	1710	1491	1864	148	1453	1161	11		1.1		1.1		0.92		191-210 [10]
191-210 [20]	194	13058	1027	1003	194	6057	3589	5139	2,207		2.8	.	2.6	.	0.05		191-210 [20]
210-229 [1]	5289	807	632	661	${ }^{636}$	337	${ }^{1427}$	1900	45		1.0		1.0		0.95		210-229 [1]
210-229 [10]	5686	3835	8830	2600	1286	891	3855	3002	2,473		3.0	-	2.8	-	0.01	-	210-229 [10]
210-229 [20]	15881	6311	4135	6881	4502	3726	6906	4571	5,524	-	5.6	.	5.0	-	0.00	*	210-229 [20]
229-248 [1]	${ }^{826}$	467	283	1291	696	1051	769	371	-613		0.5		0.6		0.37		229-248 [1]
229-248 [10]	11440	1132	1064	1011	631	${ }^{888}$	2694	4288	1,313		2.1		1.9		0.20		229-248 [10]
229-248 [20]	410	622	1330	766	1097	2536	1127	765	-255		0.8		0.8		0.71		229-248 (20]
248-267 [1]	12347	258	533	349	874	28	2398	4882	1,016		1.8		1.7		0.35		248-267 [1]
248-267 [10]	128	21	22	67	122	129	${ }^{82}$	52.	-1,300		-0.1		0.1		0.06		248-267 [10]
248-267 [20]	1744	771	2125	14927	668	7695	4655	5668	3,273		3.7	-	3.4	-	0.01	.	248-267 (20)
267-286 (1]	2615	395	1772	345	10662	140	2653	4041	1,273		2.0		1.9		0.20		267-266 [1]
267-286 [10]	1140	538	298	1141	671	8546	2056	3197	674		1.6		1.5		0.44		267-286 [10]
267-286 [20]	1483	1807	237	398	254	3317	1249	1215	-132		0.9		0.9		0.85		267-286 [20]
287-306 [1]	458	543	2113	1096	326	3240	1329	1126	-52		1.0		1.0		0.94		287-306 [1]
287-306 [10]	317	780	713	222	1405	3283	1120	1139	-262		0.8		0.8		0.71		287-306 (10)
287-306 [20]	1517	299	2518	4344	1575	615	1811	1468	430		1.4		1.3		0.55		287-306 (20)
307-326 [1]	577	377	1917	766	875	446	826	566	-553		0.5		0.6		0.42		307-326 [1]
307-326 [10]	1419	1981	2045	2046	3617	825	1989	931	607		1.5		1.4		0.38		307-326 (10)
307-326 [20]	680	606	663	2514	490	2969	1320	1112	-61		0.9		1.0		0.93		307-326 [20]
3Ag 10	7374	548	303	534	573	6014	2691	3417	1,309		2.1		1.9		0.15		skg 10
sag 100	133	23283	3644	507	3431	130	5188	9011	3,806		4.1	*	3.8	*	0.03	*	sagg 100
\%	218	142	81	52	98	121	169	136	1,213		0.0		0.1		0.08		*
$3{ }^{31}$	2232	2475	2041	431	1931	2769	1983	${ }^{321}$	601		1.5		1.4		0.39		$3{ }^{3}$
3 H	506	378	480	391	442	2521	786	${ }^{2} 51$	-595		0.5		0.6		0.39		34
3 II	990	2822	74	144	1370	228	938	1060	-444		0.6		0.7		0.53		3п
3H	316	201	492	943	249	414	436	270	-946		0.2		0.3		0.17		3H
311	549	5232	2788	7151	664	208	2765	2870	1,384		2.1	-	2.0		0.11		31
	S5:																
:	217	127	214	91	54	21	121	82	-741		0.0		0.1		0.00	-	*
3H	765	693	842	784	1030	1053	861	148	0		1.0		1.0		1.00		3H
mma - 1	83310	51061	45122	46653	73145	59838	59853	15463	58,994	-	80.7	*	69.5	-	0.00	*	pia - 1
PHA - 5	1016461	104427	92514	69663	76927	81793	87828	13955	86,967	-	116.4	.	102.0	-	0.00	*	raa - 5
PMA - 10	95817	959321	105551	81272	85137	84094	91301	9332	90,439	-	123.1	,	106.0	-	0.00	-	PHA - 10
LPS - 1	1093	1215	1022	958	1289	1777	1292	305	431		1.6		1.5		0.01	-	LPS - 1
LPS - 5	2577	1168	1646	1171	1500	1221	1547	541	686		1.9		1.8		0.01	*	LPS - 5
LPS - 10	2299	2447	1712	2088	2469	1076	2015	539	1,154		2.6	-	2.3	-	0.00	-	LPS - 10
LPS - 20	2659	4886	2597	4215	4383	2844	3597	1011	2,736		4.7	-	4.2	-	0.00	-	LPS - 20
LPS - 40	210	4624	5090	5979	6102	491	3749	2691	2,888		4.9	*	4.4	-	0.03	-	LPS - 50
	PSMC																
\%	68	211	189	219	178	996	310	340	133		0.0		1.7		0.37		
3R	227	128	203	190	133	185	178	39	0		2.0		1.0		1.00		31
max - 1	697	313	1031	283	487	342	526	291	348		-1.6		3.0	-	0.02	-	PRA - 1
rim - 5	41430	22631	52804	4813	2724	36959	26894	20366	26,716	-	-200.6		151.4	-	0.01	-	pha - 5
pha - 10	49067	43584	39325	36499	46544	61319	46056	8775	45,879	-	-345.3		259.2	*	0.00	-	PHA - 10
LPS - 1	2305	2407	1706	1926	2152	2302	2133	268	1,956		-13.8		12.0	-	0.00	*	LPS - 1
LPS - 5	1120	1025	127	280	532	3319	1067	1272	890		-5.7		6.0	-	0.09		LPS - 5
LPS - 10	468	421	207	202	527	382	368	135	190		-0.4		2.1		0.01	-	LPS - 10
LPs - 20	787	561	499	564	725	602	623	110	445		-2.4		3.5	-	0.00	-	LPS - 20
LPS - 40	356	299	259	354	205	263	289	59	112		0.2		1.6		0.00	-	LPS - 40

Raw data for Thymectomy duck W126

Raw data for Thymectomy duck W147

Raw data for Thymectomy duck W151

Raw data for Thymectomy duck W152

Raw data for Thymectomy duck W153

Raw data for Thymectomy duck W156

Raw data for Thymectomy duck W157

Raw data for Thymectomy duck W167

Raw data for Thymectomy duck W168

Raw data for Thymectomy duck W170

11.10. Manipulation of Immune Mechanisms

		Liter		Spleen			Thymus
Gruep	Duck	Inflamation	Nutes	Fullicks	Periarterialar Lsmphocsics	Presemt	Description
$\begin{aligned} & \overline{\mathbf{g}} \\ & \stackrel{y}{5} \\ & 0 \\ & \frac{0}{2} \\ & \frac{1}{6} \\ & \text { z } \end{aligned}$	1 A	Slight		Normal			
	18	Slight		Normal			
	1 C	Slight	One Intralobular	Normal			
	ID	Slight	Several lymphoid aggregates	Normal			
	1E	Slight		Normal			
	$1 F$	Slight	Several lymphoid aggregates	Normal			
	1G	Slight	Moderate lymphoid aggregates	Normal			
	IH	Slight	Mostly lynphoid aggregates	Normal			
	11	Slight		Normal			
	IJ	Slight		Normal			
	1 K	Slight		Normal			
	12.	No Liver		Normal			
	2A	Slight	Moderate Fat infiltration				
	2 B	Slight	Moderate Fat infiltration				
	2 C	Slight	One lymphoid aggregate				
	2D	Normal					
	2 E	Slight					
	2 F	Normal					
	2 G	Slight		Reduced			
	2 H	Slight		Normal			
	21	Slight		Normal			
	P24P53	Mild	Focal moderate and a few lymphoid aggregates	Reduced			
	V2T	Slight		Reduced			
	V2U	Slight		Normal			
	GSI	Slight	Some Intralobular and I Lymphoid Aggregate	Reduced			
	G53	Slight	Some Intralobular	Reduced			
	G63	Slight-Moderate	A few lymphoid aggregates	Reduced	Increased		
	G99	Mild	Focal moderate	Reduced	Increased		
	P63G81	Slight		Reduced			
	W45	Slight	One lymphoid agreegate	Reduced	Increased		
	V2J	Slight		Reduced			
	V2K	Slight		Reduced	Increased		
	V2L	Normal		Reduced			
	V2M	Slight		Reduced			
	V2N	Slight		Normal			
	V20	Normal	Moderate Fat infiltration	Normal			
	V2P	Slight	Moderate Fat infiltration	Normal	Increased		
	V2Q	Normal		Normal			
	V2S	Mild		Reduced			
	G511	Normal		Reduced	Increased		
	G531	Slight		mm	Increased		
	G58	Slight		Normal	Normal		
	G72	Mild		Normal	Normal		
	G86	Normal		Reduced	Increased		
	G89	Mild		Normal	Normal		
	G991			Reduced	Normal		
	P531	Slight	Some neutrophils	Reduced	Increased		
	P57	Slight		Reduced	Increased		
	P631	Slight		Normal	Normal		
	W34	Normal					
	W451	Mild		Reduced	Increased		
	P72W48	Mild	Focal moderate	Normal	lncreased		
	W103	Slight		No Follicles			
	W105	Slight		Normal		No	Adipose tissue
	W106	Slight		Normal		No	Vascular Adipose Tissue and Nerves
	W107		No Liver	Normal		No	Adipose tissue and nerves
	W111	Mild		Normal		No	Adipose tissue and nerves
	W139	Slight		Reduced			
	W101	Mild		Normal			
	W104	Mild		Reduced			
	W109	Mild		Reduced			
	W110	Normal		Reduced			
	W121	Mild	Fat infiltration	Normal			
	W132	Mild	Some cosinophils	Normal			
	W131	Slight	Fat infiliration	Normal			
	W140	Slight	Fat infiltration	Reduced			
	W145	Slight	Fat infiltration	Reduced	Normal		
	W122	Slight		Normal		No	Adipose tissue
	W125	Slight		Normal		Yes	Adipose tissuc, with one small focus of lymphoid tissue.
	W126	Mild		Normal		No	Vascular Adipose Tissue and Nerves
	W147	Slight		No Splean		No	Adipose tissue and nerves
	W151	Slight	No Fat	Reduced	Increased	No	Fibroadipose tissue former large vessels
	W152	Mild	No Fat	Normal		No	Adipose tissue and nerves
	W153	Slight	No Fat	Reduced	Increased	No	Adipose tissue large vessels and nerves
	W156	Slight	No Fat	Normal	Increased	No	Fibroadipose tissue
	W157	Slight	No Fat	Normal	Increased	No	Adipose tissue
	W160	Slight	No Fat	Normal		No	Adipose tissue
	W167	Slight	No Fat	Reduced	Increased	No	Fibroadipose tissue 9 In And nerves
	W168	Slight	No Fat	Normal	Increased	No	Adipose tissue and nerve
	W170	Slight	No Fat	Reduced		No	Adipose tissue

Table 85. Histopathology results for individual ducks.

Table 86. Cell counts for individual ducks.

12. REFERENCES

Abb, J., Zachoval, R., Eisenburg, J., Pape, G.R., Zachoval, V., and Deinhardt, F. (1985). Production of interferon alpha and interferon gamma by peripheral blood leukocytes from patients with chronic hepatitis B virus infection. Journal of Medical Virology. 16(2):171-6.
Ahmed, R.K., Nilsson, C., Biberfeld, G., and Thorstensson, R. (2001). Role of CD8+ cell-produced anti-viral factors in protective immunity in HIV-2-exposed but seronegative macaques resistant to intrarectal SIVsm challenge. Scandinavian Journal of Immunology. 53(3):24553.

Alberti, A., Diana, S., Sculard, G.H., Eddleston, A.L., and Williams, R. (1978). Detection of a new antibody system reacting with Dane particles in hepatitis B virus infection. BMJ. 2(6144):1056-8.
Alberti, A., and Pontisso, P. (1987). Antibody to pre-S antigens in hepatitis B virus infection. Hepatology. 7(1):207-8.
Albini, B., and Wick, G. (1974). Delineation of B and T lymphoid cells in the chicken. Journal of Immunology. 112(2):444-50.
Alexander, G.J. (1990). Immunology of hepatitis B virus infection. British Medical Bulletin. 46(2):354-67.
Almeida, J.D., and Waterson, A.P. (1975). Hepatitis B antigen - an incomplete history. American Journal of the Medical Sciences. 270(1):105-14.

Altmann, R. (1889). Ueber Nucleinsäuren. Archiv für Anatomie und Physiologie. Physiologische Abteilung.524-36.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 25(17):3389-402.
An, L.L., and Whitton, J.L. (1997). A multivalent minigene vaccine, containing B-cell, cytotoxic Tlymphocyte, and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen. Journal of Virology. 71(3):2292302.

Anastassakos, C., Alexander, G.J., Wolstencroft, R.A., Avery, J.A., Portmann, B.C., Panayi, G.S., Dumonde, D.C., Eddleston, A.L., and Williams, R. (1988). Interleukin-1 and interleukin-2 activity in chronic hepatitis B virus infection. Gastroenterology. 94(4):999-1005.
Anastassakos, C., Alexander, G.J., Wolstencroft, R.A., Dumonde, D.C., Eddleston, A.L., and Williams, R. (1987). Failure of exogenous interleukin 1 and interleukin 2 to correct decreased lymphocyte transformation in chronic hepatitis B virus carriers. Clinical \& Experimental Immunology. 68(1):15-22.

Anderson, D.A., Grgacic, E.V., Luscombe, C.A., Gu, X., and Dixon, R. (1997). Quantification of infectious duck hepatitis B virus by radioimmunofocus assay. Journal of Medical Virology. 52(4):354-61.
Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J., Staden, R., and Young, I.G. (1981). Sequence and organization of the human mitochondrial genome. Nature. 290(5806):457-65.
Andersson, J., Coutinho, A., and Melchers, F. (1978). The switch from IgM to IgG secretion in single mitogen-stimulated B-cell clones. Journal of Experimental Medicine. 147(6):174454.

Ando, K., Guidotti, L.G., Wirth, S., Ishikawa, T., Missale, G., Moriyama, T., Schreiber, R.D., Schlicht, H.J., Huang, S.N., and Chisari, F.V. (1994). Class I-restricted cytotoxic T
lymphocytes are directly cytopathic for their target cells in vivo. Journal of Immunology. 152(7):3245-53.
Ando, K., Moriyama, T., Guidotti, L.G., Wirth, S., Schreiber, R.D., Schlicht, H.J., Huang, S.N., and Chisari, F.V. (1993). Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis. Journal of Experimental Medicine. 178(5):1541-54.

ANGIS The Australian National Genomic Information Services. (http://www.angis.org.au).
Ansorge, W., Sproat, B., Stegemann, J., Schwager, C., and Zenke, M. (1987). Automated DNA sequencing: ultrasensitive detection of fluorescent bands during electrophoresis. Nucleic Acids Research. 15(11):4593-602.

Appel, J.R., Pinilla, C., Niman, H., and Houghten, R. (1990). Elucidation of discontinuous linear determinants in peptides. Journal of Immunology. 144(3):976-83.

Araki, K., Miyazaki, J., Hino, O., Tomita, N., Chisaka, O., Matsubara, K., and Yamamura, K. (1989). Expression and replication of hepatitis B virus genome in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 86(1):207-11.

Arber, W., and Linn, S. (1969). DNA modification and restriction. Annual Review of Biochemistry. 38:467-500.

Aspinall, R.L., Meyer, R.K., Graetzer, M.A., and Wolfe, H.R. (1963). The effect of thymectomy and bursectomy on the survival of homografts in chickens. Journal of Immunology. 90:872-6.
Avery, O.T., MacLeod, C.M., and McCarty, M. (1944). Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III.

Baba, T., Ando, T., and Nudina, M. (1978). Effect of bursectomy and thymectomy on Pasteurella multocida infections in chickens. J Med Microbiology. 11:281-8.
Back, O., Back, R., Hemmingsson, E.J., Liden, S., and Linna, T.J. (1973). Migration of bone marrow cells to the bursa of Fabricius and the spleen in the chicken. Scandinavian Journal of Immunology. 2(4):357-65.

Bagarazzi, M.L., Boyer, J.D., Ugen, K.E., Javadian, M.A., Chattergoon, M., Shah, A., Bennett, M., Ciccarelli, R., Carrano, R., Coney, L., and Weiner, D.B. (1998). Safety and immunogenicity of HIV-1 DNA constructs in chimpanzees. Vaccine. 16(19):1836-41.
Bahar, A., Iscan, S., Karademir, F., and Gocmen, I. (2003). Efficacy of interferon alpha-2b and lamivudine therapy for chronic hepatitis B in children. Chinese Medical Journal. 116(4):593-6.

Bain, V.G., Kneteman, N.M., Ma, M.M., Gutfreund, K., Shapiro, J.A., Fischer, K., Tipples, G., Lee, H., Jewell, L.D., and Tyrrell, D.L. (1996). Efficacy of lamivudine in chronic hepatitis B patients with active viral replication and decompensated cirrhosis undergoing liver transplantation. Transplantation. 62(10):1456-62.

Bancroft, W.H., Mundon, F.K., and Russell, P.K. (1972). Detection of additional antigenic determinants of hepatitis B antigen. Journal of Immunology. 109(4):842-8.

Barker, L.F., Maynard, J.E., Purcell, R.H., Hoofnagle, J.H., Berquist, K.R., London, W.T., Gerety, R.J., and Krushak, D.H. (1975). Hepatitis B virus infection in chimpanzees: titration of subtypes. Journal of Infectious Diseases. 132(4):451-8.
Barker, L.F., and Murray, R. (1972). Relationship of virus dose to incubation time of clinical hepatitis and time of appearance of hepatitis--associated antigen. American Journal of the Medical Sciences. 263(1):27-33.

Barnaba, V., Franco, A., Paroli, M., Benvenuto, R., De Petrillo, G., Burgio, V.L., Santilio, I., Balsano, C., Bonavita, M.S., and Cappelli, G. (1994). Selective expansion of cytotoxic T lymphocytes with a CD4+CD56+ surface phenotype and a T helper type 1 profile of cytokine secretion in the liver of patients chronically infected with Hepatitis B virus. Journal of Immunology. 152(6):3074-87.

Barnaba, V., Levrero, M., Franco, A., Zaccari, C., Musca, A., and Balsano, F. (1985). Antigen specific suppressor T cells from chronic hepatitis B virus (HBV) carriers inhibit the responsiveness to HBsAg of allogeneic high-responder lymphocytes. Journal of Clinical \& Laboratory Immunology. 16(3):137-42.

Bartenschlager, R., and Schaller, H. (1988). The amino-terminal domain of the hepadnaviral P-gene encodes the terminal protein (genome-linked protein) believed to prime reverse transcription. EMBO Journal. 7(13):4185-92.
Bartenschlager, R., and Schaller, H. (1992). Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO Journal. 11(9):341320.

Bartenschlager, R., and Schaller, H. (1993). Mechanisms governing hepadnaviral nucleocapsid assembly. Journal of Hepatology. 17 Suppl 3:S15-9.
Bartholomeusz, A., Groenen, L.C., and Locarnini, S.A. (1997). Clinical experience with famciclovir against hepatitis B virus. Intervirology. 40(5-6):337-42.

Baumert, T.F., Marrone, A., Vergalla, J., and Liang, T.J. (1998). Naturally occurring mutations define a novel function of the hepatitis B virus core promoter in core protein expression. Journal of Virology. 72(8):6785-95.
Bayer, M.E., Blumberg, B.S., and Werner, B. (1968). Particles associated with Australia antigen in the sera of patients with leukaemia, Down's Syndrome and hepatitis. Nature. 218(146):1057-9.

Beasley, R.P., and Hwang, L.Y. (1983). Postnatal infectivity of hepatitis B surface antigen-carrier mothers. Journal of Infectious Diseases. 147(2):185-90.

Beasley, R.P., Hwang, L.Y., Lin, C.C., Leu, M.L., Stevens, C.E., Szmuness, W., and Chen, K.P. (1982). Incidence of hepatitis B virus infections in preschool children in Taiwan. Journal of Infectious Diseases. 146(2):198-204.
Beasley, R.P., Hwang, L.Y., Szmuness, W., Stevens, C.E., Lin, C.C., Hsieh, F.J., Wang, K.Y., and Sun, T.S. (1983). HBIG prophylaxis for perinatal HBV infections--final report of the Taiwan trial. Developments in Biological Standardization. 54:363-75.
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Wheeler, D.L. (2004). GenBank: update. Nucleic Acids Research. 32 Database issue:D23-6.
Bergamini, F., Zanetti, A.R., Ferroni, P., Tanzi, E., Minetti, L., Perego, A., Civati, G., Mecca, G., Licini, R., and Sereni, F. (1983). Immune response to hepatitis B vaccine in staff and patients in renal dialysis units. Journal of Infection. 7 Suppl 1:35-40.
Berting, A., Hahnen, J., Kroger, M., and Gerlich, W.H. (1995). Computer-aided studies on the spatial structure of the small hepatitis B surface protein. Intervirology. 38(1-2):8-15.
Bertoletti, A., Costanzo, A., Chisari, F.V., Levrero, M., Artini, M., Sette, A., Penna, A., Giuberti, T., Fiaccadori, F., and Ferrari, C. (1994). Cytotoxic T lymphocyte response to a wild type hepatitis B virus epitope in patients chronically infected by variant viruses carrying substitutions within the epitope. Journal of Experimental Medicine. 180(3):933-43.

Bertoletti, A., Ferrari, C., Fiaccadori, F., Penna, A., Margolskee, R., Schlicht, H.J., Fowler, P., Guilhot, S., and Chisari, F.V. (1991). HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen. Proceedings of the National Academy of Sciences of the United States of America. 88(23):10445-9.
Bertram, E.M., Jilbert, A.R., and Kotlarski, I. (1997). An homologous in vitro assay to detect lymphokines released by PHA-activated duck peripheral blood lymphocytes and spleen cells. Veterinary Immunology \& Immunopathology. 56(1-2):163-74.

Bertram, E.M., Wilkinson, R.G., Lee, B.A., Jilbert, A.R., and Kotlarski, I. (1996). Identification of duck T lymphocytes using an anti-human T cell (CD3) antiserum. Veterinary Immunology \& Immunopathology. 51(3-4):353-63.
Berzofsky, J.A., Cornette, J., Margalit, H., Berkower, I., Cease, K., and DeLisi, C. (1986). Molecular features of class II MHC-restricted T-cell recognition of protein and peptide antigens: the
importance of amphipathic structures. Current Topics in Microbiology \& Immunology. 130:13-24.

Bhogal, B.S., Chi, D.S., Galton, J.E., Bell, M.K., and Thorbecke, G.J. (1984). Defective bursa regeneration after irradiation of young thymectomized chickens. Cellular Immunology. 87(1):159-66.
Bizzaro, N., Villalta, D., Tonutti, E., Tampoia, M., Bassetti, D., and Tozzoli, R. (2003). Association of celiac disease with connective tissue diseases and autoimmune diseases of the digestive tract. Autoimmunity Reviews. 2(6):358-63.

Blaszczyk-Thurin, M., Ertl, I.O., and Ertl, H.C. (2002). An experimental vaccine expressing wildtype p53 induces protective immunity against glioblastoma cells with high levels of endogenous p53. Scandinavian Journal of Immunology. 56(4):361-75.
Blum, H.E. (1993). Hepatitis B virus: significance of naturally occurring mutants. Intervirology. 35(1-4):40-50.
Blum, H.E., Galun, E., Liang, T.J., von Weizsacker, F., and Wands, J.R. (1991). Naturally occurring missense mutation in the polymerase gene terminating hepatitis B virus replication. Journal of Virology. 65(4):1836-42.
Blum, H.E., Haase, A.T., Harris, J.D., Walker, D., and Vyas, G.N. (1984). Asymmetric replication of hepatitis B virus DNA in human liver: demonstration of cytoplasmic minus-strand DNA by blot analyses and in situ hybridization. Virology. 139(1):87-96.
Blumberg, B., Alter, H., and Visnich, S. (1965). A "new" antigen in leukemia sera. J. Am. Med. Assoc. 191:101-6.

Blumberg, B.S., Gerstley, B.J., Hungerford, D.A., London, W.T., and Sutnick, A.I. (1967). A serum antigen (Australia antigen) in Down's syndrome, leukemia, and hepatitis. Annals of Internal Medicine. 66(5):924-31.
Bocher, W.O., Marcus, H., Shakarchy, R., Dekel, B., Shouval, D., Galun, E., and Reisner, Y. (1999). Antigen-specific B and T cells in human/mouse radiation chimera following immunization in vivo. Immunology. 96(4):634-41.
Boehm, U., Klamp, T., Groot, M., and Howard, J.C. (1997). Cellular responses to interferon-gamma. Annual Review of Immunology. 15:749-95.
Borel, C., Schorr, O., Durand, I., Zoulim, F., Kay, A., Trepo, C., and Hantz, O. (2001). Initial amplification of duck hepatitis B virus covalently closed circular DNA after in vitro infection of embryonic duck hepatocytes is increased by cell cycle progression. Hepatology. 34(1):168-79.
Bosch, V., Bartenschlager, R., Radziwill, G., and Schaller, H. (1988). The duck hepatitis B virus Pgene codes for protein strongly associated with the 5^{\prime}-end of the viral DNA minus strand. Virology. 166(2):475-85.
Boyd, R.L., and Ward, H.A. (1978). Lymphoid antigenic determinants of the chicken. Cellular representation and tissue localization. Immunology. 34(1):9-17.
Boyer, J.D., Chattergoon, M.A., Ugen, K.E., Shah, A., Bennett, M., Cohen, A., Nyland, S., Lacy, K.E., Bagarazzi, M.L., Higgins, T.J., Baine, Y., Ciccarelli, R.B., Ginsberg, R.S., MacGregor, R.R., and Weiner, D.B. (1999). Enhancement of cellular immune response in HIV-1 seropositive individuals: A DNA-based trial. Clinical Immunology. 90(1):100-7.
Boyle, J.S., Silva, A., Brady, J.L., and Lew, A.M. (1997). DNA immunization: induction of higher avidity antibody and effect of route on T cell cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America. 94(26):14626-31.
Bozkaya, H., Ayola, B., and Lok, A.S. (1996). High rate of mutations in the hepatitis B core gene during the immune clearance phase of chronic hepatitis B virus infection. Hepatology. 24(1):32-7.
Breiner, K.M., Urban, S., Glass, B., and Schaller, H. (2001). Envelope protein-mediated downregulation of hepatitis B virus receptor in infected hepatocytes. Journal of Virology. 75(1):143-50.

Brumbaugh, J.A., Middendorf, L.R., Grone, D.L., and Ruth, J.L. (1988). Continuous, on-line DNA sequencing using oligodeoxynucleotide primers with multiple fluorophores. Proceedings of the National Academy of Sciences of the United States of America. 85(15):5610-4.

Bubenik, J., Perlmann, P., and Hasek, M. (1970). Induction of cytotoxicity of lymphocytes from tolerant donors by antibodies to target cell alloantigens. Transplantation. 10(4):290-6.
Bukhtiari, N., Hussain, T., Iqbal, M., Malik, A.M., Qureshi, A.H., and Hussain, A. (2003). Hepatitis B and C single and co-infection in chronic liver disease and their effect on the disease pattern. JPMA - Journal of the Pakistan Medical Association. 53(4):136-40.
Burda, M.R., Gunther, S., Dandri, M., Will, H., and Petersen, J. (2001). Structural and functional heterogeneity of naturally occurring hepatitis B virus variants. Antiviral Research. 52(2):125-38.
Burgess, E.C., and Yuill, T.M. (1982). Superinfection in ducks persistently infected with duck plague virus. Avian Diseases. 26(1):40-6.

Burks, C., Cinkosky, M.J., Fischer, W.M., Gilna, P., Hayden, J.E., Keen, G.M., Kelly, M., Kristofferson, D., and Lawrence, J. (1992). GenBank. Nucleic Acids Research. 20 Suppl:2065-9.
Burks, C., Fickett, J.W., Goad, W.B., Kanehisa, M., Lewitter, F.I., Rindone, W.P., Swindell, C.D., Tung, C.S., and Bilofsky, H.S. (1985). The GenBank nucleic acid sequence database. Computer Applications in the Biosciences. 1(4):225-33.
Burrell, C.J., Gowans, E.J., Rowland, R., Hall, P., Jilbert, A.R., and Marmion, B.P. (1984). Correlation between liver histology and markers of hepatitis B virus replication in infected patients: a study by in situ hybridization. Hepatology. 4(1):20-4.
Buscher, M., Reiser, W., Will, H., and Schaller, H. (1985). Transcripts and the putative RNA pregenome of duck hepatitis B virus: implications for reverse transcription. Cell. 40(3):71724.

Cacciola, I., Cerenzia, G., Pollicino, T., Squadrito, G., Castellaneta, S., Zanetti, A.R., Mieli-Vergani, G., and Raimondo, G. (2002). Genomic heterogeneity of hepatitis B virus (HBV) and outcome of perinatal HBV infection. Journal of Hepatology. 36(3):426-32.
Carman, P.S., Ernst, P.B., Rosenthal, K.L., Clark, D.A., Befus, A.D., and Bienenstock, J. (1986). Intraepithelial leukocytes contain a unique subpopulation of NK-like cytotoxic cells active in the defense of gut epithelium to enteric murine coronavirus. Journal of Immunology. 136(5):1548-53.
Carman, W.F. (1997). The clinical significance of surface antigen variants of hepatitis B virus. Journal of Viral Hepatitis. 4 Suppl 1:11-20.
Carman, W.F., Jacyna, M.R., Hadziyannis, S., Karayiannis, P., McGarvey, M.J., Makris, A., and Thomas, H.C. (1989). Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B infection. Lancet. 2(8663):588-91.
Carman, W.F., Trautwein, C., van Deursen, F.J., Colman, K., Dornan, E., McIntyre, G., Waters, J., Kliem, V., Muller, R., Thomas, H.C., and Manns, M.P. (1996). Hepatitis B virus envelope variation after transplantation with and without hepatitis B immune globulin prophylaxis. Hepatology. 24(3):489-93.

Carnaghan, R.B. (1965). Hepatic tumours in ducks fed a low level of toxic groundnut meal. Nature. 208(7):308.
Carothers, A.M., Urlaub, G., Mucha, J., Grunberger, D., and Chasin, L.A. (1989). Point mutation analysis in a mammalian gene: rapid preparation of total RNA, PCR amplification of cDNA, and Taq sequencing by a novel method. Biotechniques. 7(5):494-6.
Casas, I., Powell, L., Klapper, P.E., and Cleator, G.M. (1995). New method for the extraction of viral RNA and DNA from cerebrospinal fluid for use in the polymerase chain reaction assay. Journal of Virological Methods. 53(1):25-36.

Celis, E., Ou, D., and Otvos, L., Jr. (1988). Recognition of hepatitis B surface antigen by human T lymphocytes. Proliferative and cytotoxic responses to a major antigenic determinant defined by synthetic peptides. Journal of Immunology. 140(6):1808-15.

Chakravarty, R., Neogi, M., Roychowdhury, S., and Panda, C.K. (2002). Presence of hepatitis B surface antigen mutant G145R DNA in the peripheral blood leukocytes of the family members of an asymptomatic carrier and evidence of its horizontal transmission. Virus Research. 90(1-2):133-41.

Chang, C., Enders, G., Sprengel, R., Peters, N., Varmus, H.E., and Ganem, D. (1987). Expression of the precore region of an avian hepatitis B virus is not required for viral replication. Journal of Virology. 61(10):3322-5.

Chang, L.J., Hirsch, R.C., Ganem, D., and Varmus, H.E. (1990). Effects of insertional and point mutations on the functions of the duck hepatitis B virus polymerase. Journal of Virology. 64(11):5553-8.

Chang, S.F., Netter, H.J., Bruns, M., Schneider, R., Frolich, K., and Will, H. (1999). A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA. Virology. 262(1):39-54.
Chang, S.F., Netter, H.J., Hildt, E., Schuster, R., Schaefer, S., Hsu, Y.C., Rang, A., and Will, H. (2001). Duck hepatitis B virus expresses a regulatory HBx-like protein from a hidden open reading frame. Journal of Virology. 75(1):161-70.
Char, D., Sanchez, P., Chen, C.L., Bucy, R.P., and Cooper, M.D. (1990). A third sublineage of avian T cells can be identified with a T cell receptor-3-specific antibody. Journal of Immunology. 145(11):3547-55.
Charnay, P., Gervais, M., Louise, A., Galibert, F., and Tiollais, P. (1980). Biosynthesis of hepatitis B virus surface antigen in Escherichia coli. Nature. 286(5776):893-5.
Chassot, S., Lambert, V., Kay, A., Godinot, C., Roux, B., Trepo, C., and Cova, L. (1993). Fine mapping of neutralization epitopes on duck hepatitis B virus (DHBV) pre-S protein using monoclonal antibodies and overlapping peptides. Virology. 192(1):217-23.

Chassot, S., Lambert, V., Kay, A., Godinot, C., Trepo, C., and Cova, L. (1994). Identification of major antigenic domains of duck hepatitis B virus pre-S protein by peptide scanning. Virology. 200(1):72-8.

Chazouilleres, O., Mamish, D., Kim, M., Carey, K., Ferrell, L., Roberts, J.P., Ascher, N.L., and Wright, T.L. (1994). "Occult" hepatitis B virus as source of infection in liver transplant recipients. Lancet. 343(8890):142-6.
Chemello, L., Mondelli, M., Bortolotti, F., Schiavon, E., Pontisso, P., Alberti, A., Rondanelli, E.G., and Realdi, G. (1986). Natural killer activity in patients with acute viral hepatitis. Clinical \& Experimental Immunology. 64(1):59-64.

Chemin, I., Baginski, I., Vermot-Desroches, C., Hantz, O., Jacquet, C., Rigal, D., and Trepo, C. (1992). Demonstration of woodchuck hepatitis virus infection of peripheral blood mononuclear cells by flow cytometry and polymerase chain reaction. Journal of General Virology. 73(Pt 1):123-9.
Chen, C.H., Ji, H., Suh, K.W., Choti, M.A., Pardoll, D.M., and Wu, T.C. (1999). Gene gun-mediated DNA vaccination induces antitumor immunity against human papillomavirus type 16 E7expressing murine tumor metastases in the liver and lungs. Gene Therapy. 6(12):1972-81.
Chen, C.H., Sowder, J.T., Lahti, J.M., Cihak, J., Losch, U., and Cooper, M.D. (1989). TCR3: a third T-cell receptor in the chicken. Proceedings of the National Academy of Sciences of the United States of America. 86(7):2351-5.
Chen, C.L., Cihak, J., Losch, U., and Cooper, M.D. (1988). Differential expression of two T cell receptors, TcR1 and TcR2, on chicken lymphocytes. European Journal of Immunology. 18(4):539-43.

Chen, H.S., Kaneko, S., Girones, R., Anderson, R.W., Hornbuckle, W.E., Tennant, B.C., Cote, P.J., Gerin, J.L., Purcell, R.H., and Miller, R.H. (1993). The woodchuck hepatitis virus X gene is
important for establishment of virus infection in woodchucks. Journal of Virology. 67(3):1218-26.

Chen, H.S., Kew, M.C., Hornbuckle, W.E., Tennant, B.C., Cote, P.J., Gerin, J.L., Purcell, R.H., and Miller, R.H. (1992). The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host. Journal of Virology. 66(9):5682-4.
Chen, Y., Guo, S., Qi, Z., and Huang, A. (2001). Experimental study on the effect of combination therapy with lamivudine and famciclovir against duck hepatitis B virus in vivo. Chung Hua Kan Tsang Ping Tsa Chih. 9(4):209-11.

Cheung, R.C., Robinson, W.S., Marion, P.L., and Greenberg, H.B. (1989). Epitope mapping of neutralizing monoclonal antibodies against duck hepatitis B virus. Journal of Virology. 63(6):2445-51.

Cheung, R.C., Trujillo, D.E., Robinson, W.S., Greenberg, H.B., and Marion, P.L. (1990). Epitopespecific antibody response to the surface antigen of duck hepatitis B virus in infected ducks. Virology. 176(2):546-52.

Chien, Y., Becker, D.M., Lindsten, T., Okamura, M., Cohen, D.I., and Davis, M.M. (1984). A third type of murine T-cell receptor gene. Nature. 312(5989):31-5.
Chisari, F.V., and Ferrari, C. (1995). Hepatitis B virus immunopathogenesis. Annual Review of Immunology. 13:29-60.

Chisari, F.V., Ferrari, C., and Mondelli, M.U. (1989). Hepatitis B virus structure and biology. Microbial Pathogenesis. 6(5):311-25.
Chisari, F.V., Filippi, P., Buras, J., McLachlan, A., Popper, H., Pinkert, C.A., Palmiter, R.D., and Brinster, R.L. (1987). Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America. 84(19):6909-13.

Chisari, F.V., Filippi, P., McLachlan, A., Milich, D.R., Riggs, M., Lee, S., Palmiter, R.D., Pinkert, C.A., and Brinster, R.L. (1986). Expression of hepatitis B virus large envelope polypeptide inhibits hepatitis B surface antigen secretion in transgenic mice. Journal of Virology. 60(3):880-7.
Chisari, F.V., Pinkert, C.A., Milich, D.R., Filippi, P., McLachlan, A., Palmiter, R.D., and Brinster, R.L. (1985). A transgenic mouse model of the chronic hepatitis B surface antigen carrier state. Science. 230(4730):1157-60.

Chou, P.Y., and Fasman, G.D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology \& Related Areas of Molecular Biology. 47:45-148.

Chouteau, P., Le Seyec, J., Cannie, I., Nassal, M., Guguen-Guillouzo, C., and Gripon, P. (2001). A short N -proximal region in the large envelope protein harbors a determinant that contributes to the species specificity of human hepatitis B virus. Journal of Virology. 75(23):11565-72.
Chu, C.M., and Liaw, Y.F. (1987). Intrahepatic distribution of hepatitis B surface and core antigens in chronic hepatitis B virus infection. Hepatocyte with cytoplasmic/membranous hepatitis B core antigen as a possible target for immune hepatocytolysis. Gastroenterology. 92(1):2205.

Chu, C.M., Shyu, W.C., Kuo, R.W., and Liaw, Y.F. (1988). HLA class I antigen display on hepatocyte membrane in chronic hepatitis B virus infection: its role in the pathogenesis of chronic type B hepatitis. [republished from Hepatology 1987 Nov-Dec;7(6):1311-6]. Hepatology. 8(3):712-7.
Chuang, W.L., Omata, M., Ehata, T., Yokosuka, O., Hosoda, K., Imazeki, F., and Ohto, M. (1994). Coinfection study of precore mutant and wild-type hepatitis B-like virus in ducklings. Hepatology. 19(3):569-76.
Cihak, J., Ziegler-Heitbrock, H.W., Trainer, H., Schranner, I., Merkenschlager, M, and Losch, U. (1988). Characterization and functional properties of a novel monoclonal antibody which identifies a T cell receptor in chickens. European Journal of Immunology. 18(4):533-7.

Civitico, G.M., and Locarnini, S.A. (1994). The half-life of duck hepatitis B virus supercoiled DNA in congenitally infected primary hepatocyte cultures. Virology. 203(1):81-9.

Clementi, M., Manzin, A., Paolucci, S., Menzo, S., Bangarelli, P., Carloni, G., and Bearzi, I. (1993). Hepatitis B virus preC mutants in human hepatocellular carcinoma tissues. Research in Virology. 144(4):297-301.

Condreay, L.D., Wu, T.T., Aldrich, C.E., Delaney, M.A., Summers, J., Seeger, C., and Mason, W.S. (1992). Replication of DHBV genomes with mutations at the sites of initiation of minusand plus-strand DNA synthesis. Virology. 188(1):208-16.

Connell, C., Fung, S., Heiner, C., Bridgham, J., Chakerian, V., Heron, E., Jones, B., Menchen, S., Mordan, W., Raff, M., Recknor, M., Smith, L., Springer, J., Woo, S., and Hunkapiller, M. (1987). Automated DNA Sequence Analysis. Biotechniques. 5(4):342-8.

Cooksley, W.G., Piratvisuth, T., Lee, S.D., Mahachai, V., Chao, Y.C., Tanwandee, T., Chutaputti, A., Chang, W.Y., Zahm, F.E., and Pluck, N. (2003). Peginterferon alpha-2a (40 kDa): an advance in the treatment of hepatitis B e antigen-positive chronic hepatitis B. Journal of Viral Hepatitis. 10(4):298-305.
Cooper, M.D., Chen, C.L., Bucy, R.P., and Thompson, C.B. (1991). Avian T cell ontogeny. Advances in Immunology. 50:87-117.

Cooper, M.D., Peterson, R.D.A., and Good, R.A. (1965). Delineation of the thymic and bursal lymphoid systems in the chicken. Nature. 205:143-205.
Cooper, M.D., Peterson, R.D.A., South, M.A., and Good, R.A. (1966a). The functions of the thymus system and the bursa system in the chicken. Journal of Experimental Medicine. 123:75-102.
Cooper, M.D., Raymond, D.A., Peterson, R.D., South, M.A., and Good, R.A. (1966b). The functions of the thymus system and the bursa system in the chicken. Journal of Experimental Medicine. 123(1):75-102.

Cote, P.J., Korba, B.E., Miller, R.H., Jacob, J.R., Baldwin, B.H., Hornbuckle, W.E., Purcell, R.H., Tennant, B.C., and Gerin, J.L. (2000). Effects of age and viral determinants on chronicity as an outcome of experimental woodchuck hepatitis virus infection. Hepatology. 31(1):190200.

Cote, P.J., Korba, B.E., Steinberg, H., Ramirez-Mejia, C., Baldwin, B., Hornbuckle, W.E., Tennant, B.C., and Gerin, J.L. (1991). Cyclosporin A modulates the course of woodchuck hepatitis virus infection and induces chronicity. Journal of Immunology. 146(9):3138-44.
Courouce, A.M. (1976). Subtypes of HBsAg in Europe and Africa. Bibliotheca Haematologica. 42:52-7.

Courouce, A.M., Drouet, J., and Muller, J.Y. (1976). Australia antigen subtypes identification. Results. Bibliotheca Haematologica. 42:89-127.

Courouce, A.M., and Soulier, J.P. (1974). HBsAg subtypes - geographical distribution. In: Symposium on Viral Hepatitis. International Association of Biological Standardization, Milan.

Courouce-Pauty, A.M., Delons, S., and Soulier, J.P. (1975). Attempt to prevent hepatitis by using specific anti-HBs immunoglobulin. American Journal of the Medical Sciences. 270(2):37583.

Courouce-Pauty, A.M., Lemaire, J.M., and Roux, J.F. (1978). New hepatitis B surface antigen subtypes inside the ad category. Vox Sanguinis. 35(5):304-8.
Courouce-Pauty, A.M., Plancon, A., and Soulier, J.P. (1983). Distribution of HBsAg subtypes in the world. Vox Sanguinis. 44(4):197-211.

Coutinho, R.A., Lelie, P.N., Albrecht-van Lent, P., Stoutjesdijk, L., Huisman, J., Kuipers, H., Schut, L.J., Reerink-Brongers, E.E., Reesink, H.W., and van Aken, W.G. (1983). Efficacy trial of heat-inactivated hepatitis B vaccine (CLB) in male homosexuals in the Netherlands. Developments in Biological Standardization. 54:287-92.
Cova, L., Hantz, O., Arliaud-Gassin, M., Chevalier, A., Berthillon, P., Boulay, J., Jacquet, C., Chomel, B., Vitvitski, L., and Trepo, C. (1985). Comparative study of DHBV DNA levels
and endogenous DNA polymerase activity in naturally infected ducklings in France. Journal of Virological Methods. 10(3):251-60.
Cova, L., Lambert, V., Chevallier, A., Hantz, O., Fourel, I., Jacquet, C., Pichoud, C., Boulay, J., Chomel, B., and Vitvitski, L. (1986). Evidence for the presence of duck hepatitis B virus in wild migrating ducks. Journal of General Virology. 67(Pt 3):537-47.
Dane, D.S., Cameron, C.H., and Briggs, M. (1970). Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1(7649):695-8.
Davis, D., and Woolcock, P.R. (1986). Passage of duck hepatitis virus in cell cultures derived from avian embryos of different species. Research in Veterinary Science. 41(1):133-4.
Davis, G.L., Hoofnagle, J.H., and Waggoner, J.G. (1984). Acute type A hepatitis during chronic hepatitis B virus infection: association of depressed hepatitis B virus replication with appearance of endogenous alpha interferon. Journal of Medical Virology. 14(2):141-7.
Davis, H.L., Michel, M.L., Mancini, M., Schleef, M., and Whalen, R.G. (1994). Direct gene transfer in skeletal muscle: plasmid DNA-based immunization against the hepatitis B virus surface antigen. Vaccine. 12(16):1503-9.
Deinhardt, F., Holmes, A.W., Capps, R.B., and Popper, H. (1967). Studies on the transmission of human viral hepatitis to marmoset monkeys. I. Transmission of disease, serial passages, and description of liver lesions. Journal of Experimental Medicine. 125(4):673-88.
Dejean, A., Lugassy, C., Zafrani, S., Tiollais, P., and Brechot, C. (1984). Detection of hepatitis B virus DNA in pancreas, kidney and skin of two human carriers of the virus. Journal of General Virology. 65(Pt 3):651-5.
Del Vecchio-Blanco, C., Balzano, A., Ambrogio, G., Caporaso, N., Bonanno, G., and Dente, B. (1980). T and B lymphocytes in patients with chronic active liver disease and in healthy HBsAg carriers. Ricerca in Clinica e in Laboratorio. 10(4):619-25.
Delaney, M.A., Goyal, S., and Seeger, C. (1990). Design of modified Core Genes that Inhibit Replication of Woodchuck Hepatitis Virus. In: Margolis, H. (Ed.) Viral Hepatitis and Liver Disease. Williams \& Wilkins, Baltimore. pp.667-8.
Desmyter, J., Colaert, J., De Groote, G., Reynders, M., Reerink-Brongers, E.E., Lelie, P.N., Dees, P.J., and Reesink, H.W. (1983). Efficacy of heat-inactivated hepatitis B vaccine in haemodialysis patients and staff. Double-blind placebo-controlled trial. Lancet. 2(8363):1323-8.
Di, Q., Wei-Rong, Z., Fei-Qing, L., and Yu-Mei, W. (1987). Bursectomy Enhances Duck Hepatitis B Virus Replication in Liver. Proceedings of the International Symposium on Viral Hepatitis and Liver Disease, Barbican Centre, London, Alan R. Liss, Inc., New York.
Dieckmann, D., Bruett, C.H., Ploettner, H., Lutz, M.B., and Schuler, G. (2002). Human CD4 $(+) \mathrm{CD} 25(+)$ regulatory, contact-dependent T cells induce interleukin 10 -producing, contact-independent type 1 -like regulatory T cells. Journal of Experimental Medicine. 196(2):247-53.
Dinarello, C.A. (1984). Interleukin-1. Reviews of Infectious Diseases. 6(1):51-95.
Dixon, R.J., Jones, N.F., Campbell, M., Brooker, A., and Bowden, S. (1989). The Australian manned duck hepatitis B virus: a potential novel hepatitis B virus of ducks. In: Marion, P., and H. Schaller (Eds.) Hepatitis B viruses, abstracts. Cold Spring Harbor Laboratory, Cold Spring Harbor. pp. 28.
Domingo, E. (1992). Genetic variation and quasi-species. Current Opinion in Genetics \& Development. 2(1):61-3.

[^1]Dong, J., Cheng, J., Wang, Q., Huangfu, J., Shi, S., Zhang, G., Hong, Y., Li, L., and Si, C. (2002). The study on heterogeneity of hepatitis B virus DNA. Chung-Hua i Hsueh Tsa Chih [Chinese Medical Journal]. 82(2):81-5.
Donis, R.O. (1995). Molecular biology of bovine viral diarrhea virus and its interactions with the host. Veterinary Clinics of North America - Food Animal Practice. 11(3):393-423.
Donis, R.O., Corapi, W.V., and Dubovi, E.J. (1991). Bovine viral diarrhea virus proteins and their antigenic analyses. Archives of Virology - Supplementum. 3:29-40.

Donnelly, J.J., Ulmer, J.B., Shiver, J.W., and Liu, M.A. (1997). DNA vaccines. Annual Review of Immunology. 15:617-48.

Doo, E., and Liang, T.J. (2001). Molecular anatomy and pathophysiologic implications of drug resistance in hepatitis B virus infection.[comment]. Gastroenterology. 120(4):1000-8.
Du, D.W., Jia, Z.S., Li, G.Y., and Zhou, Y.Y. (2003). HBV DNA vaccine with adjuvant cytokines induced specific immune responses against HBV infection. World Journal of Gastroenterology. 9(1):108-11.
Du Pasquier, L. (1993). Phylogeny of B-cell development. Current Opinion in Immunology. 5(2):185-93.

Du, Z., Hood, L., and Wilson, R.K. (1993). Automated fluorescent DNA sequencing of polymerase chain reaction products. Methods in Enzymology. 218:104-21.

Dubensky, T.W., Campbell, B.A., and Villarreal, L.P. (1984). Direct transfection of viral and plasmid DNA into the liver or spleen of mice. Proceedings of the National Academy of Sciences of the United States of America. 81(23):7529-33.

Dunn, J.J., and Studier, F.W. (1983). Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. Journal of Molecular Biology. 166(4):477-535.

Eckert, K., and Kunkel, T. (1989). The fidelity of Taq DNA polymerase. J Cell Biochem. Suppl. 13E(WH128):282.

Eckert, K.A., and Kunkel, T.A. (1990). High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Research. 18(13):3739-44.

Eggink, H.F., Houthoff, H.J., Huitema, S., Gips, C.H., and Poppema, S. (1982). Cellular and humoral immune reactions in chronic active liver disease. I. Lymphocyte subsets in liver biopsies of patients with untreated idiopathic autoimmune hepatitis, chronic active hepatitis B and primary biliary cirrhosis. Clinical \& Experimental Immunology. 50(1):17-24.
Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 58(10):465-523.
Ellsworth, A.F., and Ellsworth, M.L. (1981). B-lymphocyte cells in lymphatic tissue of the duck, Anas platyrhynchos. Avian Diseases. 25(2):521-7.
Emini, E.A., Hughes, J.V., Perlow, D.S., and Boger, J. (1985). Induction of hepatitis A virusneutralizing antibody by a virus-specific synthetic peptide. Journal of Virology. 55(3):8369.

Emini, E.A., Larson, V., Eichberg, J., Conard, P., Garsky, V.M., Lee, D.R., Ellis, R.W., Miller, W.J., Anderson, C.A., and Gerety, R.J. (1989). Protective effect of a synthetic peptide comprising the complete preS2 region of the hepatitis B virus surface protein. Journal of Medical Virology. 28(1):7-12.

Enders, G.H., Ganem, D., and Varmus, H.E. (1987). 5'-terminal sequences influence the segregation of ground squirrel hepatitis virus RNAs into polyribosomes and viral core particles. Journal of Virology. 61(1):35-41.
Ernst, P.B., Clark, D.A., Rosenthal, K.L., Befus, A.D., and Bienenstock, J. (1986). Detection and characterization of cytotoxic T lymphocyte precursors in the murine intestinal intraepithelial leukocyte population. Journal of Immunology. 136(6):2121-6.

Etchart, N., Buckland, R., Liu, M.A., Wild, T.F., and Kaiserlian, D. (1997). Class I-restricted CTL induction by mucosal immunization with naked DNA encoding measles virus haemagglutinin. Journal of General Virology. 78(Pt 7):1577-80.

Evans, G., and Ivanyi, J. (1975). Antibody synthesis by chicken spleen cells in vitro. I. Requirements of B cells at various stages after immunization for T cells, macrophages and antigen. European Journal of Immunology. 5(11):747-52.
Ewert, D.L., Munchus, M.S., Chen, C.L., and Cooper, M.D. (1984). Analysis of structural properties and cellular distribution of avian Ia antigen by using monoclonal antibody to monomorphic determinants. Journal of Immunology. 132(5):2524-30.

Fan, H., Lin, Q., Morrissey, G.R., and Khavari, P.A. (1999). Immunization via hair follicles by topical application of naked DNA to normal skin. Nature Biotechnology. 17(9):870-2.
Farrar, M.A., and Schreiber, R.D. (1993). The molecular cell biology of interferon-gamma and its receptor. Annual Review of Immunology. 11:571-611.

Farza, H., Hadchouel, M., Scotto, J., Tiollais, P., Babinet, C., and Pourcel, C. (1988). Replication and gene expression of hepatitis B virus in a transgenic mouse that contains the complete viral genome. Journal of Virology. 62(11):4144-52.
Feitelson, M.A. (1986). Products of the "X" gene in hepatitis B and related viruses. Hepatology. 6(2):191-8.

Feitelson, M.A., Marion, P.L., and Robinson, W.S. (1981). Antigenic and structural relationships of the surface antigens of hepatitis B virus, ground squirrel hepatitis virus, and woodchuck hepatitis virus. Journal of Virology. 39(2):447-54.
Feitelson, M.A., Marion, P.L., and Robinson, W.S. (1983). The nature of polypeptides larger in size than the major surface antigen components of hepatitis b and like viruses in ground squirrels, woodchucks, and ducks. Virology. 130(1):76-90.

Fernholz, D., Galle, P.R., Stemler, M., Brunetto, M., Bonino, F., and Will, H. (1993a). Infectious hepatitis B virus variant defective in pre-S2 protein expression in a chronic carrier. Virology. 194(1):137-48.
Fernholz, D., Wildner, G., and Will, H. (1993b). Minor envelope proteins of duck hepatitis B virus are initiated at internal pre-S AUG codons but are not essential for infectivity. Virology. 197(1):64-73.

Ferrari, C., Bertoletti, A., Penna, A., Cavalli, A., Valli, A., Missale, G., Pilli, M., Fowler, P., Giuberti, T., and Chisari, F.V. (1991). Identification of immunodominant T cell epitopes of the hepatitis B virus nucleocapsid antigen. Journal of Clinical Investigation. 88(1):214-22.
Ferrari, C., Cavalli, A., Penna, A., Valli, A., Bertoletti, A., Pedretti, G., Pilli, M., Vitali, P., Neri, T.M., and Giuberti, T. (1992). Fine specificity of the human T-cell response to the hepatitis B virus preS1 antigen. Gastroenterology. 103(1):255-63.

Ferrari, C., Penna, A., Mondelli, M., Fiaccadori, F., and Chisari, F.V. (1987). Intrahepatic, HBcAg specific regulatory T cell networks in chronic active hepatitis B. Journal of Medical Virology. 21:80A.
Fischer, K.P., Gutfreund, K.S., and Tyrrell, D.L. (2001a). Lamivudine resistance in hepatitis B: mechanisms and clinical implications. Drug Resistance Updates. 4(2):118-28.

Fischer, K.P., and Tyrrell, D.L. (1996). Generation of duck hepatitis B virus polymerase mutants through site-directed mutagenesis which demonstrate resistance to lamivudine [(-)-beta-L2', 3'-dideoxy-3'-thiacytidine] in vitro. Antimicrobial Agents \& Chemotherapy. 40(8):195760.

Fischer, L., Kalinina, T., Rogiers, X., Will, H., and Sterneck, M. (2001b). GLY145ARG mutation emerging under HBIG treatment in patients with recurrent HBV after liver transplantation strongly reduces viral secretion. Transplantation Proceedings. 33(7-8):3633-6.

Fleischer, B. (1980). Effector cells in avian spontaneous and antibody-dependent cell-mediated cytotoxicity. Journal of Immunology. 125(3):1161-6.

Foster, G.R., Ackrill, A.M., Goldin, R.D., Kerr, I.M., Thomas, H.C., and Stark, G.R. (1991). Expression of the terminal protein region of hepatitis B virus inhibits cellular responses to interferons alpha and gamma and double-stranded RNA. [erratum appears in Proc Natl Acad Sci U S A 1995 Apr 11;92(8):3632]. Proceedings of the National Academy of Sciences of the United States of America. 88(7):2888-92.
Foster, W.K., Miller, D.S., Marion, P.L., Colonno, R.J., Kotlarski, I., and Jilbert, A.R. (2003). Entecavir therapy combined with DNA vaccination for persistent duck hepatitis B virus infection. Antimicrobial Agents \& Chemotherapy. 47(8):2624-35.

Fourel, I., Hantz, O., Cova, L., Allaudeen, H.S., and Trepo, C. (1987). Main properties of duck hepatitis B virus DNA polymerase: comparison with the human and woodchuck hepatitis B virus DNA polymerases. Antiviral Research. 8(4):189-99.
Freeman, A.J., Pan, Y., Harvey, C.E., Post, J.J., Law, M.G., White, P.A., Rawlinson, W.D., Lloyd, A.R., Marinos, G., and Ffrench, R.A. (2003). The presence of an intrahepatic cytotoxic T lymphocyte response is associated with low viral load in patients with chronic hepatitis C virus infection. Journal of Hepatology. 38(3):349-56.
Freiman, J.S., and Cossart, Y.E. (1986). Natural duck hepatitis B virus infection in Australia. Australian Journal of Experimental Biology \& Medical Science. 64(Pt 5):477-84.
Freiman, J.S., Jilbert, A.R., Dixon, R.J., Holmes, M., Gowans, E.J., Burrell, C.J., Wills, E.J., and Cossart, Y.E. (1988a). Experimental duck hepatitis B virus infection: pathology and evolution of hepatic and extrahepatic infection. Hepatology. 8(3):507-13.

Freiman, J.S., Jilbert, A.R., Gowans, E.J., Burrell, C.J., and Cossart, Y.E. (1987). Duck Hepatitis B Virus:Sequence and Significance of Lymphoid System Infection. In: Viral Hepatitis and Liver Disease. Alan R. Liss,Inc. pp.501-2.

Freiman, J.S., Jilbert, A.R., Holmes, M., Gowans, E.J., Burrell, C.J., and Cossart, Y.E. (1988b). Duck hepatitis B virus: Sequence and significance of lymphoid system infection. In: Zuckerman, A.J. (Ed.) Viral Hepatitis and Liver Disease. Alan R Liss, Inc. pp.501-2.

Freiman, J.S., Murray, S.M., Vickery, K., Lim, D., and Cossart, Y.E. (1990). Postexposure treatment of experimental DHBV infection: a new therapeutic strategy. Journal of Medical Virology. 30(4):272-6.

Fu, L., and Cheng, Y.C. (1998). Role of additional mutations outside the YMDD motif of hepatitis B virus polymerase in L(-)SddC (3TC) resistance. Biochemical Pharmacology. 55(10):156772.

Fujii, H., Moriyama, K., Sakamoto, N., Kondo, T., Yasuda, K., Hiraizumi, Y., Yamazaki, M., Sakaki, Y., Okochi, K., and Nakajima, E. (1992). Gly145 to Arg substitution in HBs antigen of immune escape mutant of hepatitis B virus. Biochemical \& Biophysical Research Communications. 184(3):1152-7.

Fukuda, R., Fukumoto, S., and Shimada, Y. (1987). A sequential study of viral DNA in serum in experimental transmission of duck hepatitis B virus. Journal of Medical Virology. 21(4):311-20.
Fynan, E.F., Webster, R.G., Fuller, D.H., Haynes, J.R., Santoro, J.C., and Robinson, H.L. (1993). DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proceedings of the National Academy of Sciences of the United States of America. 90(24):11478-82.

Galibert, F., Mandart, E., Fitoussi, F., Tiollais, P., and Charnay, P. (1979). Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. Nature. 281(5733):646-50.
Galle, P.R., Schlicht, H.J., Kuhn, C., and Schaller, H. (1989). Replication of duck hepatitis B virus in primary duck hepatocytes and its dependence on the state of differentiation of the host cell. Hepatology. 10(4):459-65.

Ganem, D., Weiser, B., Barchuk, A., Brown, R.J., and Varmus, H.E. (1982). Biological characterization of acute infection with ground squirrel hepatitis virus. Journal of Virology. 44(1):366-73.

Garnier, J., Osguthorpe, D.J., and Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology. 120(1):97-120.

GCG Genetics Computer Group Inc. (http://www.gcg.com).
Gerber, M.A., Hadziyannis, S., Vissoulis, C., Schaffner, F., Paronetto, F., and Popper, H. (1974a). Electron microscopy and immunoelectronmicroscopy of cytoplasmic hepatitis B antigen in hepatocytes. American Journal of Pathology. 75(3):489-502.
Gerber, M.A., Hadziyannis, S., Vissoulis, C., Schaffner, F., Paronetto, F., and Popper, H. (1974b). Hepatitis B antigen: nature and distribution of cytoplasmic antigen in hepatocytes of carriers. Experimental Biology \& Medicine. 145(3):863-7.
Gerin, J.L., Alexander, H., Shih, J.W., Purcell, R.H., Dapolito, G., Engle, R., Green, N., Sutcliffe, J.G., Shinnick, T.M., and Lerner, R.A. (1983). Chemically synthesized peptides of hepatitis B surface antigen duplicate the d / y specificities and induce subtype-specific antibodies in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America. 80(8):2365-9.

Germer, J.J., Charlton, M.R., Ishitani, M.B., Forehand, C.D., and Patel, R. (2003). Characterization of hepatitis B virus surface antigen and polymerase mutations in liver transplant recipients pre- and post-transplant. American Journal of Transplantation. 3(6):743-53.

Gheit, T., Sekkat, S., Cova, L., Chevallier, M., Petit, M.A., Hantz, O., Lesenechal, M., Benslimane, A., Trepo, C., and Chemin, I. (2002). Experimental transfection of Macaca sylvanus with cloned human hepatitis B virus. Journal of General Virology. 83(Pt 7):1645-9.
Glick, B. (1970). Immunity studies in testosterone propionate injected chicks. International Archives of Allergy \& Applied Immunology. 38(1):93-103.
Goudeau, A., Dubois, F., Geslin, N., and Pierre, D. (1983). Hepatitis B vaccine: simultaneous passive and active immunization. Indications in pre- and post-exposure. Developments in Biological Standardization. 54:259-66.
Gowans, E.J., Burrell, C.J., Jilbert, A.R., and Marmion, B.P. (1985). Cytoplasmic (but not nuclear) hepatitis B virus (HBV) core antigen reflects HBV DNA synthesis at the level of the infected hepatocyte. Intervirology. 24(4):220-5.
Grandits, G.A., Grimm, R.H., Jr., Thomas, H.E., Jr., Billings, J.H., Wright, N.H., and Thomas, H. (1991). Pathogenesis of chronic active hepatitis B. Preventive Medicine. 20(2):183-96.

Griffith, F. (1928). The Significance of Pneumococcal Types. Journal of Hygiene. 27(2):113-59.
Grottola, A., Buttafoco, P., Del Buono, M.G., Cremonini, C., Colantoni, A., Gelmini, R., Morelli, C., Masetti, M., Jovine, E., Fruet, F., Pinna, A., Manenti, F., and Villa, E. (2002). Pretransplantation pre-S2 and S protein heterogeneity predisposes to hepatitis B virus recurrence after liver transplantation. Liver Transplantation. 8(5):443-8.

Gu, J.R. (1992). Viral hepatitis B and primary hepatic cancer. In: Wen, Y.-M., Z.-Y. Xu, and J.L. Melnick (Eds.) Viral hepatitis in China : problems and control strategies. (Monographs in virology ; vol. 19). Karger, Basel. pp.56-72.
Guidotti, L.G. (2002). The role of cytotoxic T cells and cytokines in the control of hepatitis B virus infection. Vaccine. 20 Suppl 4:A80-2.

Guidotti, L.G., Ando, K., Hobbs, M.V., Ishikawa, T., Runkel, L., Schreiber, R.D., and Chisari, F.V. (1994). Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice: CTL access to tissue antigen is restricted in vivo. Proceedings of the National Academy of Sciences of the United States of America. 91(9):3764-8.
Guidotti, L.G., Borrow, P., Hobbs, M.V., Matzke, B., Gresser, I., Oldstone, M.B., and Chisari, F.V. (1996a). Viral cross talk: intracellular inactivation of the hepatitis B virus during an unrelated viral infection of the liver. Proceedings of the National Academy of Sciences of the United States of America. 93(10):4589-94.

Guidotti, L.G., Ishikawa, T., Hobbs, M.V., Matzke, B., Schreiber, R., and Chisari, F.V. (1996b). Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity. 4(1):25-36.

Guidotti, L.G., Morris, A., Mendez, H., Koch, R., Silverman, R.H., Williams, B.R., and Chisari, F.V. (2002). Interferon-regulated pathways that control hepatitis B virus replication in transgenic mice. Journal of Virology. 76(6):2617-21.
Guidotti, L.G., Rochford, R., Chung, J., Shapiro, M., Purcell, R., and Chisari, F.V. (1999). Viral clearance without destruction of infected cells during acute HBV infection. Science. 284(5415):825-9.

Gyllensten, U. (1989). Direct sequencing of in vitro amplified DNA. In: Erlich, H.A. (Ed.) $P C R$ technology : principles and applications for DNA amplification. Stockton Press, New York. pp.Chapter 5.
Gyllensten, U.B., and Erlich, H.A. (1988). Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proceedings of the National Academy of Sciences of the United States of America. 85(20):7652-6.
Gyllensten, U.B., and Erlich, H.A. (1989). Ancient roots for polymorphism at the HLA-DQ alpha locus in primates. Proceedings of the National Academy of Sciences of the United States of America. 86(24):9986-90.
Gyllensten, U.B., and Erlich, H.A. (1990). Evolution of HLA class-II polymorphism in primates: the DQA locus. Immunologic Research. 9(3):223-33.

Hagiwara, H., Huang, H.J., Arai, N., Herzenberg, L.A., Arai, K., and Zlotnik, A. (1987). Interleukin 1 modulates messenger RNA levels of lymphokines and of other molecules associated with T cell activation in the T cell lymphoma LBRM33-1A5. Journal of Immunology. 138(8):2514-9.
Hala, K., Bock, G., Sgonc, R., Schulmannova, J., Tempelis, C.H., Vainio, O., and Kemmler, G. (1992). Frequency of chicken CD4+ and CD8+ cells. Genetic control and effect of Rous sarcoma virus infection. Scandinavian Journal of Immunology. 35(2):237-45.
Halpern, M.S., Egan, J., Mason, W.S., and England, J.M. (1984). Viral antigen in endocrine cells of the pancreatic islets and adrenal cortex of Pekin ducks infected with duck hepatitis B virus. Virus Research. 1(3):213-23.

Halpern, M.S., England, J.M., Deery, D.T., Petcu, D.J., Mason, W.S., and Molnar-Kimber, K.L. (1983). Viral nucleic acid synthesis and antigen accumulation in pancreas and kidney of Pekin ducks infected with duck hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America. 80(15):4865-9.
Halpern, M.S., Mason, W.S., Coates, L., O'Connell, A.P., and England, J.M. (1987). Humoral immune responsiveness in duck hepatitis B virus-infected ducks. Journal of Virology. 61(3):916-20.
Halpern, M.S., McMahon, S.B., Mason, W.S., and O'Connell, A.P. (1986). Viral antigen expression in the pancreas of DHBV-infected embryos and young ducks. Virology. 150(1):276-82.
Hanson, R.G., Hoofnagle, J.H., Minuk, G.Y., Purcell, R.H., and Gerin, J.L. (1984). Cell-mediated immunity to hepatitis B surface antigen in man. Clinical \& Experimental Immunology. 57(2):257-64.

Hasegawa, K., Huang, J., Rogers, S.A., Blum, H.E., and Liang, T.J. (1994). Enhanced replication of a hepatitis B virus mutant associated with an epidemic of fulminant hepatitis. Journal of Virology. 68(3):1651-9.
Hasek, M., Karakoz, L., and Hala, K. (1972). The influence of bursectomy and thymectomy on the formation of alloantibodies affecting the skin graft in ducks. Folia Biologica. 18(6):441-8.
Hashimoto, Y., and Sugimura, M. (1976a). Effects of early cyclophosphamide treatment on lymphoid organs and its immune response in ducks. Poultry Science. 55(4):1441-9.

Hashimoto, Y., and Sugimura, M. (1976b). Histological and quantitative studies on the postnatal growth of the thymus and the bursa of Fabricius of White Pekin ducks. Japanese Journal of Veterinary Research. 24(3-4):65-76.
Havert, M.B., and Loeb, D.D. (1997). cis-Acting sequences in addition to donor and acceptor sites are required for template switching during synthesis of plus-strand DNA for duck hepatitis B virus. Journal of Virology. 71(7):5336-44.
Hawkins, T.L., Du, Z., Halloran, N.D., and Wilson, R.K. (1992). Fluorescence chemistries for automated primer-directed DNA sequencing. Electrophoresis. 13(8):552-9.
Heathcote, J. (2003). Treatment of HBe antigen-positive chronic hepatitis B. Seminars in Liver Disease. 23(1):69-80.
Heathcote, J., Kim, Y.I., Yim, C.K., LeBrocq, J., and Read, S.E. (1989). Interferon-associated lymphocyte $2^{\prime}, 5$ 'oligoadenylate synthetase in acute and chronic viral hepatitis. Hepatology. 9(1):105-9.
Hellstrom, U., Sylvan, S., and Lundbergh, P. (1985). Regulatory functions of T- and accessory-cells for hepatitis B surface antigen induced specific antibody production and proliferation of human peripheral blood lymphocytes, in vitro. Journal of Clinical \& Laboratory Immunology. 16(4):173-81.
Heron, I., Hokland, M., and Berg, K. (1978). Enhanced expression of beta2-microglobulin and HLA antigens on human lymphoid cells by interferon. Proceedings of the National Academy of Sciences of the United States of America. 75(12):6215-9.
Higgins, D.A. (1992). Duck lymphocytes. VI. Requirement for phagocytic and adherent cells in lymphocyte transformation. Veterinary Immunology \& Immunopathology. 34(3-4):367-77.
Higgins, D.A., Cromie, R.L., Srivastava, G., Herzbeck, H., Schluter, C., Gerdes, J., Diamantstein, T., and Flad, H.D. (1993). An examination of the immune system of the duck (Anas platyrhynchos) for factors resembling some defined mammalian cytokines. Developmental \& Comparative Immunology. 17(4):341-55.
Higgins, D.A., Henry, R.R., and Kounev, Z.V. (2000). Duck immune responses to Riemerella anatipestifer vaccines. Developmental \& Comparative Immunology. 24(2-3):153-67.
Higgins, D.A., Shortridge, K.F., and Ng, P.L. (1987). Bile immunoglobulin of the duck (Anas platyrhynchos). II. Antibody response in influenza A virus infections. Immunology. 62(3):499-504.
Higgins, D.A., and Teoh, C.S. (1988). Duck lymphocytes. II. Culture conditions for optimum transformation response to phytohaemagglutinin. Journal of Immunological Methods. 106(1):135-45.

Higgins, D.A., and Warr, G.W. (1993). Duck immunoglobulins: structure, functions and molecular genetics. Avian Pathology. 22:211-36.
Holley, R.W., Apgar, J., Everett, G.A., Madison, J.T., Marquisee, M., Merrill, S.H., Penswick, J.R., and Zamir, A. (1965). Structure of a Ribonucleic Acid. Science. 147:1462-5.
Honkoop, P., Niesters, H.G., de Man, R.A., Osterhaus, A.D., and Schalm, S.W. (1997). Lamivudine resistance in immunocompetent chronic hepatitis B. Incidence and patterns. Journal of Hepatology. 26:1393-5.

Hoofnagle, J.H., Gerety, R.J., and Barker, L.F. (1973). Antibody to hepatitis-B-virus core in man. Lancet. 2(7834):869-73.
Hoofnagle, J.H., Seaff, L.B., Bafes, Z.B., Gerety, R.J., and Tabor, E. (1978). Serologic responses in HBV. In: Vyas, G.N., S.N. Cohen, and R. Schmid (Eds.) Viral Hepatitis. Franklin Institute Press, Philadelphia. pp.219-42.
Hoshi, H., and Mori, T. (1973). Inhibition of the germinal center formation in the spleen by xirradiations of the thymus in chickens. Tohoku Journal of Experimental Medicine. 109(2):97-111.
Howard, C.R. (1986). The biology of hepadnaviruses. Journal of General Virology. 67(Pt 7):121535.

Hsu, Y.S., Chien, R.N., Yeh, C.T., Sheen, I.S., Chiou, H.Y., Chu, C.M., and Liaw, Y.F. (2002). Long-term outcome after spontaneous HBeAg seroconversion in patients with chronic hepatitis B. Hepatology. 35(6):1522-7.

Huang, A., Scougall, C.A., Lowenthal, J.W., Jilbert, A.R., and Kotlarski, I. (2001). Structural and functional homology between duck and chicken interferon-gamma. Developmental \& Comparative Immunology. 25(1):55-68.
Huang, H.V., and Dreyer, W.J. (1978). Bursectomy in ovo blocks the generation of immunoglobulin diversity. Journal of Immunology. 121(5):1738-47.

Huangfu, J., Dong, J., Deng, H., Cheng, J., Shi, S., Hong, Y., Ren, X., and Li, L. (2002). A preliminary study on the heterogeneity of preS2 region in hepatitis B virus. Chung-Hua Nei Ko Tsa Chih Chinese Journal of Internal Medicine. 41(4):233-6.

Hunkapiller, T., Kaiser, R.J., Koop, B.F., and Hood, L. (1991). Large-scale and automated DNA sequence determination. Science. 254(5028):59-67.

Huo, T.I., Wu, J.C., Lee, P.C., Chau, G.Y., Lui, W.Y., Tsay, S.H., Ting, L.T., Chang, F.Y., and Lee, S.D. (1998). Sero-clearance of hepatitis B surface antigen in chronic carriers does not necessarily imply a good prognosis. [see comments]. Hepatology. 28(1):231-6.

Huynh, N.T., Ffrench, R.A., Boadle, R.A., and Manolios, N. (2003). Transmembrane T-cell receptor peptides inhibit B- and natural killer-cell function. Immunology. 108(4):458-64.
ICTV (2000). Virus Taxonomy : classification and nomenclature of viruses : seventh report of the international committee on taxonomy of viruses. International Union of Microbiological Societies. Virology Division. San Diego, Academic Press.

Ikeda, T., Lever, A.M., and Thomas, H.C. (1986). Evidence for a deficiency of interferon production in patients with chronic hepatitis B virus infection acquired in adult life. Hepatology. 6(5):962-5.

Ionescu-Matiu, I., Kennedy, R.C., Sparrow, J.T., Culwell, A.R., Sanchez, Y., Melnick, J.L., and Dreesman, G.R. (1983). Epitopes associated with a synthetic hepatitis B surface antigen peptide. Journal of Immunology. 130(4):1947-52.

Itoh, Y., Takai, E., Ohnuma, H., Kitajima, K., Tsuda, F., Machida, A., Mishiro, S., Nakamura, T., Miyakawa, Y., and Mayumi, M. (1986). A synthetic peptide vaccine involving the product of the pre-S(2) region of hepatitis B virus DNA: protective efficacy in chimpanzees. Proceedings of the National Academy of Sciences of the United States of America. 83(23):9174-8.

Jacobs, K.A., Collins-Racie, L.A., Colbert, M., Duckett, M., Golden-Fleet, M., Kelleher, K., Kriz, R., LaVallie, E.R., Merberg, D., Spaulding, V., Stover, J., Williamson, M.J., and McCoy, J.M. (1997). A genetic selection for isolating cDNAs encoding secreted proteins. Gene. 198(1-2):289-96.

Jalkanen, S., Korpela, R., Granfors, K., and Toivanen, P. (1984). Immune capacity of the chicken bursectomized at 60 hr of incubation: cytoplasmic immunoglobulins and histological findings. Clinical Immunology \& Immunopathology. 30(1):41-50.

Jameson, B.A., and Wolf, H. (1988). The antigenic index: a novel algorithm for predicting antigenic determinants. Computer Applications in the Biosciences. 4(1):181-6.
Janin, J., and Wodak, S. (1978). Conformation of amino acid side-chains in proteins. Journal of Molecular Biology. 125(3):357-86.

Jankovic, B.D., and Isakovic, M. (1963). Experimental allergic encephalomyelitis in thymectomized, bursectomized and normal chicken. International Archives of Allergy and Applied Immunology. 23:188-206.
Jeantet, D., Chemin, I., Mandrand, B., Zoulim, F., Trepo, C., and Kay, A. (2002). Characterization of two hepatitis B virus populations isolated from a hepatitis B surface antigen-negative patient. Hepatology. 35(5):1215-24.

Jeurissen, S.H.M., and Janse, E.M. (1989). Distribution and function of non-lymphoid cells in liver and spleen of embryonic and adult chickens. In: Bhogal, B.S., and G. Koch (Eds.) Recent advances in avian immunology research. Alan R. Liss, New York. pp.149-57.

Jilbert, A.R., Botten, J.A., Miller, D.S., Bertram, E.M., Hall, P.M., Kotlarski, J., and Burrell, C.J. (1998). Characterization of age- and dose-related outcomes of duck hepatitis B virus infection. Virology. 244(2):273-82.
Jilbert, A.R., Freiman, J.S., Burrell, C.J., Holmes, M., Gowans, E.J., Rowland, R., Hall, P., and Cossart, Y.E. (1987a). Early Virus Cell Interactions in Duck Hepatitis B Virus Infection: A Time-Course Study of Tissue Tropism and Sites of Virus Production. In: Viral Hepatitis and Liver Disease. Alan R. Liss, Inc. pp.497-500.
Jilbert, A.R., Freiman, J.S., Burrell, C.J., Holmes, M., Gowans, E.J., Rowland, R., Hall, P., and Cossart, Y.E. (1988). Virus-liver cell interactions in duck hepatitis B virus infection. A study of virus dissemination within the liver. Gastroenterology. 95(5):1375-82.
Jilbert, A.R., Freiman, J.S., Gowans, E.J., Holmes, M., Cossart, Y.E., and Burrell, C.J. (1987b). Duck hepatitis B virus DNA in liver, spleen, and pancreas: analysis by in situ and Southern blot hybridization. Virology. 158(2):330-8.
Jilbert, A.R., Miller, D.S., Scougall, C.A., Turnbull, H., and Burrell, C.J. (1996). Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology. 226(2):338-45.
Jilbert, A.R., Wu, T.T., England, J.M., Hall, P.M., Carp, N.Z., O'Connell, A.P., and Mason, W.S. (1992). Rapid resolution of duck hepatitis B virus infections occurs after massive hepatocellular involvement. Journal of Virology. 66(3):1377-88.
Jin, Y., Shih, W.K., and Berkower, I. (1988). Human T cell response to the surface antigen of hepatitis B virus (HBsAg). Endosomal and nonendosomal processing pathways are accessible to both endogenous and exogenous antigen. Journal of Experimental Medicine. 168(1):293-306.
Jotereau, F.V., Houssaint, E., and Le Douarin, N.M. (1980). Lymphoid stem cell homing to the early thymic primordium of the avian embryo. European Journal of Immunology. 10(8):620-7.

Kaiser, P., Wain, H.M., and Rothwell, L. (1998). Structure of the chicken interferon-gamma gene, and comparison to mammalian homologues. Gene. 207(1):25-32.
Kajino, K., Jilbert, A.R., Saputelli, J., Aldrich, C.E., Cullen, J., and Mason, W.S. (1994). Woodchuck hepatitis virus infections: very rapid recovery after a prolonged viremia and infection of virtually every hepatocyte. Journal of Virology. 68(9):5792-803.

Kanellos, T., Sylvester, I.D., Ambali, A.G., Howard, C.R., and Russell, P.H. (1999). The safety and longevity of DNA vaccines for fish. Immunology. 96(2):307-13.
Kaplan, P.M., Greenman, R.L., Gerin, J.L., Purcell, R.H., and Robinson, W.S. (1973). DNA polymerase associated with human hepatitis B antigen. Journal of Virology. 12(5):9951005.

Karthigesu, V.D., Allison, L.M., Fortuin, M., Mendy, M., Whittle, H.C., and Howard, C.R. (1994). A novel hepatitis B virus variant in the sera of immunized children. Journal of General Virology. 75(Pt 2):443-8.
Kasper, L.H., Matsuura, T., and Khan, I.A. (1995). IL-7 stimulates protective immunity in mice against the intracellular pathogen, Toxoplasma gondii. Journal of Immunology. 155(10):4798-804.
Kato, H., Orito, E., Sugauchi, F., Ueda, R., Gish, R.G., Usuda, S., Miyakawa, Y., and Mizokami, M. (2001). Determination of hepatitis B virus genotype G by polymerase chain reaction with hemi-nested primers. Journal of Virological Methods. 98(2):153-9.
Kato, Y., Nakagawa, H., Kobayashi, K., Hattori, N., and Hatano, K. (1982). Interferon production by peripheral lymphocytes in HBsAg-positive liver diseases. Hepatology. 2(6):789-90.
Kay, A., Mandart, E., Trepo, C., and Galibert, F. (1985). The HBV HBX gene expressed in E. coli is recognised by sera from hepatitis patients. EMBO Journal. 4(5):1287-92.

Kendall, M.D. (1980). Avian thymus glands: a review. Developmental \& Comparative Immunology. 4(2):191-209.

Keum, W.K., Kim, J.Y., Chi, S.G., Woo, H.J., Kim, S.S., Ha, J., and Kang, I. (1998). Heterogeneous HBV mutants coexist in Korean hepatitis B patients. Experimental \& Molecular Medicine. 30(2):115-22.
Kim, J.J., Simbiri, K.A., Sin, J.I., Dang, K., Oh, J., Dentchev, T., Lee, D., Nottingham, L.K., Chalian, A.A., McCallus, D., Ciccarelli, R., Agadjanyan, M.G., and Weiner, D.B. (1999). Cytokine molecular adjuvants modulate immune responses induced by DNA vaccine constructs for HIV-1 and SIV. Journal of Interferon \& Cytokine Research. 19(1):77-84.

Kim, J.J., Yang, J.S., Lee, D.J., Wilson, D.M., Nottingham, L.K., Morrison, L., Tsai, A., Oh, J., Dang, K., Dentchev, T., Agadjanyan, M.G., Sin, J.I., Chalian, A.A., and Weiner, D.B. (2000). Macrophage colony-stimulating factor can modulate immune responses and attract dendritic cells in vivo. Human Gene Therapy. 11(2):305-21.
Kim, K.H., and Seong, B.L. (2003). Pro-apoptotic function of HBV X protein is mediated by interaction with c-FLIP and enhancement of death-inducing signal.[erratum appears in EMBO J. 2003 Jun 16;22(12):3198]. EMBO Journal. 22(9):2104-16.
Kitao, H., Arakawa, H., Yamagishi, H., and Shimizu, A. (1996). Chicken immunoglobulin mu-chain gene: germline organization and tandem repeats characteristic of class switch recombination. Immunology Letters. 52(2-3):99-104.

Klavinskis, L.S., Barnfield, C., Gao, L., and Parker, S. (1999). Intranasal immunization with plasmid DNA-lipid complexes elicits mucosal immunity in the female genital and rectal tracts. Journal of Immunology. 162(1):254-62.

Kobyashi, M., Chayama, K., Arase, Y., Tsubota, A., Saitoh, S., Suzuki, Y., Kobayashi, M., Murashima, N., Ikeda, K., Hagiwara, M., Hashimoto, R., Nakagawa, M., Matsuda, M., and Kumada, H. (2000). Progressive and sufficient decrease of hepatitis B core antibody can predict the disappearance of hepatitis B virus DNA in Japanese patients with hepatitis B surface antigen clearance. Journal of Gastroenterology. 35(10):753-7.
Kock, J., and Schlicht, H.J. (1993). Analysis of the earliest steps of hepadnavirus replication: genome repair after infectious entry into hepatocytes does not depend on viral polymerase activity. Journal of Virology. 67(8):4867-74.
Koike, K. (1999). Co-infection of HBV with HCV and a possible role of HBV DNA in hepatocarcinogenesis. Nippon Rinsho - Japanese Journal of Clinical Medicine. 57(1):213-9.

Kojima, M., Shimizu, M., Tsuchimochi, T., Koyasu, M., Tanaka, S., Iizuka, H., Tanaka, T., Okamoto, H., Tsuda, F., and Miyakawa, Y. (1991). Posttransfusion fulminant hepatitis B associated with precore-defective HBV mutants. Vox Sanguinis. 60(1):34-9.
Kollias, G.V. (1986). Relationships of Avian Immune Structure and Function to Infectious Diseases. In: Harrison, G.J., and L.R. Harrison (Eds.) Clinical Avian Medicine and Surgery. W.B. Saunders Company, Sydney. pp.313-7.

Korba, B.E., Brown, T.L., Wells, F.V., Baldwin, B., Cote, P.J., Steinberg, H., Tennant, B.C., and Gerin, J.L. (1990). Natural history of experimental woodchuck hepatitis virus infection: molecular virologic features of the pancreas, kidney, ovary, and testis. Journal of Virology. 64(9):4499-506.

Korba, B.E., Cote, P.J., Shapiro, M., Purcell, R.H., and Gerin, J.L. (1989a). In vitro production of infectious woodchuck hepatitis virus by lipopolysaccharide-stimulated peripheral blood lymphocytes. Journal of Infectious Diseases. 160(4):572-6.
Korba, B.E., Cote, P.J., Wells, F.V., Baldwin, B., Popper, H., Purcell, R.H., Tennant, B.C., and Gerin, J.L. (1989b). Natural history of woodchuck hepatitis virus infections during the course of experimental viral infection: molecular virologic features of the liver and lymphoid tissues. Journal of Virology. 63(3):1360-70.

Korba, B.E., Wells, F., Tennant, B.C., Cote, P.J., and Gerin, J.L. (1987). Lymphoid cells in the spleens of woodchuck hepatitis virus-infected woodchucks are a site of active viral replication. Journal of Virology. 61(5):1318-24.

Korba, B.E., Wells, F., Tennant, B.C., Yoakum, G.H., Purcell, R.H., and Gerin, J.L. (1986). Hepadnavirus infection of peripheral blood lymphocytes in vivo: woodchuck and chimpanzee models of viral hepatitis. Journal of Virology. 58(1):1-8.

Kossel, A. (1893). Untersuchungen über die Nukleine und ihre Spaltungsprodubte.
Kozak, M. (1981). Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Research. 9(20):5233-62.
Kozak, M. (1987). An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research. 15(20):8125-48.

Kozak, M. (1996). Interpreting cDNA sequences: some insights from studies on translation. Mammalian Genome. 7(8):563-74.
Kozak, M. (1997). Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6 . EMBO Journal. 16(9):2482-92.

Kranz, D.M., Sherman, D.H., Sitkovsky, M.V., Pasternack, M.S., and Eisen, H.N. (1984). Immunoprecipitation of cell surface structures of cloned cytotoxic T lymphocytes by clonespecific antisera. Proceedings of the National Academy of Sciences of the United States of America. 81(2):573-7.

Kriesel, J.D., Spruance, S.L., Daynes, R.A., and Araneo, B.A. (1996). Nucleic acid vaccine encoding gD2 protects mice from herpes simplex virus type 2 disease. Journal of Infectious Diseases. 173(3):536-41.

Krishnan, B.R., Blakesley, R.W., and Berg, D.E. (1991). Linear amplification DNA sequencing directly from single phage plaques and bacterial colonies. Nucleic Acids Research. 19(5):1153.

Krugman, S. (1975). Viral hepatitis type B: propects for active immunization. Developments in Biological Standardization. 30:363-7.
Kumagai, K., Takagi, T., Sakai, C., Oguro, M., Kawai, S., Nakahori, S., Yokosuka, O., and Ohtoh, M. (1993). A fatal case of a hepatitis B virus carrier with fulminant hepatic failure after cytotoxic chemotherapy for malignant lymphoma. Rinsho Ketsueki - Japanese Journal of Clinical Hematology. 34(12):1587-9.

Kwok, S., and Higuchi, R. (1989). Avoiding false positives with PCR.[erratum appears in Nature 1989 Jun 8;339(6224):490]. Nature. 339(6221):237-8.
Kyte, J., and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology. 157(1):105-32.

Lambert, V., Chassot, S., Kay, A., Trepo, C., and Cova, L. (1991a). In vivo neutralization of duck hepatitis B virus by antibodies specific to the N-terminal portion of pre-S protein. Virology. 185(1):446-50.
Lambert, V., Cova, L., Chevallier, P., Mehrotra, R., and Trepo, C. (1991b). Natural and experimental infection of wild mallard ducks with duck hepatitis B virus. Journal of General Virology. 72(Pt 2):417-20.

Lambert, V., Fernholz, D., Sprengel, R., Fourel, I., Deleage, G., Wildner, G., Peyret, C., Trepo, C., Cova, L., and Will, H. (1990). Virus-neutralizing monoclonal antibody to a conserved epitope on the duck hepatitis B virus pre-S protein. Journal of Virology. 64(3):1290-7.
Lau, J.Y., Alexander, G.J., and Alberti, A. (1991). Viral hepatitis. Gut. Suppl:S47-62.
Lau, J.Y., Bain, V.G., Davies, S.E., O'Grady, J.G., Alberti, A., Alexander, G.J., and Williams, R. (1992). High-level expression of hepatitis B viral antigens in fibrosing cholestatic hepatitis. Gastroenterology. 102(3):956-62.

Lawton, A.R., Wu, L.Y., and Cooper, M.D. (1975). A spectrum of B-cell differentiation defects. Birth Defects: Original Article Series. 11(1):28-32.
Le Bouvier, G.L. (1971). The heterogeneity of Australia antigen. Journal of Infectious Diseases. 123(6):671-5.

Le Guerhier, F., Thermet, A., Guerret, S., Chevallier, M., Jamard, C., Gibbs, C.S., Trepo, C., Cova, L., and Zoulim, F. (2003). Antiviral effect of adefovir in combination with a DNA vaccine in the duck hepatitis B virus infection model. Journal of Hepatology. 38(3):328-34.

Le, T.P., Coonan, K.M., Hedstrom, R.C., Charoenvit, Y., Sedegah, M., Epstein, J.E., Kumar, S., Wang, R., Doolan, D.L., Maguire, J.D., Parker, S.E., Hobart, P., Norman, J., and Hoffman, S.L. (2000). Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine. 18(18):1893901.

Lee, J.S. (1991). Alternative dideoxy sequencing of double-stranded DNA by cyclic reactions using Taq polymerase. DNA \& Cell Biology. 10(1):67-73.
Lee, L.G., Connell, C.R., Woo, S.L., Cheng, R.D., McArdle, B.F., Fuller, C.W., Halloran, N.D., and Wilson, R.K. (1992). DNA sequencing with dye-labeled terminators and T7 DNA polymerase: effect of dyes and dNTPs on incorporation of dye-terminators and probability analysis of termination fragments. Nucleic Acids Research. 20(10):2471-83.
Lee, M.O., Choi, Y.H., Shin, E.C., Kang, H.J., Kim, Y.M., Jeong, S.Y., Seong, J.K., Yu, D.Y., Cho, H., Park, J.H., and Kim, S.J. (2002). Hepatitis B virus X protein induced expression of interleukin 18 (IL-18): a potential mechanism for liver injury caused by hepatitis B virus (HBV) infection. Journal of Hepatology. 37(3):380-6.
Lenhoff, R.J., Luscombe, C.A., and Summers, J. (1998). Competition in vivo between a cytopathic variant and a wild-type duck hepatitis B virus. Virology. 251(1):85-95.
Lenhoff, R.J., Luscombe, C.A., and Summers, J. (1999). Acute liver injury following infection with a cytopathic strain of duck hepatitis B virus. Hepatology. 29(2):563-71.

Lenschow, D.J., Walunas, T.L., and Bluestone, J.A. (1996). CD28/B7 system of T cell costimulation. Annual Review of Immunology. 14:233-58.
Levene, C., and Blumberg, B.S. (1969). Additional specificities of Australia antigen and the possible identification of hepatitis carriers. Nature. 221(176):195-6.

Li, J.S., Cova, L., Buckland, R., Lambert, V., Deleage, G., and Trepo, C. (1989). Duck hepatitis B virus can tolerate insertion, deletion, and partial frameshift mutation in the distal pre-S region. Journal of Virology. 63(11):4965-8.
Li, J.S., Tong, S.P., Wen, Y.M., Vitvitski, L., Zhang, Q., and Trepo, C. (1993). Hepatitis B virus genotype A rarely circulates as an HBe -minus mutant: possible contribution of a single nucleotide in the precore region. Journal of Virology. 67(9):5402-10.
Lien, J.M., Aldrich, C.E., and Mason, W.S. (1986). Evidence that a capped oligoribonucleotide is the primer for duck hepatitis B virus plus-strand DNA synthesis. Journal of Virology. 57(1):229-36.

Lien, J.M., Petcu, D.J., Aldrich, C.E., and Mason, W.S. (1987). Initiation and termination of duck hepatitis B virus DNA synthesis during virus maturation. Journal of Virology. 61(12):383240.

Lillehoj, H.S. (1991). Lymphocytes involved in cell-mediated immune responses and methods to assess cell-mediated immunity. [Review]. Poultry Science. 70(5):1154-64.

Lin, C.G., Yang, S.J., Hwang, W.L., Su, T.S., and Lo, S.J. (1995). Demonstration of the presence of protease-cutting site in the spacer of hepatitis B viral Pol protein. Journal of Virological Methods. 51(1):61-73.
Ling, R., Mutimer, D., Ahmed, M., Boxall, E.H., Elias, E., Dusheiko, G.M., and Harrison, T.J. (1996). Selection of mutations in the hepatitis B virus polymerase during therapy of transplant recipients with lamivudine. Hepatology. 24(3):711-3.

Liu, C.J., Chen, P.J., Lai, M.Y., Kao, J.H., Chang, C.F., Wu, H.L., Shau, W.Y., and Chen, D.S. (2003). A prospective study characterizing full-length hepatitis B virus genomes during acute exacerbation. Gastroenterology. 124(1):80-90.

Loeb, D.D., Hirsch, R.C., and Ganem, D. (1991). Sequence-independent RNA cleavages generate the primers for plus strand DNA synthesis in hepatitis B viruses: implications for other reverse transcribing elements. EMBO Journal. 10(11):3533-40.
Lok, A.S., Zoulim, F., Locarnini, S., Mangia, A., Niro, G., Decraemer, H., Maertens, G., Hulstaert, F., De Vreese, K., and Sablon, E. (2002). Monitoring drug resistance in chronic hepatitis B virus (HBV)-infected patients during lamivudine therapy: evaluation of performance of INNO-LiPA HBV DR assay. Journal of Clinical Microbiology. 40(10):3729-34.

Lowenthal, J.W., Lambrecht, B., van den Berg, T.P., Andrew, M.E., Strom, A.D., and Bean, A.G. (2000). Avian cytokines - the natural approach to therapeutics. Developmental \& Comparative Immunology. 24(2-3):355-65.
Lowrie, D.B., Silva, C.L., and Tascon, R.E. (1997). DNA vaccines against tuberculosis. Immunology \& Cell Biology. 75(6):591-4.

Lu, M., and Lorentz, T. (2003). De novo infection in a renal transplant recipient caused by novel mutants of hepatitis B virus despite the presence of protective anti-hepatitis B surface antibody. Journal of Infectious Diseases. 187(8):1323-6.
Lydyard, P.M., Grossi, C.E., and Cooper, M.D. (1976). Ontogeny of B cells in the chicken. I. Sequential development of clonal diversity in the bursa. Journal of Experimental Medicine. 144(1):79-97.

MacCallum, F.O., and Bauer, D.J. (1944). Homologous serum jaundice: Transmission experiments with human volunteers. Lancet. 1:622-7.

MacCallum, F.O., and Bradley, W.H. (1944). Transmission of infective hepatitis to human volunteers. Lancet. 2:228.

Maccubbin, D.L., and Schierman, L.W. (1986). MHC-restricted cytotoxic response of chicken T cells: expression, augmentation, and clonal characterization. Journal of Immunology. 136(1):12-6.
MacGregor, R.R., Boyer, J.D., Ugen, K.E., Lacy, K.E., Gluckman, S.J., Bagarazzi, M.L., Chattergoon, M.A., Baine, Y., Higgins, T.J., Ciccarelli, R.B., Coney, L.R., Ginsberg, R.S., and Weiner, D.B. (1998). First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. Journal of Infectious Diseases. 178(1):92-100.

Machida, A., Kishimoto, S., Ohnuma, H., Baba, K., Ito, Y., Miyamoto, H., Funatsu, G., Oda, K., Usuda, S., and Togami, S. (1984). A polypeptide containing 55 amino acid residues coded by the pre-S region of hepatitis B virus deoxyribonucleic acid bears the receptor for polymerized human as well as chimpanzee albumins. Gastroenterology. 86(5 Pt 1):910-8.

Macrae, D.R., Bruss, V., and Ganem, D. (1991). Myristylation of a duck hepatitis B virus envelope protein is essential for infectivity but not for virus assembly. Virology. 181(1):359-63.
Maggi, E., Parronchi, P., Manetti, R., Simonelli, C., Piccinni, M.P., Rugiu, F.S., De Carli, M., Ricci, M., and Romagnani, S. (1992). Reciprocal regulatory effects of IFN-gamma and IL-4 on the in vitro development of human Th1 and Th2 clones. Journal of Immunology. 148(7):2142-7.
Magnius, L., Berg, R., Bjorvatn, B., and Svedmyr, A. (1973). Shift in viral strains of hepatitis B in Stockholm as reflected by subtypes of hepatitis B antigen. Scandinavian Journal of Infectious Diseases. 5(2):81-3.

Magnius, L., Kaplan, L., Vyas, G.N., and Perkins, H.A. (1975). A new virus specified determinant of hepatitis B surface antigen. Acta Pathologica et Microbiologica Scandinavica - Section B, Microbiology. 83(3):295-7.

Magor, K.E., Higgins, D.A., Middleton, D.L., and Warr, G.W. (1999). Opposite orientation of the alpha- and upsilon-chain constant region genes in the immunoglobulin heavy chain locus of the duck. Immunogenetics. 49(7-8):692-5.

Magor, K.E., Warr, G.W., Bando, Y., Middleton, D.L., and Higgins, D.A. (1998). Secretory immune system of the duck (Anas platyrhynchos). Identification and expression of the genes encoding IgA and IgM heavy chains. European Journal of Immunology. 28(3):1063-8.

Maini, M.K., Boni, C., Lee, C.K., Larrubia, J.R., Reignat, S., Ogg, G.S., King, A.S., Herberg, J., Gilson, R., Alisa, A., Williams, R., Vergani, D., Naoumov, N.V., Ferrari, C., and Bertoletti, A. (2000). The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. Journal of Experimental Medicine. 191(8):1269-80.
Malacarne, F., Webster, G.J., Reignat, S., Gotto, J., Behboudi, S., Burroughs, A.K., Dusheiko, G.M., Williams, R., and Bertoletti, A. (2003). Tracking the source of the hepatitis B virus-specific CD8 T cells during lamivudine treatment. Journal of Infectious Diseases. 187(4):679-82.

Mandart, E., Kay, A., and Galibert, F. (1984). Nucleotide sequence of a cloned duck hepatitis B virus genome: comparison with woodchuck and human hepatitis B virus sequences. Journal of Virology. 49(3):782-92.
Mansikka, A. (1992). Chicken IgA H chains. Implications concerning the evolution of H chain genes. Journal of Immunology. 149(3):855-61.
Marion, P.L., Cullen, J.M., Azcarraga, R.R., Van Davelaar, M.J., and Robinson, W.S. (1987). Experimental transmission of duck hepatitis B virus to Pekin ducks and to domestic geese. Hepatology. 7(4):724-31.
Marion, P.L., Knight, S.S., Feitelson, M.A., Oshiro, L.S., and Robinson, W.S. (1983a). Major polypeptide of duck hepatitis B surface antigen particles. Journal of Virology. 48(2):534-41.
Marion, P.L., Knight, S.S., Ho, B.K., Guo, Y.Y., Robinson, W.S., and Popper, H. (1984). Liver disease associated with duck hepatitis B virus infection of domestic ducks. Proceedings of the National Academy of Sciences of the United States of America. 81(3):898-902.

Marion, P.L., Knight, S.S., Salazar, F.H., Popper, H., and Robinson, W.S. (1983b). Ground squirrel hepatitis virus infection. Hepatology. 3(4):519-27.
Marion, P.L., Oshiro, L.S., Regnery, D.C., Scullard, G.H., and Robinson, W.S. (1980). A virus in Beechey ground squirrels that is related to hepatitis B virus of humans. Proceedings of the National Academy of Sciences of the United States of America. 77(5):2941-5.

Marion, P.L., and Robinson, W.S. (1983). Hepadna viruses: hepatitis B and related viruses. Current Topics in Microbiology \& Immunology. 105:99-121.
Marion, P.L., Trepo, C., Matsubara, K., and Price, P. (1991). Experimental models in hepadnavirus research: Report of a workshop. In: Hollinger, F.B., S.M. Lemon, and H.S. Margolis (Eds.) Viral hepatitis and liver diseases. Williams and Wilkins, Baltimore. pp.866-79.

Martin, T., Parker, S.E., Hedstrom, R., Le, T., Hoffman, S.L., Norman, J., Hobart, P., and Lew, D. (1999). Plasmid DNA malaria vaccine: the potential for genomic integration after intramuscular injection. Human Gene Therapy. 10(5):759-68.
Martinez, V., Loh, Y.T., Rogler, C.E., Chisari, F.V., and Etiemble, J. (1994). Liver-specific expression and high oncogenic efficiency of a c-myc transgene activated by woodchuck hepatitis virus insertion. Journal of Virology. 68(9):5469-75.
Mason, A.L., Xu, L., Guo, L., Kuhns, M., and Perrillo, R.P. (1998). Molecular basis for persistent hepatitis B virus infection in the liver after clearance of serum hepatitis B surface antigen. Hepatology. 27(6):1736-42.
Mason, W.S., Halpern, M.S., England, J.M., Seal, G., Egan, J., Coates, L., Aldrich, C., and Summers, J. (1983). Experimental transmission of duck hepatitis B virus. Virology. 131(2):375-84.

Mason, W.S., Seal, G., and Summers, J. (1980). Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. Journal of Virology. 36(3):829-36.
Mathet, V.L., Feld, M., Espinola, L., Sanchez, D.O., Ruiz, V., Mando, O., Carballal, G., Quarleri, J.F., D'Mello, F., Howard, C.R., and Oubina, J.R. (2003). Hepatitis B virus S gene mutants in a patient with chronic active hepatitis with circulating Anti-HBs antibodies. Journal of Medical Virology. 69(1):18-26.

Matsubara, K., and Tokino, T. (1990). Integration of hepatitis B virus DNA and its implications for hepatocarcinogenesis. Mol Biol Med. (7):243-60.

Maxam, A.M., and Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America. 74(2):560-4.
Mazzur, S., Burgert, S., and Blumberg, B.S. (1974). Geographical distribution of Australia antigen determinants d, y and w. Nature. 247(435):38-40.

McAuliffe, V.J., Purcell, R.H., and Gerin, J.L. (1980). Type B hepatitis: a review of current prospects for a safe and effective vaccine. Reviews of Infectious Diseases. 2(3):470-92.
McCormack, W.T., Tjoelker, L.W., and Thompson, C.B. (1991). Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion. [Review]. Annual Review of Immunology. 9:219-41.

McShane, H., Behboudi, S., Goonetilleke, N., Brookes, R., and Hill, A.V. (2002). Protective immunity against Mycobacterium tuberculosis induced by dendritic cells pulsed with both CD8(+)- and CD4(+)-T-cell epitopes from antigen 85A. Infection \& Immunity. 70(3):16236.

Menne, S., Maschke, J., Tolle, T.K., Lu, M., and Roggendorf, M. (1997). Characterization of T-cell response to woodchuck hepatitis virus core protein and protection of woodchucks from infection by immunization with peptides containing a T-cell epitope. Journal of Virology. 71(1):65-74.
Menne, S., Roneker, C.A., Tennant, B.C., Korba, B.E., Gerin, J.L., and Cote, P.J. (2002). Immunogenic effects of woodchuck hepatitis virus surface antigen vaccine in combination with antiviral therapy: breaking of humoral and cellular immune tolerance in chronic woodchuck hepatitis virus infection. Intervirology. 45(4-6):237-50.
Meyer, R.K., Rao, M.A., and Aspinall, R.L. (1959). Inhibition of the development of the bursa of Fabricius in the embryo of the common fowl by 19-nortestosterone. Endocrinology. 64:8908.

Michel, M.L., Pontisso, P., Sobczak, E., Malpiece, Y., Streeck, R.E., and Tiollais, P. (1984). Synthesis in animal cells of hepatitis B surface antigen particles carrying a receptor for polymerized human serum albumin. Proceedings of the National Academy of Sciences of the United States of America. 81(24):7708-12.

Mieli-Vergani, G., Vergani, D., Portmann, B., White, Y., Murray-Lyon, I., Marigold, J.H., Woolf, I., Eddleston, A.L., and Williams, R. (1982). Lymphocyte cytotoxicity to autologous hepatocytes in HBsAg positive chronic liver disease. Gut. 23(12):1029-36.
Miescher, F. (1871). Ueber die chemische Zusammensetzung der Eiterzellen. Hoppe-Seyler's medicinisch-chemische Untersuchungen. 4:441-60.

Milich, D.R., Jones, J.E., Hughes, J.L., Price, J., Raney, A.K., and McLachlan, A. (1990). Is a function of the secreted hepatitis B e antigen to induce immunologic tolerance in utero? Proceedings of the National Academy of Sciences of the United States of America. 87(17):6599-603.
Milich, D.R., and McLachlan, A. (1986). The nucleocapsid of hepatitis B virus is both a T-cellindependent and a T-cell-dependent antigen. Science. 234(4782):1398-401.
Milich, D.R., McLachlan, A., Stahl, S., Wingfield, P., Thornton, G.B., Hughes, J.L., and Jones, J.E. (1988). Comparative immunogenicity of hepatitis B virus core and E antigens. Journal of Immunology. 141(10):3617-24.

Miller, R.H., and Robinson, W.S. (1984). Hepatitis B virus DNA forms in nuclear and cytoplasmic fractions of infected human liver. Virology. 137(2):390-9.
Millman, I., Zavatone, V., Gerstley, B.J., and Blumberg, B.S. (1969). Australia antigen detected in the nuclei of liver cells of patients with viral hepatitis by the fluorescent antibody technic. Nature. 222(189):181-4.

Min, W., Lillehoj, H.S., Burnside, J., Weining, K.C., Staeheli, P., and Zhu, J.J. (2001). Adjuvant effects of IL-1beta, IL-2, IL-8, IL-15, IFN-alpha, IFN-gamma TGF-beta4 and lymphotactin on DNA vaccination against Eimeria acervulina. Vaccine. 20(1-2):267-74.

Missale, G., Redeker, A., Person, J., Fowler, P., Guilhot, S., Schlicht, H.J., Ferrari, C., and Chisari, F.V. (1993). HLA-A31- and HLA-Aw68-restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. Journal of Experimental Medicine. 177(3):751-62.

Molnar-Kimber, K.L., Summers, J., Taylor, J.M., and Mason, W.S. (1983). Protein covalently bound to minus-strand DNA intermediates of duck hepatitis B virus. Journal of Virology. 45(1):165-72.
Mondelli, M., Vergani, G.M., Alberti, A., Vergani, D., Portmann, B., Eddleston, A.L., and Williams, R. (1982). Specificity of T lymphocyte cytotoxicity to autologous hepatocytes in chronic hepatitis B virus infection: evidence that T cells are directed against HBV core antigen expressed on hepatocytes. Journal of Immunology. 129(6):2773-8.

Moriarty, A.M., Alexander, H., Lerner, R.A., and Thornton, G.B. (1985). Antibodies to peptides detect new hepatitis B antigen: serological correlation with hepatocellular carcinoma. Science. 227(4685):429-33.

Moriyama, T., Guilhot, S., Klopchin, K., Moss, B., Pinkert, C.A., Palmiter, R.D., Brinster, R.L., Kanagawa, O., and Chisari, F.V. (1990). Immunobiology and pathogenesis of hepatocellular injury in hepatitis B virus transgenic mice. Science. 248(4953):361-4.
Mumcuoglu, M., Zakay-Rones, Z., Parag, G., Weiss, L., and Slavin, S. (1987). The effect of T lymphocyte depletion on susceptibility to influenza virus infection and development of antiviral immunity in lethally irradiated mice reconstituted with syngeneic bone marrow grafts. Bone Marrow Transplantation. 2(4):403-12.

Murray, V. (1989). Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Research. 17(21):8889.
Myers, R.M., Sheffield, V.C., and Cox, D.R. (1988). Detection of single base changes in DNA: Ribonuclease cleavage and denaturing gradient gel electrophoresis. In: Davies, K.E. (Ed.) Genome Analysis - A Practical Approach. IRL Press, Oxford, England. pp.95-139.

Naessens, J., Scheerlinck, J.P., De Buysscher, E.V., Kennedy, D., and Sileghem, M. (1998). Effective in vivo depletion of T cell subpopulations and loss of memory cells in cattle using mouse monoclonal antibodies. Veterinary Immunology \& Immunopathology. 64(3):219-34.

Nagaya, T., Nakamura, T., Tokino, T., Tsurimoto, T., Imai, M., Mayumi, T., Kamino, K., Yamamura, K., and Matsubara, K. (1987). The mode of hepatitis B virus DNA integration in chromosomes of human hepatocellular carcinoma. Genes \& Development. 1(8):773-82.
Nagington, J. (1977). Reactivation of hepatitis b after transplantation operations. Lancet. 1(8011):558-60.

Nagington, J., Sutehall, G.M., and Cohen, B.J. (1984). Hepatitis B in the Cambridge dialysis and transplant unit 1966-1983. Journal of Medical Virology. 13(3):313-20.
Nakamura, Y., Suda, T., Nagata, T., Aoshi, T., Uchijima, M., Yoshida, A., Chida, K., Koide, Y., and Nakamura, H. (2003). Induction of protective immunity to Listeria monocytogenes with dendritic cells retrovirally transduced with a cytotoxic T lymphocyte epitope minigene. Infection \& Immunity. 71(4):1748-54.

Nassal, M., and Schaller, H. (1996). Hepatitis B virus replication--an update. Journal of Viral Hepatitis. 3(5):217-26.
Natt, M.P., and Herrick, C.A. (1952). A New Blood Diluent for Counting the Erythrocytes and Leucocytes of the Chicken.735-8.

Naumann, H., Schaefer, S., Yoshida, C.F., Gaspar, A.M., Repp, R., and Gerlich, W.H. (1993). Identification of a new hepatitis B virus (HBV) genotype from Brazil that expresses HBV surface antigen subtype adw4. Journal of General Virology. 74(Pt 8):1627-32.
Nayersina, R., Fowler, P., Guilhot, S., Missale, G., Cerny, A., Schlicht, H.J., Vitiello, A., Chesnut, R., Person, J.L., and Redeker, A.G. (1993). HLA A2 restricted cytotoxic T lymphocyte responses to multiple hepatitis B surface antigen epitopes during hepatitis B virus infection. Journal of Immunology. 150(10):4659-71.

Negro, F., Korba, B.E., Forzani, B., Baroudy, B.M., Brown, T.L., Gerin, J.L., and Ponzetto, A. (1989). Hepatitis delta virus (HDV) and woodchuck hepatitis virus (WHV) nucleic acids in tissues of HDV-infected chronic WHV carrier woodchucks. Journal of Virology. 63(4):1612-8.
Neurath, A.R., Adamowicz, P., Kent, S.B., Riottot, M.M., Strick, N., Parker, K., Offensperger, W., Petit, M.A., Wahl, S., and Budkowska, A. (1986a). Characterization of monoclonal antibodies specific for the pre-S2 region of the hepatitis B virus envelope protein. Molecular Immunology. 23(9):991-7.
Neurath, A.R., Kent, S.B., Parker, K., Prince, A.M., Strick, N., Brotman, B., and Sproul, P. (1986b). Antibodies to a synthetic peptide from the preS 120-145 region of the hepatitis B virus envelope are virus neutralizing. Vaccine. 4(1):35-7.
Neurath, A.R., Kent, S.B., Strick, N., and Parker, K. (1986c). Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell. 46(3):429-36.
Neurath, A.R., Kent, S.B., Strick, N., Taylor, P., and Stevens, C.E. (1985). Hepatitis B virus contains pre-S gene-encoded domains. Nature. 315(6015):154-6.
Neurath, A.R., Seto, B., and Strick, N. (1989). Antibodies to synthetic peptides from the preS1 region of the hepatitis B virus (HBV) envelope (env) protein are virus-neutralizing and protective. Vaccine. 7(3):234-6.
Ng, P.L., and Higgins, D.A. (1986). Bile immunoglobulin of the duck (Anas platyrhynchos). I. Preliminary characterization and ontogeny. Immunology. 58(2):323-7.
Ni, Y.H., Chang, M.H., Hsu, H.Y., and Tsuei, D.J. (2003). Different hepatitis B virus core gene mutations in children with chronic infection and hepatocellular carcinoma. Gut. 52(1):1225.

Nichols, W.W., Ledwith, B.J., Manam, S.V., and Troilo, P.J. (1995). Potential DNA vaccine integration into host cell genome. Annals of the New York Academy of Sciences. 772:30-9.
Nicoll, A.J., Angus, P.W., Chou, S.T., Luscombe, C.A., Smallwood, R.A., and Locarnini, S.A. (1997). Demonstration of duck hepatitis B virus in bile duct epithelial cells: implications for pathogenesis and persistent infection. Hepatology. 25(2):463-9.
Niederau, C., Heintges, T., Lange, S., Goldmann, G., Niederau, C.M., Mohr, L., and Haussinger, D. (1996). Long-term follow-up of HBeAg-positive patients treated with interferon alfa for chronic hepatitis B. [see comments]. New England Journal of Medicine. 334(22):1422-7.
Niedermann, G., King, G., Butz, S., Birsner, U., Grimm, R., Shabanowitz, J., Hunt, D.F., and Eichmann, K. (1996). The proteolytic fragments generated by vertebrate proteasomes: structural relationships to major histocompatibility complex class I binding peptides. Proceedings of the National Academy of Sciences of the United States of America. 93(16):8572-7.
Niesters, H.G., Honkoop, P., Haagsma, E.B., de Man, R.A., Schalm, S.W., and Osterhaus, A.D. (1998). Identification of more than one mutation in the hepatitis B virus polymerase gene arising during prolonged lamivudine treatment. Journal of Infectious Diseases. 177(5):1382-5.
Nishikawa, K. (1983). Assessment of secondary-structure prediction of proteins. Comparison of computerized Chou-Fasman method with others. Biochimica et Biophysica Acta. 748(2):285-99.
Nordenfelt, E. (1975). Some epidemiological and clinical aspects of hepatitis B antigen and its subtypes. Scandinavian Journal of Infectious Diseases. 7(2):147-52.
Norder, H., Hammas, B., Lofdahl, S., Courouce, A.M., and Magnius, L.O. (1992). Comparison of the amino acid sequences of nine different serotypes of hepatitis B surface antigen and genomic classification of the corresponding hepatitis B virus strains. Journal of General Virology. 73(Pt 5):1201-8.
Nouri-Aria, K.T., Arnold, J., Davison, F., Portmann, B.C., Meager, A., Morris, A.G., Alexander, G.J., Eddleston, A.L., and Williams, R. (1991). Hepatic interferon-alpha gene transcripts
and products in liver specimens from acute and chronic hepatitis B virus infection. [erratum appears in Hepatology 1991 Dec;14(6):1308]. Hepatology. 13(6):1029-34.
Nouri-Aria, K.T., Magrin, S., Alexander, G.J., Anderson, M.G., Williams, R., and Eddleston, A.L. (1988). Abnormal T-cell activation in chronic hepatitis B viral infection: a consequence of monocyte dysfunction? Immunology. 64(4):733-8.

Nowoslawski, A., Brzosko, W.J., Madalinski, K., and Krawczynski, K. (1970). Cellular localisation of Australia antigen in the liver of patients with lymphoproliferative disorders. Lancet. 1(7645):494-8.

O'Connell, A.P., Urban, M.K., and London, W.T. (1983). Naturally occurring infection of Pekin duck embryos by duck hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America. 80(6):1703-6.
O'Garra, A., and Murphy, K. (1994). Role of cytokines in determining T-lymphocyte function. Current Opinion in Immunology. 6(3):458-66.
Ogata, N., Tokino, T., Kamimura, T., and Asakura, H. (1990). A comparison of the molecular structure of integrated hepatitis B virus genomes in hepatocellular carcinoma cells and hepatocytes derived from the same patient. Hepatology. 11(6):1017-23.

Ogston, C.W., Jonak, G.J., Rogler, C.E., Astrin, S.M., and Summers, J. (1982). Cloning and structural analysis of integrated woodchuck hepatitis virus sequences from hepatocellular carcinomas of woodchucks. Cell. 29(2):385-94.
Okamoto, H., Imai, M., Shimozaki, M., Hoshi, Y., Iizuka, H., Gotanda, T., Tsuda, F., Miyakawa, Y., and Mayumi, M. (1986). Nucleotide sequence of a cloned hepatitis B virus genome, subtype ayr: comparison with genomes of the other three subtypes. Journal of General Virology. 67(Pt 11):2305-14.
Okamoto, H., Imai, M., Tsuda, F., Tanaka, T., Miyakawa, Y., and Mayumi, M. (1987). Point mutation in the S gene of hepatitis B virus for a d / y or w/r subtypic change in two blood donors carrying a surface antigen of compound subtype adyr or adwr. Journal of Virology. 61(10):3030-4.

Okamoto, H., Omi, S., Wang, Y., Itoh, Y., Tsuda, F., Tanaka, T., Akahane, Y., Miyakawa, Y., and Mayumi, M. (1989). The loss of subtypic determinants in alleles, d / y or w / r, on hepatitis B surface antigen. Molecular Immunology. 26(2):197-205.
Okamoto, H., Tsuda, F., Sakugawa, H., Sastrosoewignjo, R.I., Imai, M., Miyakawa, Y., and Mayumi, M. (1988). Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. Journal of General Virology. 69(Pt 10):2575-83.

Okamoto, H., Yano, K., Nozaki, Y., Matsui, A., Miyazaki, H., Yamamoto, K., Tsuda, F., Machida, A., and Mishiro, S. (1992). Mutations within the S gene of hepatitis B virus transmitted from mothers to babies immunized with hepatitis B immune globulin and vaccine. Pediatric Research. 32(3):264-8.

Okamoto, H., Yotsumoto, S., Akahane, Y., Yamanaka, T., Miyazaki, Y., Sugai, Y., Tsuda, F., Tanaka, T., Miyakawa, Y., and Mayumi, M. (1990). Hepatitis B viruses with precore region defects prevail in persistently infected hosts along with seroconversion to the antibody against e antigen. Journal of Virology. 64(3):1298-303.
Okamoto, R., Maeda, Y., and Sasaki, T. (2003). Hepatotoxicity of chemotherapy. Gan to Kagaku Ryoho [Japanese Journal of Cancer \& Chemotherapy]. 30(6):772-8.

Olah, I., and Glick, B. (1978). The number and size of the follicular epithelium (FE) and follicles in the bursa of Fabricius. Poultry Science. 57(5):1445-50.

Olah, I., Glick, B., and Taylor, R.L., Jr. (1985). Effect of surgical bursectomy on the ellipsoid, ellipsoid-associated cells, and periellipsoid region of the chicken's spleen. Journal of Leukocyte Biology. 38(4):459-69.
Omata, M., Hirota, K., and Yokosuka, O. (1986). In vivo study of the mechanism of action of antiviral agents against hepadna virus replication in the liver. Resistance of supercoiled viral DNA. Journal of Hepatology. 3 Suppl 2:S49-55.

Omata, M., Uchiumi, K., Ito, Y., Yokosuka, O., Mori, J., Terao, K., Wei-Fa, Y., O'Connell, A.P., London, W.T., and Okuda, K. (1983). Duck hepatitis B virus and liver diseases. Gastroenterology. 85(2):260-7.

Omata, M., Yokosuka, O., Imazeki, F., Matsuyama, Y., Uchiumi, K., Ito, Y., Mori, J., and Okuda, K. (1984). Transmission of duck hepatitis B virus from Chinese carrier ducks to Japanese ducklings: a study of viral DNA in serum and tissue. Hepatology. 4(4):603-7.
Onji, M., Lever, A.M., Saito, I., and Thomas, H.C. (1989). Defective response to interferons in cells transfected with the hepatitis B virus genome. Hepatology. 9(1):92-6.

Ono, S.K., Kato, N., Shiratori, Y., Kato, J., Goto, T., Schinazi, R.F., Carrilho, F.J., and Omata, M. (2001). The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance. Journal of Clinical Investigation. 107(4):449-55.
Ono, Y., Onda, H., Sasada, R., Igarashi, K., Sugino, Y., and Nishioka, K. (1983). The complete nucleotide sequences of the cloned hepatitis B virus DNA; subtype adr and adw. Nucleic Acids Research. 11(6):1747-57.
Ou, J.H., Laub, O., and Rutter, W.J. (1986). Hepatitis B virus gene function: the precore region targets the core antigen to cellular membranes and causes the secretion of the e antigen. Proceedings of the National Academy of Sciences of the United States of America. 83(6):1578-82.

Parvari, R., Avivi, A., Lentner, F., Ziv, E., Tel-Or, S., Burstein, Y., and Schechter, I. (1988). Chicken immunoglobulin gamma-heavy chains: limited VH gene repertoire, combinatorial diversification by D gene segments and evolution of the heavy chain locus. EMBO Journal. 7(3):739-44.
Patel, G., Howk, R., and Wang, T.Y. (1967). Partial purification of DNA-polymerase from the nonhistone chromatin proteins of rat liver. Nature. 215(109):1488-9.

Paton, D.J., Lowings, J.P., and Barrett, A.D. (1992). Epitope mapping of the gp53 envelope protein of bovine viral diarrhea virus.[erratum appears in Virology 1992 Dec;191(2):1013]. Virology. 190(2):763-72.
Pearson, W.R., and Lipman, D.J. (1988). Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America. 85(8):2444-8.

Penna, A., Artini, M., Cavalli, A., Levrero, M., Bertoletti, A., Pilli, M., Chisari, F.V., Rehermann, B., Del Prete, G., Fiaccadori, F., and Ferrari, C. (1996). Long-lasting memory T cell responses following self-limited acute hepatitis B. Journal of Clinical Investigation. 98(5):1185-94.
Penna, A., Chisari, F.V., Bertoletti, A., Missale, G., Fowler, P., Giuberti, T., Fiaccadori, F., and Ferrari, C. (1991). Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen. Journal of Experimental Medicine. 174(6):156570.

Persing, D.H., Varmus, H.E., and Ganem, D. (1987). The preS1 protein of hepatitis B virus is acylated at its amino terminus with myristic acid. Journal of Virology. 61(5):1672-7.

Peterson, D.L., Paul, D.A., Lam, J., Tribby, II, and Achord, D.T. (1984). Antigenic structure of hepatitis B surface antigen: identification of the "d" subtype determinant by chemical modification and use of monoclonal antibodies. Journal of Immunology. 132(2):920-7.
Petit, A., Ernst, P.B., Befus, A.D., Clark, D.A., Rosenthal, K.L., Ishizaka, T., and Bienenstock, J. (1985). Murine intestinal intraepithelial lymphocytes I. Relationship of a novel Thy-1-,Lyt-1-,Lyt-2+, granulated subpopulation to natural killer cells and mast cells. European Journal of Immunology. 15(3):211-5.

Petit, M.A., Strick, N., Dubanchet, S., Capel, F., and Neurath, A.R. (1991). Inhibitory activity of monoclonal antibody F35.25 on the interaction between hepatocytes (HepG2 cells) and preS1-specific ligands. Molecular Immunology. 28(4-5):517-21.

Pignatelli, M., Waters, J., Brown, D., Lever, A., Iwarson, S., Schaff, Z., Gerety, R., and Thomas, H.C. (1986). HLA class I antigens on the hepatocyte membrane during recovery from acute hepatitis B virus infection and during interferon therapy in chronic hepatitis B virus infection. Hepatology. 6(3):349-53.

Pignatelli, M., Waters, J., Lever, A., Iwarson, S., Gerety, R., and Thomas, H.C. (1987). Cytotoxic Tcell responses to the nucleocapsid proteins of HBV in chronic hepatitis. Evidence that antibody modulation may cause protracted infection. Journal of Hepatology. 4(1):15-21.
Planz, O., Seiler, P., Hengartner, H., and Zinkernagel, R.M. (1996). Specific cytotoxic T cells eliminate B cells producing virus-neutralizing antibodies. Nature. 382(6593):726-9.

Pol, S., Driss, F., Carnot, F., Michel, M.L., Berthelot, P., and Brechot, C. (1993). Efficacite d'une immunotherapie par vaccination contre le virus de l'hepatite B sur la multiplication virale B. Comptes Rendus de L'Academie des Sciences - Serie Iii, Sciences de la Vie. 316(7):688-91.
Ponzetto, A., Cote, P.J., Ford, E.C., Purcell, R.H., and Gerin, J.L. (1984). Core antigen and antibody in woodchucks after infection with woodchuck hepatitis virus. Journal of Virology. 52(1):70-6.
Popper, H., Shih, J.W., Gerin, J.L., Wong, D.C., Hoyer, B.H., London, W.T., Sly, D.L., and Purcell, R.H. (1981). Woodchuck hepatitis and hepatocellular carcinoma: correlation of histologic with virologic observations. Hepatology. 1(2):91-8.
Pouteil-Noble, C., Tardy, J.C., Chossegros, P., Mion, F., Chevallier, M., Gerard, F., Chevallier, P., Megas, F., Lefrancois, N., and Touraine, J.L. (1995). Co-infection by hepatitis B virus and hepatitis C virus in renal transplantation: morbidity and mortality in 1098 patients. Nephrology Dialysis Transplantation. 10 Suppl 6:122-4.
Powell, P.C. (1987). Macrophages and other nonlymphoid cells contributing to immunity. In: Toivanen, A., and P. Toivanen (Eds.) Avian Immunology: Basis and Practice. CRC Press Inc Vol.Boca Raton, Florida, pp.195-212.
Prassolov, A., Hohenberg, H., Kalinina, T., Schneider, C., Cova, L., Krone, O., Frolich, K., Will, H., and Sirma, H. (2003). New hepatitis B virus of cranes that has an unexpected broad host range. Journal of Virology. 77(3):1964-76.
Prince, A.M. (1968a). An antigen detected in the blood during the incubation period of serum hepatitis. Proceedings of the National Academy of Sciences of the United States of America. 60(3):814-21.
Prince, A.M. (1968b). Relation of Australia and SH antigens. Lancet. 2(7565):462-3.
Prince, A.M. (1970a). The high voltage immunoelectroosmophoretic (IEOP) technique for detection of SH antigen: application to blood donor screening and to study of liver disease. Vox Sanguinis. 19(3):205-10.
Prince, A.M. (1970b). Prevalence of serum-hepatitis-related antigen (SH) in different geographic regions. American Journal of Tropical Medicine \& Hygiene. 19(5):872-9.
Prince, A.M., Hashimoto, N., Neurath, A.R., and Trepo, C. (1975). Some considerations regarding active immunization with HBsAg. Developments in Biological Standardization. 30:368-74.
Prince, A.M., Ikram, H., and Hopp, T.P. (1982). Hepatitis B virus vaccine: identification of HBsAg/a and $\mathrm{HBsAg} / \mathrm{d}$ but not $\mathrm{HBsAg} / \mathrm{y}$ subtype antigenic determinants on a synthetic immunogenic peptide. Proceedings of the National Academy of Sciences of the United States of America. 79(2):579-82.
Prober, J.M., Trainor, G.L., Dam, R.J., Hobbs, F.W., Robertson, C.W., Zagursky, R.J., Cocuzza, A.J., Jensen, M.A., and Baumeister, K. (1987). A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 238(4825):336-41.
Pugh, J.C., Di, Q., Mason, W.S., and Simmons, H. (1995). Susceptibility to duck hepatitis B virus infection is associated with the presence of cell surface receptor sites that efficiently bind viral particles. Journal of Virology. 69(8):4814-22.
Pugh, J.C., and Simmons, H. (1994). Duck hepatitis B virus infection of Muscovy duck hepatocytes and nature of virus resistance in vivo. Journal of Virology. 68(4):2487-94.

Pugh, J.C., Sninsky, J.J., Summers, J.W., and Schaeffer, E. (1987). Characterization of a pre-S polypeptide on the surfaces of infectious avian hepadnavirus particles. Journal of Virology. 61(5):1384-90.
Pult, I., Abbott, N., Zhang, Y.Y., and Summers, J. (2001a). Frequency of spontaneous mutations in an avian hepadnavirus infection. Journal of Virology. 75(20):9623-32.

Pult, I., Netter, H.J., Bruns, M., Prassolov, A., Sirma, H., Hohenberg, H., Chang, S.F., Frolich, K., Krone, O., Kaleta, E.F., and Will, H. (2001b). Identification and analysis of a new hepadnavirus in white storks. Virology. 289(1):114-28.
Qiao, M., Gowans, E.J., Bailey, S.E., Jilbert, A.R., and Burrell, C.J. (1990). Serological analysis of duck hepatitis B virus infection. Virus Research. 17(1):3-13.
Quere, P. (1992). Suppression mediated in vitro by Marek's disease virus-transformed Tlymphoblastoid cell lines: effect on lymphoproliferation. Veterinary Immunology \& Immunopathology. 32(1-2):149-64.

Qureshi, M.A., Heggen, C.L., and Hussain, I. (2000). Avian macrophage: effector functions in health and disease. Developmental \& Comparative Immunology. 24(2-3):103-19.
Radziwill, G., Tucker, W., and Schaller, H. (1990). Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity. Journal of Virology. 64(2):613-20.

Ramadori, G., Moebius, U., Meuer, S., and Meyer zum Buschenfelde, J.L. (1987). Liver cell damage in chronic active hepatitis B: Possible role of non-specific mechanisms. Journal of Medical Virology. 21:85A.

Ramshaw, I.A., Fordham, S.A., Bernard, C.C., Maguire, D., Cowden, W.B., and Willenborg, D.O. (1997). DNA vaccines for the treatment of autoimmune disease. Immunology \& Cell Biology. 75(4):409-13.

Ratcliffe, M.J.H., Lassila, O., Reynolds, J., Pink, J.R.L., and Vainio, O. (1987). A re-evaluation of the function of the bursa of fabricius. In: Progress in clinical and biological research. New York Vol.International confer, pp.3-14.
Raunio, V.K., London, W.T., Sutnick, A.I., Millman, I., and Blumberg, B.S. (1970). Specificities of human antibodies to Australia antigen. Experimental Biology \& Medicine. 134(2):548-57.

Raz, E., Tighe, H., Sato, Y., Corr, M., Dudler, J.A., Roman, M., Swain, S.L., Spiegelberg, H.L., and Carson, D.A. (1996). Preferential induction of a Th1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proceedings of the National Academy of Sciences of the United States of America. 93(10):5141-5.
Raz, E., Watanabe, A., Baird, S.M., Eisenberg, R.A., Parr, T.B., Lotz, M., Kipps, T.J., and Carson, D.A. (1993). Systemic immunological effects of cytokine genes injected into skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America. 90(10):4523-7.

Realdi, G., Alberti, A., Rugge, M., Bortolotti, F., Rigoli, A.M., Tremolada, F., and Ruol, A. (1980). Seroconversion from hepatitis B e antigen to anti- HBe in chronic hepatitis B virus infection. Gastroenterology. 79(2):195-9.
Reed, and Muench. (1938). A Simple Method of Estimating fifty per cent Endpoints. American Journal of Hygene. 27:493-7.

Reeve, M.A., and Fuller, C.W. (1995). A novel thermostable polymerase for DNA sequencing. Nature. 376(6543):796-7.

Rehermann, B., Ferrari, C., Pasquinelli, C., and Chisari, F.V. (1996a). The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nature Medicine. 2(10):1104-8.
Rehermann, B., Fowler, P., Sidney, J., Person, J., Redeker, A., Brown, M., Moss, B., Sette, A., and Chisari, F.V. (1995). The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. Journal of Experimental Medicine. 181(3):1047-58.

Rehermann, B., Lau, D., Hoofnagle, J.H., and Chisari, F.V. (1996b). Cytotoxic T lymphocyte responsiveness after resolution of chronic hepatitis B virus infection. Journal of Clinical Investigation. 97(7):1655-65.
Reisner, A. (1995). Coming of age of ANGIS: The Australian National Genomic Information Service. Today's Life Science.16-8.

Ridge, J.P., Fuchs, E.J., and Matzinger, P. (1996). Neonatal tolerance revisited: turning on newborn T cells with dendritic cells.[comment]. Science. 271(5256):1723-6.

Robertson, A.J., Gibbs, J.H., Potts, R.C., Brown, R.A., Browning, M.C., and Beck, J.S. (1981). Dose-related depression of PHA-induced stimulation of human lymphocytes by hydrocortisone. International Journal of Immunopharmacology. 3(1):21-9.

Robertson, B.H., and Margolis, H.S. (2002). Primate hepatitis B viruses - genetic diversity, geography and evolution. Reviews in Medical Virology. 12(3):133-41.

Robinson, W.S. (1977). The genome of hepatitis B virus. Annual Review of Microbiology. 31:35777.

Robinson, W.S. (1994). Molecular events in the pathogenesis of hepadnavirus-associated hepatocellular carcinoma. Annual Review of Medicine. 45:297-323.

Roingeard, P., Romet-Lemonne, J.L., Leturcq, D., Goudeau, A., and Essex, M. (1990). Hepatitis B
 transfected cells is associated with cytopathic effect. Virology. 179(1):113-20.
Roitt, I.M., and Delves, P.J. (2001). Roitt's essential immunology. Oxford, Blackwell Science.
Romppanen, T., and Sorvari, T.E. (1981). A morphometrical study of chicken spleen with special reference to the bursa dependence of the white pulp. International Archives of Allergy \& Applied Immunology. 65(3):349-58.

Rothbach, C., Nagel, J., Rabin, B., and Fireman, P. (1979). Antibody deficiency with normal immunoglobulins. Journal of Pediatrics. 94(2):250-3.
Ryu, W.S. (2003). Molecular aspects of hepatitis B viral infection and the viral carcinogenesis. Journal of Biochemistry \& Molecular Biology. 36(1):138-43.

Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 239(4839):487-91.
Saito, H., Kranz, D.M., Takagaki, Y., Hayday, A.C., Eisen, H.N., and Tonegawa, S. (1984a). Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. Nature. 309(5971):757-62.

Saito, H., Kranz, D.M., Takagaki, Y., Hayday, A.C., Eisen, H.N., and Tonegawa, S. (1984b). A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes. Nature. 312(5989):36-40.
Sakaguchi, S., Toda, M., Asano, M., Itoh, M., Morse, S.S., and Sakaguchi, N. (1996). T cellmediated maintenance of natural self-tolerance: its breakdown as a possible cause of various autoimmune diseases. Journal of Autoimmunity. 9(2):211-20.

Salaman, M.R. (2003). A two-step hypothesis for the appearance of autoimmune disease. Autoimmunity. 36(2):57-61.
Salucci, V., Lu, M., Aurisicchio, L., La Monica, N., Roggendorf, M., and Palombo, F. (2002). Expression of a new woodchuck IFN-alpha gene by a helper-dependent adenoviral vector in woodchuck hepatitis virus-infected primary hepatocytes. Journal of Interferon \& Cytokine Research. 22(10):1027-34.

Sambrook, J., Russell, D.W., and Cold Spring Harbor Laboratory. (2001). Molecular cloning : a laboratory manual. Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory.
Samuel, D., and Kimmoun, E. (2003). Immunosuppression in hepatitis B virus and hepatitis C virus transplants: special considerations. Clinics in Liver Disease. 7(3):667-81.

Sandhu, G.S., Aleff, R.A., and Kline, B.C. (1992). Dual asymmetric PCR: one-step construction of synthetic genes. Biotechniques. 12(1):14-6.
Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, C.A., Hutchison, C.A., Slocombe, P.M., and Smith, M. (1977a). Nucliotide sequence of bacteriophage phi X174 DNA. Nature. 265(5596):687-95.
Sanger, F., and Coulson, A.R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology. 94(3):441-8.

Sanger, F., Nicklen, S., and Coulson, A.R. (1977b). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America. 74(12):5463-7.
Santantonio, T., Jung, M.C., Pastore, G., Angarano, G., Gunther, S., and Will, H. (1997). Familial clustering of HBV pre-C and pre-S mutants. Journal of Hepatology. 26(2):221-7.

Santantonio, T., Jung, M.C., Schneider, R., Fernholz, D., Milella, M., Monno, L., Pastore, G., Pape, G.R., and Will, H. (1992). Hepatitis B virus genomes that cannot synthesize pre-S2 proteins occur frequently and as dominant virus populations in chronic carriers in Italy. Virology. 188(2):948-52.
Sastrosoewignjo, R.I., Sandjaja, B., and Okamoto, H. (1991). Molecular epidemiology of hepatitis B virus in Indonesia. Journal of Gastroenterology \& Hepatology. 6(5):491-8.
Sato, K., and Glick, B. (1970). Antibody and cell mediated immunity in corticosteroid-treated chicks. Poultry Science. 49(4):982-6.
Saxena, S., Nouri-Aria, K.T., Anderson, M.G., Williams, R., and Eddleston, A.L. (1985). In vitro alpha-interferon treatment of peripheral blood mononuclear cells improves interleukin-2 activity in HBV-related chronic liver disease. Journal of Hepatology. 1(4):385-93.
Schaeffer, E., Snyder, R.L., and Sninsky, J.J. (1986). Identification and localization of pre-s-encoded polypeptides from woodchuck and ground squirrel hepatitis viruses. Journal of Virology. 57(1):173-82.
Schlaak, J.F., Hilkens, C.M., Costa-Pereira, A.P., Strobl, B., Aberger, F., Frischauf, A.M., and Kerr, I.M. (2002). Cell-type and donor-specific transcriptional responses to interferon-alpha. Use of customized gene arrays. Journal of Biological Chemistry. 277(51):49428-37.
Schlicht, H.J., Kuhn, C., Guhr, B., Mattaliano, R.J., and Schaller, H. (1987a). Biochemical and immunological characterization of the duck hepatitis B virus envelope proteins. Journal of Virology. 61(7):2280-5.
Schlicht, H.J., Salfeld, J., and Schaller, H. (1987b). The duck hepatitis B virus pre-C region encodes a signal sequence which is essential for synthesis and secretion of processed core proteins but not for virus formation. Journal of Virology. 61(12):3701-9.
Schmidt, N.J., Roberto, R.R., and Lennette, E.H. (1972). Occurrence and persistence of "Australia" antigen determinants. Infection \& Immunity. 6(1):1-4.
Schneider, U., Schwenk, H.U., and Bornkamm, G. (1977). Characterization of EBV-genome negative "null" and " T " cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. International Journal of Cancer. 19(5):621-6.
Schodel, F., Weimer, T., Fernholz, D., Schneider, R., Sprengel, R., Wildner, G., and Will, H. (1991). The biology of avian hepatitis B viruses. In: McLachlan, A. (Ed.) Molecular biology of the hepatitis B virus. CRC Press, Boca Raton. pp.53-80.
Schulte-Frohlinde, E., Seidler, B., Burkard, I., Freilinger, T., Lersch, C., Erfle, V., Foster, G.R., and Classen, M. (2002). Different activities of type I interferons on hepatitis B virus core promoter regulated transcription. Cytokine. 17(4):214-20.
Schultz, U., and Chisari, F.V. (1999). Recombinant duck interferon gamma inhibits duck hepatitis B virus replication in primary hepatocytes. Journal of Virology. 73(4):3162-8.

Schultz, U., Kock, J., Schlicht, H.J., and Staeheli, P. (1995). Recombinant duck interferon: a new reagent for studying the mode of interferon action against hepatitis B virus. Virology. 212(2):641-9.
Schuster, R., Hildt, E., Chang, S.F., Terradillos, O., Pollicino, T., Lanford, R., Gerlich, W.H., Will, H., and Schaefer, S. (2002). Conserved transactivating and pro-apoptotic functions of hepadnaviral X protein in ortho- and avihepadnaviruses. Oncogene. 21(43):6606-13.
Scudeletti, M., Indiveri, F., Pierri, I., Picciotto, A., and Ferrone, S. (1986). T cells from patients with chronic liver diseases: abnormalities in PHA-induced expression of HLA class II antigens and in autologous mixed-lymphocyte reactions. Cellular Immunology. 102(1):227-33.

Seder, R.A., Paul, W.E., Davis, M.M., and Fazekas de St Groth, B. (1992). The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. Journal of Experimental Medicine. 176(4):1091-8.

Seeger, C., Ganem, D., and Varmus, H.E. (1984a). The cloned genome of ground squirrel hepatitis virus is infectious in the animal. Proceedings of the National Academy of Sciences of the United States of America. 81(18):5849-52.
Seeger, C., Ganem, D., and Varmus, H.E. (1984b). Nucleotide sequence of an infectious molecularly cloned genome of ground squirrel hepatitis virus. Journal of Virology. 51(2):367-75.

Seeger, C., Ganem, D., and Varmus, H.E. (1986). Biochemical and genetic evidence for the hepatitis B virus replication strategy. Science. 232(4749):477-84.

Seeger, C., Marion, P.L., Ganem, D., and Varmus, H.E. (1987). In vitro recombinants of ground squirrel and woodchuck hepatitis viral DNAs produce infectious virus in squirrels. Journal of Virology. 61(10):3241-7.

Seeger, C., and Zoulim, F. (1994). Woodchuck hepatitis virus X protein is required for viral infection in vivo. Journal of Virology. 68(1):6-13.
Seigneres, B., Aguesse-Germon, S., Pichoud, C., Vuillermoz, I., Jamard, C., Trepo, C., and Zoulim, F. (2001). Duck hepatitis B virus polymerase gene mutants associated with resistance to lamivudine have a decreased replication capacity in vitro and in vivo. Journal of Hepatology. 34(1):114-22.

Shamay, M., Barak, O., Doitsh, G., Ben-Dor, I., and Shaul, Y. (2002). Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. Journal of Biological Chemistry. 277(12):9982-8.

Shanmuganathan, S., Waters, J.A., Karayiannis, P., Thursz, M., and Thomas, H.C. (1997). Mapping of the cellular immune responses to woodchuck hepatitis core antigen epitopes in chronically infected woodchucks. Journal of Medical Virology. 52(2):128-35.
Sharma, J.M. (1981). Natural killer cell activity in chickens exposed to Marek's disease virus: inhibition of activity in susceptible chickens and enhancement of activity in resistant and vaccinated chickens. Avian Diseases. 25(4):882-93.

Sharma, J.M. (1991). Overview of the avian immune system. [Review]. Veterinary Immunology \& Immunopathology. 30(1):13-7.
Sharma, J.M., and Coulson, B.D. (1979). Presence of natural killer cells in specific-pathogen-free chickens. Journal of the National Cancer Institute. 63(2):527-31.

Sherker, A.H., Hirota, K., Omata, M., and Okuda, K. (1986). Foscarnet decreases serum and liver duck hepatitis B virus DNA in chronically infected ducks. Gastroenterology. 91(4):818-24.
Shi, H., Cullen, J.M., and Newbold, J.E. (2004). A novel isolate of duck hepatitis B virus. GenBank: direct submission. HPUGENM:M95589.

Shields, P.L., Owsianka, A., Carman, W.F., Boxall, E., Hubscher, S.G., Shaw, J., O'Donnell, K., Elias, E., and Mutimer, D.J. (1999). Selection of hepatitis B surface "escape" mutants during passive immune prophylaxis following liver transplantation: potential impact of genetic changes on polymerase protein function. Gut. 45(2):306-9.

Shimizu, M., Kojima, M., and Takahashi, Y. (1995). Posttransfusion fulminant hepatitis associated with HBV mutants. Nippon Rinsho - Japanese Journal of Clinical Medicine. 53 Suppl(Pt 2):516-21.

Shimoda, T., Shikata, T., Karasawa, T., Tsukagoshi, S., Yoshimura, M., and Sakurai, I. (1981). Light microscopic localization of hepatitis B virus antigens in the human pancreas. Possibility of multiplication of hepatitis B virus in the human pancreas. Gastroenterology. 81(6):9981005.

Shimoyama, R., and Sekiguchi, S. (1996). Basic and clinical aspects of hepatitis virus carriers. Hokkaido Igaku Zasshi - Hokkaido Journal of Medical Science. 71(4):427-48.

Shizuma, T., Hasegawa, K., Ishikawa, K., Naritomi, T., Iizuka, A., Kanai, N., Ogawa, M., Torii, N., Joh, R., and Hayashi, N. (2003). Molecular analysis of antigenicity and immunogenicity of a vaccine-induced escape mutant of hepatitis B virus. Journal of Gastroenterology. 38(3):244-53.

Shortridge, K.F. (1982). Avian influenza A viruses of southern China and Hong Kong: ecological aspects and implications for man. Bulletin of the World Health Organization. 60(1):129-35.
Sick, C., Schultz, U., and Staeheli, P. (1996). A family of genes coding for two serologically distinct chicken interferons. Journal of Biological Chemistry. 271(13):7635-9.
Sin, J.I., Bagarazzi, M., Pachuk, C., and Weiner, D.B. (1999a). DNA priming-protein boosting enhances both antigen-specific antibody and Th1-type cellular immune responses in a murine herpes simplex virus-2 gD vaccine model. [erratum appears in DNA Cell Biol 2000 Jan;19(1):69.]. DNA \& Cell Biology. 18(10):771-9.
Sin, J.I., Kim, J.J., Arnold, R.L., Shroff, K.E., McCallus, D., Pachuk, C., McElhiney, S.P., Wolf, M.W., Pompa-de Bruin, S.J., Higgins, T.J., Ciccarelli, R.B., and Weiner, D.B. (1999b). IL12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus- 2 challenge. Journal of Immunology. 162(5):2912-21.
Sjogren, M., and Hoofnagle, J.H. (1985). Immunoglobulin M antibody to hepatitis B core antigen in patients with chronic type B hepatitis. Gastroenterology. 89(2):252-8.
Smith, L.M., Fung, S., Hunkapiller, M.W., Hunkapiller, T.J., and Hood, L.E. (1985). The synthesis of oligonucleotides containing an aliphatic amino group at the 5^{\prime} terminus: synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic Acids Research. 13(7):2399-412.
Smith, L.M., Sanders, J.Z., Kaiser, R.J., Hughes, P., Dodd, C., Connell, C.R., Heiner, C., Kent, S.B., and Hood, L.E. (1986). Fluorescence detection in automated DNA sequence analysis. Nature. 321(6071):674-9.
Soemohardjo, S. (2003). New options in the treatment of chronic hepatitis. Advances in Experimental Medicine \& Biology. 531:191-8.
Soliman, M.K., Ahmed, A.A., el Amrousi, S., and Moustafa, I.H. (1966). Cytological and biochemical studies on the blood constituents of normal and spirochete-infected chickens. Avian Diseases. 10(4):394-400.
Soulier, J.P., Blatix, C., Courouce, A.M., Benamon, D., Amouch, P., and Drouet, J. (1972). Prevention of virus B hepatitis (SH hepatitis). American Journal of Diseases of Children. 123(4):429-34.
Sowder, J.T., Chen, C.L., Ager, L.L., Chan, M.M., and Cooper, M.D. (1988). A large subpopulation of avian T cells express a homologue of the mammalian T gamma/delta receptor. Journal of Experimental Medicine. 167(2):315-22.
Sprengel, R., Kuhn, C., Manso, C., and Will, H. (1984). Cloned duck hepatitis B virus DNA is infectious in Pekin ducks. Journal of Virology. 52(3):932-7.
Sprengel, R., Kuhn, C., Will, H., and Schaller, H. (1985). Comparative sequence analysis of duck and human hepatitis B virus genomes. Journal of Medical Virology. 15(4):323-33.

Sprengel, R., Varmus, H.E., and Ganem, D. (1987). Homologous recombination between hepadnaviral genomes following in vivo DNA transfection: implications for studies of viral infectivity. Virology. 159(2):454-6.

Sreter, T., Varga, I., and Bekesi, L. (1996). Effects of bursectomy and thymectomy on the development of resistance to Cryptosporidium baileyi in chickens. Parasitology Research. 82(2):174-7.
Standring, D.N., Ou, J.H., Masiarz, F.R., and Rutter, W.J. (1988). A signal peptide encoded within the precore region of hepatitis B virus directs the secretion of a heterogeneous population of e antigens in Xenopus oocytes. Proceedings of the National Academy of Sciences of the United States of America. 85(22):8405-9.

Stasney, J., Cantarow, A., and Paschkis, K.E. (1950). Production of neoplasms by fractions of mammalian neoplasms. Cancer Research. 10:775-82.
Stemler, M., Weimer, T., Tu, Z.X., Wan, D.F., Levrero, M., Jung, C., Pape, G.R., and Will, H. (1990). Mapping of B-cell epitopes of the human hepatitis B virus X protein. Journal of Virology. 64(6):2802-9.

Stephan, W., Prince, A.M., and Brotman, B. (1984). Modulation of hepatitis B infection by intravenous application of an immunoglobulin preparation that contains antibodies to hepatitis B e and core antigens but not to hepatitis B surface antigen. Journal of Virology. 51(2):420-4.
Sterneck, M., Kalinina, T., Gunther, S., Fischer, L., Santantonio, T., Greten, H., and Will, H. (1998). Functional analysis of HBV genomes from patients with fulminant hepatitis. Hepatology. 28(5):1390-7.

Stevens, C.E., Aach, R.D., Hollinger, F.B., Mimms, L.T., Solomon, L.R., Barbosa, L.H., Nemo, G.J., and Chen, M.R. (1995). Stability of HBV DNA in cell lines and nude mouse-passaged tissues derived from human hepatocellular carcinoma. Transfusion. 35(1):5-12.

Sugimura, M., and Hashimoto, Y. (1980). Quantitative histological studies on the spleen of ducks after neonatal thymectomy and bursectomy. Journal of Anatomy. 131(3):441-52.

Sugimura, M., Hashimoto, Y., and Yamada, J. (1975). Morphology of bursa of Fabricius in bursectomized and thymectomized ducks. Japanese Journal of Veterinary Research. 23(1):17-24.

Summers, J. (1981). Three recently described animal virus models for human hepatitis B virus. Hepatology. 1(2):179-83.

Summers, J., and Mason, W.S. (1982). Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell. 29(2):403-15.
Summers, J., Smolec, J.M., and Snyder, R. (1978). A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proceedings of the National Academy of Sciences of the United States of America. 75(9):4533-7.

Summers, J., Smolec, J.M., Werner, B.G., Kelly Jr., T.J., Tyler, G.V., and Snyder, R.L. (1980). Hepatatis B virus and woodchuck hepatitis virus are members of a novel class of DNA viruses. In: Cold Spring Harbour Conferences on Cell Proliferation. Cold Spring Harbour, New York. Vol.7, pp.459-70.
Sunyach, C., Chassot, S., Jamard, C., Kay, A., Trepo, C., and Cova, L. (1997). In vivo selection of duck hepatitis B virus pre-S variants which escape from neutralization. Virology. 234(2):291-9.

Sunyach, C., Rollier, C., Robaczewska, M., Borel, C., Barraud, L., Kay, A., Trepo, C., Will, H., and Cova, L. (1999). Residues critical for duck hepatitis B virus neutralization are involved in host cell interaction. Journal of Virology. 73(4):2569-75.
Swenson, P.D., Riess, J.T., and Krueger, L.E. (1991). Determination of HBsAg subtypes in different high risk populations using monoclonal antibodies. Journal of Virological Methods. 33(1-2):27-38.

Tabor, E., Buynak, E., Smallwood, L.A., Snoy, P., Hilleman, M., and Gerety, R.J. (1983).
Inactivation of hepatitis B virus by three methods: treatment with pepsin, urea, or formalin. Journal of Medical Virology. 11(1):1-9.
Tabor, S., and Richardson, C.C. (1995). A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proceedings of the National Academy of Sciences of the United States of America. 92(14):6339-43.
Tacket, C.O., Roy, M.J., Widera, G., Swain, W.F., Broome, S., and Edelman, R. (1999). Phase 1 safety and immune response studies of a DNA vaccine encoding hepatitis B surface antigen delivered by a gene delivery device. Vaccine. 17(22):2826-9.

Tagawa, M., Omata, M., Yokosuka, O., Uchiumi, K., Imazeki, F., and Okuda, K. (1985). Early events in duck hepatitis B virus infection. Sequential appearance of viral deoxyribonucleic acid in the liver, pancreas, kidney, and spleen. Gastroenterology. 89(6):1224-9.

Takashima, A., and Morita, A. (1999). Dendritic cells in genetic immunization. Journal of Leukocyte Biology. 66(2):350-6.
Tang, D.C., DeVit, M., and Johnston, S.A. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature. 356(6365):152-4.
Tang, N., Huang, A., Guo, S., Qi, Z., and Zhang, D. (2001). Comparison of specific immune responses to duck hepatitis B virus in infected, immune, and uninfected ducks. Chung Hua Kan Tsang Ping Tsa Chih. 9(3):166-8.
Tang, T.J., Kwekkeboom, J., Laman, J.D., Niesters, H.G., Zondervan, P.E., de Man, R.A., Schalm, S.W., and Janssen, H.L. (2003). The role of intrahepatic immune effector cells in inflammatory liver injury and viral control during chronic hepatitis B infection. Journal of Viral Hepatitis. 10(3):159-67.
Thakur, V., Kazim, S.N., Guptan, R.C., Malhotra, V., and Sarin, S.K. (2003). Molecular epidemiology and transmission of hepatitis B virus in close family contacts of HBV-related chronic liver disease patients. Journal of Medical Virology. 70(4):520-8.

Thiers, V., Nakajima, E., Kremsdorf, D., Mack, D., Schellekens, H., Driss, F., Goudeau, A., Wands, J., Sninsky, J., and Tiollais, P. (1988). Transmission of hepatitis B from hepatitis-Bseronegative subjects. Lancet. 2(8623):1273-6.
Thimme, R., Wieland, S., Steiger, C., Ghrayeb, J., Reimann, K.A., Purcell, R.H., and Chisari, F.V. (2003). CD8(+) T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. Journal of Virology. 77(1):68-76.
Thomas, H.C. (1981). T cell subsets in patients with acute and chronic HBV infection, primary biliary cirrhosis and alcohol induced liver disease. International Journal of Immunopharmacology. 3(3):301-5.

Thomas, H.C., Brown, D., Labrooy, J., and Epstein, O. (1982). T cell subsets in autoimmune and HBV-induced chronic liver disease, HBs antigen carriers with normal histology and primary biliary cirrhosis: a review of the abnormalities and the effects of treatment. Journal of Clinical Immunology. 2(3 Suppl):57S-60S.
Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research. 22(22):4673-80.
Thomson, S.A., Burrows, S.R., Misko, I.S., Moss, D.J., Coupar, B.E., and Khanna, R. (1998a). Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design. Journal of Virology. 72(3):2246-52.
Thomson, S.A., Khanna, R., Gardner, J., Burrows, S.R., Coupar, B., Moss, D.J., and Suhrbier, A. (1995). Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells: implications for vaccine design. Proceedings of the National Academy of Sciences of the United States of America. 92(13):5845-9.

Thomson, S.A., Sherritt, M.A., Medveczky, J., Elliott, S.L., Moss, D.J., Fernando, G.J., Brown, L.E., and Suhrbier, A. (1998b). Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. Journal of Immunology. 160(4):1717-23.
Thung, S.N., and Gerber, M.A. (1984). Polyalbumin receptors: their role in the attachment of hepatitis B virus to hepatocytes. Seminars in Liver Disease. 4(1):69-75.
Tiollais, P., Pourcel, C., and Dejean, A. (1985). The Hepatitis B Virus. Nature. 317:489-95.
Toivanen, A., Eskola, J., and Toivanen, P. (1976). Restorative effects of different embryonic cells transplanted into immunodeficient chick embryos. Annales d'Immunologie. 127(6):923-9.
Toivanen, A., and Toivanen, P. (1987). Avian immunology : basis and practice. Boca Raton, Fla., CRC Press.
Toivanen, P., Toivanen, A., Linna, T.J., and Good, R.A. (1972). Ontogeny of bursal function in chicken. II. Postembryonic stem cell for humoral immunity. Journal of Immunology. 109(5): 1071-80.
Toivanen, P., Toivanen, A., and Taamminen, P. (1974). Bursal and postbursal cells in chicken. Occurrence of postbursal cells in bone marrow, thymus and spleen. European Journal of Immunology. 4(6):405-10.
Torre, F., and Naoumov, N.V. (1998). Clinical implications of mutations in the hepatitis B virus genome. European Journal of Clinical Investigation. 28(8):604-14.
Trautwein, C., Schrem, H., Tillmann, H.L., Kubicka, S., Walker, D., Boker, K.H., Maschek, H.J., Pichlmayr, R., and Manns, M.P. (1996). Hepatitis B virus mutations in the pre-S genome before and after liver transplantation. Hepatology. 24(3):482-8.
Triyatni, M., Ey, P., Tran, T., Le Mire, M., Qiao, M., Burrell, C., and Jilbert, A. (2001). Sequence comparison of an Australian duck hepatitis B virus strain with other avian hepadnaviruses. Journal of General Virology. 82(Pt 2):373-8.
Triyatni, M., Jilbert, A.R., Qiao, M., Miller, D.S., and Burrell, C.J. (1998). Protective efficacy of DNA vaccines against duck hepatitis B virus infection. Journal of Virology. 72(1):84-94.
Tsai, S.L., Sheen, I.S., Chien, R.N., Chu, C.M., Huang, H.C., Chuang, Y.L., Lee, T.H., Liao, S.K., Lin, C.L., Kuo, G.C., and Liaw, Y.F. (2003). Activation of Th1 immunity is a common immune mechanism for the successful treatment of hepatitis B and C: tetramer assay and therapeutic implications. Journal of Biomedical Science. 10(1):120-35.
Tsiquaye, K.N., Collins, P., and Zuckerman, A.J. (1986). Antiviral activity of the polybasic anion, suramin and acyclovir in Hepadna virus infection. Journal of Antimicrobial Chemotherapy. 18 Suppl B:223-8.
Tsuji, M., and Zavala, F. (2003). T cells as mediators of protective immunity against liver stages of Plasmodium. Trends in Parasitology. 19(2):88-93.
Turin, F., Borel, C., Benchaib, M., Kay, A., Jamard, C., Guguen-Guillouzo, C., Trepo, C., and Hantz, O. (1996). n-Butyrate, a cell cycle blocker, inhibits early amplification of duck hepatitis B virus covalently closed circular DNA after in vitro infection of duck hepatocytes. Journal of Virology. 70(5):2691-6.
Tuttleman, J.S., Pourcel, C., and Summers, J. (1986). Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell. 47(3):451-60.
Twu, J.S., Lee, C.H., Lin, P.M., and Schloemer, R.H. (1988). Hepatitis B virus suppresses expression of human beta-interferon. Proceedings of the National Academy of Sciences of the United States of America. 85(1):252-6.
Twu, J.S., and Schloemer, R.H. (1989). Transcription of the human beta interferon gene is inhibited by hepatitis B virus. Journal of Virology. 63(7):3065-71.
Uchida, M., Esumi, M., and Shikata, T. (1989). Molecular cloning and sequence analysis of duck hepatitis B virus genomes of a new variant isolated from Shanghai ducks. Virology. 173(2):600-6.

Uchida, T., Suzuki, K., Arii, M., Shikata, T., Fukuda, R., and Tao, Y.X. (1988). Geographical pathology of duck livers infected with duck hepatitis B virus from Chiba and Shimane in Japan and Shanghai in China. Cancer Research. 48(5):1319-25.
Ugen, K.E., Nyland, S.B., Boyer, J.D., Vidal, C., Lera, L., Rasheid, S., Chattergoon, M., Bagarazzi, M.L., Ciccarelli, R., Higgins, T., Baine, Y., Ginsberg, R., Macgregor, R.R., and Weiner, D.B. (1998). DNA vaccination with HIV-1 expressing constructs elicits immune responses in humans. Vaccine. 16(19):1818-21.

Ulmer, J.B., Donnelly, J.J., Parker, S.E., Rhodes, G.H., Felgner, P.L., Dwarki, V.J., Gromkowski, S.H., Deck, R.R., DeWitt, C.M., and Friedman, A. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 259(5102):1745-9.
Ulrich, P.P., Bhat, R.A., Kelly, I., Brunetto, M.R., Bonino, F., and Vyas, G.N. (1990). A precoredefective mutant of hepatitis B virus associated with e antigen-negative chronic liver disease. Journal of Medical Virology. 32(2):109-18.

Unanue, E.R. (1980). Cooperation between mononuclear phagocytes and lymphocytes in immunity. New England Journal of Medicine. 303(17):977-85.
Uprichard, S.L., Wieland, S.F., Althage, A., and Chisari, F.V. (2003). Transcriptional and posttranscriptional control of hepatitis B virus gene expression. Proceedings of the National Academy of Sciences of the United States of America. 100(3):1310-5.
Urban, M.K., O'Connell, A.P., and London, W.T. (1985). Sequence of events in natural infection of Pekin duck embryos with duck hepatitis B virus. Journal of Virology. 55(1):16-22.
Vainio, O., and Lassila, O. (1989). Chicken T cells: Differentiation antigens and Cell-cell interactions. Poultry Biology. 2(2):97-102.
Vainio, O., and Ratcliffe, M.J. (1984). Proliferation of chicken peripheral blood leukocytes in response to pokeweed mitogen is macrophage dependent. Cellular Immunology. 85(1):23543.

Vainio, O., Veromaa, T., Eerola, E., and Toivanen, P. (1987). Characterization of two monoclonal antibodies against chicken T lymphocyte surface antigens. Progress in Clinical \& Biological Research. 238:99-108.
Valenzuela, P., Quiroga, M., Zaldivar, J., Gray, P., and Rutter, W.J. (1980). The nucleotide sequence of the hepatitis B viral genome and the identification of the major viral genes. In: Fields, B., R. Jalnisch, and C. Fox (Eds.) ICN-UCLA Symposia on Animal Virus Genetics. Academic Press, New York. pp.57-70.

Vento, S., Cainelli, F., and Longhi, M.S. (2002). Reactivation of replication of hepatitis B and C viruses after immunosuppressive therapy: an unresolved issue. Lancet Oncology. 3(6):33340.

Vento, S., Hegarty, J.E., Alberti, A., O'Brien, C.J., Alexander, G.J., Eddleston, A.L., and Williams, R. (1985). T lymphocyte sensitization to HBcAg and T cell-mediated unresponsiveness to HBsAg in hepatitis B virus-related chronic liver disease. Hepatology. 5(2):192-7.

Vento, S., Rondanelli, E.G., Ranieri, S., O'Brien, C.J., Williams, R., and Eddleston, A.L. (1987). Prospective study of cellular immunity to hepatitis-B-virus antigens from the early incubation phase of acute hepatitis B. Lancet. 2(8551):119-22.
Veromaa, T., Vainio, O., Eerola, E., Lehtonen, L., Jalkanen, S., and Toivanen, P. (1987). T cell function in chickens bursectomized at 60 hours of incubation. Transplantation. 43(4):533-7.
Vickery, K., and Cossart, Y. (1996). DHBV manipulation and prediction of the outcome of infection. Journal of Hepatology. 25(4):504-9.
Vickery, K., Cossart, Y., and Dixon, R. (1999a). Cellular immune response of ducks to duck hepatitis B virus infection. Journal of Medical Virology. 58(1):19-25.

Vickery, K., Cossart, Y., and Dixon, R. (1999b). Comparison of the kinetics of the specific cellular immune response to duck hepatitis B virus in infected and immune ducks. Veterinary Microbiology. 68(1-2):157-69.

Vickery, K., Cossart, Y., Gu, X., and Dixon, R. (1997). Antigen-specific blastogenesis assays for duck hepatitis B virus using duck peripheral blood and splenic mononuclear cells. Veterinary Immunology \& Immunopathology. 59(3-4):349-58.

Vickery, K., Freiman, J.S., Dixon, R.J., Kearney, R., Murray, S., and Cossart, Y.E. (1989). Immunity in Pekin ducks experimentally and naturally infected with duck hepatitis B virus. Journal of Medical Virology. 28(4):231-6.
Vitvitski-Trepo, L., Kay, A., Pichoud, C., Chevallier, P., de Dinechin, S., Shamoon, B.M., Mandart, E., Trepo, C., and Galibert, F. (1990). Early and frequent detection of HBxAg and/or antiHBx in hepatitis B virus infection. Hepatology. 12(6):1278-83.

Vojtiskova, M., Masnerova, M., and Viklicky, V. (1963). Homograft response in ducks after thymectomy and/or bursectomy and with or without transplanted homologous thymus and/or bursa of Fabricius. Fol boil (Praha). 9:424.
von Weizsacker, F., Pult, I., Geiss, K., Wirth, S., and Blum, H.E. (1995). Selective transmission of variant genomes from mother to infant in neonatal fulminant hepatitis B. Hepatology. 21(1):8-13.

Wands, J.R., Wong, M.A., Shorey, J., Brown, R.D., Marciniak, R.A., and Isselbacher, K.J. (1984). Hepatitis B viral antigenic structure: signature analysis by monoclonal radioimmunoassays. Proceedings of the National Academy of Sciences of the United States of America. 81(7):2237-41.
Wang, B., Merva, M., Dang, K., Ugen, K.E., Boyer, J., Williams, W.V., and Weiner, D.B. (1994). DNA inoculation induces protective in vivo immune responses against cellular challenge with HIV-1 antigen-expressing cells. AIDS Research \& Human Retroviruses. 10 Suppl 2:S35-41.

Wang, R., Doolan, D.L., Le, T.P., Hedstrom, R.C., Coonan, K.M., Charoenvit, Y., Jones, T.R., Hobart, P., Margalith, M., Ng, J., Weiss, W.R., Sedegah, M., de Taisne, C., Norman, J.A., and Hoffman, S.L. (1998). Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science. 282(5388):476-80.

Wang, X., and Hu, J. (2002). Distinct requirement for two stages of protein-primed initiation of reverse transcription in hepadnaviruses. Journal of Virology. 76(12):5857-65.

Wang, Y., Luscombe, C., Bowden, S., Shaw, T., and Locarnini, S. (1995). Inhibition of duck hepatitis B virus DNA replication by antiviral chemotherapy with ganciclovir-nalidixic acid. Antimicrobial Agents \& Chemotherapy. 39(2):556-8.
Warner, N.L., and Szenberg, A. (1962). The effect of neonatal thymectomy on the immune response of the chicken. Nature. 196:784-5.

Warr, G.W., Magor, K.E., and Higgins, D.A. (1995). IgY: clues to the origins of modern antibodies. Immunology Today. 16(8):392-8.
Waters, J.A., Kennedy, M., Voet, P., Hauser, P., Petre, J., Carman, W., and Thomas, H.C. (1992). Loss of the common " A " determinant of hepatitis B surface antigen by a vaccine-induced escape mutant. Journal of Clinical Investigation. 90(6):2543-7.

Watson, J.D., and Crick, F.H. (1974). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. J.D. Watson and F.H.C. Crick. Published in Nature, number 4356 April 25, 1953. Nature. 248(5451):765.

Weimer, T., Schodel, F., Jung, M.C., Pape, G.R., Alberti, A., Fattovich, G., Beljaars, H., van Eerd, P.M., and Will, H. (1990). Antibodies to the RNase H domain of hepatitis B virus P protein are associated with ongoing viral replication. Journal of Virology. 64(11):5665-8.
Weir, D.M. (1978). Handbook of experimental immunology. Oxford, Blackwell Scientific Publications.

Welty, J.C., and Baptista, L.F. (1988). The life of birds. New York, Saunders College Pub.
Wen, Y.M., Xu, Y.Y., Zhang, W., and Liu, Y.Z. (1990). A synthetic peptide elicits antibody reactive with the native duck hepatitis B virus pre-S protein. Journal of General Virology. 71(Pt 10):2467-9.

White, R.G., and Timbury, M.C. (1973). Essentials of immunology and microbiology. London,, Pitman Medical.

Whitten, T.M., Quets, A.T., and Schloemer, R.H. (1991). Identification of the hepatitis B virus factor that inhibits expression of the beta interferon gene. Journal of Virology. 65(9):4699-704.
WHO The World Health Organisation. (http://www.who.int/en).
Wick, G., Albini, B., and Johnson, W. (1975). Antigenic surface determinants of chicken lymphoid cells. II. Selective in vivo and in vitro activity of anti-bursa and anti-thymus sera. Immunology. 28(2):305-13.
Wicks, R.C., Kohler, P.F., and Singleton, J.W. (1975). Thymus-derived lymphocytes in type B acute viral hepatitis and healthy carriers of hepatitis B surface antigen (HBsAg). American Journal of Digestive Diseases. 20(6):518-22.
Wieland, S.F., Vega, R.G., Muller, R., Evans, C.F., Hilbush, B., Guidotti, L.G., Sutcliffe, J.G., Schultz, P.G., and Chisari, F.V. (2003). Searching for interferon-induced genes that inhibit hepatitis B virus replication in transgenic mouse hepatocytes. Journal of Virology. 77(2):1227-36.
Wildner, G., Fernholz, D., Sprengel, R., Schneider, R., and Will, H. (1991). Characterization of infectious and defective cloned avian hepadnavirus genomes. Virology. 185(1):345-53.
Wilkins, T.D., and Cossart, Y.E. (1990). Low-dose intradermal vaccination of medical and dental students. Medical Journal of Australia. 152(3):140-3.
Will, H., Cattaneo, R., Darai, G., Deinhardt, F., Schellekens, H., and Schaller, H. (1985). Infectious hepatitis B virus from cloned DNA of known nucleotide sequence. Proceedings of the National Academy of Sciences of the United States of America. 82(3):891-5.

Will, H., Cattaneo, R., Koch, H.G., Darai, G., Schaller, H., Schellekens, H., van Eerd, P.M., and Deinhardt, F. (1982). Cloned HBV DNA causes hepatitis in chimpanzees. Nature. 299(5885):740-2.
Will, H., Darai, G., Deinhardt, F., Schellekens, H., and Schaller, H. (1983). Hepatitis B after infection of a chimpanzee with cloned HBV DNA. Developments in Biological Standardization. 54:131-3.

Will, H., Reiser, W., Weimer, T., Pfaff, E., Buscher, M., Sprengel, R., Cattaneo, R., and Schaller, H. (1987). Replication strategy of human hepatitis B virus. Journal of Virology. 61(3):904-11.

Williams, R.S., Johnston, S.A., Riedy, M., DeVit, M.J., McElligott, S.G., and Sanford, J.C. (1991). Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proceedings of the National Academy of Sciences of the United States of America. 88(7):2726-30.
Wilson, J.N., Nokes, D.J., and Carman, W.F. (1999). The predicted pattern of emergence of vaccineresistant hepatitis B: a cause for concern? Vaccine. 17(7-8):973-8.
Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P.L. (1990). Direct gene transfer into mouse muscle in vivo. Science. 247(4949 Pt 1):1465-8.
Wu, R., and Taylor, E. (1971). Nucleotide sequence analysis of DNA. II. Complete nucleotide sequence of the cohesive ends of bacteriophage lambda DNA. Journal of Molecular Biology. 57(3):491-511.
Xiang, Z., and Ertl, H.C. (1995). Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity. 2(2):129-35.
Xiang, Z.Q., Spitalnik, S., Tran, M., Wunner, W.H., Cheng, J., and Ertl, H.C. (1994). Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology. 199(1):132-40.
Xu, L., Sanchez, A., Yang, Z., Zaki, S.R., Nabel, E.G., Nichol, S.T., and Nabel, G.J. (1998). Immunization for Ebola virus infection. [see comments.]. Nature Medicine. 4(1):37-42.

Xu, Z., Yen, T.S., Wu, L., Madden, C.R., Tan, W., Slagle, B.L., and Ou, J.H. (2002). Enhancement of hepatitis B virus replication by its X protein in transgenic mice. Journal of Virology. 76(5):2579-84.

Yaginuma, K., Kobayashi, H., Kobayashi, M., Morishima, T., Matsuyama, K., and Koike, K. (1987). Multiple integration site of hepatitis B virus DNA in hepatocellular carcinoma and chronic active hepatitis tissues from children. Journal of Virology. 61(6):1808-13.

Yaginuma, K., Kobayashi, H., Yoshida, E., Kobayashi, M., and Koike, K. (1984). Direct evidence for the expression of integrated hepatitis B virus DNA in human hepatoma tissue. Gann. 75(9):743-6.
Yalcin, K., Degertekin, H., Yildiz, F., and Celik, Y. (2003). Comparison of 12 -month courses of interferon-alpha-2b-lamivudine combination therapy and interferon-alpha-2b monotherapy among patients with untreated chronic hepatitis B. Clinical Infectious Diseases. 36(12):1516-22.

Yamamoto, K., Horikita, M., Tsuda, F., Itoh, K., Akahane, Y., Yotsumoto, S., Okamoto, H., Miyakawa, Y., and Mayumi, M. (1994). Naturally occurring escape mutants of hepatitis B virus with various mutations in the S gene in carriers seropositive for antibody to hepatitis B surface antigen. Journal of Virology. 68(4):2671-6.
Yanagi, Y., Chan, A., Chin, B., Minden, M., and Mak, T.W. (1985). Analysis of cDNA clones specific for human T cells and the alpha and beta chains of the T-cell receptor heterodimer from a human T-cell line. Proceedings of the National Academy of Sciences of the United States of America. 82(10):3430-4.

Yang, W., and Summers, J. (1995). Illegitimate replication of linear hepadnavirus DNA through nonhomologous recombination. Journal of Virology. 69(7):4029-36.

Yang, W., and Summers, J. (1998). Infection of ducklings with virus particles containing linear double-stranded duck hepatitis B virus DNA: illegitimate replication and reversion. Journal of Virology. 72(11):8710-7.
Yokosuka, O., Omata, M., and Ito, Y. (1988). Expression of pre-S1, pre-S2, and C proteins in duck hepatitis B virus infection. Virology. 167(1):82-6.
Yokosuka, O., Omata, M., Zhou, Y.Z., Imazeki, F., and Okuda, K. (1985). Duck hepatitis B virus DNA in liver and serum of Chinese ducks: integration of viral DNA in a hepatocellular carcinoma. Proceedings of the National Academy of Sciences of the United States of America. 82(15):5180-4.

Yoshiba, M., Sekiyama, K., Sugata, F., Okamoto, H., Yamamoto, K., and Yotsumoto, S. (1992). Reactivation of precore mutant hepatitis B virus leading to fulminant hepatic failure following cytotoxic treatment. Digestive Diseases \& Sciences. 37(8):1253-9.
Young, J.M., Ffrench, R.A., Clarkson, J.D., Stewart, G.J., Liang, T., Tideman, R.L., Packham, D., Fulcher, D.A., and Benson, E.M. (2001). In vitro HIV-specific CTL activity from HIVseropositive individuals is augmented by interleukin-12 (IL-12). AIDS Research \& Human Retroviruses. 17(3):233-42.
Yu, A.S., and Keeffe, E.B. (2003). Nucleoside analogues and other antivirals for treatment of hepatitis B in the peritransplant period. Clinics in Liver Disease. 7(3):551-72.

Yu, M.W., Finlayson, J.S., and Shih, J.W. (1985). Interaction between various polymerized human albumins and hepatitis B surface antigen. Journal of Virology. 55(3):736-43.
Yu, W.H., Kashani-Sabet, M., Liggitt, D., Moore, D., Heath, T.D., and Debs, R.J. (1999). Topical gene delivery to murine skin. Journal of Investigative Dermatology. 112(3):370-5.
Yuasa, S., Cheung, R.C., Pham, Q., Robinson, W.S., and Marion, P.L. (1991). Peptide mapping of neutralizing and nonneutralizing epitopes of duck hepatitis B virus pre- S polypeptide. Virology. 181(1):14-21.

Zerrahn, J., Utermohlen, O., Warnecke, G., Deppert, W., and Lehmann-Grube, F. (1996). Protective immunity in BALB/c mice against the simian virus 40 -induced mKSA tumor resulting from injection of recombinant large T antigen. Requirement of CD8+ T lymphocytes. Journal of Immunology. 156(10):3919-24.

Zhang, J. (1994). A Study of Genetic Variation of Hepatitis B Virus. Department of Infectious Diseases. Sydney, University of Sydney.

Zhang, Y.Y., and Summers, J. (1999). Enrichment of a precore-minus mutant of duck hepatitis B virus in experimental mixed infections. Journal of Virology. 73(5):3616-22.
Zhou, F.J., Hu, Z.L., Dai, J.X., Chen, R.W., Shi, K., Lin, Y., and Sun, S.H. (2003). Protection of tree shrews by pVAX-PS DNA vaccine against HBV infection. DNA \& Cell Biology. 22(7):4758.

Zhou, Y.Z., Kou, P.Y., and Shao, L.Q. (1980). A virus possibly associated with hepatitis and hepatoma in ducks. Shanghai Med J. 3:1-3.
Zhu, A.X. (2003). Hepatocellular carcinoma: are we making progress? Cancer Investigation. 21(3):418-28.
Ziegler, R.E., and Joklik, W.K. (1981a). Effect of interferon on multiplication of avian sarcoma virus B77 in duck embryo fibroblasts. Journal of Interferon Research. 1(4):521-38.
Ziegler, R.E., and Joklik, W.K. (1981b). Induction and Partial purification of duck fibroblast interferon. Methods in Enzymology. 78(Pt A):563-70.
Zimmerman, B., Shalatin, N., and Grey, H.M. (1971). Structural studies on the duck 5.7S and 7.8S immunoglobulins. Biochemistry. 10(3):482-8.
Zoulim, F., Berthillon, P., Guerhier, F.L., Seigneres, B., Germon, S., Pichoud, C., Cheng, Y.C., and Trepo, C. (2002). Animal models for the study of HBV infection and the evaluation of new anti-HBV strategies. Journal of Gastroenterology \& Hepatology. 17 Suppl:S460-3.
Zoulim, F., Zhang, X., Pichoud, C., and Trepo, C. (1996). Heterogeneity of hepatitis B virus (HBV) core gene in a patient with HBV-associated cirrhosis and serum negativity for anti-HBc. Journal of Hepatology. 24(2):155-60.
Zuckerman, A.J. (1987). Screening of antiviral drugs for hepadna virus infection in Pekin ducks: a review. Journal of Virological Methods. 17(1-2):119-26.

Fin

[^0]: Note Serum transmission of DirectDNA1 ducks involved the inoculation of serum from DirectDNA1

[^1]: Domingo, E., Martinez-Salas, E., Sobrino, F., de la Torre, J.C., Portela, A., Ortin, J., LopezGalindez, C., Perez-Brena, P., Villanueva, N., and Najera, R. (1985). The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance--a review. Gene. 40(1):1-8.

