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In a previous study of Dettmann and Georgiou, it was considered such a situation that point-wise particles re­
peatedly and elastically collided with the wall of a container without any particle-particle collision and eventually 
escaped through a small window from the container, which can be modeled by an open billiard. In the present 
study, point-wise particles were replaced with finite-size disks and disk-disk collisions were also considered, and 
inverse power laws of distributions of dwell time in the container were obtained from numerical simulations. 
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1. Introduction 
An open billiard was rather theoretically interesting but 

not realistic, where point-wise particles repeatedly and elas­
tically collide with the wall of a container without particle­
particle collisions, and eventually escape through a small 
window from the container. In this study, point-wise parti­
cles were replaced with finite-size disks and disk-disk col­
lisions were also considered. Inverse power laws of the dis­
tribution of dwell time in the container were obtained from 
numerical simulations (Nakane and Miyazaki, 2020) 

Whether chaotic or non-chaotic motion appears depends 
on the shape of the container in the closed and open bil­
liard problem, which is an important problem in the re­
search field of Science on Form. It is recommended for lay 
experts that they perform numerical analyses of the above­
mentioned billiard problem, which is relatively easy to im­
plement numerical procedures and confirm various dynam­
ics including regular and chaotic temporal evolutions. 

We showed that a simple escape mechanism yields not 
anomalous (algebraic) but normal (exponential) transport in 
§2. In §3, we discussed a conservative open-billiard system 
including disk-disk collisions and we showed numerical 
observations of inverse power-law escape statistics. The 
final section is devoted to concluding remarks. 

2. Exponential Escapement Based on a Simple Escape 
Mechanism 

We considered a semicircular container. It has a hole, 
which enables small particles to escape from the container 
as shown in Fig. 1. For the sake of simplicity, we ignored 
fluctuations of velocity, free path and free time of the parti­
cle, and replace instantaneous values with the average val­
ues. 

N is the number of particles in the container, T is the 
mean free time and v is the mean velocity of the particle. 
Between the time range [T, T + ~t], the number of particles 
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Fig. 1. Billiard model with a semicircular container. 

~N escaping from the container is proportional to N. Its 
fraction was assumed to be equal to the volume ratio in 
the phase space satisfying conditions escaping from the 
container to the entire phase space. 

2w and a are the width of the exit and the radius of the 
particle, respectively. The particle can escape if the center 
of the particle passes the segment of2(w - a) wide within 
the exit. We represented the position of the center of the 
particle using cylindrical coordinates (r, 0), whose origin is 
located at the center of the exit. 

The center of the particle must be located within the 
regions bounded by two semi-circles with radii r = VT 
and r = v(T + ~t). The position of the center of the 
particle (-VT cos 0, -VT sin0) and the edges of the exit 
(0, ±(w - a)) construct a triangle. <1>(0) is the opposite 
angle of the segment of the exit. The direction angle ¢ of 
the velocity vector of the particle must be located within the 
range of the opposite angle of the exit. The cosine theorem 
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yields 

(v-r)2 - (w - a)2 1 
<1>(0) = 2 2 ---====, (1) 

(v-r) + (w - a) JI - a 2 sin2 0 

2v-r(w - a) 
where a = ------- satisfies 0 < a < 1 due 

(v-r)2 + (w - a)2 

to the relationship between the arithmetic and geometric 
averages. Although <I> depends on 0, we replaced sin2 0 

by the average¾ j::_~~2 sin2 0d0 = 1/2, giving 

(v-r)2 - (w - a)2 1 
cos <I> = ------- ----;::::======= 

(v-r)2 + (w - a)2 JI - a 2 /2 
(2) 

In the case ofv-r > w - a, 

the two-dimensional scattering cross-section of the particle 
- 1 .. 

2a as VT = --, g1vmg 
d-2a 

w-a 4a(w-a) 
--=---N 

VT Tr R 2 ' 
(10) 

where the entire container is a circle with radius R, and a 
separator with length 2R divides the container evenly into 
the right and the left rooms. Thus, the decay rate of the 
number of the particles in the container is 

(11) 

where the number density of particles in the container is n 
4a(w - a)N. . 

(0 ::; n :::; 1) and -r R 2 1s f3. The number density n 
1 - p2 1 

cos <I> = -- -----;::;==== 
1 + p2 ✓1 - ---1L 

(1 +p2)2 

(3) exponentially approaches the empty state n = 0 for small 
n. 

with 0 < p = wv-;a < 1 is expanded as 

g1vmg 

2 1 4 cos <I> ~ 1 - p - 2 p ' 

./2 
<I>~ ✓2p + -p3 3 . 

In the case ofv-r < w - a, 

is expanded as 

giving 

(4) 

(5) 

(6) 

(7) 

(8) 

The number of particles l::!.N moving from the left room to 
the left was assumed to be equal to the number of parti­
cles staying in the left room N multiplied by the ratio of 

1v(r+ti.t) 

1
:n:/2 

the volume of the phase space dr d0 <I> to 

1R 1:n:/2 VT!:n: -:n:/2 
the whole volume dr d0 d<p, yielding !::i.N = 

0 -:n:/2 -:n: 
<l>vl::!.t !::i.N . 

---N. Replacing - by N gives 
2rr R l::!.t 

{ 
v ~ ./2 3 

. ---(v2p + -p) (v-r > w - a), 
N = 2rr_ R 3 2 (9) 

__ v_(rr - ✓2p- 1 + ./2 p-3) (v-r < w - a). 
2rr R 3 

We considered the case v-r > w - a only. The mean free 
path v-r has the following relationship with the surface den-

sity of the particles in the left room d = ~, and with 
rrR /2 

3. A Conservative Open-Billiard System with Disk­
Disk Collisions 

A situation in which point-wise particles repeatedly and 
elastically collide with the wall of a container without 
particle-particle collisions, and eventually escape through 
a small window from the container can be modeled by an 
open billiard (Dettman and Georgiou, 2009). In a previous 
study, point-wise particles were replaced with finite-size 
disks and disk-disk collisions were also considered. Inverse 
power laws of the distribution of dwell time in the container 
were obtained from numerical simulations. The relation­
ship between the power laws and anomalous transport was 
discussed previously (Nakane and Miyazaki, 2020). 

We considered here the stadium billiard, whose boundary 
consists of two parallel line segments, 2a in length, and two 
semicircles of radius r, as shown in Fig. 2. Positions of the 
left and the right edges of the opening section on one of the 
parallel segments was determined by h 1 and h 2, respectively 
(Dettman and Georgiou, 2009). The survival density of the 
point particles in the billiard at time t was given by 

(3 ln3 + 4)((a + h 1) 2 + (a - h2) 2) 
P(t) = ----------

4(4a + 2rrr)t 
D +2 + o(l/t2), 
t 

h, 

Fig. 2. Open stadium billiard. 

(12) 
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where D was a numerical constant (Dettman and Georgiou, 
2009). In the case of point particle, the survival density 
P(t) for a = 0.05, r = 0.5, h1 = -0.01, and h2 = 
0.01 was shown in Fig. 3, where the case of the square 
billiard was also drawn for comparison. In the former, an 
exponential decay followed by an inverse-power-law decay 
was observed. In the latter, an overall inverse-power-law 
decay was observed. The exponential decay corresponded 
to the exponential escapement to the empty state n = 0 in 
the second section. 
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Fig. 3. Double logaritlunic plot of the survival densities P(t) against time 
t for the point particles in the square (dashed line) and the stadium (solid 
line) billiards. 

Next, using an event-driven numerical method (Isobe, 
1999), we plotted the scaled survival density T P(t) for 
a = 0.05, r = 0.5, h 1 = -0.01, and h2 = 0.01 against 
scaled time t / T for stadium and square billiards, as shown 
in Figs. 4 and 5, respectively, where the four cases of 
radii a of the disks 1.0 x 10-1 , 1.0 x 10-6, 1.0 x 10-5, 

1.0 x 10-4 were chosen and the corresponding mean free 
times (mean disk-disk collision interval) T were shown in 
the captions. Since disk-disk interactions were considered, 
the results were different from the case of point particles. 

For the stadium billiard, it was implied that the sur­
vival densities obeyed a scaling form P(t) = r- 1¢(T-1t), 
where ¢ was a scaling function. This was not the case with 
the square billiard. 

4. Concluding Remarks 
We observed the algebraic escapement of the open bil­

liard following inverse power laws of the probability den­
sity function of the dwell time in the container by including 
disk-disk interactions. 

The scaling form P(t) = r- 1¢(T-1t) held not for the 
square billiard but for the stadium one. Since both the disk­
disk and the disk-boundary collisions have orbital instabil­
ity, we conjecture that the volume ratio of the chaotic or 
irregular region of the high-dimensional phase space for the 
stadium billiard is much larger than that for the square bil-
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Fig. 4. Double logarithmic plot of the scaled survival densities 
T P(t) against scaled time t / T for the stadium billiard. The radius 
a = 1.0 x 10-7 with the mean free time T = 995.6 (solid line), 
a = 1.0 x 10-6 with T = 138.4 (dashed line), a = 1.0 x 10-5 

with T = 13.92 (dotted line), and a = 1.0 x 10-4 with T = 1.420 
(dash-dot-dash line). The power law P(t) oc t-312 are also shown (up­
per solid line). 
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Fig. 5. Double logarithmic plot of the scaled survival densities 
T P(t) against scaled time t / T for the square billiard. The radius 
a = 1.0 x 10-7 with the mean free time T = 1018 (solid line), 
a = 1.0 x 10-6 with T = 126.1 (dashed line), a = 1.0 x 10-5 

with T = 12.51 (dotted line), and a = 1.0 x 10-4 with T = 1.246 
(dash-dot-dash line). 

liard, where the disk-boundary collisions do not have any 
orbital instability. We leave this conjecture to future stud­
ies. 
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