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holographic metric has the following properties: i) It is an asymptotic Anti-de Sitter (AdS) black brane
metric with some unknown matter contribution. ii) It has no coordinate singularity and milder curvature
singularity. iii) Its time component decays exponentially at a certain AdS radial slice. We find that the
matter spreads all over the space, which we speculate to be due to thermal excitation of infinitely many
massless higher spin fields. We conjecture that the above three are generic features of a black hole
holographically realized by the flow equation method.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A black hole is a key object to build a bridge between general relativity and quantum field theory. It was seminally shown that a black
hole entails a horizon and a singularity [1-3] and behaves as a thermodynamical object [4-6] accompanied with particle radiation in a
Planck distribution [7,8]. Hawking argued that the existence of a singularity causes breakdown of a fundamental law of physics [9]. For
instance, suppose a black hole formed from heavy matter. The black hole radiates particles carrying only the thermodynamic information,
while it gradually evaporates losing more detailed information of its initial state, which is a non-unitary transition from a pure state to
a mixed one. This information loss puzzle has been investigated actively up to the present developing various new ideas and techniques.
(See [10-17] for earlier studies.)

An innovative method to investigate general relativity with quantum effects taken into account is the AdS/CFT correspondence [18-20].
In AdS, a black hole stably exists [21], and the information loss puzzle can be analyzed from a dual conformal field theory (CFT) [22-24].
One of the keys to solve the puzzle is the resolution of the black hole singularity by the quantum effects of gravity. It was argued that
the singularity indeed can be resolved by summing over geometries around the saddle points of the path integral, which also restores the
unitarity [17,24]. The resolution of the black hole singularity as well as some coordinate singularity such as the horizon in a quantum
gravity may be natural from the viewpoint of string theory, in which black holes consist of branes and the microscopic degrees of freedom
carried by the black hole are accounted for by strings ending on the branes [25-27]. In this realization a black hole may be a fuzzy object
with no apparent horizon [28]. (See also [29,30].)

A novel approach to realize the framework of holography has been proposed and developed by the authors of the present letter, in
which a ‘holographic’ direction is conjectured to emerge by a flow equation [31-34]. A virtue of this approach is that it is applicable to a
wide class of quantum field theories incorporating traditional techniques of quantum field theories such as the 1/N expansion. The flow
equation approach also enables us to study classical and quantum aspects of gravity on several classic backgrounds [35-39].

The purpose of this paper is to apply the flow equation method to a finite temperature system and study its induced geometry, which
is supposed to be described by a black hole or a black brane solution if the flow method correctly describes the holography. (See also
[40].) As a first step we study a free theory with multiple scalar fields at finite temperature. The dual gravity theory is conjectured to be a
free higher spin theory consisting of all even spin fields [41], which is known to admit a black hole solution in four dimensions [42-44].
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The rest of this letter is organized as follows. In Sec. 2, we consider multiple free scalar fields and smear them by the free flow
equation. Using the 2-point function of the flowed field at finite temperature we compute the bulk holographic metric. We study its
asymptotic behaviors at the UV and the deep IR and make comparison with those for the AdS black hole. In Sec. 3, we calculate the
matter energy momentum tensor (EMT) from the bulk metric through the Einstein equation, and discuss its properties, in particular, the
behavior of the EMT near the boundary. Our conclusion and discussion are given in Sec. 4.

2. Holographic geometry at finite temperature
2.1. Propagators and holographic metric
We begin with a multiple free scalar theory on RY, and flow the scalar fields by a free flow:

d
S D= e (x; 1), ¢°(x;0) = " (%), 2.1)

where 9% = 9,0y with uw=1,---,d, *(x) is a original massless scalar field with a =1,2,---,N. As derived in Ref. [34], the 2-point
function of the flowed field becomes

8“" ®-y7
(@° (6 " (5 9)) F ( ) (2.2)
" [4(t + )17 T(%52) Utts

1
where Fo(u) = / dvv¥2=2e=4V_ We assume d > 2 to avoid the divergence of the integral, which corresponds to the bad infrared behavior
0
of a massless scalar at d = 2.
In order to study the system at temperature T, we compactify one of the directions denoted by x9, so that we set the periodic boundary
condition for each scalar field in the x° direction with the periodicity 1/T. Then the 2-point function at finite temperature can be obtained
by summing over the ‘images’ produced by the compactification

oo
(9" X 08" N = Y (0. % 0o (Y0 +n/T, ¥: 9)o. (23)
n=—oo
Since this 2-point function of the flowed field has no contact singularity, we can normalize the smeared field using the 2-point function
at zero temperature as
R ax0 x: t
o' %0 = (p(iq) (2.4)
(@?(x0,x:))o

where ¢? = fo:] ¢%¢%. Employing this normalized field we define a holographic metric by

N

gun(X) = (o (. % Dano (. X 1)1, (2.5)
a=1

which can be interpreted as an information metric [34], where ¢ is a length scale fixed by hand, and (X™) = (x0, %, T) with T = +/2dt.
Although our proposal that eq. (2.5) can be a constructive definition to realize the metric in the holographic geometry is still a conjecture,
it indeed successfully reproduces the bulk AdS metric at T =0 [34]. For the present case at finite temperature, the metric in eq. (2.5) can
be calculated as follows.

2
goo(X) = LAdS d [F(d 7) — Z%F(d,z)], (2.6)
2
g (X) = 2 |:d 2F(d 2,2) — 1ziF(d 2, z)—i—1 <z%> F(d—2,z)i|, (2.7)
L3as d
gij(X) = 5ij7§F(d7 2), (2.8)

where z=tT is a dimensionless quantity corresponding to the AdS radial coordinate, LAdS =02(d—2)/2,

1

dv
F(s, w) :/dv v$/2=1g, <e_?> , (2.9)
0

with the elliptic theta function 63(q) ;=142 2, q%”z.
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2.2. Asymptotic behaviors

Let us study the asymptotic behaviors of the holographic metric. To this end we introduce useful expressions of the function F defined
by (2.9). An expression good for small z region is

Feo=212(% ér(f) (s) — 8Fuy (s, 2) (2.10)
8= d 3 ¢ uv(s, 2), .
where
422\ * & o fs d
(SFUV(S,Z) - 2 (T) ng;n F (5, En > (211)

with the incomplete Gamma function I'(s, a), which is exponentially small for large a. For large z, on the other hand, using the Poisson

. T .
summation formula, 83(e™*) = /;93 (e‘”z/"). the expression becomes

T 4z
F(s,z):\/;; + 8Fr(S, 2), (2.12)

where

SFR(s z)—4\/?z§: 4n2n222 %F 1-5 471211222 (213)
I & d 2 d) '

Note that 8§ Fyy,ir(d, z) damp exponentially for small/large z.
We write the metric in a standard form such that

Lf\dS Lf\dS le-\dS
2000 =" fo@). ger(X)= L fr (D). gj(X) =8 fica). (214)

In the small z region, we have

fo)=1-20(d - 1)Aq — d (1 —zi> SFuv(d,2), (2.15)
2 0z
d—2 d—2 1 8 1/ 38\°
ff(z):1+zd—2(27)Ad72_ <( 5 )_EZE-'_Z(ZE) )SFU\/(d—Z,Z), (2.16)

d
fiey=1+2"44 - S0Fuv (@.2), (217)

where Ag := (4/d)%sr‘(s/2)§(s). Note that the metric in the small z limit describes the AdS space.
In the large z region, we obtain

d 9
fo(@) = 3 (1 - z&) dFr(d, 2) (2.18)
[4 (2d -5\ 1 a1/ 9)\*
4 d d
fioy =z (ﬁ) +50FR(, 2). (2.20)

Remark that we need d > 3 for large z to avoid the divergence in Fr(d — 2, z), which corresponds to an infrared singularity of a 3-
dimensional massless scalar field at finite T, whose modes with zero Matsubara frequency behave like 2-dimensional massless scalar.
Thus the metric in the large z limit becomes

5 4w (2d—-5\T , 4w d T
800(X) =0, grr(X)=Lygs 4 \2d=6) 7 8ij(X) = 8ijLigs d \d=-1)

From the dependence on z, we find that at finite temperature the metric asymptotically remains AdS with the same cosmological
constant at small z, while it is deformed towards larger z. What is this new spacetime?

3
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A\

Fig. 1. Left panel: The total space of the Euclidean AdS blackhole forms a cigar-like structure near the horizon. The tip of the cigar is £ =0 and & is the ‘distance” from the
tip while x0 is the ‘angle’. Right panel: Large part of the total space of our system forms a cigar-like structure except for the region near the tip, which becomes a thin long
tube stretching to z = oc.
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Fig. 2. A solid line is fo(z) as a function of z/(1 + z) at d = 4. The dashed line is the NLO behavior at small 7T, which agrees with goo for the AdS blackbrane.

2.3. Comparison with AdS blackhole

For comparison, let us write down the metric of the Euclidean AdS Blackhole.

12 d-1 .
ds? = ?—gs ( Poyde® + [P Ex®)? + f,.B“(r)(dx')2> , (2.21)
i=1
where
BH tf - T .
rm=1-—) fMo=1-— ffo=1i=1-,d-1 (2.22)
To o
with 1o being the inverse horizon radius. Near the horizon, T = 7o(1 — £2) with £ <« 1, we have
L% .. (412 -1
ds® ~ A% [ 0 (dg)? +d - £2(dx%)* + ) (dx')* |. (2.23)
%o\ d i=1

The absence of the conical singularity determines the temperature as T = %. This expression tells us that the total space forms a cigar-

like structure near the horizon at which the space ends as shown in the left panel of Fig. 1. The tip of the cigar is £ =0 and & is the
‘distance” from the tip while x° is the ‘angle’ at the horizon. Thus, in Euclidean AdS blackhole, one finds that one can only cover the
region outside the horizon.

Now let us come back to our system. Our total space shares some of the features of the AdS Blackhole. First, the metric is asymptotically
AdS and at becomes exactly AdS at T = 0. Also, our system asymptotically approaches goo = 0, which may be interpreted as a “horizon”
of the blackhole (or more precisely blackbrane in this case). However, there are also differences. Since gop never goes to zero at finite t,
the whole space can reach t = co. To see these differences quantitatively, we numerically evaluate egs. (2.15), (2.16), (2.17) for small z or
their dual expressions egs. (2.18), (2.19), (2.20) for large z, by replacing the infinite sum of incomplete Gamma functions with the finite
sum, which gives negligible errors as long as one uses the proper expression out of the two. Fig. 2 shows fy(z) as a function of z/(1 + 2)
at d =4, where 0(1) in the x-axes corresponds to T = 0(c0). In the figure, a blue solid line from 0 to 0.7 in the x-axes is evaluated using
eq. (2.15), while a red one from 0.4 to 1.0 (a part between 0.4 and 0.7 is masked by the blue line) is obtained by eq. (2.18), with a sum of
n up to 20 for each case. Both agree well between 0.4 and 0.7, showing that truncation errors for the infinite summation are well under
control. An orange dashed line is the next-to-leading (NLO) approximation of fo at small z, given by

fo@=1—(d—-1Ag7", (2.24)

which has the same functional form in z of the AdS blackhole (or blackbrane). Our bulk metric gog deviates from the one for the AdS
blackhole around 0.3, becomes almost zero around 0.45 and exponentially small beyond 0.45. Note that z =1 corresponds to 0.5 of the

SRTISLT RS o
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horizontal axis in the figure. Although the real “horizon” does not appear in this metric, the effective (or pseudo) horizon seems to exist
around z/(1+2z) >~ 0.45 (z>~9/11).

We thus find that the gogp component of the bulk metric in the small z region has a qualitatively similar behavior as that of AdS
blackbrane. Large part of the total space looks like a cigar-like structure. However, the region near the tip i.e. 0.45 <71z/(1+712) <1
becomes a thin long tube stretching to z = co where the 0-th direction shrunk into a circle with an exponentially small radius as shown
in the right panel of Fig. 1. Therefore, it would be hard to distinguish whether this thin long tube region exists or not from an external
observer.

By the way, the fact that ggo(z) >~ 0 at sufficiently large z can be naturally understood from the boundary field theory point of view
as follows. The flow smears the boundary field with the smearing length 7. Therefore, if T ~ 1/T, the smearing reaches the temporal
boundary, so that no more information in the temporal direction implies ggo ~ 0. In other words, the dimensional reduction due to the
temperature T > 1/t produces the blackbrane-like object in the bulk geometry.

Our bulk metric shows deviations from the blackbrane-like object even for small 7 regime. Indeed the NLO approximation of f; and
fi at small T becomes

d-2) d—2
2

fr(@)~1+ Ag—22%7%, fi() ~1+ AgZ. (2.25)

By the change of variables for 7 as T =7(1 — %Ad‘cd), we have

- 5 1 d—2 g ~
fox1-dng Jox o 20,82 i, (2.26)
0

where Z = 7T. Without the second term of fr, this describes nothing but the AdS blackbrane (2.21). The second term of f; has stronger
effect than others near the boundary. Since this term overwhelms the contribution from the AdS blackbrane, one finds that the metric
cannot be the solution of the vacuum Einstein equation with cosmological term even far outside (small z).

Where does this new effect come from? One possible interpretation could be the matter effect. This is not so surprising, since the
thermal excitations of the massless scalar field may give significant contributions to produce this effect, due to the absence of energy gap
between the vacuum and excited states. Correspondingly, gases of massless excited states may appear in the bulk. Another interpretation
can be the deviation from Einstein gravity. Indeed if we take the free O(N) vector model at the boundary, the bulk theory is expected to
correspond to the free higher spin theory with all even spin. In future, we would like to address an interpretation of t9=2 effect in the
metric more explicitly. Note that if we interpret the higher spin fields as exotic matter fields, both the first and the second scenarios can
be regarded as ‘Einstein gravity with new matter effect’. Therefore in the next section, we extract the energy momentum tensor from the
new matter and study its property assuming the Einstein equation.

2.4. Comments on entropy

Before closing this section, we comment on entropy of the dual holographic space, which is expected to match the entropy of the
boundary theory [25-27].

For computation of entropy in the bulk, denoted by Spuk, we use the metric (2.26), in which the effect of matter hanging over
the space is forced to appear only in the radial component by a coordinate transformation. By choosing an AdS radial slice at which
the UV approximation is valid, the metric (2.26) asymptotically behaves as an AdS blackhole, whose horizon is located at T = Ty with
4T =1/(dAg)"/4. We compute the bulk entropy Spux by employing the Beckenstein-Hawking entropy formula.

A

S = —, 2.27
bulk T (2.27)

where G441 is the d + 1 dimensional Newton constant and A is the area of the horizon at 7 = Ty given by

1

A= / dx, [detg; — (Adsf’(T”T)> , (2.28)

T=Ty

where V = [ d?=1x. Note that the second term in ]’f, which is absent for the AdS blackhole, does not affect the result when the
Beckenstein-Hawking formula is applied.
On the other hand, the entropy of the massless scalar field on the boundary is computed as

d
Sbdry = IN7T~5T (5 + 1) VT, (2.29)

Therefore, the ratio of the two entropies becomes

Sbdry _ ~NGay1

— , (2.30)
d—1
Sbulk Liis
where C = % with Zy = (dAq)~"/%. If we approximate f, (zy) ~ 1, then C ~0.207 at d = 4. The ratio NGdH/LAds- which is

d29-22, f;Zn) 2
of the order 1 according to the AdS/CFT correspondence, can be independently determined from other information such as the comparison
of correlation functions. A consistency check whether the entropy ratio (2.30) becomes unity is left for future work.

5
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T00(z)

0.2 0.4 0.6 0.8 101+ z
Fig. 3. The red solid line represents LAdSKZ T9%(z) as a function of z/(1 4 z) at d = 4. The blue dashed (red dotted) line is the NLO behavior at small (large) z.
3. Energy momentum tensor

In this section, we consider the matter energy momentum tensor (EMT), defined from the metric through the Einstein tensor as
k%Tap:=Gap + Agap, where A = —d(d —1)/(2L2 ads) and k2 is the Newton constant. In terms of fo,z,i» we obtain

K2T00: 1 1 [d(d )(1_fr)_—{ Ingr+(d_1)10gfi}r+d;1{10gfi}rr
ADS fr 2 2
d
{logfi}ri—logfr+§10gfi} } (3.1)
1 1 [dd- d -1 d—2
KZTT‘L’_L—f_[ ( 5 )(1_f'f)_—{logf0+(d_])10gfl}f {log fi}< {10gf0+ Ingi} ] (3.2)
i 1 ;1[dd-1) fo
KZTJ:%S]E[ ¢ —fr)——{lg<ff)+(d—2)logfiL
d—2 -1
+ E{logfo+<d—2>logfi}n+T{logf,»}f{log(;°)+ logf,-} —{logfo}r{10g<j{0>} ] (33)
where {X}; :=13; X and {X};7 :=1292X.
At small z, we have
K2T%(z) ~ —(d — 1)Bz*2, B:= d- “g 2 (3.4)
2 LAdS
KT 1 (2) =~ —@Bzd_z, KT j(2) ~ —85(d — 1)BZ*2, (3.5)

which are dominated by f; in eq. (2.25) and their derivatives. At large z, we obtain

1 dd-1) d-3)d+2) 1
2% (z2) ~ — (1 - —) 3.6
CTo@=-p = 42d - 5)v/rd z 56
_ _ 2 _ 4
217y L 2= D@=37 T ()~ 1 16@-3rt 5 37

_7, ~
2, (d-5+/7d b Lf\ds d@2d —5)v/md

Fig. 3 shows L dSKZTOO(Z) (blue and red solid lines) as a function of z/(1 4 z) at d = 4. As seen in the figure, LAdSK 0(2) is non-zero
everywhere but its absolute value reaches the maximum, d(d — 1)/2, at z = co. Comparing it with the energy momentum tensor of the
AdS blackbrane solution, which vanishes except the singularity and diverges at that point, we observe that the singularity formed by
coalescence of matter is resolved and matter spreads all over the space. On the other hand, Fig. 4 shows L ds/<2Tff(z) (red solid line) and
dessz’,(z) (blue solid line) as a function of z/(1 + z). As shown in eq. (3.7), T%¢(z) and T';(z) diverge as z and z3, respectively, in the
large z limit. However, compared to that of the AdS blackhole, this divergence is also suppressed, and the correspondmg singularity does
not lead to divergence for a global physical quantity, as is defined by its integration over the space with a weight of a determinant factor

VE =/ ffoff 1L [45),
While the behavior of the dual geometry becomes milder in the IR, it gets more singular in the UV (or small z) region. We presume
that this will be due to the effect of matter spread over the space, which would clump at the singularity in the case of the AdS blackhole.

ZTO

6
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Fig. 4. The red (blue) solid line represents L2,k 2T7 ¢ (z) (L2,5k2T'i(2)) as a function of z/(1+2) at d =4.

Since the O(N) free massless scalar theory at the boundary is expected to be dual to the higher spin theory in the bulk, thermal effects
at the boundary can easily excite massless higher spin fields in the bulk. This may cause the non-standard behaviors of EMTs as z¢~2 near
z=0. In fact, even taking the spin zero contribution alone, namely massless free scalar field with conformal coupling in the bulk, it gives
29=1 contributions to EMTs at z ~ 0. Although there is a mismatch of the power of z only for this contribution, it is suggestive that the
extra infinitely many massless fields in the bulk gives the non-standard contribution to the EMT. In future studies, it would be interesting
to see whether infinitely many massless higher spin fields generate such z¢=2 behaviors of EMTs near the boundary.

4. Discussion

We have investigated a conjectured holographic geometry of a free O(N) vector theory at finite temperature by the flow equation
approach. The resulting metric behaves as an asymptotic AdS black brane with some matter hanging all over the space though it is free
from the coordinate singularity as well as that of the matter energy momentum tensor T%;. We observed that other components of
the energy momentum tensor have milder singularity at the IR, which does not lead to divergence for a global quantity. Assuming the
known higher spin/vector model duality we presume that the unknown matter contribution to the energy momentum tensor comes from
infinitely many massless higher spin fields excited by thermal effects.

The holographic metric obtained in this paper has remarkable features stated above and in the abstract as well. We strongly suspect
that these features remain unchanged even if interactions are tuned on, as long as they are weak enough. In other words, these features
will change only when the system becomes strongly coupled enough. More precisely, as a coupling constant in the CFT side becomes
stronger, the matter spreading over the entire space in the free case gradually turns to clump around the deeper IR region, and in the
strongly coupled limit the matter collapses to form a horizon. In this limit, we expect the Cosmic censorship hypothesis to be fully
recovered [1-3], though it presumably works in the asymptotic region without taking the limit. In this sense it is highly important to
extend this work to the current system including interactions and Yang-Mills theories and test whether the above picture is correct or
not.

In this letter we exclude a two dimensional case for a general analysis of free theories. It would be interesting to extend this analysis
to a two dimensional interacting CFT at finite temperature, which has also been proposed to have a dual higher spin theory [46]. It is
known that three dimensional higher spin theories admit not only a black hole with conventional global charges [47] but also one with
higher spin charges [48,49]. (See also [50-54].) These black holes in three dimensions are peculiar in the respect that for the former there
is no curvature singularity [55,56] and for the latter the horizon becomes gauge-dependent [57]. (See also [58,59].) Holography provides a
tool to study these black holes from a dual CFT viewpoint [60].

We hope to come back to these issues in the near future.
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