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We study the scale dependence of effective diffusion of fluid tracers, specifically, its dependence on the Péclet
number, a dimensionless parameter of the ratio between advection and molecular diffusion. Here, we address the
case that length and time scales on which the effective diffusion can be described are not separated from those
of advection and molecular diffusion. For this, we propose an alternate method for characterizing the effective
diffusivity without relying on the scale separation. For a given spatial domain inside which the effective diffusion
can emerge, a time constant related to the diffusion is identified by considering the spatiotemporal evolution of
a test advection-diffusion equation, where its initial condition is set at a pulse function. Then, the value of
effective diffusivity is identified by minimizing the L∞ distance between solutions of the above test equation and
the diffusion one with mean drift. With this method, for time-independent gyre and time-periodic shear flows,
we numerically show the scale dependence of the effective diffusivity and its discrepancy from the classical
limits that were derived on the assumption of the scale separation. The kinematic origins of the discrepancy are
revealed as the development of the molecular diffusion across flow cells of the gyre and as the suppression of the
drift motion due to a temporal oscillation in the shear.

DOI: 10.1103/PhysRevE.105.045103

I. INTRODUCTION

Effective diffusion is a phenomenological concept for
describing mixing and dispersion of fluid tracers (e.g. tem-
perature and chemicals) driven by fluid flows [1–4]. In this
paper, we study the scale dependence of the effective diffusion
with an alternate formulation and numerical simulations of
rudimentary flow models.

We briefly introduce the concept of effective diffusion as
follows. Let X ⊆ Rn (n = 2, 3) be configuration space, x ∈ X
be location, and t � 0 be time. Generally, the concentration
profile θ (x, t ) of fluid tracers at x and t is governed by the
following advection-diffusion equation:

∂tθ (x, t ) + u(x, t ) · ∇θ (x, t ) = D�θ (x, t ), (1)

where u(x, t ) represents a predefined velocity field on Rn

and satisfies the incompressibility condition. The constant
D represents the molecular diffusivity of a medium, ∂t the
differential operator in time, ∇ and � the vector differential
and Laplace operators on Rn. Following Refs. [5,6], if the
mean-squared displacement of fluid parcels asymptotically
increases with t2, then their macroscopic dispersion can be
described by the simple diffusion equation

∂t θ̄ (x, t ) = Deff�θ̄ (x, t ), (2)

where we call the new concentration profile (function) θ̄ (x, t )
the up-scaled field, and Deff is known as the effective dif-
fusivity. The meaning of up-scaling in this paper is to
determine a pair of finite-volume, connected domain � ⊂ X
and time-interval I := [0, τ ], τ > 0 for which the macro-
scopic dispersion of Eq. (1) is dominant in some sense.

The concept of effective diffusion plays an important role
in understanding wide ranges of physical and engineered sys-
tems: see, e.g., Refs. [7–9]. Especially, it is of technological
importance in analysis and design of thermal dynamics in
office buildings. These dynamics appear on a wide range of
scales in both space and time. They are closely related to
the existence of human occupants in a room, which work as
mobile heat sources that generate buoyancy and as obstacle
objects to the air flow. Consequently, the air flow and the
heat flow induced by it develop on the scales of seconds to
hours [10]. This motivates the use of effective diffusion for
modeling the heat phenomenon as shown in Ref. [10] by
the authors. Another motivation is from the modeling of heat
transfer inside a building atrium [11,12].

Effective diffusion has been characterized in e.g. Ref. [13]
by the so-called Péclet number Pe := UL/D: the ratio be-
tween advection and molecular diffusion, where U and L are
the characteristic velocity and length of the field u(x, t ). The
dependence of effective diffusivity on Pe, known as a scaling
law, has been studied by several groups of researchers, as
reviewed in the following three paragraphs.

For the steady, two-dimensional periodic gyre flow, the
effective diffusivity Deff exhibits different types of the Pe
dependence. The Pe dependence is theoretically established
in cases of sufficiently small and large Pe [13–18]. This is
exactly expressed as Deff ∝ DPe2 for a sufficiently small Pe
[13–15]. The dependence also behaves like Deff ∝ D

√
Pe for

a sufficiently large Pe [16–18], where the
√

Pe dependence is
explained by the slow diffusive motion of fluid parcels from
one periodic flow cell to another. Moreover, the dependence
in the large Pe can be enhanced from O(

√
Pe) onto O(Pe2)
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by adding a mean drift or a time-periodic perturbation to the
steady gyre flow [17–20], which is called the maximal diffusiv-
ity. In addition to the above limiting cases, the Pe dependence
has been studied numerically for a finite magnitude of Pe.
The authors of Ref. [13] numerically computed the effective
diffusivity Deff without mean drift and showed that its Pe de-
pendence is expressed as an arc-like curve, well fit with both
the O(Pe2) and O(

√
Pe) scaling laws for sufficiently small

and large Pe, respectively. The authors of Refs. [19,21] nu-
merically showed that by adding a mean drift to the gyre, the
Pe dependence can exhibit an exponent lower than O(

√
Pe) at

a finite Pe, referred to as the crossover effect. Although these
numerical studies contain significant progress, their kinematic
origins are not necessarily clarified.

For time-invariant and time-periodic shear flows, the ef-
fective diffusivity Deff has been calculated as closed-form
functions of Pe without limitation of the magnitude of Pe
[16,22,23]. Its kinematic origin is stated in Ref. [21] as the
combination of the molecular diffusion between streamlines
and of the drift motion along the shear. The Deff can take
O(Pe2) only for the time-invariant shear [20]. Also, by analyt-
ical calculation of the time-dependent, finite-scale dispersion
induced by the shear flow, the authors of Ref. [24] proposed
different formulas of mixing efficacy of fluid parcels so as to
explain distinct Pe scalings of the effective diffusivity.

Most of the above theoretical and numerical studies are
conducted with the so-called homogenization limit [5,6],
where the original length-scale (or time-scale) of mixing and
dispersion characterized by U , L, and D is clearly separated
from the length L� of the domain � (or the time constant τ

of the interval I). The assumed scale separation is crucial to
deriving the above explicit formulas of the Pe dependence of
effective diffusion. The author of Ref. [25] has found finite
time scales on which a limit theorem of the homogenization
holds for sufficiently large Pe. Also, recent studies [26–30]
have elaborated on analytical and numerical frameworks for
computing the effective diffusivity where no scale separation
is assumed. However, these studies are conducted without
reference to the kinematic origin of the Pe dependence.

To the best of our survey, the kinematic study on the Pe de-
pendence of effective diffusion relies on the scale separation,
that is, it has not been explored how the effective diffusion
is affected by wide ranges of the magnitudes of L� and τ .
As mentioned above, the authors of Ref. [21] explained the
effective diffusion for the shear flows by assuming that τ is
so large that a fluid parcel can transit from one streamline of
the shear to another by molecular diffusion. Also, in Ref. [24],
the mixing efficacy was defined by integrating a fundamental
solution of Eq. (1) over the infinite time interval. Thus, the
shear-induced transport for a finite τ has not been considered
in the context of effective diffusion. It should be emphasized
that the need of investigating the effective diffusion for such a
finite τ is pointed out in simulation studies on oceanography
and atmospheric science [31–33] and motivated by the engi-
neering of thermal dynamics in office buildings as mentioned
above.

The purpose of this paper is to characterize the scale de-
pendence of effective diffusivity Deff over the range of scale
on which the previous theories and methods for illustrating
the effective diffusion were constructed. More specifically,

we numerically investigate how the Pe dependence of Deff is
affected by the parameters L� and τ with finite magnitudes.
To this end, as the first part, we determine the values of L�

and τ for which the macroscopic dispersion of Eq. (1) is
dominant in some sense. In this paper, we will show that
the macroscopic dispersion is dominant for a given L� if τ

takes the same order as the time when it takes for a fluid
parcel to travel over �. Then, as the second part, we focus
on the two rudimentary models—time-independent gyre and
time-periodic shear flows—and show computational results
on their effective diffusivity Deff so that its Pe dependence
is numerically described. The computation scheme is formu-
lated and conducted in an engineering framework.

The contributions of this paper are twofold. First, we de-
velop a method for identifying the effective diffusion without
relying on the scale separation. For given � with L�, us-
ing techniques from control and optimization, we propose
to identify the time-scale τ and then the effective diffusivity
Deff. Here, τ is identified by considering the spatiotemporal
evolution of a test advection-diffusion equation, where its
initial field is set at a pulse function, whose definition is
presented in Sec. II. This is analogous to the identification
of dynamic responses of linear time-invariant systems using
an impulsive input [34]. The identification of τ is especially
important for a finite magnitude of Pe, where advection and
molecular diffusion are comparable so that the identification
based on vanishing molecular diffusion [18,25] is not avail-
able. Note that the authors of Ref. [35] introduced the shortest
time reaching a certain predetermined radius, which is the
boundary of � in this paper, so as to determine finite-size Lya-
punov exponent and dispersion. The connection between our
identification and the above determination is shown in Sec. II.
Using the time scale τ , Deff is identified by minimizing the
L∞ distance between solutions of the above test equation and
the diffusion one (2) with mean drift. Second, for the two
rudimentary models, we reveal the kinematic origins of the Pe
dependence of Deff, where no scale separation is assumed. For
the gyre flow, we numerically show that the Pe dependence
can change from O(

√
Pe) at a finite Pe. Based on a finite

magnitude of τ , we newly estimate the length of finite-time
dispersion of fluid parcels due to the effective diffusion, by
which the change of the Pe dependence is explained as the
development of molecular diffusion between flow cells of the
gyre. For the shear flow, we numerically show that a finite
magnitude of τ causes the deviation of Deff from the closed-
form function of Pe. The deviation is explained as the degree
of insufficiency of molecular diffusion between streamlines.

The rest of this paper is organized as follows. Section II
is devoted to developing the method for characterizing the
effective diffusion where no scale separation is assumed. Sec-
tion III shows computational results of the effective diffusion
for the gyre flow. By sweeping the molecular diffusivity D,
we will validate our method with the

√
Pe scaling and show

its breakdown when no scale separation holds. In Sec. IV,
we study the Pe dependence of the effective diffusion for the
shear flow, where the time constant of molecular diffusion
between streamlines is on the same order as drift motion by
the shear. Section V is the conclusion with a brief summary
and discussion on generality of the proposed method and the
physical findings.
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II. PULSE-BASED METHOD FOR CHARACTERIZING
EFFECTIVE DIFFUSION

This section is devoted to developing a method for char-
acterizing the effective diffusion without assumption of scale
separation. Here, for a given � ∈ X, the time scale τ , effective
diffusivity Deff, and associated error term as the result of
the approximation of effective diffusion are determined via
the spatiotemporal evolution of a pulse function, which is
defined in the next paragraph. Below, we assume that u(x, t ) is
periodic in both space and time. Precisely, it is assumed that
the signal u(x, t ) for any fixed x ∈ � has a finite number of
peaks in Fourier spectrum, for which we use τ0 to represent
the fundamental period. It is also assumed that τ0 and the
fundamental period L of u(x, t ) in space are known a priori,
and that L is smaller than L�. These assumptions hold for our
rudimentary models in this paper.

Let us introduce a test equation used for this method.
Recalling that effective diffusivity is not sensitive to an initial
field θ0 (see, e.g., Ref. [31]) and, in certain cases, can be a
functional of u(x, t ) [5], we evaluate it via the following test
partial differential equation (PDE):

∂tρ(x, t ) + u(x, t ) · ∇ρ(x, t ) = D�ρ(x, t ). (3)

Importantly, the initial field ρ(x, 0) is fixed at a certain class
of functions that we call the “pulse” function ρ0(x). For our
method, ρ0(x) should be taken as a function such that it is
supported in the interior of � and localized (in x) in terms
of L� so that the diffusion phenomenon clearly develops in
space. Regarding this, there are multiple choices of the pulse
function; e.g., the Dirac’s delta function can be used in context
of mathematical analysis. This choice is used in terms of the
Lagrangian approach [20,21,24,36], where effective diffusion
is described via the long-term evolution of the density of fluid
parcels that start from the support of the delta function. In
this paper, in order to gain better regularity of the problem for
numerics, we use the Gauss function as ρ0(x) and control its
length scale by the variance parameter σ :

ρ0(x) = exp

(‖x − c�‖2

σ 2

)
, (4)

where c� stands for a geometric center (centroid) of �, and
‖ · ‖ for the vector norm. To clearly investigate the effect of
advection with its spatial period L, we fix σ such that its order
of magnitude is equal to and smaller than that of L.

As the first step of the method, for given �, we determine
the time scale τ relevant to the dispersion of fluid parcels in �.
The τ is identified via the parameter τ�,α that is a function of
� and a small parameter α for judging if a fluid parcel reaches
a given position or not. Let ∂� be the boundary curve or
surface of �. For given x ∈ �, if a fluid parcel reaches x from
an initial position close to c�, then there exists an onset time t ,
denoted by τ̃�,α (x), such that ρ(x, t ) = α

∫
�

ρ0(y)μ(dy)/|�|
holds, where μ(	) is a standard measure on �, and |�| =∫
�

μ(dy) coincides with the volume or area of �. Here, by
supposing that a fluid parcel can reach the boundary ∂� by
the advection and diffusion, it is possible to estimate the time
τ�,α given by

τ�,α = inf
x∈∂�

τ̃�,α (x). (5)

This is an approximation of the first time when the pulse of
Eq. (4) hits ∂�.

Here, we comment on how to determine the parameter
α. As α becomes large, it is possible to clearly detect the
hitting of the pulse; however, it requires long time for the
computation of Eq. (5). Also, for avoiding the trivial case
τ�,α = 0, the initial ρ0(x) should be smaller than the threshold
α

∫
�

ρ0(y)μ(dy)/|�| at every x ∈ ∂�. Thus, α needs to satisfy
the following inequality:

α >

|�| sup
x∈∂�

ρ0(x)
∫
�

ρ0(y)μ(dy)
=: 
�,σ .

Below, we will fix α at a small value satisfying the above
inequality, and hence τ�,α can be computed in practical time.
Regarding this, we will also show the L� dependence of 
�,σ

(see Fig. 3).
Next, we identify the drift-oriented transport of ρ during

the interval [0, τ ] in order to eliminate it for estimating the
effective diffusivity. Inspired by the averaging method [5], we
quantify the so-called bulk movement of fluid parcels by

c(t ) := 1

C0

∫
�

xρ(x, t )μ(dx), t ∈ [0, τ ], (6)

where C0 := ∫
�

ρ0(y)μ(dy). The meaning of c(t ) is described
below in terms of the averaging method. As in Ref. [5] we
suppose that � is point symmetric with respect to its center
c�. Then, by combining this with the periodicity of u, the
equality

∫
∂�

x{(ρu) · n}μ(dx) = 0 holds, where n(x) is the
normal vector at point x on ∂�. Also, when the pulse of
Eq. (4) does not hit ∂� at t < τ , the gradient ∇ρ(x, t ) is
negligible at any x ∈ ∂�. Then, the time derivative of c(t ) is
derived as

dc
dt

= 1

C0

∫
�

x{−∇ · (ρu) + D�ρ}μ(dx),

= − 1

C0

∫
∂�

x{(ρu) · n}μ(dx)

+ 1

C0

∫
�

(ρu)μ(dx) + D

C0

∫
∂�

(∇ρ) · nμ(dx),

∼ 1

C0

∫
�

u(x, t )ρ(x, t )μ(dx), (7)

where we use the integration by parts for each element to
move from the first line to the second. Equation (7) corre-
sponds to the classical effective velocity [5] if ρ(x, t )/C0 is
regarded as a probability density function on �. This clearly
shows that c(t ) in Eq. (6) represents the averaged (in space)
movement of fluid parcels in �. Since the effective velocity
in Ref. [5] represents the spatio-temporal mean of u(x, t ), we
define

Ū�,α := c(τ�,α ) − c�

τ�,α

, (8)

as the effective velocity to describe the drift transport over
[0, τ ].

Finally, we develop the concrete step of identify-
ing the effective diffusivity. The key idea of this is to
approximate the local dispersion of fluid parcels from the
center c� as the effective diffusion. This approximation is
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conducted via the following diffusion equation that allows the
mean flow Ū�,α:

(∂t + Ū�,α · ∇)ρ̂D̄,�,α (x, t ) = D̄�ρ̂D̄,�,α (x, t ), (9)

where D̄ is a candidate of the effective diffusivity, and
ρ̂D̄,�,α (x, t ) represents the concentration profile of fluid
parcels driven by the mean flow and the diffusion with its
coefficient D̄. Here, since the length scale L� of the target
domain is larger than that of ρ0(x), it is natural to understand
the dispersion from c� via a solution of an isotropic homoge-
neous diffusion equation on Rn. Its fundamental solution (i.e.,
heat kernel) is given by a time-varying Gaussian function [37].
In this, the dispersion is represented as the temporal change
of the “height” (maximum value) of the kernel. The height
of the kernel is well captured by its L∞ norm rather than
L2 norm. Thus, based on the L∞ distance between solutions
of advection-diffusion and effective diffusion equations in
Ref. [5], we introduce the L∞ distance to identify the effective
diffusivity as follows:

d̂D̄,�,α (t ) := sup
x∈�

|ρ(x, t ) − ρ̂D̄,�,α (x, t )|. (10)

This d̂D̄,�,α can change in not only D̄,� but also t . In par-
ticular, it can have a wide range of time-frequency spectrum
beyond that of ρ̂D̄,�,α (x, t ) since ρ(x, t ) is affected by the
time-dependent u(x, t ) but ρ̂D̄,�,α (x, t ) by the constant Ū�,α .
However, by the original notion of effective diffusion, such
high-frequency components should be filtered out for the
modeling of macroscopic mixing and dispersion. Thus, for
estimating better D̄ in the L∞ sense, it is necessary to filter out
high-frequency components whose time scale is smaller than a
predefined constant denoted as τ0. There exist many methods
for this low-pass filtering in signal-processing textbooks: see
e.g., Ref. [38]. In this paper, for simplicity of implementation,
we use the first-order filter to derive a smoothed error dD̄,�,α (t )
from d̂D̄,�,α (t ) as follows:(

τ0
d

dt
+ 1

)
dD̄,�,α (t ) = d̂D̄,�,α (t ), (11)

where the smoothed error dD̄,�,α (t ) is initialized as
dD̄,�,α (0) = d̂D̄,�,α (0). With this, we search a value of D̄ that
minimizes the cost function defined by

sup
t∈I

dD̄,�,α (t ), (12)

where its minimizer is referred to as D̄�,α , corresponding to
an estimated value of the effective diffusivity Deff for given �

and α.
Moreover, we introduce a metric for the effective diffusion

to investigate its performance and application limit, which we
will compare with an error metric given by the homogeniza-
tion in order to validate the proposed method. Recalling that
the goal of the homogenization in Refs. [5,6] is to describe
macroscopic dispersion of fluid parcels as the pure diffusion,
we compare Eq. (3) with the following diffusion equation:

∂t ρ̄�,α (x, t ) = D̄�,α�ρ̄�,α (x, t ), (13)

where ρ̄�,α (x, t ) represents the concentration profile of fluid
tracers driven by the pure diffusion with its coefficient D̄�,α .
For this, we consider the difference between the two initial

fields: θ0(x) assumed by the classical homogenization and
ρ0(x) by our method. In Ref. [5], θ0(x) is assumed to be
a periodic function with its period sufficiently smaller than
L�, implying that fluid parcels are homogeneously located
on �. However, in this paper, the initial field is set at the
pulse function ρ0(x) so that fluid parcels stay near its center
c� for small t . The local dispersion does not appear in the
homogenization approach and therefore should be excluded
for investigating the performance of the effective diffusion.
By taking this into account, it is desirable to introduce a
metric based on the concentration profile after fluid parcels
are sufficiently dispersed over �. In this paper, we use the
following metric E�,α at the onset time t = τ�,α:

E�,α := sup
x∈�

|ρ(x, τ�,α ) − ρ̄�,α (x, τ�,α )|. (14)

The method developed above is summarized as a schematic
diagram in Fig. 1.

Here, we discuss the connection between the above
identification and the determination of finite-size Lyapunov
exponent and dispersion [35]. In Ref. [35], the authors in-
troduced the “doubling time,” implying the time that it takes
for the initial size of a cloud of fluid parcels growing into its
double size. Recalling that Eq. (5) is an approximation of the
first time when the pulse of Eq. (4) hits ∂�, the doubling time
can be computed by setting the length scale σ of Eq. (4) at
a half of the length L�. Then, by the dimensional analysis
based on the doubling time and the initial size of a cloud, they
determined the finite-size Lyapunov exponent and the finite
size diffusion coefficient so as to characterize dispersion of
parcels. In this, there is no investigation into the possibility
of deriving the spatiotemporal evolution θ̄ (x, t ) from Eq. (2).
This implies the difference from our method, where Deff is
directly estimated by minimizing the cost function (12) so that
θ̄ (x, t ) can be obtained.

Before the concrete applications, it is valuable to men-
tion the computational aspect of the proposed method. The
optimization poses, unfortunately, a nonconvex problem, and
hence its local minimizer does not imply the global one. In
the applications below, the explicit formulas of rudimentary
flow models are available so that the order of “true” effective
diffusivity Deff can be estimated a priori. Restricted to the
true order, the cost function (12) likely exhibits the convex
property. Then, we will conduct the grid search algorithm
[39,40] in order to search the minimizer of Eq. (12). However,
when the proposed method is used in the combination with the
computational fluid dynamics (CFD) (see, e.g., Ref. [2]), the
true order of Deff cannot be estimated because of the complex
nature of u(x, t ). In this case, the optimization requires global
techniques such as metaheuristics [41] for locating a global
minimum of Eq. (12) while avoiding a local one.

III. SCALE DEPENDENCE FOR GYRE FLOW

In this section, we apply the proposed method to a simple
gyre flow and characterize its effective diffusion as a function
of the molecular diffusivity D. The purposes of this applica-
tion are twofold. The first one is to validate the method by
comparison with the traditional theory of D dependence of
the effective diffusivity Deff [see Eq. (16) below], which is
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FIG. 1. Schematic diagram of the proposed characterization of effective diffusion.

based on the scale separation. The second one is to show a
breakdown of the theory beyond the regime where the scale
separation holds, which we will refer to as the transition
of effective diffusion. The model flow is time invariant and
represented by the following two-dimensional vector field: for
x = [x y]�,

u(x) =
[−U sin(2πx/L) cos(2πy/L)

U cos(2πx/L) sin(2πy/L)

]
, (15)

where X = [−0.5, 0.5] × [−0.5, 0.5], U and L are the charac-
teristic velocity and the length of the flow field [42]. Figure 2

FIG. 2. Illustration of streamlines of the vector field (15).

illustrates streamlines of the vector field (15) with L = 0.1
in the subdomain [−0.1, 0.1] × [−0.1, 0.1]. Also, the target
domain � is set at a square [−L�/2, L�/2] × [−L�/2, L�/2]
with the controllable length L�.

Under the scale separation (i.e., L� � L), the scaling law
and error convergence of the effective diffusivity for Eq. (15)
are well known. For Pe := UL/D, the

√
D scaling law of Deff

is given in Refs. [16,18]: for sufficiently large Pe,

Deff ∝ D
√

Pe =
√

DUL. (16)

Also, for the scaling ratio L/L�, the upper bound of the
following error Ẽ�,α is given in Ref. [5] by virtue of the
homogenization: Under the assumption that the initial field
θ0(x) of Eq. (1) is periodic, we have

Ẽ�,α := sup
x∈�

|θ (x, τ�,α ) − θ̄ (x, τ�,α )|

� sup
x∈�,t∈[0,τ�,α ]

|θ (x, t ) − θ̄ (x, t )| < L/L�. (17)

Below, we will validate the proposed method by not only
reproducing these results but also exploring their discrepancy
from classical limits.

In this paper, it is referred to that the scaling law (16)
becomes irrelevant for explaining the underlying transport
phenomenon, as the transition of effective diffusion. The
occurrence of the transition has been numerically shown
in literature, e.g., Refs. [19,21]. Here, we point out that it
results from the enhancement of the molecular diffusivity
D. The scaling law is originated from the formation of a
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TABLE I. Setting of of numerical simulations for gyre flow.

Setting D L�

#1 10−4 {0.2, 0.3, . . . , 0.8}
#2 {10−6, 10−5.9, . . . , 10−4} 0.7

diffusive boundary layer with width Wb, implying a small
neighborhood of separatrix of the flow [16,18]; see the vertical
and horizontal line in Fig. 2. Because advection is dominant
in a flow cell, the two time constants—the time τa := L/U
to go around a cell by advection and the time τd := W 2

b /D to
traverse diffusively the boundary layer—can be balanced, i.e.,
τa  τd. Thus, the width Wb is determined as

Wb =
√

DL/U . (18)

Then, Deff is estimated by multiplying a usual random-walk
expression L2/(L/U ) by the ratio of particles Wb/L lying in
the boundary layer, leading to the scaling (16) in Ref. [16].
Here, it naturally follows for large D that τa and τd are not
comparable. Then, the balance between advection and molec-
ular diffusion can break down and cause the transition of the
scaling law. This will be numerically clarified below.

Let us summarize the current setting of numerical simula-
tions. We used the parameters σ = 0.04, U = 1, and L = 0.1.
Also, as shown in Table I, we varied L� and D in order to
confirm whether or not the scaling law (16) and the error
convergence (17) are reproduced by the proposed method.
Moreover, to show that the effective diffusion is not sensi-
tive to the selection of initial fields, we computed the error
metric Ẽ�,α in Eq. (17) with a certain initial field θ0. Since
the effective diffusivity D̄�,α and its time constant τ�,α are
computed by the dispersion from the single center c�, any
peak of θ0(x) should not be located at the center c� for distin-
guishing E�,α from Ẽ�,α . Thus, we set θ0(x) at the following
mixed-Gaussian distribution:

θ0(x) = exp

(‖x − c1‖
σ 2

)
− exp

(‖x − c2‖
σ 2

)
, (19)

where the positions of peaks were denoted by c1 = [0.4 0.4]�
and c2 = [0.6 0.6]�. With this, we computed Ẽ�,α by setting
τ = τ�,α and Deff = D̄�,α in Eqs. (1) and (2). Here, by varying
L�, we plotted the lower bound of α, namely 
�,σ in Fig. 3,

FIG. 3. Numerically computed 
�,σ for each L�. Here the vari-
ance parameter σ is fixed at 0.04. The blue cross marks denote the
calculated values, and the dashed line denotes 
�,σ = 0.05.

FIG. 4. Simulation results of effective diffusion for the gyre flow
(15): (a) L� dependences of E�,α (red, thin) and τ�,α (blue, thick);
(b-1) D dependences of D̄�,α (red, thin) and τ�,α (blue, thick); and
(b-2) D dependency of σ�,α .

which took its maximum 0.0154 at L� = 0.2. Thus we fixed
α at 0.05, which was on the same order as (and larger than)
the above maximum, and by which we could compute τ�,α

in practical time. All numerical simulations were conducted
by the forward-time centered-space scheme [43], where the
discretization steps were set at 0.005 in space and 0.001 in
time. The minimizer of Eq. (12) was searched by the grid
search with the candidates D̄ ∈ {10−5, 10−4.99, . . . , 10−2.5}.

Figure 4 summarizes simulation results of the effective
diffusion for the gyre flow. In the panel (a) of Fig. 4, the time
constant τ�,α and the error E�,α are shown as the setting # 1 in
Table I. The error E�,α , denoted by the blue circles, becomes
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small as L� increases, so that the dominant phenomenon is
transited from mixing and dispersion to diffusion. The rate
of change (decay) of E� is approximately L−1.5336

� , which is
faster than L−1

� in Eq. (17) derived under the scale separation.
The error Ẽ�,α computed by setting the initial field at θ0(x)
in Eq. (19), denoted by blue x marks in the panel (a), is
in good agreement with E�,α , showing that both ρ(x, t ) and
θ (x, t ) become diffusive regardless of their different initial
fields. Thus, no consideration of the dependence on initial
fields is needed to capture well the effective diffusion for the
gyre flow. Also in the panel (a), the time constant τ increases
with (L�/L)1.8772, which is relevant in comparison with the
well-known diffusive scaling τ ∝ (L�/L)2 in Ref. [5].

The panel (b-1) of Fig. 4 shows the results of D̄�,α and τ as
the setting # 2 in Table I. The rate at which D̄�,α increases dif-
fers for the two regimes D � 10−5.8 and D > 10−5.8 ; See the
Appendix for a detailed discussion on the critical value D =
10−5.8. For D � 10−5.8, a linear approximation gives us an
estimated rate D0.65, which implies the scaling law (16). It is
here noted that the estimation error from D0.65 depends on the
choice of samples used for the linear approximation. Indeed,
when the four samples at D ∈ {10−6, 10−5.9, 10−5.8, 10−5.7}
are chosen and a linear approximation is utilized for them,
the estimated rate becomes D0.50. On the other hand, the
rate for D > 10−5.8 is smaller than for D � 10−5.8, show-
ing the transition of the

√
D scaling law between the two

regimes. As stated above, it suggests that the large value of
the molecular diffusivity D causes a breakdown of the balance
between molecular diffusion and advection, in other words,
the associated boundary layer does not work in the transport
phenomenon dominantly, i.e., Wb � √

DL/U .
This mechanism is justified by the following observation.

For quantifying how long is the distance of movement of a
fluid parcel across the periodic flow cells, we denote by σ�,α

the dispersion length in the x (or y) direction governed by the
effective diffusion as

σ�,α :=
√

D̄�,ατ�,α/n, (20)

where n is the dimension of � and introduced in the denom-
inator for representing the x- (or y-) directional movement of
fluid parcels. The panel (b-2) of Fig. 4 shows σ�,α for each
D, where the horizontal broken line corresponds to the path
length per one rotation of a circulation, σ�,α = πL/2. Clearly,
σ�,α is larger than πL/2 for D > 10−5.8, implying that a fluid
parcel visits multiple cells before circulating a single cell. The
discontinuous change at D = 10−5.8 suggests that the fluid
parcels are not trapped in the boundary layer, and that the
effective diffusion is governed by their molecular diffusion
that develops over multiple cells.

IV. SCALE DEPENDENCE FOR SHEAR FLOW

In this section, we address a simple model of time-periodic
shear flow and investigate the effective diffusion arising there,
especially its scale dependence caused by a temporal oscilla-
tion in the shear. The model flow is given in [16,22] as follows:

u(y, t ) =
[
U cos(2πy/L) cos(2πt/τ0)

0

]
, (21)

where x = [x y]� ∈ X = [−0.5, 0.5] × [−0.5, 0.5]. The ef-
fective diffusion in the x direction can be produced by the
interaction of shear and molecular diffusion. The associated
effective diffusivity is analytically determined via spatiotem-
poral Fourier analysis in Ref. [21]. Let � be the rectangle
[−0.4, 0.4] × [−0.5, 0.5] with L� = 0.4. Under the scale sep-
aration, which corresponds to L � L� and τ0 � τ in Ref. [5],
the effective diffusivity in the x direction, denoted by D̄xx, is
described with the following analytic formula [16,21,22]:

D̄xx = D + D

2

U 2

(L/τ0)2 + (2πD/L)2
. (22)

This leads to the associated PDE for the effective diffusion as

∂t θ̄ (x, t ) = (
D̄xx∂

2
x + D∂2

y

)
θ̄ (x, t ), (23)

where ∂x and ∂y stand for the differential operators in x and y.
To clarify the scale dependence to be studied here, we

explain the kinematic origin of the analytic formula (22) based
on Ref. [21]. Without the presence of molecular diffusion, a
fluid parcel would move along the streamlines of the shear,
which are straight lines parallel to the x axis, at a ballistic rate
(implying that the distance for the movement grows linearly in
time). The presence of molecular diffusion enables the parcel
to move from its initial streamline onto others with velocities
in the opposite direction of the initial one, thereby suppressing
the ballistic motion and making a diffusive transport dominant
instead. In contrast, the temporal oscillations in the shear
induce bounded oscillations of fluid parcels rather than the
unidirectional ballistic motion, therefore disturbing the trans-
port of parcels. Thus, the effective diffusivity D̄xx depends on
D and decays as the period τ0 decreases; see Eq. (22) and the
black line in Fig. 5(c) for details. The dependence of D̄xx on
not only D but also τ0 is crucial to our current study.

The scale dependence which we will study is related to
the deviation of the estimated effective diffusivity from the
analytic formula (22). Regarding this, it should be emphasized
that the mechanism explained above implicitly relies on the
assumption of scale separation; namely, τ should be so large
that a fluid parcel can diffusively move between different
streamlines in the shear. In this, the diffusive behavior of fluid
parcels has not been clearly investigated for a small time scale
τ . By taking a large value of the period τ0 of the shear, τ can
be small such that fluid parcels can reach the boundary ∂� by
the ballistic motion before moving between the streamlines
diffusively. For such a small τ , we will estimate the effective
diffusivity and investigate how the estimated value is affected
by the dominance of the ballistic motion. Below, in order to
consider not only D but also multiple values of τ0, we regard
as the length scale not L (the interval between the streamlines)
but Uτ0 (the length of the ballistic movement) and rewrite the
Péclet number as the leading parameter like

Pe := U 2τ0

D
. (24)

Let us summarize the setting of numerical simulations. We
used σ = 0.04, U = 1, L = 0.02, and D = 10−4, and varied
τ0 through 0.01, 0.02, . . . , 0.1 so as to sweep the advective
time scale while fixing the diffusive time scale. The param-
eter α was set at 0.05 as in Sec. III. To explicitly search
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FIG. 5. Simulation results of effective diffusion for the shear
flow (21): (a) τ�,α (solid) (b) E�,α (solid) and supx∈� ρ(x, τ�,α )
(dashed); (c) D̄�,α (blue, solid), D̄xx (black, solid) and D̄β (dashed)
for each time-period τ0.

D̄xx, the diffusion operator D̄� was modified into D̄∂2
x + D∂2

y
in Eqs. (2), (9), and (13). The simulation and optimization
schemes were the same as in Sec. III, and the discretization
steps were set at 0.002 in space and at 0.001 in time.

Figure 5 summarizes simulation results of the effective
diffusion for the shear flow. The Péclet number Pe is denoted
for each τ0 at the bottom of Fig. 5. In the panel (a), the time
scale τ�,α is shown with the blue line and takes small values
as τ0 increases. This implies that a fast oscillatory component
in the shear makes the length of the ballistic motion Uτ0 small
so that few fluid parcels can reach the boundaries x = ±0.4.
Also, τ�,α has a value with the same order as L2/D = 4, which
represents the diffusive time constant in the y direction. Thus,

τ�,α becomes so small that the ballistic motion is dominant by
comparison with the diffusive movement between the stream-
lines.

Figure 5(b) shows the error term E�,α with the blue line.
For comparison, the L∞ norm supx∈� ρ(x, τ�,α ) is also shown
with the broken line. The order of E�,α is smaller than that
of the L∞ norm. Thus, the solution ρ̄D̄�,α

(x, τ�,α ) of Eq. (13)
is in good agreement with ρ(x, τ�,α ) of Eq. (3), showing
the validity of the approximation as the effective diffusion.
Also, this implies that in the proposed method we regard
the dispersion mainly caused by the time-periodic ballistic
motion as the effective diffusion, which is general and never
clarified with the homogenization. Here, while E�,α decreases
with almost all τ0, it takes a larger value at τ0 = 0.03 than
τ0 = 0.04. This is related to that the drift length Uτ0 = 0.03
is comparable with (or smaller than) the variance σ = 0.04
and hence that not only the bulk transport of the initial pulse
ρ0 but also its deformation (i.e., the geometric change from
the Gaussian pulse) are emergent and affect the validity of the
approximation as the effective diffusion. Indeed, for different
values of σ , we confirmed that E�,α took such a large value at
a certain τ0 with a smaller magnitude than σ/U , showing the
effect of the above deformation.

Figure 5(c) shows the effective diffusivity for each τ0 and
Pe. The blue circles represent the values of D̄�,α identified
with our method, and the black solid line does D̄xx computed
with the analytical formula (22). As stated above, the analytic
D̄xx decays as τ0 decreases; however, the determined D̄�,α

becomes larger than D̄xx for the small τ0. This indicates that
the ballistic motion is not well suppressed by the diffusive
transport. To verify it, let us modify the analytical formula
(22) of effective diffusivity into

D̃β = D + D

2

U 2

(βL/τ0)2 + (2πD/βL)2
, (25)

where the degree of insufficiency of the diffusive transport
between streamlines is represented by shortening the diffu-
sive length L via a controllable coefficient β ∈ (0, 1). In the
figure we show D̃β for β ∈ {0.2, 0.4, 0.55, 0.7, 0.8, 0.9} with
the dashed lines. By increasing β with τ0 (or Pe), it is possible
to adjust D̃β to the identified D̄�,α for each τ0. This implies
that a fast oscillation in the shear suppresses the unidirectional
ballistic motion instead of the molecular diffusion, and that
the effective diffusion for a finite magnitude of τ0 is mainly
governed by the shear.

V. CONCLUDING REMARKS

This paper is devoted to the scale dependence of the ef-
fective diffusivity Deff for the two rudimentary flow models.
Technically, we investigated how the Pe dependence of Deff

was affected by the parameters L� and τ with finite magni-
tudes. To do this, for given L�, we developed a pulse-based
method for identifying τ and Deff based on finite-time evo-
lution of the Gaussian pulse function in Sec. II. For the
time-invariant gyre flow in Sec. III, the proposed method
successfully reproduced the well-known error convergence
and scaling law, showing its validity. Also, by enhancing
the molecular diffusivity D for the gyre flow, we show that
the scaling exponent of Deff can change according to the
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breakdown of a balance between advection and diffusion in
a single flow cell. For the time-periodic shear flow in Sec. IV,
we show that the effective diffusivity Deff can deviate from
the Fourier-based analytic formula (22), which has not been
clearly reported in literature to the best of our survey. We
point out that the diffusive transport between streamlines can
be insufficient in a finite time scale of the effective diffusion
for the shear, and hence the deviation from Eq. (22) originates
from the suppression of a ballistic motion due to the temporal
oscillation in the shear.

Here, we revisit the kinematic origins of the scale depen-
dence of effective diffusivity delineated in the two models.
The origins are commonly related to how fluid parcels are
trapped in the flow structures, i.e., flow cells of the gyre in
Sec. III and streamlines of the shear in Sec. IV. It is generally
beyond the two models and central to the research on mixing
and dispersion by fluid flows [44]. To show this concretely, we
refer to Ref. [45] which investigates the effective diffusion for
a time-dependent shear model different from Eq. (21). In this,
as a metric of the effective diffusion, the authors computed
the variance of fluid parcels starting from a certain initial
position. Then, by varying the initial position, they illustrated
the spatial distribution of the variances, which showed the
spatial pattern associated with the finite-time Lyapunov ex-
ponents (FTLEs) (see, e.g., Ref. [46]) of the vector field.
Clearly, the formation of such a spatial pattern depends on
how fluid parcels are trapped in the flow structures described
by FTLE, showing a similarity with what we showed in this
paper. Also, the authors of Ref. [45] reported that the FTLE-
induced pattern disappeared at a large value of the molecular
diffusivity. The delineated mechanism in Sec. III that a fluid
parcel can move across multiple cells diffusively helps to
explain the disappearing process of the pattern. We contend in
this paper that the finite-scale effective diffusion is governed
by the interplay between the fluid parcels (passive tracers) and
the flow structures.

Finally, we discuss the generality of the method proposed
in Sec. II. The proposed method can be applied to general

(nonperiodic in space and time) advection-diffusion systems
if the fundamental space and time scales of a nonperiodic
fluid motion can be determined (that is, if L and τ0 are
available). Also, by simulating the spatiotemporal evolution
of fluid flows with CFD techniques and by using it as the
predefined field u(x, t ), the effective diffusion can be charac-
terized even when the concentration profile θ (x, t ) affects the
velocity field u(x, t ) (i.e., the fluid tracers are not necessarily
passive). In addition to the computational application, if the
initial pulse ρ0(x) is realized experimentally and its evolution
ρ(x, t ) measured (sampled), the proposed method makes it
possible to characterize the effective diffusion of passive trac-
ers from the measurement data on ρ(x, t ), while avoiding the
computational burden in terms of CFD.

APPENDIX: PHYSICAL INTUITION ON D = 10−5.8

IN FIG. 4(b-1)

Here we draw a physical intuition on the critical value D =
10−5.8 that divides the Pe dependence into the two regimes in
Fig. 4(b-1). To do this, let us consider the intersection between
the lines that illustrate two scaling laws. For D < 10−5.8,
the scaling law is given as in Eq. (16). For D � 10−5.8, we
propose to understand the scaling law by modulating Eq. (16)
in the following manner. Since fluid parcels are not trapped
in the boundary layer where their movement is governed by
the molecular diffusion, we enhance the nominal diffusivity D
into D�,α|D=10−5.8 . Also, since the effective diffusion appears
over multiple cells, we represent its length scale by the width
Wb|D=10−5.8 between two cells and rewrite the Péclet number
as P̃e = Wb|D=10−5.8U/D. Then, the intersection between the
lines that illustrate two scaling laws is given by

DPe0.65 = D�,α|D=10−5.8 P̃e
0.1539

. (A1)

The solution of Eq. (A1) is D = 10−5.8943. Thus, the crit-
ical value D = 10−5.8 corresponds to the maximum of the
molecular diffusivity such that fluid parcels are trapped in the
boundary layer.
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