

TITLE:

Inotuzumab ozogamicin following allogeneic hematopoietic stem cell transplantation successfully rescued relapse of CD19 - negative acute lymphoblastic leukemia after CAR - T cell therapy

AUTHOR(S):

Kamitori, Tatsuya; Umeda, Katsutsugu; Akazawa, Ryo; Iwai, Atsushi; Obu, Satoshi; Isobe, Kiyotaka; Saida, Satoshi; ... Taga, Takashi; Adachi, Souichi; Takita, Junko

CITATION:

Kamitori, Tatsuya ...[et al]. Inotuzumab ozogamicin following allogeneic hematopoietic stem cell transplantation successfully rescued relapse of CD19 - negative acute lymphoblastic leukemia after CAR - T cell therapy. Pediatric Blood & Cancer 2021, ...

ISSUE DATE: 2021-05

URL: http://hdl.handle.net/2433/270027

RIGHT:

This is the peer reviewed version of the following article: [Kamitori, T., Umeda, K., Akazawa, R., Iwai, A., Obu, S., Isobe, K., Saida, S., Kato, I., Hiramatsu, H., Taga, T., Adachi, S. and Takita, J. (2021), Inotuzumab ozogamicin following allogeneic hematopoietic stem cell transplantation successfully rescued relapse of CD19-negative acute lymphoblastic leukemia after CAR-T cell therapy. Pediatr Blood Cancer, 68: e28980.], which has been published in final form at https://doi.org/10.1002/pbc.28980. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article ...

1 LETTER TO THE EDITOR

BM

BMT

CAR

CR

Bone marrow

Bone marrow transplantation

Chimeric antigen receptor

Complete remission

2	Inotuzumab	ozogamicin	following	allogeneic	hematopoietic	stem cel
3	transplantati	ion successfully	rescued rel	apse of CD19	-negative acute l	ymphoblastic
4	leukemia afte	er CAR-T cell t	herapy			
5						
6	Tatsuya Kam	itori ¹ , Katsutsug	u Umeda ^{1*} ,	Ryo Akazawa	¹ , Atsushi Iwai ¹ ,	Satoshi Obu ¹
7	Kivotaka Isobe ¹ , Satoshi Saida ¹ , Itaru Kato ¹ , Hidefumi Hiramatsu ¹ , Takashi Taga ²					
8	Souichi Adachi ³ , and Junko Takita ¹					
9						
10	¹ Department	of Pediatrics ¹ ,	Graduate Scl	hool of Medie	cine, Kyoto Univ	ersity, Kyoto
11	Japan					
12	² Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan					
13	³ Human Heal	th Sciences, Gra	duate School	of Medicine,	Kyoto University,	, Kyoto, Japar
14						
15	*Corresponde	ence to:				
16	Katsutsugu Umeda, Department of Pediatrics, Graduate School of Medicine, Kyot					
17	University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan					
18	Phone: +81-75-751-3290; Fax: +81-75-752-2361					
19	Email address: <u>umeume@kuhp.kyoto-u.ac.jp</u>					
20	Text word cou	unt: 748				
21	Figures: 1					
22						
23	Short running head: InO and HSCT for relapse following CAR-T cell therapy			ару		
24						
25	Keywords: I	notuzumab ozo	gamicin, her	matopoietic s	tem cell transpla	ntation, acute
26	lymphoblastic	e leukemia, pedi	atric, chimeri	c antigen rece	ptor T-cell therapy	у.
27						
28	ABBREVIA	ΓΙΟΝS				
	ALL	Acute lympho	blastic leuke	emia		
	ВСР	B-cell precurs	sor]	

GVHD	Graft-versus-host disease
GVL	Graft-versus-leukemia
HSCT	Hematopoietic stem cell transplantation
InO	Inotuzumab ozogamicin
MRD	Minimal residual disease
RIC	Reduced-intensity conditioning
SOS	Sinusoidal obstruction syndrome
TAC	Tacrolimus
TBI	Total body irradiation

29

30	To the Editor: Anti-CD19 chimeric antigen receptor (CAR)-T cell therapy is one of the
31	most promising treatment options for patients with relapsed/refractory B-cell precursor
32	(BCP)-acute lymphoblastic leukemia (ALL). ¹⁻³ Approximately 30-60% of patients
33	experience relapse after CAR-T cell therapy, largely due to poor longevity of CAR-T cells
34	and loss or downregulation of CD19 expression by leukemic cells. ^{4,5} The survival rate of
35	these patients is extremely poor; however, there is no consensus regarding the best salvage
36	treatment. ¹
37	Here, we report a 5-year-old boy with BCP-ALL harboring the ETV6-RUNX1
38	rearrangement. He experienced a second bone marrow (BM) relapse 1 year after cord
39	blood transplantation using a myeloablative conditioning regimen consisting of
40	melphalan (180 mg/m ²) and fractionated total body irradiation (TBI; 12 Gy) in the second
41	minimal residual disease (MRD)-negative complete remission (CR), defined as <0.01%
42	by flow-cytometry. He was enrolled in the phase II, multicenter, global trial of CAR-T
43	cell therapy (the ELIANA trial), ³ resulting in the third MRD-negative CR without
44	complications (except for B-cell aplasia).
45	Unfortunately, he experienced a third BM relapse 1 year later at the age of 12.
46	Since leukemic blasts were negative for CD19 but positive for CD22, he received
47	Inotuzumab ozogamicin (InO) monotherapy. The off-label use of InO was approved by

3

48	the Patient Safety Unit, Kyoto University Hospital. The patient's family provided written
49	informed consent before administration. Following one cycle of InO (0.8 mg/m^2 on day
50	1, and 0.5 mg/m^2 on days 8 and 15), he achieved a fourth MRD-negative CR. After a
51	second cycle of InO (0.5 mg/m^2 on days 1, 8, and 15), he underwent T cell replete
52	haploidentical BMT from his HLA-6/8 allele-matched father, using a reduced-intensity
53	conditioning (RIC) regimen consisting of fludarabine (120 mg/m ²), cytarabine (6 g/m ²),
54	and melphalan (180 mg/m ²). Tacrolimus (TAC), short-term methotrexate, prednisolone,
55	and rabbit anti-thymocyte globulin (2.5 mg/kg) were used for graft-versus-host disease
56	(GVHD). ⁶ Ursodeoxycolic acid, low molecular weight heparin, and antithrombin
57	concentrate were administered for sinusoidal obstruction syndrome (SOS) prophylaxis.
58	Engraftment of neutrophils (>500/ μ L) and platelets (>50,000/ μ L) occurred on
59	days 20 and 105, respectively, post-BMT. Complete chimerism in the BM was confirmed
60	by the short tandem repeat method on day 28. On day 19, the patient developed a fever
61	and hypoxia, and was diagnosed clinically as engraftment syndrome. Prednisolone was
62	switched to methylprednisolone resulting in rapid improvement. Almost simultaneously,
63	the patient became anemic and thrombocytopenic, leading to a clinical diagnosis of
64	thrombotic microangiopathy based on elevation of lactate dehydrogenase (1,583 U/L), a
65	decrease in haptoglobin (<2.0 mg/dL), and the presence of red blood cell fragmentation.

66	Rapid tapering of TAC and recombinant thrombomodulin administration led to an
67	improvement. He also experienced severe BK virus-associated hemorrhagic cystitis on
68	day 20, but improved over time after hematoma evacuation and bladder irrigation. No
69	significant SOS or GVHD were observed. He remains in remission 2 years after BMT.
70	InO is a CD22-targeting humanized monoclonal antibody conjugated to the
71	cytotoxic antibiotic calicheamicin. ⁷ In contrast to adult patients, ⁸ few reports have
72	examined the efficacy and safety of InO in pediatric patients with relapsed/refractory
73	BCP-ALL. ^{9–13} A retrospective analysis of 51 pediatric patients, all of whom received InO
74	through the compassionate use program, demonstrated that 67% of patients achieved CR
75	or CR with incomplete count recovery; the 12-month event-free survival and overall
76	survival rates for the entire cohort were 23.4% and 36.3%, respectively. ⁹ The authors also
77	demonstrated that the response to InO was independent of prior immunotherapy; however,
78	they did not address clinical outcome and toxicity in patients that had received anti-CD19
79	CAR-T cell therapy. The patient reported herein harbored CD19-negative ALL cells that
80	expressed high levels of CD22. As expected, InO exerted excellent anti-leukemia efficacy
81	without severe complications and formed a bridge to subsequent allogeneic HSCT while
82	the patient was in molecular CR. An alternative and promising option is anti-CD22 CAR-
83	T cell therapy; however, this is not available in Japan. ¹⁴

84	The patient received high-dose TBI prior to the first HSCT. The incidence of
85	SOS is higher in pediatric patients than in adults undergoing HSCT after InO therapy,
86	particularly patients who have received clofarabine and/or busulfan-containing
87	conditioning regimens. ⁹ Therefore, we used a RIC regimen for subsequent HSCT. Of note,
88	the patient remains in CR despite a lack of GVHD to achieve a substantial GVL effect.
89	Thus, a large prospective study of larger populations is required to verify the clinical
90	outcome (e.g., incidence and severity of GVHD and complications) of HSCT for patients
91	who have received prior CAR-T cell therapy.
02	

92

93 CONFLICTS OF INTEREST

94 The authors declare no conflicts of interest associated with this manuscript.

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

95 **REFERENCES**

96	1.	Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young
97		Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378:439-448.
98	2.	Park JH, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in
99		acute lymphoblastic leukemia. N Engl J Med. 2018;378:449-459.
100	3.	Hiramatsu H, Adachi S, Umeda K, et al. Efficacy and safety of tisagenlecleucel in
101		Japanese pediatric and young adult patients with relapsed/refractory B cell acute
102		lymphoblastic leukemia. Int J Hematol. 2020;111:303-310.
103	4.	Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in
104		CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24:1504-1506.
105	5.	Xu X, Sun Q, Liang X, et al. Mechanisms of relapse after CD19 CAR T-cell therapy
106		for acute lymphoblastic leukemia and its prevention and treatment strategies. Front
107		Immunol. 2019;10:2664.
108	6.	Mochizuki K, Kikuta A, Ito M, et al. Feasibility of tacrolimus, methotrexate, and
109		prednisolone as a graft-versus-host disease prophylaxis in non-T-cell-depleted
110		haploidentical hematopoietic stem cell transplantation for children. Clin Transplant.
111		2011;25:892-897.
112	7.	Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus
113		Standard Therapy for Acute Lymphoblastic Leukemia. N Engl J Med. 2016;25:740-
114		753.
115	8.	Jammal N, Chew S, Jabbour E, Kantarjian HM. Antibody based therapy in relapsed
116		acute lymphoblastic leukemia. Best Pract Res Clin Haematol. 2020;33:101225.
117	9.	Bhojwani D, Sposto R, Shah NN, et al. Inotuzumab ozogamicin in pediatric patients
118		with relapsed/refractory acute lymphoblastic leukemia. Leukemia. 2019;33:884-892.
119	10.	Fuster JL, Molinos-Quintana A, Fuentes C, et al. Blinatumomab and inotuzumab for
120		B cell precursor acute lymphoblastic leukaemia in children: a retrospective study
121		from the Leukemia Working Group of the Spanish Society of Pediatric Hematology
122		and Oncology (SEHOP). Br J Haematol. 2020;190:764-771.
123	11.	Calvo C, Cabanners-Hamy A, AdjaoudD, et al. Inotuzumab ozogamicin
124		compassionate use for French paediatric patients with relapsed or refractory

京都大学学術情報リボジトリ KURENAI に Kyoto University Research Information Repository

125	CD22 - positive B - cell acute lymphoblastic leukaemia. Br J Haematol.
126	2020;190:e53-e56.
127	12. Contreras CF, Higham CS, Behnert A, et al. Clinical utilization of blinatumomab
128	and inotuzumab immunotherapy in children with relapsed or refractory B-acute
129	lymphoblastic leukemia. Pediatr Blood Cancer. 2021;68:e28718.
130	13. Brivio E, Locatelli F, Lopez-Yurda M, et al. A Phase I study of inotuzumab
131	ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-
132	059 study). Blood. [online ahead of print]
133	14. Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in
134	B-ALL that is naïve or resistant to CD19-targeted CAR immunotherapy. Nat Med.

135 2018;24:20-28.

136 FIGURE LEGEND

- 137 **FIGURE.** Clinical course of haploidentical BMT.
- 138 Abbreviations: BMT, bone marrow transplantation; Flu, fludarabine; Ara-C, cytarabine;
- 139 MEL, melphalan; ATG, anti-thymocyte globulin; LDH, lactate dehydrogenase; FRC,
- 140 fragmented red blood cells; TAC, tacrolimus; PSL, prednisolone; mPSL,
- 141 methylprednisolone; rTM, recombinant thrombomodulin.

