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Summary

We propose a formulation of the finite horizon optimal control problem (FHOCP)
based on inverse dynamics for general open-chain rigid-body systems, which reduces
the computational cost from the conventional formulation based on forward dynam-
ics. We regard the generalized acceleration as a decision variable and inverse
dynamics as an equality constraint. To treat under-actuated systems with inverse
dynamics that are well-defined only to fully actuated systems, i.e., to consider pas-
sive joints in this FHOCP, we add an equality constraint to zero the corresponding
generalized torques. We include the contact forces in the decision variables of this
FHOCP and treat the contact constraints using Baumgarte’s stabilization method for
numerical stability. We derive the optimality conditions and formulate the two-point
boundary-value problem that can be efficiently solved using the recursive Newton-
Euler algorithm (RNEA) and the partial derivatives of RNEA. We conducted three
numerical experiments on model predictive control based on the proposed formu-
lation to demonstrate its effectiveness. The first experiment involved simulating a
swing-up control of a four-link arm with a passive joint and showed that the pro-
posed formulation is effective for under-actuated systems. The second one involved
comparing the proposed formulation with the conventional forward-dynamics-based
formulationwith various numbers of joints and showed that the proposed formulation
reduces computational cost regardless of the number of joints. The third experiment
involved simulating a whole-body control of a quadruped robot, a floating-base sys-
tem having four contacts with the ground, and showed that the proposed formulation
is applicable even for floating-base systems with contacts.

KEYWORDS:
optimal control, model predictive control, robotics, rigid-body systems

1 INTRODUCTION

Nonlinear model predictive control (NMPC)1 is a promising method for online motion planning and automatic control of non-
linear systems with constraints. It generates complex and efficient motion robustly against disturbances taking constraints into
account by solving a finite horizon optimal control problem (FHOCP) based on the current system’s state at each sampling time.
However, we cannot achieve NMPC unless we can solve an FHOCP within a given sampling period. From this viewpoint, we
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2 KATAYAMA ET AL

still need to reduce the computational cost of NMPC when we apply it to complicated rigid-body systems such as legged robots
that have a huge dimensional state and complicated dynamics.
Most efficient algorithms solving an FHOCP for NMPC are gradient-descent-type methods2 or Newton-type methods3,4,5,6,7.

Both types of methods compute a function representing the system’s dynamics and its partial derivatives to simulate the sys-
tem’s behavior and evaluate its sensitivities over the horizon. In an FHOCP for a rigid-body system, the state is composed of the
configuration and generalized velocity, and the behavior of the system’s dynamics for given decision variables is simulated over
the horizon by integrating the generalized acceleration. Previous studies applying NMPC to such systems8,9,10,11,12,13,14 assumed
generalized torques as decision variables of an FHOCP and computed the generalized acceleration from the given configuration,
generalized velocity, and generalized torques, which is called forward dynamics. These studies also computed the partial deriva-
tives of the function of forward dynamics with respect to the configuration, generalized velocity, and generalized torques to
apply the aforementioned algorithms of NMPC. The function of forward dynamics and its partial derivatives are so complicated
that its computations occupy most of the total computational cost of NMPC, requiring efficient numerical methods to compute
them. The articulated body algorithm (ABA)15,16 is a highly efficient recursive algorithm that computes forward dynamics of
open-chain rigid-body systems with degrees of freedom as large as real robots such as manipulators and humanoid robots. When
it comes to the partial derivatives of the function of forward dynamics, a recursive algorithm that computes analytical deriva-
tives of the function of forward dynamics17 is faster than other methods such as the finite-difference approximation or automatic
differentiation18. However, these algorithms still take much computational time, which makes it difficult to achieve NMPC.
An alternative representation of the dynamics of rigid-body systems is inverse dynamics, which is a calculation of the gen-

eralized torques for the given configuration, generalized velocity, and generalized acceleration. Like forward dynamics, inverse
dynamics and the partial derivatives of the function of inverse dynamics are complicated and require efficient numerical methods.
The recursive Newton Euler algorithm (RNEA)16 is the most efficient algorithm to compute the inverse dynamics of open-
chain and fully actuated rigid-body systems. To calculate the partial derivatives of the function of inverse dynamics, a recursive
algorithm that computes its analytical derivatives17, referred to as the partial derivatives of RNEA in the paper, uses sparsity
and is more efficient than other methods such as finite-difference and automatic differentiation18. Featherstone16 demonstrated
through analysis of arithmetic operations and numerical experiments that the computational cost of RNEA is less than that of
ABA. The partial derivatives of RNEA are also faster than those of the recursive algorithm for the analytical derivatives of the
function of forward dynamics17. Therefore, we expect to reduce the computational cost by replacing forward dynamics in an
FHOCP with inverse dynamics.
Previous studies on FHOCPs based on inverse dynamics were conducted in the context of direct trajectory optimization

with contacts19,20. However, these studies focused on the stable solution method for the complementarity problem arising from
contacts with the environment rather than computational efficiency. As a result, they used direct multiple shooting, in which all
variables are treated as the decision variables of the optimization problem. Furthermore, they did not use efficient algorithms for
rigid-body dynamics such as RNEA. In contrast, our previous study21 proposed a reformulation of the FHOCP for fully actuated
rigid-body systems by using inverse dynamics. In that study, we formulated a two-point boundary-value problem (TPBVP)
that can be solved efficiently using RNEA and the partial derivatives of RNEA. We showed that the computational cost of the
proposed formulation of this FHOCP based on inverse dynamics is faster than the conventional formulation based on forward
dynamics through numerical experiments. In formulating this FHOCP, we argued that forward dynamics and inverse dynamics
are equivalent constraints derived from the same equation of the motion if the system is fully actuated. However, we did not
consider under-actuated systems and external forces, which are necessary for practical robotic applications such as systems
having a floating base and contacts with the environment.
In this study, we formulated the FHOCP based on inverse dynamics for general open-chain rigid-body systems including

under-actuated systems and systems having contacts with the environment. We regard the generalized acceleration as deci-
sion variables and inverse dynamics as an equality constraint in formulating this FHOCP. To treat under-actuated systems with
RNEA that is originally designed to be applied only to fully actuated systems, that is, to consider the passive joints including
a virtual joint between a floating base and the world frame in an FHOCP with RNEA, we add an equality constraint to zero
the corresponding generalized torques. We include the contact forces in decision variables of this FHOCP and treat the con-
tact constraints using Baumgarte’s stabilization method22. We derive the necessary conditions of the optimal control, namely,
optimality conditions, and formulate a TPBVP that can be efficiently solved using RNEA and its partial derivatives.
Note that another approach to treat contact forces is to model them as spring-damper systems12,19. However, this approach

requires troublesome tunings of parameters that are not based on physical characteristics. Its stiffness also makes numerical
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KATAYAMA ET AL 3

computation unstable and requires small discretization steps on the horizon, which increases the computational cost. In contrast,
we incorporate the contact forces and contact constraints explicitly in an FHOCP and avoid the above drawbacks.
We conducted three numerical experiments on NMPC to demonstrate the effectiveness of the proposed formulation. The

first experiment involved simulating the swing-up control of a four-link arm with a passive joint. It showed that the proposed
formulation can control under-actuated systems with high nonlinearity. The second experiment involved comparing the proposed
formulation based on inverse dynamics and the conventional formulation based on forward dynamics in terms of computational
time. It verified that the proposed formulation reduces computational cost regardless of the numbers of actuated and passive
joints. The third experiment involved simulating a whole-body control of a quadruped robot, a floating-base system with four
contacts with the ground, showing that the proposed formulation is applicable to floating-base systems and systemswith contacts.
This paper is composed as follows. Section 2 introduces the kinematics and dynamics of rigid-body systems and algorithms

to compute rigid-body dynamics and the partial derivatives of the functions of rigid-body dynamics. Section 3 introduces the
proposed formulation of an FHOCP based on inverse dynamics, derives the optimality conditions, and formulates a TPBVP.
Section 4 explains the numerical experiments of NMPCwe conducted and the effectiveness of the proposed formulation. Section
5 concludes our paper.

2 RIGID-BODY SYSTEMS

2.1 Configuration of rigid-body systems
The configuration of a rigid-body system lies in a differentiable manifold (Lie group), and the generalized velocity lies in its
tangent space (Lie algebra)23. The representations of the configuration and velocity are classified based on the types of joints. For
example, the configuration of a revolute joint lies inS1 and its tangent space isℝ. Therefore, a rigid-body systemwith nJ revolute
joints and a fixed base, i.e., the base frame is fixed to the world frame, the configuration lies in SnJ and the generalized velocity
is parameterized byℝnJ . In most robotic applications, however, there are limitations in the joint angles, and the configuration of
the rigid-body system with a fixed base lies in Euclidean spaceℝnJ . On the other hand, the configuration of a floating base joint,
a virtual joint between the floating base and world frame, lies in SE(3) and its tangent space is se(3), which is parametrized byℝ6.
Therefore, if a system has nJ revolute joints and a floating base, its configuration lies in SE(3)×ℝnJ , and the generalized velocity
is parameterized byℝnJ+6 24. Alternatively, we can model the position of the floating base byℝ3 and its rotation by Euler angles
ℝ3. In this case, the configuration of the system with nJ revolute joints and a floating base then lies inℝnJ+6, and the generalized
velocity is parameterized by ℝnJ+6. However, we may suffer from singularities in the base frame rotation represented by Euler
angles. Therefore, for such systems, modeling based on the differentiable manifold, i.e., Lie group, is preferable to Euler angles.
In the following, we formulate an FHOCP with the configuration taking an arbitrary form, e.g., SE(3) and Euler angles.
To describe the evolution of the configuration on a differentiable manifoldQ uniformly, we introduce an addition operator⊕

and subtraction operator⊖ on Q. Suppose that the generalized velocity lies in ℝn. The evolution of the configuration q with its
tangential generalized velocity v ∈ ℝn in time �t is then described as q ⊕ v�t ∈ Q. The difference of the two configurations
q1, q2 ∈ Q is described as q1⊖q2 ∈ ℝn. For example, if the configuration lies in the Euclidean spaceℝn,⊕ and⊖ are just given
by the addition and subtraction on the Euclidean space. If the configuration lies in SE(3), then ⊕ and ⊖ apply the exponential
map and logarithmic map25, respectively. For notational convenience, we further introduce a function denoting the subtraction
�(⋅, ⋅) ∶ Q ×Q→ ℝn such that

�(q+, q−) ∶= q+ ⊖ q−. (1)
We describe the partial derivative of (1) with respect to the first argument as )�

)q+
(⋅, ⋅) and that with respect to the second argument

as )�
)q−
(⋅, ⋅).

2.2 Dynamics of rigid-body systems
Suppose that Q is a differentiable manifold in which the configuration of the rigid-body system lies, its tangent space is param-
eterized by ℝnv (nv > 0), and the dimension of the generalized torques of the system is given by nA (nv ≥ nA > 0). We also
assume that the system has Nc ≥ 0 contact points with the environment and each contact imposes a nc, i (6 ≥ nc, i > 0) dimen-
sional constraint on q ∈ Q, i.e.,  i(q) = 0, where  i(⋅) ∶ Q → ℝnc, i . For example, a point contact, which imposes a constraint
on the position of the end-effector, has nc, i = 3, and the surface contact, which constraints on the position and rotation of the
end-effector, has nc, i = 6. We define the total dimension of the contact constraints as nc ∶=

∑Nc
i=1 nc, i. For each contact, contact
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4 KATAYAMA ET AL

force f exti ∈ ℝnc, i works in the system through the i-th contact point. The equation of the motion for the configuration q ∈ Q,
parameterization of the generalized velocity v ∈ ℝnv , and generalized torques u ∈ ℝnA is written as

M(q)v̇ + ℎ(q, v) =
Nc
∑

i=1
JTi (q)f

ext
i + STu, (2)

whereM(q) ∈ ℝnv×nv denotes the joint-space inertia matrix, ℎ(q, ℎ) ∈ ℝnv denotes Coriolis, centrifugal, and gravitational terms,
S ∈ ℝnA×nv denotes the selection matrix that extracts actuated configuration, and Ji(q) ∈ ℝnc, i×nv is the Jacobian matrix of the
i-th contact constraint26. The function of forward dynamics, which we describe as FD(⋅, ⋅, ⋅, ⋅) ∶ Q × ℝnv × ℝnA × ℝnc → ℝnv ,
is defined as

v̇ = FD(q, v, u, f ) =M(q)−1
{

STu +
Nc
∑

i=1
JTi (q)f

ext
i − ℎ(q, v)

}

, (3)

where f ∈ ℝnc denotes the stack of the external forces f exti . Inverse dynamics is well-defined only for fully actuated systems,
i.e., for systems with nA = nv. The function of inverse dynamics of a fully actuated system, which we describe as ID(⋅, ⋅, ⋅, ⋅) ∶
Q ×ℝnv ×ℝnv ×ℝnc → ℝnv , is explicitly defined as

u = ID(q, v, v̇, f ) =M(q)v̇ + ℎ(q, v) −
Nc
∑

i=1
JTi (q)f

ext
i , (4)

where we assume S = I without loss of generality.

2.3 Rigid-body dynamics algorithms
Both forward dynamics FD(q, v, u, f ) and inverse dynamics ID(q, v, v̇, f ) are complex and difficult to derive explicitly from
the equations of motion (2) when the system has a large number of joints. ABA15,16 is one of the most efficient algorithms
to compute FD(q, v, u, f ) for open-loop rigid-body systems, and RNEA16 is the fastest algorithm to compute ID(q, v, v̇, f ) for
open-loop fully actuated rigid-body systems. We hereafter use these algorithm to compute FD(q, v, u, f ) and ID(q, v, v̇, f ). The
computational complexities of ABA and RNEA are both O(n). However, Featherstone showed that RNEA is faster than ABA
through analysis of the arithmetic operations and numerical experiments16.
Most efficient algorithms to solve FHOCPs for NMPC use the gradient and Hessian of the cost function and require the par-

tial derivatives of the function of the system’s dynamics. We therefore need to compute the partial derivatives of FD(q, v, u, f )
or those of ID(q, v, v̇, f ) in solving this FHOCP. However, explicit derivations of the partial derivatives of FD(q, v, u, f ) and
ID(q, v, v̇, f ) are also difficult because of their complexities. To solve this problem, efficient recursive algorithms using the spar-
sity structure have been proposed17. The authors proposed a fast algorithm to compute the partial derivatives of ID(q, v, v̇, f ),
called the partial derivatives of RNEA. They also found that the partial derivatives of FD(q, v, u, f ) can be computed by multi-
plyingM−1(q) to the partial derivatives of ID(q, v, v̇, f ). Because of the origin of these algorithms, the computational cost of
the partial derivatives of ID(q, v, v̇, f ) takes less computational time than that of their algorithm for the partial derivatives of
FD(q, v, u, f ).

3 INVERSE DYNAMICS-BASED OPTIMAL CONTROL PROBLEMS

3.1 Formulation of the optimal control problems
In this section, we formulate the FHOCP for general open-chain rigid-body systems based on inverse dynamics. We derive the
necessary conditions of the optimal control and formulate a TPBVP. As in the previous section,Q is the differentiable manifold
in which the configuration of the system lies and the generalized velocity is parameterized by ℝnv . The state is then composed
by q ∈ Q and v ∈ ℝnv . Let [t0, tf ] (t0 < tf ) be the time interval in which the FHOCP is defined. To formulate the FHOCP based
on inverse dynamics, we treat the generalized acceleration v̇(�) ∈ ℝnv (t0 ≤ � < tf ) and stack of contact forces f (�) ∈ ℝnc

(t0 ≤ � < tf ) as the decision variables. We assume that the system can be under-actuated. However, ID(q, v, v̇, f ) cannot be
explicitly defined for under-actuated systems. Therefore, we cannot directly apply RNEA and its partial derivatives to such
systems. To tackle this problem, we formulate the FHOCP with ID(q, v, v̇, f ) defined for fully actuated systems and introduce
an equality constraint that zeros the generalized torques corresponding to the passive joints. For example, we assume that even a
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KATAYAMA ET AL 5

floating-base joint, the virtual 6-degrees of freedom (DOF) joint that connects the floating base and world frame, can generate 6-
dimensional torques in the FHOCP. To take into account that floating-base joints are passive, we introduce an equality constraint
to zero these 6-dimensional torques in the FHOCP.
Since v̇(�) (t0 ≤ � < tf ) is given, the state transition is simply described by

[

q(� + ��)
v(� + ��)

]

=
[

q(�)⊕ v(�)��
v(�) + v̇(�)��

]

, (5)

where �� > 0 is the infinitesimal time increment. Equation (5) is also transformed into
[

�(q(� + ��), q(�))
v(� + ��) − v(�)

]

−
[

v(�)��
v̇(�)��

]

= 0. (6)

To consider the dynamics of the system (2), we introduce an equality constraint

ID(q(�), v(�), v̇(�), f (�)) − u(�) = 0, (7)

where u(�) ∈ ℝnv (t0 ≤ � < tf ) denotes the generalized torques for the fully actuated system and ID(q(�), v(�), v̇(�), f (�)) takes
the form of inverse dynamics for the fully actuated system as in (4). We introduce the equality constraints to zero the generalized
torques corresponding to the passive joints, i.e.,

u(i)(�) = 0, i ∈ Ā , (8)
where u(i) denotes the i-th component of u(�) and Ā denotes the set of indices of generalized torques corresponding to the
passive joints. We introduce a passive-selection matrix S̄ ∈ ℝnv×nP , where nP = nv− nA, which extracts the generalized torques
corresponding to passive joints. We then consider the equality constraint

S̄Tu(�) = 0 (9)

instead of constraints (8). We also assume that the system has Nc contacts with the environment, denoted as  i(q) = 0 for
i = 1, ..., Nc . We then consider the constraint

 (q(�)) = 0, t0 ≤ � < tf , (10)

where  (⋅) ∶ Q → ℝnc is the stack of contact constraints  i(q) for i = 1, ..., Nc in the FHOCP. If the initial configuration
q(t) satisfies  (q(t)) = 0, the contact constraint on the configuration (10) can be transformed into that on the configuration and
generalized velocity, i.e.,

 v(q(�), v(�)) ∶=
d
d�
 (q(�)) =

) 
)q
(q(�))v(�) = JC (q(�))v(�) = 0, t0 ≤ � < tf , (11)

where JC (q) ∶=
) 
)q
(q) is equivalent to the stack of the contact Jacobians ) i

)q
(q) for i = 1, ..., Nc . If the initial configuration q(t)

and velocity v(t) satisfy  (q(t)) = 0 and  v(q(t), v(t)) = 0, constraint (11) can be further transformed into the constraint on the
configuration, generalized velocity, and generalized acceleration, i.e.,

 a(q(�), v(�), v̇(�)) ∶=
d
d�
 v(q(�), v(�)) = J̇C (q(�), v(�))v(�) + JC (q(�))v̇(�) = 0, t0 ≤ � < tf .

In this study, we used Baumgarte’s stabilization method22 for numerical stability. We consider the constraint

Ψ(q(�), v(�), v̇(�)) ∶=  (q(�)) + kv v(q(�), v(�)) + kq a(q(�), v(�), v̇(�)) = 0, t0 ≤ � < tf , (12)

instead of the original constraint (10) in the FHOCP, where kv ≥ 0 and kq ≥ 0 are stabilization parameters. The FHOCP for
time interval [t0, tf ] is then given as follows: find the optimal generalized acceleration v̇(�) (t0 ≤ � < tf ) and the stack of contact
forces f (�) (t0 ≤ � < tf ) minimizing the cost function

J = '(tf , q(tf ), v(tf )) +

tf

∫
t0

L(�, q(�), v(�), v̇(�), u(�), f (�))d�, (13)

where '(⋅, ⋅, ⋅) ∶ ℝ ×Q ×ℝnv → ℝ denotes the terminal cost and L(⋅, ⋅, ⋅, ⋅, ⋅, ⋅) ∶ ℝ ×Q ×ℝnv ×ℝnv ×ℝnv ×ℝnc → ℝ denotes
the stage cost, subject to (6), (7), (9), (12), and an equality constraint

C(�, q(�), v(�), q̇(�), u(�), f (�)) = 0, (14)

where C(⋅, ⋅, ⋅, ⋅, ⋅, ⋅) ∶ ℝ ×Q ×ℝnv ×ℝnv ×ℝnv ×ℝnc → ℝm.
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6 KATAYAMA ET AL

For numerical computation, we discretize the FHOCP. We divide the time interval [t0, tf ] into N steps by introducing ti ∶=
t + iΔ� for i = 0, ..., N , where Δ� ∶= (tf − t0)∕N . We discretize the configuration, parameterization of the generalized
velocity, generalized acceleration, generalized torques, and contact forces as q0, ..., qN ∈ Q, v0, ..., vN ∈ ℝnv , a0, ..., aN−1 ∈ ℝnv ,
u0, ..., uN−1 ∈ ℝnv , f0, ..., fN−1 ∈ ℝnc , respectively. The discretized FHOCP is then given as follows: find a0, ..., aN−1 and f0,
..., fN−1 minimizing the cost function

J = '(tN , qN , vN ) +
N−1
∑

i=0
L(ti, qi, vi, ai, ui, fi)Δ�, (15)

subject to
q0 = q(t0), v0 = v(t0), (16)

viΔ� − �(qi+1, qi) = 0, i = 0, ..., N − 1, (17)

aiΔ� + vi − vi+1 = 0, i = 0, ..., N − 1, (18)

ID(qi, vi, ai, fi) − ui = 0, i = 0, ..., N − 1, (19)

Ψ(qi, vi, ai) = 0, i = 0, ..., N − 1, (20)

S̄Tui = 0, i = 0, ..., N − 1, (21)
and

C(ti, qi, vi, ai, ui, fi) = 0, i = 0, ..., N − 1. (22)
The augmented cost function is then given by

J̃ = '(tN , qN , vN ) +
N−1
∑

i=0
L(ti, qi, vi, ai, ui, fi)Δ� +

N−1
∑

i=0
�Ti+1(viΔ� − �(qi, qi+1)) +

N−1
∑

i=0

Ti+1(aiΔ� + vi − vi+1)

+
N−1
∑

i=0
�Ti (ID(qi, vi, ai, fi) − ui)Δ� +

N−1
∑

i=0
�Ti Ψ(qi, vi, ai)Δ� +

N−1
∑

i=0
�Ti S̄uiΔ� +

N−1
∑

i=0
�Ti C(ti, qi, vi, ai, ui, fi)Δ�, (23)

where �1, ..., �N ∈ ℝnv , 
1, ..., 
N ∈ ℝnv , �0, ..., �N−1 ∈ ℝnv , �0, ..., �N−1 ∈ ℝnc , �0, ..., �N−1 ∈ ℝnP , and �0, ..., �N−1 ∈ ℝm

are the Lagrange multipliers with respect to (17)–(22), respectively. The optimality conditions are then derived as follows (their
derivations are given in Appendix A):

�N =

{

(

)�
)q+

)T
}−1

(qN−1, qN )
(

)'
)q

)T

(tN , qN , vN ), (24)

�i =

{

(

)�
)q+

)T
}−1

(qi−1, qi)

{

−
(

)�
)q−

)T

(qi, qi+1)�i+1 +
(

)L
)q

)T

(ti, qi, vi, ai, ui, fi)Δ� +
(

)ID
)q

)T

(qi, vi, ai, fi)�iΔ�

+
(

)Ψ
)q

)T

(qi, vi, ai)�iΔ� +
(

)C
)q

)T

(ti, qi, vi, ai, ui, fi)�iΔ�

}

= 0, i = 1, ..., N − 1,

(25)


N =
(

)'
)v

)T

(tN , qN , vN ), (26)


i = 
i+1 + �i+1Δ� +
()L
)v

)T
(ti, qi, vi, ai, ui, fi)Δ� +

()ID
)v

)T
(qi, vi, ai, fi)�iΔ� +

()Ψ
)v

)T
(qi, vi, ai)�iΔ�

+
()C
)v

)T
(ti, qi, vi, ai, ui, fi)�iΔ� = 0, i = 1, ..., N − 1, (27)
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KATAYAMA ET AL 7

()L
)v̇

)T
(ti, qi, vi, ai, ui, fi) + 
i+1 +

()ID
)v̇

)T
(qi, vi, ai, fi)�i +

()Ψ
)v̇

)T
(qi, vi, ai)�i

+
()C
)v̇

)T
(ti, qi, vi, ai, ui, fi)�i = 0, i = 0, ..., N − 1, (28)

�i =
()L
)u

)T
(ti, qi, vi, ai, ui, fi) + S̄T�i +

()C
)u

)T
(ti, qi, vi, ai, ui, fi)�i, i = 0, ..., N − 1, (29)

and
(

)L
)f

)T

(ti, qi, vi, ai, ui, fi) +
(

)ID
)f

)T

(qi, vi, ai, fi)�i +
(

)C
)f

)T

(ti, qi, vi, ai, ui, fi)�i = 0, i = 0, ..., N − 1. (30)

The FHOCP is then reduced to the following nonlinear equations: find the sequence of the optimal generalized acceleration
a0, ..., aN−1, contact forces f0, ..., fN−1, and Lagrange multipliers �0, ..., �N−1, �0, ..., �N−1, and �0, ..., �N−1, which are the
decision variables of this FHOCP, satisfying (16)–(22) and (24)–(30). That is, under given a0, ..., aN−1, f0, ..., fN−1, �0, ..., �N−1,
�0, ..., �N−1, and �0, ..., �N−1, we can first determine v0 and q0 from (16) and determine v1, ..., vN and q1, ..., qN from

vi+1 = vi + aiΔ�, i = 0, ..., N − 1, (31)

and
qi+1 = qi ⊕ viΔ�, i = 0, ..., N − 1. (32)

We can then determine u0, ..., uN−1 from ui = ID(qi, vi, ai, fi) and �0, ..., �N−1 from (29). Finally, we can determine �N , ...,
�1 from (24) and (25) and 
N , ..., 
1 from (26) and (27), which formulates the TPBVP. The errors from the optimal control of
given a0, ..., aN−1, f0, ..., fN−1, �0, ..., �N−1, �0, ..., �N−1, and �0, ..., �N−1 are then be given by (28), (30), and (20)–(22). We can
then obtain the optimal values of a0, ..., aN−1, f0, ..., fN−1, �0, ..., �N−1, �0, ..., �N−1, and �0, ..., �N−1 by solving the nonlinear
equations, e.g., by using the gradient descent or Newton’s method.

3.2 Application to NMPC
Next, we apply the formulated TPBVP to NMPC for rigid-body systems. In NMPC, an FHOCP from the current time t to the
finite future t + T (T > 0), i.e., an FHOCP for the time interval [t, t + T ], is solved based on the measured or estimated state at
t. We consider gradient-type methods2,27 or the Hessian-free Newton-type methods3,4,5,6,7, that is, we do not need to compute
further derivatives of the optimality conditions (17)–(22) and (24)–(30). It is worth noting that typical efficient Newton-type
methods of NMPC use Hessian approximation such as finite-difference3 or the Gauss-Newton method4,5,28,6. This is because
further derivatives of the optimality conditions take huge computational time and are impractical. These methods originally
directly compute the optimal control input on the finite horizon [t, t+ T ] by solving an FHOCP. The initial value of the optimal
control input is then applied to the actual system. On the other hand, the solution of a FHOCP with the proposed formulation
based on inverse dynamics does not explicitly contain the optimal control input u0, ..., uN−1. Instead, it contains the generalized
acceleration a0, ..., aN−1 and the stack of the external force f0, ..., fN−1. Therefore, after computing the optimal solution, we
additionally have to compute the actual control input to the system by, e.g.,

u(tapp) = ID(q̃(tapp), ṽ(tapp), a0, f0), (33)

where tapp is the instant when the optimal control input is applied to the system and q̃(tapp) and ṽ(tapp) are the estimations of the
configuration and generalized velocity at tapp, respectively. Note that we can compute (33) with a sufficiently short computational
time compared with the entire computational burden of the FHOCP thanks to RNEA. If a time lag between the state measurement
and application of the control input is sufficiently short, i.e., t ≃ tapp, we can estimate q̃(tapp) ≃ q(t) and ṽ(tapp) ≃ v(t). When
we cannot disregard the lag, we estimate the configuration and generalized velocity using the optimal generalized acceleration
computed at the previous sampling time â0, ..., âN−1 by, e.g.,

q̃(tapp) = q(t)⊕ (tapp − t)v(t), ṽ(tapp) = v(t) + (tapp − t)â0. (34)
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8 KATAYAMA ET AL

4 NUMERICAL EXPERIMENTS

We conducted three numerical experiments on NMPC based on the proposed formulation involving 1) a swing-up control of a
four-link arm with a passive joint, 2) a comparison of the computational time between the proposed formulation based on inverse
dynamics and the conventional formulation based on forward dynamics with various numbers of joints, and 3) a whole-body
control of a quadruped robot.

Continuation/generalized minimal residual (C/GMRES) method
We used the C/GMRES method3 as an efficient Hessian-free method of NMPC. The C/GMRES method achieves fast compu-
tation by tracking the solution of the FHOCP, i.e., it computes the time variation of the optimal solution instead of computing
it directly by solving an FHOCP. Let U (t) be the vector of decision variables of the FHOCP and F (U (t), x(t), t) = 0 be the
equation thatU (t) has to satisfy. In the present setting,U (t) is composed of a0, ..., aN−1, f0, ..., fN−1, �0, ..., �N−1, �0, ..., �N−1, �0,
..., �N−1 and F (U (t), x(t), t) is composed of (28), (30), (20)–(22). The C/GMRES method does not directly solve the nonlinear
equation F (U (t), x(t), t) = 0 but solves the following equation derived using the continuation method29

)F
)U

U̇ = −)F
)x
ẋ − )F

)t
− �F , (35)

where � > 0 is a stabilization parameter and typically set by the reciprocal of the sampling period. Note that we omit the
arguments in (35). The products of the partial derivatives of F and vectors in (35) are computed by the forward-difference
approximation of corresponding directional derivatives, and the partial derivatives of F are not computed explicitly. That is, we
do not need to compute the second-order derivatives of the state equation, constraints, and cost functions, which means it is a
Hessian-free method. The C/GMRES method computes U̇ by solving linear problem (35) using the GMRES method30, a fast
inexact numerical solver of the linear problem, and updates the solution by

U (t + Δt) = U (t) + U̇Δt, (36)

where Δt > 0 is the sampling period.
We consider the following two C/GMRESmethods of NMPC: the C/GMRESmethod for solving the TPBVP derived with the

proposed formulation in Section 3 and that for solving the TPBVP derived with the conventional formulation based on forward
dynamics, which is described in Appendix B. We call the former C/GMRES (ID) and the latter as C/GMRES (FD). For both
methods, we set the length of the horizon as a time-dependent smooth function T (t) such that T (0) = 0 and T (t)→ Tf (t→∞)
as, e.g.,

T (t) = Tf (1 − e−�t), (37)
for the initialization of the solution3, where Tf , � > 0. Throughout the following numerical experiments, we set the increment
of the forward-difference approximation in (35) as ℎ = 1.0 × 10−8 and the stabilization parameters � in (35) by the reciprocal
of the sampling period. The remaining parameters of the C/GMRES method are the number of discretizations of the horizonN
and that of iterations of the GMRES kmax, which we do not fix here. Note that the computational time of the C/GMRES method
is determined by N , kmax, and the DOF of the system. As N increases, the computational time increases because the number
of times to calculate RNEA, ABA, and partial derivatives of ID(q, v, v̇, f ) and FD(q, v, �, f ) increases. Instead, the accuracy of
the solution increases because the approximation of the continuous FHOCP by the discretized FHOCP becomes more accurate.
As kmax increases, the computational cost also increases because the linear problem (35) is solved more accurately. As the DOF
increases, the computational times of RNEA, ABA, and partial derivatives of ID(q, v, v̇, f ) and FD(q, v, �, f ) increase. Note
that C/GMRES (ID) includes the computation of (33) after updating the optimal solution by the C/GMRES method. Therefore,
we measured the computational time of C/GMRES (ID) as the sum of calculations of the C/GMRES method and (33) in the
following numerical experiments.

Software implementation
The C/GMRES method was implemented in C++ in the following simulations. To implement RNEA, ABA, the partial deriva-
tives of RNEA, and the analytical derivatives of FD(q, v, �, f ), we used Pinocchio31,32, an efficient C++ library for the rigid-body
dynamics algorithms. We also used Pinocchio to compute the integration on a Lie group, partial derivatives of �(q+, q−) in (24)
and (25), kinematics of the rigid-body systems for contact constraint (20), and its partial derivatives in (25), (27), (28), and (30).
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KATAYAMA ET AL 9

FIGURE 1 Fixed-base under-actuated four-link arm. White circle is passive joint

4.1 Swing-up control of four-link arm with passive joint
Problem settings
We first simulated the swing-up control of the four-link arm with a passive joint which depicted in Fig. 1 to show that the
proposed formulation is applicable to under-actuated systems with high nonlinearity. In this figure, black circles are the actuated
joints and the white circle is the passive joint. The configuration is given by q = [�1 �2 �3 �4]T, and the passive-selection matrix
is given by S̄ =

[

0 0 0 1
]T. We assume that each joint has no mass and no inertia and that each link has the same physical

characteristics.We set the length of each link to 1m, width to 0.1m, and mass to 1kg. We also assumed that the mass is distributed
uniformly in the link. We then constructed the terminal cost '(�, q, v) in (15) as

'(�, q, v) = 1
2
(

q − qref
)TQq

(

q − qref
)

+ 1
2
vTQvv, (38)

where qref = [0, 0, 0, 0]T, Qq = 1.0 × I4, and Qv = 0.1 × I4. Note that In denotes a n × n identity matrix. We set the stage cost
L(t, q, v, a, u) in (15) for C/GMRES (ID) as

L(t, q, v, a, u) = 1
2
(

q − qref
)TQq

(

q − qref
)

+ 1
2
vTQvv +

1
2
aTQaa +

1
2
uTRu, (39)

whereQa = 0.005×I4 andR = 10−4×I4. Note that in C/GMRES (FD), we consider the penalty on the generalized acceleration
as

1
2Δ�2

(

vi+1 − vi
)TQa

(

vi+1 − vi
)

, (40)

which corresponds to the original penalty 1
2
aiTQaai in (39). The resultant FHOCP is described in Appendix B.

We set the parameters of both C/GMRES (FD) and C/GMRES (ID) as N = 30, kmax = 5, Tf = 1.5, and � = 1.0 and
set the sampling period by 1 ms. Note that there are differences between the two solution methods in terms of the dimensions
of the decision variables. C/GMRES (ID) computes the four-dimensional control input and one-dimensional constraint that
forces the torque on the passive joint to zero in the FHOCP. The dimension of the decision variables of C/GMRES (ID) is then
given by 5N . In contrast, C/GMRES (FD) computes the three-dimensional control input in the FHOCP, and the dimension of
the decision variables is given by 3N . We also implemented NMPC for this problem with Ipopt33, an off-the-shelf nonlinear
optimization solver, to measure the baseline of the computational time. In Ipopt, we used Pinocchio to solve the FHOCP of
rigid-body systems based on forward dynamics, the Broyden–Fletcher–Goldfarb–Shanno algorithm for Hessian approximation,
and Harwell Subroutine Library MA57 to solve the linear subproblems of the quasi-Newton method. We set the tolerance of the
errors in the optimality at each NMPC iteration to 0.005 for Ipopt.

Simulation results
Figure 2 shows the simulation results of the swing-up control of the four-link under-actuated fixed-base arm using C/GMRES
(ID). The under-actuated arm successfully swung up when using C/GMRES (ID), which shows that the proposed formulation
can control under-actuated systems with high nonlinearity. On the other hand, C/GMRES (FD) failed in computing even though
we tested various weight parameters. Note that the computation with C/GMRES (ID) also failed without penalty on generalized
acceleration 1

2
aTQaa. The average computational time per update of C/GMRES (ID) was 0.89 ms and that of C/GMRES (FD)

was 1.37 ms on Ubuntu 18.04 LTS with the CPU Intel Core i5 2.00 GHz. C/GMRES (ID) computed the optimal solution in
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10 KATAYAMA ET AL

real-time and was faster than C/GMRES (FD) although C/GMRES (ID) had more decision variables than C/GMRES (FD). The
average computational time of Ipopt based on forward dynamics was 5.05 ms and also larger than C/GMRES (ID).

FIGURE 2 Time histories of swing-up control of four-link fixed-base arm with passive joint whenN = 30 and kmax = 5

4.2 Comparison of the computational time with various numbers of joints
Problem settings
Next, we compared the computational times of C/GMRES (ID) and C/GMRES (FD) for various numbers of joints. We examined
the computational time for fixed-base systems having nJ ∈ {4, 8, 16, 24, 32} joints including nP ∈ {0, 2, 4, 6, 8} passive joints
from the tip side. We assume that the systems do not have contacts with the environment. We set the initial configuration by
q(t) =

[

−� 0 ... 0
]T ∈ ℝnJ and the initial velocity by v(t) =

[

0 ... 0
]T ∈ ℝnJ . We set the cost function as the same form of

(38) and (39), reference configuration as qref =
[

−� 0 ... 0
]T ∈ ℝnJ , and weight parameters in (38) and (39) as Qq = 1.0 × In,

Qv = 0.1×In,Qa = 0.1×In, andR = 0.01×In. We set the parameters of both C/GMRES (FD) and C/GMRES (ID) asN = 50,
kmax = 10, Tf = 1.0, and � = 1.0 and set the sampling period by 1 ms.

Experimental results
Table 1 shows the computational times per update of C/GMRES (ID) and Table 2 shows those of C/GMRES (FD). Note that "-"
in Table 1 denotes that we did not consider under that condition because the number of passive joints was larger than or equal
to the total number of joints, or the computations diverged as soon as the simulations started due to too many passive joints. We
see that the computational time of C/GMRES (ID) decreased as much as 50% that of C/GMRES (FD) for the same nJ , nP , N ,
and kmax. From the two tables, we can see that the number of passive joints nP had little effect on the computational times of
both C/GMRES (ID) and C/GMRES (FD).

4.3 Whole-body twisting-motion control of quadruped with contacts
Problem settings
Finally, we simulated the whole-body control of the quadruped robot ANYmal34 using C/GMRES (ID) and verified that the
proposed formulation can be used for floating-base systems with contacts. ANYmal has 12 revolute joints, a floating base,
and four contacts between the tip of each of the four legs and the ground when it stands static. We model the position and
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TABLE 1 Computational time [ms] per update of C/GMRES (ID) withN = 50 and kmax = 10

nJ
nP 0 2 4 6 8

4 2.5 2.5 - - -
8 5.3 5.2 5.2 - -
16 12.3 12.5 12.0 12.1 -
24 20.8 20.7 20.8 20.8 21.00
32 31.8 32.0 32.1 32.0 31.8

TABLE 2 Computational time [ms] per update of C/GMRES (FD) withN = 50 and kmax = 10

nJ
nP 0 2 4 6 8

4 3.8 3.8 - - -
8 9.1 9.6 9.4 - -
16 22.6 22.1 22.0 22.2 -
24 41.2 40.3 40.4 40.1 40.4
32 64.8 64.4 65.0 65.3 64.8

rotation of the floating base of ANYmal by SE(3). However, in designing the cost function, we model the rotation of the
base frame by quaternion and represent the configuration q by a 19-dimensional tuple. For clarity, we divide q into the base
frame qbase ∶=

[

q1 q2 q3 q4 q5 q6 q7
]T, left-front leg qJLF ∶=

[

q8 q9 q10
]T, left-hip leg qJLH ∶=

[

q11 q12 q13
]T, right-front leg

qJRF ∶=
[

q14 q15 q16
]T, and right-hip leg qJRH ∶=

[

q17 q18 q19
]T. Note that q1, q2, q3 denotes the position of the base frame

and q4, q4, q6, q7 denotes the quaternion of the rotation of the base frame. We also divide the generalized velocity v ∈ ℝ18

into vbase ∶=
[

v1 v2 v3 v4 v5 v6
]T, left-front leg vJLF ∶=

[

v7 v8 v9
]T, left-hip leg vJLH ∶=

[

v10 v11 v12
]T, right-front leg

vJRF ∶=
[

v13 v14 v15
]T, and right-hip leg vJRH ∶=

[

v16 v17 v18
]T. The passive-selection matrix S̄ is given as

S̄ =
[

I6
012×6

]

, (41)

where 012×6 ∈ ℝ12×6 is a matrix, all elements of which are 0, and I6 ∈ ℝ6×6 is an identity matrix.
We control ANYmal’s yaw angle to track sinusoidal reference values given by

�ref (t) =

{

yref sin
2(t−t1)�

T
(t1 ≤ t ≤ t1 + t2)

0 (t < t1, t1 + t2 < t)
. (42)

where we set t1 = 2, t2 = 10 and yref = 0.12. We construct the reference base configuration by transforming the
trajectory of the Euler angle (42) into that of the quaternion. The reference trajectory is then given by qbase,ref (t) ∶=
[

0 0 0.48 0 0 q6, ref (t)
√

1 − q26, ref (t)
]T
. We also construct the reference translational and angular velocity by differentiating

(42) with respect to time. The reference velocity is then given by vbase,ref (t) ∶=
[

0 0 0 0 0 �v, ref (t)
]T, where

�v,ref (t) =

{

yv,ref cos
2(t−t1)�

T
(t1 ≤ t ≤ t1 + t2)

0 (t < t1, t1 + t2 < t)
, (43)
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12 KATAYAMA ET AL

TABLE 3 References and weight parameters of the cost function of NMPC for ANYmal. diag {⋅} denotes a diagonal matrix

qJLF
[

0.0315 0.4 −0.806
]T

qJLH
[

0.0315 −0.4 0.806
]T

qJRF
[

−0.0315 0.4 −0.806
]T

qJRH
[

−0.0315 −0.4 0.806
]T

Qq,base diag{1, 1, 10, 100, 100, 100, 100}
Qq,JLF , Qq,JLH , Qq,JRF , Qq,JRH 0.1 × I3
Qv,base 10 × I6
Qv,JLF , Qv,JLH , Qv,JRF , Qv,JRH 0.1 × I3
Qa,base 0.1 × I6
Qa,JLF , Qa,JLH , Qa,JRF , Qa,JRH 0.01 × I3
Qu 10−4 × I16
Qf 10−4 × I12

and yv,ref = 0.15. We then design the cost function as

L(t, q, v, a, u, f ) = 1
2
(qbase − qbase,ref (t))TQq,base(qbase − qbase,ref (t)) +

∑

i∈{JLF,JRF,JLH,JRH}

1
2
(qi − qi,ref )TQq,i(qi − qi,ref )

+ 1
2
(vbase − vbase,ref (t))TQv,base(vbase − vbase,ref (t)) +

∑

i∈{JLF,JRF,JLH,JRH}

1
2
vTi Qv,ivi

+ 1
2
aTbaseQa,baseabase +

∑

i∈{JLF,JRF,JLH,JRH}

1
2
aTi Qa,iai +

1
2
uTQuu +

1
2
fTQff. (44)

The other references and weight parameters are listed in Table 3. We set the parameters of C/GMRES (ID) as N = 20, kmax =
400, Tf = 0.2, and � = 0.3, and set the sampling period as 2.5 [ms]. We also set Baumgarte’s stabilization parameters in (12) as
kv = 20 and kq = 400. The numerical simulation was conducted on RaiSim35,36, a physics engine for rigid-body systems with
contacts.

Simulation results
Figure 3 shows snapshots of ANYmal’s motion provided by raisimOgre37, and Fig. 4 shows the time histories of the position and
rotation of the base frame of ANYmal and the l2 norm of the errors in the optimality. Note that there are too many variables in
ANYmal; therefore, we show the time histories of the position and rotation of the base frame. From Fig. 4, q6 was controlled to
track q6,ref (t), which is depicted with a dotted line, and ANYmal twisted its body sinusoidally as expected. This result indicates
that the proposed formulation can be applicable to floating-base systems having contacts with the environment. The simulation
showed that the errors in the optimality ‖F‖ is large. This is because we set large Baumgarte’s contact parameters kq and kv
in (12) to stabilize numerical computation. To give details of ‖F‖, we show the gross errors in the optimality ‖F‖, errors in
the optimality without Baumgarte’s constraint (20), errors in Baumgarte’s constraint (20), and errors in the original contact
constraint (10) in Fig. 5.We can see that most of the errors in the optimality ‖F‖ (solid line) came from the errors in Baumgarte’s
constraint (20) (dashed line) because the latter take close values of the former. Without Baumgarte’s constraint, the errors in the
optimality take sufficiently small values (dotted line). The errors in the original contact constraint (10) also took small values
(dash-dot line), which shows that the proposed formulation can accurately take into account the contact constraint. The average
computational time per update was 83 ms on Ubuntu 18.04 LTS with CPU Intel Core i7 1.80 GHz.

5 CONCLUSION

We proposed a formulation of the FHOCP based on inverse dynamics for general open-chain rigid-body systems that reduces
the computational cost compared with the conventional formulation based on forward dynamics. We regard the generalized
acceleration as a decision variable and inverse dynamics as an equality constraint. To treat under-actuated systems with RNEA,
which was designed to be applied only to fully actuated systems, we add an equality constraint to zero the corresponding
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FIGURE 3 Snapshots of whole-body twisting-motion of ANYmal generated with FHOCP based on proposed formulation

FIGURE 4 Time histories of position and rotation (quaternion) of base frame of ANYmal and l2 norm of errors in optimality

generalized torques. We include the contact forces in the decision variables of this FHOCP and treat the contact constraints using
Baumgarte’s stabilization method22. We derive the optimality conditions and formulate a TPBVP that can be efficiently solved
using RNEA and the partial derivatives of RNEA. We conducted three numerical experiments on NMPC with the C/GMRES
method to show the effectiveness of the proposed formulation. In the first experiment, we simulated the swing-up control of a
four-link armwith a passive joint using NMPCwith the proposed formulation. Its success indicates that it can control even under-
actuated systems with high nonlinearity. In the second experiment, we compared the proposed formulation based on inverse
dynamics and the conventional formulation based on forward dynamics in terms of computational time for various numbers
of joints. The proposed formulation reduces the computational cost by as much as 50% that of the conventional formulation
regardless of the number of passive joints. In the third experiment, we simulated whole-body control of a quadruped robot, a
floating-base system with four contacts with the ground. The proposed formulation is applicable to even floating-base systems
with contacts.
For future work, we will consider the switches in dynamics and constraints due to contacts by combining the proposed

formulation with a dedicated method38.

How to cite this article: S. Katayama and T. Ohtsuka (2020), Inverse dynamics-based formulation of finite horizon optimal
control problems for rigid-body systems.
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14 KATAYAMA ET AL

FIGURE 5 Time histories of gross errors in optimality (solid line), errors in Baumgarte’s constraint (dashed line), errors in
optimality without Baumgarte’s constraint (dotted line), and errors in original contact constraint (dash-dot line)

APPENDIX

A DERIVATIONS OF OPTIMALITY CONDITIONS OF INVERSE-DYNAMICS-BASED FHOCP

The augmented cost function (23) is perturbed as

�J̃ =
)'
)q
(tN , qN , vN )�qN +

)'
)v
(tN , qN , vN )�vN +

N−1
∑

i=1

)L
)q
(ti, qi, vi, ai, ui, fi)Δ��qi +

N−1
∑

i=1

)L
)v
(ti, qi, vi, ai, ui, fi)Δ��vi

+
N−1
∑

i=0

)L
)v̇
(ti, qi, vi, ai, ui, fi)Δ��ai +

N−1
∑

i=0

)L
)u
(ti, qi, vi, ai, ui, fi)Δ��ui +

N−1
∑

i=0

)L
)f
(ti, qi, vi, ai, ui, fi)Δ��fi

+
N−1
∑

i=1
�Ti+1�viΔ� −

N−1
∑

i=1
�Ti+1

)�
)q−

(qi, qi+1)�qi −
N
∑

i=1
�Ti

)�
)q+

(qi−1, qi)�qi +
N−1
∑

i=0

Ti+1�aiΔ� +

N−1
∑

i=1

Ti+1�vi

−
N
∑

i=1

Ti �vi +

N−1
∑

i=1
�Ti
)ID
)q

(qi, vi, ai, fi)Δ��qi +
N−1
∑

i=1
�Ti
)ID
)v

(qi, vi, ai, fi)Δ��vi

+
N−1
∑

i=0
�Ti
)ID
)v̇

(qi, vi, ai, fi)Δ��ai +
N−1
∑

i=0
�Ti
)ID
)f

(qi, vi, ai, fi)Δ��fi −
N−1
∑

i=0
�Ti �uiΔ�

+
N−1
∑

i=1
�Ti
)Ψ
)q
(qi, vi, ai)�qiΔ� +

N−1
∑

i=1
�Ti
)Ψ
)v
(qi, vi, ai)�viΔ� +

N−1
∑

i=0
�Ti
)Ψ
)v̇
(qi, vi, ai)�aiΔ�

+
N−1
∑

i=0
�Ti S̄�uiΔ� +

N−1
∑

i=0
�Ti
)C
)q
(ti, qi, vi, ai, ui, fi)Δ� +

N−1
∑

i=0
�Ti
)C
)v
(ti, qi, vi, ai, ui, fi)Δ� +

N−1
∑

i=0
�Ti
)C
)v̇
(ti, qi, vi, ai, ui, fi)Δ�

+
N−1
∑

i=0
�Ti
)C
)u
(ti, qi, vi, ai, ui, fi)Δ� +

N−1
∑

i=0
�Ti
)C
)f
(ti, qi, vi, ai, ui, fi)Δ�. (A1)
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The optimality conditions, the necessary conditions for �J̃ = 0 under arbitrary �q1, ..., �qN , �v1, ..., �vN , �a0, ..., �aN−1, �u0,
..., �uN−1, and �f0, ..., �fN−1, are then derived by calculus of variations39:

)'
)q
(tN , qN , vN ) − �TN

)�
)q+

(qN−1, qN ) = 0, (A2)

)L
)q
(ti, qi, vi, ai, ui, fi)Δ� − �Ti+1

)�
)q−

(qi, qi+1) − �Ti
)�
)q+

(qi−1, qi) + �Ti
)ID
)q

(qi, vi, ai, fi)Δ� + �Ti
)Ψ
)q
(qi, vi, ai)Δ�

+�Ti
)C
)q
(qi, vi, ai, ui, fi)Δ� = 0, i = 1, ..., N − 1, (A3)

)'
)v
(tN , qN , vN ) − 
TN = 0, (A4)

)L
)v
(ti, qi, vi, ai, ui, fi)Δ� + �Ti+1Δ� + 


T
i+1 − 


T
i + �

T
i
)ID
)v

(qi, vi, ai, fi)Δ� + �Ti
)Ψ
)v
(qi, vi, ai)Δ� + �Ti

)C
)v
(qi, vi, ai, ui, fi)Δ� = 0,

i = 1, ..., N − 1,
(A5)

)L
)v̇
(ti, qi, vi, ai, ui, fi)Δ� + 
Ti+1Δ� + �

T
i
)ID
)v̇

(qi, vi, ai, fi)Δ� + �Ti
)Ψ
)v̇
(qi, vi, ai)Δ� + �Ti

)C
)v̇
(qi, vi, ai, ui, fi)Δ� = 0,

i = 0, ..., N − 1, (A6)

)L
)u
(ti, qi, vi, ai, ui, fi)Δ� − �Ti Δ� + �

T
i S̄ + �

T
i
)C
)u
(qi, vi, ai, ui, fi)Δ� = 0, i = 0, ..., N − 1, (A7)

and
)L
)f
(ti, qi, vi, ai, ui, fi)Δ� + �Ti

)ID
)f

(qi, vi, ai, fi)Δ� + �Ti
)C
)f
(qi, vi, ai, ui, fi)Δ� = 0, i = 0, ..., N − 1, (A8)

which gives (24)–(30).

B FORWARD-DYNAMICS-BASED FHOCP

We describe the conventional formulation based on forward dynamics. We assume a system has no contact with the environment
because we did not consider the contacts when comparing the proposed formulation with the conventional formulation in Section
4. Suppose that the configuration of the system lies in Q and the velocity is parameterized by ℝnv . The forward dynamics is
given by

v̇ = FD(q, v, u) =M(q)−1
{

STu − C(q, v)
}

, (B9)

where q ∈ Q, v ∈ ℝnv , and u ∈ ℝnA . The FHOCP is then given as follows: find the optimal control input u0, ..., uN−1 ∈ ℝnA

minimizing the cost function

J = '(tN , qN , vN ) +
N−1
∑

i=0
L(ti, qi, vi, ui)Δ� +

N−1
∑

i=0
La(vi, vi+1)Δ�, (B10)

where '(⋅, ⋅, ⋅) ∶ ℝ ×Q ×ℝnv → ℝ denotes the terminal cost, L(⋅, ⋅, ⋅, ⋅) ∶ ℝ ×Q ×ℝnv ×ℝnA → ℝ denotes the stage cost, and
La(⋅, ⋅) ∶ ℝnv ×ℝnv → ℝ denotes the penalty on the acceleration, subject to

q0 = q(t0), v0 = v(t0), (B11)

viΔ� − �(qi+1, qi) = 0, i = 0, ..., N − 1, (B12)

FD(qi, vi, ui)Δ� + vi − vi+1 = 0, i = 0, ..., N − 1, (B13)
and

C(ti, qi, vi, ui) = 0, i = 0, ..., N − 1, (B14)
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where C(⋅, ⋅, ⋅, ⋅) ∶ ℝ ×Q ×ℝnv ×ℝnA → m denotes the equality constraint. We describe the partial derivatives of La(⋅, ⋅) with
respect to the first argument by

)La
)v−

, (B15)

and the partial derivatives of La(⋅, ⋅) with respect to the second argument by
)La
)v+

. (B16)

The augmented cost function is given by

J̃ = '(tN , qN , vN ) +
N−1
∑

i=0
L(ti, qi, vi, ui)Δ� +

N−1
∑

i=0
La(vi, vi+1)Δ� +

N−1
∑

i=0
�Ti+1(viΔ� − �(qi, qi+1))

+
N−1
∑

i=0

Ti+1

{

FD(qi, vi, ui)Δ� + vi − vi+1
}

+
N−1
∑

i=0
�Ti C(ti, qi, vi, ui)Δ�, (B17)

where �1, ..., �N ∈ ℝnv , 
1, ..., 
N ∈ ℝnv , and �0, ..., �N−1 ∈ ℝm are the Lagrange multipliers with respect to (B12), (B13), and
(B14), respectively. The augmented cost function (B17) is peturbed as

�J̃ =
)'
)q
(tN , qN , vN )�qN +

)'
)v
(tN , qN , vN )�vN +

N−1
∑

i=1

)L
)q
(ti, qi, vi, ui)Δ��qi +

N−1
∑

i=1

)L
)v
(ti, qi, vi, ui)Δ��vi

+
N−1
∑

i=1

)L
)u
(ti, qi, vi, ui)Δ��ui +

N−1
∑

i=1

)La
)v−

(vi, vi+1)Δ��vi +
N−1
∑

i=1

)La
)v+

(vi, vi+1)Δ��vi+1

+
N−1
∑

i=1
�Ti+1�viΔ� −

N−1
∑

i=1
�Ti+1

)�
)q−

(qi, qi+1)�qi −
N
∑

i=1
�Ti

)�
)q+

(qi−1, qi)�qi

+
N−1
∑

i=1

Ti+1

)FD
)q

(qi, vi, ui)Δ��qi +
N−1
∑

i=1

Ti+1

)FD
)v

(qi, vi, ui)Δ��vi +
N−1
∑

i=1

Ti+1

)FD
)u

(qi, vi, ui)Δ��ui +
N−1
∑

i=1

Ti+1�vi −

N
∑

i=1

Ti �vi

+
N−1
∑

i=0
�Ti
)C
)q
(ti, qi, vi, ui)Δ� +

N−1
∑

i=0
�Ti
)C
)v
(ti, qi, vi, ui)Δ� +

N−1
∑

i=0
�Ti
)C
)u
(ti, qi, vi, ui)Δ�. (B18)

The optimality conditions, the necessary conditions for �J̃ = 0 under arbitrary �q1, ..., �qN , �v1, ..., �vN , and �u0, ..., �uN−1,
are then derived by calculus of variations39 as follows:

)'
)q
(tN , qN , vN ) − �TN

)�
)q+

(qN−1, qN ) = 0, (B19)

)L
)q
(ti, qi, vi, ui)Δ� − �Ti+1

)�
)q−

(qi, qi+1) − �Ti
)�
)q+

(qi−1, qi) + 
Ti+1
)FD
)q

(qi, vi, ui)Δ� + �Ti
)C
)q
(ti, qi, vi, ui)Δ� = 0, i = 1, ..., N − 1,

(B20)
)'
)v
(tN , qN , vN ) +

)La
)v+

(vN−1, vN )Δ� − 
TN = 0, (B21)

)L
)v
(ti, qi, vi, ui)Δ� +

)La
)v−

(vi, vi+1)Δ� +
)La
)v+

(vi−1, vi)Δ� + �Ti+1Δ� + 

T
i+1 − 


T
i + 


T
i+1
)FD
)v

(qi, vi, ui)Δ�

+�Ti
)C
)v
(ti, qi, vi, ui)Δ� = 0, i = 1, ..., N − 1, (B22)

and
)L
)u
(ti, qi, vi, ui)Δ� + 
Ti

)FD
)u

(qi, vi, ui)Δ� + �Ti
)C
)u
(ti, qi, vi, ui)Δ� = 0, i = 1, ..., N − 1. (B23)

Equations (B19)–(B22) are manipulated into

�N =

{

(

)�
)q+

)T
}−1

(qN−1, qN )
(

)'
)q

)T

(tN , qN , vN ), (B24)
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�i =

{

(

)�
)q+

)T
}−1

(qi−1, qi)

{

−
(

)�
)q−

)T

(qi, qi+1)�i+1 +
(

)L
)q

)T

(ti, qi, vi, ui)Δ� +
(

)FD
)q

)T

(qi, vi, ui)
i+1Δ�

+
(

)C
)q

)T

(ti, qi, vi, ui)�iΔ�

}

= 0, i = 1, ..., N − 1, (B25)


N =
(

)'
)v

)T

(tN , qN , vN ) +
(

)La
)v+

)T

(vi−1, vN )Δ�, (B26)

and


i = 
i+1 + �i+1Δ� +
()L
)v

)T
(ti, qi, vi, ui)Δ� +

(

)La
)v−

)T

(vi, vi+1)Δ� +
(

)La
)v+

)T

(vi−1, vi)Δ� +
()FD
)v

)T
(qi, vi, ui)
i+1Δ�

+
()C
)v

)T
(ti, qi, vi, ui)�iΔ� = 0, i = 1, ..., N − 1.

(B27)
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