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ARTICLE

Massively parallel reporter perturbation assays
uncover temporal regulatory architecture during
neural differentiation
Anat Kreimer1,2,3,4,8✉, Tal Ashuach3,8, Fumitaka Inoue 1,2,5,8, Alex Khodaverdian3, Chengyu Deng1,2,

Nir Yosef 3,6,7✉ & Nadav Ahituv 1,2✉

Gene regulatory elements play a key role in orchestrating gene expression during cellular

differentiation, but what determines their function over time remains largely unknown. Here,

we perform perturbation-based massively parallel reporter assays at seven early time points

of neural differentiation to systematically characterize how regulatory elements and motifs

within them guide cellular differentiation. By perturbing over 2,000 putative DNA binding

motifs in active regulatory regions, we delineate four categories of functional elements, and

observe that activity direction is mostly determined by the sequence itself, while the mag-

nitude of effect depends on the cellular environment. We also find that fine-tuning tran-

scription rates is often achieved by a combined activity of adjacent activating and repressing

elements. Our work provides a blueprint for the sequence components needed to induce

different transcriptional patterns in general and specifically during neural differentiation.

https://doi.org/10.1038/s41467-022-28659-0 OPEN

1 Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA. 2 Institute for Human
Genetics, University of California, San Francisco, San Francisco, CA 94158, USA. 3 Department of Electrical Engineering and Computer Sciences and Center
for Computational Biology, University of California, Berkeley, CA 94720, USA. 4Department of Biochemistry and Molecular Biology, Center for Advanced
Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA. 5 Institute for the Advanced Study of
Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan. 6 Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA. 7 Ragon Institute of
MGH, MIT, and Harvard, Cambridge, MA 02139, USA. 8These authors contributed equally: Anat Kreimer, Tal Ashuach, Fumitaka Inoue.
✉email: kreimer@cabm.rutgers.edu; niryosef@berkeley.edu; nadav.ahituv@ucsf.edu

NATURE COMMUNICATIONS |         (2022) 13:1504 | https://doi.org/10.1038/s41467-022-28659-0 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28659-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28659-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28659-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28659-0&domain=pdf
http://orcid.org/0000-0003-0657-434X
http://orcid.org/0000-0003-0657-434X
http://orcid.org/0000-0003-0657-434X
http://orcid.org/0000-0003-0657-434X
http://orcid.org/0000-0003-0657-434X
http://orcid.org/0000-0001-9004-1225
http://orcid.org/0000-0001-9004-1225
http://orcid.org/0000-0001-9004-1225
http://orcid.org/0000-0001-9004-1225
http://orcid.org/0000-0001-9004-1225
http://orcid.org/0000-0002-7434-8144
http://orcid.org/0000-0002-7434-8144
http://orcid.org/0000-0002-7434-8144
http://orcid.org/0000-0002-7434-8144
http://orcid.org/0000-0002-7434-8144
mailto:kreimer@cabm.rutgers.edu
mailto:niryosef@berkeley.edu
mailto:nadav.ahituv@ucsf.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Enhancers are DNA sequences containing clustered recog-
nition sites (i.e., motifs) for transcription factors (TFs) that
play a pivotal role in transcriptional regulation of gene

expression during numerous biological processes, including cel-
lular differentiation1. This is evident by the abundance of disease-
associated variants discovered through genome-wide association
studies (GWAS) and expression quantitative trait loci (eQTLs)
residing in noncoding regions2. Despite their importance, our
understanding of the regulatory grammar of enhancers, namely
the manner by which their DNA sequences pertain to their
function remains largely unknown, thus limiting our ability to
infer how changes in these sequences affect their functionality
and lead to higher-level consequences.

Various biochemical assays (e.g., ChIP-seq, DNase-seq, ATAC-
seq) have enabled genome-wide identification and characteriza-
tion of candidate regulatory sequences such as enhancers, across
different cell types3, providing descriptive maps of the human
genome. Complementary studies use genome modification
approaches, such as CRISPR-Cas9, to functionally characterize
enhancer elements by targeting their locations in the genome4.
Such assays capture both direct and indirect causal relationships
between the tested regulatory elements and cellular phenotype
(e.g., gene expression) and in many cases target regions that are
bound by specific transcription factors of interest5. Massively
parallel reporter assays (MPRAs) provide an alternative approach
that enables simultaneously testing the regulatory activity of
thousands of regulatory sequences and their variants. In MPRA, a
sequence of interest is synthesized and placed in front of a
transcribed barcode. There are many variants to this technology6,
including one that utilizes lentivirus to integrate into the genome
(hereafter we refer to this as lentiMPRA;7) used for these assays.
The ratio between the abundance of a transcribed barcode (read
with RNA-seq) and the number of coding sequences (evaluated
with DNA-sequencing) provides a quantitative readout for the
regulatory activity of the assayed sequence6,8–12.

Approaches to understanding the roles of TFs in determining
the activity of a given enhancer and the interplay between TFs in
an enhancer13 are generally limited by the number of causal
relationships they can study directly (e.g., via gene knockdown),
primarily due to cost and availability of efficient perturbing
agents. Therefore large-scale studies often use correlational
inference, e.g., associating TF binding with changes in gene
expression based on motif- gene association14. These, however,
are confounded by a slew of observations whereby only a small
fraction of potential TF-binding sites (TFBSs) are actually occu-
pied in any given cell-type, and these sites vary substantially
across cell types and conditions15–18. Another caveat of per-
turbing endogenous factors that affect gene expression (e.g., TFs,
enhancer regions) is the abundance of indirect effects, which are
difficult to discern from the direct ones. These two issues are
mitigated by MPRAs, as it provides a cost-effective approach to
investigate thousands of candidate enhancer sequences along with
variants of these sequences in which certain DNA-binding motifs
are perturbed. The concern for indirect effects is mitigated to
some extent as well due to the synthetic nature of the assay (i.e.,
the transcribed barcode is non-functional). Previous approaches
to perturbation MPRA for sequence motifs were limited to several
factors and a specific cell-type or condition. For example, a pre-
vious study9,19 explored the activity of five activator motifs and
two repressor motifs in K562 and HepG2 cells by introducing
different variations to the motif sequence and another study19

disrupted a single motif (PPARγ) in mouse adipocytes. Alto-
gether, they focused on a specific time point and not a temporal
course or developmental process.

The differentiation of stem cells into a neural lineage provides
an exemplary model for studying how gradual and non-reversible

changes to the cell’s phenotype may be transcriptionally regu-
lated. During this process, stem cells rapidly differentiate both on
a molecular and physiological level to generate neurons. We
previously characterized the temporal dynamics of gene expres-
sion (RNA-seq) and gene regulation (ATAC-seq, H3K27ac and
H3K27me3 ChIP-seq and lentiMPRA) at seven time points
(0–72 h) during the early parts of this process20. Using lentiM-
PRA, we identified numerous endogenous sequences that had
temporal enhancer activity (i.e., the expression of their target
barcode was well over the background levels and significantly
changed over time). This activity tended to correlate with cell-
endogenous changes to the expression of their target gene and to
the structure of their surrounding chromatin. In addition, the
genomic positions of the validated temporal sequences sig-
nificantly overlapped with loci that have been associated with
neurodevelopmental disorders, in particular autism spectrum
disorder (ASD). Combining all our genomic data, we developed a
prioritization method to select TFs that are putatively involved in
driving a neural fate, and validated the role of several candidates
with direct genetic perturbations. This study, however, was still
limited to validations of a handful of TFs and lacks in under-
standing of the way by which these TFs may drive changes in
transcription over time.

To more comprehensively identify DNA-binding motifs that
may affect transcription and characterize the timing in which they
carry out their effect, we utilized a ‘perturbation MPRA’ approach.
Based on our previous data, we compiled a list of 591 regulatory
sequences whose activity differed over time (considering different
temporal patterns) as well as a selected set of 255 motifs within
those regions. We then prioritized for testing 2144 instances of the
selected motifs in the selected regions. We used leniMPRA to
perturb, via three different approaches, the selected instances, and
evaluated their effect over at the same seven time points (0–72 h)
during the neural differentiation process. Using this approach, we
found that 27% (598) of the perturbations had a significant effect
on the transcription of the reporter gene. We divided these motif
instances into several subtypes based on the direction (suppressing
or inducing transcription) and magnitude (fold change, compared
to the unperturbed and negative control sequences) of their effect.
We observed that the magnitude of the effects often varied over
time (indicating that it depends on the cellular environment),
while the direction of the effect is independent of time and is
broadly determined by the DNA sequence (i.e the combination of
the perturbed motif and the surrounding region). Furthermore, we
observed cases of activating and repressing motif instances that
are harbored within the same regulatory region, suggesting that in
those cases, fine-tuning of transcription levels may be achieved
by a combination of opposing effects. Finally, by perturbing
pairs of motifs in a select set of sequences, we found evidence for
different patterns of cooperation between motifs, and that both
fundamental models, namely the “enhanceosome”model of an all-
or-nothing machinery, and the “billboard” model of independent
contribution15,21 are supported by our data. Overall, our findings
suggest that the regulatory grammar of enhancers that changed in
gene expression in our system is an amalgam of a wide variety of
different mechanisms. It also helps establish perturbation MPRA
as a powerful approach for high-throughput investigation of such
mechanisms in different cellular contexts.

Results
Selection of regions and motifs for perturbation MPRAs. To
characterize the effect of DNA-binding motifs on gene expression
over time, we first set out to choose a set of regulatory regions
that showed temporal activity during early neural differentiation
using lentiMPRA data from our previous study (0, 3, 6, 12, 24, 48,
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and 72 h post induction;20). Our initial candidate set consisted of
1547 171-bp sequences that were identified as temporally active
(i.e., the expression of their target barcode varied significantly,
both over time and in comparison to a control sequence;
“Methods”22). We then used FIMO23 to computationally identify
occurences of known DNA-binding motifs in each sequence
(using motifs identified by Kheradpour and Kellis24 and Weir-
auch et al.25).

Following these analyses, we chose specific regions and motifs
for perturbation lentiMPRA. As we are limited by the number of
sequences that can be included in a single lentiMPRA library due
to low integration rate in ESCs, we developed an optimization
framework to select the combination of regions and motifs that
maximizes the representation of relevant genomic properties
(Fig. 1a, b; “Methods”). To this end, we wanted to include regions
and motifs that are associated with different temporal patterns of
chromatin and gene expression signals, derived from our previous
analysis of H3K27ac ChIP-seq, ATAC-seq, and RNA-seq data in
the same time points20. We made sure to include a sufficient
number of regions in which H3K27ac is induced early in the
differentiation, as well as regions that gain this mark later on, and
closer to the neural progenitor (NP) phase. Similarly, we selected
a minimal number of motifs whose corresponding TFs are
induced early in the differentiation process, as well as motifs
associated with late-induced TFs. We also chose to provide
explicit preference for a curated list of regions and TFs that have

been previously associated with neural induction pathways.
Finally, we required that every selected motif will be perturbed
in at least 20 regions (thus allowing us to observe the motif in
multiple contexts), and every selected region will have at least two
different perturbations (for two different motifs). With these
considerations taken together, the respective experimental design
problem can be represented as an optimization problem: selecting
the minimal number of motif instances [(region ×motif) pairs]
while satisfying all of our design constraints above. In “Methods”,
we describe how we represent this as a connectivity problem in
graphs and how we derive a solution for it using Integer Linear
Programming. Applying this scheme to our data resulted in a
selection of 2144 motif instances over 591 regions and 255 motifs
(Fig. 1a–c).

We considered the 2144 motif instances both in their wild-type
(WT) and in a perturbed form (PERT), where the sequence of the
motif instance is modified in order to estimate its effect. For 100
of our genomic regions, chosen by the motifs they harbor and
their importance for neural differentiation (20; see “Methods”), we
also perturbed pairs of motifs (including two appearances of the
same motif in the sequence or two different motifs), to analyze
cooperative effects (Fig. 1c; “Methods”). We perturbed each of the
selected motifs using three different designs that rely on two
approaches (Fig. 1d): In designs 1 and 2, we identified two fixed
“non-motif” sequences (i.e., sequences with minimal number of
predicted motif hits—details in “Methods”) and replaced the
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Fig. 1 Experimental design. a Computational framework to select regions and perturbation sites. b Heatmap of motif instances in the assayed regions
(left); distribution of the number of motifs perturbed in each region (top right); distribution of the number of regions harboring each motif (bottom right).
c Library design; selected regions were included in their wild-type (WT) form, selected motifs were perturbed (by altering the sequence in the predicted
motif site) using three perturbation methods individually (PERT single) as well as in combination with other perturbations in selected cases (PERT double).
Random sites were perturbed (RAND) and the entire WT sequence was scrambled as negative controls (SCRAM) for each WT sequence. d The designed
sequences were synthesized and cloned into the lentiMPRA vector and associated with 15-bp barcodes. ARE antirepressor element, BC barcode. Reporter,
EGFP enhanced green fluorescent protein, LTR long terminal repeat, mP minimal promoter, WPRE Woodchuck Hepatitis Virus Posttranscriptional
Regulatory Element. e lentiMPRA libraries were infected into hESCs and following 3 days, we induced neural differentiation via dual-SMAD inhibition and
obtained DNA and RNA at seven time points (0, 3, 6, 12, 24, 48, and 72 h). f Association between barcodes and designed sequences, and the number of
barcodes observed in DNA and RNA sequencing was determined using MPRAflow28. Differential analysis between WT and PERT activity to determine
motif regulatory effect over time was assessed using MPRAnalyze22. Source data are provided as a Source Data file.
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motif with the prefix of these sequences, adjusting to the motif
length. In the third design, we randomly shuffled the nucleotides
of the motif (“Methods“). We also included two sets of negative
controls: (1) scrambled sequences (SCRAM)—where we shuffle
all nucleotides of each of the 591 WT sequences; (2) random
sequence alterations (RAND) – where we randomly shuffled a
small region (length of the median motif size) at a random
location in each region. In total, 10,041 sequences were included
in our lentiMPRA library (Fig. 1c, d).

lentiMPRA perturbation. The designed sequences were synthe-
sized and cloned upstream of a minimal promoter (mP) into the
lentiMPRA vector (Fig. 1d; “Methods“). During the cloning
process, 15-bp random barcodes were placed in the 5’UTR of the
EGFP reporter gene26. The association between the cloned
sequences and barcodes was determined via DNA-seq (“Meth-
ods”). Lentivirus was generated and human embryonic stem cells
(hESCs) were infected with the library (Fig. 1e). Following three
days, to allow for viral integration and degradation of unin-
tegrated virus, the hESC were differentiated to a neural lineage
using the dual-Smad inhibition protocol27. Integrated DNA
barcodes and transcribed RNA barcodes were quantified by
DNA-seq and RNA-seq, respectively, at seven time points of
neural differentiation (0, 3, 6, 12, 24, 48, and 72 h) (Fig. 1f). The
library infections were carried out using three biological replicates
(two replicates were infected with the same lentivirus batch, while
the other replicate was infected with another lentivirus batch).

Using a computational pipeline developed in our group,
MPRAflow28, we took a stringent approach to associate barcodes
with the cloned sequences. For each barcode, we required at least
80% of the reads associated with the barcode to map it to a single
sequence, and a minimum of three reads supporting that
assignment, resulting in over 1.4 million confidently assigned
barcodes, and averaging 139 barcodes per sequence (“Methods”).
We then analyzed the barcodes from the lentiMPRA infected cells
and matched them with the confidently assigned barcodes of the
library. Across biological replicates, we were able to confidently
assign an average of 61.6% of the barcodes (“Methods” and
Supplementary Fig. 1). Considering only confidently assigned
barcodes that have a representation both in RNA and DNA from
infected cells, we observed an average of 134.4 barcodes
per sequence in each replicate (Supplementary Fig. 2), corre-
sponding to 9948 out of the 10,041 designed sequences (2082,
2086, and 2114 sequences for perturbation methods 1–3,
respectively (Supplementary Table 1)). We then used
MPRAnalyze22 to aggregate the barcodes and quantify the
transcription rate induced by each tested sequence (dubbed
“alpha”). We observed reproducible results between replicates
(average Pearson correlation 0.98) in every timepoint (Supple-
mentary Fig. 3), and results were highly concordant with our
previously characterized lentiMPRA in the same system20 (mean
Pearson correlation 0.79, Supplementary Fig. 4). Comparing the
four categories of sequences that we tested, we observe as
expected, that overall, the scrambled negative controls (SCRAM)
had the lowest transcriptional activity, while the unperturbed
sequences (WT) had the highest (Supplementary Fig. 5). We also
observed that sequences with a perturbed binding site (PERT)
had a generally lower level of activity than sequences with a
perturbation of random sites (RAND), confirming that perturb-
ing known motifs have an effect larger than expected by chance.
We next quantified the magnitude of deviation between PERT
and WT transcription rates (Log(WT/PERT)) and compared the
results between all three perturbation methods. Overall, we
observed correlated results between the three methods, both in
terms of the estimated transcription rate of the perturbed

sequences (average Pearson correlation 0.81) and the differential
activity between the perturbed sequences and their corresponding
WT sequence (Log(FC), average Pearson correlation 0.71)
(Supplementary Fig. 6).

Identification of functional TF motifs. We next set out to
identify which of the DNA-binding motifs we assayed is a
functional site, i.e., a site that causes a significant change in
regulatory activity when perturbed. To this end, we initially
focused on sequences with a single perturbed site (rather than
deletion of two sites) and used MPRAnalyze22 to apply a set of
four filters (illustrated in Fig. 2a; Supplementary Table 1a),
requiring that each tested sequence passes all four filters: (1) the
PERT sequence activity significantly deviates from that of the WT
sequence in at least one time point (likelihood ratio test (LRT);
FDR < 0.05; “Methods“); (2) the time course of PERT activity
significantly deviates from that of the WT sequence (LRT;
FDR < 0.05; “Methods”); (3) either the PERT (in at least one time
point) or WT (in all the time points) sequences are significantly
more active than the SCRAM negative controls (MAD-based z-
test; FDR < 0.05; “Methods”); (4) either the PERT or the WT
sequence temporal activity significantly deviate from the temporal
activity observed among the SCRAM negative control sequences
(LRT; FDR < 0.05; “Methods”). Overall, these filters will include
sites that when perturbed cause a significant change (compared to
WT) in regulatory activity in at least one time point (filter 1) and
across the temporal pattern (filter 2). In addition, sequences that
are potentially activating or repressing in at least one time point
or across time will be included using filters 3 and 4. Our analysis
will not remove constitutive sequences as long as their temporal
activity is significantly different from the WT. We applied these
filters to each perturbation method separately, which resulted in
747, 775, and 749 sequences in perturbation methods 1, 2, and 3,
respectively (Fig. 2b, Supplementary Fig. 7, and Supplementary
Table 1a). Across the three perturbation methods, we observe that
most of the sequences pass all four filters and less than 10% of the
sequences pass no filter, indicating that our experimental design
mainly consists of functional regulatory sequences across these
time points of neural induction (Supplementary Fig. 7). Com-
parison analysis of temporal properties from our previous work20

confirmed that the signal of H3K27ac, ATAC-seq, MPRA, and
mRNA of both the closest gene and the motif’s associated TF
were significantly lower (all time points combined, Wilcoxon P
value <10−10) in removed vs. retained sequences, in each of the
perturbation methods, supporting our filtering approach (Sup-
plementary Dataset 1). We observed an overall similar level of
concordance between the different methods, with an average
overlap of ~70% between the three methods (Fig. 2b, Supple-
mentary Fig. 6, and Supplementary Table 1).

In the subsequent analysis, we took a conservative approach to
aggregate the evidence from the three ways of perturbing motif
instances. We focused on instances that had strong evidence from
both approaches for perturbing a motif (i.e., random shuffle or
replacement by a fixed “non-motif” sequence). To this end, we
consider only instances that passed all four filters above in
perturbation method 3 and in either perturbation method 1 or 2.
We also require that the direction of effect (increasing or
decreasing expression) to be consistent between the different
methods. This resulted in 598 motif instances that had a
significant and consistent effect. We refer to this set as functional
regulatory sites (FRSs).

We examined the FRSs by conducting our analysis in three
different axes: (i) the FRS level, i.e., perturbation of a specific
motif in a specific region; (ii) the motif level, across different
regions the motif appears in; (iii) the region level, taking into
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account the various functional sites that appear in it. For each
axis, we also examined how the perturbation effect may change
over the different time points. While our analysis is based on the
consensus set of 598 motif instances, we repeated it based on sites
found by each of our three perturbation methods individually,
where we observe largely consistent results (Fig. 2b, Supplemen-
tary Tables 1–5, Supplementary Dataset 1; “Methods”).

Delineating major categories of functional regulatory sites. We
first analyzed the general effect of our perturbations in all 598
FRSs. Comparing the MPRA signal of WT to PERT sequences in
each time point, we generally observed a reduction in activity,
indicating that perturbing the predicted motif disrupts the
function of an activating TF. For a smaller portion of the sites, we
observed the opposite effect, i.e., increased activity, indicating that
these sequences harbor binding sites with a repressive function
(Supplementary Fig. 8). Importantly, these elements do not lower
the baseline transcription rate of the reporter gene, and are not
transcriptional repressors, but rather reduce the expression to
levels comparable to the baseline of the control sequences
(SCRAM), but not below it. To avoid confusion with transcrip-
tional repressors we refer to these elements as dampeners, as they
dampen the activity of the enhancer. We thus divided the per-
turbation effects into two main categories (Fig. 2c): (1) activators,
identified by perturbations resulting in reduced transcription
(WT > PERT); (2) dampeners, identified by perturbations result-
ing in increased transcription (PERT >WT).

Out of the 598 FRSs, we observed 526 (87.9%) that had
activating effects in at least one time point (and non-significant
effects in the rest of the time points), and 70 (11.7%) that had
dampening effects in at least one time point (and non-significant
effects in the rest of the time points) (Fig. 2d, Supplementary

Table 2, and Supplementary Dataset 2), with only two FRSs
alternating between activating and dampening effects at different
time points (DMRTA2 motif DMRTA2_M0629_1.02 and Inter-
feron Regulatory Factor 4 motif IRF4_M5573_1.02; Supplemen-
tary Table 2; Supplementary Dataset 2). This suggests that the
direction of the effect (activating or dampening) of an FRS
primarily depends on DNA sequence, and less so on the protein
milieu or on other epigenetic properties that change during
differentiation. Of note, as lentivirus randomly integrates into the
genome, our results consider a cumulative signal from different
integration locations in many cells, which essentially controls for
the effects of local chromatin properties that may be present
around the FRS.

To gain a better understanding of perturbation effects, we
further divided our sites into four sub-categories (Fig. 2c, d,
“Methods”): (1) Essential: activating sites that when perturbed,
reduced the expression level to that of the controls (SCRAM)
sequences; (2) Contributing: activating sites that upon perturba-
tion reduce the expression but not to baseline levels; (3)
Inhibiting: sites that when perturbed lead to increased activity
suggesting that they encompass dampening sites that fine-tune
transcription levels; (4) Silencing: dampening sites that block a
sequence from regulating transcription, i.e., WT levels are similar
to control (SCRAM) and when perturbed make the sequence
active. (Fig. 2c; “Methods”).

Considering this refined division, we found that 159 and 367
out of the 526 activating FRSs, correspond to categories essential
and contributing respectively (Fig. 2d and Supplementary
Dataset 1). Out of 72 dampening FRSs, we find 9 silencers and
63 inhibitors (Fig. 2d and Supplementary Table 1). These results
represent the distribution of FRSs categories in our dataset.
Notably, these FRSs are not a comprehensive list of all functional

Fig. 2 Preprocessing, consistency, and categorization of FRSs. a Illustration of the four filters applied to perturbed sequences to remove inactive and non-
functional sites, both at each timepoint and across timepoints (error bars represent mean ± 1 SD; “Methods”). b Number of sequences that passed all three
filters for each perturbation method. c Definition of main and sub-categories of motif binding effects based on their effect on transcription. d Distribution of
categories across FRSs that pass the four filters and are under the same main category (activating or dampening) in perturbation method 3 and at least one
of the perturbation methods 1 or 2. The distribution is shown across FRSs (top) and across the unique motifs and regions composing the FRSs in this study
(bottom).
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sites in the selected regions. For instance, we found several
regions in which only dampening FRSs were identified (Fig. 2d).
Since dampening FRSs only reduce the overall activating function
of the region, dampener-only regions must contain additional
unknown activating FRSs that were not included in our design.

We next examined how the strength of the mutation effects
caused by perturbing activator sites (WT–PERT) depends on the
strength of the expression generated from their respective
unperturbed sequence (WT). We found that these effects scale
linearly with the WT activity levels (WT–PERT ~ a+ b* WT for
some constants a, b) across time. While this is trivial for essential
FRSs, we found that this linear relationship still holds among
contributing activators as well (median R-squared 0.95, methods,
Supplementary Fig. 9a–c). When examining fold-change values,
this linear relationship translates to: FC= PERT/WT= (1-
a)− (b/WT) for the same constants. This relationship saturates
and approaches a constant (1-a) for sufficiently high levels of
unperturbed (WT) expression (Methods; Supplementary Fig. 9d,
e). These constants therefore capture the activation dynamics of
each element: a determines the saturated value, and b determines
the rate of saturation. We observed that different FRSs within a
given region often have different constants, and the same motif
has different constants when harbored in different regions,
suggesting that the dynamics are not context- or factor-specific,
but rather a combination of both. Overall, while the relationship
between WT activity and the effect of perturbation is linear, our
results show that both depend on the sequence content and the
specific cellular context in which it is being assayed.

Characterization of activating and dampening motif effects.
Overall, our 598 FRSs include 147 unique motifs. Out of these
147, we observed 68 motifs that are strictly activators, 16 motifs
that are strictly dampeners and 63 motifs that show either acti-
vating or dampening effects in different genomic contexts
(Fig. 2d, Supplementary Figs. 10 and 11, Supplementary Table 2,
and Supplementary Dataset 2). When examining the distribution
of motif effects across regions (Supplementary Fig. 10 and Sup-
plementary Dataset 2), we observe that related motifs tend to
appear in the same regions and importantly— that motifs have

different, in many times opposing, effects in different regions.
This is also supported by a per motif visualization showing the
distribution of categories per motif (Supplementary Fig. 11 and
Supplementary Dataset 2). In addition, there are groups of similar
regions that contain the same motifs (Supplementary Fig. 10 and
Supplementary Dataset 2). We note that most of the motifs in our
dataset (~75% Supplementary Fig. 10 and Supplementary Data-
set 2) appear in five or less regions. Constraining the analysis to
motifs that appear in more than five regions shows that 16 out of
35 such motifs (~45%) are strictly activators and all of them have
mixed effects depending on the region.

We set out to examine the aforementioned sub-categories of
specific motifs (Supplementary Fig. 11). Within the activating
FRSs, we observed that motifs associated with the SRY-Box
Transcription Factor SOX1 are the only motifs that are enriched
in the set of essential FRSs (i.e over-representation that is unlikely
to occur by chance; hypergeometric test, FDR < 0.05; Supple-
mentary Fig. 11). Both SOX1 and its homolog SOX2 are thought
to function as pioneer factors that enable subsequent binding by
other TFs29. This is in line with our observation that the enhancer
activity is completely disrupted when these motifs are perturbed.
Among the motifs that were enriched in the second category of
having a contributing binding effect, we observed ZIC factors,
which play important roles in neuroectoderm cell development30.

Among the transcription factors whose motifs are associated
with a silencing effect is the Neuronal Differentiation factor
NEUROD2. Perturbing a NEUROD2 binding site in a late-
response regulatory element (chr15:75409661–75409832 (hg19);
Fig. 3a) increases the transcription induced by that sequence at
the later time points (48–72 h) (Fig. 3a). While NEUROD2 is
thought to be a transcriptional activator, our results are
in accordance with its previously reported role as a repressor of
REELIN gene expression in primary cortical neurons, by
interacting with CTCF that is known to function as transcrip-
tional repressor in a context-dependent manner31.

Considering the set of Inhibitor motifs, which could fine-tune
regulatory activity by partially reducing it, we saw enrichment for
the P53-Like Transcription Factor TP73. For example, perturbing
a TP73-binding site in region chr6:167854597–167854768 (hg19)
substantially increases the activity of that enhancer across all time
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points. Notably, this region also contains two functional binding
sites that activate transcription, and harbor NANOG (NANOG_-
disc2) and SOX1 (SOX1_M3910_1.02) binding motifs (Fig. 3b).
Interestingly, we also found six instances where TP73-binding
motifs function as activators (Fig. 3c and Supplementary Table 1).
TP73 has been shown to regulate NPC proliferation in the
developing and adult mouse central nervous system32,33 and is
known to interact via its subdomains with many different partner
proteins, including POU34 which has corresponding motifs in
this region and YAP1, which is known to function as both an
activator or repressor35 in a context-dependent manner36. These
instances demonstrate that FRSs can achieve their desired
transcriptional rate by combining both activating and repressive
motif sites, and that using our perturbation MPRA approach
allowed us to distinguish the functionality in each specific
context.

When examining the distribution of sub-categories effects
across motifs, we observed 84 (57%) motifs that appear in only
one subcategory and 63 (43%) motifs with mixed effects (Fig. 2d
and Supplementary Table 1). For most of the motifs the effects
are mixed (Supplementary Fig. 11). These results suggest that
enhancer activity is influenced both by the motif sequence and
the surrounding sequence of the region harboring the motif
(Supplementary Figs. 10 and 11).

Focusing on motifs that are consistently associated primarily
with one direction of effect (activating or repressing), we next set
out to analyze the effects of motifs on transcription during our
time course, by aggregating the results from all their respective
instances. We summarized the signals of motifs that show
activating or repressing cumulative effect (Fig. 4). Among the TFs
associated with activator motifs, we observe the neural markers
SOX, LHX, ZIC, and FOX families20,29,30,37–44 (Fig. 4a), as well as
motifs associated with factors known to be involved in neural
induction, such as OTX245,46 and PAX640,47. Consistent with our
recent characterization of neural induction associated TFs20, we
also identified Iroquois Homeobox Protein 3 (IRX3) to be one of
the strongest activating motifs. Among the TFs associated with
repressive activity (Fig. 4b), we observed factors from the HOXD
gene family, which are thought to function as repressors when
bound in monomeric form48. We also found an enrichment for a
SIN3A motif, which is generally known to interact37 with histone
deacetylase (HDAC) and function as a transcriptional co-
repressor49. It was also reported that the SIN3A/HDAC co-
repressor complex was involved in the maintenance of ESC
pluripotency49,50.

To examine how the effects of motifs change over time, we
clustered the signal of all activating and repressing motifs. We
observed that the magnitude of effects often changes over time in
a manner proportional to the unperturbed expression level
(Supplementary Fig. 9). These effects range from perturbations
that are effective only at the ESC stage to those that influence late-
induced regions (Fig. 4). Enrichment analysis of the TFs (both
activating and repressing) in the early cluster (Fig. 4a, b) indicated
their involvement in processes related to cell differentiation, cell
fate commitment, and regulation of development for the top ten
categories, whereas enrichment of late response TFs (Fig. 4a, b)
indicated, more specifically, categories related to neurogenesis
and nervous system development51. These results support the
functionality of these clusters in earlier and later stages of neural
differentiation. For example, enhancers that have OTX2-binding
sites reach their peak activity during the neural progenitor
cell (NPC) stage. When the OTX2 sites are perturbed, the activity
at later time points (48–72 h) was decreased (Fig. 4a, c).
Similarly, NPC enhancers harboring IRX2/3 (Fig. 4a) or BARHL1
(Fig. 4d) motifs decreased in activity when the binding sequen-
ces were mutated. Correspondingly, we observe that OTX2, IRX2/

3, and BARHL1 mRNA levels peak at later time points
(48–72 h) (based on data published in ref. 20). When HOXD
sites (HOXD12_M5560_1.02, HOXD9_2) were mutated, the
activity at later time points (48–72 h) (Fig. 4b, e, Supplementary
Table 2, and Supplementary Dataset 2) was increased. These
findings indicate that these binding sites have different levels of
induced activity at distinct time points of neural differentiation.
This suggests that the abundance of the binding TF (i.e., the TF’s
mRNA levels) at a given time point and the abundance of
additional cell-state specific factors (e.g., expression of other TFs)
play a significant role in proper enhancer activity.

Interestingly, we also observed TFs whose corresponding
motifs show both activating and repressing effects in different
regions (Fig. 4a, b, Supplementary Dataset 2, and Supplementary
Figs. 10 and 11). For example, different motifs for the Zinc finger
protein (ZIC) family have repressing and activating effects across
different regions (ZIC2 and ZIC3). Members of the ZIC family
are involved in neurogenesis and are known to function as both
transcriptional activators and repressors in a context-dependent
manner during embryogenesis52. In addition, we observed both
effects for the ZEB1 motif in different regions (Fig. 4a, b and
Supplementary Dataset 2) in concordance with the role of ZEB1,
acting as both a transcriptional activator and repressor during
neurogenesis53,54. We saw similar effects for the RARG motif
(Fig. 4a, b and Supplementary Dataset 2). RARG is a retinoic acid
receptor (RAR), a family of factors that plays a role in
developmental processes and acts as a ligand-dependent tran-
scriptional regulator. When bound to ligands, RARs activate
transcription, whereas in their unbound form they repress
transcription of their target genes55.

Perturbation of motif pairs identifies different modes of motif
interaction. We next examined the activity of the assayed regions
as composite functional units consisting of multiple FRSs. Our
598 FRSs include 254 unique genomic regions. We observe
complexity in these regions in terms of having sites with different
direction of effect and different sub-categorization (Supplemen-
tary Fig. 10). Specifically, when examining the set of significant
perturbation effects in those regions, we observed 141 cases
(~56%) with only activating effects (Fig. 2d, Supplementary
Dateset 2, and Supplementary Fig. 10), which is consistent with
our analysis being focused on regions that were previously
identified as enhancers during neural induction20. We found 86
regions (>30%) that harbor both activating and repressing motif
instances. This suggests that regulatory activity within these
enhancers can be achieved by fine-tuning of binding effects,
including both activating and repressing motifs to achieve the
desired regulatory function. This phenomenon of context-
dependent repression by transcriptional activators is consistent
with what was previously reported in yeast56, drosophila57, and
mammalian cells58. Regions with multiple essential FRSs, all
required for regulatory activity, offer support to the “enhanceo-
some model” of a specific combination of factors being required
in an all-or-nothing machinery15. In contrast, regions with
multiple contributing FRSs supports the “billboard model”, of a
flexible modular machinery that fine tunes the induced tran-
scription levels by having independently contributing factors59.
These results demonstrate that different regulatory sequences
may be governed by either the enhanceosome or the billboard
model, and some appear to be governed by a combination
of both.

We wanted to further examine how pairs of motifs interact in
regulatory sequences. To that end, we examined the results of
perturbing pairs of motifs, both individually and in combination,
to determine how different binding sites interact in a single region
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(Fig. 5a and Supplementary Dataset 3). We considered the FRSs
to have independent effects (following the billboard model) if the
effects were log-additive: perturbing both sites was equivalent to
multiplying the effects of perturbing each site separately. We used
MPRAnalyze22 to test this hypothesis for each assayed pair in
each perturbation method, by including an interaction term in
the model that captures the effect of perturbing both sites while
accounting for the effect of perturbing both sites individually
(“Methods”). We considered pairs to have significant interaction
if the size of the interaction term was larger than 0.5 and the test
was statistically significant (BH-corrected P < 0.05). We then
defined interaction as “consistent” if the pair were labeled the
same (either significant or non-significant) in perturbation
methods 3 and either 1 or 2, and removed inconsistent pairs
from the analysis. We removed pairs in which none of the
perturbations are functional, by requiring that at least one of the
single perturbations pass the filtering scheme we described above.
Finally, to make interpreting the results easier, we excluded pairs
in which the assayed sites overlap since overlapping sites cannot

be conclusively independent. Overall, out of 149 examined pairs,
24 pairs remained, of which 13 were log-additive, consistent with
a billboard model of cooperation, and 11 had significant non-
additive interactions (Fig. 5b). While the small number of
functional pairs in our results does not allow for extensive or
systemic analyses, we do find anecdotal evidence of different
cooperation models operating in different regions.

Among the billboard-consistent pairs, we found chr10:1002
06539–100206710 (hg19), residing in an intron of the HPS1 gene,
contains two FRSs each containing a motif instance of ELF1
(ELF1_known3), a transcription factor known for its binding near
prefrontal cortex splicing QTL SNPs60 and for its role in brain
development61. Both FRSs are activators, but do not have an
identical effect, with one driving down transcription to SCRAM
levels when perturbed (essential), and the other having a milder
effect (contributing). Perturbing both FRSs in this region further
reduces the expression to levels significantly below the SCRAM
baseline (Fig. 5c). In addition, we find that additive contribution
can also apply to cooperating activators and dampeners, as in
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chr4:152405951–152406122 (hg19), an intronic region in the
FAM106A1 gene body, which contains an FRS with a SOX1 motif
that has a contributing effect and an FRS with a ZIC2 motif that
has an inhibiting effect. Perturbing both sites results in an
additive effect: transcription levels that are lower than WT, but
higher than those obtained when perturbing the SOX1 motif
alone (Fig. 5d). In the non-additive regions, we found both
enhanceosome and composite examples. In the all-or-nothing
enhanceosome model, different elements act in a fully dependent
manner. For example, chr8:62736150–62736321 (hg19) contains
two essential functional sites: a SOX1 (SOX1_M6129_1.02) and a
POU3F1 (POU3F1_2) motif, both necessary for activity.
Perturbing either one, and concordantly both, reduces induced
transcription to SCRAM levels (Fig. 5e). Both factors are known
to have a key role in determining neural fate62. In a combination
of the billboard and enhanceosome models, some factors are
required for any activity while others are independently
contributing. For instance, chr11:130016427–130016598 (hg19),
downstream of the APLP2 gene which is involved in neural
differentiation63 contains two FRSs: a dampening site with a
motif for neural factor MEIS2, and an essential FRS harboring a
SOX1 motif. Perturbing both sites results in a reduction of
activity to the SCRAM levels, indicating that the SOX1 FRS is
required for the overall activity of the region, whereas the
dampening MEIS2 FRS is only functional in the presence of a
functional activator (Fig. 5f).

In addition, we found regions that follow neither the billboard
or enhanceosome models. In chr16:51185391-51185562 (hg19),
upstream of the promoter of neurogenesis regulator SALL164, we
find two binding sites of TRIM28. When perturbed individually,

one site has no effect, while the other has a mild dampening
effect. However, when both are perturbed the effect is a significant
decrease in activity. This potentially demonstrates a redundancy
mechanism, whereby either binding site is sufficient for the WT
activity, and both need to be perturbed in order to disrupt it
(Fig. 5g). Overall our results demonstrate the power and potential
of perturbation MPRA in uncovering a variety of different
patterns of interaction and elucidating the complex regulatory
grammar governing these behaviors.

Discussion
Regulatory elements play a major role in cell-type-specific
response to environmental conditions and perturbations. Teas-
ing out the regulatory rules and sequences responsible for these
responses could lead to a better understanding of how variations
in these sequences alter their activity, and allow the accurate
design or targeting of specific sequences for therapeutic purposes.
Here, we used perturbation MPRA across seven time points of
neural differentiation to characterize the regulatory grammar
during early stages of neural induction. Our work allowed us to
evaluate the effect of intact motif instances over time and
annotate these instances into four major categories (essential,
contributing, inhibiting, or silencing). We observe that generally a
FRS either has an activating or repressive effect across all time
points, suggesting that the binding motif and surrounding region
largely determine the direction of effect, and that the magnitude
of this effect changes over time, in a manner proportional to the
activity of the WT sequence, in different cellular environments,
indicating earlier and later functional motifs in this process.
Finally, by carrying out two motif perturbations in a single

Fig. 5 Double perturbation scheme. a Experimental design for perturbing two single motifs separately and then a double perturbation of both
simultaneously, and the requirements for being included in downstream analysis. b Volcano plot for the model testing for log-additivity of the individual
effects. c–g Examples of double perturbation results demonstrating different patterns of cooperation: log-additive effects consistent with a billboard model
(c); log-additive effects of one dampening and one activating element (d); fully dependent cooperation consistent with the enhanceosome model (e); a
billboard-enhanceosome hybrid model with one required element and one with a dampening effect (f); a redundancy example, perturbing either motif has
negligible effect, but perturbing both has a substantial effect (g). All coordinates are hg19. Line plots similar to Fig. 3, mean activity ± 1 SD across the three
replicates. Source data are provided as a Source Data file.
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sequence, we observed different modes of interaction between
pairs of motifs.

Several studies have utilized MPRAs to characterize how TF
binding may affect regulatory activity. However, these studies
examined a small number of TF motifs and assessed their func-
tional effects in a limited number of conditions or cell types. For
example, placing TFBSs at different numbers, order, spacing and
orientation on ‘neutral’ background sequences allowed the dis-
section of regulatory grammar in a human hepatocellular carci-
noma cell line59. One common finding is that the number of
TFBSs (i.e., homotypic clusters of TFBSs65) largely determines
expression and this relationship follows a non-linear increase
with an eventual plateauing of expression56,59,66–68. Grossman
et al.19 used both synthetic and endogenous sequences to speci-
fically test the effect of PPARγ binding motifs and show that
distinct sets of features govern PPARγ binding vs. enhancer
activity. Specifically, they found that PPARγ binding is largely
governed by the affinity of the specific motif binding site while the
enhancer activity of PPARγ binding sites depends on varying
contributions from dozens of TFs in the immediate vicinity,
including interactions between combinations of these TFs.
Kheradpour et al.9 examined five predicted TF activators and two
predicted repressors and measured effects of their motif disrup-
tion in regulatory elements using MPRA. Their findings indicate
that disrupting predicted activator motifs abolishes enhancer
function, while changes in repressors maintain enhancer activity.
They point to evolutionary conservation, nucleosome exclusion,
binding of other factors, and motif affinity, as being predictive
features of enhancer activity.

Here, we analyzed the effect of over 250 motifs with three
different perturbations using two approaches. In the first
approach, we replaced the motif with two different “non-motif”
sequences and in the second approach, we scrambled the motif’s
nucleotides. All these perturbations showed high reproducibility
between replicates (r > 0.95). Analyzing and comparing the three
perturbation methods, we observed a similar level of overlap
between the different methods, but we do not observe more
consistency between perturbation methods 1 and 2 than either
one is with perturbation method 3 (Fig. 2b, d, Supplementary
Fig. 6, and Supplementary Tables 1–5). This may indicate that at
least one of the fixed-sequence perturbation methods potentially
introduces bias that separates it from the other, e.g., by forming
de novo binding sites with endogenous sequences adjacent to the
perturbed sites. Since methods 1 and 2 insert a fixed sequence,
this introduced bias could be systemic across the assayed regions
and skew downstream results. For future experimental designs,
we suggest using a more robust perturbation approach that
randomly shuffles the nucleotides of the perturbed site and is less
likely to introduce systemic biases.

We cataloged the function of 598 FRSs representing 254
unique endogenous regions and 147 unique motifs. Approxi-
mately 90% of FRSs act as activators with ~30% of them as
essential and the rest as contributors. This finding is also in line
with a saturation-based MPRA that analyzed ten disease-
associated promoters and ten enhancers, finding that the
majority of mutations lead to a reduction in activity (i.e., act as
activators that when mutated reduce activity)69. In addition,
while our data do not contain FRSs that repress transcription
below the baseline rate, we found many instances of binding
sites that have a repressive effect on the function of the enhancer
itself: reducing the level of induced transcription, or even
completely blocking the enhancer’s activity. These instances
suggest that enhancers can be kept in a pseudo-poised state:
residing in open chromatin but being blocked from activity by
TF binding, and that repressive factors are often bound to

functional enhancers as a mechanism for fine-tuning tran-
scription levels.

Finally, a smaller subset of sequences was perturbed in two
locations, where we perturbed two single motifs separately and
jointly to assess their interaction, as a proof of concept (Fig. 5). To
model these interactions, we used the billboard model of inde-
pendent contribution as our null hypothesis, by assuming that the
effect of each individual contribution is log-additive19. We tested
this hypothesis using MPRAnalyze22 for each pair in each per-
turbation method (“Methods”). Only pairs which showed con-
sistency (in perturbation methods 3 and either 1 or 2) in the
significance of their interaction term (determined by the magni-
tude and P value; “Methods“), where the single motifs were not
overlapping, and at least one of the single perturbation is a FRS,
were considered further in our analysis. Overall, out of 149
examined pairs, 24 pairs remained, of which 13 were log-additive
(Fig. 5b–d), consistent with a billboard model of cooperation, and
11 had significant non-additive interactions (Fig. 5b). In the latter
category, we observed different TF cooperation models, including
the “enhanceosome model” in which a strict composition of TFs
are required for an enhancer’s function (Fig. 5e), a hybrid of
billboard and enhanceosome models (Fig. 5f) in the same region
and instances that do not fall under any of these categories
(Fig. 5g). Notably, for FRSs containing two instances of the same
motif, the single perturbations did not have identical effects,
consistent with the growing body of work showing that the
function of an enhancer depends on the specific locations and
distances between binding sites, and not only of their
presence56,59,66–68. Albeit being underpowered in the number of
functional pairs does not allow for systematic conclusions, our
anecdotal examples demonstrate the complexity of different TF
cooperation models.

Examining whether we can gain a better understanding on the
determinants of timepoint-specific regulatory activity using this
model system, revealed complex results, suggesting that motif
sequence alone is less likely to determine temporality without the
context of the surrounding region and other bound factors
(Supplementary Note 1, Supplementary Fig. 12, and Supple-
mentary Dataset 4, 5, and 6). Therefore, future challenges fol-
lowing our work will include developing strategies to further
understand regulatory logic and its determinants across different
conditions. For example, using endogenous manipulations via
CRISPR to examine the function of specific motifs and their
combinations across different cellular conditions.

To address whether temporal activity of the functional reg-
ulatory sites (FRSs) are consistent with TF temporal binding
using the following three strategies: first, we used RNA-seq data
from20,70 to compare the timing of motif importance with the
respective TF expression. Testing this correlation did not show
conclusive results. We speculate that this is due to the nature of
our analysis which is motif-based, and since similar sequence
motifs are not independent, it is likely that the annotation of the
FRSs suffers from misclassification of the binding factor. In
addition, even if the exact factor was known, it is not established
in current literature that the magnitude of TF gene expression
is directly correlated with its regulatory effect, so a strong cor-
relation is not necessarily expected. Second, we examined the
overlap of ChIP-seq peaks of different TFs in hESC-derived
neuroectoderm71 with regions where SOX1 motifs were per-
turbed, for sufficient statistical power. We observe significant
overlap (Fisher exact test FDR < 0.05) of ChIP-seq peaks of OTX2
and SOX2 factors for FRSs compared to regions that were filtered
out using the four filters described previously. This indicates that
the signal we are observing using perturbation MPRA is con-
sistent with endogenous binding of the key transcription factors
that play pivotal roles in ES-to-neural differentiation39,70. Finally,
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we utilized the data we collected in our previous work20,70 of
RNA-seq following overexpression of theseTFs: BARHL1, IRX3,
LHX5, OTX1/2, PAX6. For the FRSs that contain motifs of these
factors, we observe that ~85% of their closest genes are differ-
entially expressed (compared to hESC; FDR < 0.05). This serves as
an additional support of the endogenous functionality of motifs
of these factors in these regions. Comparing the number of dif-
ferentially expressed genes that are closest to the FRS to the
distribution of the total number of differentially expressed genes,
for each overexpressed TF, yielded a statistically significant result
for PAX6 (Fisher exact test P value <0.02). However, a larger
number of tested FRSs will be needed to make more rigorous
conclusions.

During early neural induction, pluripotency-associated genes
are rapidly downregulated and neural-associated genes are
induced by a variety of factors27,40. As such, the rapid differ-
entiation of hESCs into neural cells provides an exceptional
model to study motif effects and how they change across devel-
opmental time points. Using this model, we previously
interrogated20 the temporal dynamics of gene expression (RNA-
seq) and gene regulation (ATAC-seq, H3K27ac and H3K27me3
ChIP-seq and lentiMPRA) at seven time points during early
neural differentiation. Our current work further validated the
motifs and TFs identified in our previous report to have temporal
effects across neural induction. For example, we find that FRSs
harboring BARHL1 and IRX3 motifs exhibit time point-specific
activating effects and show changes in magnitude over time, with
higher signal at the NPC state—supporting their suggested role in
neural induction (Fig. 4).

Overall, our results provide an atlas of motif function across
early time points of neural differentiation by directly testing
hundreds of regulatory regions for the function of the motifs they
harbor. To the best of our knowledge, this provides the first
comprehensive perturbation MPRA study across a developmental
time course, showing clear changes in regulatory activity over
time. This system provides a model for how perturbation MPRA
can be leveraged to identify and characterize in a high-throughput
manner the functional effects of regulatory sequences across
different cellular conditions/perturbations.

Methods
Computational analysis
Perturbation MPRA library design. Choosing region and motif combinations:
General description: Our previous analysis20 points to a large number of regulatory
regions of interest as well as multiple motif hits within those regions. Our goal is to
select the most informative set of [region × motif] combinations (each corre-
sponding to a motif instance) so as to fit within a single MPRA design. To address
this, we developed a selection scheme to represent various biological aspects of our
system and account for experimental limitations for the number of assyed
sequences.

To do this, we formalize the information that we have about the motifs and
regions as a tripartite graph, with one layer of nodes corresponding to DNA
regions, another layer of nodes that represent motifs and a third layer of nodes,
each representing a different property of motifs or regions (Supplementary Fig. 13).
The region layer consists of the 1547 genomic regions we identified in our previous
work20 that show temporal activity when tested using lentiMPRA in the same
seven time points. The motif layer consists of motif hits found in those regions
computationally (using Fimo (P value <10−5; Grant et al.23) with two sets of TF
motifs24,25). Edges between the first two layers connect every motif with the regions
in which it occurs. Each node in the third layer corresponds to a property of
interest which characterizes a subset of the motifs and regions that are represented
in the first two layers. These properties are based on genomics assays from our
previous work20 (based on ATAC-seq, H3K27ac and H3K27me3 ChIP-seq and
RNA-seq data from these seven time points). For instance, we identified several
temporal patterns associated with each data modality and designated each of these
patterns as a node (e.g., a node for “regions that have a transient peak in H3K27ac
48 h of post induction”). We then connect a region to a node if that respective
pattern is observed in that region in the endogenous genome. Similarly, we connect
a motif node to a property node. For example, a node for “motifs with an associated
TF that is expressed 24 h post induction”). We then connect a motif to a node if
that respective pattern is observed for that motif in the endogenous genome. We

describe the “property layer” and its edges with the “motif” and “region” layers in
greater detail below.

Altogether our graph now has 1547 region nodes, 4393 motif nodes and 68
property nodes. These nodes are connected by a total of 99,165 edges. Our goal
now becomes to find the minimum number of [region × motif] combinations (each
representing a specific motif instance, or—equivalently—an edge in our graph) that
will guarantee a sufficient coverage of each property. In other words, we want to
select a minimal number of motif-region pairs such that every “property node” in
our third layer is connected by an edge to a sufficient number of motifs and regions
(as detailed below). Having staged our data in a tripartite graph allowed us to re-
state our goal as a constrained optimization problem-guaranteeing minimal level of
connectivity for the third layer, while minimizing the number of selected nodes and
edges in the first two layers. Since this problem is NP- hard, we followed the
common practice and formulated it as an integer linear program (ILP), which can
be solved efficiently through a range of heuristics with available solvers. With this
ILP, we were able to select 591 regulatory regions and 255 motifs that are organized
into 2144 region-motif pairs. Below, we provide a more in-depth description of this
process.

Defining the property layer:We composed a list of biological properties based on
published literature and on ATAC-seq, H3K27ac and H3K27me3 ChIP-seq and
RNA-seq data we produced and analyzed in our previous paper20. The biological
properties of TFs associated with motifs and regions include: (i) TF/region is
induced/active at a specific time point. (ii) TF/region binds/belongs to significantly
overlapping sub-clusters (as defined in20) of temporal MPRA and H3K27ac/
ATAC-seq/RNA-seq signals. (iii) The TF/the proximal gene for the region is a
known neural factor or belongs to one of the pathways defined below. Known
neural factors: POU3F1, MYT1L, SOX2, POU3F2, LHX2, PAX6, ASCL1, SOX1,
OTX2, ZNF521, NEUROG1, NEUROG2, NEUROG3, NEUROD1, NEUROD2.
Pathways taken from KEGG72: FGF/MAPK signaling pathway hsa04010, IGF-1/
mTOR signaling pathway hsa04150, Wnt/Ca+ /PCP signaling pathway hsa04310,
Sonic Hedgehog signaling pathway hsa04340. (iv) Hand-picked TFs (POU3F1,
POU3F2, SOX2, SOX1, PAX6, OTX2, LHX2, NEUROG1, NEUROG2, NEUROD2,
SP8, IRX3, SOX10, PKNOX2, HHEX, LMX1A, BARHL1, LHX5, NR2F2, DMBX1,
MEIS2, OTX1, SOX21, FOXB1, SOX5, MEIS3, HOMEZ, TCF3, TCF4, ZIC1, ZIC2,
ZIC3, ZIC4, ZIC5), including factors known to have a role in neural differentiation
based on previous literature20,38–44, or based on their expression in neuroectoderm
in mouse embryo, or show high “TF activity score” in the relevant time points in
our data20. The direct edges from motifs and regions to properties, represent the
biological properties a region or a motif satisfies as described above.

The optimization program:

1. Minimize: ð∑
r2R

θrÞ þ 3 � ð ∑
ðt;rÞ2E; t2T ; r2R

et;rÞ
Subject to:

2. ∑
ðt;p0 Þ2E; t2T

θt ≥ 12 8p0 2 P
3. ∑

ðr;p0 Þ2E; r2R
θr ≥ minf17; degRðp0Þg 8p0 2 P

4. ∑
ðt;r0 Þ2E; t2T

θt ≥ θr0minf3; degT ðr0Þg 8r0 2 R
5. ∑

ðt0 ;rÞ2E; r2R
θr ≥ θt0minf20; degRðt0Þg 8t0 2 T

6. et;r ≥ θt þ θr � 1 8ðt; rÞ 2 E; t 2 T; r 2 R
7. ∑

t2Ti

θt ≤ 2 8Ti
8. ∑

t2Ti

θt ≥ 1 8Ti 2 HandPicked
9. ∑

r2R
θr ≥ 0:4 � jRj

10. ∑
ðt;rÞ2E; t2T; r2R

et;r ≥ 5 � ∑
ðt;rÞ2Ep ; t2T; r2R

et;r
11. ∑

t2TB

θt ≥ 1:5 � ∑
t2TS

θt
12. θt ; θr ; et;r 2 f0; 1g
The decision variables represent the following: θt is a binary variable that

indicates whether we chose the motif t; θr is a binary variable that represents
whether the region r was selected. et;r is a binary variable that denotes whether a
motif × region pair (t and r) has been selected.

Parameters include:
P—represent the properties.
R—represent the regions.
T—represents the motifs.
deg_R(p)—represents the number of edges connecting property p to regions.
deg_R(t)—represents the number of edges connecting motif t to regions.
deg_T(r)—represents the number of edges connecting region r to motifs.
Ti is a subset of T that contains all the motifs corresponding to TF i.
Ep as a subset of the edges with lower confidence (i.e., edges that connect to

properties representing non significantly overlapping sub-clusters of temporal
MPRA and H3K27ac/ATAC-seq/RNA-seq signals),

We define TB as the subset of motifs connected to at least 5 regions, and TS as
the subset of motifs connected to fewer than five regions.

Constraints: The constraints described in the equations above ensure that: (1)
Each property is connected to at least 12 motifs. (2) Each property is connected to
at least 17 regions (or all regions if it’s below 17). (3) Each region is connected to at
least 3 motifs. (4) Each motif is connected to at least 20 regions. (5) An edge is
active if both nodes of the edge are active. (6) For each TF, no more than two
motifs are chosen. (7) All hand-picked TFs are used at least once. (8) At least 40%
of all regions are used. (9) At most 1/6 of the total edges used are low confidence
edges. (10) At least 60% of motifs chosen are motifs connected with many regions
(TB), s.t. the solver does not bias towards lowly connected motifs. (11) All variables
are binary.
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For each Ti∊ Hand-picked, one representative motif must be in the solution.
Our objective is to minimize the overall number of MPRA sequences to design.

It is a sum that accounts for corresponding to the number of unperturbed (WT)
regions plus the number of perturbations (i.e., regions and motif combinations).
We multiply by 3 since we have three perturbation methods (i.e., we need three
MPRA sequences for every pair).

Different categories of sequences designed on the array: Overall, the solver
picked 591 regions, 255 unique motifs which correspond to 166 unique TFs. We
used the combinations of region and motifs chosen by the solver to represent the
following sequence categories on the array (Supplementary File 1):

1. One motif is perturbed in the sequence. For combinations of regions and
motifs where the motif is detected once in the sequence (hit1 N= 1620).

2. Two motifs of the same motif are perturbed in the sequence. For
combinations of regions and motifs where the motif is detected twice in
the sequence: if the +/− strand carry exactly the same motif we only replace
the motif one time in the + strand (hit2 N= 62), otherwise (hit2diff
N= 90) we perturbed each motif separately and then both of them—starting
with the + strand. If three or more hits of the same motif are observed – we
discard those region-motif combinations (N= 52).

Additional to the combinations picked by the solver, we considered the 591 WT
regions and added more combinations (not chosen by the solver) that contain
motifs of the following 11 TFs. These TFs were chosen (LHX5, MEIS2, PAX6,
FOXB1, SOX1, IRX3, OTX2, ZIC2, SP8, POU3F1, HOMEZ) based on their high
“TF activity score” in the relevant time points in our data20 and their mRNA
expression in neuroectoderm in the mouse embryo.

3) One motif is perturbed in the sequence. For combinations of region and
motif where the motif is detected once in the sequence (Overexpressed_hit1
N= 221 and Overexpressed_permutation N= 58).

4) Two motifs of the same motif are perturbed in the sequence. For
combinations of regions and motifs where the motif is detected twice in
the sequence: if the +/− strand carry exactly the same motif we only replace
the motif one time in the + strand (Overexpressed_hit2 N= 3), otherwise
(Overexpressed_hit2diff N= 1) we perturbed each motif separately and
then both of them − starting with the + strand.

5) Combinations of two or more motifs are perturbed in the sequence.
For combinations of regions and motifs where we observe two or
more different motifs in the sequence (Overexpressed_permutation
N= 125). We examined combinations of motif hits of these 11 TFs in our
regions.

Overall, most of the data include a single motif perturbation per region
(N= 2144) and a smaller part with two or more motif perturbations per region
(N= 216 out of those: N= 154 two motifs; N= 62 more than two motifs)
comprising a total of 2360 designed region and motif sequences.

We also assayed WT and control sequences:

1. We assayed 591 WT sequences. WT sequences are the endogenous 171-bp
sequences.

2. We assayed 591 scrambled sequences (SCRAM). Scrambled sequences are
based on WT sequences with shuffled nucleotides, creating a set of negative
controls.

3. We assayed 591 sequences with random alterations (RAND)—where we
randomly chose a location in the region and perturbed the median motif
size (12 bp) starting in that location, creating an additional set of negative
controls.

We perturbed predicted motifs within each genomic region (2360 combinations)
using three perturbation approaches: the first two replace the predicted binding site
with a “non-motif” sequence whereas the third one shuffles the nucleotides of the
predicted binding site described in the next section. For the RAND sequence category,
we used the same three perturbation approaches.

Different motif scrambling (perturbation) approaches
Approach 1—create “non-motif” sequences following these steps:

1. Use all the 2464 MPRA sequences we designed in our previous work20 based
on their potential to be active during neural differentiation.

2. Count #di-nucleotides and calculate their percentage of appearance in those
sequences.

3. Create a di-nucleotide scrambled sequence in the length of the maximal
motif, i.e., “scrambled motif”.

4. Create 1000 maximal length “scrambled motifs”.
5. Run these 1000 “scrambled motifs” through Fimo23 with the two sets of TF

motifs24,25 and choose the ones with the lowest number of motif hits (P
value <10−4) − 13 “scrambled motifs” had 0 hits.

6. In each chosen combination of region and motif (described in the previous
section)—replace the motif appearance with the prefix of the “scrambled
motif” (adjusting to each motif length) using these two strategies that
avoid motifs creation in the edges of the sequences: (1) use 3 bp
downstream and upstream of the motif in the original sequence (2) use the
original sequence. Repeat this 13 times using each one of the “scrambled
motifs”.

7. Run the sequences created using the two strategies: (1) 3 bp“scrambled motif
prefix”3 bp (2) original_sequence_start“scrambled motif prefix”original_sequen-
ce_end, through Fimo23 with the two sets of TF motifs24,25 (P value <10−4).

8. Choose the two “scrambled motifs” that result in the lowest number of motif
hits indicated by the median rank across the two strategies, i.e., “non-motif
sequences” that would be used on the array.

Approach 2—shuffle the motif:
In each chosen combination of region and motif, scramble the motif by

shuffling its nucleotides.

Library processing: replicates, association, barcode count, ratio. Association: Reads
from the association library were aligned to the reference set of sequences using
bowtie273 with the–very-sensitive preset parameters for maximal accuracy. A bar-
code was confidently assigned to a sequence if at least 3 unique UMIs supported
that assignment and at least 80% of the UMIs associated with that barcode were
aligned to the sequence. Barcodes that were not confidently assigned were con-
sidered ambiguous and discarded from downstream analyses. Overall, 7,004,354
barcodes were observed, of which 1,447,874 (20%) were confidently assigned,
averaging 139.2 barcodes per sequence Supplementary Figs. 1 and 2). To make sure
that our results are robust to the association thresholds, we repeated our analysis
with a 99% threshold for the confident association, which resulted in highly con-
sistent activity estimates (Pearson’s correlation 0.97).

MPRA barcode counting: Reads from the MPRA libraries were processed
against the set of confidently assigned barcodes, requiring a perfect match. Of the
barcodes observed in the MPRA libraries, an average of 61.6% were confidently
assigned, 37.4% were ambiguous (observed in the association library but were not
confidently assigned), and 0.9% were unobserved in the association library
(Supplementary Fig. 2). Only barcodes that appeared in at least two corresponding
libraries (DNA and RNA libraries from the same time point and replicate) were
included in downstream analyses, resulting in an average of 134.4 barcodes
per sequence.

Quantification of induced transcription rate with MPRAnalyze: Quantification
of induced transcriptional rates (“alpha” values) was performed using
MPRAnalyze22. Briefly, MPRAnalyze fits two nested generalized linear models
(GLMs): the first estimates the latent construct counts from the observed DNA
counts, and the second estimates the latent rate of transcription from the latent
construct estimates and observed RNA counts. The models are optimized using
likelihood maximization, with a gamma likelihood for the DNA counts and a
negative binomial likelihood for the RNA counts. MPRAnalyze includes library-
size normalization factors, which were computed once using the entire dataset and
then used across all analyses, including per-timepoint analyses, to maintain
consistency. For quantification of alpha values, the full experimental design was
included in the design matrix for the DNA model (~ timepoint + replicate +
barcode), and an alpha value was extracted for each time point and replicate (RNA
model: ~ timepoint + replicate).

Classification of active sequences with MPRAnalyze: Classification of active
sequences was performed using the standard MPRAnalyze classification analysis, in
which alpha values are mad-normalized (a median-based variant of z-normalization)
and tested each value against the null distribution, estimated from the alpha values
from the negative control scrambled sequences.

Comparative analyses with MPRAnalyze: The GLM structure of MPRAnalyze
allows for a flexible framework to perform comparative analyses by using various
design matrices for the different analyses (detailed below). Since the models are
optimized using likelihood maximization, a likelihood ratio testing can be used for
statistical significance and was used throughout all analyses in the manuscript. P
values were computed for each comparison and corrected within each analysis
using Benjamini–Hochberg FDR correction74.

For the per time point comparative analyses, each PERT and RAND sequence
was compared with the corresponding WT sequence within each time point (DNA
design: ~ replicate + barcode + sequence; Full RNA design: ~sequence; reduced
RNA design: ~1). The resulting P values were corrected jointly across all
timepoints.

For temporal analyses, aimed at determining which sequences had temporal
activity, we set the null behavior to be the temporal behavior exhibited by the
scrambled sequences, by fitting a joint model to all SCRAM sequences and using
the model coefficients as normalization factors for the comparative models (DNA
design: ~ timepoint + replicate + barcode; Full RNA design: ~ timepoint; reduced
RNA design: ~1).

For the comparative temporal analyses, we compared the temporal activity of
each PERT or RAND sequence with the corresponding WT sequence, using an
interaction term in the design (DNA design: ~timepoint + replicate + barcode; full
RNA design: ~time * sequence; reduced RNA design: ~time). Note that the
barcode covariate in the allele-comparative analyses (per-time point comparative
analysis and temporal comparative analysis) is sequence-specific, so the barcode
factor is confounded by the sequence variable.

Interaction analyses for multiple-perturbations using MPRAnalyze: The
distribution of the joint perturbation design is as follows: for the same PWM joint
perturbations (91): we have 19 that appear in one region, 6 in two regions, 4 in
three regions, 2 in four regions, 2 in five regions, 2 in six regions, 1 in seven regions
and 1 in eleven regions. For the different PWM joint perturbations (63): 5 appear
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in two regions, 1 in three regions, 2 in four regions, 1 in eight regions, and 1 in nine
regions. All the rest appear in one region.

We used MPRAnalyze to characterize the interactions between pairs of motifs
by testing the hypothesis that corresponds to the billboard model of independent
contribution, by assuming that the effects of each individual contribution is log-
additive. We, therefore, included two binary covariates in the model: Pert1
indicated whether the observation comes from a sequence that contained the first
Perturbation, Pert2 indicated whether it contained the second perturbation. In the
full model, we then included an interaction term between these two covariates (y ~
time + Pert1 * Pert2), which we excluded from the reduced model (y ~ time +
Pert1 + Pert2), so the effects will be independent. We then used a Likelihood Ratio
Test to determine statistical significance, and the interaction coefficient was used as
the interaction effect size.

Calculating RNA/DNA ratios: The calculation of RNA to DNA ratio is
explained in detail in our previous work20,59. Briefly, to estimate the abundance of
DNA or RNA per sequence and for each replicate (in order to compare replicates
and time point), we use a simple averaging scheme:

13. D(R)NA per sequence = 106�∑#BC
i¼1 DðRÞNAi

#BC�sunðDðRÞNAreadsÞ where D(R)NAi denotes the
reads of a specific barcode i among the #BC barcodes that belong to the respective
sequence.

To determine the RNA/DNA ratios per sequence and for each replicate we the
sum of ratios:

14. ∑
#BC

i¼1

RNAi
sumðRNA readsÞ =

DNAi
sumðDNA readsÞ

� �
/#BC

We added a pseudo count of 1 to the numerator and denominator to stabilize
the signal from sequences with low numbers of reads. To combine replicates, we
first divided the RNA/DNA ratios observed in each sample (time point/replicate)
by the median ratio and then obtained the final RNA/DNA ratio by averaging
the normalized values across replicates. We use the ratio calculation to compare
the MPRA signal in this work to our previous work20 (Supplementary Fig 4).

Filtering sequences. Filtering sequences per time point: We use MPRAnalyze to
determine differential activity (explained in the previous section), for each per-
turbation method and each time point, comparing the following:

(PERT, WT), (RAND, WT), (PERT, RAND), (WT, SCRAM), and (PERT,
SCRAM).

We use the following filters:
Filtering sequences per time point

1. We consider only sequences where WT (at each of the seven time points) or
PERT have significantly different (MAD-score) regulatory activity than the
null (SCRAM) (filter 3): length(FDR(WT, SCRAM) <0.05)==nof_TPs ||
FDR(PERT, SCRAM) < 0.05.

2. We only consider sequences where PERT has significantly different
regulatory activity than its matching WT (filter 1): FDR(PERT, WT) < 0.05
1008, 1042, 998 out of (2082, 2086, 2114) sequences for perturbation
methods 1, 2, and 3, respectively, pass these filters in at least one time point.

Filtering sequences across time
3. We consider only sequences where WT or PERT have significantly

temporally different regulatory activity than the null (SCRAM) (filter 4).
FDR(temporal(PERT,SCRAM)) <0.05 || FDR (temporal(WT,SCRAM))
<0.05).

4. and PERT has significantly temporally different regulatory activity than its
matching WT (filter 2) FDR(temporal(PERT,WT)) < 0.05.

1189, 1224, 1354 out of (2082, 2086, 2114) sequences pass the temporal filtering
for perturbation methods 1, 2, and 3, respectively.

We consider only sequences that are significant (pass all filtering steps per
time point) in at least one time point and follow the temporal constraints, after
filtering for duplicates, resulting in overall 747, 775, 749 sequences for
perturbation methods 1, 2, and 3, respectively. Duplicates, i.e., sequences with
motifs perturbed in the exact same locations (corresponding to different
PWMs), were filtered, by picking the sequence with the lowest temporal FDR.
FRSs are defined as sequences that pass all four filters and belong to the same
main category (as described in the next section) in perturbation method 3 and
either perturbation methods 1 or 2.

Filtering for pairs of motifs (double perturbation): IFRSs are defined as
sequences with pairs of sites for which both single-site perturbations and the joint
perturbation belong to the same main category and the double perturbation is
functional (i.e passed all four filters as described above) in both perturbation
approaches (perturbation method 3 and either of methods 1 or 2).

Motif effect—main and sub-categories. Activators—when this motif is perturbed in
a region, the regulatory activity of PERT compared to WT is significantly reduced
in at least one time point.

(i) Essential—this motif is essential for the regulatory activity of the region—i.e.,
scrambling this motif reduces the regulatory activity to null (SCRAM) or for all
time points—the regulatory activity of PERT is similar to SCRAM.

FDR(temporal(PERT,SCRAM)) >0.05 || length(FDR_MAD(PERT,SCRAM)
>0.05))==nof_TP

(ii) Contributing—this motif is contributing to the regulatory activity of the
region—i.e., if we scramble this motif, the region is still regulatory active and its
activity is different from null (SCRAM). If a motif is not essential, it is deemed
contributing.

Repressors—when this motif is perturbed in a region, the regulatory activity of
PERT compared to WT is significantly increased at at least one time point.

(iii) Silencing—this motif has a silencing effect on the regulatory activity of the
region—i.e., the regulatory activity of the WT region is not temporarily different
from SCRAM or for all time points—the regulatory activity of WT is similar
to SCRAM.

FDR(temporal(WT,SCRAM)) >0.05 || length(FDR_MAD(WT,SCRAM)
>FDR_thresh))==nof_TP)

scrambling this motif increases the regulatory activity in at least one time point.
(iv) Inhibiting—this motif is reducing the regulatory activity of the region. If a

motif is not silencing, it is deemed inhibiting.

Activation dynamics analysis. To examine the activation dynamics of activating
FRSs, we examine activators that are active in all seven time points and fit a linear
regression line to each FRS, modeling the absolute effect (WT–PERT) as a function
of the WT activity level (delta ~ wt), using the lm function in R. the model
parameters were then extracted and used for the extrapolation in Supplementary
Fig. 9e).

Statistics and reproducibility. The 3 LentiMPRA replicates show high reproduci-
bility (Supplementary Fig. 3). No statistical method was used to predetermine
sample size. No data were excluded from the analyses. The experiments were not
randomized. The investigators were not blinded to allocation during experiments
and outcome assessment.

Experimental procedures
LentiMPRA library cloning and sequence-barcode association. The lentiMPRA
library construction was performed as previously described (Gordon et al.28). In
brief, the array-synthesized oligo pool was amplified by 5-cycle PCR using forward
primer (5BC-AG-f01, Supplementary Dataset 5) and reverse primer (5BC-AG-r01,
Supplementary Dataset 5) that adds the minimal promoter (mP) and spacer
sequences downstream of the sequence. The amplified fragments were purified
with 1.8× AMPure XP (Beckman colter), and proceeded to second round 11-cycle
PCR using the same forward primer (5BC-AG-f01) and reverse primer (5BC-AG-
r02, Table Supplementary Dataset 5) to add 15-nt random sequence that serves as a
barcode. The amplified fragments were then inserted into SbfI/AgeI site of the pLS-
SceI vector (Addgene, 137725) using NEBuilder HiFi DNA Assembly mix (NEB),
followed by transformation into 10beta competent cells (NEB, C3020) using the
Gemini X2 machine (BTX). We note that there is not a typical polyA signal
downstream of the WPRE in our lentiviral vector, as it was reported that an
internal polyA signal can decrease virus titer75. Colonies were allowed to grow up
overnight on Carbenicillin plates and midiprepped (Qiagen, 12945). We collected
~1 million colonies, so that on average 100 barcodes were associated with each
sequence. To determine the sequences of the random barcodes and their associa-
tion to each sequence, the sequence-mP-barcodes fragment was amplified from the
plasmid library using primers that contain flowcell adapters (P7-pLSmP-ass-gfp
and P5-pLSmP-ass-i#, Supplementary Dataset 5). The fragment was then
sequenced with a NextSeq 150PE kit using custom primers (R1, pLSmP-ass-seq-R1;
R2 (index read), pLSmP-ass-seq-ind1; R3, pLSmP-ass-seqR2, Supplementary
Dataset 5) to obtain ~50M total reads.

Lentiviral infection and barcode sequencing. Lentivirus was produced in twelve
15 cm dishes of 293T cells (CRL-3216, ATCC) using Lenti-Pac HIV expression
packaging kit following the manufacture’s protocol (GeneCopoeia, LT002). Len-
tivirus was filtered through a 0.45-μm PES filter system (Thermo Scientific, 165-
0045) and concentrated by Lenti-X concentrator (Takara Bio, 631232). Titration of
the lentiMPRA library was conducted on H1 human embryonic stem cells (WA-01,
WiCell) as described previously28. Briefly, hESCs cells were plated at 1 × 105 cells/
well in 24-well plates and incubated for 24 h. Serial volume (0, 4, 8, 16 μL) of the
lentivirus was added with 8 μg/ml polybrene, to increase infection efficiency. The
infected cells were cultured for three days and then washed with PBS three times.
Genomic DNA was extracted using the Wizard SV genomic DNA purification kit
(Promega). The multiplicity of infection (MOI) was measured as relative amount of
viral DNA (WPRE region, WPRE.F and WPRE.R) over that of genomic DNA
[intronic region of LIPC gene, LP34.F and LP34.R (Supplementary Dataset 5)] by
qPCR using SsoFast EvaGreen Supermix (BioRad), according to the manufacturer’s
protocol. Lentiviral infection, DNA/RNA extraction, and barcodes sequencing were
all performed as previously described20.

Briefly, ~8 million cells (three 10-cm dishes) per time point were infected with the
lentivirus library with a MOI of 5–8 along with 8 μg/mL polybrene (Sigma). Three
independent replicate cultures were infected. To normalize technical bias of lentivirus
preps, two of these replicates were infected with the same lentivirus batch, while the
other replicate was infected with another lentivirus batch. The cells were incubated for
3 days with a daily change of the media. The infected cells were induced into neural
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lineage using dual-Smad inhibition and harvested at 0 (right before differentiation), 3,
6, 12, 24, 48, and 72 h. DNA and RNA were purified using an AllPrep DNA/RNA
mini kit (Qiagen). RNA was treated with Turbo DNase (Thermo Fisher Scientific) to
remove contaminating DNA, and reverse-transcribed with SuperScript II (Invitrogen,
18064022) using barcodes-specific primer (P7-pLSmp-assUMI-gfp, Supplementary
Dataset 5), which has a unique molecular identifier (UMI). Barcode DNA/cDNA
from each replicate of each time point were amplified with 3-cycle PCR using specific
primers (P7-pLSmp-assUMI-gfp and P5-pLSmP-5bc-i#, Supplementary Dataset 5) to
add sample index and UMI. A second round of PCR was performed for 19 cycles
using P5 and P7 primers (P5, P7, Supplementary Dataset 5). The fragments were
purified and further sequenced with NextSeq 15PE with 10-cycle dual index reads,
using custom primers (R1, pLSmP-ass-seq-ind1; R2 (index read1 for UMI), pLSmP-
UMI-seq; R3, pLSmP-bc-seq; R4 (index read2 for sample index), pLSmP-5bc-seqR2,
Supplementary Dataset 5).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The lentiMPRA data generated in this study have been deposited in the GEO database
under accession code “GSE188264”. All other relevant data supporting the key findings
of this study are available within the article and its Supplementary Information files or
from the corresponding author upon reasonable request. Source data are provided with
this paper.

Code availability
All code packages and pipelines are publicly available. The github links of the two
pipelines that were used to analyze the data in this manuscript are “MPRAflow [https://
github.com/shendurelab/MPRAflow]” and “MPRAnalyze [https://github.com/YosefLab/
MPRAnalyze]”. All custom code can be found on “zenodo [https://zenodo.org/record/
5955738]” https://doi.org/10.5281/zenodo.5955738.
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