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ABSTRACT
The computational cost of analytic derivatives in multireference perturbation theory is strongly affected by the size of the active space
employed in the reference self-consistent field calculation. To overcome previous limits on the active space size, the analytic gradients of
single-state restricted active space second-order perturbation theory (RASPT2) and its complete active space second-order perturbation the-
ory (CASPT2) have been developed and implemented in a local version of OpenMolcas. Similar to previous implementations of CASPT2, the
RASPT2 implementation employs the Lagrangian or Z-vector method. The numerical results show that restricted active spaces with up to 20
electrons in 20 orbitals can now be employed for geometry optimizations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0050074

I. INTRODUCTION

Accurate and efficient quantum chemical approaches are indis-
pensable for predicting electronic and geometrical properties. For
this purpose, electron correlation must be considered to the great-
est extent possible, ideally with a low computational cost. One useful
and well-known approach to account for electron correlation is mul-
ticonfiguration self-consistent field (MCSCF) calculations followed
by electron excitation, namely, multireference (MR) or post-MCSCF
treatments, to consider dynamic and static (nondynamic) electron
correlation in a balanced way. MR methods include MR coupled-
cluster1–3 and configuration interaction (CI)4 approaches. How-
ever, MR perturbation theory (MRPT) may be the most balanced
approach in terms of computational cost and accuracy. The most
well-known MRPT is probably the complete active space second-
order perturbation theory (CASPT2).5–7 Other MRPTs such as
(extended)8 multiconfiguration quasi-degenerate second-order per-
turbation theory [(X)MCQDPT2],9 n-electron valence state second-
order perturbation theory (NEVPT2),10–12 and generalized van
Vleck second-order perturbation theory (GVVPT2)13 and retaining
the excitation degree perturbation theory (REPT)14 have also been
employed for various tasks.

Recent efforts to develop analytic derivatives of MRPTs15

have made it possible to efficiently compute properties. Earlier
studies reported such implementations in MOLPRO,16 BAGEL,17

GAMESS-US,18 and TeraChem19 for different MRPT methods.

However, the size of the active space in these past works was rather
limited. To the best of our knowledge, the largest active space in
terms of the number of determinants [or configuration state func-
tions (CSFs)] applied in analytic derivatives corresponds to 12 elec-
trons in 12 orbitals (12e, 12o)18 or (12e, 11o).20,21 In the former cal-
culation, the number of determinants was 853 776 in GAMESS-US.

This severe limitation on the active space size is due to the
full configuration interaction (CI), or complete active space (CAS),
treatment in the active space, and the limitation is even more
severe for subsequent post-CASSCF approaches. The formal com-
putational cost of CAS treatment grows as a factorial, and higher-
order reduced density matrices are needed in post-CASSCF calcu-
lations if the internal contraction scheme is applied. The situation
is worse for analytic derivatives of MRPTs because one has to con-
tract terms that formally scale as NCSFN6

act to NCSFN8
act (a power of

eight for NEVPT2), where NCSF and Nact are the number of CSFs (or
determinants) and the number of active orbitals, respectively. Thus,
one must carefully develop a computationally and memory efficient
algorithm20 to allow larger active spaces.

One solution to this factorial growth is to employ restricted
active space (RAS)22 SCF references followed by perturbation the-
ory [i.e., restricted active space second-order perturbation theory
(RASPT2)].23,24 In RASSCF, the active space is first partitioned into
three subspaces: RAS1, RAS2, and RAS3. The RAS2 space is treated
as the CAS space, and full CI is performed. In RAS1 and RAS3, the
number of holes and the number of electrons are limited by setting
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maximum values. As a result, the number of CSFs or determinants
for the RAS is much smaller than that for the corresponding CAS.
Using this approach, an initial RASPT2 study was conducted with an
active space as large as (28e, 32o).24 Similar approximate CAS treat-
ments for MRPTs have been developed for MCQDPT, including the
quasi-CAS QDPT,25 general MCQDPT,26 and occupation-restricted
multiple active space (ORMAS) PT27 methods. One important dif-
ference between these QDPT-based methods and RASPT2 is the
inclusion of the fully internal excitations (perturbative two-electron
excitations within the active space): to date, developed RASPT2
methods do not consider these excitations, primarily because of the
complications resulting from the internal contraction. The RASPT2
implementation by Celani and Werner in MOLPRO23 includes
the fully internal excitations, but this excitation class is not inter-
nally contracted. Another famous CAS-based approach combines
the density-matrix renormalization group (DMRG) with MRPT
(DMRG-CASPT2).28

This paper describes the development of analytic gradients for
fully internally contracted single-state RASPT2 along with CASPT2.
The developed method is applied to typical π-rich molecules, and
calculations are performed with active spaces containing up to 20
electrons in 20 orbitals.

II. METHODS
CASSCF and CASPT2 are the special cases of RASSCF and

RASPT2, respectively. Thus, here, we focus on RASSCF and RASPT2
as general cases. In this section, p, q, r, and s refer to general orbitals,
i and j refer to inactive (doubly occupied) orbitals, t and u refer to
active orbitals, a and b refer to secondary (virtual) orbitals, and ϕ
and χ refer to internally contracted bases.

This section does not provide the full details of algorithm devel-
opment; rather, it provides an outline of the algorithm and high-
lights a few differences between the analytic derivatives of CASPT2
and RASPT2 because many equations are equivalent to those pre-
sented in earlier studies for CASPT2. For details, see Refs. 16, 17,
19, and 29.

A. RASPT2 energy
In RASPT2, the zeroth-order Hamiltonian is defined by

Ĥ(0) = P̂F̂P̂ + Q̂F̂Q̂, (1)

where P̂ = ∣0⟩⟨0∣ (∣0⟩ is a reference state obtained by SCF) is the pro-
jector on the reference space and Q̂ is the complementary projector.
The Fock operator is defined by

F̂ =∑
pq

f pqÊpq, (2)

where Ê is the one-electron spin-averaged excitation operator and
f pq is the Fock matrix,

f pq = hpq +∑
rs
((pq∣rs) − 1

2
(pr∣qs))DSA

rs (3)

with DSA
rs being the state-averaged one-electron density matrix. Ana-

lyzing the structure of the Fock operator [Eq. (2)] shows that it con-
sists of 25 blocks generated by the combinations of inactive, active

(RAS1, RAS2, and RAS3), and external orbitals for RASPT2 (or nine
for CASPT2).

The (non-variational) second-order perturbation energy E(PT2)

is then obtained as a minimum of the Hylleraas functional

E(PT2) min= E2 = 2⟨Ψ(1)∣Ĥ∣Ψ(0)⟩ + ⟨Ψ(1)∣Ĥ(0) − E(0) + Eshift∣Ψ(1)⟩.
(4)

The zeroth-order wavefunction ∣Ψ(0)⟩ is obtained at the SCF level,
and the first-order wavefunction ∣Ψ(1)⟩ is generally defined by oper-
ating two-electron excitations,24

∣Ψ(1)⟩ =∑
pqrs

TpqrsÊpqrs∣Ψ(0)⟩. (5)

In Eq. (5), Tpqrs is the amplitude of the excitation, which is obtained
by solving the amplitude equation

1
2

∂E2

∂Tpqrs
= ⟨Φpqrs∣Ĥ∣Ψ(0)⟩ + ⟨Φpqrs∣Ĥ(0) − E(0) + Eshift∣Ψ(1)⟩ = 0,

(6)
where ∣Φpqrs⟩ is the doubly excited configuration. This equation is
solved iteratively. In Eqs. (4) and (6), the real30 and imaginary31

level-shift parameter values are collectively represented as Eshift,
which can be expressed as30,31

Eshift = Ereal
shift +

(Eimaginary
shift )2

Ĥ(0)D − E(0)
, (7)

where Ereal
shift and Eimaginary

shift are provided as parameters and cannot
be non-zero simultaneously and Ĥ(0)D is the diagonal part of Ĥ(0).
The RASPT2 energy is finally obtained as a sum of the RASSCF
and PT2 energies: ERASPT2 = ERASSCF + EPT2, where the unshifted
second-order perturbation energy EPT2 is

EPT2 = 2⟨Ψ(1)∣Ĥ∣Ψ(0)⟩ + ⟨Ψ(1)∣Ĥ(0) − E(0)∣Ψ(1)⟩, (8)

EPT2 coincides with E(PT2) only when both the real and imaginary
level-shift values are zero. Strictly speaking, the above equations
must be formulated with indices of the internally contracted basis
and distinguish singlet and triplet excitations, making this method
more complicated. For further discussion, see Refs. 6, 7, and 32.

B. First-order derivatives
Since the RASPT2 energies are not variational with respect

to the changes in wavefunction parameters, analytic derivatives
of the energies are needed for the evaluation of the response
(derivative) of the wavefunction parameters. As in earlier studies,
the first-order derivatives of the RASPT2 energies in this study were
evaluated using the Lagrangian approach.33 At the first order, the
equations derived using this approach are essentially equivalent to
those derived by the Z-vector method.34

First, we define the Lagrangian, which can be written as a sum
of the RASSCF and the PT2 Lagrangians,

ℒ RASPT2 =ℒ RASSCF +ℒ PT2. (9)
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The RASSCF Lagrangian ℒ RASSCF is defined as the sum of the
RASSCF energy (ERASSCF) and the constraint conditions imposed
when solving the RASSCF equation,

ℒ RASSCF = ERASSCF + 1
2

Tr[Z(A −A†)] − 1
2

Tr[X(S − I)]

+ ∑
N

ωN[∑
I

zIN⟨I∣Ĥ − Eref
N ∣N⟩ −

1
2

xN(⟨N∣N⟩ − 1)],

(10)

where the second term is the generalized Brillouin condition with
the orbital gradient A −A†,16,35 the third term is the requirement for
the orthonormalization of molecular orbitals (MOs) with the overlap
matrix S in the MO basis, and the fourth term is the CI condition.
In the fourth term, ωN is the weight in state averaging, Eref

N is the
RASSCF energy relevant to CI for state N, and I is the CSF index. The
Lagrangian multipliers (Z, X, z, and x) are determined by solving the
following simultaneous equation, which is usually referred to as the
Z-vector:34

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂ℒ RASSCF

∂κpq
= 0,

∂ℒ RASSCF

∂cI,N
= 0,

(11)

where κpq is the orbital rotation parameter and cI,N is the CI coeffi-
cient. Details of the Z-vector or coupled-perturbed MCSCF equation
can be found in Refs. 36 and 37. Once the Lagrangian multipliers
are determined, one can compute the gradient of the energy as the
partial derivative of the Lagrangian

dERASSCF

dα
= ∂ℒ RASSCF

∂α
, (12)

where α is the derivative parameter (nuclear coordinates). If the sin-
gle state is employed, the first-order derivatives can be computed
without solving the response equation.

The RASPT2 Lagrangian can be written as follows:

ℒ PT2 =∑
s
ℒ PT2

s +∑
pqrs

λpqrs

× (⟨Φpqrs∣Ĥ∣Ψ(0)⟩ + ⟨Φpqrs∣Ĥ(0) − E(0) + Eshift∣Ψ(1)⟩)

+
core

∑
i

inactive

∑
j

Zc
ij f ij. (13)

The second term in Eq. (13) is the variational condition of the ampli-
tude [Eq. (6)] with multiplier λpqrs, and the third term is required for
the frozen core approximation. ℒ PT2

s is the Lagrangian for the exci-
tation class s, which corresponds to Eqs. (1a), (1b), . . ., and (1h) in
Ref. 6 and is also defined by

ℒ PT2
s = EPT2

s −∑
ϕχ

ξϕχ(ΛS
ϕχ − I), (14)

where EPT2
s is the perturbation energy from the excitation class s

(EPT2 = ∑sE
PT2
s ) and ΛS

ϕχ corresponds to Eq. (16) in Ref. 7 and is due
to the orthonormalized overlap matrix in the internally contracted

basis. An additional Lagrangian multiplier ξϕχ is introduced, and it
can be computed without iteration.

If the real or imaginary level-shift is employed, the unshifted
second-order perturbation energy is no longer variational with
respect to the changes in the amplitude because ∂E(PT2)

∂Tpqrs
= 0, but

∂EPT2

∂Tpqrs
≠ 0. This non-variational property formally requires the eval-

uation of the derivative of the amplitude, but this evaluation can
be avoided by solving a λ-equation, as in Refs. 19, 29, and 35, to
determine the Lagrange multiplier λpqrs,

∂ℒ PT2

∂Tpqrs
= 2(⟨Φpqrs∣Ĥ∣Ψ(0)⟩ + ⟨Φpqrs∣Ĥ(0) − E(0)∣Ψ(1)⟩)

+ ⟨Φpqrs∣Ĥ(0) − E(0) + Eshift∣Ψ̃(1)⟩ = 0, (15)

where ∣Ψ̃(1)⟩ = ∑pqrsλpqrs∣Φpqrs⟩. This λ-equation is similar in struc-
ture to the amplitude equation [Eq. (6)], so it can be iteratively solved
by following a similar procedure to the energy calculation.

Since the Z-vector equation has already been implemented in
OpenMolcas both without37 and with38 the density-fitting approxi-
mation, the main task of this work is to construct the RASPT2 part
of the “source term”39 of the Z-vector equation

Ypq ∶=
∂ℒ PT2

∂κpq
, (16)

yIN ∶=
∂ℒ PT2

∂cIN
, (17)

which are roughly equivalent to the “orbital Lagrangian” and the
“configuration Lagrangian,” respectively, in the author’s previous
studies.18,40 Once all the Lagrangian multipliers are determined by
solving the Z-vector equation, as in the case of the state-averaged
RASSCF [Eq. (11), but where ℒ RASSCF is replaced with ℒ RASPT2],
the derivative of the RASPT2 energy can be evaluated by

dERASPT2

dα
= ∂ℒ RASPT2

∂α
. (18)

Zc
ij can be easily computed as41

Zc
ij = −

1
2

Yij − Yji

f ii − f jj
. (19)

As stated earlier, most of the above equations are equiva-
lent to those derived in previous developments of CASPT2.16,17,19,29

One major difference between the CAS and RAS references is the
definition of the independent orbital rotations. Independent orbital
rotations change the (electronic) energy. When the CAS reference
is employed, the independent orbital rotation consists of three sub-
spaces: inactive–active, inactive-external, and active-external blocks.
In contrast, for the RAS reference, we need to consider three addi-
tional blocks: RAS1–RAS2, RAS1–RAS3, and RAS2–RAS3 blocks.
The orbital rotation parameters in these additional blocks are opti-
mized by solving the Z-vector equation. The difference is schemat-
ically explained in Fig. 1. The area with diagonal lines in white
squares represents the independent orbital rotations for CASPT2.
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FIG. 1. Independent orbital rotations for CASPT2 and RASPT2.

For RASPT2, three additional blocks (gray areas) are considered.
The other blank areas are either dependent or redundant (diago-
nal or off-diagonal blocks, respectively) orbital rotations. The den-
sity in the dependent part is constructed with the non-canonical
approach42,43 because RASPT2 is an invariant theory with respect
to rotations within each orbital block. An alternative approach for
the active part (iterative) is outlined in Ref. 19.

C. Implementations
The above equations, particularly Eqs. (16) and (17), were

implemented in a local version of OpenMolcas.44,45 Although these
equations are formulated based on the Lagrangian method, the
actual implementation closely follows that of the equations derived
by direct differentiation, as in Refs. 18 and 40. The present imple-
mentation can employ the frozen core approximation (i.e., the
chemically inert orbitals are neglected) and consider the real and
imaginary level-shift. Electron-repulsion (two-electron) integrals
can be evaluated conventionally or with the density-fitting approx-
imation,38 but not with the Cholesky decomposition. The diago-
nal preconditioning for the active–active rotations in the Z-vector
has not been implemented; thus, it was implemented according to
Eq. (C.12e) in Ref. 46.

If several states are averaged in the reference SCF calculation,
the Fock operator may be defined using either the state-averaged
or (unrelaxed) state-specific density matrices and molecular orbitals
by canonicalizing the Fock matrix. By default, OpenMolcas employs
the state-specific density matrix (except for XMS-CASPT2); how-
ever, the present implementation for analytic gradients is limited to
the state-averaged density matrix [Eq. (3)]. As presented in Refs. 47
and 48, the effect of this difference can sometimes be as large as
0.4–0.5 eV. However, the use of the state-specific density matrix
can provide an additional source of non-invariance in multistate
MRPTs;8,49 hence, the use of the state-averaged density matrix
is likely favorable even at single-state MRPT levels for geometry
optimizations.

III. COMPUTATIONAL DETAILS
All calculations were performed with a locally modified ver-

sion of OpenMolcas.44,45 The frozen core approximation was always
employed in the perturbation calculation. The cc-pVDZ basis

set50,51 and the density-fitting approximation with the correspond-
ing RI fitting auxiliary basis set taken from the EMSL basis set
exchange52–54 were employed unless otherwise noted. The ioniza-
tion potential–electron affinity shift55 was set to zero. No symmetry
constraints were applied. A single node of a six-core E5-2643 v4
3.40-GHz processor with 48 GB of random-access memory was used
to perform all calculations and measure all computational times.

It is useful to define the RAS. In this study, the nomencla-
ture in Ref. 24 is employed: (ie, jo)/(ke, lo)/m, where i and j are
the numbers of electrons and orbitals in the entire active space
(RAS1+RAS2+RAS3), respectively; k and l are those in the RAS2
space, respectively; and m is the maximum number of electrons
excited from RAS1 or into RAS3. Different from the nomenclature
in Ref. 24, the definition of the RAS2 space is explicitly written, even
if k and l are zero. In this study, the numbers of MOs in RAS1 and
RAS3 are always equal.

First, the accuracy of the implemented gradient is dis-
cussed using 1,3-butadiene and naphthalene optimized at the
Hartree–Fock/cc-pVDZ level of theory. The five-point sten-
cil method with displacement parameters of 1.0 × 10−2 and
5.0 × 10−2 bohrs for 1,3-butadiene and naphthalene, respectively,
was employed to evaluate the numerical gradients. The lowest two
states were averaged in all calculations.

Second, CASPT2 and RASPT2 with various active spaces were
applied to trans-1,3,5,7,9,11-dodecahexaene (C12H14). The active
space consisted of 12 electrons in 12 π orbitals (12e, 12o) in all calcu-
lations. The lowest two states were averaged with an imaginary shift
of 0.2i.

Finally, the developed methodology, RASPT2, was applied to
dibenzopentalene derivatives 2a and 4a in Ref. 56. As these two
molecules have 16 and 20 electrons in the corresponding π orbitals,
respectively, only RASPT2 calculations were performed, although it
would be possible to employ small CASs. RAS(16e, 16o)/(4e, 4o)/2
and RAS(20e, 20o)/(4e, 4o)/2 were employed for 2a and 4a, respec-
tively. The lowest three states were averaged with an imaginary shift
of 0.2i.

The optimized coordinates of the trans-1,3,5,7,9,11-
dodecahexaene and dibenzopentalene derivatives are provided
in the supplementary material.

IV. RESULTS AND DISCUSSION
A. Accuracy of the implemented gradient

First, the accuracies of the implementations with CASPT2 and
RASPT2 gradients are briefly presented by comparing the ana-
lytic and numerical (with a five-point stencil) gradients. Table I
shows that the difference between the gradients is at most 1.0 × 10−5

a.u./bohr, indicating that the implemented gradients are sufficiently
accurate. Here, three active spaces were employed for both species:
CAS(4e, 4o), RAS(4e, 4o)/(0e, 0o)/2, and RAS(4e, 4o)/(2e, 2o)/1
for 1,3-butadiene and CAS(10e, 10o), RAS(10e, 10o)/(0e, 0o)/2, and
RAS(10e, 10o)/(4e, 4o)/2 for naphthalene. The differences with the
different active spaces are reasonably small, indicating that any
active space may be employed so long as the reference RASSCF cal-
culation converges. The use of the imaginary shift technique does
not degrade the accuracy. Although analytic gradients with the real
level-shift can be evaluated with the present implementation, they
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TABLE I. Maximum differences (MAXDs) and root-mean-squarea differences
(RMSDs) between analytic and numerical gradients in a.u./bohr for the ground state
at the CASPT2 or RASPT2 level of theory.

Active space MAXD RMSD

Planar 1,3-butadiene

CAS(4e, 4o)b 4.16 × 10−6 2.38 × 10−6

CAS(4e, 4o) 1.53 × 10−7 7.81 × 10−8

RAS(4e, 4o)/(0e, 0o)/2c 3.10 × 10−6 7.23 × 10−7

RAS(4e, 4o)/(2e, 2o)/1c 2.59 × 10−7 1.13 × 10−7

Twisted 1,3-butadiene

CAS(4e, 4o) 3.11 × 10−7 1.43 × 10−7

RAS(4e, 4o)/(0e, 0o)/2c 4.09 × 10−6 8.18 × 10−7

RAS(4e, 4o)/(2e, 2o)/1c 8.75 × 10−7 3.29 × 10−7

Naphthalene

CAS(10e, 10o)c 6.32 × 10−6 2.68 × 10−6

RAS(10e, 10o)/(0e, 0o)/2c 5.79 × 10−6 2.75 × 10−6

RAS(10e, 10o)/(4e, 4o)/2c 9.01 × 10−6 5.43 × 10−6

aForces perpendicular to the planar axis are not included in RMSD for the planar
geometry.
bWithout the density-fitting approximation.
cWith an imaginary shift of 0.2i.

were not employed in this study. The accuracy for S1 is similar to
that for S0.

Note that it is not possible to perform gradient calculations
analytically with the present implementation using, for instance,
RAS(4e, 4o)/(2e, 2o)/2 and RAS(4e, 4o)/(0e, 0o)/4 for 1,3-butadiene
or RAS(10e, 10o)/(8e, 8o)/2 for naphthalene, which span the same
variational space as CAS. In such a case, some of the orbital rotation
parameters are linearly dependent on the configuration parameters;
thus, the Z-vector equation does not converge. It may be possible to
eliminate the linear dependency by eliminating orbital rotations,57

but one should perform the CAS calculation. Even though these
quasi-complete RASs yield the same energy as the corresponding
CAS at the SCF level, they do not yield the same perturbation energy
because the orbitals in the active space are canonicalized in each
RAS; hence, the RASs yield a different set of canonical orbitals than
the corresponding CAS.

B. Performance of RASPT2
The performance of RASPT2 against CASPT2 was evaluated

using trans-1,3,5,7,9,11-dodecahexaene (C12H14). Geometry opti-
mizations were performed with various partitionings of the active
space, and the vertical excitation energies (Evert) at the S0 mini-
mum, adiabatic excitation energies (EAEE), and maximum deviations
of the C–C bond lengths (as an indicator of the geometrical dif-
ference) were calculated. Note that the adiabatic excitation energy
is the difference between the energies at the S1 and S0 minima,
and the zero-point vibrational energy (ZPVE) correction was not
considered.

Table II shows that the density-fitting approximation does not
sacrifice the accuracy, as observed in Ref. 58. In terms of Evert

and EAEE, the deviation is less than 0.001 eV, indicating negligible
degradation. The difference in bond length is also negligible; the
maximum deviation is only 5.00 × 10−5 Å.

The number of CSFs (NCSF) is greatly reduced by employ-
ing RAS references. The computational cost for evaluating the par-
tial derivative of the energy with respect to the CI coefficient [tCI;
Eq. (17)] is almost proportional to NCSF. Although the use of a
very small number of CSFs, such as RAS(12e, 12o)/(0e, 0o)/2 or
RAS(12e, 12o)/(2e, 2o)/2, is not appropriate, other RASs give rea-
sonable agreement with the reference CAS result; the deviations in
excitation energies and C–C bond lengths are less than 0.1 eV and
5.0 × 10−3 Å, respectively. Thus, either more than two electron exci-
tations from RAS1 and into RAS3 or moderate RAS2 spaces should
be employed to reasonably reproduce the corresponding CAS
result.

The convergence of the SCF and Z-vector equation with
the RASs is not as smooth as in the case with CAS; however,

TABLE II. Deviations in vertical excitation energies at the S0 minimum (Evert in eV), adiabatic excitation energies (EAEE in

eV), and maximum absolute deviations of C–C bond lengths (maximum ∣ΔdS0

C−C∣ and maximum ∣ΔdS1

C−C∣ in Å) with different
partitionings of the active space (12e, 12o) for CASPT2 and RASPT2 calculations.

Partitioning NCSF Evert EAEE Max ∣ΔdS0

C−C∣ Max ∣ΔdS1

C−C∣ tCIa

CAS(12e, 12o)b 226 512 (3.385) (2.615) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 459
CAS(12e, 12o) 226 512 −0.001 0.000 5.00 × 10−5 5.00 × 10−5 463
RAS(12e, 12o)/(0e, 0o)/2 703 1.188 1.138 5.09 × 10−3 7.04 × 10−3 1
RAS(12e, 12o)/(0e, 0o)/4 28 278 0.038 0.044 8.80 × 10−4 1.39 × 10−3 41
RAS(12e, 12o)/(0e, 0o)/6 147 042 0.033 0.033 1.30 × 10−3 8.50 × 10−4 289
RAS(12e, 12o)/(2e, 2o)/2 2 028 0.535 0.466 4.21 × 10−3 8.35 × 10−3 3
RAS(12e, 12o)/(4e, 4o)/2 8 860 0.080 0.079 2.26 × 10−3 2.76 × 10−3 16
RAS(12e, 12o)/(6e, 6o)/2 36 148 0.041 0.038 1.19 × 10−3 1.47 × 10−3 61
RAS(12e, 12o)/(8e, 8o)/2 115 548 0.017 0.018 4.80 × 10−4 5.90 × 10−4 238
aWall time for evaluating the partial derivative with respect to the CI coefficient (in seconds).
bWithout the density-fitting approximation; Evert and EAEE are shown for reference.
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FIG. 2. Molecular structures of 2a and 4a

analytic derivatives can be efficiently evaluated with larger active
spaces.

C. Calculations with larger active spaces
Using the developed method, it is possible to perform

geometry optimizations with larger active spaces. As a demon-
stration, RASSCF and RASPT2 calculations were performed for
dibenzopentalene derivatives56 2a and 4a (Fig. 2) with active
spaces of RAS(16e, 16o)/(4e, 4o)/2 and RAS(20e, 20o)/(4e, 4o)/2,
respectively. The initial structures were taken from Ref. 56
and optimized at the RB3LYP-D3/6-311G∗ level of theory. The
adiabatic singlet–triplet energy gaps (ΔEST ∶= ΔES − ET with-
out ZPVE corrections) were then computed. The numerical
results are summarized in Table III. The gaps computed with
spin–flip noncolinear time-dependent density functional theory
[SF-NC-TDDFT/6-311G(d) with the PBE50 functional] in Ref. 56
and at the UB3LYP/6-31G(d,p) and UBLYP/6-31G(d,p) levels of
theory in Ref. 59 are also tabulated.

The numbers of CSFs for the RAS(20e, 20o)/(4e, 4o)/2 parti-
tioning were 110 292 and 184 863 for the singlet and triplet states,
respectively. Although these numbers are smaller than those for
CAS(12e, 12o) reported in Subsection IV B, the required compu-
tational cost was much greater (approximately tCI = 7700 s for the
triplet state) due to the large number of active orbitals. Still, these cal-
culations were doable on a single computer node. A comparison of
RASSCF and RASPT2 indicates that RASSCF clearly overestimates
the stability of the singlet state by over 5 kcal/mol. The final energy
gap predicted with RASPT2 is similar to that for SF-NC-TDDFT/6-
311G(d) (a difference of 3.83 kcal/mol), although the RASSCF
and RASPT2 calculations predicted the singlet state to be more

TABLE III. Adiabatic singlet–triplet energy gaps (ΔEST) in kcal/mol at the RASSCF,
RASPT2, SF-NC-TDDFT,56 UB3LYP, and UBLYP59 levels of theory.

2a 4a

RASSCF −6.85 −15.33
RASPT2 −1.35 −8.91
SF-NC-TDDFT56 =2.48 −8.20
UB3LYP59 =0.23 ⋅ ⋅ ⋅
UBLYP59 −1.50 ⋅ ⋅ ⋅

stable than the triplet state for 2a, in agreement with the UBLYP/6-
31G(d,p) calculations. However, the energy gap is very small, mak-
ing it difficult to determine the ground state. Even CASPT2 some-
times produces an error of 0.2–0.3 eV (∼5 kcal/mol) relative to the
experimental results.60

In Ref. 56, the open-shell character is discussed with the dirad-
ical character, which was obtained from the occupation number
of the lowest unoccupied natural orbitals.56 For multiconfigura-
tion methods, the open-shell character may be discussed based on
the weight of the configuration. For the ground states of 2a and
4a, the contributions of the closed-shell configuration are 32% and
37%, respectively. Although the closed-shell contribution is slightly
greater for 4a, the difference is small, and both derivatives have
strong multiconfiguration character.

The presented result for ΔEST is not a definitive prediction.
Considering the dependences of the computed properties on the
size of the active space, the accuracy may not be satisfactory with
the present definition of the RAS. Based on the error analysis pre-
sented in Table II, the present numerical result may deviate from
the CAS(20e, 20o) result by a few kcal/mol. In addition, the use of
the state-averaged density matrix in the Fock matrix may cause an
observable difference.47,48 Nevertheless, the present numerical result
demonstrates that geometry optimizations with the (20e, 20o) active
space can be performed using MRPT and the predicted gap is rather
reasonable.

V. CONCLUSIONS
Analytic gradients of the single-state RASPT2 as well as

CASPT2 methods were developed and implemented in a local
version of OpenMolcas. Similar to previous CASPT2 develop-
ments,16,17,19 the responses of the wavefunction parameters were
evaluated by solving one linear Z-vector equation. The correctness
of the implementation was shown by the comparison with numeri-
cal gradients. The performance of RASPT2 against CASPT2 was also
investigated, demonstrating that a sensible partitioning of the active
space in RASPT2 reproduces the corresponding CASPT2 result well.
The present implementation can use active spaces with large sizes up
to (20e, 20o); however, the RAS2 space and the maximum number
of holes and electrons cannot be large.

CASPT2 and RASPT2 are not size-consistent. The properties
that are computed in this study are not substantially affected by
their size inconsistency because a single molecule is targeted. How-
ever, non-unimolecular properties such as binding energies may be
affected by this inconsistency; thus, a special attention is required.
According to Ref. 61, the size inconsistency of internally contracted
CASPT2 seems to be small, but the error of RASPT2 may be larger
and should be carefully evaluated. In the future, the use of the state-
specific density matrix in the Fock matrix and (extended)35 multi-
state extension62 will be considered, including the conical intersec-
tion search as in Refs. 21, 39, 40, and 63. Moreover, algorithmic
improvement is essential for practical use. The present implemen-
tation cannot use a large number of atomic orbitals (∼400).

SUPPLEMENTARY MATERIAL

See the supplementary material for the optimized coordi-
nates of trans-1,3,5,7,9,11-dodecahexaene and dibenzopentalene
derivatives.
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58W. Győrffy, T. Shiozaki, G. Knizia, and H. J. Werner, “Analytical energy gra-
dients for second-order multireference perturbation theory using density fitting,”
J. Chem. Phys. 138, 104104 (2013).
59A. Konishi, Y. Okada, M. Nakano, K. Sugisaki, K. Sato, T. Takui, and M. Yasuda,
“Synthesis and characterization of dibenzo[a,f ]pentalene: Harmonization of the
antiaromatic and singlet biradical character,” J. Am. Chem. Soc. 139, 15284–15287
(2017).
60J. P. Zobel, J. J. Nogueira, and L. González, “The IPEA dilemma in CASPT2,”
Chem. Sci. 8, 1482–1499 (2017).
61J. M. Rintelman, I. Adamovic, S. Varganov, and M. S. Gordon, “Multireference
second-order perturbation theory: How size consistent is ‘almost size consistent’,”
J. Chem. Phys. 122, 044105 (2005).
62J. Finley, P.-Å. Malmqvist, B. O. Roos, and L. Serrano-Andrés, “The multi-state
CASPT2 method,” Chem. Phys. Lett. 288, 299–306 (1998).
63J. W. Park, “Analytical first-order derivatives of second-order extended mul-
ticonfiguration quasi-degenerate perturbation theory (XMCQDPT2): Imple-
mentation and application,” J. Chem. Theory Comput. 16, 5562–5571
(2020).

J. Chem. Phys. 154, 194103 (2021); doi: 10.1063/5.0050074 154, 194103-8

Published under license by AIP Publishing

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://scitation.org/journal/jcp
https://doi.org/10.1016/j.cplett.2020.137219
https://doi.org/10.1021/acs.jctc.9b00762
https://doi.org/10.1016/0009-2614(70)85134-x
https://doi.org/10.1016/0009-2614(85)87031-7
https://doi.org/10.1021/acs.jctc.9b00532
https://doi.org/10.1063/5.0004835
https://doi.org/10.1021/acs.jctc.9b00067
https://doi.org/10.1021/acs.jctc.9b00067
https://doi.org/10.1063/1.5097644
https://doi.org/10.1063/1.5097644
https://doi.org/10.1021/ct500154k
https://doi.org/10.1021/ct500154k
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.462569
https://doi.org/10.1002/(sici)1096-987x(199610)17:13&tnqx3c;1571::aid-jcc9&tnqx3e;3.0.co;2-p
https://doi.org/10.1021/ci600510j
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1016/j.cplett.2004.08.032
https://doi.org/10.1021/jacs.8b11530
https://doi.org/10.1063/1.447061
https://doi.org/10.1063/1.4793737
https://doi.org/10.1021/jacs.7b05709
https://doi.org/10.1039/c6sc03759c
https://doi.org/10.1063/1.1817891
https://doi.org/10.1016/s0009-2614(98)00252-8
https://doi.org/10.1021/acs.jctc.0c00389



