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Abstract: A new mode of aromatic metamorphosis has been 

developed, which allows thiophenes and their benzo-fused 

derivatives to be converted to a variety of exotic heteroles. This 

transformation involves 1) the efficient generation of key 1,4-dianions 

by means of desulfurative dilithiation with lithium powder and 2) the 

subsequent trapping of the dianions with heteroatom electrophiles in 

a one-pot manner.  Via the desulfurative dilithiation, the sulfur atoms 

of thiophenes are replaced also with a carbon-carbon double bond or 

a 1,2-phenylene for the construction of benzene rings.  

Carbanions constitute a generally useful class of intermediates for 

the construction of complex carbon frameworks.[1] Among these 

carbanions, dianion or even polyanion species are of broad 

interest because they react multiply with electrophiles to 

significantly increase molecular complexity and diversity and/or to 

provide rapid accesses to target molecules.[2] In particular, 1,4-

dilithiobutadienes and their benzo-fused analogs are key 

intermediates for the synthesis of various cyclic molecules 

including heteroles.[3]  

A classical yet practical method for the generation of 1,4-

dilithiobutadienes and their benzo-fused analogs is the halogen-

lithium exchange reactions of the corresponding 1,4-dihalo 

precursors with n-BuLi or t-BuLi.[4] Several efficient synthetic 

routes to the important 1,4-dihalo precursors are available. The 

most powerful and reliable route would currently be halogenolysis 

of zircona-[5] or titanacyclopentadienes[6] or zirconaindenes[5,7] 

(Scheme 1a). However, there remain limitations in terms of 

substitution patterns and regioselectivity. As a typical limitation, 

unsymmetrical 2,3-unsubstituted 1,4-dihalobutadienes, which are 

not complex compounds, have not been prepared through the 

metallacycle-based approach. The syntheses of 2,2’-dihalobiaryl 

precursors, such as couplings of ortho-halogenated phenyl 

substrates (Scheme 1b)[8] and stepwise halogenation of 2-

halobiaryls (Scheme 1c)[9], also suffer from limited substitution 

patterns, lack of regioselectivity, and/or cumbersome protocols. 

These backgrounds have encouraged us to find versatile 

precursors of 1,4-dilithiobutadiene derivatives instead of dihalo 

compounds. 

 

Scheme 1. Conventional and new methods for the generation of 1,4-

dilithiobutadiene derivatives. 

Thiophenes are sulfur-containing heteroaromatic compounds and 

are found widely in bioactive compounds and organic functional 

materials.[10] In contrast to the facile exocyclic modifications of 

thiophenes,[11] endocyclic modifications of thiophenes have been 

much less studied due to the robustness of thiophenes.[12] In this 

context, we have been interested in ‘aromatic metamorphosis’ of 

heteroaromatic compounds, which represents a transformation of 

a heteroaromatic skeleton to another ring system through the 
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partial disassembly of the starting aromatic core.[13–15] Given that 

lithium metal can reduce organosulfur compounds to generate  

organolithium species,[16] we envisioned that thiophenes are 

regarded as potential precursors of 1,4-dilithiobutadienes by 

means of desulfurative dilithiation (Scheme 1d). The dianionic 

species was expected to react with various electrophiles to realize 

diversity-oriented synthesis of interesting heteroles. This 

thiophene-based method has a notable advantage over the 

dihalobutadiene-based one: A wide range of thiophenes bearing 

different substitution patterns are readily available and practically 

stable.   

Several reports on reductive desulfurization of thiophenes using 

alkali metals[17] underscore the difficulty in achieving efficient and 

reliable generation of 1,4-dilithiobutadienes: These precedents 

simply focused on removal of sulfur (desulfurization) without 

minding the formation of dianionic species. The reduction 

therefore requires harsh reaction conditions such as excess 

amounts of alkali metals and/or high temperatures, which leads to 

degradations of the 1,4-dilithiobutadiene intermediates and 

interference with remaining alkali metals in the use of the 

intermediates. To our delight, we identified optimized reaction 

conditions for the reliable generation of 2,2’-dilithiobiphenyl (2a) 

from dibenzothiophene (1a), by using 5.0 equivalent of Li 

powder[18] and 2.0 equivalent of TMEDA in THF at room 

temperature (Scheme 1e).[19] The reaction of dianion 2a with 2.0 

equivalent of Cl2SiMe2 in a one-pot manner provided 

dibenzosilole 3a in 70% yield along with <1% yield of biphenyl 

(3a’). The use of lithium powder is crucial: The use of Li granules 

required vigorous stirring for the efficient generation of 2a and 

sometimes led to lack of reproducibility. 

Encouraged by the efficient synthesis of dibenzosilole 3a from 

dibenzothiophene (1a), we next investigated the scope of the 

aromatic metamorphosis with respect to thiophenes 1 toward the 

synthesis of diverse siloles 3 (Scheme 2). A variety of multi-

substituted dibenzothiophenes 1b–1d were converted to the 

corresponding dibenzosiloles 3b–3d in high yields. The reductive 

desulfuration of 1d was performed at 0 ºC to suppress the 

undesired protonation of dianion 2d by the benzylic protons, 

affording 3d in 83% yield. A -extended silole 3e was also 

obtained in comparable yield. Benzothiophenes 1f–1k having 

various aryl groups at their 2 positions are also suitable substrates 

under optimal reaction conditions. Notably, the current protocol 

can afford ladder-type benzosiloles 3j and 3k bearing dimethyl- 

and diphenyl-methylene bridges, respectively, which are 

attractive scaffolds showing intriguing photophysical 

properties.[20] The protocol tolerated the trimethylsilyl group at the 

2 position in 1l, providing benzosilole 3l in good yield.  The 

trimethylsilyl group will be further transformed into a variety of 

substituents. Unfortunately, 2-methylbenzothiophene and 2,3-

unsubstituted benzothiophene did not provide desired products at 

all along with a complex mixture of unidentified products. 

Interestingly, substituted thiophenes 1m–1o bearing no fused 

benzene ring were efficiently converted to siloles 3m–3o through 

the generations of the corresponding 1,4-dilithiobutadienes 

including an unsymmetrical one.   

 

Scheme 2. Synthesis of siloles 3 from thiophenes 1. [a] At 0 ºC for 1st step. 

Our protocol is sufficiently powerful and efficient to generate 

tetraanionic species from 1p and 1q and to form four C–Si bonds 

for the synthesis of bis-siloles (Scheme 3). In the presence of 

double amounts of lithium metal, TMEDA, and Cl2SiMe2 under 

optimal reaction conditions, 2,6-diarylated benzodithiophene 1p 

was transformed into benzodisilole 3p in 60% yield.[21] Similarly, 

the reaction of biphenyl-linked bisdibenzothiophene 1q leads to 

the formation of biphenyl-linked bisdibenzosilole 3q, the 3,3’-

difuncitionalized biphenyl moiety of which would serve as an 

attractive scaffold in host materials of phosphorescent organic 

light emitting diodes.[22] 

We could also synthesize spirocyclic silole 4 from 1j via dianion 

2j which has been an inaccessible dianion thus far (Scheme 4). 

The synthesis of 4 is featured by the transmetalation of dilithium 

species 2j with THF-soluble MgCl2•LiCl[23] prior to the trapping 

with SiCl4 as a limiting reagent. The spirocyclic silole 4 can be 

regarded as the silicon analog of Nakamura’s spiro carbon-

bridged p-phenylenevinylene that exhibits interesting 

physicochemical properties.[24] 
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Scheme 3. Synthesis of bis-siloles 3p and 3q from bis-thiophenes 1p and 1q. 

 

Scheme 4. Synthesis of spirocyclic silole 4. 

This protocol was naturally extended to the preparation of 

germoles 5 and phosphole oxides 6 using suitable electrophiles 

(Scheme 5). The synthesis of germoles 5 were carried out in a 

fashion similar to that of siloles 3.  The synthesis of phosphole 

oxides 6 was achieved through the transmetalation with 

MgCl2•LiCl followed by trapping with Cl2P(=O)Ph. Our method 

afforded donor-acceptor-type benzophosphole oxide 6h having a 

diphenylaminophenyl group.[25] In addition, benzophosphole 

oxide 6j constrained with a dimethylmethylene bridge has 

become readily available, which is a promising dye for 

fluorescence imaging,[26] although the construction of such a 

framework was laborious in previous reports.[25,26] Borole 7a was 

also obtained in high yield, albeit it was contaminated with borinic 

acid 7a’ via the partial decomposition of 7a. Our attempt to isolate 

borole 7j from 1j resulted in failure, instead providing borinic acid 

7j’ as a single product in our hand, probably because of the 

instability of the initially formed constrained 7j. These results 

highlight the advantage of our synthetic strategy in terms of 

diversity-oriented synthesis of heteroles over the conventional 

synthesis starting from substrates that have pre-installed 

heteroatoms.[27] 

 

Scheme 5. Synthesis of germoles 5, phosphole oxides 6, and boroles 7. [a] 1H 

NMR yields. 

We could replace the sulfur atom of 1a and 1j with a two-carbon 

unit to achieve ring-expanding aromatic metamorphosis from a 

thiophene ring to a benzene ring (Scheme 6).  Desulfurative 

dilithiation of 1a and 1j followed by an addition of C6F6 resulted in 

two-fold nucleophilic aromatic substitution to provide partially 

fluorinated polycyclic aromatic hydrocarbons 8 that have attracted 

much attention in the field of liquid crystalline materials.[28] 

Besides, CrCl3-mediated annulation of the resulting dianionic 

species with diphenylacetylene provided phenanthrene 9a and 

naphthalene 9j.[29]  

 

Scheme 6. Desulfurative construction of aromatic rings from thiophenes. 
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Heterole-containing ladder-type -conjugated compounds have 

been of interest as functional organic materials.[30]  The UV–vis 

absorption and fluorescence spectra of new silole-, germole-, and 

phosphole-containing compounds 3j, 5j, and 6j and spiro-fused 

dimer 4 were therefore measured to evaluate their photophysical 

properties (Figure 1).  Their photophysical data are summarized 

in Table 1, together with their carbon (10a),[31] nitrogen (10b),[15d] 

and sulfur (1j and 1j′)[32] analogs and the bent regioisomer 6j′[33] 

which have been reported previously (Figure 2).  The longest 

absorption maximum (abs) shifts to the longer wavelength region 

in the order of 5j (337 nm) < 3j (342 nm) < 6j (363 nm).  The same 

trend in abs has also been observed for the dibenzoheterole 

derivatives.[34]  Compounds 3j and 5j show red-shifted absorption 

maxima compared to that of the carbon analog 10a (322 nm).  

Such a red-shift would be attributed to the lower-lying LUMO 

energy levels of 3j and 5j induced by the *–* conjugation 

between the exocyclic Si/Ge–C* orbitals and the endocyclic 

butadiene * orbital of the silole and germole moieties.[35]  The 

absorption maximum of 6j is red-shifted by 23 nm compared to 

that of its regioisomer 6j′, which indicates more effective -

conjugation in the linear structure of 6j.  In the solution-state 

fluorescence spectra, compounds 3j, 5j, and 6j exhibit emission 

maxima (em) at 406, 391, and 448 nm, respectively.  The 

quantum yields of them are higher (0.70–0.77) than those of the 

related heterole-containing compounds in Table 1, but lower than 

that of the carbon analogue 10a.  Phosphole-containing 

compound 6j exhibits a higher quantum yield than its regioisomer 

6j′.  Noteworthy is that the silole- and germole-containing 

compounds 3j and 5j, respectively, maintain their high quantum 

yields in the solid state.  The spiro-fused dimer 4 shows a red-

shifted absorption spectrum compared to its substructure 

compound 3j, which would be attributed to the through-space 

orbital interaction between the two substructure units known as 

spiroconjugation.[36]  The quantum yield of 4 is relatively high 

(0.50), while the spiro fusion was found to induce a lower quantum 

yield than that of its substructure 3j.  

 

Table 1. Photophysical Properties of Heterole-containing Ladder-type π-

Conjugated Compounds. 

 
 solution 

 
solid 

 
λabs (nm)[a] λem (nm)[b] Φ[c] 

 
λem (nm)[b] Φ[c] 

3j 342 406 0.77 
 

405 0.71 

5j 337 391 0.73 
 

397 0.63 

6j 363 448 0.70 
 

447 0.32 

10a 322 367 0.92 
 

--- --- 

10b 344 372 0.58 
 

--- --- 

1j 330 354 0.11 
 

--- --- 

1j′ 355 444 0.46 
 

--- --- 

6j′ 340 412 0.52 
 

--- --- 

4 356 427 0.50 
 

432 0.12 

[a] The longest absorption maximum in CH2Cl2. [b] Emission maximum in 
CH2Cl2 or in the solid state. [c] Absolute quantum yield. 

 

 

Figure 1. (a) UV–vis absorption and (b) fluorescence spectra of 3j, 5j, and 6j 

and 4 in dichloromethane. 

 

 
Figure 2. Structures of Known Compounds 10a, 10b, 1j’, and 6j’. 

 
In conclusion, we have developed a new mode of aromatic 

metamorphosis based on desulfurative dilithiation of thiophenes 

using lithium powder, by generating a variety of 1,4-

dilithiobutadiene intermediates. The subsequent trapping of the 

resulting dianions with heteroatom electrophiles provided a series 

of heteroles in a diversity-oriented manner. Not only benzo-fused 

thiophenes but also simple thiophenes are applicable to this 

aromatic metamorphosis. The current method allows the sulfur 

atoms of thiophenes to be replaced with a two-carbon unit to 

achieve ring-expanding aromatic metamorphosis from a 

thiophene ring to a benzene ring. Further extensions of this 

protocol toward the synthesis of novel functionalized materials are 

currently underway in our group. 
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