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Abstract Negishi-type arylation of trialkylsulfonium salts with arylzinc reagents 
has been accomplished under nickel catalysis. The use of cyclohexanethiol as 
an additional ligand was found to be particularly important to promote C–S 
cleavage. The present reaction accommodates one-pot arylation of dialkyl 
sulfides by combining with S-methylation with MeOTf. Mechanistic 
experiments suggest that C–S cleavage would proceed via single-electron 
transfer (SET) to generate the most stable carbon-centered radical and that 
the thiolate ligand would promote the C–S cleavage and radical recombination 
step.  

Key words Negishi coupling, trialkylsulfonium salt, nickel catalysis, thiolate 
ligand, radical 

 

Transition-metal-catalyzed cross-coupling represents a 

privileged class of molecular transformations for the 

construction of C–C bonds, and is regarded as an indispensable 

tool in many scientific disciplines that employ organic 

molecules.1 Conventionally, aryl and alkenyl (pseudo)halides 

having C(sp2)–halogen bonds have been used as electrophilic 

coupling partners.  

For the last two decades, cross-coupling of sp3-hybridized carbon 

electrophiles with organometallic reagents has been emerging as 

a powerful strategy for the synthesis of diverse saturated 

hydrocarbon frameworks.2 While alkyl halides are generally 

employed for such transformations, cross-coupling of aliphatic 

organosulfur compounds of high accessibility has received far 

less attention despite continuous reports on C(sp2)–S-cleaving 

transformations of aromatic and vinylic organosulfur 

compounds.3 Moreover, a limited range of organosulfur 

compounds including relatively reactive benzylic,4 allylic,5 

difluoromethyl,6 and α-carbonyl-activated4b,7 C(sp3)–S 

electrophiles are applicable to the reactions.  

As a seminal work on C(sp3)–S-cleaving cross-coupling, Denmark 

developed Fe-catalyzed arylation of unactivated alkyl sulfide and 

sulfones whereas arylmagnesium reagents fairly restrict the 

reaction scope (Scheme 1a).8 In 2018, Baran accomplished 

Negishi-type arylation of diverse alkyl sulfones with wider 

functional group tolerance by means of a tetrazolylsulfonyl 

leaving group (Scheme 1b).9,10 

 

Scheme 1 Cross-coupling of aliphatic organosulfur compounds. 

Recently, we have focused on sulfonium salts as competent 

electrophiles for catalytic C–S cleaving transformations.11–13 We 

envisioned that trialkylsulfonium salts can participate in C(sp3)–

S-cleaving cross-coupling, which can expand the repertoire of 

sp3-hybridized carbon electrophiles. Herein we report Negishi-

type arylation of trialkylsulfonium triflates with arylzinc 

reagents under nickel catalysis.14 The use of cyclohexanethiol as 

an additional ligand was found to be particularly important for 

promotion of the C–S cleavage. Our arylation is applicable to one-

pot transformation of dialkyl sulfides by combining with S-

methylation with MeOTf, which showcases the synthetic utility of 

the present system. 

The arylation of dimethyldodecylsulfonium triflate (1a) with 

arylzinc 2a prepared from the corresponding arylmagnesium 

bromide, ZnCl2, and LiCl15  in THF was chosen as a model reaction 
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(Table 1).16 Since nickel catalysts often show good catalytic 

activity for cross-coupling of alkyl electrophiles,2f,h,17 we 

evaluated several nickel catalysts. Based on brief screening of 

ligands (See Table S1 in the Supporting Information), the reaction 

was conducted with 10 mol% of NiCl2(bpy) (bpy = 2,2'-bipyridyl), 

and desired product 3aa was obtained in 26% yield (entry 1). 

During the initial screening, we suffered from low reproducibility. 

After careful survey of the reaction system, sulfur impurities 

proved to provide a positive effect for the reaction. We thus 

attempted additions of thiols, sulfides, and disulfides to the 

reaction system. Gratifyingly, the yield of 3aa dramatically 

increased to 81% by means of 20 mol% of cyclohexanethiol 

(CySH) (entry 2). Of note, the C(sp3)–S cleavage selectively 

proceeded at the C12H25–S bond; 4-methylanisole generated 

through the cleavage of the Me–S bond was not observed. This 

selectivity suggests that the reaction would proceed via 

generation of alkyl radical initiated by single-electron transfer 

(SET) from low-valent nickel species to the sulfonium salt (See 

Scheme 7). Other alkane- and arenethiols were less effective 

compared to CySH (entries 3–5). Although we tested Zn and Mn 

powders to generate low-valent nickel species, no positive effect 

was observed (entries 6 and 7). The use of amide cosolvent was 

crucial for the arylation, and only a 6% yield of the product was 

obtained without DMA (entry 8). Employment of NMP and DMF 

instead of DMA slightly lowered the yield of 3aa (entries 9 and 

10). Decreasing the reaction temperature to 0 °C improved the 

yield to 86% (entry 11). An 86% yield of 3aa was obtained with 

lower catalyst loadings, 5 mol% of NiCl2(bpy) and 10 mol% of 

CySH, and 3aa was isolated in 82% yield under the reaction 

conditions (entry 12).  

Table 1 Screening of Conditions 

 

entry additive cosolvent NMR yield (%) 

1 none DMA 26 

2 CySH DMA 81 

3 c-C5H9SH DMA 79 

4 BuSH DMA 69 

5 PhSH DMA 37 

6 Zn powder DMA 26 

7 Mn powder DMA 29 

8 CySH none (THF) 6 

9 CySH NMP 59 

10 CySH DMF 68 

11a CySH DMA 86 

12a,b CySH DMA 86 (82)c 

aAt 0 °C. bWith 5 mol% of NiCl2(bpy) and 10 mol% of CySH. cIsolated yield.  

The present catalysis is applicable to one-pot arylation of dialkyl 

sulfides as is the case with our previous one-pot transformations 

of aryl sulfides.11d–f,h,i After methylation of dodecyl methyl sulfide 

(4a) with MeOTf and removal of all volatiles, sulfonium triflate 

1a generated was arylated with arylzinc 2a in a one-pot manner 

to afford 3aa in 82% yield (Scheme 2).18 

 

Scheme 2 One-pot arylation of alkyl sulfide 4a 

Having the one-pot procedure in hand, we then explored the 

reaction scope with respect to alkyl methyl sulfides 4 and 

arylzinc reagents 2 (Scheme 3). Owing to the mild reactivity of 

arylzinc, sulfide 4b having an ester functionality could be 

involved in the reaction to afford 3ba19 in 60% yield. Although 

cyano-substituted 4c underwent the reaction with 2a, the yield 

of 3ca was not high despite full conversion of the substrate. The 

present arylation preferentially occurred at the C–SMe2+ bond of 

sulfonium triflate 1d over the C–Cl bond to afford 3da in 41% 

yield. Allyl and benzyl sulfides 4e and 4f took part in the arylation 

to afford 3ea and 3fa. On the other hand, tert-butyl methyl sulfide 

(4g) did not undergo the reaction; the desired product was not 

obtained and only anisole and 4,4'-dimethoxybiphenyl were 

observed. Instead of 4-methoxyphenylzinc 2a, 2-naphthylzinc 2b 

uneventfully reacted with 4-phenoxybutylsulfonium triflate 1h 

to furnish 3hb in 63% yield. The reactions of 2-

phenoxyethylsulfononium 1i with 2-naphthyl- and 4-

fluorophenylzinc reagents afforded arylation products 3ib and 

3ic in moderate yields. In both cases, phenol was obtained as a 

byproduct in ca. 20% yield. This byproduct would be generated 

by β-oxygen elimination from a 2-phenoxyethylnickel 

intermediate. Alkyl sulfide 4j having a 2,3-dihydrobenzofuryl 

moiety underwent the reaction with 4-methylphenylzinc 2d to 

provide desired product 3jd in 68% yield accompanied by a 22% 

NMR yield of 2-allylphenol formed by the β-oxygen elimination. 

 

Scheme 3 Scope of arylation. aWith 10 mol% NiCl2(bpy) and 20 mol% CySH. 

bPhenol was obtained in ca. 20% yield. c2-Allylphenol was obtained in 22% 

yield.  
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As shown in Schemes 2 and 3, the arylation of 

alkyldimethylsulfonium salts selectively proceeded via cleavage 

of the C(alkyl)–SMe2+ bonds. To further explore the 

regioselectivity of the C–S cleavage, we conducted the arylation 

of trialkylsulfonium triflate 1k having three different alkyl 

groups: cyclohexyl, hexyl, and methyl groups (Scheme 4). As a 

result, 4-cyclohexylanisole (3ka) was obtained in 85% yield 

along with a 3% yield of 4-hexylanisole (3ka'), and none of 4-

methylanisole was detected. This result indicates that the C–S 

cleavage would proceed via SET from low-valent nickel species 

to form the most stable carbon-centered radical preferentially 

(See Scheme 7).  

 

Scheme 4 Regioselective C–S arylation of trialkylsulfonium triflate 1k. 

To verify the intermediacy of radical species, we conducted a 

radical clock experiment using (cyclopropylmethyl)sulfonium 

triflate 1l. The reaction of 1l with arylzinc 2a provided ring-

opening product 3la' in 77% yield as the major product, which 

would be consistent with the intermediacy of radical species 

(Scheme 5a). We also conducted the arylation with another 

radical probe, (5-hexen-1-yl)sulfonium triflate 1m. Although 5-

hexenyl radical is known to undergo 5-exo cyclization to afford 

cyclopentylmethyl radical, the reaction of 1m provided only a 2% 

yield of the cyclized product 3ma' (Scheme 5b). Instead, the 

linear product 3ma was obtained as the major product in 74% 

yield. These results indicate that recombination of radical species 

with nickel (See Scheme 7) would proceed faster than the 5-exo 

cyclization of 5-hexenyl radical (rate constant: 1.0×105 s–1),20 but 

slower than the ring-opening of cyclopropylmethyl radical (rate 

constant: 1.3×108 s–1).20 

 

Scheme 5 Mechanistic experiments with radical probes. 

We next carried out the reaction with didodecylmethylsulfonium 

triflate 1a-C12 to understand the effect of CySH (Scheme 6). Under 

the standard conditions, 1a-C12 was fully consumed and a 74% 

yield of 4-dodecylanisole (3aa) was obtained along with a 90% 

yield of departed dodecyl methyl sulfide (4a). On the other hand, 

in the absence of CySH, 1a-C12 was recovered in 47% yield, which 

suggests that CySH might assist the C–S-cleaving step. Of note, 

although a 46% yield of 4a was generated, the yield of arylation 

product 3aa was only 18%. This result implies that 

recombination of radical species after the C–S cleavage might be 

also assisted by CySH.  

 

Scheme 6 Effect of CySH for arylation. 

Although further mechanistic studies should be required for 

elucidating the reaction mechanism, we suppose the reaction 

proceeds through a Ni(I)/Ni(III) catalytic cycle involving a SET 

process (Scheme 7).2f,21 Initial reduction of the Ni(II) precatalyst 

to Ni(0) followed by comproportionation with other Ni(II) 

species in the presence of CyS– anion would generate Ni(I)–SCy A 

(step a). Subsequent SET from A to trialkylsulfonium triflate 1 

would provide an alkyl radical and a Ni(II) intermediate (step b). 

The thiolate ligand on A might assist the SET process from the 

nickel center to 1 as an electron-rich donor-type ligand. 

Subsequently, recombination of the radical and Ni(II) would 

afford cationic alkylnickel(III) B which might be trapped by 

another CyS– anion to generate alkylnickel(III) dithiolate C (steps 

c and d). Finally, transmetalation of C with arylzinc 2 (step e) 

followed by reductive elimination from D would provide 

coupling product 3 with regeneration of Ni(I)–SCy A (step f). 

Instead of the formation of nickel(III) dithiolate C, 

transmetalation of cationic species B with arylzinc 2 can also 

generate alkylarylnickel(III) D (step g). 

In conclusion, we developed Negishi-type cross-coupling of 

trialkylsulfonium salts with arylzinc reagents under nickel–

thiolate catalysis. The present system was applicable to one-pot 

arylation of dialkyl sulfides by combining with S-methylation 

with MeOTf. The C–S cleavage would proceed via single-electron 

transfer (SET) by low-valent nickel species, which leads to 

regioselective C–S cleavage that provides the most stable carbon-

centered radical. Mechanistic experiments revealed that the 

thiolate ligand would promote the C–S cleavage as well as the 

radical recombination step, while further mechanistic studies are 

necessary. 
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Scheme 7 A possible reaction mechanism. 
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