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It is known that nuclear deformation plays an important role in inducing the halo structure in neutron-rich
nuclei by mixing several angular momentum components. While previous theoretical studies on this problem
in the literature assume axially symmetric deformation, we here consider nonaxially symmetric deformations.
With triaxial deformation, the � quantum number is admixed in a single-particle wave function, where � is the
projection of the single-particle angular momentum on the symmetric axis, and the halo structure may arise even
when it is absent with the axially symmetric deformation. In this way, the area of halo nuclei may be extended
when triaxial deformation is considered. We demonstrate this idea using a deformed Woods-Saxon potential for
nuclei with neutron number N = 13 and 43.
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With the developments of radioactive isotope beam fa-
cilities worldwide, many experimental data on neutron-rich
nuclei have been accumulated. Among them, the halo phe-
nomenon, first observed in 11Li [1], has attracted lots of
attention [2–8]. The halo nuclei are characterized by a spa-
tially extended density distribution originated from weakly
bound valence nucleon(s). Such structure can be probed,
e.g., by interaction cross-section measurements [9] and the
Coulomb dissociation reactions [7]. It has been shown that
the valence nucleons have to have a low orbital angular mo-
mentum, either l = 0 or l = 1, in order for the halo structure
to emerge [10–12]. With a higher angular momentum, the
centrifugal barrier prevents the density distribution from ex-
tending, and the radius of a nucleus remains normal. As a
consequence, s and p orbitals behave differently from orbitals
with higher angular momentum, leading to a possible change
in the shell structure [13–15].

Nuclear deformation significantly extends the region of
halo nuclei [16–20]. When a nucleus is deformed, the orbital
angular momentum is not a good quantum number anymore,
and they are admixed in a single-particle wave function. With
an axially symmetric deformation, single-particle states with
�π = 1

2
+

, 1
2

−
, and 3

2
−

may then form a halo, where π and �

are parity and the projection of the total single-particle angular
momentum j onto the symmetry axis, respectively, as these
orbitals can contain the s-wave or the p-wave components. For
instance, a d3/2 orbital will couple to an s1/2 orbital by nuclear

deformation when �π is equal to 1
2

+
, and a halo structure may

arise even when the nucleus does not show it in the spher-
ical limit. Moreover, it has been shown that the s-wave and
p-wave components become dominant in a single-particle
wave function when the separation energy is low [16,17,21].
The experimental indications of the halo structure in 31Ne [22]
and 37Mg [23,24] are considered to be due to this mechanism,
because the valence neutrons in these nuclei would occupy the
f7/2 orbital in the spherical limit [25–33].

We notice that all the discussions on deformed halo nuclei
have so far been based on axially symmetric deformation.
In this paper, we extend this to triaxial deformation, and
clarify the role of triaxiality in deformed halo nuclei. When
nonaxially symmetric deformation occurs, � is no longer
a good quantum number and several components of � are
mixed in a wave function. For instance, even though an or-
bital with �π = 5

2
+

does not form a halo structure with the
axially symmetric deformation, the halo structure may arise
in the presence of triaxial deformation, with mixing with an
�π = 1

2
+

component. This is in a sense similar to an extension
of the halo region going from spherical symmetry to axial
deformation.

To demonstrate the role of triaxiality in deformed halo
nuclei, let us consider a nucleus with neutron number N = 43.
For this purpose, we employ a triaxially deformed Woods-
Saxon (WS) potential,

V (�r) = V0 f (�r) − iVlsr
2
0 (∇ f (�r)) · (∇ × �s), (1)

with

f (r) = 1

1 + exp{[r − R(θ, φ)]/a} , (2)

where the radius parameter R(θ, φ) is given by

R(θ, φ) = R0

[
1 +

∑
μ

a2μY ∗
2μ(θ, φ)

]
. (3)

Here, a2μ are the deformation parameters, Y2μ are the spher-
ical harmonics, and s is the spin operator. We use the
parameters of V0 = −42.86 MeV, r0 = 1.27 fm, R0 = 5.20
fm, a = 0.67 fm, and Vls = −0.44V0. For simplicity, we here
consider only the quadrupole deformation. In the following,
we express the deformation using the parameters β and γ ,

2469-9985/2021/104(1)/L011303(4) L011303-1 ©2021 American Physical Society

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

https://orcid.org/0000-0002-2250-1063
https://orcid.org/0000-0002-4224-1668
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.104.L011303&domain=pdf&date_stamp=2021-07-30
https://doi.org/10.1103/PhysRevC.104.L011303


K. UZAWA, K. HAGINO, AND K. YOSHIDA PHYSICAL REVIEW C 104, L011303 (2021)

FIG. 1. Neutron levels as a function of the quadrupole deforma-
tion parameter β obtained with an axially deformed Woods-Saxon
potential.

instead of a2μ, which are defined as

a20 = β cos γ , (4)

a22 = a2−2 = 1√
2

β sin γ , (5)

a2±1 = 0. (6)

We solve the Schrödinger equation for single-particle wave
functions with the three-dimensional (3D) mesh method [34].
We impose the parity symmetry and the z-signature sym-
metry [34,35] so that we need to consider only the positive
coordinate region: xi = (i − 1/2)�r, y j = ( j − 1/2)�r, zk =
(k − 1/2)�r (i, j, k = 1, 2, . . . ) with the mesh size of �r =
0.9 fm and 24 points for each direction. We have confirmed
that results are almost converged with this box size, un-
less the s-wave component dominates in the single-particle
wave functions.

Figure 1 shows the Nilsson diagram so obtained. In the
spherical limit, the 43rd neutron occupies the 1g9/2 orbit. With
deformation, this level splits into five levels according to the
value of �. For a prolate deformation, the valence neutron
occupies the orbital with �π = 3

2
+

, while the orbital with

�π = 7
2

+
in the oblate region. Notice that neither of these

does form a halo structure.
Let us then take into account the triaxiality γ . Figs. 2(a)

and 2(b) show the fraction of the s-wave component Ps

and the expectation value of the z component of the total
single-particle angular momentum 〈 jz〉, respectively, for the
single-particle level of the valence neutron. Different lines in
the figures show the results of β = 0.3 with several values
of γ . To draw these figures, we vary V0 in the Woods-Saxon
potential to change the single-particle energy for the valence
neutron. The fraction of the s-wave component is obtained by
expanding the single-particle wave functions with the eigen-
functions of the spherical Woods-Saxon potential with β = 0
in Eq. (1). We mention that Ps does not reach 100% in the
region shown in the figure, partly because we impose a bound-
ary condition that the single-particle wave functions vanish
at the edge of the box. For γ = 0◦ and γ = 60◦, Ps is zero
since the �π = 3/2+ orbital has components with j � 3/2
and the �π = 7/2+ orbital has components with j � 7/2

FIG. 2. (a) The fraction of the s-wave component, (b) the expec-
tation value of the total single-particle angular momentum jz, and
(c) the root-mean-square (rms) radius for the 43rd neutron orbital in a
deformed Woods-Saxon potential. These are plotted as a function of
the single-particle energy for several values of triaxiality parameter
γ with β = 0.3.

so s1/2 cannot be mixed. As the triaxial deformation param-
eter γ increases from γ = 0◦ or decreases from γ = 60◦, the
s-wave component gradually increases. Accordingly, 〈 jz〉 de-
creases and deviates from the half-integer values, as is shown
in Fig. 2(b). These features are also seen in Figs. 3(a) and 3(b),
which show Ps and 〈 jz〉 respectively, as a function of γ at
Sn = 0.2 MeV. One can see that with a triaxial deformation,
the s-wave component increases significantly as the single-
particle energy approaches zero, and a nucleus may form a
halo structure.

The root-mean-square (rms) radius (〈r2〉)1/2 of the
valence neutron is plotted in Fig. 2(c) as a function
of the single-particle energy. As one expects from the
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FIG. 3. Similar to Fig. 2, but as a function of γ for Sn = 0.2 MeV.

behavior of the s-wave component, with the triaxial de-
formation the rms radius increases considerably as the
single-particle energy approaches zero. Notice that this
does not happen with axial deformation and triaxial defor-
mation plays an essential role. In previous investigations
of deformed halo nuclei, axial symmetry is assumed in
most cases. Our work presented in this paper predicts
that the region of halo nuclei can be extended if triaxial
deformation emerges.

We next investigate briefly a nucleus with N = 13, such
as the 19C nucleus, which is considered to be a one-neutron
halo nucleus [9,36–43]. Figure 4 shows the Nilsson diagram
for this nucleus. To this end, we use the parameters of V0 =
−32.375 MeV and R0 = r0A1/3 with A = 19, while the other
parameters are the same as those for Fig. 1. For the 19C
nucleus, the valence neutron (i.e., the 13th neutron) occupies
the orbital with �π = 1

2
+

and �π = 3
2

+
with a prolate and an

oblate deformation, respectively. This orbital can thus form
a halo in the prolate region while it cannot have the halo
structure in the oblate region. With triaxial deformation, both
of these aspects are mixed together.

Figure 5 shows the rms radius as a function of the single-
particle energy for β = 0.343 with several values of γ . Here,
β = 0.343 is the optimized value for 18C obtained with the

FIG. 4. A Nilsson diagram for neutron levels around N = 13.

Skyrme-HF + BCS method [42]. In the figure, the boxes with
right diagonal lines and left diagonal lines denote the exper-
imental radius (〈r2〉)1/2 = 5.5 ± 0.3 fm [36] and (〈r2〉)1/2 =
6.4 ± 0.7 fm [38], respectively, together with the one-neutron
separation energy Sn = 160 ± 110 keV obtained with the di-
rect mass measurements [44]. The figure implies that the
calculation with γ = 60◦ underestimates the rms radius, while
the calculation with γ = 0◦ clearly overestimates the rms ra-
dius. By taking into account the triaxiality in the deformation,
the halo component is modified in the wave function and the
rms radius and the one-neutron separation energy are simulta-
neously reproduced with γ = 20◦–50◦.

In summary, we have introduced a new perspective of
deformed halo nuclei by considering triaxial deformation;
we have pointed out that the mixing of configurations
with different � quantum numbers with nonaxially sym-
metric deformations may lead to the halo structure even
when it does not appear with axially symmetric deforma-
tion. We have demonstrated this using neutron orbitals for
the 43rd and the 13th neutrons in a deformed Woods-Saxon

FIG. 5. Relation between the single-particle energy of the va-
lence neutron in 19C and the root-mean-square (rms) radius for
several values of the triaxial deformation parameter γ . The defor-
mation parameter β is fixed to be 0.343. The boxes with the right
diagonal lines and the left diagonal lines show the experimental
values of the rms radius from Nakamura et al. (1999) [36] and
Kanungo et al.( 2016) [38], respectively, together with the empirical
separation energy Sn = 160 ± 110 keV from Ref. [44].
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potential. The finding in this paper would enlarge the region
of halo nuclei if triaxial deformation appears in neutron-rich
medium-heavy and heavy nuclei. It would be an interesting
future work to carry out a systematic study of deformed
halo nuclei in a wide range of the nuclear chart by tak-
ing into account triaxial deformations. In this connection,
we mention that recent finite range droplet model (FRDM)
calculations have indicated that medium-heavy nuclei near
the drip lines deform triaxially in the wide region of the
periodic table [45]. In addition, symmetry unrestricted HF +

BCS calculations have shown that nuclei near the drip lines
with N = 60–80 and N = 110–120 tend to be triaxially
deformed [46].

We thank Nigel Orr for useful discussions on the direct
mass measurements of 19C. This work was supported by
JSPS KAKENHI (Grants No. JP19K03824, No. JP19K03861,
and No. JP19K03872). The numerical calculations were per-
formed with the computing facility at the Yukawa Institute for
Theoretical Physics, Kyoto University.
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