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Genetic liability between COVID-19 
and heart failure: evidence from a bidirectional 
Mendelian randomization study
Huachen Wang1†, Zheng Guo2†, Yulu Zheng2 and Bing Chen1* 

Abstract 

Background: Previous studies have observed inconsistent associations between coronavirus disease 2019 (COVID-
19) and heart failure (HF), but these studies were prone to bias based on reverse causality and residual confounding 
factors. We aimed to investigate genetic liability between COVID-19 and heart failure using a bidirectional Mendelian 
randomization study.

Methods: The causal relationship between COVID-19 (including COVID-19, hospitalized COVID-19 compared with 
the general population, and severe COVID-19) and HF are determined by using a bidirectional Mendelian randomi-
zation analysis. We drew on summary statistics from the largest HF genome-wide association study (GWAS) meta-
analysis on individuals of European ancestry, which included 47,309 HF patients and 930,014 controls. The inverse 
variance weighted (IVW), an adaption of the Egger regression (MR-Egger), the weighted median, and weighted model 
were conducted for the Mendelian randomization analysis to estimate a causal effect. To confirm the stability, we 
performed a “leave-one-out” approach for the sensitivity analysis.

Results: Genetically predicted severe COVID-19 was not significantly associated with the risk of HF [odds ratio (OR), 
1.003; 95% confidence interval (CI), 0.969–1.037; p = 0.867]. The IVW demonstrated that there was no association 
between genetically hospitalized COVID-19 infection and HF risk [OR, 1.009; 95% CI, 0.939–1.085; p = 0.797]. There was 
no evidence to support the association between genetically determined COVID-19 and the risk of HF [OR, 1.066; 95% 
CI, 0.955–1.190; p = 0.253]. In addition, genetically predicted HF was also not causally associated with COVID-19 [OR, 
1.162; 95% CI, 0.824–1.639; p = 0.393]. MR-Egger analysis indicated no evidence of directional pleiotropy.

Conclusion: The current bidirectional Mendelian randomization analysis overcomes the limitations of observational 
studies. Our findings indicated that there is no causal association between COVID-19 and HF.

Keywords: COVID-19, Heart failure, Single nucleotide polymorphisms, Instrumental variable, Mendelian 
randomization study
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Introduction
Coronavirus disease 2019 (COVID-19), caused by 
severe acute respiratory syndrome coronavirus 
type 2 (SARS-COV2), emerged in late 2019 and 
rapidly developed into a global pandemic [1]. The 
complications of COVID-19 infection appear to 
be very broad, including acute respiratory distress 
syndrome, secondary infection, cardiac injury such 
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as heart failure (HF) [2, 3]. A considerable number of 
case studies have shown that heart damage, such as 
arrhythmia, cardiac arrest, and HF, are the end-stage 
events of COVID-19 patients [4–6]. The mortality 
rate of patients with heart injury is higher than that of 
patients without heart injury [5–7]. Previous studies 
have shown that the vast majority of acute heart 
failure cases (77.9%) occurred in COVID-19-infected 
patients with no history of heart failure [8]. Another 
retrospective cohort study demonstrated that 52% of 
HF patients infected with COVID-19 died and 12% of 
the patients recovered and were discharged from the 
hospital [9]. Some researchers have tried to detect the 
possible association between COVID-19 infection and 
HF [10, 11]. Cytokine storms, levels of ACE2, and the 
levels of angiotensin II may be the causes of HF in the 
COVID-19 infection population [5, 12–14]. Studies 
based on endomyocardial biopsy and macrophages 
showed that SARS-COV2 can reside within the heart 
myocardial tissue; however, it does not prove that 
SARS-COV2 plays a direct pathological role in HF 
[15, 16]. Because of the inconsistent associations of 
COVID-19 with HF, the causal relationship between 
COVID-19 and HF infection needs to be further 
explored.

Mendelian randomization (MR) has become an 
analytic method that effectively probes genetic proxies 
that are associated with exposures. Moreover, MR 
plays a crucial role in separating true causal effects 
from false associations caused by confounding effects 
and reverse causal bias [17, 18]. If there is a causal 
relationship between the exposures and the outcomes, 
the genetic variation affecting the exposures will 
also affect the outcomes. MR is considered a natural 
simulation of a randomized controlled trial because 
it is based on Mendel’s second law, which states that 
alleles of different genes are independently assigned 
to each other during gametogenesis. Thus, Mendelian 
randomization analysis are based on the observation 
that the inheritance of one trait should be independent 
of the inheritance of other traits [19]. MR has also 
been used in cardiovascular research, including 
heart failure, to detect new underlying aetiological 
mechanisms and to improve our understanding of the 
current treatment methods [20, 21]. Therefore, we 
performed bidirectional MR analysis for determining 
the genetic variability in COVID-19 patients (including 
COVID-19, hospitalized COVID-19 compared with 
the general population and severe COVID-19) is 
causally associated with HF. Understanding the 
bidirectional relationship between COVID-19 and 
HF is of significant public health importance about 
complications management.

Materials and methods
Study design
To ensure a valid MR analysis process, three signifi-
cant assumptions need to be proven: (1) the SNPs are 
associated with COVID-19 (HF), (2) the SNPs affect HF 
(COVID-19) only through COVID-19 (HF) and not via 
any alternative causal pathways, and (3) the SNPs are 
completely independent from any potential confound-
ing factors that influence both COVID-19 and HF 
(Fig. 1, Fig. 2) [22, 23].

Fig. 1 Three significant assumptions of COVID-19 on HF via forward 
MR. Three different assumptions are represented by three paths. 
Assumption 1: The SNPs are associated with COVID-19 (the exposure). 
Assumption 2: The SNPs affect HF only through COVID-19 (exposure) 
and not via any alternative causal pathways. Assumption 3: The SNPs 
are completely independent from any potential confounding factors 
that influence both COVID-19 and HF.

Fig. 2 Three significant assumptions of HF with COVID-19 via reverse 
MR. Three different assumptions are represented by three paths. 
Assumption 1: The SNPs are associated with HF (the exposure). 
Assumption 2: The SNPs affect HF only through HF (exposure) and 
not via any alternative causal pathways. Assumption 3: The SNPs are 
completely independent from any potential confounding factors that 
influence both COVID-19 and HF
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Genetic association datasets for COVID‑19
Summary genetic association estimates for the risk 
of COVID-19 were obtained from the release 5 of 
COVID-19 GWAS published on January 18, 2021 
(https:// www. covid 19hg. org/ resul ts/) [24]. We selected 
three phenotypes from this GWAS: (1) patients with 
COVID-19 relative to the general population including 
38,984 patients and 1,644,784 control participants; (2) 
hospitalized patients with COVID-19 compared with 
the general population including 9986 patients and 
1,877,672 control participants; and (3) patients with 
very severe respiratory-confirmed COVID-19 compared 
with the general population including 5,101 patients 
and 1,383,241 control participants. All GWAS summary 
statistics associated with COVID-19 were based on 
populations of European ancestry excluding UK Biobank.

Genetic association datasets for heart failure
We determined the associations between the specific 
SNPs and HF from the current largest GWAS meta-
analysis of HF in populations of European descent [25]. 
The GWAS meta-analysis, which was conducted by the 
Heart Failure Molecular Epidemiology for Therapeutic 
Targets Consortium, included 26 studies (17 population 
cohort studies, 38,780 HF cases, 893,657 controls and 
nine case–control studies, 8,529 cases, 36,357 controls), 
47,309 patients with heart failure, and 930,014 patients 
as a control group [25]. This GWAS meta-analysis was 
adjusted according to sex, age, and principal components. 
In all of the cohort studies, heart failure was assessed 
using at least one of the following methods: discharge 
registration, cause of death registration, or physician 
decision/diagnosis. Due to insufficient power, the GWAS 
was not stratified according to the aetiological subtypes.

Genetic instrumental variables
From the GWAS summary data of COVID-19 patients, 
we conducted a series of quality control steps to select 
eligible instrumental SNPs. First, SNPs were chosen as 
IVs for COVID-19 that were at the threshold from the 
COVID-19 host genetics initiative. A few significant 
SNPs of COVID-19 were available using the criterion 
of p < 5 ×  10^−8. SNPs that achieved significance 
(p < 5 ×  10^−8) for HF were selected as IVs. Second, we 
only extracted the instrumental SNPs for the exposure 
that were not in linkage disequilibrium ([LD],  r2 
threshold = 0.001). Among those pairs of SNPs, only the 
SNP with the lowest P value was selected. In this study, 
LD proxies were defined using European samples from 
the 1000 Genomes Project. To test whether there was 
a weak bias of the instrumental variable (i.e., genetic 

variation selected as an instrumental variable was weakly 
correlated with exposure), we approximated that the F 
statistic.

N represents the sample size; eaf represents effect allele 
frequency.

If the F statistic associated with instrument exposure 
was much greater than 10, then the chance of a weak 
instrument variable bias was small [26].

MR analysis
In the primary analysis of the MR analysis, we used the 
standard inverse-variance weighted (IVW) method to 
estimate the overall causal relationship between COVID-
19 and HF [27]. Using this method, the causal effect of the 
exposure on the outcome was calculated from the ratio of 
the SNP associated with the exposures (Wald estimate). 
According to Mendel’s law of inheritance, MR assumes 
that SNPs are randomly distributed in the general 
population (separation, independent classification), and 
this in turn simulates the process of randomization. SNPs 
always appear before the development of the disease so a 
reverse causality can be effectively eliminated.

MR is defined as a one-sample MR in a group with 
complete SNP data, exposure, and results for all 
participants [20]. Because of the difficulty in the statistics 
in a single-sample MR, a two-sample MR was developed 
to enable the analysis of two independent samples: one 
for focusing on the exposures and the other to focus on 
the outcomes [22]. In our study, we performed IVW, 
which is an adaption of Egger regression (MR-Egger), 
the weighted median approach and the weighted mode 
approach. These four two-sample MR methods were 
performed by the "TwoSampleMR" package in R (version 
4.0.3) [28, 29]. The related analysis was all one-sided, and 
evidence of a causal relationship was determined when a 
prespecified p-value was lower than 0.05.

According to the superiorities of each MR, these four 
methods can complement each other and provide a 
more plausible causal relationship for our study. In a 
two-sample MR analysis, we applied the IVW method to 
analyze the associations between a genetically predicted 
COVID-19 infection and HF. The MR-Egger method 
was used to estimate confounding effects and to evaluate 
directed pleiotropy with weaker assumptions. When 50% 
or more of the genetic variations were valid instrumental 
variables, the median-based method could give a reliable 
effect estimate, which may be more suitable than the 

F statistic =
R2× (N − 2)

(1− R2)

R
2
= 2× eaf× (1− eaf)× Beta

2

https://www.covid19hg.org/results/
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MR-Egger method. The weighting method provides 
a more accurate causal estimation based on a weight 
analysis. Compared with the traditional MR analysis, 
the robust method estimates the causal effects that 
consistently have weaker assumptions.

Traditional IVW methods are the appropriate method 
to use summary data from a GWAS. We used it to 
initially estimate the impact between COVID-19 and 
HF [27]. First, we calculated the IVW average of SNP-
specific associations with the fixed effects in HF. In 
causal reasoning assumptions based on the MR analysis, 
the analysis will give a biased estimate if one of the tools 
is invalid [30]. Second, by selecting SNPs that predict 
COVID-19, we addressed the first hypothesis (the 
appropriate relationship between SNPs and COVID-19) 
and the genetic variants that are significant factors for the 
development of COVID-19 that might satisfy the second 
hypothesis (without confounding factors). We used MR 
Egger regression to study the directionality in order to 
determine any possible violations of the third hypothesis. 
Subsequently, we created a scatter plot to visually detect 
the potential pleiotropy by showing the association 
between each SNP and the risk of HF secondary to 
COVID-19. The reverse analysis for the effect of HF on 
COVID-19 is illustrated. A sensitivity analysis explained 
the potential violations of the sufficient instrumental 
variable assumption by using MR-Egger regression and 
the weighted median. Our study also used the “leave-one-
out” method for the sensitivity analysis. That is, when the 
IVW method determined that there was a P value < 0.05 
and, if the analysis passed the heterogeneity test and the 
gene diversity test, each related SNP was then removed 
one by one. The pooled effect of the remaining SNPs was 
calculated to assess the impact of each SNP.

Results
To investigate the effect of genetic susceptibility to 
COVID-19 on HF by utilizing bidirectional MR, we 
employed independent SNPs that were associated with 
COVID-19 as instrumental variables. The SNPs that 
are associated with COVID-19 phenotypes and HF are 
presented in Additional file 3: Table S1, S2, S3 and S4.

Causal effect of COVID‑19 on HF via forward MR
In the MR analysis, the estimated causal effect between 
the COVID-19 phenotype and HF is shown in Table  1. 
There was no genetical association of the severe COVID-
19 with HF using 9 SNPs presented in Table 1 (OR, 1.003; 
95% CI, 0.969–1.037; p = 0.867), without directional plei-
otropy (p = 0.664) and heterogeneity (p = 0.269). By using 
the IVW method, the genetic predisposition of hospital-
ized COVID-19 patients compared with the general pop-
ulation was not observed to be statistically significantly 

associated with HF (OR, 1.009; 95% CI, 0.939–1.085; 
p = 0.797). There was no association between the geneti-
cally instrumented COVID-19 and HF risk (OR, 1.066; 
95% CI, 0.955–1.190; p = 0.253). The MR Egger inter-
cept test further indicated no directional pleiotropy 
(p = 0.207).

In the sensitivity analysis, we observed no consist-
ent causal relationship between genetically predicted 
COVID-19 phenotypes and HF using the "leave-one-
out" approach, and this suggests that there is stability 
in our results (Additional file 2: Figs. S1–S3). Figures 3, 
4 and 5 presented the causal effect of the COVID-19 
phenotypes on HF, in which the regression slopes of the 

Table 1 Causal association of COVID-19 with HF via MR analysis

HF Heart failure, CI Confidence interval, IVW Inverse-variance weighted; MR 
Mendelian randomization, MR-Egger Egger regression, OR odds ratio, SE 
Standard error, SNP Single-nucleotide polymorphism

Beta is the estimated effect size. P < 0.05 was considered statistically significant

Phenotype Numbers 
of SNPs

OR (95% CI) Beta (SE) P

COVID-19 vs. population

IVW 5 1.066 (0.955–
1.190)

0.064 (0.056) 0.253

Weighted 
median

5 1.036 (0.912–
1.176)

0.035 (0.065) 0.587

Weighted model 5 1.025 (0.855–
1.228)

0.024 (0.092) 0.806

MR-Egger 5 0.879 (0.680–
1.136)

− 0.129 (0.131) 0.398

egger_intercept 0.011 0.207

Q statistic 0.534

Hospitalized COVID-19 vs. population

IVW 5 1.009 (0.939–
1.085)

0.009 (0.037) 0.797

Weighted 
median

5 1.015 (0.936–
1.101)

0.015 (0.041) 0.716

Weighted model 5 1.011 (0.893–
1.145)

0.011 (0.063) 0.868

MR-Egger 5 0.825 (0.665–
1.024)

− 0.192 (0.110) 0.180

egger_intercept 0.016 0.153

Q statistic 0.522

Severe COVID-19 vs. population

IVW 9 1.003 (0.969–
1.037)

0.003 (0.017) 0.867

Weighted 
median

9 0.987 (0.944–
1.031)

− 0.013 (0.022) 0.562

Weighted model 9 0.979 (0.919–
1.041)

− 0.022 (0.032) 0.513

MR-Egger 9 0.976 (0.864–
1.103)

− 0.024 (0.062) 0.709

egger_intercept 0.014 0.664

Q statistic 0.269
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lines corresponded to the causal estimates using each 
of the four different methods.(Additional file 1)

Causal association of HF with COVID‑19 via reverse MR
As shown in Table 2, the reverse MR analysis showed no 
statistically significant evidence of a causal relationship 
between HF and COVID-19 (OR, 1.162; 95% CI, 0.824–
1.639; p = 0.393), hospitalized COVID-19 compared 
with the general population (OR, 1.173; 95% CI, 
0.765–1.780; p = 0.464), and severe COVID-19 (OR, 
0.539; 95% CI, 0.248–1.173; p = 0.119). The relationship 
between the effect sizes of HF and the phenotypes of 
COVID-19 are presented in Additional file  2: Figs. S4, 
S5, and S6. There was no heterogeneity and directional 
pleiotropy based on the Q test and MR-Egger intercept 
test. The results of leave-one-out sensitivity analysis 
showed that the association between genetically 
instrumented HF with COVID-19 phenotypes were not 
substantially driven by any individual SNP (Additional 
file 2: Figs. S7–S9).

Discussion
To understand the causal relationship between COVID-
19 and HF, a bidirectional MR was performed on these 
two groups using publicly summarized GWAS data. 
Since genetic variants are substitutes for COVID-19, 
some other studies have only shown that COVID-
19 is associated with HF [28, 29]; however, our study 
showed no causal effect of COVID-19 genetic liability 
on the HF risk. Furthermore, there was no MR evidence 
indicating that genetic liability to HF increases the risk of 
COVID-19.

Several retrospective studies have shown that HF is 
the most common clinical manifestation of COVID-
19 after acute respiratory distress syndrome (ARDS), 
respiratory failure, and sepsis [9, 31]. As a possible 
serious consequence of myocardial injury associated 
with COVID-19 [32, 33], HF is accompanied by high 
mortality [13]. Meanwhile, decreased immune function 
and general weakness in COVID-19 patients may be 
risk factors for HF. It has been reported that monocytes 
appear to produce more tumor necrosis factor alpha 

Fig. 3 Scatter plot showing the associations of the SNP effects on COVID-19 against the SNP effects on HF. Circles indicate marginal genetic 
associations with COVID-19 and risk of HF for each variant. Error bars indicate 95% CIs. COVID-19: Coronavirus disease 2019; HF: Heart failure; MR: 
Mendelian randomization; SNP: Single nucleotide polymorphism
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(TNF-α) and interleukin-10 (IL-10) in COVID-19 
patients [34]. TNF-α and IL-10 play different roles in 
the inflammatory process. TNF-α is one of the most 
important proinflammatory cytokines. It promotes 
oxidative stress in areas of inflammation and indirectly 
causes fever [35]. IL-10 plays a central role in infection by 
limiting the immune response to pathogens [36].

Therefore, COVID-19 patients may be more prone to 
myocardial damage and belong to the high-risk group for 
HF. Although previous observational studies have shown 
a correlation between COVID-19 and HF, the association 
has not been established as to whether a genetic 
susceptibility to COVID-19 plays a causal role in HF. 
MR studies, an IV-based method to infer the causality 
between intermediate phenotypes and disease, have been 
widely conducted in HF research [26].

While a small number of cases directly develop viral-
associated myocarditis and this may subsequently lead to 
HF, in the majority of COVID-19 patients, heart muscle 
damage or heart failure is due to mechanisms other 
than natural viral infection alone [15, 32, 37–39]. To 
date, few cases of COVID-19-related acute myocarditis 

have been described in the literature. In some cases, 
SARS-CoV-2 was present in macrophages but not in 
cardiomyocytes. Furthermore, endomyocardial biopsies 
have showed only low-grade interstitial myocardial 
inflammation and specific changes in cardiac myocytes, 
including myofibrillar lysis and lipid droplets [40]. 
These findings suggest that the virus can reside in the 
heart, but these findings do not prove that the virus 
has a direct pathogenic role in heart failure [15, 16]. A 
recent study found that HF were not associated with the 
risk of COVID-19 severity [41]. Our novel results first 
indicated that the genetic liability of COVID-19 had no 
causal effects on the risk of HF, which was consistent 
with previous studies [15, 16]. These findings implied 
that physicians should treat COVID-19 as a genuine 
confounder and should pay more attention to the other 
factors in high-risk individuals.

Our MR research has many advantages. First, we 
performed four complementary MR methods to prevent 
a reverse causal bias. Second, various SNPs were used 
as a tool to study COVID-19, which made it possible to 
detect the HF risk and provided a powerful genetic tool 

Fig. 4 Scatter plot showing the associations of the SNP effects on hospitalized COVID-19 compared with population against the SNP effects on 
HF. Circles indicate marginal genetic associations with hospitalized COVID-19 and risk of HF for each variant. Error bars indicate 95% CIs. COVID-19: 
Coronavirus disease 2019; HF: Heart failure; MR: Mendelian randomization; SNP: Single nucleotide polymorphism
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for COVID-19 infection. Third, the IVs used in our study 
were independent SNPs that could minimize interference 
from linkage disequilibrium.

There are also some limitations to our study. First, the 
HF GWAS is from a pre-COVID-19 pandemic cohort. 
This cohort does not have HF cases that are related to 
COVID-19 infection and cannot capture the genetic 
variants influencing the predisposition to COVID-
19-related HF. Future MR studies are needed when a 
HF GWAS using post-COVID-19 cohort is available. 
Second, a potential limitation of our study is that 
some data may overlap across HF. Theoretically, ideal 
data should be obtained from independent samples. 
However, in  practice, the initial GWAS studies mixed 
some samples. Therefore, we used strong instruments 
(i.e., F statistic much greater than 10) to minimize the 
bias caused by overlapping [29]. Third, the genetic data 
from the COVID-19 study focused on susceptibility and 
severity. The susceptibility to and severity of COVID-19 
were mixed in the original data. Our work requires more 
specific clarification of the issue, but at present, we have 
no methods to distinguish the two classifications. Fourth, 

the small number of variants associated with COVID-
19 may have limited the statistical power in our study. 
Fifth, although we used multiple methods to rule out 
pleiotropy, the link between SNPs and COVID-19 may 
still be through other means. We also cannot exclude 
a common genetic basis between COVID-19 and HF. 
These results were only derived from a statistical analysis, 
so physicians must be more cautious about patients with 
COVID-19. Thus, although our analysis did not provide 
evidence of an association between genetic responsibility 
for COVID-19 and HF, it does not exclude the value of 
COVID-19 infection in HF risk prediction. In the future, 
more research is needed to explore the association 
between COVID-19 and HF from different perspectives.

Conclusions
This analysis used bidirectional MR to explore potential 
causal associations between COVID-19 and HF. 
Although there have been efforts to search for causal 
mechanisms linking the two diseases, our analysis found 
that COVID-19 is not causally associated with HF.

Fig. 5 Scatter plot showing the associations of the SNP effects on severe COVID-19 against the SNP effects on HF. Circles indicate marginal genetic 
associations with severe COVID-19 and the risk of HF for each variant. Error bars indicate 95% CIs. COVID-19: Coronavirus disease 2019; HF: Heart 
failure; MR: Mendelian randomization; SNP: Single nucleotide polymorphism
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Additional file1: MR analysis

Additional file 2: Fig.S1 MRleave-one-outsensitivityanalysisforCOVID-
19andHF. MR:mendelianrandomization;COVID-19:CoronavirusDisease20

19;HF:heartfailure. Fig. S2 MRleave-one-outsensitivityanalysisforhospital-
izedCOVID-19andHF. MR:mendelianrandomization;COVID-19:Coronaviru
sDisease2019;HF:heartfailure. Fig. S3 MRleave-one-outsensitivityanalysis-
forsevereCOVID-19andHF. MR: mendelianrandomization;COVID-19:Coron
avirusDisease2019;HF:heartfailure. Fig. S4 Scatterplotshowingtheassocia-
tionsoftheSNPeffectsonHFagainsttheSNPeffectsonCOVID-19. Circlesin-
dicatemarginalgeneticassociationswithHFandriskofCOVID-19foreach-
variant.Errorbarsindicate95%CIs.COVID-19: Coronavirusdisease2019;HF: 
Heartfailure;MR: Mendelianrandomization;SNP: Singlenucleotidepolymor-
phism. Fig. S5 ScatterplotshowingtheassociationsoftheSNPeffectsonHF-
comparedwithpopulationagainsttheSNPeffectsonhospitalizedCOVID-19. 
CirclesindicatemarginalgeneticassociationswithHFandriskof-
hospitalizedCOVID-19foreachvariant.Errorbarsindicate95%CIs.
COVID-19:Coronavirusdisease2019;HF: Heartfailure;MR: 
Mendelianrandomization;SNP: Singlenucleotidepolymorphism. Fig. S6 
ScatterplotshowingtheassociationsoftheSNPeffectsonHFagainsttheSNPef-
fectsonsevereCOVID-19. Circlesindicatemarginalgeneticassociationswith-
HFandtheriskofsevereCOVID-19foreachvariant.Errorbarsindicate95%CIs.
COVID-19: Coronavirusdisease2019;HF: Heartfailure;MR: 
Mendelianrandomization;SNP: Singlenucleotidepolymorphism. Fig. S7 
MRleave-one-outsensitivityanalysisforHFandCOVID-19. MR: mendelianra
ndomization;COVID-19: CoronavirusDisease2019;HF: heartfailure. Fig. S8 
MRleave-one-outsensitivityanalysisforHFandhospitalizedCOVID-19. MR: 
mendelianrandomization;COVID-19:CoronavirusDisease2019;HF:heartfail
ure. Fig. S9 MRleave-one-outsensitivityanalysisforHFandsevereCOVID-19. 
MR: mendelianrandomization;COVID-19: CoronavirusDisease2019;HF:hea
rtfailure

Additional file 3: Table S1 The SNPs that are associated with COVID-
19. Table S2 The SNPs that are associated with hospitalized COVID-19. 
Table S3 The SNPs that are associated with severe COVID-19. Table S4 
The SNPs that are associated with heart failure.
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Table 2 Causal association of HF with COVID-19 via reverse MR 
analysis

HF Heart failure, CI Confidence interval, IVW Inverse-variance weighted, MR 
Mendelian randomization, MR-Egger Egger regression, OR Odds ratio, SE 
Standard error, SNP Single-nucleotide polymorphism

Beta is the estimated effect size. P < 0.05 was considered statistically significant

Phenotype Numbers 
of SNPs

OR (95% CI) Beta (SE) P

COVID-19 vs. population

IVW 4 1.162 (0.824–
1.639)

0.150 (0.176) 0.393

Weighted 
median

4 1.240 (0.912–
1.686)

0.215 (0.157) 0.170

Weighted model 4 1.433 (0.850–
2.414)

0.360 (0.266) 0.270

MR-Egger 4 0.965 (0.302–
3.079)

− 0.036 (0.592) 0.957

egger_intercept 0.034 0.769

Q statistic 0.072

Hospitalized COVID-19 vs. population

IVW 4 1.173 (0.765–
1.780)

0.160 (0.218) 0.464

Weighted 
median

4 1.373 (0.814–
2.318)

0.317 (0.267) 0.235

Weighted model 4 1.420 (0.648–
3.112)

0.350 (0.400) 0.446

MR-Egger 4 0.564 (0.191–
1.669)

− 0.572 (0.553) 0.410

egger_intercept 0.033 0.287

Q statistic 0.799

Severe COVID-19 vs. population

IVW 4 0.539 (0.248–
1.173)

− 0.618 (0.396) 0.119

Weighted 
median

4 0.586 (0.225–
1.523)

− 0.535 (0.488) 0.273

Weighted model 4 0.592 (0.198–
1.770)

− 0.523 (0.559) 0.418

MR-Egger 4 0.655 (0.060–
7.136)

− 0.423 (1.218) 0.762

egger_intercept 0.066 0.881

Q statistic 0.859
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