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Abstract

A retrospective analysis of longitudinally collected athlete monitoring data was

conducted to generate a model of neuromuscular recovery after anterior cruciate

ligament (ACL) injury and reconstruction (ACLR). Neuromuscular testing data in-

cluding countermovement jump (CMJ) force‐time asymmetries and knee extensor

strength (maximum voluntary contractionext) asymmetries (between‐limb asymmetry

index—AI) were obtained from athletes with ACLR using semitendinosus (ST) au-

tograft (n = 29; AI measurements: n = 494), bone patellar tendon bone autograft

(n = 5; AI measurements: n = 88) and noninjured controls (n = 178; AI measurements:

n = 3188). Explosive strength measured as the rate of torque development was also

calculated. CMJ force‐time asymmetries were measured over discrete movement

phases (eccentric deceleration phase, concentric phase). Separate additive mixed

effects models (additive mixed effects model [AMM]) were fit for each AI with a

main effect for the surgical technique and a smooth term for the time since surgery

(days). The models explained between 43% and 91% of the deviance in neuro-

muscular recovery after ACLR. The mean time course was generated from the AMM.

Comparative neuromuscular recovery profiles of an athlete with an accelerated

progression and an athlete with a delayed progression after a serious multiligament

injury were generated. Clinical Significance: This paper provides a new perspective

on the utility of longitudinal athlete monitoring including routine testing to develop

models of neuromuscular recovery after ACLR that can be used to characterize

individual progression throughout rehabilitation.

K E YWORD S

athlete monitoring, generalized additive mixed models, knee injury, mixed effects, multilevel
modeling, return to play, sport injury
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1 | INTRODUCTION

Longitudinal athlete monitoring has become increasingly common-

place in sport performance settings.1 This includes routine neuro-

muscular testing after anterior cruciate ligament (ACL) injury and ACL

reconstruction surgery (ACLR) to track progress throughout re-

habilitation and inform return to sport (return to play) decision

making.2,3 Longitudinally collected neuromuscular testing data can

provide sport practitioners and clinicians with novel data‐informed

models of individual progression throughout rehabilitation after sport

injury.4 This is important as neuromuscular testing is recommended

after ACLR to determine return to sport readiness.5 Yet, the sensi-

tivity of typical performance‐based clinical testing batteries (e.g.,

single leg hop for distance or time) for detecting ACL reinjury risk is

questionable,6–8 and a high fraction of athletes who suffer ACL injury

do not return to their preinjury performance level.9 Further, as sport

performance teams often utilize an interdisciplinary and multi-

disciplinary team approach to support athletes throughout the return

to health and performance transitions after ACL injury,10,11 models of

functional recovery based on multifaceted neuromuscular testing can

help performance teams target their rehabilitation approach along-

side forecasting individual athlete recovery throughout rehabilitation.

To this end, forecasting neuromuscular recovery throughout re-

habilitation may help sport performance teams manage the individual

variability that exists in post‐ACLR rehabilitation timelines and po-

tentially improve return to sport decision making.3 For instance, the

individual recovery trajectory can be compared against the average

time course generated from statistical modeling to identify athletes

who are tracking behind expectations to allow more time for re-

habilitation before returning to sport.

Broad, multifaceted neuromuscular testing programs are re-

commended for athletes with ACLR. Notably, maximal muscle

strength testing is important for athletes with ACLR and restoring

between‐limb symmetry in quadriceps muscle strength is associated

with positive return to sport outcomes.7 In addition to maximal

strength testing, assessments of maximal muscle power and reactive

strength (plyometric) capacity,11,12 along with explosive strength

measured as the rate of force development (RFD) using isometric

dynamometry are separate, trainable, and often deficient neuro-

muscular capacities after ACL injury.13 Further, in addition to the ACL

injury itself, the surgical technique (e.g., semitendinosus—ST auto-

graft vs. bone patellar tendon bone—BPTB autograft) may cause

graft‐specific neuromuscular impairments including diminished ex-

plosive strength capacity (i.e., RFD) that need to be accounted for

throughout rehabilitation.13 For example, the ST autograft has been

shown to cause joint‐angle specific impairments in knee flexion RFD

that are correlated with semitendinosus muscle cross‐sectional

area,14 the BPTB autograft leads to reductions in knee extensor

strength15 and elevated countermovement jump (CMJ) asymmetry

measured as the between‐limb asymmetry index (AI) has been shown

to exist after BPTB autograft compared to ST autograft.16,17 Taken

together, these results suggest the importance of including maximal

muscle strength testing alongside an assessment of explosive muscle

strength capacity in athletes with ACL injury specific to the surgical

comorbidities to individualize rehabilitation and training.

Further, performance‐based single leg hop tests for time or dis-

tance appear to provide limited predictive validity with respect to

return to sport outcomes for athletes with ACL injury.7 Conse-

quently, kinetic and kinematic analysis of jumping, landing and

change of direction maneuvers including the use of dual force plate

systems to evaluate between‐limb force‐time asymmetries and lower

limb mechanical muscle function have become commonplace in ACL

rehabilitation research, and certain measures like vertical drop jump

reactive strength have been shown to predict the risk of ACL reinjury

in an athlete population.18 This type of biomechanical analysis may

also help practitioners identify trainable neuromuscular deficits after

ACLR.17,19–24 Here, the between‐limb AI assessed in a bilateral CMJ

over discrete movement phases has been proposed to monitor

neuromuscular function longitudinally after ACLR.16,17,22,23,25 Several

CMJ force‐time (kinetic) variables have been measured in the ec-

centric deceleration (braking) and the concentric (propulsive) phases

and these have been used to differentiate between an ACLR and

noninjured status,22 the comorbidities arising from the autograft

technique16 and time from surgery17 in an athlete population.

However, test reliability is a crucial consideration for effective athlete

monitoring26 and while some measures such as the CMJ eccentric

RFD show relatively high variation (coefficient of variation >15%)

the kinetic impulse obtained by time integration of the vertical

ground reaction force is a stable outcome measure27 that has been

used frequently in the context of return to sport testing after

ACLR.3,16,17,22

Muscle strength, muscle power and explosive strength assess-

ments have become a regular part of post‐ACLR rehabilitation with

athlete populations, and the monitoring approach has increased the

size of preinjury and postinjury datasets.2,3 However, to maximize the

utility of longitudinal athlete monitoring data, statistical models used

in sport science and the study of sport injury should address the

correlation that occurs consequent to the repeated measurements on

the same athletes over time, the potential for nonlinear time de-

pendencies, non‐normal data distributions, and the frequent occur-

rence of participant drop‐out and/or unbalanced datasets that occur

readily in a real‐world training environment in which limited experi-

mental control can be exercised.28,29 The generalized additive model

technique has been used in other scientific disciplines to model

correlated and complex data inherent in biological systems,30 and this

may be useful for sport science and sport medicine practitioners to

account for these challenges in the post‐ACLR rehabilitation time

period.

Routine neuromuscular monitoring that includes measures of

between‐limb AI has become commonplace to track individual pro-

gress throughout rehabilitation after ACLR.2,3,5,11 Individual recovery

may unfold differently depending on the combined injuries, the type

of surgery and the neuromuscular capacity that is measured. Statis-

tical modeling of the time‐course change in the between‐limb AI

using GAMM may characterize individual progress during rehabilita-

tion and forecast post‐ACLR neuromuscular recovery. To elucidate
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these notions, we conducted a retrospective analysis of longitudinally

collected neuromuscular testing data from athletes with ACLR who

underwent ST autograft and BPTB autograft using additive mixed

effects modeling (GAMM). We hypothesized that neuromuscular

function quantified as the between‐limb AI obtained for knee ex-

tensor maximal strength and explosive strength (RFD) alongside CMJ

kinetic impulse asymmetry in the eccentric deceleration phase (re-

versal of the downward acceleration of the body centre of mass

[BCM]) and concentric phase (vertical propulsion) would display a

time dependent decrease throughout rehabilitation after ACLR.

Further, as an illustrative example of the application of this modeling

technique, we present the neuromuscular recovery of an athlete with

ACLR who progressed faster than the average time‐course compared

to a second athlete with a severe multiligament knee injury who

displayed a slower recovery. We also present a comparison of the

between‐limb AI data for ACLR athletes stratified by the surgical

technique and time since surgery. Finally, we provide between‐limb

AI data from a cohort of noninjured control athletes and preinjury

data from the ACLR athletes as benchmarks of comparison to con-

textualize the post‐ACLR recovery profiles generated by the model.

2 | METHODS

2.1 | Study design

A database containing 10 years of longitudinally collected neuro-

muscular testing data from 214 athletes training in a sport perfor-

mance centre was accessed alongside athlete injury data. The

research team that included qualified sport medicine practitioners

used medical records to confirm athletes with ACL injury (n = 34; ST:

n = 29; BPTB: n = 5) and noninjured control athletes (n = 178). Pre-

injury data existed for 18 participants in the ACLR group, but these

data were excluded from the statistical modeling and are reported

only for comparison purposes. Data from the noninjured control

group were also not included in the statistical modeling and are

presented only for comparison purposes. Data on ACLR athletes

were collected between 2 and 24 months postsurgery (mean ± SD =

10 ± 4 months). There were 13 left knee ACL injuries and 21 right

knee ACL injuries. Surgical records were not accessible for all athletes

in the present study. However, in addition to isolated ACL tears, the

participant pool included athletes who sustained a range of combined

injuries with their primary ACL rupture, including three athletes with

full knee dislocations, but we are unable to provide a detailed account

of injuries such as concurrent meniscal tears and chondral lesions

across all participants. Additionally, for athletes who sustained bi-

lateral ACL injury, data from the timepoint of the first ACLR to the

timepoint of the second ACLR were included in the statistical model

but data obtained after the second ACLR were removed. Six athletes

who sustained bilateral ACL injuries including two athletes with si-

multaneous left and right ACL rupture (i.e., bilateral ACL rupture in

the same injury event) had no data between the first ACL injury and

the second ACL injury.

Athletes with a history of sport injuries other than ACLR such as

leg fractures, other non‐ACL knee injuries (e.g., isolated meniscal

tears), ankle injuries, soft tissue injuries (e.g., muscle tears), hip in-

juries and lumbar spine injuries were excluded from the analysis. The

Conjoint Research Ethics Board at the University of Calgary approved

the experimental protocols, and participants gave written informed

consent before involvement in the testing protocols.

2.2 | Neuromuscular testing

2.2.1 | Dual force plate vertical jump kinetic analysis

Maximal CMJ testing performed on a dual force plate system was

conducted regularly throughout the testing period as a part of routine

athlete monitoring after a standardized warm up procedure before

training. The protocol included a 5‐jump CMJ test with 3 s of still

standing between jumps using a self‐determined depth. All jump tests

were performed with the hands placed firmly on the hips and were

supervised by a certified exercise professional.

A detailed explanation of the vertical jump testing protocol and

kinetic analysis procedures have been described elsewhere.22,23

Briefly, the vertical ground reaction force (Fz) from the right and left

legs were measured simultaneously using a dual force plate system

(Accupower Force Platform, AMTI) at a sampling frequency of

1500Hz and recorded on a personal computer (MyoResearch Ver-

sion 3.8; Noraxon). Data were exported and analyzed using a custom‐

built computer program (Matlab R 2018b, Mathworks). The velocity

of the BCM was obtained by time integration of the instantaneous

acceleration signal ([Fz/body mass] × –9.81m/s2) calculated from the

total Fz, summed from the right and left limbs.

A between‐limb vertical jump force‐time AI was calculated over

discrete jump phases by time integration of Fz over the eccentric

deceleration phase (reflecting the capacity to reverse the downward

acceleration of the BCM) and concentric phase (vertical propulsion of

the BCM), respectively.22 The right and left total impulse were

compared using the 5‐jump mean AI using the following formula:



















vs
AI(%) =

of Left  .  Right Impulse
× 100

Right Impulse − Left Impulse

Maximum

2.2.2 | Knee extensor muscle strength testing

Maximum voluntary contraction (MVCs) of isometric knee extension

were conducted using a customized Cybex dynamometer in-

strumented with a third‐party load cell (LC703‐500; Omega)

and force was sampled at 1500 Hz (MyoResearch Version 3.8;

Noraxon).3,14 For the knee extension trials, participants were posi-

tioned in a seated position with the knee joint angle set at 70° of

knee flexion. The tester then instructed the participant to perform

3 × 3 s MVCs of isometric knee extension separated by a 20 s rest

period as “fast and as hard as possible.” Visual feedback and strong
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verbal encouragement were provided throughout the testing

protocol.

The moment arm (distance from the axis of rotation to the point

of force application) of the shank was obtained to calculate knee

extensor torque. The isometric torque‐time curves were smoothed

(Matlab “smooth” function using 33ms centered moving average

window). A 200ms average around the peak value was calculated to

obtain the maximum torque. The derivative of the signal was then

calculated to identify the peak rate of torque development (RTD). A

100ms average around this timepoint was calculated to obtain

maximum RTD. The maximum knee extensor peak torque value and

the 3‐repetition RD mean value were compared using the following

formula:




















AI(%) =

of Left vs.  Right Torque
× 100

Right Torque − Left Torque

Maximum

2.3 | Statistical analysis

First, all between‐limb AIs were corrected for the ACL group so that

a positive value reflected non‐injured limb dominance and a nega-

tive value injured limb dominance (i.e., the AI was multiplied by −1

for athletes with right knee ACL injury). Next, neuromuscular testing

data including the CMJ eccentric deceleration phase, the CMJ

concentric phase, the knee extensor MVC strength and the knee

extensor RTD were cleaned and inspected for statistical outliers.

The data from a single noninjured athlete with a consistent record

of between‐limb asymmetry in the CMJ eccentric deceleration

phase of more than 20% were subsequently removed from the

noninjured group.

A descriptive analysis was conducted to compare ACL injured

group stratified by the time from surgery and the surgical technique

alongside a comparison to the preinjury measurements when it ex-

isted. A comparison to the noninjured controls was also done.

The ACLR athletes were then selected to generate the GAMMs

(i.e., the noninjured controls and the preinjury data were excluded

from the GAMM). Models were first built with multiple predictor

variables. However, to achieve an optimal fit, separate GAMMs

(GAMM 1) were fit for each of the between‐limb AI measures for the

ACL injured participants with main effects for the surgical technique,

a smooth term for the time since surgery measured in days, and

random intercepts for athlete. A second version of the GAMM

(GAMM 2) was also fit allowing for different temporal recovery

profiles between the ST and the BPTB autograft techniques. The

distribution and structure of model residuals were checked along

with a model diagnostic check, and the fit of the two GAMMs were

compared using the Akaike Information Criteria (AIC), where a lower

AIC indicates a better model fit. Finally, a time course of neuro-

muscular recovery was generated for an athlete with ACLR who

showed an accelerated progression compared to the average profile

alongside comparison to a delayed progression of an athlete who

sustained a severe multiligament injury. All statistical analyses were

conducted in R Studio Version 1.3.1093 l (R Version 4.03). The

“mgcv” package was used to generate the GAMMs, run model diag-

nostics and check model fit. The “itsadaug” package was used to

generate the model plots and the individual neuromuscular recovery

profiles (α = 0.05).

3 | RESULTS

The sample size and count of AI measures for the BPTB, ST and

control groups are shown in Table 1 (total measurements ACLR:

n = 582; total measurements noninjured control: n = 3188; total

measurements pre‐ACLR: n = 374), and an aggregated comparison of

four AI variables across two tests (CMJ eccentric deceleration phase,

CMJ concentric phase, knee extension MVC strength and knee ex-

tension RTD) for the ACLR group stratified by the time since surgery

is given in Figure 1. A comparison to the noninjured controls and the

preinjury testing is also provided. Across the four AI metrics, the

absolute value of the aggregated mean ± standard deviation AI

TABLE 1 Breakdown of measurement count and sample size by
sport and graft type

ACLR
Control Count (n) BPTB STG

Total number of athletes (athletes
with pre‐ACLR data)

196 (18) 5 29

CMJ concentric phase tests 195 5 28

CMJ eccentric deceleration phase
tests

195 5 28

Knee extension MVC strength tests 67 3 21

Knee extension RTD tests 67 3 21

Alpine skiing 70 – 11

Freestyle skiing 33 – 6

Snowboarding 5 – –

Skier cross 22 – 4

Ski jumping 10 – 1

Hockey – 1 –

Luge 23 – 1

Football 4 1 1

Soccer 1 2 –

Wrestling 35 2 1

Other – – 2

Mean measurements/athlete 18 18 17

Standard deviation of
measurements/athlete

27 27 19

Abbreviations: ACLR, anterior cruciate ligament reconstruction;
BPTB, bone patellar tendon bone autograft; CMJ, countermovement
jump; MVC, maximum voluntary contraction; RTD, rate of torque
development; ST, semitendinosus autograft.
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decreased from 13 ± 9% at <180 days postsurgery timepoint to

8 ± 7% at the >365 days timepoint for the ACL group. The mean AI

for the noninjured control group was 5 ± 5%.

The GAMM models for each of the between‐limb AI outcome

measures is presented in Figure 2 along with the model parameters

in Table 2. Model fit for the CMJ concentric phase AI was best

with GAMM 2 (χ2 = 20.1, df = 2, p < 0.001). There were no effects

found for the surgical technique (p = 0.53). The concentric phase AI

decreased over time (p < 0.001), and the deviance explained by

the model was 91%. Model fit for the CMJ eccentric deceleration

phase AI was also best with GAMM 2 (χ2 = 12.7, df = 2, p < 0.001).

There was no difference in the eccentric deceleration phase AI be-

tween surgical technique (p = 0.71). The eccentric deceleration phase

AI decreased over time (p < 0.001), and the deviance explained by the

model was 79%.

Model fit for the knee extensor MVC strength AI was best with

GAMM 2 (χ2 = 5.0, df = 2, p < 0.01) and knee extensor strength AI was

higher in the BPTB group (p < 0.05). Knee extensor MVC strength AI

decreased over time for the ST autograft group (p < 0.001) and the

BPTB group (p < 0.05). The deviance explained by the model was

43%. Finally, GAMM 2 provided only a marginal improvement in

model fit compared to GAMM 1 for knee extensor RFD (χ2 = 3.9,

df = 2, p < 0.05). The recovery in knee extension RFD asymmetry was

slower for BPTB (p < 0.05), and an effect of time since surgery on

RFD AI was only present for the ST autograft condition (p < 0.01).

The deviance explained in the knee extensor RFD AI by GAMM 2

was 47%.

The GAMM for the CMJ concentric phase AI (deviance ex-

plained = 91%) and the CMJ eccentric deceleration phase (deviance

explained = 79%) were subsequently used to develop individualized

F IGURE 1 A comparison of the aggregated asymmetry index (AI) scores across countermovement jump and knee extension strength
(expressed as the absolute value) stratified by time since surgery. Black dashed line shows the group mean. The colour of the point estimate
represents the dominant limb. ACLR, anterior cruciate ligament reconstructed; BPTB, bone patellar tendon bone autograft; ST, semitendinosus
autograft [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Time course change in the
between‐limb asymmetry index (AI) for the
participants with anterior cruciate ligament (ACL)
reconstruction. Black dashed horizontal lines
show mean AI for noninjured controls (±5%).
BPTB, bone patellar tendon bone autograft; CMJ,
countermovement jump; ST, semitendinosus
autograft [Color figure can be viewed at
wileyonlinelibrary.com]
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neuromuscular recovery profiles for two athletes with ACLR com-

pared to the average recovery profile including an athlete with an

accelerated progression and a second athlete with a delayed pro-

gression consequent to a severe multiligament knee injury (Figure 3).

Only the concentric phase AI profile differed compared to the group

average. No differences were found for the recovery profile of the

eccentric deceleration phase.

4 | DISCUSSION

The aim of this retrospective analysis was to present how longitudinal

athlete monitoring and nonlinear statistical methods (i.e., generalized

additive modelling, and in the present study AMM) can be combined

to model individual progress throughout rehabilitation after ACL

injury. The capacity to forecast individual neuromuscular recovery

after ACLR is particularly useful for clinicians and practitioners as the

postinjury recovery may unfold differently over time depending on

the type of surgery and the combined injuries associated with the

primary ACL tear. Specifically, we showed that neuromuscular

function measured as the between‐limb AI across a range of muscle

strength, muscle power and explosive strength (RFD) measures

were time dependent and explained a high fraction of the variance

(42%–91%) in the neuromuscular recovery of athletes with ACLR.

Further, the AMM method was capable of distinguishing athlete re-

covery on an individual basis, including an athlete who displayed an

accelerated progression compared to the group average and an

athlete with a delayed progression consequent to a multi‐ligament

injury (c.f. Figure 3). The notion that neuromuscular recovery differs

between measures was evidenced by the relative similarity in the

TABLE 2 Comparison of fit between two additive mixed effects models using the Akaike Information Criteria (AIC)

Movement Asymmetry index metric Model AIC R2

Deviance
explained

Countermovement jump Eccentric deceleration phase Model 1 1387.0 0.71 75%

Model 2 1354.1* 0.75 79%

Concentric phase Model 1 1207.3 0.87 89%

Model 2 1161.1* 0.89 91%

Knee extension Maximum torque (MVC) Model 1 589.0 0.34 42%

Model 2 588.3* 0.35 43%

Rate of torque development (RTD) Model 1 647.0* 0.36 46%

Model 2 648.5 0.36 47%

Note: Model 2 allows for the time course change of the asymmetry index to differ by surgical technique. Lower AIC indicates better model fit. The model
formulas used to fit Models 1 and 2 were done in R via the bam function in the mgcv package.

The model formulas used to fit Models 1 and 2 were done in R via the bam function in the mgcv package.

Model 1: bam(Asymmetry_Index ~ Surgical_Technique + s(Time) + s(Athlete, bs = “re”), method = “REML”)

Model 2: bam(Asymmetry_Index ~ Surgical_Technique + s(Time, by = Surgical_Technique) + s(Athlete, bs = ‘re’), method = ‘REML’)

*p < 0.05

F IGURE 3 Two functional recovery plots for the countermovement jump (CMJ) concentric phase AI and the eccentric deceleration phase AI
obtained from the additive mixed effects model (AMM) showing an accelerated recovery after anterior cruciate ligament reconstruction (ACLR)
(blue dashed line) and a delayed recovery resulting from a severe multiligament knee injury (red dashed line). Black dashed horizontal lines show
mean asymmetry index for noninjured controls (±5%) [Color figure can be viewed at wileyonlinelibrary.com]
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recovery profiles of the two athletes for the eccentric deceleration

phase of the CMJ but divergent recovery profiles for the concentric

phase of the CMJ. The eccentric deceleration phase of the CMJ in-

volves braking (negative muscle power) or the capacity to reverse the

downward acceleration of the BCM. This high RFD phase ends at the

minimum downward displacement of the BCM whereas the con-

centric phase reflects the generation of positive muscle power and

vertical propulsion from this position. The capacity to generate high

vertical RFD throughout the eccentric deceleration phase of the CMJ

is key indicator of vertical jump performance and is strongly asso-

ciated with the capacity to perform coupled eccentric‐concentric

(stretch shorten cycle—SSC) movements measured as the reactive

strength index (RSI).31,32 In the context of ACL injury, diminished RSI

has been shown to predict future ACL reinjury in an athlete popu-

lation, highlighting the importance of assessing SSC capacity in ath-

letes with ACLR.12 Additionally, analysis of vertical jumps obtained

from patients with BPTB autograft showed diminished vertical

ground reaction force in the eccentric deceleration phase of the bi-

lateral CMJ for both the injured and noninjured limb in those with a

low subjective knee score rating compared to those with a high

rating.25 As eccentric versus concentric strength capacities have

different physiological determinants, quantifying recovery of each

neuromuscular capacity separately may provide practitioners with an

opportunity to prescribe resistance training loading parameters in a

more targeted and individualized manner.

This paper introduced the use of the GAMM statistical technique

(i.e., nonlinear, mixed effects, multilevel modeling) to profile in-

dividual neuromuscular recovery after ACLR surgery and address the

correlation that exists in longitudinal athlete monitoring data arising

from the repeated measurements over time. This type of statistical

modeling has been used in other scientific disciplines to account for

complex data structures,30,33 and mixed effects, multilevel statistical

modeling has been recommended for use in sport science.29 As the

occurrence of sport injuries is also complex, statistical models like

GAMMs may be of interest to sport medicine practitioners and

clinicians to support decision making after ACL injury.28 Here, a

frequent question of interest is: “how is the individual athlete re-

covering after surgery and is the trajectory according to expecta-

tions?” In fact, the questions surrounding the temporality of recovery

after injury/illness are broadly important in medicine.34 Applications

of sport injury return to sport forecasting might include managing the

individual variation that is present in post‐injury rehabilitation pro-

gression, providing data‐informed recovery timeline estimates for

management personnel, coaches, or the athlete themself, and ulti-

mately to help a multidisciplinary team identify athletes who may

require more time for physical reconditioning before returning to

sport. As opposed to indiscriminate time‐based criteria, modeling

recovery after ACLR using longitudinal neuromuscular testing allows

the post‐injury recovery trajectory to be estimated on an in-

dividualized basis.

Enhancing return to sport testing with longitudinal athlete

monitoring including expansive neuromuscular testing and the

GAMM method may address certain limitations that exist between

current functional testing practices and the lack of predictive validity

with respect to return to sport outcomes after ACLR.8 Post‐ACLR

neuromuscular testing is often limited to performance‐based testing

like single leg hops for distance and/or time, which may fail to

identify neuromuscular deficits that are associated with poorer out-

comes after return to sport and return to competition.7 Further, the

incorporation of kinetic analysis of the vertical jump,16,21–24 along-

side knee extensor/flexor strength assessments7,35 including an

evaluation of explosive strength (rapid muscle force generation)

measured as RFD13,35 can help identify trainable neuromuscular

deficits and develop targeted rehabilitation strategies. Importantly,

these assessment methods have become increasingly common in

sport performance settings and permit a higher frequency of neu-

romuscular testing over the course of the post‐ACLR time period,

providing greater opportunity for data‐informed decision making.2,3

A strength of the GAMM approach is the flexibility in applying

the smoothing splines for the predictor variables, which may be im-

portant after ACL injury where the trajectory of the time course

recovery may differ on a group level (e.g., trained vs. untrained,

adolescent vs. adult, BPTB autograft vs. ST autograft) and an in-

dividual basis (e.g., adherence to rehabilitation, psychological readi-

ness). In the present study, we fit separate GAMMs for each

neuromuscular capacity, permitting an analysis of recovery in a tar-

geted manner. Further, we modeled each between‐limb AI separately

using a smoothing spline technique that permitted the time‐

dependent recovery trajectory to vary between the BPTB and ST

autograft surgical techniques. Not only was the model fit superior

with this approach but also, it accounted for the effects of the ACLR

surgical technique itself on postinjury recovery.

Factors such as the surgical technique or choice of graft often fall

outside of the control of the rehabilitation team and may vary be-

tween athletes with ACLR. The decision to choose one graft over

another, for example, is multifactorial. While the BPTB autograft may

be superior to the ST autograft in terms of graft failure rate and ACL

reinjury outcomes,18,36 in certain sport settings, a surgical technique

may be preferred to mitigate the risk of surgically‐related co-

morbidities after return to sport. The ST autograft technique, for

instance, has been reported as the most used graft type in elite

Canadian alpine skiers to minimize the risk of anterior knee pain after

return to skiing.37

Attending to the potential covariates that may impact individual

recovery after ACL injury like the surgical technique is essen-

tial,14,16,18,36 and this is a strength of generalized additive modeling

and the AMM approach used here. For example, the bilateral CMJ

loading strategy measured as the between‐limb asymmetry in kinetic

impulse has been shown to differ between graft type (i.e., BPTB vs.

ST).16 Here, participants undergoing BPTB autograft displayed higher

CMJ between‐limb AI compared to those with ST autograft. Inter-

estingly, while both the BTPB and ST autograft groups showed higher

asymmetry in the CMJ concentric phase, only the BPTB group had

higher asymmetry in the eccentric deceleration phase compared to

noninjured controls.16 Further, a study including elite alpine skiers

with and without ACLR found elevated between‐limb asymmetry
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only for the CMJ concentric phase whereas high between‐subject

variation in the directionality of the limb asymmetry was found for

the eccentric deceleration phase.22 The data presented in our study

were consistent with the literature as neuromuscular recovery was

impacted by the graft type16,22 and was specific to the parameter in

question.17 Notably, higher CMJ and knee extensor strength asym-

metry and a slower post‐ACLR progression were observed across all

four measures for the BPTB group compared to the ST group, and

more than 300 days from surgery were required for the between‐

limb asymmetry to diminish to the mean value of the non‐injured

control group (i.e., asymmetry <5%). Increased time was required for

recovery of the CMJ concentric phase and knee extensor explosive

strength (RD) (c.f. Figures 1 and 2). The finding of elevated asym-

metry and slower time course of recovery for the concentric phase of

the vertical jump and knee extensor explosive strength have been

found elsewhere as well.13,17,22,35 The two individual neuromuscular

recovery profiles presented in Figure 3 including that of an ac-

celerated recovery and a delayed recovery, provide further support

and an illustrative example of how practitioners can apply AMM to

forecast individual progression throughout rehabilitation after ACLR

and the notion that neuromuscular recovery depends on the measure

in question. Further, the case example presented here shows a similar

recovery rate for the two athletes, suggesting the possibility that the

time course may depend (exclusively) on the initial asymmetry test

values for athletes with ST autograft.

Taken together there are at least four possible advantages for

clinicians and practitioners to build a data set of expansive neuro-

muscular testing using an athlete monitoring approach and additive

mixed effects modeling to forecast recovery after ACLR instead of

relying on return to sport testing at a discrete timepoint or worse,

solely on time‐from‐surgery: (1) similar to a weather forecast, the

post‐ACLR recovery forecast allows the practitioner to predict the

time course of neuromuscular recovery to provide a robust re-

habilitation plan and a data‐informed estimate of when an athlete will

be sufficiently prepared for a return to sport; (2) this approach allows

the early identification of a lagging neuromuscular capacity so that

targeted training or rehabilitation can be administered before return

to sport; (3) modeling post‐ACLR progression can help practitioners

identify an athlete who is tracking behind expectations either due to

ineffective rehabilitation or other factors like injury severity so that

adjustments can be made to the rehabilitation plan including poten-

tially delaying return to sport to permit more recovery time; and (4)

this modeling technique allows practitioners to account for the var-

iation, complexity and intra‐subject correlation that is inherent in the

post‐ACLR rehabilitation process.

However, our study does have several limitations that were

primarily driven by the relatively small and heterogeneous sample,

along with substantial between‐subject variation in terms of the

frequency of measurements across time. First, the majority of ACLR

athletes in the present study were from winter slope sports including

alpine skiing, skier cross and freestyle skiing. Consequently, given the

existence of a dominant surgical technique in this population,37 84%

of the participants underwent ST autografts at the time of their

ACLR. The fact we were unable to include more participants with

BPTB autografts is a limitation of our study. We also did not include a

time‐dependent smooth term for the random effects (i.e., the athlete)

nor were we able to include a model with multiple neuromuscular

predictor variables, which may have served to increase the in-

dividualization of the neuromuscular recovery profiles. This limitation

stemmed from the small sample size. Future studies using the GAMM

approach and larger sample sizes should consider this to develop

even more tailored predictions of neuromuscular recovery after

ACLR. These improvements may help to increase the generalizability

of the GAMM. This study was also limited by the retrospective ana-

lysis and the lack of experimental control over the testing frequency

between athletes, between surgical technique and sport. While the

neuromuscular testing protocols were conducted in a standardized

manner with stringent control including supervision by a certified ex-

ercise practitioner, there was substantial variation in the frequency of

measurements across the study period. Finally, we were unable to

obtain detailed surgical reports for all participants and consequently

we could not account for additional confounders in our model that

may exert an effect on neuromuscular recovery like the pattern of

combined injury. These are inherent limitations of retrospective ana-

lyses of longitudinal athlete monitoring programs in a sport perfor-

mance environment. Practitioners can mitigate these challenges by

ensuring tests are conducted regularly and that appropriate statistical

methods are used.26,29 It should also be noted that a broad battery of

neuromuscular testing is recommended after ACLR,2,3,5,11,12 and there

are numerous metrics that can be derived from CMJ kinetic analysis

assessments for lower limb mechanical muscle function.17,24,38

The decision to focus our analysis on the CMJ kinetic impulse

was based on its relatively good reliability, but future research should

consider exploring the value of other accepted vertical jump metrics,

for example, the eccentric deceleration RFD.24 For instance, Hart

et al.24 observed no difference in eccentric deceleration impulse

asymmetry when comparing previously injured elite soccer players

with noninjured players but a substantial effect size for eccentric

deceleration RFD asymmetry, highlighting the importance of the

signal to noise ratio. Further, as SSC function may be impaired after

ACL injury and predict future ACL reinjury,12 and SSC impairment in

an ACLR population may include reduced countermovement depth

and eccentric demand that can impair concentric phase perfor-

mance,39 future research should consider CMJ strategy measures as

a component of a comprehensive post‐injury neuromuscular test

battery. Further, due to the well‐established effects of ACL injury on

contralateral limb strength, future research should also compare

the potential differences between forecasting models that use mea-

sures of between‐limb asymmetry in conjunction with limb‐specific

strength. This was initially attempted in the present analysis, but the

model fits were poor. Finally, the limitations of this study highlight

the need for greater interdisciplinary practice for managing sport

injuries and rehabilitation, especially between sport medicine clin-

icians and sport performance practitioners to relate clinical measures

like concurrent injuries with ACL rupture or graft choice to neuro-

muscular testing outcomes.3,10,11

8 | JORDAN ET AL.



In conclusion, profiling the neuromuscular recovery of individual

athletes after ACLR using a data‐informed approach and expansive

testing is novel perspective on longitudinally collected athlete mon-

itoring data that can potentially add value for clinicians and practi-

tioners to forecast recovery and progress throughout rehabilitation.

As the time course of neuromuscular recovery may be nonlinear and

highly individual with dependency on factors such as the surgical

technique itself, additive mixed effects modeling (AMM) can help

sport science and sport medicine practitioners accurately forecast

post‐ACLR recovery on an athlete‐by‐athlete basis. In this paper, we

showed that additive mixed effects modeling accounted for a high

fraction of the variance in neuromuscular recovery after ACLR

measured as the between‐limb AI in CMJ force and knee extensor

strength, and that the AMM approach could be used to map the

individual recovery profiles. Future studies with greater experimental

control over the testing frequency along with larger sample sizes and

greater sample size balance for the various surgical techniques should

be considered to further investigate the value of additive mixed ef-

fects modeling for forecasting individual neuromuscular recovery

after ACLR.
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