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Conventional Therapies Deplete
Brain-Infiltrating Adaptive
Immune Cells in a Mouse Model
of Group 3 Medulloblastoma
Implicating Myeloid Cells as
Favorable Immunotherapy Targets
Zahra Abbas1,2, Courtney George2,3, Mathew Ancliffe2,4, Meegan Howlett1,2,
Anya C. Jones1,5, Mani Kuchibhotla2, Robert J. Wechsler-Reya6, Nicholas G. Gottardo1,2,7

and Raelene Endersby1,2*

1 Centre for Child Health Research, University of Western Australia, Perth, WA, Australia, 2 Brain Tumour Research Program,
Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia, 3 School of Medical and Health Sciences, Edith
Cowan University, Perth, WA, Australia, 4 School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia,
5 Cancer Centre Core Research, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia, 6 NCI-Designated
Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States, 7 Department of Paediatric and
Adolescent Oncology and Haematology, Perth Children’s Hospital, Perth, WA, Australia

Medulloblastoma is the most common childhood brain cancer. Mainstay treatments of
radiation and chemotherapy have not changed in decades and new treatment
approaches are crucial for the improvement of clinical outcomes. To date,
immunotherapies for medulloblastoma have been unsuccessful, and studies
investigating the immune microenvironment of the disease and the impact of current
therapies are limited. Preclinical models that recapitulate both the disease and immune
environment are essential for understanding immune-tumor interactions and to aid the
identification of new and effective immunotherapies. Using an immune-competent mouse
model of aggressive Myc-driven medulloblastoma, we characterized the brain immune
microenvironment and changes induced in response to craniospinal irradiation, or the
medulloblastoma chemotherapies cyclophosphamide or gemcitabine. The role of
adaptive immunity in disease progression and treatment response was delineated by
comparing survival outcomes in wildtype C57Bl/6J and in mice deficient in Rag1 that lack
mature T and B cells. We found medulloblastomas in wildtype and Rag1-deficient mice
grew equally fast, and that craniospinal irradiation and chemotherapies extended survival
equally in wildtype and Rag1-deficient mice, suggesting that tumor growth and treatment
response is independent of T and B cells. Medulloblastomas were myeloid dominant, and
in wildtype mice, craniospinal irradiation and cyclophosphamide depleted T and B cells in
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the brain. Gemcitabine treatment was found to minimally alter the immune populations in
the brain, resulting only in a depletion of neutrophils. Intratumorally, we observed an
abundance of Iba1+ macrophages, and we show that CD45high cells comprise the
majority of immune cells within these medulloblastomas but found that existing markers
are insufficient to clearly delineate resident microglia from infiltrating macrophages.
Ultimately, brain resident and peripheral macrophages dominate the brain and tumor
microenvironment and are not depleted by standard-of-care medulloblastoma therapies.
These populations therefore present a favorable target for immunotherapy in combination
with front-line treatments.

Keywords: medulloblastoma, immune microenvironment, microglia, immunocharacterization, chemotherapy,
craniospinal irradiation, group 3

INTRODUCTION

Medulloblastoma is the most common malignant brain cancer in
children, accounting for over 60% of childhood embryonal brain
tumors [reviewed in (1)]. Extensive molecular analyses bymultiple
groups have revealed that medulloblastomas can be classified
according to molecular and histopathological features into four
major subgroups (WNT, SHH, Group 3, and Group 4) which vary
in their clinical outcomes (2, 3). Standard-of-care treatment
consists of radiotherapy and chemotherapy following surgical
resection which has not changed for decades, survival outcomes
have plateaued (4), and severe treatment-induced toxicity remains
a major problem for survivors (1). Approximately 30% of children
with medulloblastoma will fail conventional therapy (5). While
certain molecular features can identify tumors at high risk of
treatment failure, including amplification and/or overexpression
of MYC in Group 3 medulloblastoma (6), limited therapeutic
options exist for patients following relapse and there are minimal
genetic changes in Group 3 tumors that can be therapeutically
targeted at this disease stage (7). Consequently, there is an urgent
and unmet need to identify new therapies for the treatment of
medulloblastoma and to improve quality-of-life following
disease control.

Immunotherapy has arisen as a possible adjunct to conventional
therapy to improve the efficacy and mitigate the profound
neurotoxicity of current medulloblastoma treatments; however,
there have been few studies defining the mechanisms by which
medulloblastomas evade anti-tumoral immune activity. Despite
the successes immunotherapies have had in other cancers, no
clinically approved immunotherapy has had proven success in
clinical trials for medulloblastoma to date. Although there are
several different immunotherapeutic approaches currently in
clinical trials for children with medulloblastoma, including
immune checkpoint inhibitors, oncolytic viruses, and dendritic
cell vaccines, all of these are early phase studies, and none have
progressed beyond phase 2. Moreover, as with many early phase
clinical trials for pediatric cancer, these agents are being evaluated
in children with recurrent or relapsed disease; whereas past clinical
trial experience indicates that new therapies for medulloblastoma
have the greatest chance of success when applied early in the
course of the disease. This is because relapsed medulloblastoma is

typically highly treatment resistant and a patient’s likelihood of
responding to salvage therapy is low at this disease stage (<5%
long-term survival) (5, 8, 9). It is therefore important that new
immuno-therapies being considered for medulloblastoma are
rationally designed based on the immune cells present within
tumors and tested for efficacy in combination with standard
first-line therapies like radiotherapy and chemotherapy.
However, studies investigating the impact of radiotherapy and
chemotherapy on the immune microenvironment of
medulloblastoma are limited. As a result, it is poorly understood
how compatible standard therapies are with existing or
emerging immunotherapeutics.

Here, we have utilized both immune-competent and
immunodeficient murine models of aggressive Myc-driven
medulloblastoma (10) and characterized adaptive and innate
immune cell infiltration in the brain. We describe the impact of
the adaptive immune system on tumor growth and treatment
response using Rag1 knockout mice. These mice are deficient in
V(D)J recombination, resulting in the arrest of T and B cell
differentiation at an early stage and subsequent severe combined
immunodeficiency (11). In addition, we have defined how the
immune microenvironment changes in response to clinically-
relevant fractionated craniospinal irradiation (CSI) protocols, or
to the clinically used medulloblastoma chemotherapies
cyclophosphamide (CPA) or gemcitabine (GEM). We show
that these first-line therapies deplete lymphocyte populations
in the brain/medulloblastoma microenvironment, and
recommend these impacts be considered when designing
future up-front treatment protocols that incorporate
immunotherapies for medulloblastoma.

MATERIALS AND METHODS

Preclinical Models
6-12 week old female C57Bl/6J (WT) mice were obtained from
the Animal Resource Centre (Perth, Australia). 6-12 week old
female C57Bl/6J Rag1-/- (Rag1KO) mice, that lack mature T and
B cells (11), were obtained from an on-site breeding colony at the
Telethon Kids Institute Bioresources Facility. Mice were group-
housed in a pathogen-free facility at the Telethon Kids Institute
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(12:12 hour light:dark cycle) with access to standard chow and
water ad libitum. Mice received sunflower seeds during
treatment for enrichment and to maintain healthy weight. All
animal procedures were approved by the Animal Ethics
Committee of the Telethon Kids Institute and performed in
accordance with Australia’s Code for the Care and use of
Animals for Scientific Purposes.

The murine allograft model of aggressive Myc-amplified
Group 3 medulloblastoma (Myc/p53DD) was generated
through retroviral-driven expression of MycT58A, a dominant
negative carboxy-terminal fragment of Tp53, GFP and firefly
luciferase in CD133-positive cerebellar stem cells as previously
described (10). For intracranial implantation, Myc/p53DD cells
were harvested from female C57Bl/6J donor mice, suspended in
Matrigel (BD Biosciences), and 5,000 cells were implanted per
mouse as previously described (12).

Tumor size was monitored using bioluminescence imaging
with an IVIS Spectrum (Caliper, USA). Prior to imaging, fur was
removed with electric clippers and depilatory cream. Mice
received intraperitoneal injections of D-Luciferin [15 mg/kg in
Dulbecco’s phosphate-buffered saline (DPBS)] and were
anesthetized with isoflurane. During image acquisition,
isoflurane was maintained at 1.5-1.8% in oxygen (flow rate 0.5
L/min) and images were acquired every minute for 10 minutes
until peak photon flux was recorded. Bioluminescence was used
as a surrogate measure of tumor burden and mice were
randomized into groups such that the average flux ± standard
deviation (SD) was equal across all groups at the start
of treatment.

Craniospinal Irradiation (CSI)
Irradiation was performed using a X-RAD SmART small animal
image-guided radiation therapy system (Precision X-Ray, USA)
employing cone-beam CT guidance with fully assessed spatial and
dosimetric accuracy (13). Treatment planning and dose
calculations were performed using Monte Carlo simulations in
SmART-Plan software (14). Mice were anesthetized with
isoflurane, maintained at 1-2% in air delivered via nose cone
during treatment. Mice were secured to the irradiation stage with
non-adhesive athletic tape to flatten the spine and avoid
irradiating abdominal organs. CSI was achieved using two sets
of two lateral coplanar beams with 40 mm square collimation
delivered to two separate isocenters, with the first set of beams
targeting the brain and cervical spine, the second targeting the
thoracic and lumbar spine. Mice received a total of 20 Gy CSI
fractionated as 10 doses of 2 Gy, delivered on a 5-days-on, 2-days-
off schedule for two weeks (15) (Figure 1A). For the sham control
group, mice were anesthetized with isoflurane on a 5-days-on, 2-
days-off schedule for two weeks for an equal length of time per day
as the CSI treatment protocol. Animals were humanely euthanized
upon the onset of tumor-related morbidity.

Chemotherapy
Cyclophosphamide (CPA, Baxter) and gemcitabine (GEM,
MedChemExpress) were diluted in phosphate-buffered saline
(PBS) and delivered twice weekly (day 7, 10, 14, 17, etc.). CPA
was delivered intraperitoneally (i.p.) at 120 mg/kg and GEM was

delivered intravenously (i.v.) at 60 mg/kg. Control mice received
saline injections via the equivalent route on the same schedule
(Figure 1A). Treatment was continued until mice required
euthanasia due to tumor-related morbidity.

Flow Cytometry
Single cell suspensions were prepared from whole brains for flow
cytometric analysis. Whole brains were minced on a sterile petri
dish with a scalpel blade, prior to addition of 5 mL digestion buffer
(100 U/mL Collagenase IV (Life Technologies), 10 U/mL DNAse
(Sigma-Aldrich) in Hank’s balanced salt solution (HBSS, Gibco)),
followed by trituration to obtain a uniform suspension. The tissue
suspension was transferred to a gentleMACS C tube (Miltenyi)
and further digested on a gentleMACS Octo Dissociator
(Miltenyi) for 30 minutes, with constant stirring at 50 RPM at
37°C. Digestion was halted with the addition of 10 mL cold FACS
buffer (2% fetal calf serum, 5 mM EDTA in HBSS) and the
suspension was strained through a 100 mm filter (Miltenyi). Red
blood cells were lysed with red blood cell lysis solution (Miltenyi),
cells were resuspended in 10 mL FACS buffer and strained
through a 30 mm filter (Miltenyi). To remove myelin, cells were
resuspended in 10 mL of 30% Percoll (Sigma-Aldrich) diluted in
FACS buffer and centrifuged at 800 g for 30 min at room
temperature. The myelin layer was removed, and cells
resuspended in DPBS before staining.

Given that chemotherapy is known to have systemic effects,
spleen tissue was routinely collected and analyzed alongside
brain tissue as a control to characterize the effects of
chemotherapy on immune cells outside the central nervous
system. In addition, the spleens of mice treated with CSI would
have received some off-target irradiation when radiotherapy was
delivered to the thoracic and lumbar spine. Spleen dissociation
protocols and results can be found in the Supplementary Data
(Supplementary Figure 1).

Single cell suspensions were labelled with a viability stain (BD
Bioscience Cat #564997) then stained with the following
fluorochrome conjugated cell surface marker antibodies: CD45-
BV421 (BD Bioscience Cat #563890), IAIE-BV510 (Biolegend Cat
#107635), CD11b-BV605 (Biolegend Cat #101257), CD4-BV650
(BD Bioscience Cat #563747), CD8a-BV711 (BD Bioscience Cat
#563046), NK1.1-BV786 (Biolegend Cat #108749), B220-PerCP-
Cy5.5 (BD Bioscience Cat #552771), F4/80-PE (BD Bioscience Cat
#565410), CD3e-PE-CF594 (BD Bioscience Cat #562286), CD19-
PECy7 (BD Bioscience Cat #552854), CD11c-APC (BD Bioscience
Cat #550261), Ly6G-APC-Cy7 (BD Bioscience Cat #560600).
Antibody dilutions and the staining protocol can be found in
the Supplementary Material (Supplementary Methods and
Supplementary Table 1). Data were acquired on a LSRFortessa
X-20 (BD Bioscience, USA) and immune populations were gated
using FlowJo (Figure 2). The combination of markers used to
define different immune populations is described in
Supplementary Table 2. Positively stained cells are presented as
a proportion of all CD45-positive cells. Alternatively, calibration
beads (BD Bioscience Cat #556296) were added to cell suspensions
to quantify the total numbers of immune cells within each tissue
sample by comparing the ratio of bead events to cell events.
Population statistics were compared and graphed in GraphPad
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PRISM v8. Gating strategy for populations from Rag1KOmice are
shown in Supplementary Figure 2.

For CSI treated mice, immune cell populations were assessed
at two experimental time points. Firstly, tissue was harvested 24
hours following the final (10th) dose of CSI (referred to as
“acute”) to capture transient changes in immune populations
following CSI. A second time point was captured approximately
1-2 weeks after the cessation of CSI (referred to as “late stage”),
when tumor burden was high and mice were moribund, to
determine lasting effects of CSI. For all chemotherapy
experiments, brains were analyzed when tumor burden was
high and caused morbidity requiring euthanasia. Due to the
continual dosing schedule (Figure 1), tumor related morbidity
and tissue analyses occurred within 2-3 days of chemotherapy
dosing. Healthy, non-tumor bearing mice were time-matched to
Myc/p53DD bearing mice. To determine proportions of CD45high

and CD45intermediate (CD45int) tumor-infiltrating immune cells,
untreated Myc/p53DD medulloblastomas from C57Bl/6J WT
mice were dissected out from the brain, dissociated as above,
and labelled with viability stain (BD Bioscience Cat #564997) and
CD45-BV421 (BD Bioscience Cat #563890).

Immunohistochemistry (IHC)
Mice were transcardially perfused with PBS, followed by 4%
paraformaldehyde (PFA) in PBS. Brains were further fixed
overnight in 4% PFA at 4°C before embedding into paraffin.
IHC was performed on 5 mm sections. Briefly, sections were
deparaffinized and rehydrated using an ST5010 AutoStainer XL
(Leica, Germany). Antigen retrieval was performed using a

sodium citrate buffer (1.8 mM citric acid, 8.2 mM sodium
citrate), sections were incubated in 3% H2O2 to block
endogenous peroxidases, blocked with 10% normal goat serum
in Tris buffered saline containing 0.01% Tween 20 (TBS-T) for
one hour at room temperature, and incubated with primary
antibodies overnight at 4°C in 2% goat serum in TBS-T. Slides
were incubated with biotinylated secondary antibodies, then
incubated with an streptavidin-conjugated peroxidase reagent
(Elite ABC, Vector Labs). Slides were incubated with NovaRED
peroxidase substrate (Vector Labs), counterstained with Gill’s
Hematoxylin (Vector Labs), dehydrated, and coverslipped with
Permount (Fisher Scientific). Slides were stained with the
following antibodies: Iba1 (1:800, Wako Chemicals, Cat #019-
19741), Tmem119 (1:300, Abcam, Cat #ab209064). Positively-
stained cells with evident nuclei were counted from four 1mm2

areas per mouse corresponding to three different areas: normal
cortex, areas where the image consisted of 50% tumor and 50%
normal brain, or tumor. Data are presented as cells per mm2.

RNA Isolation and Bulk RNA Sequencing
Tumor tissue was dissected from the brain, snap frozen using dry
ice and stored at -80°C. Total RNA was isolated from 5-20 mg
tumor tissue using the RNeasy Plus Mini Kit (Qiagen) as per the
supplied protocol. RNA concentration and purity was assessed
on a spectrophotometer (NanoDrop) and total RNA was
submitted to GenomicsWA (Perth, Australia) (CSI and Sham
samples) or the Australian Genome Research Facility (AGRF)
(CPA, GEM, control samples). Samples had an average ± SD
RNA integrity number (RIN) of 9.8 ± 0.36 prior to library

BA

DC

FIGURE 1 | The adaptive immune system does not play a role in Myc/p53DD tumor progression nor treatment efficacy. (A) Schematic diagram illustrating the
treatment protocols for craniospinal irradiation (CSI), cyclophosphamide (CPA) and gemcitabine (GEM). (B–D) Survival curves of multiple independent experiments
(minimum of two independent experiments per treatment) of WT (solid lines) or Rag1KO (dashed lines) mice treated with (B) CSI (pink), (C) CPA (green), or (D) GEM
(blue). Arrows on graphs indicate when treatment was administered. The number of mice per group (n) is shown and significant differences between survival curves
determined using log-rank tests is indicated (*P < 0.05; ***P < 0.001).
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preparation. Total RNA library preparation (SureSelect, Agilent),
rRNA depletion (Ribo-Zero Plus, Illumina) and sequencing were
carried out by GenomicsWA or AGRF. Libraries were sequenced
on NovaSeq 6000 S1 flow cells as paired-end 150bp reads
(Illumina). Raw sequencing data for two independent datasets
are available from the European Genome Archives (EGAS0000
1005847 and EGAS00001005846).

Pre-Processing, Quality Control (QC) and
Exploratory Data Analysis
Adapter and quality trimming were applied using CutAdapt
(16). Pre-alignment and post-alignment QC were carried out
with FastQC (17) and SAMStat (18) respectively. Reads were
aligned to the mouse reference genome (GRCm38) using
HISAT2 (19) and quantified at the gene-level with
summarizedOverlaps() (20). The proportion of mapped reads
was 84% (79.7-87%) in CPA/GEM/Control samples and 90%
(89.3-91.5%) in CSI/Sham samples.

Data analysis was carried out in the statistical computing
environment R (version 4.1.1). Genes with an official MGI Gene
Nomenclature Committee symbol and a count per million
corresponding to 10 in ≥3 were retained for downstream
analysis. Exploratory data analysis was carried out using EDASeq
(21) and standard QC plots were used to identify potential outlying
samples pre- and post-global-scale median normalization of gene
counts. Unwanted variation was removed employing RUVSeq (21).

Estimation of the Cellular Composition
With CIBERSORTx
CIBERSORTx (22) was used to estimate the immune cell
proportions in medulloblastoma tissue. A published C57Bl/6J
WT whole brain single cell dataset (23) (GEO accession
GSE128855) was used as the reference dataset containing 8
annotated brain immune cell types (microglia, B cells, NK/
NKT cells, T cells, cDC, monocytes, border associated
macrophages, neutrophils). The following parameters were
used: disabled batch correction, relative run mode, 100
permutations. Cell fractions calculated by CIBERSORTx in
treatment groups were compared to their control (CSI vs
Sham, CPA and GEM vs Control) by unpaired two-tailed t tests.

Differential Expression Analysis
Differentially expressed genes were identified using edgeR (24). A
linear binomial model was fit to the data and a false discovery
rate (FDR) for multiple testing was applied. An adjusted P < 0.05
and an absolute log2 fold change > 0.5 (fold change = 1.5) was
deemed significant.

Pathway Analysis
Up- and downregulated genes were assessed separately for
pathways enrichment using InnateDB (25) version 5.4.
Enrichment testing is based on a hypergeometric distribution

FIGURE 2 | Gating strategy for flow cytometry analysis of mouse brain. Representative plots of gating strategy for immune populations in C57Bl/6J WT brain.
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and P values are corrected using the Benjamini-Hochberg
method for multiple testing.

Upstream Driver Analysis
Putative molecular drivers of the observed gene expression
patterns were identified using upstream regulator analysis from
Ingenuity Systems KnowledgeBase (26). Significance testing is
based on a Fisher’s exact test, testing for enrichment against
known upstream drivers. The Benjamini-Hochberg method was
used to correct for multiple testing. An adjusted P-value < 0.01
and absolute z-score > 2.0 (predicting activation/inhibition of the
driver) were deemed significant.

Statistical Analyses
Kaplan-Meier survival curves were compared using the log-rank
test. In each survival experiment, treatment groups were
compared to their equivalent controls. Unpaired two-tailed t
tests were used to compare immune populations for flow
cytometry data. Treatments were compared to their control
(CSI vs Sham, CPA and GEM vs Control). For CSI
experiments, each time-point group was only compared to its
time-matched sham (late-stage/acute). Being an exploratory
study, P values are stated without multiplicity adjustments (27)
and significant differences were defined as P < 0.05 in flow
cytometry, IHC, and CIBERSORTx comparisons.

RESULTS

Myc/p53DD Tumor Growth Is Unaffected by
a Functional Adaptive Immune System
The majority of preclinical medulloblastoma mouse models
utilize immune-deficient strains and the role of the immune
system in medulloblastoma growth is poorly defined. To address
this, we took advantage of a murine model of Group 3
medulloblastoma that engrafts in C57Bl/6J mice following
intracranial implantation and compared tumor growth in
wildtype C57Bl/6J mice and C57Bl/6J mice deficient in Rag1.
Tumor-free survival of control mice (sham/isoflurane or control/
saline) was not different between WT and Rag1KO animals,
indicat ing that growth of this model of Group 3
medulloblastoma is not impacted by the presence or absence of
mature T and B cells (Figure 1). To determine the role of the
adaptive immune system in response to conventional first-line
therapies, medulloblastoma-bearing mice of either strain were
treated with CSI or two DNA-damaging chemotherapies used as
part of clinical care: CPA or GEM (28) (NCT01878617)
(Figure 1A). Compared to control groups, CSI prolonged
median survival similarly in WT mice (21 compared to 15
days; P<0.0001) and Rag1KO mice (22.5 compared to 17.5
days; P=0.03). Likewise, response of Myc/p53DD tumors to
chemotherapy was similar in WT and Rag1KO mice. CPA
prolonged median survival to 34 days in both WT mice
(P<0.001) and Rag1KO mice (P<0.0001); while GEM
prolonged median survival from 16 days to 34 days in WT
mice (P<0.0001) and from 15 to 35 days in Rag1KO mice
(P<0.0001). These results indicate that treatment-mediated

tumor control is independent of T and B cells in this model of
medulloblastoma (Figures 1B–D).

Group 3 Medulloblastoma Growth
Stimulates Immune Cell Influx Into
the Brain
The finding that the adaptive immune system did not appear to
modulate response to therapy was surprising given previous
reports of increased CD8+ T cells in murine Group 3
medulloblastoma (29). Furthermore, it is unknown what
impact conventional medulloblastoma treatments have on
immune cells within the brain. To understand whether these
treatments were altering the immune populations in the whole
brain, mice harboring Myc/p53DD tumors were administered
treatment (or control) as described above, and the immune cells
present in brain tissue were assessed by flow cytometry when
mice required euthanasia due to tumor-related morbidity, using
the gating strategy defined in Figure 2.

In the absence of treatment, we observed thatmedulloblastoma
growth induced an overall influx of immune cells into the brain
(Figure 3). Brain-resident microglia in adult mice express lower
levels of CD45 compared to bone-marrow derived immune cells,
thus can be distinguished using flow cytometry (30, 31). The
addition of calibration beads enabled us to analyze absolute cell
numbers in the cell suspensions of the entire brain andweobserved
a significant increase in immune cell numbers (CD45+), both
CD45high and microglia (CD45int CD11b+) in the brains of
tumor-bearing WT mice compared to healthy age-matched
brains. Moreover, we observed increased counts of activated
microglia (CD45int CD11b+ MHC IIhigh) (32), classical dendritic
cells (cDCs) (CD45high CD11c+ MHC II+, CD11b+), NK cells
(CD45high NK1.1+), CD4+ T cells (CD45high CD3+ CD4+), and
CD8+ T cells (CD45high CD3+ CD8+), (Figure 3). CD8+ cDCs
accounted for a very small proportion of the immune cells, and
their counts are not shown.No significant changeswere detected in
neutrophil (CD45high Ly6G+), B cell (CD45high CD19+ B220+),
monocyte (CD45high CD11b+ F4/80+ FSClow) or macrophage
(CD45high CD11b+ F4/80+ FSChigh) numbers between normal
brains or brains harboring Myc/p53DD medulloblastomas.

To further demonstrate the changes in immune cell
populations caused by medulloblastoma growth in WT mouse
brain we compared the changes in immune cell populations
relative to each other by quantifying differences as a percentage
of all CD45+ cells. As a proportion of all CD45+ immune cells in
the brain, significant increases in cDCs, CD4+ T cells, CD8+ T
cells, and activated microglia were observed in tumor-bearing
brains compared to healthy brains. As a consequence of this
influx, the proportion of microglia relative to all immune cells
was decreased in tumor-bearing brains compared to healthy
brain (Supplementary Figure 3), although as described above,
microglial numbers were increased overall.

In Rag1KO mice, growth of Myc/p53DD medulloblastoma
also induced an increase in the absolute numbers of microglia in
the brain as well as an influx of bone marrow-derived immune
cells in the absence of treatment. In addition, we observed a
significant increase in CD11b+ cDCs, NK cells, neutrophils, and
monocytes (Supplementary Figure 4), reiterating the finding
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that even in mice lacking an adaptive immune system,
medulloblastoma growth induces influx of bone marrow-
derived immune cells to the brain. As observed in WT mice,
Myc/p53DD tumor growth significantly elevated the number of
activated microglia in Rag1KO brains.

CSI Transiently Depletes Bone Marrow-
Derived Immune Populations in the Brain
Given this understanding of how the immune microenvironment
of brain is altered with medulloblastoma growth, we next
characterized the effects of clinical treatments on the

FIGURE 3 | Growth of Myc/p53DD medulloblastoma increases the numbers of infiltrating and resident immune cells in the brain. The immune cell populations from
healthy brains of C57Bl/6J WT mice (black circles, n=5) were determined using flow cytometry and compared with the brains of WT mice bearing Myc/p53DD tumors
(red circles, n=4). Beads were used and the entire sample was analyzed to determine the total number of the indicated cells in each sample. Tumor-containing brains
had significantly higher overall counts of immune cells (CD45+), both infiltrating (CD45high) and resident (microglia) compared to healthy brain. Moreover, an increase
in activated microglia (MHC IIhigh), CD4+ T cells, CD8+ T cells, NK cells, and CD11b+ cDCs was observed in Myc/p53DD tumor bearing brains. No significant change
in neutrophils, B cells, monocytes or macrophages was observed. Horizontal lines indicate the mean and error bars indicate SD. Comparisons shown to be
statistically significant by t test are shown (*P < 0.05; **P < 0.01; ***P < 0.001).
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immunology of medulloblastoma, starting with CSI. We
analyzed brains at two time points following CSI – 24 hours
after the final dose of radiation (acute), and at high tumor burden
when mice required euthanasia (late-stage) – to determine
transient and long-term impacts. In WT mice, CSI resulted in
a significant, but transient, reduction in infiltrating bone marrow
derived immune cells (CD45high). The proportion of CD4+ T
cells, CD8+ T cells, B cells, and CD11b+ cDCs in the brain were

all observed to be significantly reduced 24 hours following
delivery of the last CSI fraction (Figure 4, squares). In
consequence, the proportion of microglia as a percentage of
the total immune milieu was significantly higher in CSI treated
mice compared to sham treated mice at this time point (Figure 4,
squares). Proportions of monocytes and macrophages were
unchanged with treatment (Supplementary Figure 5). In
contrast, when we examined acute CSI-induced changes in the

FIGURE 4 | Radiotherapy and chemotherapy alter the immune microenvironment in the brains of C57Bl/6J WT mice with Myc/p53DD medulloblastoma. Immune cell
populations (shown as a percentage of all CD45+ cells) in WT brains harboring medulloblastoma following a range of different treatments are shown. From left to
right, mice with Myc/p53DD medulloblastoma were treated with either sham (black squares, n=5) or CSI (pink squares, n=5) and harvested 24 hours after the tenth
dose (labeled “Acute”), sham (black circles, n=4) or CSI (pink circles, n=5) and harvested upon the development of tumor-related morbidity (labeled “Late stage”), or
after treatment with saline (“Ctrl”, black diamonds, n=7), CPA (green diamonds, n=5), or GEM (blue diamonds, n=5) and harvested upon the development of tumor-
related morbidity (also labeled “Late stage”). Fractionated CSI resulted in a temporary depletion of infiltrating CD45high immune cells. Specifically, B cells, CD4+ T
cells, CD8+ T cells, and CD11b+ cDCs were decreased (pink squares) and in consequence a proportional increase of microglia was observed, whereas this was not
observed at a later time point (pink circles). CPA reduced the abundance of B cells, CD4+ T cells, CD8+ T cells, and NK cells, while GEM only significantly depleted
neutrophils. Horizontal lines indicate the mean and error bars indicate SD. Each treatment group was compared to the appropriate treatment and time-point
matched control by t test, with statistically significant differences indicated (*P < 0.05; **P < 0.01; ***P < 0.001).
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brains of Rag1KO mice with Myc/p53DD medulloblastoma, only
a significant reduction of NK cells was observed 24 hours
following CSI (Supplementary Figure 6, squares). WT mouse
brains were also assessed upon the development of tumor-related
morbidity, which occurred 1-2 weeks following the cessation of
CSI. No differences in immune cell populations were detected in
CSI treated mice compared to time-matched controls at this late
stage (Figure 4, circles), indicating that immune population
changes induced by CSI in the brain were temporary. These
findings contrast recent reports of irradiation-mediated
enhanced immune cell infiltration in a model of SHH
medulloblastoma (33).

CPA Depletes Infiltrating CD45high Immune
Cells While GEM has Minimal Impacts on
the Immune Microenvironment
Chemotherapeutics, including first-line medulloblastoma drugs
CPA and GEM, can achieve an anti-tumor response directly via
DNA damaging activity, or indirectly via induction of an
immune response through immunogenic cell death,
stimulating immune effectors, or inhibiting immune
suppressors [reviewed in (34)]. Thus, we sought to characterize
the effects of these clinically used chemotherapies on the immune
cells within medulloblastoma bearing brains. Brains were
analyzed when tumor burden was high (“Late-stage”), which
was within 3-4 days of the last chemotherapy dose due to the
continual dosing protocol. WT mice treated with CPA had
significantly lower proportions of infiltrating immune cells in
the brain compared to controls. Proportions of CD4+ T cells,
CD8+ T cells, B cells, NK cells and activated microglia were all
significantly reduced in CPA treated mice (Figure 4, green
diamonds). It is known that CPA can cause leukopenia
[reviewed in (35)]. Consistent with this, significant decreases in
multiple immune cell populations were also observed in the
spleens of mice treated with CPA (Supplementary Figure 1). In
contrast, GEM treatment had minimal effects on the
immunology of WT mouse brain, resulting only in a
proportional reduction of neutrophils (Figure 4, blue diamonds).

Surprisingly, chemotherapy-induced immunodepletion was
not observed in the brains of Rag1KO mice. Instead, we observed
a significant increase in CD45high immune cells in Rag1KO mice
treated with either CPA or GEM (Supplementary Figure 6). The
increase of CD45high cells was higher in CPA treated mice, and
we observed a concomitant decrease in the proportion of
microglia in CPA treated Rag1KO brains.

Medulloblastoma-Infiltrating Myeloid Cells
Express Iba1 but Not the Microglial
Marker Tmem119
Not surprisingly, our results show that microglia dominate the
brain/medulloblastoma immunemicroenvironment; however, our
flow cytometry data did not indicate the spatial distribution of
these cells or define if they were interacting with medulloblastoma
cells, or instead if they were retained in normal brain. To
determine intratumoral distribution of resident (CD45int) and
infiltrating (CD45high) immune cells, we dissected out Myc/p53DD

tumors from WT mice and assessed proportions of intratumor
immune cells with flow cytometry. We found that immune cells
account for only 1-2% of the cells within these tumors, and that a
majority (76.9 ± 3.88%) of the immune cells within the tumor
were CD45high (Figure 5A). However, it has been shown that
microglia may up-regulate CD45 under pathological conditions;
therefore, our approach of delineating microglia from tumor-
infiltrating macrophages on the basis of intermediate versus high
CD45 expression may be insufficient (36, 37). To characterize and
further delineate the location of resident microglia and infiltrating
peripheral myeloid cells in the brain and within Myc/p53DD

medulloblastomas, we performed IHC for two myeloid cell
markers, Iba1 and Tmem119. Cells staining positively for Iba1,
which is a marker of both bone marrow derived macrophages and
microglia (38), were observed throughout the brain parenchyma
and tumors. The morphology of cells stained with Iba1 varied
from ramified in the normal brain, which typifies the resting state
of microglia, to a more ameboid state, which typifies the active
state, for cells located at the tumor periphery and within
medulloblastomas (Figures 5B, C). Cells staining positively for
the marker Tmem119, reported to be a specific marker of
microglia (39), were observed throughout the normal brain
displaying ramified morphology. Tmem119 also stained cells
around the tumor edge and these cells displayed more ameboid
morphology. However, IHC staining for Tmem119 was
completely absent within the tumors suggesting these cells were
not microglia (Figures 5B, C), although this is inconsistent with
our flow cytometry findings which indicated that at least 23% of
intratumoral immune cells should be microglia based on their
lower expression of CD45 (CD45int, Figure 5A). Together, our
findings suggest that either bone-marrow derived immune cells
comprise the majority of the intratumoral immune cells and that
microglia do not penetrate the tumor, or, given reports of
microglia upregulating CD45 in pathological conditions (36, 37),
that microglia downregulate Tmem119 and upregulate CD45 in
response to medulloblastoma.

Immunological Signatures in
Medulloblastoma Are Poorly Interpretable
Using Bulk RNA Sequencing
To understand what was driving the immunological changes
we observed following the administration of first line
medulloblastoma treatments, and due to the inability to clearly
delineate microglia from macrophages or monocytes through
flow cytometry or IHC, we employed bulk RNA sequencing on
medulloblastomas following control, sham, CSI, CPA, or GEM
treatment. RNA sequencing was carried out on late-stage tumors,
as tumors were too small to be isolated at earlier stages. As such,
CSI treated samples were harvested 1-2 weeks after treatment
cessation, while chemotherapy-treated tumors were harvested
within 48-72 hours of drug administration. For scientific rigor,
CSI treated mice were compared to sham controls, while
chemotherapy-treated mice were compared to saline controls.
Principal component analysis plots were used to visualize and
identify whether samples clustered by treatment across both
mouse strains (Figure 6A). Samples treated with CSI or sham did
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not cluster according to treatment or genetic background. For
chemotherapy treated mice, Rag1KO samples clustered by
treatment (Ctrl, CPA, GEM), whilst in WT mice, GEM
clustered separately to CPA and Ctrl samples, which overlapped.

Through differential gene expression analysis, we identified
210 differentially expressed genes (DEGs) in WT CSI treated
mice compared to sham (132 upregulated genes, 78
downregulated genes), while no significant changes in gene
expression were observed in CSI treated Rag1KO samples
compared to sham (Figure 6B, left). In WT mice, there were
no DEGs in response to CPA treatment, whilst in Rag1KO CPA
treated mice there were 3440 DEGs compared to Ctrl (2334 up,
1106 down). GEM treatment in WT mice induced 403 DEGs
(245 up, 158 down) and 1857 DEGs in Rag1KO (934 up, 923
down) compared to Ctrl (Figure 6B).

We applied CIBERSORTx to determine the abundance of
immune cell types within the bulk sequenced data and to clarify
if these were altered following treatment. Immune signatures
were very low, and only microglia, border associated
macrophages (BAMs), and monocyte signatures were detected
(Figures 6C, D), although these estimates were non-significant
(P>0.05). CSI did not appear to significantly alter immune cell
composition (Figure 6C). Despite the low signature values, when
the computed cell fractions were compared from Rag1KO mice
treated with CPA or GEM, microglia were decreased compared
to control mice (P=2x10-4 and P=2x10-5, respectively), consistent
with our flow cytometry findings (Supplementary Figure 6), and
BAMs were significantly elevated (P=0.04 and P=1.8x10-5,
respectively) (Figure 6D); no significant differences were
observed in WT mice. Ultimately, immune cell composition
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FIGURE 5 | Immune cell populations within Myc/p53DD tumors in WT mouse brain highly express CD45 and do not express Tmem119. (A) Myc/p53DD

medulloblastomas (n=8) were dissected away from normal C57Bl6/J WT brain and cells were analyzed by flow cytometry for CD45int (black circles) or CD45high

immune cells (purple triangles). Horizontal lines indicate the mean and error bars indicate SD. Comparison by paired t test is shown (****P < 0.0001) demonstrating
that CD45high immune cells account for the majority of intratumoral immune cells within Myc/p53DD tumors. (B) WT mouse brain implanted with Myc/p53DD

medulloblastoma were examined using IHC for Iba1 and Tmem119. Representative low (black border) and high (red border) magnification images of Iba1 (top) or
Tmem119 (bottom) expressing cells demonstrate a resting or ramified appearance in the normal brain (left), but have an activated or ameboid appearance around the
edge of medulloblastomas (middle, N indicates normal brain and T indicates tumor), characterized by an increase and thickening of membrane projections. Within
tumors (right), Iba1+ cells appear phagocytic, while Tmem119 staining is absent. Nuclei have been counterstained with hematoxylin and the scale bar on each image
indicates 10 µm. (C) Quantitation of Iba1 or Tmem119 expressing cells from the brain regions indicated. Each symbol represents an individual mouse, horizontal lines
indicate the mean and error bars indicate SD. Each area was compared using t test, with statistically significant differences indicated (*P < 0.05; **P < 0.01).
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could not be accurately quantified by deconvoluting our bulk
RNA sequencing data likely due to the low abundance of
immune cells relative to tumor cells in Myc/p53DD tumors.

Pathway analysis also showed very few differentially
expressed genes were associated with the immune system,
owing to most genes being from tumor cells rather than from
immune cells. Activated pathways in medulloblastomas in WT
mice treated with CSI were associated with muscle contraction
(P=3.70x10-5) and myogenesis (P=0.0143), whilst inhibited
pathways were related to the neuronal system/ion channels
(P=2.32x10-4). While there were no DEGs identified in CPA-
treated medulloblastomas from WT mice, activated pathways in
CPA-treated medulloblastomas from Rag1KO mice related to
the neuronal system/ion channels (e.g. voltage ion channels,
GABA receptors; P=1.94x10-46), signaling by GPCRs

(P=7.26x10-7), MAPK signaling pathway (P=1.62x10-5), axon
guidance (P=4.01x10-5), and hemostasis (P=3.6x10-4).
Downregulated pathways were associated with ribosomal
translation/gene expression (P=5.12x10-13), collagen
biosynthesis/degradation & extracellular matrix (P<2.20x10-8)
and cell cycle/proliferation (P=1.73x10-7). In response to GEM
treatment, common activated pathways in both WT and
Rag1KO mice were associated with metabolism (P<7.76x10-5),
whilst ribosomal translation was unique to WT mice, and
Hedgehog (P=0.0242), PPAR (P=0.0277) and interleukin
signaling pathways (P=0.0281) were only activated in Rag1KO.
Common downregulated pathways were associated with
hemostasis (P<0.0229) and axon guidance (P<2.82x10-4);
unique pathways in WT were linoleic acid metabolic
(P=3.02x10-4) and p53 signaling (p=0.0449); inhibited

BA

DC

FIGURE 6 | Radiotherapy and chemotherapy induce distinctly different gene expression changes in Group 3 medulloblastoma in immune-competent versus
immune-deficient mice. RNA sequencing was performed on Myc/p53DD medulloblastomas from either C57Bl/6J WT mice (circles) or C57Bl/6J Rag1KO mice
(triangles) that were harvested upon the development of tumor-related morbidity following treatment with sham, CSI, saline, CPA, or GEM. (A) Principal component
analysis plots showing sham treated tumors (black) compared with CSI treated tumors (pink, upper panel), or saline treated tumors (Ctrl, black) compared with CPA
(green) or GEM (blue) treated tumors (lower panel). (B) Volcano plots showing DEGs identified using EdgeR in response to CSI, CPA, and GEM treatment in tumors
from WT or Rag1KO mice compared to their respective controls (red = upregulated, blue = downregulated) for the six comparisons indicated. The number of
significantly differentially expressed genes is shown in each plot. (C) Immune cell fractions in WT and (D) Rag1KO tumor tissue were estimated using CIBERSORTx.
Color scale indicates the predicted fraction of the indicated immune cells deconvoluted from bulk tumor transcriptome data. CSI did not significantly alter predicted
immune fractions in either strain, nor did chemotherapy in WT tumors. Despite non-significant deconvolution, a reduction in microglial signatures was observed in
Rag1KO mice following treatment with either CPA (P=2.0x10-4) or GEM (P=2.0x10-5) compared to control, with an increase in transcripts associated with border
associated macrophages (BAMs) (P=0.04 and P=1.8x10-5 respectively). Number of mice in each group were: WT/Sham = 8, WT/CSI = 5, Rag1KO/Sham = 6,
Rag1KO/CSI = 5, WT/Ctrl = 4, WT/CPA = 3, WT/GEM = 3, Rag1KO/Ctrl = 4, Rag1KO/CPA = 3, Rag1KO/GEM = 3.
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pathways in Rag1KO mice only were developmental biology
(P=1.70x10-5), MAPK signaling (P=0.00499), neuronal system
(P=0.0277), cell cycle/proliferation (P=0.0262) and WNT
signaling (P=0.0439).

Upstream regulator analysis was performed to identify
putative drivers of the differentially expressed genes
(Supplementary Figure 7). Overall, as expected given the
above findings, the data showed limited immune system
drivers and an array of activated chemical signatures,
particularly in chemotherapy treated Rag1KO mice. In WT
mice, the CSI response was driven by growth factor signaling
(e.g. EGF, NRG1, ERBB3) and pro-inflammatory regulators
(STAT3, PTGS2). In WT mice, GEM responses are driven by
metabolic regulators (primarily lipid metabolism), while in
Rag1KO mice, CPA and GEM responses are driven by
chemical drivers, and cancer associated drivers were inhibited
(MYC, SOX4, MYB).

DISCUSSION

Medulloblastoma is one of the most prevalent pediatric cancers.
While 5-year survival rates are approximately 70%, particular
genetic features are associated with worse prognosis and current
clinical approaches require innovative rethinking to identify
ways to improve outcomes for those patients. Immunotherapy
has recently become a major focus of novel therapy development
and there are multiple clinical trials that aim to increase immune
cell recognition of medulloblastoma, including oncolytic viral
therapy, cancer vaccines and immune checkpoint blockade
[reviewed in (40)]. To develop future immunotherapy clinical
trials for medulloblastoma that have a strong chance of improved
efficacy with reduced adverse effects, a deeper understanding of
the interactions between medulloblastoma and either brain
resident immune cells or infiltrating immune cells is crucial.

While patient derived xenograft models provide insight into
the genetic and molecular basis of medulloblastoma and are
valuable in the investigation of molecularly targeted therapies,
they do not allow for the study of the whole immune system due
to their use of immunocompromised hosts. Ideally, preclinical
models for testing novel immunotherapies must recapitulate
orthotopic medulloblastoma as well as the immune
microenvironment. Immune competent preclinical models are
therefore required to complement patient-derived xenograft
models in a robust and comprehensive preclinical drug testing
pipeline. Here we used an immune-competent murine model of
Myc-amplified Group 3 medulloblastoma to investigate changes
in intracerebral immune cell populations induced by tumor
growth, and for the first time describe the impact of several
first line medulloblastoma therapies on the immune
microenvironment. Moreover, we repeated this work in Rag1
knockout mice lacking T and B cells to elucidate the role of
adaptive immune cells in treatment response.

Our data show that adaptive immune cells account for a small
proportion of immune cells in the brains of mice harboring Myc/

p53DD tumors. T cells account for between 10-15% of the
immune population in Myc/p53DD bearing brain, and B cells
account for between 2-6% of the immune populations. Using
Rag1 deficient mice, we found that the adaptive immune system
does not play a significant role in Myc/p53DD tumor engraftment
or growth, nor in treatment-mediated tumor control.
Furthermore, both CSI and CPA were found to significantly
deplete T cells in the brain. This, combined with the fact that
lymphocytes are rare in human Group 3 medulloblastoma (41)
and medulloblastoma patients have demonstrated low to
undetectable levels of PD-L1 and PD-1 (42–44), suggests that
T cell targeted antibody therapies, such as anti-PD-1, are unlikely
to succeed in combination with radiotherapy or chemotherapy
in medulloblastoma.

On the other hand, microglia dominate the immune milieu of
the tumor bearing brain, accounting for between 50-65% of all
immune cells. Further, we show that following either radiotherapy
or chemotherapy, microglia remain the most abundant immune
cell in the brain and thus present as a favorable target for
immunotherapy in Group 3 medulloblastoma in combination
with frontline therapies. Indeed, recent preclinical data has
excitingly shown that treatments targeting myeloid cell immune
checkpoints, such as the CD47-SIRPa axis, are highly effective in
mouse models of medulloblastoma and other childhood brain
cancers (45). Furthermore, it has been suggested that radiotherapy
may synergize with monoclonal antibody therapies, on the basis
that radiation enhances the visibility of medulloblastoma to the
immune system [reviewed in (40)]. Recently, it has been shown
that a single 10 Gy dose of radiation can induce an increase in
tumor associated macrophages in SHH medulloblastoma (33),
however, in our study using a clinically-relevant fractionated CSI
protocol did not result in an increase in absolute counts of
microglia nor macrophage at either acute or late-stage time
points, and no increase in Iba1+ staining was observed in late-
stage tumors after CSI (Supplementary Figure 8). For laboratory-
based experiments to accurately inform new clinical trials in
medulloblastoma, future work should aim to characterize the
immune response to fractionated versus unfractionated
radiotherapy doses across different medulloblastoma subtypes to
better understand the optimal preclinical radiotherapy methods
to apply.

In contrast to the effects of fractionated CSI, we found that
CPA treatment reduced the proportions of MHC II+ microglia in
mouse brain, suggesting this chemotherapy suppresses
microglial function. We also examined the effects of GEM on
immune cell populations in medulloblastoma, as this drug is
currently being investigated as a first-line chemotherapy in
Group 3 and Group 4 medulloblastoma (NCT01878617). The
only cell population in the brain observed to be affected by GEM
were neutrophils which were decreased following treatment. This
was unexpected, as in previous cancer studies, GEM selectively
depleted myeloid cells and B cells, in both a tumor
microenvironment and in lymphoid organs (46, 47), and we
observed depletion of T and B cells in the spleen of GEM treated
WT mice (Supplementary Figure 1). Importantly, exposure to
GEM can also increase tumor antigenicity through upregulation
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of MHC-I (48), inhibition of tumor-associated macrophages, and
improving antigen cross-presentation (49, 50) to aid in immune
stimulation and tumor elimination. Our data did not indicate
that GEM treatment had these same effects in medulloblastoma,
although given these previous studies, additional experiments to
better delineate the effects of GEM on medulloblastoma-
associated macrophages would be valuable.

Limitations of this study include the techniques and cellular
markers used to identify immune populations from brains of
mice with medulloblastoma. Flow cytometry is unable to
determine the spatial interactions of microglia and infiltrating
macrophages within murine medulloblastoma, and importantly
our data suggest that the marker Tmem119, often used to
distinguish microglia from macrophages, may be an unreliable
cellular marker in this context. Using IHC, we observed an
abundance of Iba1+ cells throughout medulloblastomas and an
absence of Tmem119+ cells, suggesting intratumoral Iba1+ cells
were not microglia. However, the absence of intratumoral
Tmem119 staining is not consistent with our findings that
23.1% of intratumoral immune cells were CD45int, and
presumed microglia. Given previous reports have shown
microglia can upregulate CD45 expression in pathological
conditions (36, 37), we hypothesize that bone marrow-derived
macrophages do not account for the entirety of tumor-infiltrative
Iba1+ Tmem119- cells observed, and that microglia may
downregulate Tmem119 as they enter medulloblastomas,
suggesting a transition of these cells into a more macrophage-
like state. While there are a number of methods that can clarify if
these cells are activated microglia, such as MHC Class II, Sca-1
(51) or CD68 (52), these markers are also expressed on other
myeloid cells, and would need to be assessed in combination with
a microglia specific marker such as Sall1 (53).

Microglia and infiltrating macrophages are complex and
dynamic in the context of cancer, and they cannot be easily
delineated by simple markers. Indeed, recent single cell
transcriptomics analysis of human samples revealed that an
unexpectedly diverse spectrum of myeloid populations
infiltrate medulloblastoma (41). Here, we set out to use
transcriptomics to further characterize immune responses to
treatment. However, we found that bulk RNA sequencing
lacked sensitivity to probe the immunology of these tumors,
largely due to the low abundance of intratumoral immune cells
within this model of medulloblastoma. As a result, cell fractions
were not significantly deconvoluted by CIBERSORTx and
downstream comparisons of cell abundances should be carried
out with caution. Our RNAseq data suggests that chemotherapy
may alter the ratio of myeloid subsets (specifically microglia and
BAMs) within the brain, but this requires additional
experimental validation, particularly given the flow cytometry
markers used here were not able to discriminate between these
two cell types. Further examination using makers such as CD206,
Siglec-H and CD38 that are expressed on BAMs and not
microglia (51), as well as using histological techniques to
define the locations of the chemotherapy-affected cells will be
important to more accurately define the impacts of
chemotherapy on the brain immune microenvironment

especially given that the vasculature in the border regions
would have different barrier properties compared to the
blood-brain barrier of the parenchyma. Future work aimed at
better understanding the immune cell dynamics within
medulloblastomas may also consider first enriching for CD45+

cells prior to bulk RNA sequencing or employing single cell
sequencing or single cell proteomics technologies to detect
immune signatures in medulloblastoma tissue, though these
methods are accompanied with the caveat of tissue processing
induced artefacts [reviewed in (54)]. Our sequencing data was
limited by small sample sizes in this exploratory study and, in the
case of CSI-treated tumors, by the choice to sample later time
points when tumors were larger, but possibly too late after
treatment cessation to detect gene expression differences.
Further, this study is limited by the intracranial implantation
procedure disrupting the skull and meninges, which may
mediate peripheral immune influx by promoting an
inflammatory response and disrupting the blood brain barrier.
Though we have found that the intracranial implantation
procedure does not detectably change immune populations in
the brain of non-tumor bearing animals (data not shown),
genetically engineered spontaneous models of Group 3
medulloblastoma with an intact blood-brain barrier would
improve the study of the tumor-immune microenvironment.

The study of the immune infiltrate within medulloblastoma
is critical not only for the implementation of optimal
radiotherapy and chemotherapy protocols, but very relevant to
immunotherapy, a therapeutic modality with increasing use in
oncology. Immunotherapies are not standard in the treatment of
medulloblastoma, and clinical trials investigating the use of T-
cell targeting immunotherapies have proven unsuccessful to date
(40). This lack of success is likely a consequence of the immune
microenvironment in pediatric brain tumors being very different
from that of adult solid tumors in which immune-based
therapies have proven successful. Overall, the most consistently
abundant immune cell within this model of Group 3
medulloblastoma following radiotherapy or chemotherapy
are myeloid cells, which we speculate are a mixture of both
brain-resident and bone marrow-derived cells. Should
myeloid cell-targeting therapies continue to be developed for
medulloblastoma, future work should assess the impacts of
radiotherapy and chemotherapy on microglial and macrophage
activation and function, to dissect out mechanisms of treatment-
induced changes and how this might impact the efficacy of
immunotherapies. Building upon our study will be important
to address this issue and will facilitate the rational selection of
optimal immunotherapeutics for future medulloblastoma
clinical trials.
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