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Abstract: Previous observational studies have highlighted associations between adipokines and
hyperuricemia, as well as gout, but the causality and direction of these associations are not clear.
Therefore, we attempted to assess whether there are causal effects of specific adipokines (such as
adiponectin (ADP) and soluble leptin receptors (sOB-R)) on uric acid (UA) or gout in a two-sample
Mendelian randomization (MR) analysis, based on summary statistics from large genome-wide
association studies. The inverse-variance weighted (IVW) method was performed as the primary
analysis. Sensitivity analyses (including MR-Egger regression, weighted median, penalized weighted
median, and MR pleiotropy residual sum and outlier methods) were also performed, to ensure
reliable results. In the IVW models, no causal effect was found for sOB-R (odds ratios (OR), 1.002;
95% confidence intervals (CI), 0.999–1.004; p = 0.274) on UA, or ADP (OR, 1.198; 95% CI, 0.865–1.659;
p = 0.277) or sOB-R (OR, 0.988; 95% CI, 0.940–1.037; p = 0.616) on gout. The results were confirmed
in sensitivity analyses. There was no notable directional pleiotropy or heterogeneity. This study
suggests that these specific adipokines may not play causal roles in UA or gout development.

Keywords: gout; uric acid; adiponectin; soluble leptin receptors; mendelian randomization

1. Introduction

Uric acid (UA) is a waste product of purine catabolism. It can lead to gout when
this molecule nucleates in a joint or other tissue to form crystals of monosodium urate [1].
Gout is a chronic inflammatory disease that is influenced by genetic factors [2,3]. Gout
and hyperuricemia have become a major risk factor to human health, which are caused
by elevated UA [4]. Extensive evidence has shown that adipokines (such as adiponectin
(ADP) and soluble leptin receptors (sOB-R)) may be associated with changes in UA levels
and the development of gout [5–9]. Moreover, the causal relationship between ADP and
UA concentrations was demonstrated by a Mendelian randomization (MR) study with
Europeans [10].

Nevertheless, a large amount of inconsistent evidence was found in observational
studies, suggesting that confounders and reverse causality may be involved in the casual
effects of adipokines on UA and gout. The limitations of previous studies can be effectively
addressed by using MR [11]. MR method is a genetic epidemiological method, which can
assess causal inference by exploiting the genetic variants influencing a modifiable risk
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factor. According to Mendel’s genetic law, genetic material is randomly distributed during
meiosis and passed from parents to offspring at conception. Therefore, it is less susceptible
to residual confounding and reverse causality, and it makes causal inferences about the
effect of exposure on outcomes, using genetic variations closely related to the exposure
of interest as instrumental variables (IVs); which addresses the shortcomings of previous
observational epidemiology.

We conducted this study based on a two-sample MR framework, to explore the causal
effects of specific adipokines (i.e., ADP and sOB-R) on UA and gout.

2. Materials and Methods

This study is reported as per STROBE guidelines (Supplementary Table S1). In order
for causality to be valid in MR analysis, the following three hypotheses must be satisfied:
(a) The instruments of genetic variations must be robustly related to the concentration of
adipokines; (b) The genetic variations must not be associated with any confounder of the
adipokines and UA, as well as gout associations; And (c) the selected genetic variations
should not affect the UA or gout independently of its effect on adipokines [12].

2.1. Datasource and Selection of Instruments for MR
2.1.1. Outcome Datasource

Summary data for UA were obtained from a genome-wide association studies (GWAS)
of 42,741 European participants within the Global Urate Genetics Consortium (GUGC) [13].
For gout, a large sample of 69,374 participants (2115 cases and 67,259 controls) were
obtained from European populations within the GUGC [14]. We obtained these data
information for analysis from published GWASs on 20 February 2022 (https://gwas.mrcieu.
ac.uk/, accessed on 13 January 2022).

2.1.2. Selection of Instruments for MR

Summary data for adipokine variants were obtained from published GWAS (https://
gwas.mrcieu.ac.uk/, accessed on 8 September 2021) and publicly available GWAS databases
on 20 February 2022 [15,16] (Supplementary Table S2). In this study, genetic variants
were analyzed using MR, based on a significant genome-wide correlation with adipokine
concentrations (i.e., the inclusion criteria of p value at <5 × 10−8). All of the variants
were employed in linkage disequilibrium below 10%. Since this study only used publicly
available summary statistic from relevant GWAS and did not use the individual data,
ethical approval was not required.

For the causal effects of ADP (n = 39,883, individuals of mixed ethnicity (predominantly
European)) on UA or gout, we selected two sets of IVs using 23 and 25 variants. In addition,
rs2980879 and rs8060301 were removed, due to being palindromic with intermediate allele
frequencies.

Moreover, 4 variants locating in the LEPR gene were used to explain the causal effects
of sOB-R (n = 1000 individuals of European ancestry) on UA or gout. Information on all
single nucleotide polymorphisms (SNPs) as IVs involved in the MR analyses was provided
in the supplementary materials (Supplementary Table S3).

2.1.3. Statistics Power and F-Statistics

The power of this study was calculated using an online computing tool (https://shiny.
cnsgenomics.com/mRnd/, accessed on 13 January 2022). We fixed the type-I error rate
at 0.05 and the R2 of 0.05 for ADP and 0.001 for sOB-R, our study had sufficient power
(>80%) to detect the effects of adipokines on UA or gout [16]. Furthermore, based on the
approximation method, we calculated the mean F-statistic for each of the IVs selected [17].

2.2. Statistics Analysis

The standard inverse variance weighting (IVW) method assumed that each variant
contained was a valid IV, and this was a standard MR method for summary data [17]. We
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used the IVW method as the primary analysis. The random effects IVW model was used by
default, and the fixed effects model was used when the causal estimates between SNPs were
under-dispersion [18]. In addition, in order for causality to be valid in MR analysis, we also
performed a series of sensitivity analyses (such as weighted median, penalized weighted
median, leave-one-out method, MR pleiotropy residual sum and outlier (MR-PRESSO);
and MR-Egger regression) to test the robustness of the association.

Weighted median was used to account for the estimators, even though up to 50% of
the information was provided by invalid IVs [19]. Ineffective IV instruments affected the
median estimate, even if they did not directly contribute to the median estimate; therefore,
we also used penalized weighted median estimators [19]. In order to test the influence
of each SNP on the results, we adopted the leave-one-out method, which was based on
IVW point estimation after removing a SNP from the population [20]. The fluctuation of
the results before and after removal reflected the sensitivity of this SNP [20]. MR-PRESSO
consisted of three components (MR-PRESSO global test, MR-PRESSO outlier test, MR-
PRESSO distortion test) and relied on a regression framework with regressions based on
the effect of exposure on results provided by the slope of the regression line [21]. We also
used MR-PRESSO to evaluate the extent of horizontal pleiotropy.

MR-Egger regression was used to examine the influence of pleiotropy, assuming that
its strengths as an instrument did not affect the magnitude of the pleiotropic effects [17].
Estimates of the average pleiotropic effect of genetic variants included in the analysis could
be explained by the MR-Egger intercept [22]. To quantify the heterogeneity of the selected
variants, additionally, we assessed the Cochran’s Q statistic, which followed a distribution
with χ2 degrees of freedom equal to the number of SNPs minus one [23].

The MR results were presented as odds ratios (OR) with 95% confidence intervals (CI)
for each gene predicting increased risk factors. The link between exposure and outcome
with a p value < 0.05 was a considered significant statistical difference. Packages (such as
‘TwoSampleMR’ (version 0.5.6) and ‘MR-PRESSO’ (version 1.0)) in Rstudio (R version 4.1.2,
R Project for Statistical Computing) were used to perform MR analyses.

3. Results

As positive control, the causal effect of ADP on UA was confirmed in the IVW model
(OR per 1 mg/dL decreased in ADP concentration: 0.978; 95% CI, 0.961–0.996; p = 0.016), al-
though invalid results were found for the weighted median (OR, 0.987; 95% CI, 0.961–1.013;
p = 0.324), penalized weighted median (OR, 0.987; 95% CI, 0.961–1.013; p = 0.311), and
MR-Egger (OR, 0.977; 95% CI, 0.939–1.016; p = 0.256) analyses (Table 1). The estimated
effect sizes of the SNPs on both the ADP and UA outcomes were displayed in a scatter plot
(Figure 1). Leave-one-out analysis showed that the elimination of any SNP did not cause
a change in the results (Supplementary Figure S1). Horizontal pleiotropy was not found
using the MR-PRESSO global test (p = 0.438). The MR-Egger analysis (intercept = 0.00007;
p = 0.946) also indicated that there was no notable directional pleiotropy. No heterogeneity
for the selected variants was found using Cochran’s Q statistic (p = 0.389). The F-statistics
of all 23 IVs were greater than 10 (Supplementary Table S3).

In the IVW model, ADP concentration was unrelated to risk of gout (OR, 1.198; 95%
CI, 0.865–1.659; p = 0.277), and similar invalid results were found for the weighted median
(OR, 1.043; 95% CI, 0.698–1.556; p = 0.839), penalized weighted median (OR, 1.025; 95% CI,
0.692–1.519; p = 0.901), and MR-Egger (OR, 1.024; 95% CI, 0.513–2.045; p = 0.947) analyses
(Table 1). The estimated effect sizes of the SNPs on both the ADP and gout outcomes
were displayed in a scatter plot (Figure 2). The leave-one-out analysis showed that the
elimination of any SNP did not cause a change in the results (Supplementary Figure S2).
No horizontal pleiotropy was found using the MR-PRESSO global test (p = 0.116). The
MR-Egger analysis (intercept = 0.024; p = 0.947) also indicated that there was no notable
directional pleiotropy. No heterogeneity for the selected variants was found by using
Cochran’s Q statistic (p = 0.083). The mean F-statistics were greater than 10 (Supplementary
Table S3).
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Table 1. Causal effects of ADP on UA and gout using MR analyses.

Phenotype Numbers of SNPs OR (95% CI) Beta (SE) p Q Statistic F-Statistic

ADP vs. UA 4349.6

IVW 23 0.978 (0.961–0.996) −0.022 (0.009) 0.016 0.389
Weighted median 23 0.987 (0.961–1.013) −0.013 (0.014) 0.324
Penalised weighted
median 23 0.987 (0.961–1.013) −0.013 (0.201) 0.311

MR-PRESSO 23 −0.017 (0.011) 0.146
global test 0.438

MR-Egger 23 0.977 (0.939–1.016) −0.023 (0.020) 0.256
egger_intercept 0.00007 (0.001) 0.946

ADP vs. gout 5751.4

IVW 25 1.198 (0.865–1.659) 0.181 (0.166) 0.277 0.083
Weighted median 25 1.043 (0.698–1.556) 0.042 (0.204) 0.839
Penalised weighted

median 25 1.025 (0.692–1.519) 0.025 (0.201) 0.901

MR-PRESSO 25 0.181 (0.166) 0.288
global test 0.116

MR-Egger 25 1.024 (0.513–2.045) 0.024 (0.353) 0.947
egger_intercept 0.010 (0.019) 0.618

Beta is the estimated effect size. p < 0.05 was considered statistically significant. ADP: adiponectin; CI: confi-
dence intervals; IVs: instrumental variables; IVW: inverse-variance weighted; MR: mendelian randomization;
MR-PRESSO: pleiotropy residual sum and outlier; OR: odds ratio; SE: standard error; SNP: single-nucleotide
polymorphism.
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Figure 1. Scatter plot showing the associations of the SNP effects on the adiponectin, against the
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risk of gout for each variant. Error bars indicate 95% CIs. MR: mendelian randomization; IVW:
inverse-variance weighted; SNP: single nucleotide polymorphism.
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A causal effect of sOB-R on UA was not observed in our analysis. The invalid results
were found for the IVW model (OR, 1.002; 95% CI, 0.999–1.004; p = 0.274), weighted median
(OR, 1.001; 95% CI, 0.999–1.004; p = 0.326), penalized weighted median (OR, 1.001; 95% CI,
0.999–1.004; p = 0.325), and MR-Egger (OR, 1.002; 95% CI, 0.997–1.006; p = 0.578) analyses
(Table 2). The results of the evaluation for each SNP were shown in the scatter plot (Figure 3).
It was found that the deletion of a SNP did not cause any changes in the results through
leave-one out sensitivity analysis (Supplementary Figure S3). The MR-PRESSO global test
(p = 0.969) and MR-Egger analysis (intercept = 0.00002; p = 0.991) for UA showed that there
was no horizontal pleiotropy. The result of Cochran’s Q statistic (p = 0.961) showed no
heterogeneity among the selected variants. The F-statistics of all IVs were greater than 10
(Supplementary Table S3).

No evidence of a causal effect of sOB-R on gout was found with either model (such
as the IVW model (OR, 0.988; 95% CI, 0.940–1.037; p = 0.616), weighted median (OR,
0.984; 95% CI, 0.933–1.037; p = 0.547), penalized weighted median (OR, 0.984; 95% CI,
0.933–1.037; p = 0.544), and MR-Egger (OR, 0.985; 95% CI, 0.901–1.078; p = 0.779)) (Table 2).
The scatter plot showed the results of MR analysis of each SNP using the IVW model
(Figure 4). SNP removal was found to not affect the results in the leave-one-out analysis
(Supplementary Figure S4). No horizontal pleiotropy was found using the MR-PRESSO
global test (p = 0.697) and MR-Egger analysis (intercept = 0.002; p = 0.959) for gout; and no
heterogeneity was found for the selected variants using Cochran’s Q statistic (p = 0.492).
The F-statistics of all IVs were greater than 10 (Supplementary Table S3).
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Table 2. Causal effects of sOB-R on UA and gout using MR analyses.

Phenotype Numbers of SNPs OR (95% CI) Beta (SE) p Q Statistic F-Statistic

sOB-R vs. UA 44.8

IVW 4 1.002 (0.999–1.004) 0.002 (0.001) 0.274 0.961
Weighted median 4 1.001 (0.999–1.004) 0.001 (0.002) 0.326
Penalised weighted
median 4 1.001 (0.999–1.004) 0.001 (0.002) 0.325

MR-PRESSO 4 0.002 (0.0004) 0.040
global test 0.969

MR-Egger 4 1.002 (0.997–1.006) 0.002 (0.002) 0.578
egger_intercept 0.00002 (0.002) 0.991

sOB-R vs. gout 71.4

IVW 4 0.988 (0.940–1.037) −0.013 (0.025) 0.616 0.492
Weighted median 4 0.984 (0.933–1.037) −0.016 (0.027) 0.547
Penalised weighted
median 4 0.984 (0.933–1.037) −0.016 (0.027) 0.544

MR-PRESSO 4 −0.013 (0.022) 0.615
global test 0.697

MR-Egger 4 0.985 (0.901–1.078) −0.015 (0.046) 0.779
egger_intercept 0.002 (0.028) 0.959

Beta is the estimated effect size. p < 0.05 was considered statistically significant. sOB-R: soluble leptin receptors;
UA: uric acid; CI: confidence intervals; IVs: instrumental variables; IVW: inverse-variance weighted; MR:
mendelian randomization; MR-PRESSO: pleiotropy residual sum and outlier; OR: odds ratio; SE: standard error;
SNP: single-nucleotide polymorphism.
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4. Discussion

To our knowledge, this is the first attempt to explore the causal effects of ADP on gout,
and sOB-R on UA and gout, based on MR analyses. Based on summary statistics from
GWASs, we found no evidence to support the causal effects of these adipokines on UA or
gout. These results were consistent across the sensitivity analyses using different methods.

ADP is the most abundant adipokine and is negatively correlated with adiposity. Exten-
sive evidence has shown that obesity may be associated with higher UA levels and a greater
risk of gout [24–26], and that ADP may play an important role. Numerous observational
studies have investigated the relationship of circulating ADP and UA, with inverse associa-
tions generally observed. Decreased ADP levels lead to higher UA levels [6,10]. Our study
reinforces this epidemiological evidence, by replicating the causal effect of ADP on UA. A
study of gout in Japan reported that the role of ADP in gout was similar to that of UA [27].
Another study, however, reported that higher ADP concentrations in patients with severe
gout compared to controls [28]. In our MR analysis, we found no causal effect of ADP on gout
using a mixed-ethnicity sample. The two-sample MR analysis model, using genetic variations
significantly associated with ADP as IVs, is not susceptible to confounding factors and reverse
causality compared with observational studies.

Febuxostat, used for the treatment of hyperuricemia in gout, is a non-purine xanthine
oxidase inhibitor [29]. In the course of treatment, the concentration of ADP was elevated,
possibly due to the involvement of reactive oxygen species [30]. Similar results were seen in
patients tread with benzbromarone for gout [31]. Benzbromarone is a potent UA excretion
drug that works by inhibiting urate transporter 1 (URAT1) and glucose transporter 9
(GLUT9) [29]. URAT1A and GLUT9 are molecules expressed in proximal renal tubules that
mediate renal reabsorption of UA [32–35]. Moreover, the increase of ADP concentration
may not be associated with the decrease of UA, but benzbromarone-induced peroxisome
proliferator-activated receptors (PPAR) α activation increased the mRNA of ADP via the
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promoter of ADP [36]. The increase in PPAR γ mRNA induced by benzbromarone may
play a role in the mRNA expression of ADP in 3T3L1 cells [36]. Therefore, we speculate
that drug therapy may be an important factor in the elevation of ADP in patients with
gout. In addition, insulin resistance leads to increases in URAT1 and GLUT9 [29]. Under a
high purine load, insulin resistance can enhance UA reabsorption, which is manifested as
upregulation of URAT1 expression [37]. Similarly, elevated levels of URAT1 protein have
been observed in obesity/metabolic syndrome model mice [38]. In obese patients, ADP
is thought to be closely related to insulin resistance [7]. Overall, the correlation between
ADP and gout in observational studies may only be an accompanying relationship or
influenced by confounding factors, and ADP does not play a direct role in the occurrence
and development of gout.

As the main leptin receptor in circulating blood, sOB-R is closely related to leptin bind-
ing activity [39]. Numerous studies have shown that high levels of UA are accompanied by
high levels of serum leptin [40–43]. High concentrations of leptin were detected in both
severe gout patients and in the acute phase of gout [8,27]. Under the action of a feedback
regulation mechanism, the concentration of sOB-R in circulating blood may be influenced
by changes in leptin levels. A study suggested that the mRNA levels of leptin receptors
in peripheral blood mononuclear cells of patients with gout were significantly elevated,
usually binding to leptin and transducing downstream signals [8]. We also attempted to
investigate the causal effects of leptin on UA and gout, but there were not enough SNPs
as IVs to support MR analyses. Based on a two-sample MR framework and using a large
European population sample, we also found no evidence of a causal effect of sOB-R on UA
or gout.

Studies have shown that females have significantly higher leptin levels than males, possi-
bly due to the testosterone effect in men, which inhibits leptin production in adipocytes [41–46].
Leptin concentrations were positively correlated with UA in premenopausal females and
elevated in females with hyperuricemia [47,48]. Therefore, the concentration of sOB-R, which
is closely related to leptin levels, may also differ between the sexes. Similarly, UA differs
between the sexes and is thought to be caused by estrogen [49,50]. This phenomenon suggests
that estrogen and the over-representation of females in the sample may have influenced these
results. However, these results may be related to the fact that gender-specific adipokines
data are not available. Therefore, the causal effects of adipokines on UA cannot be accu-
rately described between the sexes. This limitation reflects the need for sex-stratified GWASs
and sex-specific research in this area of the causal effects of adipokines on UA and gout in
the future.

There are three main strengths of our MR analyses in the present study. First of all,
we used large-scale summary data sets of ADP, sOB-R, gout, and UA. Second, we found
no heterogeneity or pleiotropic of the IVs using multiple sensitivity analysis models and
Cochran’s Q statistic. Thus, despite the limited number of powerful genetic instruments,
the accuracy of the resulting MR estimates and the reliability of the results were significantly
improved. Third, our MR analyses more effectively avoided potential confounding factors
and reverse causality than traditional observational studies.

Without doubt, there were several limitations to our analyses. First, in terms of data,
we selected a mixed population sample of ADP, and the resulting racial differences should
not be ignored. Next, summary level data were used in MR analyses, so it was not possible
to stratify the analysis by covariates of interest. Finally, our samples were principally
European, which restricts the universality of our results to other ethnic groups.

5. Conclusions

In summary, in this two-sample MR study, our results do not support causal effects of
these specific adipokines on UA or gout. Our results suggest that these specific adipokines
do not play a causal role in UA or gout development.
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