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a b s t r a c t 

Australia has a reputation for producing a reliable supply of high-quality barley in a contaminant-free climate. As 

a result, Australian barley is highly sought after by malting, brewing, distilling, and feed industries worldwide. 

Barley is traded as a variety-specific commodity on the international market for food, brewing and distilling end- 

use, as the intrinsic quality of the variety determines its market value. Manual identification of barley varieties 

by the naked eye is challenging and time-consuming for all stakeholders, including growers, grain handlers and 

traders. Current industrial methods for identifying barley varieties include molecular protein weights or DNA 

based technology, which are not only time-consuming and costly but need specific laboratory equipment. On 

grain receival, there is a need for efficient and low-cost solutions for barley classification to ensure accurate and 

effective variety segregation. This paper proposes an efficient deep learning-based technique that can classify 

barley varieties from RGB images. Our proposed technique takes only four milliseconds to classify an RGB image. 

The proposed technique outperforms the baseline method and achieves a barley classification accuracy of 94% 

across 14 commercial barley varieties (some highly genetically related). 

1. Introduction 

Barley is the fourth largest grain crop in the world after wheat, maize, 

and rice. It is commonly used in breads, soups, stews, and health prod- 

ucts, though it is primarily grown as animal fodder and as a source of 

malt for alcoholic beverages. Barley is Australias second-largest crop in 

volume after wheat. Australian growers annually produce around 2.3 

million tons of malting barley and 6 million tons of feed barley. Aus- 

tralian grain accounts for approximately 60 per cent of the total crop 

exported each year [1] . 

The Australian barley industry currently performs a visual inspec- 

tion to classify barley in the field for variety purity and at receival sta- 

tions for segregation. Grain that meets industry standards for receival as 

malt barley is segregated by variety. Barley is required for a minimum 

of 95 per cent of variety purity to be traded as malt barley. However, 

manual identification of the barley crop is slow and subjective and can 

vary from one technician to another based on their experience. Further- 

more, visual identification cannot quantify the variety or the purity of 
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the load on receival in real-time. Therefore, there is a need to develop an 

automatic and reliable method for classifying and identifying the barley 

grain with an objective quality assessment [2] . 

Current lab-based barley classification methods such as pro- 

tein molecular weight and DNA fingerprinting technology are time- 

consuming and require specialised equipment for barley classification 

(variety identification). The protein molecular weight approach, for ex- 

ample, can take 12 to 14 hours to produce the desired barley classifica- 

tion. If implemented on receival, it would create a bottleneck in deliv- 

ering barley to a bulk handler. There is, therefore, a need for the devel- 

opment of efficient and portable techniques for barley classification at 

grain receival points in real-time. 

This paper addresses those challenges by developing an automatic 

technique for barley classification using RGB images. Machine learn- 

ing has progressed dramatically in recent years, from laboratory imple- 

mentation to practical technology in widespread commercial use [3] . 

Machine learning has emerged as the most appropriate for developing 

functional software for computer vision, speech recognition, natural lan- 
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guage processing, robot control, and other applications [ 4–6 ]. In addi- 

tion, artificial neural networks have emerged as one of the popularly 

used techniques for cereal grain classification and identification [7–9] . 

Artificial neural networks have emerged as one of the most used tech- 

niques for cereal grain classification and identification tasks [11] . 

Inspired by the advent and performance of machine learning for im- 

age classification, we propose a deep learning method for barley classifi- 

cation. Deep learning has shown unprecedented performance for several 

natural image processing tasks, including object recognition, segmen- 

tation and detection. Some of the recent deep learning systems have 

achieved comparable performance to humans for recognition and classi- 

fication [ 12–14 ]. Our proposed system can classify different barley types 

with high accuracy. Our grain image dataset consists of 1432 RGB im- 

ages of thirteen Barley Australia accredited malt barley varieties (Bass, 

Baudin, Buloke, Commander, Compass, Flinders, Granger, La Trobe, Lit- 

mus, RGT Planet, Scope CL, Spartacus CL and Westminster) and one 

Barley Australia accredited food barley variety (Hindmarsh). Details of 

the dataset are provided in Section 3. 

The contributions of this paper are summarised as follows: 

• A deep learning approach for the automatic and efficient classifica- 

tion of barley grain images has been proposed. 

• A barley dataset containing RGB images of 14 different barley vari- 

eties with data augmentation to increase the number of images. 

• Extensive evaluation of the proposed technique on our barley 

dataset. 

The rest of this paper is organised as follows. Literature review is 

provided in the next section. Our dataset is introduced and discussed in 

Section 3. Proposed methodology is described in Section 4. Experimental 

results are reported in Section 5 and the paper is concluded in Section 6. 

2. Related work 

2.1. Traditional approaches 

Barley is traded as a variety-specific commodity on the international 

food, brewing and distilling markets as the intrinsic quality of the variety 

determines the market value. The varieties of barley have a genealog- 

ical structure that makes it hard to identify with the human eye. The 

barley supply chain in Australia typically applies lab-based analyses to 

determine variety type, but this cannot be done in real-time. 

2.1.1. Protein molecular weight 

Protein molecular weight has been the traditional way of identifying 

barley varieties. The approach relies on one or a very limited number 

of carefully selected proteins, whose molecular weights are measured 

by traditional molecular approaches, such as sedimentation equilibrium 

ultracentrifugation [ 15 , 16 ]. 

The variety identification is achieved then by evaluating the differ- 

ence in their molecular weights. This is because morphological char- 

acterisation of barley varieties is genetically separate and thus lead to 

variation in molecular weights of the associated proteins [16] . However, 

identification based on molecular weight is not reliable and becomes 

rather difficult in distinguishing between closely related varieties. The 

other drawback is such identification involves complicated experimen- 

tal procedures and time-consuming. 

A study on genetic and morphological characterisation of barley va- 

riety shows that the genetic analysis indicated that there are genetically 

separate but not distinct regulatory controls on vegetative and inflores- 

cence axillary development [17] . Therefore, with the level of molecular 

weights, it is possible to identify or determine the relationship between 

varieties of barley likewise other cereal crops, but it does not guaran- 

tee accurate results it has difficulty in distinguishing between closely 

related varieties and time-consuming. These methods have difficulty to 

distinguish closely-related barley varieties. 

2.1.2. DNA Fingerprinting technology 

DNA fingerprinting technology currently developed by Western Bar- 

ley Genetics Alliance indicated that the newly developed technologys 

molecular test would lead to fast and accurate results thereby provid- 

ing growers, plant breeders, seed companies and marketers with more 

confidence in the identity and purity of Australian barley varieties [1] . 

However, it was indicated that the test takes less than two hours, com- 

pared with days or weeks for the traditional test, and the cost was less 

than $100 per sample [1] . 

This lengthy process and cost are also seen as significant flaw about 

the new technology while with machine learning, a user can take pic- 

tures of the barley at the receival points and automatically the barley 

variety can be identified, which is the essence of this research and im- 

plementations. 

2.2. Computer vision approaches 

Artificial neural networks are regarded as one of the machine learn- 

ing algorithms that gained acceptance for cereal grain classification and 

identification problems. 

Szczypinsik et al. [18] developed a technique to separate varieties of 

barley using computer vision and an artificial neural network (a three- 

layer network) as the classification reference method. The study aims 

to identify barley varieties based on shape, colour, and texture of the 

grain in the images. They were able to get 67 to 86% accuracy with the 

neural network classifier [18] . 

Visen et al., [11] proposed a four-layer back-propagation neural 

network to classify cereal grain and dockage. Their proposed method 

achieved an accuracy of 90% and they used a combination of morpho- 

logical, colour, and texture as the feature of the model. 

Kozowski et al. [19] proposed a technique for varietal classification 

of barley for malting. They used convolutional neural networks (CNNs) 

and compared their method with other existing techniques. Their exper- 

imental results demonstrate the superior performance for the recogni- 

tion of individual kernel variety. Their proposed methods achieved an 

improvement of 40% in classification accuracy. 

Based on the previous works, it can be noted that CNNs have 

achieved superior performance for the task of image classification. Ma- 

chine learning, especially deep learning, has become more popular be- 

cause of its compelling performances in the various task. For image clas- 

sification tasks, CNN has been the most extensively studied algorithm. 

CNN is a deep learning architecture inspired by the natural visual per- 

ception mechanism of living creatures [20] . CNN uses multiple hidden 

layers, such as the convolutional layer, the pooling layer, and the fully 

connected layer. 

Based on all those studies, it is hypothesised that CNN and its variants 

will perform barley image classification with greater accuracy. 

3. Barley dataset 

3.1. Image data 

Our barley grain dataset was developed at The Western Crop Ge- 

netic Alliance at Murdoch University. The samples include 13 Barley 

Australia accredited malt barley varieties including Bass, Baudin, Bu- 

loke, Commander, Compass, Flinders, Granger, La Trobe, Litmus, RGT 

Planet, Scope CL, Spartacus CL, and Westminster, and one Barley Aus- 

tralia accredited food variety, Hindmarsh. There was a degree of ge- 

netic relatedness in the varieties imaged ( Fig. 2 ). For example, Scope 

CL was developed through mutagenesis of Buloke and is agronomically 

similar to Buloke, except it is tolerant of the imidazolinone group of 

herbicides. Commander represents three-quarters of the parentage of 

Compass, while Baudin is a parent of Flinders. The other four varieties 

are genetically different to each other. 

RGB images of grain were taken in a controlled environment. The 

grains were captured from the back and the front side. There were 1432 
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Table 1 

Number of samples for each barley variety. 

Variety Name Bass Baudin Buloke Commander 

Number of Samples 624 636 696 612 

Variety Name Compass Flinders Granger Hindmarsh 

Number of Samples 600 612 612 600 

Variety Name La Trobe Litmus RGT Planet Scope CL 

Number of Samples 612 600 600 600 

Variety Name Spartacus CL Westminster - - 

Number of Samples 600 600 - - 

Table 2 

Accuracy for each experiment. 

Classifier/Architecture Train Accuracy (%) Validation Accuracy (%) Test Accuracy (%) 

SVM (Back) - - 12 

SVM (Front) - - 8 

CNN with VGG16 (Back) 85 75 73 

CNN with VGG16 (Front) 64 53 59 

Feature Extraction + CNN (Back) 76 88 80 

Feature Extraction + CNN (Front) 77 89 83 

Feature Extraction + SVM (Back) - - 94 

Feature Extraction + SVM (Front) - - 92 

Fig. 1. Pre-processing of barley images. Removing watermark from the original 

image. Watermark is first detected and cropped from the image by replacing that 

region by black pixels. 

high-quality RGB images, 716 for the back and 716 for the front side of 

the barley grains. Each variety had 600 to 696 images taken ( Table 2 ). 

The images taken had a resolution of 1440 x 1220 pixels with 144 DPI 

and could be zoomed up to 2000 μm in length. Every image had a wa- 

termark on its bottom right. Therefore, all the images in the dataset are 

pre-processed as discussed in the following. 

3.2. Data acquisition 

The seed images were taken by Nikon DS-Fi 3 camera coupled with 

Research Stereo Microscope SMZ18, DS-L4 control unit and Schott AG 

Easy LED Double Spotlight. The camera was set as below: shutter speed 

1/17 sec; iso 800; white balance 5500k; exposure compensation 0; 

shooting mode standard; metering mode average. For each variety at 

least 50 seeds with uniform shade and plumpness were selected to take 

images. For each seed, two images were taken, one from the front and 

the other from the back. 

3.3. Data pre-processing 

Image pre-processing is a common practice in image classification 

tasks. We perform two step pre-processing in this paper. Details are as 

follows: 

3.3.1. Noise removal 

Images of an object might be affected by the noise. We removed the 

noise from each image by first detecting the text, as shown in Fig. 1 (red 

box), and cropping the area which contains the watermark. This process 

was done automatically for every image. 

3.3.2. Data augmentation 

Next step in data pre-processing is the data augmentation. In situa- 

tions, where data collection is expensive and time consuming; data can- 

not be collected from other resources, or the collected data is not well 

represented; data augmentation can be performed to generate diverse 

examples from the available data. This is particularly helpful if dataset 

size is very small and also helps to avoid overfitting of machine learning 

models. The efficient and the most common approach for data augmen- 

tation is to apply transformations such as translation, zoom, flips, shears, 

mirrors and colour perturbation on existing data [21] . 

We perform data augmentation on our dataset and generate new and 

diverse images with different kind of transformations (as above) for each 

image as shown in Fig. 3 . We increased the sample size from 1432 to 

8592 or by five folds. 

4. Proposed methodology 

4.1. Proposed deep learning technique 

In this section, we describe our proposed deep learning technique for 

barley classification. Because we had a relatively small number of sam- 

ples, we use a pre-trained deep learning model. All of the pre-trained 

models have been trained and tuned on the large-scale ImageNet dataset 

and are good for image classification, feature extraction, as well as trans- 

fer learning. The latter learning involves the reuse of knowledge from 

another related domain in the current domain, and deep learning has 

been very successfully utilised for various computer vision tasks, such 

as object identification, using transfer learning on different CNN archi- 

tectures [ 22 , 23 ]. 

AlexNet, ResNet and VGG16 are widely used CNN architectures be- 

cause these networks have achieved very good performance on different 

benchmarks for object recognition tasks [24] . In this paper, we use the 

pre-trained VGG-16 architecture [25] and perform transfer learning for 

the task of barley classification. In the following, we briefly describe 

VGG for completeness. 

Visual Geometry Group (VGG) is a convolutional neural network 

model proposed by K. Simonyan and A. Zisserman in 2014 [25] . It has 

achieved one of the top performances in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) 2014. It utilises smaller filters of 3x3 

with stride of 1 in convolution layer and uses same padding in pool- 

ing layers 2 x 2 with stride of 2 to provide better features extraction 

3 
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Fig. 2. Pedigrees of varieties imaged. 

Fig. 3. Data augmentation to increase the number of samples in the dataset. 

from images, using much lower filters to increase the depth of network 

instead of its width plays a critical role in gaining higher performance. 

The network consists of 13 convolutional layers and 5 max pool- 

ing layers followed by three dense layers. We perform transfer learn- 

ing, which requires modification of the final layer of this model. To 

demonstrate the effectiveness of the proposed model, we use two differ- 

ent types of classifiers including support vector machine (SVM) and the 

traditional softmax layer (details in Section 5). With transfer learning 

(VGG), the only pre-processing required is to subtract the mean RGB 

value, computed on the training set, from each pixel [26] . 

4.2. Baseline method 

We used support vector machine (SVM) as our baseline method. SVM 

is one of the most used machine learning algorithms. It has been used in 

a broad range of classification problems such as recognition and detec- 

tion [27] . However, to perform well in different situations, SVM must 

be tuned with a suitable kernel. Karamizadeh, et al. [27] mentioned that 

SVM could handle both linear and non-linear patterns but with different 

types of kernel. 

5. Results and discussion 

In the first experiment, the model was trained using Radial Basis 

Function (RBF) kernel SVM as the classifier. The dataset with raw im- 

ages was split into two, for training and as the test dataset. Hyperpa- 

rameters were left with default settings, i.e., C = 1 and gamma was set 

to auto depreciate. The RBF SVM model was run twice for each back 

and front images. The SVM achieved an accuracy of 12% for the back 

images model and 8% for the front image model. This was anticipated 

Table 3 

Accuracy of fusion models. 

Classifier/Architecture Test Accuracy (%) 

Feature Extraction + CNN 74 

Feature Extraction + SVM 94 

Feature Extraction + SVM (10-folds) 94 

because SVM is not the best classifier to use when dealing with image 

classification problem. However, the model predicted only up to five 

varieties from the confusion matrix while leaving the other nine with 

zero predictions. 

In the second experiment, the pre-trained VGG16 was used, split 

for training, testing, and validation with a proportion of 80, 10, and 

10 per cent, respectively. The proposed model was fine-tuned separately 

for the back and front barley images. The proposed model achieved 75% 

accuracy for the validation set (back images) and 73% accuracy for test 

images (back) as reported in Table 2 . For front images, 53% and 59% 

validation and test accuracy were achieved compared to the baseline 

SVM classifier. 

In the third experiment, the model for feature extraction allowed 

dropping of the last layer of the model, with the features extracted from 

the last dense layer. Next, two different classifiers were trained to pre- 

dict the class of input barley images using the extracted deep features. 

The extracted features were given as an input to a one-layer CNN with 

SoftMax. As a result, model accuracy increased, with a validation ac- 

curacy of 88% and test accuracy of 80% for the back image, with 89% 

validation and 83% test accuracy for the front image. Next, the SVM 

classifier was used as the last layer of the network. SVM is a good clas- 

sifier and suitable for several problem domains. The features extracted 

from the deep learning model were fed to the SMV classifier. As a result, 

the enhanced model achieved 94% accuracy for back images and 92% 

for front images ( Table 2 ). 

In the fourth experiment, the output of the back-model (trained on 

back images) and front-model (trained on front images) were fused by 

concatenating the features extracted from each model ( Table 3 ). The 

model achieved 74% accuracy with a soft-max layer. The model then 

achieved 94% with an SVM classifier. These results demonstrate the ef- 

fectiveness of fusing the front and the back model features. To further 

validate the effectiveness of our model, we ran our experiments tenfold 

with a random selection of the training and test datasets, with an aver- 

age accuracy of 94%. 

Table 4 shows the confusion matrix. It can be noted that almost ev- 

ery variety has been classified with an accuracy of over 90%. Flinders 

had the lowest classification accuracy of 87%. The confusion matrix also 

4 
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Table 4 

Confusion Matrix for the fusion model. (% Accuracy) . 

True/ Prediction Bas Bau Bul Cmr Cps Fli Gra Hin LaT Lit RGT Sco Spa Wes 

Bass 92 - - 1 - 2 - - - - 4 2 - - 

Baudin - 99 - - - - - - - - - 1 - - 

Buloke - - 97 1 - - - 1 - - - 1 - - 

Commander - - 1 98 - - - - - - 1 - - - 

Compass - - - - 90 1 - - - - - 3 3 2 

Flinders 9 - - - - 87 1 - 1 - 1 1 - - 

Granger 2 - - - 1 2 91 - - 4 1 - - - 

Hindmarsh - - - - 1 - - 98 - - - - 1 - 

La Trobe - - - - - 1 - - 94 - - - 5 - 

Litmus - - - - 1 1 1 - - 95 - 1 2 - 

RGT Planet 3 - - - - 3 - - - - 92 2 - - 

Scope CL 1 - - - - - 1 - - - - 96 1 1 

Spartacus CL 3 - - - - 1 - - - 7 - - - 92 - 

Westminster 3 - - - - 2 - - - 1 1 - - 93 

demonstrates several misclassifications. As many of the varieties were 

products or derivatives of another variety imaged ( Fig. 2 ), they may 

have similar morphological characteristics and textures. The genealog- 

ical structure of the variety, therefore, limits the accuracy of any visual 

model. Surprisingly, Hindmarsh and La Trobe were rarely misclassified, 

while La Trobe and Spartacus CL were more often misclassified. Sparta- 

cus CL was predicted as La Trobe 7% of the time, and La Trobe was pre- 

dicted as Spartacus CL 5%. While Flinders and Bass share a semi-dwarf 

heritage, their genetics are not similar, but Flinders was predicted as 

Bass 9% of the time. The genealogical structure of the variety limits the 

accuracy of the model. 

Computation Time: Our experiments were run on Intel Corei5 com- 

puter with 16GB RAM. The average testing time for our proposed deep 

learning model is around 4 𝑚𝑠 per image that makes it suitable for real- 

time applications e.g., automatic barley variety recognition using mobile 

phone. 

6. Conclusion and future directions 

In this paper, we propose a deep learning technique for barley 

classification. The paper aims for an automatic image-based solution 

to identify 14 different barley varieties. The current methods in the 

field/industry are either time-consuming or expensive. The proposed 

method provides an efficient and cost effective solution. The results 

showed that the baseline SVM did not perform well compared to the 

deep learning algorithms. This is expected because the deep learning 

model learns more distinctive features compared to SVM. For the deep 

learning algorithm, we use pre-trained VGG16 architecture. We modi- 

fied the model by using feature extraction and also performed transfer 

learning by replacing the last layer of the CNN. 

The model performed well with a high overall accuracy and 94% 

of accuracy and consistent performance throughout ten folds cross- 

validation. Our proposed model outperforms the baseline model and 

achieves an average accuracy of 94% when both the front and back 

models are fused. 

To enhance the accuracy and reduce the misclassification of the 

model, a larger RGB image dataset is required for the training of deep 

neural networks. In addition, for the model to be useful on receival, 

it would need to be assessed in uncontrolled environments; work with 

lower resolution images produced from mobile devices like a mobile 

phone; and detect more than one grain in an image. Other deep learning 

classification method and advanced preprocessing methods also need 

exploring. Another important research direction is to assess the ability 

of the model to predict the purity of barley grain in a sample. The pu- 

rity of barley grain is essential for malting purposes and seed sale. In 

our future work, we intend to address this challenge by enhancing our 

current deep learning technique and by proposing new methods. 
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