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Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and the most
common form of dementia worldwide. The classical AD brain is characterized by
extracellular deposition of amyloid-β (Aβ) protein aggregates as senile plaques and
intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated forms
of the microtubule-associated protein Tau. There has been limited success in clinical
trials for some proposed therapies for AD, so attention has been drawn toward
using alternative approaches, including prevention strategies. As a result, nutraceuticals
have become attractive compounds for their potential neuroprotective capabilities. The
objective of the present study was to derive a synergistic nutraceutical combination
in vitro that may act as a potential preventative therapy for AD. The compounds of
interest were docosahexaenoic acid (DHA), luteolin (LUT), and urolithin A (UA). The cell
viability and cytotoxicity assays MTS and LDH were used to evaluate the compounds
individually and in two-compound combinations, for their ability to inhibit Aβ1-42-induced
toxicity in human neuroblastoma BE(2)-M17 cells. The LDH-derived% protection values
were used in the program CompuSyn v.1.0 to calculate the combination index (CI) of
the two-compound combinations. The software-predicted potentially synergistic (CI < 1)
two-compound combinations were validated using CellTiter Glo assay. Finally, a three-
compound combination was predicted (D5L5U5) and shown to be the most effective at
inhibiting Aβ1-42-induced toxicity. The synergistic combination, D5L5U5 warrants further
research for its mechanism of action; however, it can serve as a basis to develop an
advanced functional food for the prevention or co-treatment of AD.

Keywords: Alzheimer’s disease, docosahexaenoic acid, in vitro, Luteolin, synergistic nutraceutical combinations,
urolithin A
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INTRODUCTION

Plants, the immobile life on earth, have the inherent ability to
synthesize defensive secondary metabolites, commonly known
as phytochemicals, to withstand attacks by different organisms
such as pathogens, insects, and herbivores. These phytochemicals
have proven bioactivity through modulating molecular targets
in living beings (Efferth and Koch, 2011). These bioactive
phytochemicals are used in traditional medicine in China and
Sri Lanka, and Ayurveda in India. These medicine systems
use herbal mixtures consisting of many different herbs to treat
diseases (Thomas and Egon, 2011).

The unraveling of complex disease mechanisms in modern
medicine by technological advancement has immensely
contributed to a greater understanding of drug interactions
and usage of drug combinations in therapeutic regimes. In
combination drug therapies, the simultaneous action of drugs in
low doses increases therapeutic efficacy and decreases toxicity
effects and drug resistance (Sun et al., 2016). Combination drug
therapies are widely researched in treating diseases such as
cancer (De Kok et al., 2008), human immunodeficiency virus
(HIV) infection (Moreno et al., 2019), and many other ailments.
Furthermore, combining natural compounds is popularizing
in dealing with medical conditions where there is a shortage
of discovery and approval of new drugs, and the existing
monotherapies have shown limited therapeutic efficacy (Patti
et al., 2017; Santana-Gálvez et al., 2019).

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder and is the second major cause of death in Australia.
The classical AD brain is characterized by extracellular deposition
of amyloid-β (Aβ) protein aggregates as senile plaques and
intracellular neurofibrillary tangles (NFTs), composed of hyper-
phosphorylated forms of the microtubule-associated protein
Tau. Amyloid beta peptides are formed by the normal
metabolic processing of amyloid precursor protein (APP).
The predominant (90%) Aβ peptides are Aβ1-40 and Aβ1-42,
respectively, with the latter being the most toxic (Selkoe, 2001;
Murphy and Levine, 2010; Tiwari and Kepp, 2016).

It has been reported that by February 2020, there were 121
drugs studied in 136 AD therapeutic trials (Cummings et al.,
2020). However, considering the past decade, many clinical trials
have failed outright while the efficacy and effect size have been
problematic in the ones that have indicated a positive outcome
(Banik et al., 2015). There has been no new drug approved within
the past 16 years until the controversial approval of the drug
Aducanumab recently in 2021 (Rabinovici, 2021).

Due to the toxicity associated with the use of currently
available drugs and their limited therapeutic effectiveness, the
purposed drugs for AD are being repositioned as combinations
(Cummings et al., 2019; Kabir et al., 2020). Considering
the multifactorial nature of AD, combinations of therapeutic
agents may be effective than monotherapies. One study
reported that a drug combination of two approved drugs,
acamprosate and baclofen synergistically protected rat cortical
neurons and human brain-derived microvascular endothelial
cells against Aβ oligomer-induced toxicity (Chumakov et al.,
2015). Furthermore, this combination has alleviated cognitive

deficits in an acute Aβ25−35 peptide injection mouse model and a
mutant APP transgenic mouse model (Chumakov et al., 2015).
Many studies and clinical trials have been conducted for AD
drug combinations, to name a few, the N-methyl-D-aspartate
(NMDA) receptor antagonist Memantine with various Acetyl
Cholinesterase inhibitors such as Memantine and Rivastigmine
(Dantoine et al., 2006; Riepe et al., 2007), Memantine, and
Donepezil (Tariot et al., 2004; Cummings et al., 2006) and
Memantine and Galantamine (Simoni et al., 2012).

Prevention of AD has become an important consideration,
particularly since disease-modifying treatment trials have proven
unsuccessful. As AD is a complex multifactorial disorder, there
may also be multiple ways to prevent or delay the onset of AD
(Galvin, 2017). It suggests that prevention studies focusing on
risk reduction and lifestyle modification by diet and exercise
may be an alternative approach offering additional benefits.
In the modulation of lifestyle, diet plays a major role. The
Mediterranean diet (MeDi) plays an important role to reduce the
risk for AD (Scarmeas et al., 2006; Panza et al., 2018). MeDi is
characterized by a high intake of vegetables, fruits, unsaturated
fatty acids (in the form of olive oil), fish, a low-to-moderate intake
of dairy products such as cheese or yogurt, a low intake of meat,
and poultry and a regular but moderate amount of red wine
(Scarmeas et al., 2006). These vital food items in a typical MeDi
are rich in bioactive components that are reported as potentially
beneficial for cognitive performance in AD (Cremonini et al.,
2019; Grodzicki and Dziendzikowska, 2020).

One rich source of polyphenols is pomegranate, which
possesses many polyphenolic compounds such as ellagitannins
(ETs) and flavonoids (Sreekumar et al., 2014). Punicalagin is
the most abundant ET in pomegranate juice with a very low
bioavailability (Cerda et al., 2003). In the lower digestive tract,
punicalagins are converted by the gut microbiota into urolithin A
(UA), which has a relatively higher bioavailability (Seeram et al.,
2006; Espin et al., 2013). According to Hartman et al. (2006), mice
treated with pomegranate juice had significantly less (∼50%)
soluble Aβ42 and amyloid deposition in the hippocampus as
compared to control mice (Hartman et al., 2006). However,
the anti-AD effects of pomegranate are due to UA (Yuan
et al., 2016; Gong et al., 2019). Luteolin (LUT) is a prominent
flavone compound in pomegranate peel (Van Elswijk et al., 2004;
Chaudhari et al., 2014; Liu et al., 2017). It shows potent anti-
inflammatory and antioxidant activities (Xia et al., 2014). It
also inhibits BACE1 by suppressing the BACE1 promoter by
NF-κB signaling (Zheng et al., 2015). Moreover, LUT has been
reported to reduce zinc-induced Tau hyperphosphorylation in
SH-SY5Y Cells (Zhou et al., 2012). Luteolin has also been shown
to ameliorate neurotoxicity in an Aβ toxicity model that used
Aβ25−35 peptide in murine cortical neurons (Choi et al., 2014).
Overall, there are only a limited number of studies carried out
on the activity of these pomegranate-related polyphenols on the
inhibition of Aβ1-42 induced toxicity.

Omega-3 polyunsaturated fatty acids including
docosahexaenoic acid (DHA) naturally occur in marine
food sources such as fish and algae (Tocher, 2015; Peltomaa et al.,
2017). An in vivo experiment carried out in mouse expressing
human APP K670N-M671L (APPsw) transgenic mouse model
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FIGURE 1 | The compounds of interest. The compounds investigated in the
present study were, omega-3 polyunsaturated fatty acid, docosahexaenoic
acid (DHA) and pomegranate-derived compounds: luteolin (LUT), urolithin A
(UA).

(Tg2576) has shown that DHA treatment lowers Aβ40 and Aβ42
levels and Aβ plaque burden (Lim et al., 2005). Some in vitro
experiments demonstrated that DHA decreases the BACE1 and
γ-secretase activity and increases the α-secretase activity. It has
been reported that DHA effectively reduced Aβ release by driving
the amyloidogenic processing of APP toward non-amyloidogenic
processing (Grimm et al., 2011). An in vitro study indicated that
DHA reduced soluble Aβ oligomer levels and further inhibited
formation of Aβ1-42 fibrils (Hossain et al., 2009). Furthermore,
another study showed that DHA reduced formation of Aβ

oligomers and fibrils in the cerebral cortex of Aβ-infused rats
(Hashimoto et al., 2009). However, the few studies that have
investigated DHA on Aβ1-42 induced toxicity need confirmation
by a more thorough investigation.

Some reports have investigated the combined effect of multi-
targeting nutraceutical compounds in AD in vitro models
(Espargaró et al., 2017). It has recently been shown in Tg2576
transgenic mice that a combination of food-derived compounds,
EGCG, DHA, and α-lipoic acid exerted potent anti-inflammatory
and neuroprotective effects (Sharman et al., 2019). However,
similar studies targeting bioactive compound combinations
against AD are still limited in the literature.

The objective of the present study was to investigate the
compounds, DHA, LUT, and UA (Figure 1) in vitro for any
nutraceutical combinations potentially effective against AD.
The compounds were initially screened for their activity to
inhibit Aβ1-42-induced toxicity and were subsequently used to
determine synergistic combinations in vitro that may be more
potent in action against Aβ1-42 compared to single compounds.
For drug combinations, quantifying synergism and antagonism
through CI calculations was performed by the third-generation
computer software, “CompuSyn” written by Ting-Chao Chou
and Nick Martin (MIT, MA, United States) in 2005 (ComboSyn,
Inc., MA, United States).

MATERIALS AND METHODS

Materials
cis-4,7,10,13,16,19-Docosahexaenoic acid (DHA: D2534), LUT
(L9283), UA (SML1791), and dimethyl sulfoxide (DMSO) were
obtained from Sigma Aldrich, United States. BE(2)-M17 cells
(ATCC R© CRL2267TM) were purchased from American Type Cell
Culture Collection (ATCC, Manassas, VA, United States). All cell
culture reagents including Dulbecco’s Modified Eagle Medium

(DMEM), Ham’s F12 medium, Hank’s balanced salt solution
(HBSS), fetal calf serum (FCS) and Trypsin-EDTA (0.5%) were
purchased from GIBCO by Life Technologies (United States).
Human Aβ1-42 peptides were synthesized, purified and
characterized by high pressure liquid chromatography (HPLC)
and mass spectrometry (MS) by The ERI Amyloid Laboratories
LLC, United States. Anhydrous DMSO was purchased from
Molecular Probes by Life Technologies (United States). CellTiter
96 R© AQueous One Solution Cell Proliferation assay (MTS:
3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium) and CytoTox-ONETM

Homogeneous Membrane Integrity assay kits (Lactate
dehydrogenase: LDH assay), and CellTiter-Glo luminiscent
cell viability assay kits were purchased from Promega (Madison,
WI, United States).

Cell Culture
Human neuroblastoma BE(2)-M17 cells were maintained in
T75 culture flasks containing 15 mL of DMEM/F12 (1:1 ratio)
growth media supplemented with 10% (v/v) FCS and placed in
a humidified incubator with 5% CO2/95% air at 37◦C. Upon
reaching about 80% confluency, the cells were sub-cultured on to
fresh cell culture flasks. For all cell culture experiments, passage
number did not exceed 30.

Preparation of Oligomeric Aβ1-42
The oligomeric Aβ1-42 was prepared according to the method of
Stine et al. (2011) with some modifications (Stine et al., 2011).
The detailed method used for Aβ1-42 preparation is explained in
our previous work (Jayatunga et al., 2021).

Aβ1-42 Induced Toxicity/Lactate
Dehydrogenase Assay
For Aβ1-42 toxicity experiments, cells were plated in 96-
well tissue culture microplates at a density of 1.5 × 104

cells/well and incubated for 24 hours. The cell culture media
was then replaced with treatment media (1% FCS) and the
cells were pre-treated with different concentrations of the
compounds, DHA, LUT, and UA (5 µM to 40 µM) for
24 hours. The cells were then treated with oligomeric 20 µM
Aβ1-42 with appropriate controls (vehicle-treatment: negative
control; Aβ1-42−treatement: positive control). The microplates
were incubated in the humidified incubator with 5% CO2/95%
air for 72 h at 37◦C. The percentage LDH release for all
treatments were determined using LDH assay. LDH release
results of Aβ1-42-induced toxicity assays for the compounds
DHA, LUT, and UA.

The% LDH release results of Aβ1-42−induced toxicity assays
for the compounds DHA, LUT, and UA were normalized
according to the method used by Chumakov et al. (2015). As
shown below, the vehicle and the Aβ1-42 added treatments were
considered as 1 and 0, respectively (Chumakov et al., 2015). The
coded data were considered as the fractions affected (Fa) and used
along with their respective concentrations (5 to 40 µM) as input
for the computer program CompuSyn v.1.0.
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Calculation of Fa - method adapted from Chumakov et al.
(2015).

Vehicle-treated
control

Aβ1−42-treated
control

Test

% LDH release X y z

% protection (100-x) (100-y) (100-z)

Correction for the
Aβ1−42− induced
toxicity

(100-x) - (100-y) (100-y) - (100-y) (100-z) - (100-y)

Fa (Fraction affected) 1 0 (100-z) - (100-y)
(100-x) - (100-y)

Preparation of Compound Solutions
The compounds DHA, LUT, and UA were dissolved in
dimethylsulfoxide (DMSO) and 10 mM stock solutions
were prepared from each. The stock solutions were
frozen and working solutions were prepared using
treatment media (DMEM/F12 supplemented with 1%
FCS). Control solutions were used for all compounds at
all concentrations.

Combination Studies
MTS Assay
Alternatively, all possible two-compound combinations
(n = 75) for the compounds DHA, LUT, and UA (for the
concentration range of 5 µM to 40 µM) were used for
screening the combinations with the greatest efficacy to inhibit
Aβ1-42−induced toxicity. For that, BE(2)-M17 cells were
maintained in DMEM/F12 medium supplemented with 10%
FCS, in 5% CO2 at 37◦C. For Aβ1-42 toxicity experiments,
cells were plated in 96-well tissue culture microplates at a
density of 1.5 × 104 cells/well and incubated for 24 h. After
replacing the media with treatment media, the cells were pre-
treated with each two-compound combinations for 24 h. The
cells were then treated with oligomeric 20 µM Aβ including
controls for vehicle (negative control) and Aβ1-42 (positive
control). The microplates were incubated in a humidified
incubator with 5% CO2/95% air for 72 h at 37◦C. Percentage
cell viability for each combination was determined (N = 4)
using the MTS assay.

Determination of Best Combinations by LDH Assay
The combinations with higher% cell viabilities were re-screened
with the LDH assay. Percentage protection was calculated
from the% LDH release for all compound combinations. The
experiments consisted of all 3 compounds combining with
each other at 5, 10, 20, and 40 µM concentrations. The
coded data were considered as data of Fa and used along
with their respective concentrations (doses) as input in the
computer program CompuSyn v.1.0 for calculating CI values.
Thirteen synergistic combinations were recognized by the CI
values less than 1.

Validation of the Synergistic
Two-Compound Combinations Using
CellTiter Glo Assay
The synergistic combinations were further validated and
confirmed by cellular ATP levels using the CelltiterGlo
assay. Briefly, the BE(2)-M17 cells in DMEM/F12 medium
supplemented with 10% FCS were seeded in 96-well tissue
culture microplates at a density of 1.5 × 104 cells/well and were
incubated at 37◦C for 24 h. After the respective treatment of
compounds and incubation at 37◦C, cellular ATP levels were
measured using CellTiter Glo ATP detection kit as per the
manufacturer’s instructions (Promega). Briefly, cells were placed
at RT for 30 min and then lysed by adding 100 µL of ATP-
releasing reagent. The lysates were incubated with the luciferin
substrate and luciferase enzyme in the dark for 10 min to stabilize
the luminescence signal. The luminescence (RLU) was measured
using a Perkin Elmer EnSpire multi-mode plate reader.

Prediction of a Potentially Synergistic
Three-Compound Combination and Validation
Based on the validation data for the two-compound
combinations, a new three-compound combination was
predicted. This combination was repeated and confirmed as
efficiently inhibiting Aβ1-42-induced toxicity using MTS, LDH,
and CellTiter Glo assays.

Statistical Analysis
All results were expressed as mean ± standard deviation
(SD) from four (N = 4) independent experiments. Statistical
significance was determined by one-way ANOVA and Tukey’s
post hoc test in SPSS v25. Significance was defined as P < 0.05.

RESULTS

Thirteen Synergistic Two-Compound
Combinations Derived in silico
There were thirteen two-compound combinations that were
determined to be synergistic based on their CI values, being less
than 1 (Table 1). Table 1 summarizes the thirteen synergistic
combinations (numbered as combinations 1-13) that belong
to UA-DHA, LUT-DHA, and UA-LUT. The inferences on
synergy with subtle definitions were based on the work of
Chou and Talalay (1984).

Two Best Synergistic Two-Compound
Combinations Based on Validations for
Relative ATP Levels
Based on the validation of results for all 13 synergistic
combinations, the combination 2 (D5U5: DHA 5 µM and
UA 5 µM) and 11 (L5U5: LUT 5 µM and UA 5 µM) were
selected as the best combinations based on two reasons. First,
their significantly higher relative ATP levels compared to both
components in the combinations independently. Second, they
both had the lowest possible concentrations used in this study.
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TABLE 1 | In silico-derived synergistic two-compound combinations.

No. combination Dose of DHA (µM) Dose of LUT (µM) Dose of UA (µM) Fraction affected (fa) Combination index (CI) Inference

1 D5U10 5.0 - 10.0 0.96 0.00105 Very strongly synergistic

2 D5U5 5.0 - 5.0 0.52 0.32721 Synergistic

3 D10U10 10.0 - 10.0 0.66 0.19564 Strongly synergistic

4 D10U5 10.0 - 5.0 0.69 0.07573 Very strongly synergistic

5 D20L5 20.0 5.0 - 0.96 0.36279 Synergistic

6 D10L20 10.0 20.0 - 0.99 0.86996 Slightly synergistic

7 D5L10 5.0 10.0 - 0.95 0.78923 Moderately synergistic

8 D10L10 10.0 10.0 - 0.93 0.89802 Slightly synergistic

9 D20L10 20.0 10.0 - 0.92 0.94635 Nearly additive

10 D10L5 10.0 5.0 - 0.9 0.51704 Synergistic

11 L5U5 - 5.0 5.0 0.73 0.84538 Moderately synergistic

12 L20U5 - 20.0 5.0 0.99 0.86998 Slightly synergistic

13 L10U5 - 10.0 5.0 0.94 0.84733 Moderately synergistic

Relative ATP level of the cells was reduced to 51.9 + 7.0%
of the control treatment after 72 h exposure to 20 µM
Aβ1−42 treatment. Pre-treatment with the combination 2 (D5U5)
increased the cellular ATP levels to 71.3 + 7.9% (P < 0.001)
(Figure 2).

Similarly, pre-treatment with the combination 11 (L5U5)
increased the ATP levels to 99.6 ± 4.2% (P < 0.001) (Figure 3).
In either case, the combinations gave significantly higher ATP
levels against the Aβ1-42-treated controls than the component
compound concentrations (DHA, LUT, and UA 5 µM each).
These results suggest that pre-treatment with these combinations
effectively attenuated Aβ1-42-induced toxicity.

Prediction and Validation of a New
Three-Compound Combination-D5L5U5
(DHA 5 µM, LUT 5 µM, UA 5 µM)
Based on the two best combinations identified, namely 2 and
11, a new combination was predicted. This composed of all the

FIGURE 2 | Relative ATP levels for the combination 2 (D5U5) and its
components. ATP levels for the combination 2 (D5U5) and its constituents
were determined using CellTiter Glo assay. Data are expressed as mean ± SD
from four (N = 4) independent experiments. Differences are significant at
aP < 0.001 vs. vehicle control, ***P < 0.001 vs. Aβ1-42-treated control,
#P < 0.05 vs. DHA 5 µM and $P < 0.05 vs. UA 5 µM.

three compounds, DHA, LUT, and UA, each at a concentration
of 5 µM and namely, D5L5U5. The predicted three-compound
combination, D5L5U5 was analyzed for its ability to inhibit
Aβ1-42-induced toxicity using MTS and LDH assays. The analysis
of LDH results by the program CompuSyn v.1.0 determined
the three-compound combination, D5L5U5 as synergistic with
a CI value of 0.01 (Table 2). Percentage cell viability of BE(2)-
M17 cells was decreased to 46.0 ± 3.7% of control (P < 0.001)
after 72 h of 20 µM Aβ1-42 treatment, while pre-treatment with
D5L5U5 improved the cell viability to 103.6 ± 8.7% (P < 0.001)
(Figure 4A). Additionally, 20 µM Aβ1-42 treatment increased
the release of LDH in the cells from 7.39 ± 0.04% (vehicle-
treated cells) to 25.4 ± 0.5% (Aβ1-42-treated cells) (P < 0.001)
and the D5L5U5 pre-treatment significantly reduced the LDH
release to 7.3 ± 1.4% (P < 0.001) Figure 4B. Cells after
treating with D5L5U5 showed an intact morphology with visually
reduced toxic effects and increased proliferation compared to

FIGURE 3 | Relative ATP levels for the combination 11 (L5U5) and its
components. ATP levels for the combination 11 (L5U5) and its constituents
were determined using CellTiter Glo assay. Data are expressed as mean ± SD
from four (N = 4) independent experiments. Differences are significant at
aP < 0.001 vs vehicle control, ***P < 0.001 vs. Aβ1-42-treated control,
###P < 0.001 vs. LUT 5 µM and UA 5 µM.
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Aβ1-42-treated cells (Figure 5). These results together indicated
that pre-treatment with the three-compound combination,
D5L5U5 attenuated Aβ1-42-induced toxicity very effectively.

Validation of the combinations 2 and 11 and the three-
compound combination along with their single components.
ATP level of BE(2)-M17 cells was decreased to 51.9 ± 7.0% of
control (P < 0.001) after 72 h of 20 µM Aβ1-42 treatment. Pre-
treatment with the combination 2 (D5U5) increased the cellular
ATP levels to 71.3 ± 7.9% (P < 0.001)while the combination
11 (L5U5) increased the ATP levels to 99.6 ± 4.2% which
is a significantly increased ATP level (P < 0.001) compared
to the combination 2 (D5U5). However, pre-treatment with
the three-compound combination (D5L5U5) resulted in the
highest most ATP levels which amounted to 110.8 ± 4.2%.
This ATP level is significantly higher compared to that of both
combination 2 (D5U5) (P < 0.001) and 11 (L5U5) (P = 0.001)
(Figure 6). These results reflect the previous data that the three-
compound combination, D5L5U5 attenuates Aβ1-42-induced
toxicity better than its two-compound combination counterparts,
D5U5 and L5U5.

DISCUSSION

Effective alternate approaches to AD drug development are
critically needed as most of all clinical drug immunotherapy
trials have failed to date (Anderson et al., 2017; Mehta et al.,
2017). Thus, food-derived compounds warrant investigation
being potential therapeutic agents (Thaipisuttikul and Galvin,
2012; Lange et al., 2019; Peng et al., 2021). These emerging
alternative strategies using natural compounds hold promise for
early intervention by targeting the prodromal phase of the disease
(Lange et al., 2019). Considering the complexity and the multi-
faceted nature of AD neuropathology, a combination of multiple
therapeutic targets that can intervene several pathophysiological
pathways is preferred. An advantage of combination therapy
is where there is a disparity among the drugs of interest. For
instance, if one drug has a desirable profile and the other gives
undesirable side-effects at a selected dose, it may be possible to
combine the two drugs by using different combination ratios, in
obtaining a synergistic outcome (Chou, 2006, 2010).

In vitro studies are important as a starting point for drug
combination studies. Even though in vitro and in vivo drug
combination analyses follow the same principles, animal studies
are more expensive, time consuming and often subjected to more
variability of data. Although the latter is an essential next step
in the evaluation process, initial investigations under in vitro
conditions are a cost reduction and thereby, is the logical first
step. Furthermore, in vitro studies are more flexible in liability
considerations and in using death as an endpoint of toxicity
(Chou, 2010). It is well known that in vitro data may not always
predict in vivo results, and in vivo animal data may not always
predict clinical results (Van Norman, 2020). However, drug
combination studies strictly need an initial in vitro component as
analyzing the effects of sub-optimal doses in vivo is not ethical.
Therefore, it is recommended to initiate preclinical studies
in cells before animal or human investigations (Chou, 2010).

Reporting antagonistic drug combinations is equally important
as it may hint on possible contraindications in vivo and thus
avoid unnecessary preclinical and clinical trials (Chou, 2010). The
current study used human neuroblastoma BE(2)-M17 cells for
their relative convenience to use and ability to induce neuronal
differentiation (Andres et al., 2013) that is required at next stages
of this research work.

A synergistic three-compound combination (D5L5U5)
comprising of three nutraceutical compounds was identified
in vitro from the present study. It was found to exert significantly
higher ATP levels in the presence of Aβ1-42 compared to the
two two-compound combinations (D5U5 and L5U5) from
which the three-compound combination was derived (Figure 6).
This finding was aided by the Chou-Talalay method of drug
combinations which is based on median-effect principle
(Chou and Talalay, 1984). This method is widely used in drug
combinations for cancer, where the goal is selective cytotoxicity.
Opposingly, the context for AD is cytoprotection, which may be
a reason for the sparse use of this method in the field of AD. The
novelty of the present study lies on the fact that it adapted the
Chou-Talalay method to screen nutraceutical combinations that
inhibited Aβ1-42−induced toxicity. The idea of prevention was
explored in the current in vitro work by pre-treating with the
compounds and the insult of Aβ1-42 introduced secondarily. This
implicates that the current results indicative of AD prevention
rather than treatment. As mentioned earlier, combination index
(CI) is a quantitative assessment of drug combinations which
uses dose-effect data of single compounds and the combinations
and statistically derived doses of single compounds that give
the same effect as that of the combinations to calculate CI.
Combination index equals 1 for additive effect, CI is less than
1 (CI < 1) for synergistic effects and higher than 1 (CI > 1)
for antagonistic effects (Chou and Talalay, 1984). The predicted
three-compound combination was shown to be synergistic based
on its CI value calculated by CompuSyn v.1.0. Dose reduction is
an important aspect in drug combinations. The validation studies
on relative ATP levels confirmed that the combination itself
significantly inhibited Aβ1-42−induced toxicity compared to its
constituents; DHA, LUT, and UA in equimolar doses (5 µM each)
(Figure 6). The significance of the resulted combination is that
it includes three neuroprotective compounds in relatively low
concentrations (5 µM each) so that their multi-modes of actions
are elicited without causing toxicity issues as observed for higher
concentrations. Furthermore, dissolving these compounds in
a single solvent (DMSO) was an added advantage that they
could be combined within a single matrix without causing
any solvent-based incompatibilities that may have resulted
in cytotoxicity.

Polyphenolic conjugation is a novel strategy used to enhance
the efficiency and biological activity of polyphenolic compounds
(Cirillo et al., 2016). Similarly, fatty acid conjugation is reported
to increase potency of therapeutic agents (Prakash et al., 2019).
This technique is used in cancer drug therapy that anticancer
drugs are conjugated with lipids such as DHA (lipid-drug
conjugate) for targeted tumor therapy (Wang et al., 2012; Li
et al., 2014; Irby et al., 2017). In fact, formation of fatty acid
esters of polyphenols such as quercetin-3-O-glucoside have been
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TABLE 2 | Predicted three-compound combination D5L5U5 and its combination index derived by CompySyn v. 1.0.

Combination Mean cell viability (%) Mean LDH release (%) Fraction affected (Fa) CI

D5L5U5 103.6 ± 8.7 7.3 ± 1.4 0.99 0.01

(Control) 46 ± 3.7 25.4 ± 0.5

FIGURE 4 | The effect of D5L5U5 on Aβ1-42-induced toxicity. (A) % cell viability (B) % LDH release determined from MTS and LDH assays, respectively, with
pre-treatment of D5L5U5 in BE(2)-M17 cells for 24 h followed by incubation with 20 µM Aβ1-42 for 72 h at 37◦C. Data are expressed as mean ± SD from four (N = 4)
independent experiments. Differences are significant at a,bP < 0.001 vs vehicle control, ***P < 0.001, ###P < 0.001 vs. Aβ1-42-treated control.

FIGURE 5 | BE(2)-M17 cell morphology for vehicle-treated control, Aβ1-42-treated control and the D5L5U5 treatment. Comparison of cells for 20 µM
Aβ1-42-treatment with and without D5L5U5 pre-treatment. The BE(2)-M17 cells are pre-treated with D5L5U5 followed by exposure of 20 µM Aβ1-42 for 72 h. Cell
morphology was imaged using a Nikon phase-contrast microscope (X40).

shown beneficial for cell viability and survival of both human
lung fibroblasts and human primary hepatocytes against H2O2-
induced cytotoxicity (Warnakulasuriya et al., 2016). As DHA
is a constitutive fatty acid in cell membranes, it may facilitate
the passage of the conjugated polyphenols into cells increasing
their bioavailability. In a similar manner, DHA in the three-
compound combination may potentially conjugate with LUT
and UA, leading to their increased bioavailability and thereby
resulting in increased cell viability. All possible structures of DHA
ester derivatives of LUT and UA and polyphenolic associations
that may form during the cellular pre-treatment of the three-
compound combination are shown in the Figure 7.

Meanwhile, mechanisms of inhibiting Aβ1-42-induced toxicity
by D5L5U5 are yet unknown. However, modified mitochondrial
dehydrogenase activity which is indicated by the MTS results
(Figure 4A) as well as the relatively higher ATP levels for

D5L5U5 (Figure 6), are suggestive of profound beneficial effects
on mitochondria. It can be hypothesized, further, that the
exact mechanisms are similar to that of individual drugs in
a combination (Chou, 2010). Considering the components of
D5L5U5, DHA is thought to exert protection to neuronal
mitochondria. Multiple lines of evidence show that dietary n-3
PUFA, specifically DHA gives beneficial effects on mitochondrial
membrane organization (Fan et al., 2003; Khairallah et al., 2012)
and mitochondrial function (Mayurasakorn et al., 2016). DHA
has shown to reduce ROS production in vitro and Ca2+-induced
mitochondrial membrane permeabilization in neonatal C57BL/6J
mice following hypoxia-ischemia-brain injury (Mayurasakorn
et al., 2016). Manipulation of membrane phospholipids in
the mitochondrial membrane such as increasing cardiolipin
content is proposed to be the mechanism of many of the
beneficiary effects of DHA (Pepe et al., 1999). Mitochondria
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FIGURE 6 | Comparison of the two-compound combinations D5U5, L5U5

and the three-compound combination D5L5U5. ATP levels for the D5U5,
L5U5, D5L5U5 and their single components were determined using CellTiter
Glo assay. Data are expressed as mean ± SD from four (N = 4) independent
experiments. Differences are significant at aP < 0.001 vs. vehicle control,
&&&P < 0.001 vs. Aβ1-42-treated control, ***P < 0.001, ###P < 0.001 vs.
D5U5 and $$P = 0.001 vs. L5U5.

FIGURE 7 | Predicted chemical conjugations for the three-compound
combination, D5L5U5. For the DHA-LUT-UA combination, four chemical
conjugations are predicted as (i) DHA-LUT (ii) DHA-UA (iii) LUT-UA (iv)
DHA-UA-LUT.

determine cell survival through the opening of the mPTP, which
occurs under conditions of cell stress, causing mitochondrial
depolarization and triggering of cell death as well as mitophagy.
It has recently been found that dietary supplementation with
a mixture of DHA and EPA (70:30 ratio) increased DHA
and EPA in cardiac mitochondrial phospholipids and the
tolerance of isolated mitochondria to Ca2+-induced mPTP

opening (O’Shea et al., 2009). Moreover, it has been shown
that supplementation with DHA per se also delayed Ca2+-
induced mPTP opening (Khairallah et al., 2010). Luteolin,
the second component of D5L5U5, is also widely appreciated
in the literature for its mitoprotective activities. It has been
shown to ameliorate mitochondrial damage in isoproterenol-
induced myocardial infarction by maintaining lipid peroxidation
metabolism due to its free radical scavenging, mitochondrial
lipids, antioxidants and mitochondrial enzymes (Murugesan and
Manju, 2013). It is thought to associate with up-regulation of
autophagy (Hu et al., 2016; Cao et al., 2017) and improvement
of mitochondrial biogenesis through inhibition of macrophage
stimulating 1 protein (Hu et al., 2016). Interestingly, a growing
body of evidence suggests that UA restores mitochondrial
dysfunction by inducing mitophagy (Ryu et al., 2016; Andreux
et al., 2019; Lin et al., 2020). Overall, further in vitro studies
are warranted to identify the mechanisms of action of the
synergistic three-compound nutraceutical combination for may
be a steppingstone toward developing an advanced functional
food for the prevention or co-treatment of AD.

CONCLUSION

The present study identified a synergistic three-compound
combination, D5L5U5 that inhibits Aβ1-42-induced toxicity
in vitro. This compound combination consisted of nutraceuticals:
DHA, luteolin and Urolithin A each in 5 µM concentration,
and Chou-Talalay method of drug combinations was used
to derive it. Further in vitro and in vivo investigations are
required to determine the mechanisms of action and validate this
synergistic three-compound combination in the journey toward
identifying an advanced functional food for the prevention or
co-treatment of AD.
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Supplementary Figure 1 | Relative ATP levels for the combination 1 (D5U10) and
its components. ATP levels for the combination 1 (D5U10) and its components
were determined using the CellTiter Glo assay. Data are expressed as mean ± SD
from four (N = 4) independent experiments. Differences are significant at
aP < 0.001 vs. vehicle control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control,
#P < 0.05 vs. DHA 5 µM and UA 5 µM.

Supplementary Figure 2 | Relative ATP levels for the combination 1 (D10U10)
and its components. ATP levels for the combination 3 (D10U10) and its
constituents were determined using CellTiter Glo assay. Data are expressed as
mean ± SD from four (N = 4) independent experiments. Differences are significant
at aP < 0.001 vs. vehicle-treated control, ∗∗∗P < 0.001 vs. Aβ1−42-treated
control, DHA 5 µM and UA 5 µM.

Supplementary Figure 3 | Relative ATP levels for the combination 1 (D10U5) and
its components. ATP levels for the combination 3 (D10U5) and its constituents
were determined using CellTiter Glo assay. Data are expressed as mean ± SD
from four (N = 4) independent experiments. Differences are significant at
aP < 0.001 vs. vehicle control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control, DHA
10 µM and UA 5 µM.

Supplementary Figure 4 | Relative ATP levels for the combination 1 (D20L5) and
its components. ATP levels for the combination 4 (D20L5) and its constituents were
determined using CellTiter Glo assay. Data are expressed as mean ± SD from four
(N = 4) independent experiments. Differences are significant at aP < 0.001 vs.
vehicle-treated control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control, DHA 10 µM.

Supplementary Figure 5 | Relative ATP levels for the combination 1 (D10L20) and
its components. ATP levels for the combination 6 (D10U5) and its constituents

were determined using CellTiter Glo assay. Data are expressed as mean ± SD
from four (N = 4) independent experiments. Differences are significant at
aP < 0.001 vs. vehicle-treated control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control,
DHA 10 µM and UA 5 µM.

Supplementary Figure 6 | Relative ATP levels for the combination 1 (D5L10) and
its components. ATP levels for the combination 6 (D5L10) and its constituents were
determined using CellTiter Glo assay. Data are expressed as mean ± SD from four
(N = 4) independent experiments. Differences are significant at aP < 0.001 vs.
vehicle control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control, DHA 5 µM.

Supplementary Figure 7 | Relative ATP levels for the combination 7 (D10L10) and
its components. ATP levels for the combination 7 (D10L10) and its constituents
were determined using CellTiter Glo assay. Data are expressed as mean ± SD
from four (N = 4) independent experiments. Differences are significant at
aP < 0.001 vs. vehicle control, ∗∗∗P < 0.001 vs Aβ1−42-treated control,
DHA 10 µM.

Supplementary Figure 8 | Relative ATP levels for the combination 9 (D20L10) and
its components. ATP levels for the combination 9 (D20L10) and its constituents
were determined using CellTiter Glo assay. Data are expressed as mean ± SD
from four (N = 4) independent experiments. Differences are significant at
aP < 0.001 vs. vehicle control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control,
DHA 20 µM.

Supplementary Figure 9 | Relative ATP levels for the combination 10 (D10L5)
and its components. ATP levels for the combination 10 (D10L5) and its
constituents were determined using CellTiter Glo assay. Data are expressed as
mean ± SD from four (N = 4) independent experiments. Differences are significant
at aP < 0.001 vs vehicle control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control,
DHA 10 µM.

Supplementary Figure 10 | Relative ATP levels for the combination 12 (L20U5)
and its components. ATP levels for the combination 12 (L20U5) and its
constituents were determined using CellTiter Glo assay. Data are expressed as
mean ± SD from four (N = 4) independent experiments. Differences are significant
at aP < 0.001 vs. vehicle control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control, LUT
20 µM and UA 5 µM.

Supplementary Figure 11 | Relative ATP levels for the combination 13 (L10U5)
and its components. ATP levels for the combination 13 (L10U5) and its
constituents were determined using CellTiter Glo assay. Data are expressed as
mean ± SD from four (N = 4) independent experiments. Differences are significant
at aP < 0.001 vs. vehicle control, ∗∗∗P < 0.001 vs. Aβ1−42-treated control, LUT
10 µM and UA 5 µM.
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