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Abstract

This thesis is based on the article "Wilson loops in finite Abelian lattice gauge
theories" by M. Forsström, J. Lenells and F. Viklund [1]. In the article, lattice
gauge theories on Z4 for a finite Abelian structure group are considered and the
expectation value for the Wilson loop observable at weak coupling is computed.
The purpose of this thesis is to explain this article in more detail and to give the
theory necessary to understand the article.

In this thesis, we consider the lattice Z4, the structure group Zn and a faithful
and one-dimensional representation. Basic theory for groups, representations
and lattices is discussed. To state the main result, several definitions, e.g. the
Wilson loop observable and Wilson action, are given. The main result is given
as a theorem, where we have an inequality for the limit of the expectation value
of the Wilson loop observable.

The theory necessary to prove the main result is given in this thesis. Theory
for discrete exterior calculus is given in the third chapter. This includes theory
for k-cells and k-forms as well as definitions and applications for both the exte-
rior derivative and the co-derivative. Furthermore, two versions of the Poincaré
lemma are given and applied to problems, e.g. for writing the given measure
as a measure on plaquette configurations instead of spin configurations. The
Hodge dual of the lattice Zr is defined and both examples and lemmas, which
are important for later proofs, are given.

In the fourth chapter, vortices and oriented surfaces are defined using the
theory from the previous chapter. It is important to note that these definitions
might differ from other sources. Various lemmas are stated and proved. The
most important result in this chapter is a proposition, in which a probability is
computed, that is applied several times in the proof of the main result.

Since the limit of the expectation of the Wilson loop observable is computed,
both its existence and translation invariance must be proved. A more general
theorem, which proves the existence and translation invariance for a real-valued
function, is given and proved with Ginibre’s inequality. This theorem is then
applied to the Wilson loop observable.
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The last part of this thesis is the proof of the main theorem. To prove this
theorem, the theory and results given in the earlier chapters are applied. The
proof is divided into two parts, which are then combined to achieve the desired
result.
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Chapter 1

Introduction

Trying to mathematically describe the quantum field theories in the Standard
Model is both a fascinating and difficult task. One method aiming to do this
is lattice gauge theories. In these theories, space-time is discretised to a four-
dimensional Euclidean lattice. Then, quantum field theories are approximated
with methods from probability theory. Last, by taking a scaling limit, it might
be possible to extend the model back to the continuous case and, thus, describe
continuum quantum field theories.

Mathematical models for lattice gauge theories have been studied for a long
time. They can be divided into two groups depending on whether its coupling
constant is small or large. If the coupling constant is assumed to be small, we
say that the gauge theory is in the weak coupling regime. The recently published
articles by S. Chatterjee [2] and S. Cao [3] both compute the expectation values of
a Wilson loop at weak coupling. This thesis will focus on the article by Forsström
et al. [1], which extends Chatterjee’s article. Since this model is in finite Abelian
lattice gauge theories, it might not be relevant to the Standard Model, but it is
still an interesting mathematical model to study.

The purpose of this thesis is to explain the third version of this article so that
a master’s student in mathematics understands it. The reader is expected to be
familiar with probability theory, measure theory, complex analysis and algebra.
Other necessary mathematical theory, e.g. group theory and discrete exterior
calculus, will be discussed in this thesis and the reader is not required to have
prior knowledge of them.
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Chapter 2

The expectation value of the

Wilson loop

In this chapter, the result for the expectation value of the Wilson loop observable
will be given as a theorem. Before that, some theory necessary to understand
this theorem is given. First, some basic theory for groups and representations
is given. Second, the lattice used in the main theorem is described and terms
necessary to the theorem, such as the Wilson action and the Wilson loop, are
defined. Third, the main theorem is stated.

2.1 Groups

In this thesis, we will have a group (G,+), which is a finite non-trivial Abelian
group. Therefore, we have to define what that is, beginning with the definition
of a group. A group is a set equipped with a binary operation that satisfies the
group axioms in the definition below.

Definition 2.1. (Group) (G,+) is a group if :
For all a, b ∈ G : a+ b ∈ G (Closure)
For all a, b, c ∈ G : (a+ b) + c = a+ (b+ c) (Associativity)
There exists an identity element e ∈ G for all a ∈ G: a+e = e+a = a (Identity)
There exists an inverse element −a ∈ G for all a ∈ G: a − a = −a + a = e

(Inverse).

An Abelian group is a group, for which the elements commute.
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Definition 2.2. (Abelian group) A group is Abelian if for all a, b ∈ G : a+ b =

b+ a (Commutativity).

Example 2.3. Some examples of Abelian groups under ordinary addition are
(Z,+), (R,+) and (Q,+). These groups are all infinite.

In this thesis, we assume that the group G, which is often called structure
group, is G = (Zn,+), which is a finite group under addition modulo n. Here, the
set Zn is Zn = {0, 1, . . . , n−1} and for a, b ∈ Zn we have that a+b := a+b mod n.
The identity element for this group is e = 0.

2.2 Representations

In this section, two different kinds of representations, which we will have use of
later, will be defined. Last, the representation that will be used in this thesis is
given. First, we must define what a representation is. Therefore, we define group
homomorphisms and the general linear group before giving the definition for a
representation.

Definition 2.4. (Group homomorphism) Let (G, ∗) and (H, ⋄) be groups. Then
f : (G, ∗) ↦→ (H, ⋄) is a homomorphism if for all a, b ∈ G it holds that

f(a ∗ b) = f(a) ⋄ f(b).

Definition 2.5. (General linear group of a vector space) The general linear group
of a vector space V is the group of linear invertible mappings from V to V and
is denoted by GL(V ).

It is well known that this is a group with the operation matrix multiplication.

Definition 2.6. (Representation) A representation ρ of (G,+) on a vector space
V is a group homomorphism from G to GL(V ).

From these definitions, it follows that the following property holds for a rep-
resentation ρ of (G,+) :

ρ(g + g′) = ρ(g)ρ(g′) for g, g′ ∈ G. (2.1)

We continue by discussing faithful representations.
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Definition 2.7. (Faithful representation) A representation ρ is faithful if it is
injective.

A representation ρ is injective if ρ(g) = ρ(g′) implies g = g′. Let IV be the
identity matrix for the vector space V . Then, from equation (2.1) follows that

ρ(e)ρ(g′) = ρ(e+ g′) = ρ(g′) for all g′ ∈ G.

Thus,
ρ(e) = IV .

In this thesis, ρ is defined as a faithful and one-dimensional representation of
the group G = Zn. That the representation is one-dimensional means that the
dimension of the vector space V is dim(V ) = 1. We derive the representation
and begin with calculating the value of ρ(0). Since 0 is the identity element for
this group, we have

ρ(0) = ρ(e) = 1. (2.2)

Since
ρ(1)n = ρ(n · 1) = ρ(e) = 1,

it follows that ρ(g) must be the nth roots of unity (Recall that a root of unity is
a complex or real solution to xn = 1, where n is a positive integer and the nth
root of unity is given by e2kπi/n). Since ρ is the roots of unity, we obtain

|ρ(g)| = 1 for all g ∈ G. (2.3)

Last, the representation must take the same value for g and g + n. Hence, it
follows that the representation must be given by

ρ(g) = eg·2πim/n, g ∈ G = Zn, (2.4)

for some m ∈ {1, . . . , n− 1} relatively prime to n. For faithfulness of the repre-
sentation, it is necessary that m is relatively prime to n.

We define a unitary representation and show that the representation ρ is
unitary.

Definition 2.8. (Unitary representation) A representation ρ is unitary if ρ(g)
is a unitary operator. The operator ρ(g) is unitary if ρ(g)∗ = ρ(g)−1 for every
g ∈ G, where ρ(g)∗ is the conjugate transpose of ρ(g).
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To show that the representation ρ, defined in equation (2.4), is unitary, we
calculate ρ(g)ρ(g)∗. The conjugate transpose of ρ(g) is ρ(g)∗ = e−g·2πim/n and

ρ(g)ρ(g)∗ = eg·2πim/ne−g·2πim/n = e0 = 1.

Thus, ρ(g)∗ = ρ(g)−1 and the representation is unitary.
To summarise this section, the representation ρ(g) = eg·2πim/n is a faithful,

unitary and one-dimensional representation of G = Zn, ρ(0) = 1 and ρ(g) is a
root of unity. Last, the choice of m will determine the representation ρ.

2.3 The lattice Z4

Consider the lattice Z4, which is four-dimensional with a vertex at every integer
coordinate. An edge is called positively oriented if the coordinate increases when
traversing it. From every vertex x, exactly four positively oriented edges emerge
to its nearest neighbours. These edges are denoted by dxi, where i = 1, 2, 3, 4.
The opposite direction, the negative orientation, of an edge is given by −dxi. An
oriented plaquette p is a pair of oriented edges that share a vertex and is defined
as p := dxi∧dxj, where ∧ is the wedge product. The boundary ∂p of a plaquette
p = dxj1 ∧ dxj2 is given by the edges ∂p := {dxj1 , dxj2 + (dej1)j2 ,−(dxj1 +

(dej2)j1),−dxj2}, where dej1 and dej1 are unit vectors. An illustration of an
oriented plaquette and its boundary is given in Figure 2.1 below. The terms
oriented edges, oriented plaquettes and boundary are defined in more detail in
Section 3.1 and Section 3.3.

Figure 2.1: An oriented plaquette p = dxj1 ∧ dxj2 and the edges in its boundary
∂p.

We continue by defining some subsets of the lattice. For a given N ≥ 1, let
BN = Z4 ∩ [−N,N ]4. Then the set EN , whose elements are called e, is the set
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containing all oriented edges, whose both endpoints are in BN . An oriented edge
with the opposite direction of e is given by −e. An edge e ∈ EN is a boundary
edge of BN if there is a plaquette p with a corner that does not belong to BN ,
such that e ∈ ∂p. The set of oriented plaquettes, which have all their boundary
edges in EN , are denoted by PN . Elements in PN are called p. Let the set

∑︁
EN

be the set of functions σ : EN → G for which σe = −σ−e and σe ̸= 0 for all
e ∈ EN . The elements σ in ΣEN

are called spin configurations. For σ ∈ ΣEN
,

(dσ)p is defined as

(dσ)p := σe1 + σe2 + σe3 + σe4 , p ∈ PN ,

where ei are oriented edges in the boundary of p.
Last, we have some definitions for loops. Let a0, a1, . . . , an be vertices. A loop

is then a sequence of oriented edges e0, e1, . . . , en, where ei is a vertex between
ai−1 and ai for i = 1, . . . , n such that an = a0. Let γ be a loop, then the length
|γ| is defined as the number of edges in it. A loop, which is closed and oriented,
is called simple if all oriented edges in γ are distinct from each other. Let e

be an edge in γ. Then the edge e′ ∈ γ, e′ ̸= e, is a corner edge if e′ or −e′

shares a plaquette with the edge e. Edges which are not corner edges are called
non-corner edges. This is illustrated in Figure 2.2, where the corner edges are
given by the black edges and non-corner edges by the grey edges.

Figure 2.2: Corner and non-corner edges of a loop.

2.4 The Wilson loop observable

We begin with the definition of the Wilson action before defining the probabil-
ity measure that will be used. Thereafter, the Wilson loop observable and the
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expectation value of it are defined. In the next definition, we have the notation
ℜ(x), which gives the real part of the complex number x.

Definition 2.9. The Wilson action corresponding to the structure group G, rep-
resentation ρ and fixed N is given by

S(σ) := −
∑︂
p∈PN

ℜρ((dσ)p), σ ∈ ΣEN
.

The probability measure µH is the uniform measure on the set
∑︁

EN
. From

this measure, an associated probability measure µβ,N on
∑︁

EN
can be defined by

weighting the uniform measure by e−βS(σ).

Definition 2.10. For each β > 0, the probability measure µβ,N on
∑︁

EN
is

µβ,N(σ) := Z−1
β,Ne

−βS(σ)µH(σ), σ ∈ ΣEN
, (2.5)

where Zβ,N is a normalising constant.

Definition 2.11. (The Wilson loop observable) Given a simple loop γ ⊆ EN ,
the Wilson loop observable Wγ is

Wγ := Wγ(σ) := ρ

(︄∑︂
e∈γ

σe

)︄
, σ ∈ ΣEN

. (2.6)

Definition 2.12. (Expectation of the Wilson loop observable) The expectation of
the Wilson loop observable with respect to the measure µβ,N , using free boundary
conditions, is

Eβ,N [Wγ] =
∑︂

σ∈
∑︁

EN

Wγ(σ)µβ,N(σ).

Free boundary conditions means that they are no modifications at the bound-
ary of BN . Last, the definition for the limit of this expectation.

Definition 2.13. (The limit of the expectation of the Wilson loop observable)
The limit of the expectation of the Wilson loop observable ⟨Wγ⟩β is

⟨Wγ⟩β := lim
N→∞

Eβ,N [Wγ]

when it exists.

In Chapter 5, we will see that the limit of the expected value of the Wilson
loop observable both exists and is translation invariant.
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2.5 The functions θ(β) and λ(β)

Before the main theorem is stated, two functions, θ(β) and λ(β), must be defined.
For β ≥ 0, θ(β) is defined as

θ(β) :=

∑︁
g∈G ρ(g)e12βℜρ(g)∑︁

g∈G e12βℜρ(g)
(2.7)

and λ(β) as

λ(β) := max
g∈G\{0}

eβℜ(ρ(g))

eβℜ(ρ(0))
. (2.8)

We define a function ϕβ(g) and write the functions λ(β) and θ(β) with it. The
function ϕβ : G = Zn → R is defined by

ϕβ(g) := eβℜρ(g), g ∈ G. (2.9)

Hence, the functions θ(β) and λ(β) can be written as

θ(β) =

∑︁
g∈G ρ(g)ϕβ(g)

12∑︁
g∈G ϕβ(g)12

(2.10)

and

λ(β) = max
g∈G\{0}

ϕβ(g)

ϕβ(0)
. (2.11)

2.6 The result for the expectation value

Theorem 2.14. Let n ∈ Z and n ≥ 2. Consider lattice gauge theory with the
structure group G = Zn and a one-dimensional and faithful representation ρ of
G. Let γ ∈ Z4 be any simple oriented loop, ℓ = |γ| its length and ℓc the number
of corner edges in γ. Then, the limit of the expectation value of the Wilson loop
observable exists. Furthermore, for all β0 > 0 chosen large enough, there exist
constants C ′ = C ′(β0) and C ′′ = C ′′(β0) such that for any β ≥ β0, the following
inequality holds:

|⟨Wγ⟩β − e−ℓ(1−θ(β))| ≤ C
′
[︃√

ℓc
ℓ

+ λ(β)2
]︃C′′

. (2.12)

The constants C ′ and C ′′ are defined by equation (6.66) in Section 6.3.
From this inequality, the value of ⟨Wγ⟩β (the limit of the expectation of the

Wilson loop) can be estimated. The function e−ℓ(1−θ(β)) takes values in ]0, 1],
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since the constant θ(β) only takes values in ]0, 1] (This is proved in Section 6.3.).
The right-hand side is small, especially if we have a large β and a long loop with
few corners. If ℓ(1− θ(β)) is very large, the exponential function will be close to
zero and hence ⟨Wγ⟩β ≈ 0. Likewise, if ℓ(1− θ(β)) is very small, the exponential
function will be close to 1 and we have ⟨Wγ⟩β ≈ 1.

Another approach to this is that ℓ(1− θ(β)) is large when β is chosen to be
much smaller than ℓ. Then it is likely that there are a lot of plaquettes p near
the loop γ for which dσ(p) ̸= 0. This implies that there are so many plaquettes
that the model will have independence and therefore gives the result that the
expectation is close to zero. Similarly, when ℓ(1−θ(β)) is small, β is much larger
than ℓ. Hence, it is unlikely that there are any plaquettes p near γ for which
dσ(p) ̸= 0. Therefore, the expectation will be close to one.

Remark 2.15. The theorem holds when β0 is chosen such that both 5(|G| −
1)λ(β0)

2 < 1 and

max
g1,...,g6∈G

[︄ ∑︁
g∈G e−2β

∑︁6
k=1 ℜρ(g+gk)

maxg∈G e−2β
∑︁6

k=1 ℜρ(g+gk)
−
⃓⃓⃓⃓
argmax

g∈G
e−2β

∑︁6
k=1 ℜρ(g+gk)

⃓⃓⃓⃓]︄

≤ 1− cos(2π/n)

8

hold.



Chapter 3

Discrete exterior calculus

In this chapter, we focus on discrete exterior calculus for cell complexes of the
lattice Zr and its subset BN := [−N,N ]r ∩ Zr when r ≥ 1. However, the theory
will later only be used for cell complexes of Z4. We assume that the group G

is Abelian. Hence, the results can be applied to both G = Z and G = Zn. We
begin with theory for k-cells and k-forms.

3.1 Oriented k-cells and k-forms

Earlier, both the oriented 1-cell and the oriented 2-cell were briefly discussed.
Then they were called an oriented edge and an oriented plaquette. The 1-cell
and the 2-cell will now be given new definitions and a general k-cell is defined.
Consider the lattice Zr, which has a vertex at every point x ∈ Zr with integer
coordinates. Between every two neighbouring vertices, there exists an edge ê.

Definition 3.1. (Oriented 1-cell or edge) The edge ê between two neighbouring
vertices can be divided into two oriented edges, e and −e, with the same endpoints.
These oriented edges are called 1-cells.

To define the direction of an oriented edge, unit vectors must first be defined.
Let e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , er = (0, . . . , 0, 1) and consider
the edges from the origin to one of the vertices e1, e2, . . . , er. Edges, which
have both the same length and direction as these edges, are unit vectors. These
unit vectors are denoted by de1, . . . , der. Positive orientation is defined as the
direction of the unit vectors and negative orientation as the opposite direction.
Therefore, when x ∈ Zr and j ∈ {1, 2, . . . , r}, a positively oriented edge e can

12
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be written as e = dxj := x + dej. Then, the negatively oriented edge is given
by −e = −dxj = x + ej − dej. Recall from Section 2.3 that in Z4 the set EN

was denoted to be the set of oriented edges whose both endpoints are in the set
Z4∩[−N,N ]4. We expand this definition to the lattice Zr and define EN to be the
set of oriented edges, whose both endpoints are in the set BN = Zr ∩ [−N,N ]r.
Furthermore, the set of only positively oriented edges in BN is given by the set
E+

N and the set of only negatively oriented edges is given by E−
N .

In the definition for oriented k-cells, the notation e1 ∧ e2 will be used. This
is the wedge product between two oriented edges e1 and e2. The wedge product
is defined to have the following properties: For two edges e1, e2 ∈ EN , we have

e1 ∧ e2 = −(e2 ∧ e1) = (−e2) ∧ e1 = e2 ∧ (−e1)

and
e1 ∧ e1 = 0.

For two or more oriented edges e1, e2, . . . , ek in EN , the wedge product e1∧· · ·∧ek
is zero if the edges e1, . . . , ek do not have a common endpoint.

Definition 3.2. (Oriented k-cell) Let e1, . . . , ek be oriented edges with
e1 ∧ · · · ∧ ek ̸= 0. Then e1 ∧ · · · ∧ ek is an oriented k-cell.

A k-cell e1 ∧ · · · ∧ ek is positively oriented if there is an x ∈ Zr and j1 <

j2 < · · · < jk such that ei = dxji . Correspondingly, the k-cell −(e1 ∧ · · · ∧ ek) is
negatively oriented. Some examples of k-cells are illustrated in the figure below.
Notice that a 0-cell is a vertex.

Figure 3.1: Examples of k-cells.

From now on, a k-cell will refer to an oriented k-cell.
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Definition 3.3. (Oriented plaquette) An oriented plaquette p is an oriented 2-
cell.

Since the oriented plaquette is a k-cell, the oriented plaquette p = e1 ∧ e2

is positively oriented if there is an x ∈ Zr and j1 < j2 such that e1 = dxj1

and e2 = dxj2 . Therefore, a positively oriented plaquette can be written as
p := dxj1 ∧ dxj2 . The set of oriented plaquettes whose all boundary edges are in
EN is given by PN .

We continue with theory about k-forms, which are discrete differential forms.

Definition 3.4. (k-form) A function f , which is defined on a subset of k-cells
in Zr, for which f(c) = −f(−c) is a k-form.

Consider a k-form f , which has the value fj1,...jk(x) on the k-cell c = dxj1 ∧
· · · ∧ dxjk . Then the k-form f is represented by

f(x) =
∑︂

1≤j1<···<jk≤r

fj1,...,jk(x)dxj1 ∧ · · · ∧ dxjk . (3.1)

The function fj1,...jk(x) can also be written shortly as fc.

Example 3.5. Two examples of 2-forms in Z4 are

f1(x) = f12(x)dx1 ∧ dx2 + f34(x)dx3 ∧ dx4

and
f2(x) = f12(x)dx1 ∧ dx2 + f13(x)dx1 ∧ dx3.

Next, we define both non-trivial k-forms and the set support.

Definition 3.6. (Non-trivial k-form) A k-form f is non-trivial if there exists
one or more k-cells c for which fc ̸= 0.

Definition 3.7. (Support) The support of a k-form f is the set of oriented k-
cells c, for which the k-form f satisfies f(c) ̸= 0. The support of f is denoted by
supp f .

Example 3.8. Let A be a subset of EN and define for each e ∈ EN the function
f by

f(e) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if e ∈ A,

−1 if − e ∈ A,

0 otherwise.
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Since f(e) = −f(−e) and e is a 1-cell, we have that f is a 1-form. The function
only takes the value zero outside A, hence supp f = A.

The set ΣEN
in Zr is defined as the set of G-valued 1-forms, whose support is

in EN . Its elements are denoted by σ and called spin configurations. Recall the
definition for ΣEN

in Z4: the set of functions σ : EN → G for which σe = −σ−e

and σe ̸= 0 for all e ∈ EN . We see that this agrees with the definition for Zr.
Last, the restriction (σ|E)e for a spin configuration σ ∈ ΣEN

, a set E ⊆ EN

and an edge e ∈ EN is defined by

(σ|E)e :=

⎧⎨⎩σe if e ∈ E,

0 otherwise.
(3.2)

3.2 The exterior derivative

In this section, the exterior derivative is defined and some examples are given.
When the exterior derivative operates on a k-form, the result is a k + 1-form.

Definition 3.9. (Exterior derivative) Given h : Zr → G, x ∈ Zr, and i ∈
{1, 2, . . . , r}, let

∂ih(x) := h(x+ ei)− h(x). (3.3)

If k ∈ {0, 1, . . . , r − 1} and f is a G-valued k-form, the exterior derivative d of
f is defined as

df(x) =
∑︂

1≤j1<···<jk≤r

r∑︂
i=1

∂ifj1,...,jk(x)dxi ∧ (dxj1 ∧ . . . ∧ dxjk), x ∈ Zr. (3.4)

Next is an example for how the exterior derivative is calculated for 2-forms.

Example 3.10. We calculate the exterior derivative of the 2-forms
f1 = f12(x)dx1 ∧dx2+f34(x)dx3∧dx4 and f2 = f12(x)dx1∧dx2+f13(x)dx1∧dx3.

We begin with calculating the exterior derivative for the 2-form f1. By the defi-
nition of the exterior derivative, we have

df1 = d(f12(x)dx1 ∧ dx2 + f34(x)dx3 ∧ dx4)

= ∂3f12(x)dx1 ∧ dx2 ∧ dx3 + ∂4f12(x)dx1 ∧ dx2 ∧ dx4

+ ∂1f34(x)dx3 ∧ dx4 ∧ dx1 + ∂2f34(x)dx3 ∧ dx4 ∧ dx2.
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We calculate the exterior derivative for f2:

df2 = d(f12(x)dx1 ∧ dx2 + f13(x)dx1 ∧ dx3)

= ∂3f12(x)dx1 ∧ dx2 ∧ dx3 + ∂4f12(x)dx1 ∧ dx2 ∧ dx4

+ ∂2f13(x)dx1 ∧ dx3 ∧ dx2 + ∂4f13(x)dx1 ∧ dx3 ∧ dx4

= (∂3f12(x)− ∂2f13(x))dx1 ∧ dx2 ∧ dx3 + ∂4f12(x)dx1 ∧ dx2 ∧ dx4

+ ∂4f13(x)dx1 ∧ dx3 ∧ dx4.

A closed k-form can now be defined.

Definition 3.11. (Closed k-form) A k-form f is closed if df = 0.

Last, we see that we earlier had an definition for the exterior derivative on a
spin configuration on the lattice Z4.

Example 3.12. Recall the definitions in Section 2.3. For σ ∈ ΣEN
, we defined

(dσ)p := σe1 + σe2 + σe3 + σe4 , p ∈ PN ,

where ei are edges in the boundary of p. This is the exterior derivative of σ ∈
ΣEN

.

3.3 Boundary and co-boundary

Recall the definition for the boundary of a plaquette on Z4 in Section 2.3. We
now expand this definition to Zr. When x ∈ Zr and j1 < j2, the boundary of a
plaquette p = dxj1 ∧ dxj2 is defined as

∂p := {dxj1 , dxj2 + (dej1)j2 ,−(dxj1 + (dej2)j1),−dxj2}.

This is illustrated in Figure 3.2 on page 17. The boundary for a plaquette can
also be defined as the set of edges dxj for which

(d(Ix=x̂dxj))p = 1,

where Ix=x̂ is the Kronecker delta function of x with mass at x̂ ∈ Zr. Next, we
prove that these two definitions are equivalent.
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Figure 3.2: The boundary of the plaquette p = dxj1 ∧ dxj2 .

We prove this by letting the exterior derivative operate on the 1-form Ix=x̂dxj,
when x̂ ∈ Zr and j ∈ {1, 2, . . . , r}. By equations (3.4) and (3.3) for the function
h = Ix=x̂, we have

d(Ix=x̂dxj) =
r∑︂

i=1

(∂iIx=x̂)dxi ∧ dxj =
r∑︂

i=1

(Ix+ei=x̂ − Ix=x̂)dxi ∧ dxj

=
r∑︂

i=1

(Ix+ei=x̂ − Ix=x̂)dxi ∧ dxj −
r∑︂

i=j+1

(Ix+ei=x̂ − Ix=x̂)dxj ∧ dxi.

For edges that are not in the boundary for neither the positive nor the negative
direction, both Ix+ei=x̂ = 0 and Ix=x̂ = 0. Hence,

(d(Ix=x̂dxj))p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Ix+ei=x̂ − Ix=x̂) if e ∈ ∂p,

−(Ix+ei=x̂ − Ix=x̂) if − e ∈ ∂p,

0 otherwise,

where p is chosen as an oriented plaquette and e = x̂+ dej = dx̂j as an oriented
edge. Since Ix+ei=x̂ − Ix=x̂ = 1 for edges in the boundary, we have

(d(Ix=x̂dxj))p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if e ∈ ∂p,

−1 if − e ∈ ∂p,

0 otherwise.

(3.5)

Thus, the definitions are equivalent.
From this follows that if f is a 1-form, 1 ≤ j1 < j2 ≤ r and the plaquette p

is given by p = dxj1 ∧ dxj2 , then we have that

(df)p = (df)j1,j2(x) =
∑︂
e∈∂p

fe. (3.6)
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Next, the definition for the boundary for general k-cells and a general version
of formula (3.6) for k-forms.

Definition 3.13. (Boundary) Let k ∈ {1, 2, . . . , r} and c be a k-cell. The bound-
ary ∂ĉ of c is the set of (k − 1)-cells ĉ = dxj1 ∧ · · · ∧ dx̂jk1

for which

(d(Ix=x̂dx̂j1 ∧ · · · ∧ dx̂jk−1
))c = 1.

Let c0 be a (k + 1)-cell, then

(df)c0 =
∑︂
c∈∂c0

fc. (3.7)

The boundary is connected with the co-boundary, which is defined next.

Definition 3.14. (Co-boundary) The co-boundary ∂̂c of a k-cell c is defined as
the set of every (k + 1)-cells ĉ for which c ∈ ∂ĉ.

Example 3.15. The co-boundary ∂̂e of an edge e is the set of all oriented pla-
quettes p that contain e. An illustration is given in Figure 3.3. Furthermore,
e ∈ ∂p is equivalent to p ∈ ∂̂e.

Figure 3.3: An edge and two of the plaquettes in its co-boundary.

Example 3.16. For an edge e ∈ EN , a plaquette p cannot contain both e and
−e. Therefore, the intersection ∂̂e ∩ ∂̂(−e) is empty. Moreover, if p ∈ ∂̂(−e),
then −p ∈ ∂̂e.

Last, boundary cells are defined and one example is given. Notice that a
k-cell is in BN if all corners of the k-cell is in BN .

Definition 3.17. (Boundary cell) For k ∈ {0, 1, . . . , r − 1}, a k-cell c in BN is
a boundary cell of BN if there exists a (k + 1)-cell ĉ ∈ ∂̂c which is not in BN .
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Example 3.18. An edge e ∈ EN is a boundary edge of BN if there exists one
plaquette p ∈ ∂̂e which is outside BN . A plaquette p ∈ PN is a boundary plaquette
of BN if there exists a 3-cell c ∈ ∂̂p which is outside BN . This is illustrated in
Figure 3.4, where one of the boundary edges is given by the blue edge and one of
the boundary plaquettes is given by the blue plaquette.

Figure 3.4: Example of a boundary edge and a boundary plaquette.

3.4 The Poincaré Lemma

In this section, the Poincaré Lemma will be given without proof and then applied
to both the set ΣPN

(which will be defined later in this section) and for writing
the earlier given measure as a measure on elements in the set ΣPN

instead of
spin configurations. Another version of this lemma, the Poincaré Lemma for the
co-derivative, will be given in the next section. Before the Poincaré lemma is
stated, the definition for a box and a cube is given.

Definition 3.19. (Box and cube) A set of the form ([a1, b1]× · · · × [ar, br])∩Zr

is a box if for each j ∈ {1, 2, . . . , r}, {aj, bj} ⊂ Z satisfies aj < bj. A box is a
cube if all intervals [aj, bj], 1 ≤ j ≤ r, are of the same length.

An example of a box is the set BN .

Lemma 3.20. (The Poincaré lemma). Let k ∈ {0, 1, . . . , r − 1} and B be a
box in Zr. Then the exterior derivative d is a surjective mapping from the set
of G-valued k-forms with support contained in B onto the set of G-valued closed
(k+1)-forms with support contained in B. If the group G is finite and the number
of closed G-valued k-forms with support contained in B is m, then the map is an
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m-to-1 correspondence. If k ∈ {0, 1, 2, . . . , r − 1} and f is a closed (k + 1)-form
that vanishes on the boundary of B, then there is a k-form h that also vanish on
the boundary of B and satisfies dh = f .

For the proof, see [2, Lemma 2.2].

3.4.1 The set ΣPN

The set
∑︁

PN
is defined as the set of closed G-valued 2-forms ω with support in

PN . The 2-forms in
∑︁

PN
are called plaquette configurations. Since the set ΣPN

only contains closed forms, we obtain

dω = 0 if ω ∈ ΣPN
.

Recall that the 1-forms in the set ΣEN
do not have to be closed, while the set

ΣPN
is defined to only contain closed 2-forms. The restriction for a plaquette

configuration ω ∈ ΣPN
is defined similar to how a restriction was defined for a

spin configuration σ ∈ ΣEN
in equation (3.2). For ω ∈ ΣPN

, a set P ⊆ PN and a
plaquette p ∈ PN , the restriction (ω|P )p is defined as

(ω|P )p :=

⎧⎨⎩ωp if p ∈ P,

0 otherwise.
(3.8)

Next is an example of a restriction for a 2-form in PN .

Example 3.21. For ω ∈ ΣPN
, consider the restriction ω|supp ω. By definition,

each ω has support in PN . Hence, ω|supp ω = ω.

We apply the Poincaré lemma to the k-form ω ∈ ΣPN
and the box BN . Recall,

that the set of G-valued 1-forms with support contained in PN is the set ΣEN

and that the 1-forms in ΣEN
are called σ. Furthermore, we have that both σ

and ω vanishes on the boundary of PN . By the Poincaré Lemma, we have that
the exterior derivative from the set ΣEN

onto the set ΣPN
is a surjective map.

Since G is finite, there exists an m for which the map is a m-to-1 correspondence.
Furthermore, since ω is closed, there is a σ such that dσ = ω. As a result of these
three conclusions, we have that ω ∈ ΣPN

if and only if there exists a σ ∈ ΣEN

for which dσ = ω.
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3.4.2 The measure

Earlier, the measure µβ,N was defined in Definition 2.5 as a measure on spin
configurations:

µβ,N(σ) = Z−1
β,Ne

β
∑︁

p∈PN
ℜρ((dσ)p)µH(σ), σ ∈ ΣEN

.

We will later use this measure on plaquette configurations instead of spin con-
figurations. Therefore, we have to map spin configurations to plaquette config-
urations. A problem is that every plaquette configuration does not arise from a
spin configuration. Nonetheless, the Poincaré Lemma says that ω ∈ ΣPN

if and
only if there exists a σ ∈ ΣEN

such that dσ = ω. Furthermore, the map from
spin configurations σ ∈ ΣEN

to plaquette configurations ω ∈ ΣPN
is a many-to-1

correspondence. Since |{σ ∈ ΣEN
: dσ = ω}| does not depend on the choice of

ω, we have∑︂
σ∈ΣEN

:dσ=ω

eβ
∑︁

p∈PN
ℜρ((dσ)p) = |{σ ∈ ΣEN

: dσ = ω}|eβ
∑︁

p∈PN
ℜρ(ωp).

Thus, a measure for plaquette configurations can be created:

µβ,N({σ ∈ ΣEN
: dσ = ω}) =

∑︁
σ∈ΣEN

:dσ=ω e
β
∑︁

p∈PN
ℜρ((dσ)p)∑︁

σ∈ΣEN
eβ

∑︁
p∈PN

ℜρ((dσ)p)

=
eβ

∑︁
p∈PN

ℜρ(ωp)∑︁
ω′∈ΣPN

eβ
∑︁

p∈PN
ℜρ(ω′

p)

=

∏︁
p∈PN

ϕβ(ωp)∑︁
ω′∈ΣPN

∏︁
p∈PN

ϕβ(ω′
p)

= µβ,N({ω}).

(3.9)

3.5 The co-derivative and its Poincaré Lemma

The definition of the co-derivative is similar to the definition of the exterior
derivative. They both operate on a k-form, but when the co-derivative operates
the result is a k − 1-form instead of a k + 1-form.

Definition 3.22. (Co-derivative) Given h : Zr → G, x ∈ Zr, and an i ∈
{1, 2, . . . , r}, let

∂̄ih(x) := h(x)− h(x− ei). (3.10)
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If k ∈ {1, 2, . . . , r − 1} and f is a G-valued k-form, the co-derivative δ of f is
defined by

δf(x) :=
∑︂

1≤j1<···<jk≤r

k∑︂
i=1

(−1)i∂̄jifj1,...,jk(x)dxj1 ∧ · · · ∧ dxji−1
∧ dxji+1

∧ . . . ∧ dxjk

(3.11)
for x ∈ Zr.

Example 3.23. We calculate the co-derivative of the 2-forms f1 = f12(x)dx1 ∧
dx2 + f34(x)dx3 ∧ dx4 and f2 = f12(x)dx1 ∧ dx2 + f13(x)dx1 ∧ dx3.

By definition, we have that the co-derivative of f1 is

δf1(x) = −∂̄1f12dx2 + ∂̄2f12dx1 − ∂̄3f34dx4 + ∂̄4f34dx3

and the co-derivative of f2 is

δf2(x) = −∂̄1f12dx2 + ∂̄2f12dx1 − ∂̄1f13dx3 − ∂̄3f13dx1.

Similarly to the calculations of (d(Ix=x̂dxj))p, we calculate the co-derivative
of the 2-form f := Ix=x̂dxi1 ∧ dxi2 where x ∈ Zr. Let x̂ ∈ Zr, 1 ≤ i1 < i2 ≤ r

and p0 = dx̂i1 ∧ x̂i2 ∈ PN . For j, j1, j2 ∈ {1, 2, . . . , r}, we have by equation (3.10)
that

∂̄jfj1,j2(x) = ∂̄jIx=x̂,j1=i1,j2=i2 = Ix=x̂,j1=i1,j2=i2 − Ix=x̂−ej ,j1=i1,j2=i2 .

Letting the co-derivative operate on f , we obtain

δf(x) =
∑︂

1≤j1<···<j2≤r

2∑︂
i=1

(−1)i∂̄ifj1,j2(x)dxj1 ∧ · · · ∧ dxji−1
∧ dxji+1

∧ . . . ∧ dxj2

= (−1)1∂̄iIx=x̂dxi2 + (−1)2∂̄iIx=x̂dxi1 = −∂̄iIx=x̂dxi2 + ∂̄iIx=x̂dxi1

= −Ix=x̂dxi2 + Ix−ei1=x̂dxi2 + Ix=x̂dxi1 − Ix−ei2=x̂dxi1 .

Thus,

(δf)e =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if e ∈ ∂p0,

−1 if − e ∈ ∂p0,

0 otherwise.

As a result, when 1 ≤ j ≤ n and f is a 2-form, we obtain for an edge e = dxj

that
(δf)e = (δf)j(x) =

∑︂
p∈∂̂c

fp.
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This result can be extended to general k-forms. For a k-form f and a (k−1)-cell
c0, we have

(δf)c0 =
∑︂
c∈∂̂c0

fc. (3.12)

Last, the version of the Poincaré lemma for the co-derivative is stated.

Lemma 3.24. (The Poincaré lemma for the co-derivative) Let k ∈ {1, 2, . . . , r−
1} and f be a G-valued k-form on Zr which is zero outside a finite region and
satisfies δf = 0. Then there is a (k + 1)-form h such that f = δh. Moreover,
if f is equal to zero outside a box B, then there is a choice of h that is equal to
zero outside B.

For the proof, see [2, Lemma 2.7]. Notice that if a k-form is zero outside a
finite region, the support of the k-form is contained in this finite region. This
lemma will be applied when theory for oriented surfaces is discussed.

3.6 The Hodge dual

We call the lattice Zr for the primal lattice and create a copy of it, which does
not have its vertices at the same points as the primal lattice Zr. This copy, whose
vertices are at the centres of the r-cells of the primal lattice, is called the dual
lattice and denoted ∗Zr. Therefore, there is a bijection between the r-cells in
the primal lattice and the 0-cells, i.e. vertices, in the dual lattice. Furthermore,
we have a bijection between the set of k-cells of the primal lattice Zr and the
set of (r − k)-cells of the dual lattice ∗Zr, which we will define. For a cell c, the
Hodge dual of the cell is denoted by ∗c. The operator ∗ is called the Hodge star
operator and is additive.

We aim to define the bijection between a k-cell and its Hodge dual. First,
some theory for permutations of sets is given. The sign of a permutation p is
given by sgn(p) and takes the value 1 if the permutation is even and −1 if the
permutation is odd. The sign can be calculated with the formula sgn(p) = (−1)m,
where m is the number of transpositions used to obtain the rearrangement from
the given set.

We begin with a vertex x and a r-cell dx1 ∧ · · · ∧ dxr in the primal lattice Zr.
The point at the centre of this r-cell is in the dual lattice given by y := ∗(dx1 ∧
· · · ∧ dxr). The negatively oriented edges emerging from y are denoted by dy1 =
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y − de1, . . . , dyr = y − der. Let k ∈ {0, 1, . . . , r} and 1 ≤ i1 < . . . < ik ≤ r be
given. Since x ∈ Zr, the k-cell c = dxi1 ∧ . . .∧dxik is also in the primal lattice Zr.
Let j1, . . . , jr−k be an enumeration of the set {1, 2, . . . , r}\{i1, . . . , ik}. Consider
the permutation that maps (1, 2, . . . , r) to (i1, . . . , ik, j1, . . . , jr−k). Then the
Hodge dual of the k-cell c is defined as

∗ (dxi1 ∧ · · · ∧ dxik) := sgn(i1, . . . , ik, j1, . . . , jr−k)dyj1 ∧ · · · ∧ dyjr−k
. (3.13)

Likewise, we can define the Hodge dual of a r − k-cell in the dual lattice by

∗(dyj1 ∧ · · · ∧ dyjr−k
) := sgn(j1, . . . , jr−k, i1, . . . , ik)dxi1 ∧ · · · ∧ dxik

= (−1)k(r−k) sgn(i1, . . . , ik, j1, . . . , jr−k)dxi1 ∧ · · · ∧ dxik .

(3.14)

We continue with some examples.

Example 3.25. Let the primal lattice be Z3. For a 3-cell in the primal lattice,
we have that r − k = 3 − 3 = 0. Hence, the Hodge dual of a 3-cell is a 0-cell
at the centre of the 3-cell. For a 2-cell in the primal lattice, the Hodge dual is a
1-cell in the dual lattice. This is illustrated in the figure below. Furthermore, the
Hodge dual of a 1-cell is a 2-cell and the Hodge dual of a 0-cell is a 3-cell.

Figure 3.5: A 3-cell and a 2-cell in the primal lattice (the black cells) and their
Hodge duals in the dual lattice (the blue cells).

Example 3.26. We calculate the Hodge dual of the 2-cells dx1∧dx2 and dx2∧dx4

in Z4. In the first case, the permutation of {1, 2, 3, 4} is even. The permutation
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of {2, 4, 1, 3} is odd, since the set {1, 2, 3, 4} is obtained from {2, 4, 1, 3} with
three transpositions. Thus,

∗ (dx1 ∧ dx2) = sgn(1, 2, 3, 4)(dy3 ∧ dy4) = dy3 ∧ dy4,

∗ (dx2 ∧ dx4) = sgn(2, 4, 1, 3)(dy1 ∧ dy3) = −dy1 ∧ dy3.

Example 3.27. We calculate the Hodge dual of the 3-cell dx1 ∧ dx3 ∧ dx5 in Z5.
The permutation of {1, 3, 5, 2, 4} is odd, since the set {1, 2, 3, 4, 5} is obtained
from {1, 3, 5, 2, 4} with three transpositions. Thus,

∗(dx1 ∧ dx3 ∧ dx5) = sgn(1, 3, 5, 2, 4)(dy2 ∧ dy4) = −dy2 ∧ dy4.

Next is the definition for the Hodge dual of a box.

Definition 3.28. (Hodge dual ∗B of a box B) For a box B ∈ Zr, the correspond-
ing box in the dual lattice ∗Zr is

∗B := {y ∈ ∗Zr : ∃x ∈ B such that y is a corner in ∗ x}.

Example 3.29. A cube B ∈ Z2 is represented by the black cube in Figure 3.6,
where the vertices in the primal lattice are given by the grey points and the vertices
in the dual lattice by the blue crosses. Then ∗B ∈ ∗Z2 is given by the blue cube
and ∗ ∗ B ∈ Z2 is given by the red cube. Assume that B is of width b. Then we
see from the figure that ∗B is of width b+ 1 and ∗ ∗B of width b+ 2.

Figure 3.6: The Hodge dual of a cube in Z2.
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Example 3.30. The box B is defined as B := ([a1, b1]× . . .× [ar, br])∩Zr. Then,
the Hodge dual is

∗B =

(︃[︃
a1 −

1

2
, b1 +

1

2

]︃
× . . .×

[︃
ar −

1

2
, br +

1

2

]︃)︃
∩ ∗Zr.

Taking the Hodge dual again, we obtain

∗ ∗B = ([a1 − 1, b1 + 1]× . . .× [ar − 1, br + 1]) ∩ Zr.

Thus, the width of a side in ∗B is 1 larger than its corresponding side in B

and the width of a side in ∗ ∗ B is 2 larger than its corresponding side in B.
Consequently, B ⊊ ∗ ∗B. For example, if B is a cube of width b, then ∗ ∗B is a
cube of width b+ 2 containing B.

Next, one lemma for the Hodge dual of a box is given without proof.

Lemma 3.31. Let B be a box in Zr. Then a k-cell c is outside B if and only if
∗c is either outside ∗B or in the boundary of ∗B. If c is a k-cell outside B that
contains a (k − 1)-cell of B, then ∗c belongs to the boundary of ∗B.

For the proof, see [2, Lemma 2.4]. We define the Hodge dual for k-forms.

Definition 3.32. (Hodge dual of a G-valued k-form) Given a G-valued k-form
f on Zr, the Hodge dual ∗f of f is an (r − k)-form defined as

∗ f(y) :=
∑︂

1≤i1<···<ik≤r

fi1,...,ik(x) sgn(i1, . . . , ik, j1, . . . , jr−k)dyj1 ∧ · · · ∧ dyjr−k
,

(3.15)
where y = ∗(dx1 ∧ · · · ∧ dxr) and the sequence j1, . . . , jr−k depends on i1, . . . , ik.

From this definition and (3.13) follows that

∗f(∗c) = f(c)

for a k-cell c = dx1 ∧ · · · ∧ dxr.

Example 3.33. We calculate the Hodge dual of the 2-form f = f12(x)dx1∧dx2+

f34(x)dx3 ∧ dx4 in Z4. By Definition 3.32, we have

∗f(y) = f12(x) sgn(1, 2, 3, 4)dy3 ∧ dy4 + sgn(3, 4, 1, 2)f34(x)dy1 ∧ dy2

= f12(x)dy3 ∧ dy4 + f13(x)dy2 ∧ dy4.
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For the Hodge dual of a k-form holds the following formula:

∗ (∗f) = (−1)k(r−k)f. (3.16)

We prove this by calculating ∗(∗f):

∗(∗f)(3.15)= ∗

(︄ ∑︂
1≤i1<···<ik≤r

fi1,...,ik(x) sgn(i1, . . . , ik, j1, . . . , jr−k)dyj1 ∧ · · · ∧ dyjr−k

)︄
=

∑︂
1≤i1<···<ik≤r

fi1,...,ik(x) sgn(i1, . . . , ik, j1, . . . , jr−k) ∗ (dyj1 ∧ · · · ∧ dyjr−k
)

(3.14)
=

∑︂
1≤i1<···<ik≤r

fi1,...,ik(x) sgn(i1, . . . , ik, j1, . . . , jr−k)(−1)k(r−k)

· sgn(i1, . . . , ik, j1, . . . , jr−k)dxi1 ∧ · · · ∧ dxik

=
∑︂

1≤i1<···<ik≤r

fi1,...,ik(x)(−1)k(r−k)dxi1 ∧ · · · ∧ dxik

= (−1)k(r−k)
∑︂

1≤i1<···<ik≤r

fi1,...,ik(x)dxi1 ∧ · · · ∧ dxik

(3.1)
= (−1)k(r−k)f.

The exterior derivative has different definitions on the primal and on the dual
lattice.

Definition 3.34. (Exterior derivative on the dual cell lattice) The exterior deri-
vative d on the dual cell lattice is defined by

df(y) =
∑︂

1≤j1<···<jk≤r

r∑︂
i=1

∂̄ifj1,...,jk(y)dyi ∧ (dyj1 ∧ . . . ∧ dyjk), y ∈ ∗Zr.

Note that ∂̄i is used instead of ∂i, although the exterior derivative is denoted
by the same symbol d in both cases. Last, a lemma is given.

Lemma 3.35. For any G-valued k-form f on Zr and any x ∈ Zr,

δf(x) = (−1)r(k+1)+1 ∗ (d(∗f(y))),

where y = ∗(dx1 ∧ · · · ∧ dxr) is the centre of the r-cell (dx1 ∧ · · · ∧ dxr).

For the proof, see [2, Lemma 2.3].



Chapter 4

Vortices and oriented surfaces

In this chapter, vortices and oriented surfaces are discussed. Lemmas crucial for
the proof of the main theorem are stated and proved. From now on, the lattice
is always Z4, the group G is a finite Abelian group and the representation ρ of
G is fixed.

4.1 Vortices

We begin with defining vortices before discussing both decompositions and dis-
tributions of vortices. Some theory for minimal vortices will also be given. First,
the definition for an irreducible plaquette configuration is given. This definition
is necessary for the definition of a vortex.

Definition 4.1. (Irreducible plaquette configuration) A plaquette configuration
ω ∈ ΣPN

is irreducible if there does not exist a non-empty set P ⊊ supp ω such
that ω|P ∈ ΣPN

.

Recall from the definition of ΣPN
that dω = 0 for ω ∈ ΣPN

. Therefore, in the
above definition ω|P ∈ ΣPN

is equivalent to d(ω|P ) = 0.

Definition 4.2. (Vortex) Let σ ∈ ΣEN
. A non-trivial and irreducible plaquette

configuration ν ∈ ΣPN
is a vortex in σ if (dσ)|supp ν = ν.

4.1.1 Vortex decompositions

The goal of this section is to prove that if a spin configuration σ ∈ ΣEN
, then dσ

can be written as a sum of vortices with disjoint supports in σ. To prove this

28
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claim, we need the results from the following two lemmas.

Lemma 4.3. Let ω ∈ ΣPN
and let ν ∈ ΣPN

be such that ω|supp ν = ν. Then
ω|PN∖supp ν ∈ ΣPN

.

Proof. We prove this by showing that d(ω|PN∖supp ν) = 0. Since ω ∈ ΣPN
and

ν ∈ ΣPN
, we have that dω = 0 and dν = 0. Since ω ∈ ΣPN

⊆ PN and supp ν, it
follows that ω|PN∖supp ν = ω|PN

− ω|supp ν = ω − ν. Thus,

d(ω|PN∖supp ν) = d(ω − ν) = dω − dν = 0− 0 = 0

and ω|PN∖supp ν ∈ ΣPN
.

Lemma 4.4. Let ω ∈ ΣPN
. Then either ω is irreducible or there exist non-

trivial ν(1), ν(2) ∈ ΣPN
with disjoint supports contained in supp ω, such that

ω = ν(1) + ν(2).

Proof. We assume that ω is reducible and then prove that there exists non-
trivial ν(1), ν(2) ∈ ΣPN

with disjoint supports contained in supp ω such that
ω = ν(1) + ν(2). By Definition 4.1, there exists at least one non-empty set
P ⊊ supp ω such that ν(1) := ω|P ∈ ΣPN

. Consequently, P = supp ν(1) and

ω|supp ν(1) = ν(1). (4.1)

Therefore, ν(1) fulfils the assumptions for Lemma 4.3 and

ν(2) := ω|PN∖supp ν(1) ∈ ΣPN
. (4.2)

Since supp ν(1) is non-empty, ν(1) contains at least one 2-cell for which ν(1) ̸= 0.
Similarly, ν(2) contains at least one 2-cell for which ν(2) ̸= 0. Thus, they are both
non-trivial. Since supp ν(2) ⊆ PN ∖ supp ν(1), the intersection of supp ν(1) and
supp ν(2) must be empty. Hence, they have disjoint supports. Last, we conclude
that

ν(1) + ν(2)(4.1),(4.2)= ω|supp ν(1) + ω|PN∖supp ν(1) = ω|PN
= ω.

We now have everything necessary to prove and state the main result of this
section.
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Lemma 4.5. Let σ ∈ ΣEN
. Then dσ can be written as a sum of vortices in σ

with disjoint supports.

Proof. Since σ ∈ ΣEN
and dσ|supp dσ = dσ, it follows from Definition 4.2 that

there are two cases to consider. First, if dω is irreducible, then dσ is a vortex.
Second, we consider the case when dω is not irreducible. Since dσ ∈ ΣPN

, by
Lemma 4.4 there exists non-trivial ν(1), ν(2) ∈ ΣPN

with disjoint supports in supp
dσ for which dσ = ν(1) + ν(2).

If ν(1) and ν(2) are both irreducible, we have a sum of two non-trivial vor-
tices with disjoint supports. Otherwise, by Lemma 4.4, ν(1) and/or ν(2) can be
decomposed further. This decomposition of 2-forms is repeated until we only
have irreducible and non-trivial plaquette configurations ν(j) ∈ ΣPN

. Since this
decomposition cannot consist of more than |PN | < ∞ parts, there must exist an
m ≤ |PN | < ∞ for which dσ can be written as a finite sum of m vortices with
disjoint supports, i.e. dσ =

∑︁m
j=1 ν

(j).

4.1.2 Minimal vortices

In this section, we define minimal vortices and prove that a minimal vortex ν,
whose support does not contain any boundary plaquettes of PN , can be written
using an edge in EN and an element g ∈ G \ {0}. To achieve this result, two
lemmas are necessary. We begin with the definition for a minimal vortex.

Definition 4.6. (Minimal vortex) Let σ ∈ ΣEN
. A vortex ν in σ is minimal if

| supp ν| = 12.

The following lemma says that the support of a minimal vortex, which con-
tains no boundary plaquettes of PN , can be written as a union of the co-boundary
of a positively oriented edge e0 and the co-boundary of the negatively oriented
edge −e0.

Lemma 4.7. Let σ ∈ ΣEN
and let ν in σ be a vortex for which supp ν contains

no boundary plaquettes of PN . Then | supp ν| ≥ 12. If | supp ν| = 12, then there
exists an edge e0 ∈ EN such that supp ν = ∂̂e0 ∪ ∂̂(−e0).

For a proof of this lemma, see [3, Lemma 3.4.6]. Before stating the next
lemma about minimal vortices, the Bianchi Lemma is given.
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Lemma 4.8. (Bianchi Lemma) If ω ∈
∑︁

PN
and c is an oriented 3-cell in BN ,

then ∑︂
p∈∂c

ωp = 0. (4.3)

Proof. Let c be an oriented 3-cell in BN . Since ω ∈ ΣPN
, we have that∑︂

p∈∂c

ωp
(3.7)
= (dω)c = 0.

The following lemma is the main result of this section.

Lemma 4.9. Let σ ∈ ΣEN
and let ν be a minimal vortex in σ. If the support

of ν contains no boundary plaquettes of PN , then there exists an edge dxj ∈ EN

and g ∈ G \ {0} such that for all p ∈ PN , we have

νp = (d(gdxj))p.

Proof. By definition, | supp ν| = 12. Since the support of ν contains no boundary
plaquettes of PN , it follows from Lemma 4.7 that there exists an edge e0 = dxj ∈
EN such that supp ν = ∂̂e0 ∪ ∂̂(−e0).

A 3-cell c can not contain more than two plaquettes in ∂̂e0 ∪ ∂̂(−e0). Hence,
we have two plaquettes p1 and p2 such that p1 ∈ ∂̂e0 and p2 ∈ ∂̂(−e0). By
Lemma 4.8, ∑︂

p∈∂c

νp = νp1 + νp2 = 0.

Since the plaquettes are in the support of ν, we have νp1 ̸= 0 ̸= νp2 . Hence,
νp1 = g and νp2 = −g for a g ∈ G \ {0}. To conclude,

νp =

⎧⎨⎩g if p ∈ ∂̂e0,

−g if p ∈ ∂̂(−e0).

Since p ∈ ∂̂(−e0) is equivalent to −e0 ∈ ∂p, we see from equation (3.5) that
(d(gdxj))p can be written as

(d(gdxj))p =

⎧⎨⎩g if p ∈ ∂̂e0,

−g if p ∈ ∂̂(−e0).

Thus, νp = (d(gdxj))p.
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This lemma will be applied in the proof of Proposition 6.1.

4.1.3 Distribution of vortices

In this section, the focus is on distributions of vortices. With the help of two
lemmas, we will state and prove Proposition 4.12 that is of great importance in
Chapter 6. We begin with the first lemma, which gives us an upper bound for a
useful probability.

Lemma 4.10. Let ν ∈ ΣPN
. Then

µβ,N({σ ∈ ΣEN
: (dσ)|supp ν = ν}) ≤ λ(β)| supp ν|.

Proof. Let P := supp ν and define the sets Eν
P := {ω ∈ ΣPN

: ω|P = ν} and
E0
P := {ω ∈ ΣPN

: ω|P = 0}. By the Poincare Lemma, there exists a σ ∈ ΣEN

such that dσ = ω if and only if ω ∈ ΣPN
. Therefore, by equation (3.9) we have

that µβ,N(Eν
P ) = µβ,N({σ ∈ ΣEN

: (dσ)|supp ν = ν}). We calculate an upper
bound for the probability. Since E0

P ⊆ ΣPN
and ϕβ is positive, we have

µβ,N({σ ∈ ΣEN
: (dσ)|supp ν = ν}) = µβ,N(Eν

P ) =

∑︁
ω∈Eν

P

∏︁
p∈PN

ϕβ(ωp)∑︁
ω∈ΣPN

∏︁
p∈PN

ϕβ(ωp)

≤
∑︁

ω∈Eν
P

∏︁
p∈PN

ϕβ(ωp)∑︁
ω∈E0

P

∏︁
p∈PN

ϕβ(ωp)
.

(4.4)

We aim to compare the denominator to a sum over ω ∈ Eν
P . From the definitions

of the sets Eν
P and E0

P follows that∑︂
ω∈E0

P

∏︂
p∈PN

ϕβ(ωp) =
∑︂
ω∈Eν

P

∏︂
p∈PN

ϕβ((ω − ν)p).

Since the mapping ω → ω − ν from Eν
P to E0

P is bijective, this gives∑︁
ω∈Eν

P

∏︁
p∈PN

ϕβ(ωp)∑︁
ω∈E0

P

∏︁
p∈PN

ϕβ(ωp)
=

∑︁
ω∈Eν

P

∏︁
p∈PN

ϕβ(ωp)∑︁
ω∈Eν

P

∏︁
p∈PN

ϕβ((ω − ν)p)

=

∑︁
ω∈Eν

P

∏︁
p∈P ϕβ(ωp)

∏︁
p∈PN∖P ϕβ(ωp)∑︁

ω∈Eν
P

∏︁
p∈P ϕβ((ω − ν)p)

∏︁
p∈PN∖P ϕβ((ω − ν)p)

.

(4.5)

To simplify it further, notice that νp = 0 when p ∈ PN \ P . Therefore,

ϕβ((ω − ν)p) = ϕβ(ωp) for p ∈ PN \ P . (4.6)
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For a plaquette p ∈ P and a plaquette configuration ω ∈ Eν
P , we have by definition

that ωp = νp. Thus,

(ω − ν)p = ωp − νp = 0 for p ∈ P and ω ∈ Eν
P . (4.7)

Combining the previous conclusions, we obtain

µβ,N(Eν
P )
(4.4),(4.5)

≤
∑︁

ω∈Eν
P

∏︁
p∈P ϕβ(ωp)

∏︁
p∈PN∖P ϕβ(ωp)∑︁

ω∈Eν
P

∏︁
p∈P ϕβ((ω − ν)p)

∏︁
p∈PN∖P ϕβ((ω − ν)p)

(4.6),(4.7)
=

∑︁
ω∈Eν

P

∏︁
p∈P ϕβ(ωp)

∏︁
p∈PN∖P ϕβ(ωp)∑︁

ω∈Eν
P

∏︁
p∈P ϕβ(0)

∏︁
p∈PN∖P ϕβ(ωp)

=

∏︁
p∈P ϕβ(νp)

∑︁
ω∈Eν

P

∏︁
p∈PN∖P ϕβ(ωp)∏︁

p∈P ϕβ(0)
∑︁

ω∈Eν
P

∏︁
p∈PN∖P ϕβ(ωp)

=

∏︁
p∈P ϕβ(νp)∏︁
p∈P ϕβ(0)

=
∏︂

p∈supp ν

ϕβ(νp)

ϕβ(0)

(2.11)

≤
∏︂

p∈supp ν

λ(β) = λ(β)| supp ν|.

Thus, µβ,N({σ ∈ ΣEN
: (dσ)|supp ν = ν}) ≤ λ(β)| supp ν|.

The following lemma is about how many irreducible plaquette configurations
there can exist.

Lemma 4.11. For each p0 ∈ PN and each m ≥ 6, there are at most 5m−1(|G| −
1)m irreducible ν ∈ ΣPN

with p0 ∈ supp ν and | supp ν| ≥ 2m.

Proof. We construct an injective map from the set of irreducible 2-forms in ΣPN

with p0 ∈ supp ν and | supp ν| ≥ 2m to the set of sequences ν(1), ν(2), . . . ν(m) of
G-valued 2-forms on PN .

Let ν ∈ ΣPN
be irreducible, p0 ∈ supp ν and | supp ν| = 2m. Define ν(0) :=

0 ∈ ΣPN
, p1 := p0 and for p ∈ PN :

ν(1)
p :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
νp1 if p = p1,

−νp1 if p = −p1,

0 else.

Let k ∈ {1, 2, . . . ,m} and assume that the 2-forms ν(1), ν(2), . . . , ν(k) are given
such that for each j ∈ {1, 2, . . . , k}, the two following statements hold:
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(a) supp ν(j)∖supp ν(j−1) = {pj,−pj} for some pj ∈ PN . This implies that
| supp ν(j)| = 2j.
(b) ν|supp ν(j) = ν(j).

We check that (a) and (b) hold if k = 1. Since the sequence contains only one
element, we only have to check the conditions for ν(1). (a) supp ν(1)\supp ν(0) =

{p1,−p1} \ {∅} = {p1,−p1} and (b) ν|supp ν(1) = ν(1).
We prove that ν(m) = ν by considering two different cases: dν(k) = 0 and

dν(k) ̸≡ 0. First, we assume that there exists an sequence satisfying (a) and (b)
for which dν(k) = 0. From (b) follows that ν|supp ν(k) = ν(k) ∈ ΣPN

. Since ν

is irreducible, there exists no non-empty set P ⊊ supp ν such that ν|P ∈ ΣPN
.

Since it followed from (a) that supp ν(k) is non-empty, we have ν(k) = ν. Since
| supp ν(k)| = 2k, we must have

2k = | supp ν(k)| = | supp ν| = 2m.

Thus, k = m and ν(m) = ν.
Consider the second case, where we assume that the sequence is such that

dν(k) ̸≡ 0. Since we had k = m in the first case, we now have that k < m.
Therefore, we expand the sequence by defining ν(k+1) such that (a) and (b) hold.
Since dν(k) ̸≡ 0, there exists an oriented 3-cell c ∈ BN such that (dν(k))c ̸= 0.
We assume that both the 3-cells in the set BN and the arbitrary total ordering
of the plaquettes are given. Denote the first 3-cell for which (dν(k))c ̸= 0 by
ck+1. Furthermore, (dν)ck+1

= 0. Hence, there exists at least one plaquette
p ∈ ∂ck+1

\supp ν(k). We denote the first plaquette for which p ∈ ∂ck+1
\supp ν(k)

by pk+1 and let

ν(k+1)
p :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
νp(k+1)

if p = pk+1,

−νp(k+1)
if p = −pk+1,

ν
(k)
p otherwise.

We saw earlier that (a) and (b) holds for k = 1. We assume that ν(1), . . . , ν(k) sat-
isfies both (a) and (b), then they also hold for ν(k+1). Therefore, (a) and (b) hold
for all ν(k), where k ∈ {1, 2, . . . ,m}. Since it follows from a) that | supp ν(m)| =
2m, from (b) that ν|supp ν(m) = ν(m) and we assumed that | supp ν| = 2m, we
have that ν(m) = ν. Therefore, the injective map is constructed.

Since this mapping is injective, we can derive the upper bound for the set of
sequences instead of the irreducible vortices with p0 ∈ supp ν and | supp ν| ≥
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2m. Therefore, we calculate how many such sequences (ν(1), ν(2), . . . , ν(m)) there
are. Since νpk ∈ G \ {0}, there is for each k ∈ {1, 2, . . . ,m} |G| − 1 choices for
νpk . For each k ∈ {1, 2, . . . ,m− 1}, there is a given 3-cell ck+1 for which we have
at most 5 choices for pk+1 for each k ∈ {1, 2, . . . ,m − 1}. Combining this, we
have at most 5m−1(|G| − 1)m sequences (ν(1), ν(2), . . . , ν(m)). Hence, there exists
at most 5m−1(|G|−1)m irreducible vortices p0 ∈ supp ν and | supp ν| ≥ 2m.

Recall the definition of λ(β). Since ρ(0) = 1 and the largest value ℜρ(g) =
cos(g·2πm

n
) can take for g ̸= 0 is cos(2π/n), it follows that λ(β) can be written as

λ(β) := max
g∈G\{0}

eβℜ(ρ(g))

eβℜ((ρ(0)))
= max

g∈G\{0}
eβℜ(ρ(g)−ρ(0))

= max
g∈G\{0}

eβℜ(ρ(g)−1) = eβ(cos(2π/n)−1).

Hence,
lim
β→∞

λ(β) = lim
β→∞

eβ(cos(2π/n)−1) = 0.

Thus, there always exists a β0 for which 5(|G| − 1)λ(β)2 < 1 for β > β0. Finally,
we have everything necessary to state and prove the proposition.

Proposition 4.12. Fix any β0 > 0 such that 5(|G|−1)λ(β)2 < 1 for all β > β0.
Fix p0 ∈ PN and M ≥ 6. Then

µβ,N({σ ∈ ΣEN
: ∃ a vortex ν in σ with p0 ∈ supp ν and | supp ν| ≥ 2M})

≤ C
(M)
0 λ(β)2M

for all β > β0, where

C
(M)
0 :=

5M(|G| − 1)M

1− 5(|G| − 1)λ(β)2
. (4.8)

Proof. Let m ∈ Z+ and p0 ∈ PN . For ν ∈ ΣPN
, we have

µβ,N({σ ∈ ΣEN
: (dσ)|supp ν = ν})

(4.10)

≤ (λ(β))| supp ν| = λ(β)2m.

From Lemma 4.11 follows that there are at most 5m−1(|G| − 1)m irreducible
plaquette configurations ν ∈ ΣPN

, such that p0 ∈ supp ν and | supp ν| = 2m.
Therefore,

µβ,N({σ ∈ ΣEN
: ∃ a vortex ν in σ with p0 ∈ supp ν and | supp ν| = 2m})

≤ 5m−1(|G| − 1)mλ(β)2m ≤ (5(|G| − 1))mλ(β)2m.
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We sum over every m ≥ M :

µβ,N({σ ∈ ΣEN
: ∃ a vortex ν in σ with p0 ∈ supp ν and | supp ν| ≥ 2M)

=
∞∑︂

m=M

µβ,N({σ ∈ ΣEN
: ∃ a vortex ν in σ with p0 ∈ supp ν and

| supp ν| = 2m})

≤
∞∑︂

m=M

(5(|G| − 1))mλ(β)2m =
(5(|G| − 1))Mλ(β)2M

1− 5(|G| − 1)λ(β)2
= C

(M)
0 λ(β)2M .

The second to last step follows from the sum being a geometric sum, which
converges when (5(|G| − 1))λ(β)2 < 1.

4.2 Oriented surfaces

This section focuses on oriented surfaces. Their relation to simple loops is given
by the second lemma. First, the definitions for an oriented surface and its bound-
ary are given.

Definition 4.13. (Oriented surface) A Z-valued 2-form q on PN is an oriented
surface if we have for every e ∈ EN that

(δq)e =
∑︂
p∈∂̂e

qp ∈ {−1, 0, 1}. (4.9)

If a 2-form q is such that |qp| = 1 for all p ∈ PN , then the oriented surface
is a collection of oriented plaquettes, where every plaquette shares at least one
edge with another plaquette in the collection. An example of an oriented surface
and its boundary is illustrated in Figure 4.1.

Figure 4.1: Example of an oriented surface and its boundary when |qp| = 1.



CHAPTER 4. VORTICES AND ORIENTED SURFACES 37

Definition 4.14. (The boundary of an oriented surface) Let q be an oriented
surface. Then

Bq := {e ∈ EN :
∑︂
p∈∂̂e

qp = 1}

is the boundary of q.

Before stating the first lemma, we define for an oriented surface q that

q+p :=

⎧⎨⎩max(qp, 0) for p ∈ PN ,

0 for p ̸∈ PN .
(4.10)

Lemma 4.15. Let q be an oriented surface with boundary Bq. Then,∑︂
p∈PN

q+p (dσ)p =
∑︂
e∈Bq

σe, for all σ ∈ ΣEN
.

Note that this lemma is a discrete version of Stokes theorem.

Proof. Let σ ∈ ΣEN
and p ∈ PN . Recall that the set E+

N only contains the
positively oriented edges in the set EN and that the set E−

N only contains the
negatively oriented edges. Furthermore,

σe = −σ−e. (4.11)

From equation (3.7) follows that (dσ)p =
∑︁

e∈∂p σe. Therefore,∑︂
p∈PN

q+p (dσ)p =
∑︂
p∈PN

q+p
∑︂
e∈∂p

σe

=
∑︂
e∈EN

σe

∑︂
p∈(∂̂e)∩PN

q+p

(4.10)
=
∑︂
e∈EN

σe

∑︂
p∈∂̂e

q+p

=
∑︂
e∈E+

N

σe

∑︂
p∈∂̂e

q+p +
∑︂
e∈E−

N

σe

∑︂
p∈∂̂e

q+p

(4.11)
=
∑︂
e∈E+

N

σe

∑︂
p∈∂̂e

q+p −
∑︂
e∈E+

N

σe

∑︂
p∈∂̂(−e)

q+p

=
∑︂
e∈E+

N

σe

⎛⎝∑︂
p∈∂̂e

q+p −
∑︂

p∈∂̂(−e)

q+p

⎞⎠ .
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Recall from Example 3.16 that ∂̂e ∩ ∂̂(−e) = ∅. Moreover, if p ∈ ∂̂(−e), then
−p ∈ ∂̂e. Since q is a 2-form, we have for p ∈ ∂̂e that q−p = −qp. Therefore,

q+p − q+−p = max(qp, 0)−max(q−p, 0) = max(qp, 0)−max(−qp, 0) = qp (4.12)

and

∑︂
e∈E+

N

σe

⎛⎝∑︂
p∈∂̂e

q+p −
∑︂

p∈∂̂(−e)

q+p

⎞⎠ =
∑︂
e∈E+

N

σe

⎛⎝∑︂
p∈∂̂e

q+p −
∑︂
p∈∂̂e

q+−p

⎞⎠
(4.12)
=
∑︂
e∈E+

N

σe

∑︂
p∈∂̂e

qp.

Furthermore,

σe

∑︂
p∈∂̂e

qp = −σ−e

∑︂
p∈∂̂e

(−q−p) = σ−e

∑︂
p∈∂̂e

q−p = σ−e

∑︂
−p∈∂̂e

qp = σ−e

∑︂
p∈∂̂(−e)

qp.

(4.13)

Therefore,

∑︂
e∈E+

N

σe

∑︂
p∈∂̂e

qp
(4.13)
=
∑︂
e∈E+

N

⎛⎝1

2

⎛⎝σe

∑︂
p∈∂̂e

qp + σ−e

∑︂
p∈∂̂(−e)

qp

⎞⎠⎞⎠ =
1

2

∑︂
e∈EN

σe

∑︂
p∈∂̂e

qp

(4.9)
=

1

2

∑︂
e∈EN :∑︁

p∈∂̂e qp=−1

σe

∑︂
p∈∂̂e

qp +
1

2

∑︂
e∈EN :∑︁
p∈∂̂e qp=0

σe

∑︂
p∈∂̂e

qp

+
1

2

∑︂
e∈EN :∑︁
p∈∂̂e qp=1

σe

∑︂
p∈∂̂e

qp

=
1

2

∑︂
e∈EN :∑︁

p∈∂̂e qp=−1

σe

∑︂
p∈∂̂e

qp +
1

2

∑︂
e∈EN :∑︁
p∈∂̂e qp=1

σe

∑︂
p∈∂̂e

qp

=
1

2

∑︂
e∈EN :∑︁
p∈∂̂e qp=1

σe

∑︂
p∈∂̂e

qp +
1

2

∑︂
e∈EN :∑︁
p∈∂̂e qp=1

σe

∑︂
p∈∂̂e

qp

=
∑︂
e∈Bq

σe

∑︂
p∈∂̂e

qp =
∑︂
e∈Bq

σe.

Thus, ∑︂
p∈PN

q+p (dσ)p =
∑︂
e∈Bq

σe.
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This lemma is applied in the final proof of this section. The next lemma says
that a simple loop is the boundary of an oriented surface. This is illustrated in
Figure 4.2.

Figure 4.2: A simple loop γ and an oriented surface, whose boundary is γ.

Lemma 4.16. Let γ in BN be a simple loop contained in the cube B ⊆ BN .
Then there exists an oriented surface q, whose support is in B, such that γ is the
boundary of q.

Proof. Let γ be a given simple loop contained in the cube B. For each e ∈ EN ,
define the 1-form fγ as

fγ
e :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if e ∈ γ,

−1 if − e ∈ γ,

0 otherwise.

By definition, the cube B contains the support of fγ. For the co-derivative of
fγ, we have that δfγ

e = 0. Hence, the assumptions of Lemma 3.24 are fulfilled
for fγ. Therefore, there exists a 2-form qγ on PN , with support only in B, for
which

fγ = δqγ. (4.14)

From equation (3.12) follows that

(δqγ)e =
∑︂
p∈∂̂e

qγp for e ∈ EN . (4.15)

By combining these conclusions, we obtain∑︂
p∈∂̂e

qγp
(4.15)
= (δqγ)e

(4.14)
= fγ

e ∈ {−1, 0, 1}.
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Thus, qγ is an oriented surface with support contained in B and γ is the boundary
of qγ.

This lemma is applied in the proof of Proposition 6.1. Next, we define internal
plaquettes and edges.

Definition 4.17. (Internal plaquette) Let q be an oriented surface and let p̂ ∈
supp q. A plaquette p̂ is an internal plaquette of q if∑︂

p∈∂̂e

qp = 0 for each e ∈ ∂p̂.

We derive another definition of internal plaquettes. If p is not an internal
plaquette of the oriented surface q, then

∑︁
p∈∂̂e qp ∈ {−1, 1}. For edges in the

boundary of q, we have
∑︁

p∈∂̂e qp = 1. Since q−p = −qp, we obtain∑︂
p∈∂̂e

qp = −
∑︂
p∈∂̂e

q−p = −
∑︂

−p∈∂̂e

qp

and ∑︂
p∈∂̂e

qp = −1 ⇔
∑︂

−p∈∂̂e

qp = 1.

Recall that p ∈ ∂̂e is equivalent to e ∈ ∂p. Therefore, a plaquette p ∈ supp q is
internal if

(∂p ∪ ∂(−p)) ∩Bq = ∅. (4.16)

Definition 4.18. (Internal edge) An edge e ∈ EN is an internal edge of an
oriented surface q if there exists a plaquette p ∈ supp q, such that e ∈ ∂p and
neither e nor −e is in the boundary of q.

Last, we have the final lemma of this chapter.

Lemma 4.19. Let σ ∈ ΣEN
and let ν ∈ ΣPN

be a vortex in σ. Let q be an
oriented surface. If there exists a box B, which contains the support of ν, for
which the intersection (∗ ∗ B) ∩ supp q only contains internal plaquettes of q,
then ∑︂

p∈PN

q+p νp = 0. (4.17)
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Proof. Since ν is a 2-form and the lattice is Z4, it follows from equation (3.16)
that

∗ (∗ν) = (−1)2(4−2)ν = ν. (4.18)

Since ν ∈ ΣPN
, we have dν = 0. By Lemma 3.35, the co-derivative of ∗ν is

δ(∗ν) = (−1)4(2+1)+1 ∗ (d(∗(∗ν))) (4.18)
= − ∗ dν = −1 · 0 = 0.

Assume that the box B contains supp ν. By Lemma 3.31, we have that the
2-form ∗ν has no support outside ∗B. Thus, the assumptions of Lemma 3.24 are
fulfilled for ∗ν. Therefore, there exists a 3-form g without support outside ∗B,
such that ∗ν = −δg. By Lemma 3.35, we have

δg = (−1)4(3+1)+1 ∗ (d(∗g)) = (−1) ∗ d(∗g). (4.19)

Since ∗g is a 1-form, d(∗g) is a 2-form and

∗ (∗(d(∗g))) (3.16)
= −12(4−2)(d(∗g)) = d(∗g). (4.20)

Thus,
ν

(4.18)
= ∗(∗ν) = ∗(−δg)

(4.19)
= ∗(∗d(∗g)) (4.20

= d(∗g). (4.21)

Since the support of q is finite, we have that
∑︁

p∈PN
q+p νp is well defined. Let Bq

be the boundary of q. From Lemma 4.15 follows that∑︂
p∈PN

q+p νp
(4.21)
=

∑︂
p∈PN

q+p (d(∗g))p =
∑︂
e∈Bq

(∗g)e.

A k-form f0 is elementary if there exists a k-cell c for which supp f0 = {c,−c}.
Since g only has support inside ∗B, the support is finite. Therefore, we can write
the 3-form g as a finite sum of elementary 3-forms g0, whose support is contained
in ∗B. Since ∑︂

e∈Bq

(∗g)e =
∑︂
e∈Bq

∑︂
g0

(∗g0)e,

we only have to prove that ∑︂
e∈Bq

(∗g0)e = 0

for each g0.
Take any elementary 3-form g0 whose support is contained in ∗B. Then, the

Hodge dual of g0 is an elementary 1-form ∗g0. Since g0 is elementary, there exists
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a 3-cell c0 in ∗B, such that supp g0 = {c0,−c0}. Likewise, we have supp (∗g0) =
{e0,−e0}, where e0 = ∗c0. Since e0 = ∗c0, we have ∂̂e0 = ∂̂(∗c0) = ∗(∂c0).
Since ∂c0 is in ∗B, it follows that ∗(∂c0) = ∂̂e0 is in ∗ ∗ B. Therefore, (∂̂e0 ∩
supp q) ⊆ (∗ ∗ B ∩ supp q). Since we assumed that (∗ ∗ B) ∩ supp q only
contains internal plaquettes of q, the plaquettes p ∈ ∂̂e0∩supp q must be internal
plaquettes of q. Recall that a plaquette p ∈ ∂̂e0∩ supp q is an internal plaquette
if (∂p ∪ ∂(−p)) ∩ Bq = ∅. Since ±e0 ∈ ∂p ∪ ∂(−p), it follows that ±e0 ̸∈ Bq.
Therefore, Bq only contains elements for which ∗g0 is zero. Thus,∑︂

e∈Bq

(∗g0)e = 0

and
0 =

∑︂
e∈Bq

(∗g)e =
∑︂
p∈PN

q+p νp.



Chapter 5

The existence and translation

invariance of the limit

This chapter focuses on the limit of the expectation of the Wilson loop observable
Wγ. This limit is also called the infinite volume limit. Both the existence and
the translation invariance of this limit will be proved. For these proofs, Ginibre’s
inequality is needed. Before stating the inequality, we define both cones and
convex cones.

Definition 5.1. (Cone and convex cone) A set A ⊂ V , where V is a vector
space, is a cone if for every x ∈ A and positive α ∈ R we have αx ∈ A. The
cone is convex if for positive α, β ∈ R and x, y ∈ A we have αx+ βy ∈ A [6].

We will use the notation Cone(A) for a convex cone generated by the set A.
This means that the cone is the intersection of all convex cones containing A.

Lemma 5.2. (Ginibre’s inequality). Let K be a compact metric space and let
µ be a probability measure on K. Let C(K) be the algebra of complex-valued
continuous functions on K. Let S be a subset of C(K) which is both invariant
under complex conjugation and such that for any f1, . . . fm ∈ S and any choice
of signs s1, . . . , sm ∈ {−1, 1}, the inequality∫︂ ∫︂

µ(x)µ(y)
m∏︂
i=1

(fi(x) + sifi(y)) ≥ 0 (5.1)

holds. Let h be a real-valued function and let f ∈ C(K). Define

⟨f⟩h =

∫︂
f(x)e−h(x)µ(x)

/︃∫︂
e−h(x)µ(x).

43
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Let Cone(S) be the convex cone generated by the set S. Then, for any f, g,−h

in Cone(S), ⟨f⟩h, ⟨g⟩h and ⟨fg⟩h are real and

⟨fg⟩h ≥ ⟨f⟩h⟨g⟩h. (5.2)

For the proof, see [7].
In the following theorem, there is a function from the set of G-valued 1-forms

on the set of all oriented edges in Z4. Therefore, we introduce the two following
notations: E∞ is the set of oriented edges in Z4 and ΣE∞ is the set of G-valued
1-forms on E∞. In the theorem, f only depends on the spins of the edges in
EM and we have that f(σ) = f(σ|EM

) for σ ∈ ΣE∞ . To simplify, when N ≥ M

we write f(σ) instead of f(σ|EM
) and f for the natural restriction of f to ΣEN

.
A translation τ of the lattice changes where the origin of the lattice is. That
the limit is translation invariant means that it does not depend on where in the
lattice the Wilson loop observable is.

Theorem 5.3. Let G = Zn and f : ΣE∞ → R be a real-valued function, which
only depends on the spins of edges in EM for some integer M ≥ 1. Let β ≥ 0.
Then,
(i) the limit limN→∞ Eβ,N [f(σ)] exists.
(ii) for any translation τ of Z4, we have

lim
N→∞

Eβ,N [f ◦ τ(σ)] = lim
N→∞

Eβ,N [f(σ)].

Proof. (i) To prove the existence of the limit, we write f as a finite sum of
functions gj, for which the limit of the expectation value exists. We will show
that ⟨gj⟩h (h is defined later in the proof) is both increasing and bounded, which
implies that the limit for f exists.

First, we prove that f can be written as a finite sum and that we can use
Ginibre’s inequality on ⟨gj⟩h. For this, we need some statements from Example
4 in [7]. These statements hold when N ≥ 1 for the group Γ(N) = (

∑︁
EN

,+).
First, the group homomorphisms Γ(N) ↦→ C \ {0} are given by the functions
σ ↦→

∏︁
e∈EN

e2πiσeσ
′
e/n, where σ′ is fixed and σ, σ

′ ∈
∑︁

EN
. We notice that σ ↦→

ρ((dσ)p), σ ∈ EN is one of these group homomorphisms. Second, let S(N) be
the set of real parts of the group homomorphisms Γ(N) ↦→ C \ {0}. Denote the
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convex cone of this set by Cone(S(N)), then

ℜ(ρ((dσ)p)) ∈ S(N) ⊆ Cone(S(N)).

Third, inequality (5.1) holds for the functions f1, . . . , fn ∈ S(N) and the signs
s1, . . . , sm ∈ {−1, 1} when µ is the uniform measure on

∑︁
EN

.
We show that f can be written as a finite sum of functions g ∈ S(M). Since

M ≤ N , the set ΣEM
is finite. Thus, the group homomorphisms Γ(M) ↦→ C \

{0} span the set of all real-valued functions on the set ΣEM
. Therefore, there

exists scalars a1, a2, . . . , am ∈ R and functions g1, g2, . . . , gm ∈ S(M) such that
the function f can be written as f = a1g1 + . . . + amgm. Since the functions
g1, . . . , gm ∈ S(M), they are also in Cone(S(M)). For M ′ ≥ M and j ∈ {1, . . . ,m},
we simplify and write gj for the natural extension of gj from ΣEM

to the larger
set ΣE

M
′ .

We define the function −h and show that −h ∈ Cone(S(N ′)). Fix N ′ ≥ N ≥
M and let β, β′ ≥ 0. Then, for σ ∈ ΣEN′ define

−h(σ) := −h(σ)N,N ′,β,β′ := β
∑︂
p∈PN

ℜ(ρ((dσ)p)) + β′
∑︂

p∈PN′∖PN

ℜ (ρ((dσ)p)) .

By definition, S(N ′) contains the function σ ↦→ ℜ(ρ((dσ)p)), σ ∈ ΣEN′ . Since
both β and β′ are non-negative, it follows from the definition of a convex cone
that −h(σ) ∈ Cone(S(N ′)).

We check the assumptions for Ginibre’s inequality. Since the metric space
K =

∑︁
EN

is finite and equipped with discrete topology, it is compact. The set
S = S(N ′) contains only continuous functions and since it consists of the real parts
of the group homomorphisms, it is invariant under complex conjugation. Let the
probability measure be the uniform measure µ, thus, the third statement from
the example fulfils inequality (5.1). Since Ginibre’s inequality will be applied
to ⟨gj

∑︁
p∈PN′∖PN

ℜ(ρ((dσp)))⟩h, the functions gj(σ),
∑︁

p∈PN′∖PN
ℜ(ρ((dσp))) and

−h must be in Cone(S(N ′)). We proved earlier that both gj and −h are in
Cone(S(N ′)). Since

∑︁
p∈PN′∖PN

ℜ(ρ((dσp))) is a sum of elements in S(N ′), it follows
that it is in Cone(S(N ′)). Therefore, all assumptions for Ginibre’s inequality are
fulfilled.

We show that the derivative of ⟨gj⟩h is non-negative in β′ for j ∈ {1, 2, . . . ,m}.
Ginibre’s inequality will be applied in the calculations:

d

dβ′ ⟨gj⟩h =
d

dβ′

(︃∫︁
gj(σ)e

−h(σ)µ(σ)∫︁
e−h(σ)µ(σ)

)︃
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=

d
dβ′

(︁∫︁
gj(σ)e

−h(σ)µ(σ)
)︁
·
∫︁
e−h(σ)µ(σ)−

∫︁
gj(σ)e

−h(σ)µ(σ) · d
dβ′

∫︁
e−h(σ)µ(σ)

(
∫︁
e−h(σ)µ(σ))2

=

∑︁
p∈PN′∖PN

ℜ(ρ((dσ)p))
∫︁
gj(σ)e

−h(σ)µ(σ)∫︁
e−h(σ)µ(σ)

− ⟨gj⟩h

∑︁
p∈PN′∖PN

ℜ(ρ((dσ)p))
∫︁
e−h(σ)µ(σ)∫︁

e−h(σ)µ(σ)

=
⟨︂
gj(σ)

∑︂
p∈PN′∖PN

ℜ(ρ((dσ)p))
⟩︂
h
− ⟨gj(σ)⟩h

⟨︂ ∑︂
p∈PN′∖PN

ℜ(ρ(dσ(p))
⟩︂
h

(5.2)

≥ ⟨gj(σ)⟩h
⟨︂ ∑︂

p∈PN′∖PN

ℜ(ρ((dσ)p))
⟩︂
h
− ⟨gj(σ)⟩h

⟨︂ ∑︂
p∈PN′∖PN

ℜ(ρ((dσ)p)
⟩︂
h

= 0.

Thus, we have proved that ⟨gj⟩hN,N′,β,β′
is increasing in β′. Moreover, gj depends

on a finite set of edges. Hence, ∥gj∥∞ < ∞ and ⟨gj⟩hN,N′,β,0
is bounded. The

expectation value of gj is

Eβ,N [gj(σ)] = ⟨gj⟩hN,N′,β,0
,

which was proved to be both bounded and monotone in β. Therefore, the limit
of Eβ,N [gj(σ)] exists.

We have left to prove that limN→∞ Eβ,N [f(σ)] exists:

m∑︂
j=1

aj lim
N→∞

Eβ,N [gj(σ)] = lim
N→∞

m∑︂
j=1

ajµβ,N [gj(σ)] = lim
N→∞

Eβ,N

[︄
m∑︂
j=1

ajgj(σ)

]︄
= lim

N→∞
Eβ,N [f(σ)].

Thus, the limit exists.
ii) We prove that the limit is translation invariant. Let τ be a translation of Z4

and choose N ′ ≥ N ≥ M large enough for BN ′ to contain BN , τBN and τ−1BN .
An illustration of this translation is given in Figure 5.1.

Figure 5.1: The sets BN , BN ′ and τBN ′ .
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Define the functions hN := hN,N ′,β,0 and hN ′ := hN,N ′,β,β. For a translation τ

of hN , we have

hN ◦ τ = β
∑︂
p∈PN

ℜ((ρ((dσ)τ(p))) = β
∑︂

p∈τ(PN )

ℜ(ρ((dσ)p)).

Since both τBN and τ−1BN are in BN ′ and ⟨gj⟩h is increasing in N (This can be
proved with a similar argument to that in part i).), it follows that

⟨gj⟩hN◦τ ≤ ⟨gj⟩hN′ (5.3)

and
⟨gj⟩hN◦τ−1 ≤ ⟨gj⟩hN′ . (5.4)

We derive two inequalities for the expectation value of gj and gj ◦ τ :

Eβ,N [gj(σ)] = ⟨gj⟩hN

= ⟨gj ◦ τ ◦ τ−1⟩hN

= ⟨gj ◦ τ⟩hN◦τ

(5.3)

≤ ⟨gj ◦ τ⟩hN′ = Eβ,N ′ [gj ◦ τ(σ)]

and

Eβ,N [gj ◦ τ(σ)] = ⟨gj ◦ τ⟩hN
= ⟨gj⟩hN◦τ−1

(5.4)

≤ ⟨gj⟩hN′ = Eβ,N ′ [gj(σ)].

Take the limits, first for N ′ and then for N on both inequalities. We obtain

lim
N→∞

Eβ,N [gj(σ)] ≤ lim
N ′→∞

Eβ,N ′ [gj ◦ τ(σ)],

and
lim

N→∞
Eβ,N [gj ◦ τ(σ)] ≤ lim

N ′→∞
Eβ,N ′ [gj(σ)].

Combining these inequalities, we obtain

lim
N→∞

Eβ,N [gj ◦ τ(σ)] ≤ lim
N ′→∞

Eβ,N ′ [gj(σ)] ≤ lim
N ′→∞

Eβ,N ′ [gj ◦ τ(σ)]

and as a result,

lim
N→∞

Eβ,N [gj ◦ τ(σ)] = lim
N ′→∞

Eβ,N ′ [gj(σ)].
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Thus, the limit of the expectation of gj is translation invariant, but we wish to
prove this property for the expectation of f . Similarly to the end of the proof in
part (i), we obtain

lim
N→∞

Eβ,N [f ◦ τ(σ)] = lim
N→∞

Eβ,N [
m∑︂
j=1

ajgj ◦ τ(σ)] =
m∑︂
j=1

aj lim
N→∞

Eβ,N [gj ◦ τ(σ)]

=
m∑︂
j=1

aj lim
N→∞

Eβ,N [gj] = lim
N→∞

Eβ,N [
m∑︂
j=1

ajgj]

= lim
N→∞

Eβ,N [f(σ)].

Therefore, the limit of the expectation value of f is translation invariant.

We check the assumptions for the Wilson loop observable

Wγ = ρ

(︄∑︂
e∈γ

σe

)︄
, σ ∈ ΣEN

.

Since the Wilson loop observable maps ΣE∞ to R, has real values and only
depends on the spins of edges in EM , the function f in Theorem 5.3 can be
chosen as Wγ. Thus, the limit

lim
N→∞

Eβ,N [Wγ] = ⟨Wγ⟩β

both exists and is translation invariant.



Chapter 6

Proof of the main theorem

The proof is divided into two cases; one when ℓλ(β)12 is small and one when
ℓλ(β)12 is large. In the final part of the proof, these two parts are combined. We
begin with the case when ℓλ(β)12 is small.

6.1 The case when ℓλ(β)12 is small

First, the proposition for the case when ℓλ(β)12 is small is stated, then some
lemmas necessary for the proof of the proposition are given and proved. Last,
the proposition is proved.

Proposition 6.1. Consider lattice gauge theory with the structure group G = Zn

and a one-dimensional faithful representation ρ of G. Let γ be a simple oriented
loop in Z4, ℓ = |γ| the length of it and ℓc the number of corner edges in γ. Let
N be large enough so that γ ⊆ EN and such that there exists a cube B of width
|γ| containing γ inside BN . Let β0 > 0 be such that 5(|G| − 1)λ(β)2 < 1 for all
β > β0. Then for all β > β0, we have

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| ≤ CAe
2C∗ℓλ(β)12

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
.

Here θ(β) is defined by equation (2.7) and CA by equation (6.41). Furthermore,
CA only depend on β0, G and ρ.

To prove this proposition, we show that it is very likely that only minimal
vortices, which are centred at the edges in γ, have an impact on a Wilson loop (A
minimal vortex is centred at dxj if it can be written as d(gdxj) for a g ∈ G \ {0}

49
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and a dxj ∈ EN .). A number of lemmas will be needed. We begin with defining
the constant C∗ and recalling the definitions for θ(β) and λ(β). Let β0 > 0 be
given and define

C∗ := sup
β>β0

[︁
(1− θ(β))λ(β)−12

]︁
. (6.1)

Recall that

θ(β) =

∑︁
g∈G ρ(g)ϕβ(g)

12∑︁
g∈G ϕβ(g)12

and

λ(β) = max
g∈G\{0}

ϕβ(g)

ϕβ(0)
,

where
ϕβ(g) := eβℜρ(g), g ∈ G.

6.1.1 Technical lemmas

Lemma 6.2. The function θ(β) is a real-valued function and can be written as

θ(β) =

∑︁
g∈Gℜ(ρ(g))ϕβ(g)

12∑︁
g∈G ϕβ(g)12

. (6.2)

.

Proof. Since ρ(g)−1 = ρ(g)∗, we have

ℜ(ρ(−g)) = ℜ(ρ(g)−1) = ℜ(ρ(g)∗) = ℜ(ρ(g)).

Therefore,

ϕβ(−g) = eβℜ(ρ(−g)) = eβℜ(ρ(g)) = ϕβ(g) for g ∈ G.

Furthermore, since g → −g is a bijection, we have that

θ(β) =
1

2

∑︁
g∈G ρ(g)ϕβ(g)

12∑︁
g∈G ϕβ(g)12

+
1

2

∑︁
g∈G ρ(−g)ϕβ(−g)12∑︁

g∈G ϕβ(−g)12

=
1

2

∑︁
g∈G ρ(g)ϕβ(g)

12∑︁
g∈G ϕβ(g)12

+
1

2

∑︁
g∈G ρ(−g)ϕβ(g)

12∑︁
g∈G ϕβ(g)12

=

∑︁
g∈G(ρ(g) + ρ(−g))ϕβ(g)

12∑︁
g∈G ϕβ(g)12

=

∑︁
g∈G ℜ(ρ(g))ϕβ(g)

12∑︁
g∈G ϕβ(g)12

∈ R.
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Lemma 6.3. Let β ≥ 0 be such that 5(|G| − 1)λ(β)2 < 1. Then

0 < 1− 2

56(|G| − 1)5
< 1− C∗λ(β)12 ≤ θ(β) ≤ 1. (6.3)

Proof. We calculate the upper bound for 1− C∗λ(β)12:

1− C∗λ(β)12 = 1− sup
β>β0

[︁
(1− θ(β))λ(β)−12

]︁
λ(β)12

≤ 1−
(︁
(1− θ(β))λ(β)−12

)︁
λ(β)12

= θ(β).

(6.4)

Since Lemma 6.2 gives that θ(β) is real, we have

θ(β) ≤ |θ(β)| =
⃓⃓⃓⃓∑︁

g∈G ρ(g)ϕβ(g)
12∑︁

g∈G ϕβ(g)12

⃓⃓⃓⃓
≤
∑︁

g∈G |ρ(g)|ϕβ(g)
12∑︁

g∈G ϕβ(g)12
(2.3)
=

∑︁
g∈G ϕβ(g)

12∑︁
g∈G ϕβ(g)12

= 1.

(6.5)
We calculate an upper bound for C∗. Notice that ℜρ(g) ∈ [−1, 1[ for g ∈ G\{0}
and ϕβ > 0. Hence,

C∗(6.1),(6.2)= sup
β>β0

[︄(︄
1−

∑︁
g∈Gℜ(ρ(g))ϕβ(g)

12∑︁
g∈G ϕβ(g)12

)︄
λ(β)−12

]︄
(2.2)
= sup

β>β0

[︄∑︁
g∈G∖{0}(1−ℜρ(g))ϕβ(g)

12∑︁
g∈G ϕβ(g)12

λ(β)−12

]︄

≤ sup
β>β0

[︄∑︁
g∈G∖{0} 2ϕβ(g)

12∑︁
g∈G ϕβ(g)12

λ(β)−12

]︄

= sup
β>β0

[︄ ∑︁
g∈G∖{0} 2ϕβ(g)

12

ϕβ(0)12 +
∑︁

g∈G∖{0} ϕβ(g)12
λ(β)−12

]︄

≤ sup
β>β0

⎡⎣2 ∑︂
g∈G∖{0}

ϕβ(g)
12

ϕβ(0)12
λ(β)−12

⎤⎦
= sup

β>β0

⎡⎣2 ∑︂
g∈G∖{0}

λ(β)12λ(β)−12

⎤⎦
= 2

∑︂
g∈G∖{0}

1 = 2(|G| − 1).

Therefore,

C∗λ(β)12 ≤ 2(|G| − 1)λ(β)12 =
2

56(|G| − 1)5
(︁
5(|G| − 1)λ(β)2

)︁6
<

2

56(|G| − 1)5
.

(6.6)
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Thus,

0 < 1− 2

56(|G| − 1)5
(6.6)
< 1− C∗λ(β)12

(6.4)

≤ θ(β)
(6.5)

≤ 1.

Notice that C∗ > 0 by equations (6.4) and (6.5). The next lemma gives two
inequalities for the function θ.

Lemma 6.4. Let β > β0. For 0 ≤ j ≤ ℓ, we have

θ−j ≤ 2eC
∗ℓλ(β)12 . (6.7)

For 1 ≤ j ≤ ℓ, we have

θ−j − 1 ≤ 2jC∗λ(β)12eC
∗ℓλ(β)12 . (6.8)

For the proof of this lemma, the two following inequalities are needed.
First, for x ∈ [0, 1

2
], we have

(1− x)−1 ≤ 2ex, (6.9)

and second, Bernoulli’s inequality: For x ≥ −1 and n ≥ 1, we have

(1 + x)n ≥ 1 + nx. (6.10)

Proof of Lemma 6.4. First, notice that

0 < C∗λ(β)12
(6.6)
<

2

56(|G| − 1)5
≤ 2

56
<

1

2
.

Therefore, inequality (6.9) can be applied on (1 − C∗λ(β)12)−1. For 0 ≤ j ≤ ℓ,
we have

θ−j ≤ θ−ℓ
(6.3)

≤
(︁
(1− C∗λ(β)12)−1

)︁ℓ (6.9)

≤ 2eC
∗ℓλ(β)12 . (6.11)

For 1 ≤ j ≤ ℓ, we have by inequality (6.10) that

θj = (1 + (θ − 1))j ≥ 1 + j(θ − 1).

Thus,
1− θj ≤ j(1− θ)

and

θ−j − 1 = θ−j(1− θj) ≤ j(1− θ)θ−j
(6.3),(6.11)

≤ 2jC∗λ(β)12eC
∗ℓλ(β)12 . (6.12)
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Lemma 6.5. For ℓ ≥ 1 and θ = θ(β), we have

|θℓ − e−ℓ(1−θ)| ≤ e2C
∗ℓλ(β)12

2ℓ
. (6.13)

We state two inequalities necessary for the proof of the lemma. First, for
ℓ ≥ 1, |x| ≤ 1 and |y| ≤ 1, we have

|xℓ − yℓ| ≤ ℓ|x− y|. (6.14)

Indeed, by the intermediate value theorem, there exists a ξ ∈ [−1, 1] such that

|xℓ − yℓ| = |ℓξℓ−1||x− y| ≤ ℓ|x− y|.

Second, for x > 0, we have
1 + x ≤ ex. (6.15)

This follows from the Taylor series for the exponential function:

ex =
∞∑︂
k=0

xn

n!
,

which is also otherwise useful in the proof.

Proof of Lemma 6.5. Since 0 ≤ 1− θ < 1, it follows from the Taylor series that

e−(1−θ) ≤ 1 + (−(1− θ)) +
(−(1− θ))2

2
= θ +

(1− θ)2

2
. (6.16)

From equation (6.15) follows that

1 + (θ − 1) ≤ e(θ−1) ⇔ θ ≤ e−(1−θ). (6.17)

Thus,

|θℓ − e−ℓ(1−θ)|
(6.14)

≤ ℓ|θ − e−(1−θ)| (6.17)
= ℓ(θ − e−(1−θ))

(6.16)

≤ ℓ(2θ − 2θ − (1− θ)2)

2
=

ℓ(1− θ)2

2
(6.3)

≤ (ℓC∗λ(β)12)2

2ℓ
(6.15)

≤ e2C
∗ℓλ(β)12

2ℓ
.

(6.18)
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6.1.2 Probabilistic bounds on vortex sizes

We want to calculate the probabilities for the events A1, A2 and A3, which are
soon defined. Before that, some necessary definitions and notations are given.
Let γ be a simple loop, then the cube B is defined as a fixed cube that contains γ,
is inside BN and is of width ℓ = |γ|. Let q be an fixed oriented surface such that
its support is contained in B and such that γ is the boundary of q (we will later
prove that q exists). Denote the support of this oriented surface by Q := supp q.
Then, define the set Q′ as the set of plaquettes p ∈ Q for which the oriented
loop γ does not intersect any cube of width b+2 containing p, where b is chosen
as the smallest number for which the support of any irreducible ω ∈

∑︁
PN

with
| supp ν| ≤ 48 is inside the cube. Last, the set

γc := {e ∈ γ : |∂(∂̂e) ∩ (γ ∪ −γ)| ≥ 2}

is the set of corner edges in γ. Recall that the number of corner edges in γ is
given by ℓc.

We define the events:

A1 :={There exists no vortex ν in σ with | supp ν| ≥ 50 whose support

intersects Q}

A2 :={There exists no vortex ν in σ with | supp ν| ≥ 14 and

supp ν ∩ (Q \Q′) ̸= ∅}

A3 := {There exists no vortex ν in σ : supp ν = ∂̂e ∪ ∂̂(−e) for some e ∈ γc}.

Notice that the vortex in the event A3 is minimal by Lemma 4.7. The probabil-
ities of these events are calculated in the following three lemmas.

Lemma 6.6. Let β0 > 0 be such that 5(|G| − 1)λ(β)2 < 1 for all β > β0. Then

µβ,N(A1) ≥ 1− C
(25)
0 ℓ4λ(β)50. (6.19)

Proof. Fix p0 ∈ PN and define the event

E1(p0) :={There exists at least one vortex ν in σ with p0 ∈ supp ν

and | supp ν| ≥ 50}.
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The assumptions for Proposition 4.12 are fulfilled for E1. Therefore,

µβ,N(E1(p0)) ≤ C
(25)
0 λ(β)50, for any p0 ∈ PN . (6.20)

Since B is of width ℓ and supp q is contained in B, there is at most ℓ4 choices
for p0 ∈ supp ν for which supp ν intersects Q. Hence, by a union bound and
inequality (6.20), we have

µβ,N(A
c
1) ≤ ℓ4C

(25)
0 λ(β)50.

Thus,

µβ,N(A1) = 1− µβ,N(A
c
1) ≥ 1− C

(25)
0 ℓ4λ(β)50.

Lemma 6.7. Let β0 > 0 be such that 5(|G| − 1)λ(β)2 < 1 for all β > β0. Then

µβ,N(A2) ≥ 1− C1C
(7)
0 ℓλ(β)14.

Proof. Fix p0 ∈ PN . The event E2 is defined by

E2(p0) := {σ ∈ ΣEN
: ∃ a vortex ν in σ with p0 ∈ supp ν and | supp ν| ≥ 14}.

By Proposition 4.12, we have

µβ,N(E2(p0)) ≤ C
(7)
0 λ(β)14.

Consider the plaquettes p ∈ Q \Q′. By definition, any cube of width b+ 2 that
contains one of these plaquettes intersects γ. Hence

|Q \Q′| ≤ C1|γ| = C1ℓ, (6.21)

where the constant C1 depends on the width of the box.
By a union bound,

µβ,N(A
c
2) ≤ C1ℓµβ,N(E2(p0)).

Thus,

µβ,N(A2) = 1− µβ,N(A
c
2) ≥ 1− C1ℓµβ,N(E2(p0)) ≥ 1− C1C

(7)
0 ℓλ(β)14.
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Lemma 6.8. Let β0 > 0 be such that 5(|G| − 1)λ(β)2 < 1 for all β > β0. Then

µβ,N(A3) ≥ 1− C(6)ℓcλ(β)
12. (6.22)

Proof. By Proposition 4.12 for a minimal vortex and the fact that there are at
most ℓc corner edges for which supp ν = ∂̂e ∪ ∂̂(−e), we have that

µβ,N(A
c
3) ≤ ℓcC

(6)λ(β)12

and
µβ,N(A3) ≥ 1− C(6)ℓcλ(β)

12.

6.1.3 The main argument

We continue with some more definitions and notations for sets and conditional
probability. Define the set of edges

γ1 := γ \ γc

and the random set of edges

γ′ := {e ∈ γ1 : ∃p, p′ ∈ ∂̂e with (dσ)p ̸= (dσ)p′}.

Notice that γ1 is the set of the non-corner edges of γ (Recall that both corner
and non-corner edges are illustrated in Figure 2.2.).

We investigate how dσ can be written on two different plaquettes p, p′ ∈ ∂̂e:

(dσ)p =
∑︂
e′∈∂p

σe′ = σe +
∑︂

e′∈∂p∖{e}

σe′

and
(dσ)p′ =

∑︂
e′∈∂p′

σe′ = σe +
∑︂

e′∈∂p′∖{e}

σe′ .

Therefore, the event (dσ)p ̸= (dσ)p′ does not depend on the value of σe. Hence,
if we know the spins of the edges which are not in ±γ1, then the edges in γ′

are determined. Furthermore, a plaquette cannot contain two non-corner edges.
Therefore, when we condition on (σe)e ̸∈±γ1 , the spins (σe)e∈γ1 are independent.
This is concluded in the following lemma.
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Lemma 6.9. The random set γ′ is determined by the spins (σe)e ̸∈±γ1 and con-
ditioning on the latter, (σe)e∈γ1 are independent.

Lastly, we have one more inequality for an expectation value, the expected
value of the number of edges in the set γ′.

Lemma 6.10. Let β0 > 0 be such that 5(|G| − 1)λ(β)2 < 1 for all β > β0. Then

Eβ,N [|γ′|] ≤ C
(6)
0 ℓλ(β)12. (6.23)

Proof. If (dσ)p ̸= 0, then the plaquette is in the support of a vortex ν. Since the
size of the vortex is 12 or larger, we have that | supp ν| ≥ 12 if supp ν contains
(dσ)p ̸= 0. Then, from Proposition 4.12 follows for a fixed p0 that

µβ,N{A plaquette p is such that (dσ)p ̸= 0} ≤ C
(6)
0 λ(β)12.

Since |γ| = ℓ and γ′ ⊆ γ, there are at most ℓ plaquettes in γ′ for which (dσ)p ̸= 0.
Thus,

Eβ,N [|γ′|] ≤ C
(6)
0 ℓλ(β)12.

We prove the proposition. Six inequalities and equations for expectations will
be calculated and then combined to obtain the desired inequality.

Proof of Proposition 6.1. Since γ is a simple loop and B ⊆ BN , we have by
Lemma 4.16 there exists an oriented surface q such that its support is contained
in B and γ is the boundary of q. Recall that the support of this oriented surface
is Q. Let σ ∼ µβ,N .

Since σ ∈ EN , it follows from Lemma 4.5 that we can write dσ as a sum
of vortices ν1, ν2, . . . with disjoint supports. Let the decomposition be fixed and
define the set V as the set of vortices in this decomposition for which the support
intersects Q. For the oriented surface q with boundary γ, we have by Lemma
4.15 that ∑︂

e∈γ

σe =
∑︂
p∈PN

q+p (dσ)p for σ ∈ ΣEN
.

Therefore, the Wilson loop observable Wγ can be written as

Wγ = ρ

(︄∑︂
e∈γ

σe

)︄
= ρ

(︄∑︂
p∈PN

q+p (dσ)p

)︄
= ρ

(︄∑︂
v∈V

∑︂
p∈supp ν

q+p (dσ)p

)︄
.
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Note that since |ρ(g)| = 1 for g ∈ G, we have |Wγ| = 1.
The first expectation (Eβ,N [|Wγ −W 0

γ |])
We define the subset V0 of V as

V0 := {ν ∈ V : | supp ν| ≤ 48}

and W 0
γ as

W 0
γ := ρ

(︄∑︂
ν∈V0

∑︂
p∈supp ν

q+p (dσ)p

)︄
.

We estimate the expectation value of |Wγ −W 0
γ |. First, consider the case when

the event A1 occurs. Then there is no vortex with | supp ν| ≥ 50, thus, V0 = V ,
Wγ = W 0

γ and |Wγ −W 0
γ | = 0. Second, consider the case when the event A1 does

not occur. Then,

|Wγ −W 0
γ | ≤ |Wγ|+ |W 0

γ | = 1 + 1 = 2.

Thus, by Lemma 6.6, the expectation value is

|Eβ,N [|Wγ −W 0
γ |] ≤ 0 · µβ,N(A1) + 2 · µβ,N(A

c
1) ≤ 2C

(25)
0 ℓ4λ(β)50. (6.24)

The second expectation (Eβ,N [|W 0
γ −W 3

γ |])
Consider a cube B of width b, where b is chosen as the smallest number for

which the support of any irreducible ω ∈
∑︁

PN
with | supp ν| ≤ 48 is inside the

cube. Let
V1 := {ν ∈ V0 : supp ν ∩Q′ ̸= ∅}.

Fix ν ∈ V1. Since B is a cube of width b, we have from Example 3.30 that the
cube ∗ ∗B is of width b+2. By definition, for plaquettes p ∈ Q′ the intersection
between a cube of width b+2 containing p and γ is empty. Hence, the intersection
(∗∗B)∩Q only consists of internal plaquettes of q. Recall that γ is the boundary
of q. Thus, from Lemma 4.19 follows that∑︂

p∈supp ν

q+p (dσ)p = 0 for v ∈ V1.

We define the set
V2 := V0 \ V1

and

W 0
γ = ρ

(︄∑︂
ν∈V0

∑︂
p∈supp ν

q+p (dσ)p

)︄
= ρ

(︄∑︂
ν∈V2

∑︂
p∈supp ν

q+p (dσ)p

)︄
.
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We define a subset V3 of V2, which only contains minimal vortices. Let

V3 := {ν ∈ V2 : | supp ν| = 12} = {ν ∈ V : | supp ν| = 12 and supp ν ∩Q′ = ∅}

and

W 3
γ := ρ

(︄∑︂
ν∈V3

∑︂
p∈supp ν

q+p (dσ)p

)︄
.

We calculate the expectation value of |W 0
γ − W 3

γ |. Consider the event A2. If
A2 occurs, then there is no vortex ν with | supp ν| ≥ 14. Thus, V3 = V2 and
W 3

γ = W 0
γ . Similarly as earlier, if A2 does not occur, then |W 0

γ −W 3
γ | ≤ 2. By

Lemma 6.7, the expectation value is

Eβ,N [|W 0
γ −W 3

γ |] ≤ 0 · µβ,N(A2) + 2 · µβ,N(A
c
2) ≤ 2C1C

(7)
0 ℓλ(β)14. (6.25)

The third expectation (Eβ,N [|W 3
γ −W 4

γ |])
Let

V4 := {ν ∈ V3 : ∃e ∈ γ such that supp ν = ∂̂e ∪ ∂̂(−e)}

and

W 4
γ := ρ

(︄∑︂
ν∈V4

∑︂
p∈supp ν

q+p (dσ)p

)︄
.

Consider ν ∈ V3 \ V4. Since ν is minimal, by Lemma 4.7 there exists an edge
e ∈ EN such that supp ν = ∂̂e ∪ ∂̂(−e). Furthermore, since ν ̸∈ V4, the edge
e cannot be in the boundary of q. Thus, e is an internal edge of q. By Lemma
4.16, ∑︂

p∈supp ν

q+p (dσ)p = 0 for v ∈ V3 \ V4.

Therefore,

W 3
γ = ρ

(︄∑︂
ν∈V3

∑︂
p∈supp ν

q+p (dσ)p

)︄
= ρ

(︄∑︂
ν∈V4

∑︂
p∈supp ν

q+p (dσ)p

)︄
= W 4

γ .

Since W 3
γ = W 4

γ , the expectation of |W 3
γ −W 4

γ | is

Eβ,N [|W 3
γ −W 4

γ |] = Eβ,N [0] = 0. (6.26)

The fourth expectation (Eβ,N [|W 4
γ −W 5

γ |])
Let

V5 := {ν ∈ V4 : ∃e ∈ γ1 such that supp ν = ∂̂e ∪ ∂̂(−e)}
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and

W 5
γ := ρ

(︄∑︂
ν∈V5

∑︂
p∈supp ν

q+p (dσ)p

)︄
.

If the event A3 occurs, then V4 = V5 and W 4
γ = W 5

γ . If A3 does not occur, then
|W 4

γ −W 5
γ | ≤ 2. Thus, by Lemma 6.8, the expectation value of |W 4

γ −W 5
γ | is

Eβ,N [|W 4
γ −W 5

γ |] ≤ 0 · µβ,N(A3) + 2µβ,N(A
c
3) ≤ 2C(6)ℓcλ(β)

12. (6.27)

The fifth expectation (Eβ,N [|W 5
γ −W 6

γ |])
We first define a set of edges:

E5 := {e ∈ γ : ∃ν ∈ V5 such that supp ν = ∂̂e ∪ ∂̂(−e)}.

Then W 5
γ can be written as

W 5
γ = ρ

(︄∑︂
ν∈V5

∑︂
p∈supp ν

q+p (dσ)p

)︄
= ρ

⎛⎝∑︂
e∈E5

∑︂
p∈±∂̂e

q+p (dσ)p

⎞⎠
= ρ

⎛⎝∑︂
e∈E5

∑︂
p∈∂̂e

qp(dσ)p

⎞⎠ .

Define
E6 := {e ∈ γ1 : (dσ)p = (dσ)p′ for all p, p′ ∈ ∂̂(−e)}

and

W 6
γ := ρ

⎛⎝∑︂
e∈E6

∑︂
p∈∂̂e

q+p (dσ)p

⎞⎠ .

Notice that the set E6 can be written as

E6 = γ1 \ γ′. (6.28)

Consider two disjoint edges e, e′ ∈ γ1, then ∂̂e ∪ ∂̂(−e) and ∂̂e′ ∪ ∂̂(−e′) are
disjoint. Since any vortex ν ∈ V5 is minimal, we have by Lemma 4.9 for a vortex
ν ∈ V5 that (dσ)p = d(gdxj)p = {−g, g} for all p ∈ PN . Thus, (dσ)p does not
depend on p ∈ ∂̂e. For e ∈ E6, fix pe ∈ ∂̂e. Since q is an oriented surface and E6

only contains edges in the boundary of q, we obtain

∑︂
p∈∂̂e

qp(dσ)p =
∑︂
p∈∂̂e

qp(dσ)pe =

⎛⎝∑︂
p∈∂̂e

qp

⎞⎠ (dσ)pe = (dσ)pe , fore ∈ E6.
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Therefore,

W 6
γ = ρ

(︄∑︂
e∈E6

(dσ)pe

)︄
.

If the event A2 occurs, then E5 = E6 and W 5
γ = W 6

γ . If A2 does not occur, then
|W 5

γ −W 6
γ | ≤ 2. Hence, by Lemma 6.7,

Eβ,N [|W 5
γ −W 6

γ |] ≤ 0 · µβ,N(A2) + 2µβ,N(A
c
2) = 2C1C

(7)
0 ℓλ(β)14. (6.29)

The sixth expectation (|Eβ,N [W
6
γ ]− θℓ|)

The strategy will be to first compute the conditional expectation of W 6
γ given

(σe)e̸=±γ1 and then apply the law of total expectation. Given (σe)e̸∈±γ1 , denote
the conditional probability by µ′

β,N and the conditional expectation by E′
β,N .

We calculate the conditional expectation value of W 6
γ given (σe)e ̸=±γ1 . By

Lemma 6.9, we have that the spins (σe)e∈γ1 are independent. For e ∈ γ1 \ γ′,
define σe :=

∑︁
ê∈pe∖{e} σê such that

(dσ)p = σe + σe for each p ∈ ∂̂e. (6.30)

Then,

E′
β,N [W

6
γ ] = E′

β,N

[︄
ρ

(︄∑︂
e∈E6

(dσ)pe

)︄]︄
(6.28)
= E′

β,N

[︄
ρ

(︄ ∑︂
e∈γ1∖γ′

(dσ)pe

)︄]︄

= E′
β,N

[︄ ∏︂
e∈γ1∖γ′

ρ ((dσ)pe)

]︄
⊥⊥
=

∏︂
e∈γ1∖γ′

E′
β,N [ρ((dσ)pe)]

(6.30)
=

∏︂
e∈γ1∖γ′

E′
β,N [ρ(σe + σe)]

=
∏︂

e∈γ1∖γ′

(︄∑︂
g∈G

ρ(σe + g)
ϕβ(σ

e + g)12∑︁
g∈G ϕβ(σe + g)12

)︄

=
∏︂

e∈γ1∖γ′

(︄∑︁
g∈G ρ(g)ϕβ(g)

12∑︁
g∈G ϕβ(g)12

)︄

=

(︄∑︁
g∈G ρ(g)ϕβ(g)

12∑︁
g∈G ϕβ(g)12

)︄|γ1∖γ′|
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= θ(β)|γ1∖γ′|.

By the law of total expectation, we have

Eβ,N [W
6
γ ] = Eβ,N [E′

β,N [W
6
γ ]] = Eβ,N [θ(β)

|γ1∖γ′|] = Eβ,N [θ(β)
|γ1|θ(β)−|γ′|]

= θ(β)|γ1|Eβ,N [θ(β)
−|γ′|]

(6.31)

Note that since θ ≤ 1, it follows that

θ(β)|γ1| ≤ 1. (6.32)

Since |γ1| is the number of non-corner edges in γ and ℓc is the number of corner
edges in γ, we have

|γ1|+ ℓc = ℓ. (6.33)

Let j be such that 0 ≤ j ≤ ℓ. Then,

|Eβ,N [W
6
γ ]− θℓ|(6.31)= |θ|γ1|Eβ,N [θ

−|γ′|]− θℓ|
(6.33)
= |θ|γ1|Eβ,N [θ

−|γ′|]− θ|γ1| + θ|γ1| − θ|γ1|+ℓc |

= |θ|γ1|(Eβ,N [θ
−|γ′|]− 1)− θ|γ1|(θℓc − 1)|

≤ |θ|γ1|(Eβ,N [θ
−|γ′|]− 1)|+ |θ|γ1|(θℓc − 1)|

(6.32)

≤ |Eβ,N [θ
−|γ′|]− 1|+ |θℓc − 1|

(6.12)

≤ |Eβ,N [θ
−|γ′|]− 1|+ 2C∗ℓcλ(β)

12eC
∗ℓλ(β)12

= |Eβ,N [θ
−|γ′|]− Eβ,N [θ

−|γ′|I{|γ′|≤j}] + Eβ,N [θ
−|γ′|I{|γ′|≤j}]− 1|

+ 2C∗ℓcλ(β)
12eC

∗ℓλ(β)12

≤ |Eβ,N [θ
−|γ′|]− Eβ,N [θ

−|γ′|I{|γ′|≤j}]|+ |Eβ,N [θ
−|γ′|I{|γ′|≤j}]− 1|

+ 2C∗ℓcλ(β)
12eC

∗ℓλ(β)12

(6.34)

We focus on the first term on the right-hand side above:

|Eβ,N [θ
−|γ′|]− Eβ,N [θ

−|γ′|I{|γ′|≤j}]| = Eβ,N [θ
−|γ′|I{|γ′|>j}]

≤ θ−ℓµβ,N({σ ∈ ΣEN
: |γ′| > j})

≤ θ−ℓEβ,N [|γ′|]
j

(6.23)

≤ θ−ℓC
(6)
0 ℓλ(β)12

j

(6.11)

≤ 2C
(6)
0 ℓλ(β)12eC

∗ℓλ(β)12

j
.

(6.35)
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Then we focus on the second term:

|Eβ,N [θ
−|γ′|I{|γ′|≤j}]− 1| ≤ |Eβ,N [(θ

−|γ′| − 1)I{|γ′|≤j}]|+ Eβ,N [I{|γ′|≤j}]

≤ (θ−j − 1) +
Eβ,N [|γ′|]

j

(6.12),(6.23)

≤ 2C∗jλ(β)12eC
∗ℓλ(β)12 +

C
(6)
0 ℓλ(β)12

j
.

(6.36)

We combine these two inequalities and choose j =
√
ℓ:

|Eβ,N [θ
−|γ′|]− Eβ,N [θ

−|γ′|I{|γ′|≤j}]|+ |Eβ,N [θ
−|γ′|I{|γ′|≤j}]− 1|

(6.35),(6.36)

≤ 2C
(6)
0 ℓλ(β)12eC

∗ℓλ(β)12

j
+ 2C∗jλ(β)12eC

∗ℓλ(β)12 +
C

(6)
0 ℓλ(β)12

j

j=
√
ℓ

= 2C
(6)
0

√
ℓλ(β)12eC

∗ℓλ(β)12 + 2C∗
√
ℓλ(β)12eC

∗ℓλ(β)12 + C
(6)
0

√
ℓλ(β)12

= 2(C
(6)
0 + C∗)

√
ℓλ(β)12eC

∗ℓλ(β)12 + C
(6)
0

√
ℓλ(β)12.

(6.37)

We return to inequality (6.34) and obtain

|Eβ,N [W
6
γ ]− θℓ|

(6.37)

≤ 2(C
(6)
0 + C∗)

√
ℓλ(β)12eC

∗ℓλ(β)12 + C
(6)
0

√
ℓλ(β)12

+ 2ℓcC
∗λ(β)12ec

∗ℓλ(β)12

= 2

(︄
C

(6)
0 + C∗
√
ℓ

+
C∗ℓc
ℓ

)︄
ℓλ(β)12eC

∗ℓλ(β)12 + C
(6)
0

√
ℓλ(β)12.

(6.38)

Combining the expectation values

We combine equations (6.24), (6.25), (6.26), (6.27), (6.29) and (6.38):

|Eβ,N [Wγ]− θℓ| ≤ |Eβ,N [W
6
γ ]− θℓ|+ Eβ,N [|W 6

γ −W 5
γ |] + Eβ,N [|W 5

γ −W 4
γ |]

+ Eβ,N [|W 4
γ −W 3

γ |] + Eβ,N [|W 3
γ −W 0

γ |] + Eβ,N [|W 0
γ −Wγ|]

≤ 2

(︄
C

(6)
0 + C∗
√
ℓ

+
C∗ℓc
ℓ

)︄
ℓλ(β)12eC

∗ℓλ(β)12 + C
(6)
0

√
ℓλ(β)12

+ 2C1C
(7)
0 ℓλ(β)14 + 2C

(6)
0 ℓcλ(β)

12 + 0 + 2C1C
(7)
0 ℓλ(β)14

+ 2C
(25)
0 ℓ4λ(β)50

= 2

(︄
C

(6)
0 + C∗

C∗
√
ℓ

+
ℓc
ℓ

)︄
C∗ℓλ(β)12eC

∗ℓλ(β)12

+

(︄
C

(6)
0

2C∗
√
ℓ
+

2C1C
(7)
0 λ(β)2

C∗ +
C

(6)
0 ℓc
C∗ℓ

)︄
2C∗ℓλ(β)12

+
C

(25)
0 λ(β)2

23(C∗)4
(2C∗ℓλ(β)12)4.
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Note that for x > 0 the two following inequalities hold:

x ≤ ex and x4 ≤ 5ex.

Hence,
C∗ℓλ(β)12eC

∗ℓλ(β)12 ≤ e2C
∗ℓλ(β)12 ,

2C∗ℓλ(β)12 ≤ e2C
∗ℓλ(β)12

and
(2C∗ℓλ(β)12)4 ≤ 5e2C

∗ℓλ(β)12 .

Furthermore, since 1 ≤ ℓc ≤ ℓ, we have

1√
ℓ
≤
√︃

ℓc
ℓ

and
ℓc
ℓ
≤
√︃

ℓc
ℓ
. (6.39)

Therefore,

|Eβ,N [Wγ]− θℓ|

≤

(︄
2
C

(6)
0 + C∗

C∗
√
ℓ

+
2ℓc
ℓ

+
C

(6)
0

2C∗
√
ℓ
+

2C1C
(7)
0 λ(β)2

C∗ +
C

(6)
0 ℓc
C∗ℓ

+
5C

(25)
0 λ(β)2

23(C∗)4

)︄
· e2C∗ℓλ(β)12

=

(︄
5C

(6)
0 + 4C∗

2C∗
√
ℓ

+
2ℓc
ℓ

+
2C1C

(7)
0 λ(β)2

C∗ +
C

(6)
0 ℓc
C∗ℓ

+
5C

(25)
0 λ(β)2

23(C∗)4

)︄
· e2C∗ℓλ(β)12

(6.39)

≤

(︄
5C

(6)
0 + 4C∗

2C∗ + 2 +
2C1C

(7)
0

C∗ +
C

(6)
0

C∗ +
5C

(25)
0

23(C∗)4

)︄(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
· e2C∗ℓλ(β)12

=

(︄
7C

(6)
0

2C∗ + 4 +
2C1C

(7)
0

C∗ +
5C

(25)
0

23(C∗)4

)︄(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
e2C

∗ℓλ(β)12

= (CA − 1/2)

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
e2C

∗ℓλ(β)12 , (6.40)

where

CA =
7C

(6)
0

2C∗ +
2C1C

(7)
0

C∗ +
5C

(25)
0

23(C∗)4
+

9

2
. (6.41)

Finally, we can calculate the last inequality:

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| = |Eβ,N [Wγ]− θℓ + θℓ − e−ℓ(1−θ(β))|

≤ |Eβ,N [Wγ]− θℓ|+ |θℓ − e−ℓ(1−θ(β))|
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(6.13),(6.40)

≤ (CA − 1/2)

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
e2C

∗ℓλ(β)12 +
e2C

∗ℓλ(β)12

2ℓ

=

⎛⎜⎝CA − 1/2 +
1

2
· 1

ℓ
(︂√︂

ℓc
ℓ
+ λ(β)2

)︂
⎞⎟⎠(︄√︃ℓc

ℓ
+ λ(β)2

)︄

· e2C∗ℓλ(β)12

≤
(︃
CA − 1/2 +

1

2

)︃(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
e2C

∗ℓλ(β)12

= CA

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
e2C

∗ℓλ(β)12 .

6.2 The case when ℓλ(β)12 is large

We now consider the case when ℓλ(β)12 is large. First, some notations and
definitions of importance are stated.

Let the set K be a finite and non-empty index set. The arguments of the
maxima are the elements for which the value of the function is maximised and
is denoted by argmax. Likewise, the arguments of the minima are the elements
for which the value of the function is minimised and denoted by argmin. Given
gk ∈ G, define for each K, the set

G0[(gk)k∈K ] := argmax
g∈G

∏︂
k∈K

ϕβ(g + gk).

Next, an assumption is given and we prove that it is satisfied if β0 is chosen large
enough.
(⋆) For all β ≥ β0 and choices of gk ∈ G for k ∈ K and any g′ ∈ G0[(gk)k∈K ], the
following inequality holds:∑︂

g∈G∖G0[(gk)k∈K ]

∏︂
k∈K

ϕβ(g + gk)
2

ϕβ(g′ + gk)2
≤ 1− cos(2π/n)

8
.

Let β ≥ 0 and g ∈ G. Since∏︂
k∈K

ϕβ(g + gk) =
∏︂
k∈K

eβℜ(ρ(g+gk)) = eβ
∑︁

k∈K ℜ(ρ(g+gk)),
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we obtain

G0[(gk)k∈K ] = argmax
g∈G

eβ
∑︁

k∈K ℜ(ρ(g+gk)) = argmax
g∈G

∑︂
k∈K

ℜ(ρ(g + gk)).

We see that G0[(gk)k∈K ] does not depend on β. Let g′ ∈ G0[(gk)k∈K ]. Then g′ is
one of the elements in G for which

∑︁
k∈K ℜ(ρ(g+ gk)) takes its maximum value.

For g ∈ G \G0[(gk)k∈K ], we have∑︂
k∈K

ℜ(ρ(g′ + gk)) >
∑︂
k∈K

ℜ(ρ(g + gk)).

Thus, by taking the limit when β → ∞ we obtain

lim
β→∞

∏︂
k∈K

ϕβ(g + gk)
2

ϕβ(g′ + gk)2
= lim

β→∞
exp

(︄
2β
∑︂
k∈K

(ℜρ(g + gk)−ℜρ(g′ + gk))

)︄
= 0.

Thus, there exists a β0 for which (⋆) holds. This implies that there exists a β0 for
which (⋆) holds for all K simultaneously, since β0 can be chosen as the maximum
of β0 for all fixed K.

Proposition 6.11. Consider lattice gauge theory with structure group G = Zn

and a one-dimensional faithful representation ρ of G. Let γ be a simple oriented
loop in Z4, ℓ = |γ| the length of it and ℓc the number of corner edges in γ. Let
N be large enough so that the edges of γ are internal edges of BN . Let β0 > 0

satisfy the assumption (⋆) when applied with sets K with |K| = 6, and be such
that 2λ(β0)

2|K| ≤ 1. Then for all β > β0, we have

|Eβ,N [Wγ]| ≤ e−C∗(ℓ−ℓc)λ(β)12 , where C∗ :=
1− cos(2π/n)

4
. (6.42)

To prove this proposition, three lemmas will be applied. We begin with
stating the main lemma of this section, which will require two lemmas to be
proved.

Lemma 6.12. Let K be a finite and non-empty index set and assume that β0 =

β0(|K|) > 0 satisfies (⋆) applied with K and

2λ(β0)
2|K| ≤ 1. (6.43)



CHAPTER 6. PROOF OF THE MAIN THEOREM 67

Then, for all choices of gk ∈ G for k ∈ K and in the setting of Lemma 6.11, we
have ⃓⃓⃓⃓∑︁

g∈G ρ(g)
∏︁

k∈K ϕβ(g + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
≤ 1− C∗λ(β)

2|K|. (6.44)

The left-hand side of inequality (6.44) is the conditional expected value of
a single spin (see the beginning of the proof of this proposition). To lighten
notations, we define

Sβ((gk)k∈K) :=

∑︁
g∈G ρ(g)

∏︁
k∈K ϕβ(g + gk)

2∑︁
g∈G

∏︁
k∈K ϕβ(g + gk)2

(6.45)

and
ω := 1− Sβ((gk)k∈K). (6.46)

We state and prove two lemmas for the case when the set G0[(gk)k∈K ] only
consists of one element (We will later prove that G0[(gk)k∈K ] = {0} in this
case.). Thereafter, the proof of Lemma 6.12 is given.

Lemma 6.13. Let K be a finite and non-empty index set and assume that β0 =

β0(|K|) > 0 satisfies (⋆) applied with K. If G0[(gk)k∈K ] = {0}, then

(i) |ω|2 ≤ ℜω, (6.47)

(ii) |Sβ((gk)k∈K)| ≤ 1− C∗
∑︂

g∈G∖{0}

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

. (6.48)

Proof. (i) From equations (6.45) and (6.46) follows that

ω = 1−
∑︁

g∈G ρ(g)
∏︁

k∈K ϕβ(g + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

=

∑︁
g∈G(1− ρ(g))

∏︁
k∈K ϕβ(g + gk)

2∑︁
g∈G

∏︁
k∈K ϕβ(g + gk)2

=

∑︁
g∈G(1− ρ(g))

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

·
∏︁

k∈K ϕβ(0 + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

=

(︄∑︂
g∈G

(1− ρ(g))
∏︂
k∈K

ϕβ(g + gk)
2

ϕβ(0 + gk)2

)︄
·

∏︁
k∈K ϕβ(0 + gk)

2∑︁
g∈G

∏︁
k∈K ϕβ(g + gk)2

.

(6.49)

Since G0[(gk)k∈K ] = {0}, by (⋆) we have∑︂
g∈G∖{0}

∏︂
k∈K

ϕβ(g + gk)
2

ϕβ(0 + gk)2
≤ 1− cos(2π/n)

8
. (6.50)
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We focus on the second factor in (6.49):

1 ≥
∏︁

k∈K ϕβ(0 + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

= 1−
∑︁

g∈G∖{0}
∏︁

k∈K ϕβ(g + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

> 1−
∑︁

g∈G∖{0}
∏︁

k∈K ϕβ(g + gk)
2∏︁

k∈K ϕβ(0 + gk)2

(6.50)

≥ 1− 1− cos(2π/n)

8

=
7 + cos(2π/n)

8

≥ 6

8
>

1

2
.

(6.51)

We calculate ℜω. Notice first that

min
g∈G∖{0}

(1−ℜρ(g)) = 1− cos(2π/n) > 0. (6.52)

Thus,

ℜω =

(︄∑︂
g∈G

(1−ℜ(ρ(g)))
∏︁

k∈K ϕβ(g + gk)
2∏︁

k∈K ϕβ(0 + gk)2

)︄
·

∏︁
k∈K ϕβ(0 + gk)

2∑︁
g∈G

∏︁
k∈K ϕβ(g + gk)2

=

⎛⎝ ∑︂
g∈G∖{0}

(1−ℜ(ρ(g)))
∏︁

k∈K ϕβ(g + gk)
2∏︁

k∈K ϕβ(0 + gk)2

⎞⎠ ·
∏︁

k∈K ϕβ(0 + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

(6.51),(6.52)
> (1− cos(2π/n))

∑︂
g∈G∖{0}

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

· 1
2

(6.50)

≥ 1

2
(1− cos(2π/n))

1− cos(2π/n)

8
=

(1− cos(2π/n))2

42
.

(6.53)

Since
max
g∈G

|1− ρ(g)| ≤ 1 + 1 = 2, (6.54)
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we have

|ω| =
⃓⃓⃓⃓ ⎛⎝ ∑︂

g∈G∖{0}

(1− ρ(g))

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

⎞⎠ ·
∏︁

k∈K ϕβ(0 + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

⃓⃓⃓⃓

≤ max
g∈G

|1− ρ(g)|
⃓⃓⃓⃓ ∑︂
g∈G∖{0}

∏︂
k∈K

ϕβ(g + gk)
2

ϕβ(0 + gk)2
·

∏︁
k∈K ϕβ(0 + gk)

2∑︁
g∈G

∏︁
k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
(6.54)

≤ 2
∑︂

g∈G∖{0}

∏︂
k∈K

ϕβ(g + gk)
2

ϕβ(0 + gk)2
·

∏︁
k∈K ϕβ(0 + gk)

2∑︁
g∈G

∏︁
k∈K ϕβ(g + gk)2

(6.51)

≤ 2
∑︂

g∈G∖{0}

∏︂
k∈K

ϕβ(g + gk)
2

ϕβ(0 + gk)2
· 1

(6.50)

≤ 1− cos(2π/n)

4
.

Therefore,

|ω|2 ≤
(︃
1− cos(2π/n)

4

)︃2 (6.53)

≤ ℜω.

(ii) We calculate |Sβ((gk)k∈K)| = |1− ω|:

|1− ω| =
√︁

(1−ℜω)2 + (ℑω)2 =
√︁

1− 2ℜω + |ω|2

≤
√︃

1− 2ℜω + |ω|2 + ℜω(−|ω|2 + ℜω) + |ω|4
4

=

√︄(︃
1−ℜω +

|ω|2
2

)︃2

= 1−ℜω +
|ω|2

2

(6.47)

≤ 1−ℜω +
ℜω
2

= 1− ℜω
2

(6.53)

≤ 1− 1

2

⎛⎝(1− cos(2π/n))

2

∑︂
g∈G∖{0}

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

⎞⎠
= 1− C∗

∑︂
g∈G∖{0}

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

.

Before the following lemma, the notation ∠(z1, z2) is introduced. Let z1, z2 ∈
C \ {0}, then ∠(z1, z2) is the absolute value of the smallest angle between these
numbers.

Lemma 6.14. Let K be a finite and non-empty index set and assume that β0 =

β0(|K|) > 0 satisfies (⋆) applied with K. For each k ∈ K, let gk ∈ G. If
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G0[(gk)k∈K ] = {0}, then

max
g∈G∖{0}

∏︂
k∈K

ϕβ(g + gk)

ϕβ(0 + gk)
≥ max

g∈G∖{0}

∏︂
k∈K

ϕβ(g + 0)

ϕβ(0 + 0)
. (6.55)

Proof. Since ∏︂
k∈K

ϕβ(g + gk) = exp(βℜ(ρ(g)
∑︂
k∈K

ρ(gk))),

inequality (6.55) can be written as

max
g∈G∖{0}

exp
(︁
βℜ(ρ(g)

∑︁
k∈K ρ(gk))

)︁
exp

(︁
βℜ(ρ(0)

∑︁
k∈K ρ(gk))

)︁ ≥ max
g∈G∖{0}

exp
(︁
βℜ(ρ(g)

∑︁
k∈K ρ(0))

)︁
exp

(︁
βℜ(ρ(0)

∑︁
k∈K ρ(0))

)︁ ,
which is equivalent to

max
g∈G∖{0}

exp

(︄
β

(︄
ℜ(ρ(g)

∑︂
k∈K

ρ(gk))−ℜ(ρ(0)
∑︂
k∈K

ρ(gk))

)︄)︄

≥ max
g∈G∖{0}

exp

(︄
β

(︄
ℜ(ρ(g)

∑︂
k∈K

ρ(0))−ℜ(ρ(0)
∑︂
k∈K

ρ(0))

)︄)︄

and

max
g∈G∖{0}

(︄
ℜ(ρ(g)

∑︂
k∈K

ρ(gk))−ℜ(ρ(0)
∑︂
k∈K

ρ(gk))

)︄

≥ max
g∈G∖{0}

(︄
ℜ(ρ(g)

∑︂
k∈K

ρ(0))−ℜ(ρ(0)
∑︂
k∈K

ρ(0))

)︄
.

(6.56)

Since ρ(g) and
∑︁

k∈K ρ(−gk) are non-zero complex numbers, we have

ℜ

(︄
ρ(g)

∑︂
k∈K

ρ(gk)

)︄
= ℜ

(︄∑︂
k∈K

ρ(−gk)ρ(g)

)︄

=

⃓⃓⃓⃓∑︂
k∈K

ρ(gk)

⃓⃓⃓⃓
|ρ(g)| cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(g)

)︄)︄

=

⃓⃓⃓⃓∑︂
k∈K

ρ(gk)

⃓⃓⃓⃓
cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(g)

)︄)︄
.

(6.57)

Fix ĝ ∈ G \ {0}. Then ĝ ̸∈ G0[(gk)k∈K ] and∏︂
k∈K

ϕβ(ĝ + gk) <
∏︂
k∈K

ϕβ(0 + gk),
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which is equivalent to

ℜ

(︄
ρ(g)

∑︂
k∈K

ρ(gk)

)︄
< ℜ

(︄
ρ(0)

∑︂
k∈K

ρ(gk)

)︄
= ℜ

(︄
1 ·
∑︂
k∈K

ρ(gk)

)︄
. (6.58)

From equation (6.57) follows that inequality (6.58) is equivalent to⃓⃓⃓⃓∑︂
k∈K

ρ(gk)

⃓⃓⃓⃓
cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(g)

)︄)︄

<

⃓⃓⃓⃓∑︂
k∈K

ρ(gk)

⃓⃓⃓⃓
cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), 1

)︄)︄
.

Thus,

cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(g)

)︄)︄
− cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), 1

)︄)︄
< 0. (6.59)

We write G0[(gk)k∈K ] with argmax and argmin. Note that cos(x) is decreas-
ing in [0, π] and therefore takes it largest value when the angle is as small as
possible. Therefore,

{0} = G0[(gk)k∈K ]

= argmax
g∈G

exp

(︄
βℜ

(︄
ρ(g)

∑︂
k∈K

(g + gk)

)︄)︄
(6.57)
= argmax

g∈G
exp

(︄
β

⃓⃓⃓⃓∑︂
k∈K

ρ(gk)

⃓⃓⃓⃓
cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(g)

)︄)︄)︄

= argmax
g∈G

cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(g)

)︄)︄

= argmin
g∈G

∠

(︄∑︂
k∈K

ρ(−gk), ρ(g)

)︄
.

Thus, ρ(0) is the point in ρ(G) that is closest to
∑︁

k∈K ρ(−gk). Similarly, we
have for ĝ that

ĝ ∈ argmax
g∈G∖G0[(gk)k∈K ]

∏︂
k∈K

ϕβ(g + gk) = argmin
g∈G∖{0}

∠

(︄∑︂
k∈K

ρ(−gk), ρ(g)

)︄
.

Hence, ρ(ĝ) is the point second closest to
∑︁

k∈K ρ(−gk). These results for 0 and
ĝ are illustrated in Figure 6.1. Note that there are two possibilities for where∑︁

k∈K ρ(−gk) is.
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Figure 6.1: The points in ρ(G) and the two possibilities for
∑︁

k∈K ρ(−gk). The
figure is from [1].

We see that the angle ∠(1, ρ(ĝ)) can be written as a sum of two angles:

∠

(︄∑︂
k∈K

ρ(−gk), 1

)︄
+ ∠

(︄∑︂
k∈K

ρ(−gk), ρ(ĝ)

)︄
= ∠(1, ρ(ĝ)).

Since cos(x) is decreasing on [0, π], we have

cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(ĝ)

)︄)︄
≥ cos(∠(1, ρ(ĝ)).

Furthermore,

1 = cos(∠(1, 1)) ≥ cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), 1

)︄)︄
.

Therefore, we have

cos(∠(1, 1)) + cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(ĝ)

)︄)︄

≥ cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), 1

)︄)︄
+ cos(∠(1, ρ(ĝ))

and

cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), ρ(ĝ)

)︄)︄
− cos

(︄
∠

(︄∑︂
k∈K

ρ(−gk), 1

)︄)︄
≥ cos (∠(1, ρ(ĝ)))− cos (∠(1, 1)) .

(6.60)

Since ⃓⃓⃓⃓∑︂
k∈K

ρ(gk)

⃓⃓⃓⃓
≤
∑︂
k∈K

|ρ(gk)| ≤
∑︂
k∈K

1 = |K|, (6.61)
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we have

ℜ(ρ(ĝ)
∑︂
k∈K

ρ(gk))−ℜ(ρ(0))
∑︂
k∈K

ρ(gk))

(6.57)
=

⃓⃓⃓⃓∑︂
k∈K

ρ(gk)

⃓⃓⃓⃓
cos

(︄
∠(
∑︂
k∈K

ρ(−gk), ρ(ĝ))

)︄

−
⃓⃓⃓⃓∑︂
k∈K

ρ(gk)

⃓⃓⃓⃓
cos

(︄
∠(
∑︂
k∈K

ρ(−gk), ρ(1))

)︄
(6.59),(6.61)

≥ |K|

(︄
cos

(︄
∠(
∑︂
k∈K

ρ(−gk), ρ(ĝ))

)︄
− cos

(︄
∠(
∑︂
k∈K

ρ(−gk), ρ(1))

)︄)︄
(6.60)

≥ |K| cos (∠(1, ρ(ĝ))− cos(∠(1, 1)))

=

⃓⃓⃓⃓∑︂
k∈K

ρ(0)

⃓⃓⃓⃓ (︄
cos

(︄
∠(
∑︂
k∈K

ρ(0), ρ(ĝ))

)︄
− cos

(︄
∠(
∑︂
k∈K

ρ(0), ρ(0))

)︄)︄
(6.57)
= ℜ(ρ(ĝ)

∑︂
k∈K

ρ(0))−ℜ(ρ(0))
∑︂
k∈K

ρ(0)).

Since ĝ ∈ G \ {0}, it follows that

max
g∈G∖{0}

(︄
ℜ(ρ(g)

∑︂
k∈K

ρ(gk))−ℜ(ρ(0))
∑︂
k∈K

ρ(gk)

)︄

≥ max
g∈G∖{0}

(︄
ℜ(ρ(g)

∑︂
k∈K

ρ(0))−ℜ(ρ(0))
∑︂
k∈K

ρ(0)

)︄
.

This is the same as inequality (6.56), which was shown to be equivalent to in-
equality (6.55).

We continue to the proof of Lemma 6.12.

Proof of Lemma 6.12. We investigate how many elements G0[(gk)k∈K ] can con-
sist of:

∏︂
k∈K

ϕβ(g + gk)
2 = exp

(︄
β
∑︂
k∈K

ℜ(ρ(g + gk))

)︄
= exp

(︄
β
∑︂
k∈K

ℜ(ρ(g)ρ(gk))

)︄

= exp

(︄
βℜ(ρ(g)

∑︂
k∈K

ρ(gk))

)︄
.

Recall that G0[(gk)k∈K ] is the set of the elements g ∈ G for which the above
function is maximised.
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First, if
∑︁

k∈K ρ(gk) = 0, then
∏︁

k∈K ϕβ(g + gk)
2 = 1 for all g ∈ G. Thus,

G0[(gk)k∈K ] consists of G elements.
Second, we consider the case when

∑︁
k∈K ρ(gk) ∈ R\{0}. If

∑︁
k∈K ρ(gk) > 0,

then the function is maximised when ℜρ(g) is maximised, i.e. g = 0. Otherwise,
it is maximised when ℜρ(g) is minimised. This happens when ρ(g) = eg·2πim/n is
as close to eπi as possible. Thus, there is 1 or 2 elements in G0[(gk)k∈K ].

Third, if
∑︁

k∈K ρ(gk) ̸∈ R, then
∑︁

k∈K ρ(gk) = reiθ. Hence,

ℜ(ρ(g)
∑︂
k∈K

ρ(gk)) = rℜ(ρ(g)eiθ).

This is maximised when ρ(g) = eg·2πim/n is as close as possible to e−iθ. Thus, we
have that there are 1 or 2 elements in G0[(gk)k∈K ].

To conclude, there are three possibilities for the numbers of elements in
G0[(gk)k∈K ]: 1, 2 or G elements. We continue by proving that inequality (6.44)
holds in all three cases.
First case: G elements

If |G0[(gk)k∈K ]| = G, then
∏︁

k∈K ϕβ(g + gk)
2 = 1 for all g ∈ G. Hence⃓⃓⃓⃓∑︁

g∈G ρ(g)
∏︁

k∈K ϕβ(g + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
=

|
∑︁

g∈G ρ(g)|
|G|

=
|
∑︁n−1

k=0 e
k·2πim/n|

|G|

=
1

|G|
e2πim − 1

e2πim/n − 1
= 0 ≤ 1− C∗λ(β)

2|K|.

Second case: two elements

If |G0[(gk)k∈K ]| = 2, then

|Sβ((gk)k∈K)| =
⃓⃓⃓⃓∑︁

g∈G ρ(g)
∏︁

k∈K ϕβ(g + gk)
2∑︁

g∈G
∏︁

k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
≤
⃓⃓⃓⃓ ∑︁

g∈G ρ(g)
∏︁

k∈K ϕβ(g + gk)
2∑︁

g∈G0[(gk)k∈K ]

∏︁
k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∑︁

g∈G0[(gk)k∈K ] ρ(g)
∏︁

k∈K ϕβ(g + gk)
2∑︁

g∈G0[(gk)k∈K ]

∏︁
k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
+

⃓⃓⃓⃓∑︁
g∈G∖G0[(gk)k∈K ] ρ(g)

∏︁
k∈K ϕβ(g + gk)

2∑︁
g∈G0[(gk)k∈K ]

∏︁
k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
.

Notice that for every g ∈ G0[(gk)k∈K ], the function ϕβ(g + gk) takes the same
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value. Let g′ ∈ G0[(gk)k∈K ]. Then,

|Sβ((gk)k∈K)| ≤
⃓⃓⃓⃓∑︁

g∈G0[(gk)k∈K ] ρ(g)

G0[(gk)k∈K ]

⃓⃓⃓⃓
+

⃓⃓⃓⃓∑︁
g∈G∖G0[(gk)k∈K ]

∏︁
k∈K ϕβ(g + gk)

2∑︁
g∈G0[(gk)k∈K ]

∏︁
k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
· |ρ(g)|

(2.3)
=

|
∑︁

g∈G0[(gk)k∈K ] ρ(g)|
2

+

⃓⃓⃓⃓∑︁
g∈G∖G0[(gk)k∈K ]

∏︁
k∈K ϕβ(g + gk)

2∑︁
g∈G0[(gk)k∈K ]

∏︁
k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
≤

|
∑︁

g∈G0[(gk)k∈K ] ρ(g)|
2

+

⃓⃓⃓⃓ ∑︂
g∈G∖G0[(gk)k∈K ]

∏︂
k∈K

ϕβ(g + gk)
2

ϕβ(g′ + gk)2

⃓⃓⃓⃓
(⋆)

≤
|
∑︁

g∈G0[(gk)k∈K ] ρ(g)|
2

+
1− cos(2π/n)

8
.

(6.62)

Since G0[(gk)k∈K ] = {j, j + 1} for a j ∈ Zn, we have

|
∑︁

g∈G0[(gk)k∈K ] ρ(g)|
2

=
|ρ(j) + ρ(j + 1)|

2

≤
√︁

(1 + cos(2π/n))2 + sin2(2π/n)

2

=

√︁
1 + 2 cos(2π/n) + cos2(2π/n) + sin2(2π/n)

2

=

√︃
1 + cos(2π/n)

2

=

√︃
1− 1− cos(2π/n)

2

≤
√︃

1− 1− cos(2π/n)

4

≤ 1− 1− cos(2π/n)

4
.

Combining this with inequality (6.62), we have

|Sβ((gk)k∈K)| ≤ 1− 1− cos(2π/n)

4
+

1− cos(2π/n)

8

= 1− 1− cos(2π/n)

8
= 1− 1

2
C∗

(6.43)

≤ 1− C∗λ(β0)
2|K|.

Third case: one element

Last, we focus on the case when |G0[(gk)k∈K ]| = 1. First, we investigate which
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element is in G0[(gk)k∈K ]. For any g′ ∈ G, we have

|Sβ((g
′ + g)k∈K)| =

⃓⃓⃓⃓∑︁
g∈G ρ(g)

∏︁
k∈K ϕβ(g + (g′ + gk))

2∑︁
g∈G

∏︁
k∈K ϕβ(g + (g′ + gk))2

⃓⃓⃓⃓
= |ρ(g′)|

⃓⃓⃓⃓∑︁
g∈G ρ(g)

∏︁
k∈K ϕβ(g + (g′ + gk))

2∑︁
g∈G

∏︁
k∈K ϕβ(g + (g′ + gk))2

⃓⃓⃓⃓
=

⃓⃓⃓⃓∑︁
g∈G ρ(g)ρ(g′)

∏︁
k∈K ϕβ(g + (g′ + gk))

2∑︁
g∈G

∏︁
k∈K ϕβ(g + (g′ + gk))2

⃓⃓⃓⃓
=

⃓⃓⃓⃓∑︁
g∈G ρ(g + g′)

∏︁
k∈K ϕβ((g + g′) + gk)

2∑︁
g∈G

∏︁
k∈K ϕβ((g + g′) + gk)2

⃓⃓⃓⃓
=

⃓⃓⃓⃓∑︁
g∈G ρ(g)

∏︁
k∈K ϕβ(g + gk)

2∑︁
g∈G

∏︁
k∈K ϕβ(g + gk)2

⃓⃓⃓⃓
= |Sβ((gk)k∈K)|.

Thus, it implies that 0 ∈ G0[(gk)k∈K ], which only consists of one element. There-
fore, G0[(gk)k∈K ] = {0}. Then, from Lemma 6.13 follows that

|Sβ((gk)k∈K)| ≤ 1− C∗
∑︂

g∈G∖{0}

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

.

Therefore, inequality (6.44) holds if

∑︂
g∈G∖{0}

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

≥ λ(β)2|K| =

(︃
max

g∈G∖{0}

ϕβ(g)

ϕβ(0)

)︃2|K|

= max
g∈G∖{0}

∏︂
k∈K

ϕβ(g + 0)2

ϕβ(0 + 0)2
,

which holds if

max
g∈G∖{0}

∏︂
k∈K

ϕβ(g + gk)

ϕβ(0 + gk)
≥ max

g∈G∖{0}

∏︂
k∈K

ϕβ(g + 0)

ϕβ(0 + 0)
. (6.63)

Inequality (6.63) was proved to be true in Lemma 6.14. Thus,

|Sβ((gk)k∈K)| ≤ 1− C∗
∑︂

g∈G∖{0}

∏︁
k∈K ϕβ(g + gk)

2∏︁
k∈K ϕβ(0 + gk)2

≤ 1− C∗
∑︂

g∈G∖{0}

∏︁
k∈K ϕβ(g + 0)2∏︁
k∈K ϕβ(0 + 0)2

= 1− C∗λ(β)
2|K|.
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We continue to the proof of Proposition 6.11.

Proof of Proposition 6.11. Recall, by Lemma 6.9 follows that the spins (σe)e∈γ1

are independent if the spins (σe)e ̸∈±γ1 are given. Take an edge e ∈ γ1. For p ∈ ∂̂e,
let σe

p :=
∑︁

e′∈∂p∖{e} σe′ . For g ∈ G, the conditional probability when σe = g is

µ′
β,N(σe = g) =

∏︁
p∈∂̂e ϕβ(σ

e
p + g)2∑︁

g′∈G
∏︁

p∈∂̂e ϕβ(σe
p + g′)2

and the conditional expectation of ρ(σe) is

E′
β,N [ρ(σe)] =

∑︁
g∈G ρ(g)

∏︁
p∈∂̂e ϕβ(σ

e
p + g)2∑︁

g∈G
∏︁

p∈∂̂e ϕβ(σe
p + g)2

.

Since the spins (σe)e∈γ1 are independent, we obtain

E′
β,N

[︄∏︂
e∈γ1

ρ(σe)

]︄
=
∏︂
e∈γ1

E′
β,N [ρ(σe)]. (6.64)

Before calculating the expectation of Wγ, we apply Lemma 6.12 for K = ∂̂e and
gk = σe

p. Since |K| = 6, we obtain

|E′
β,N [ρ(σe)]| =

⃓⃓⃓⃓∑︁
g∈G ρ(g)

∏︁
p∈∂̂e ϕβ(σ

e
p + g)2∑︁

g∈G
∏︁

p∈∂̂e ϕβ(σe
p + g)2

⃓⃓⃓⃓
(6.44

≤ 1− C∗λ(β)
2|K|

= 1− C∗λ(β)
12

≤ e−C∗λ(β)12 .

(6.65)

Thus, the upper bound for the expectation is

|Eβ,N [Wγ]| =
⃓⃓⃓⃓
Eβ,N

[︄
ρ

(︄∑︂
e∈γ

σe

)︄]︄ ⃓⃓⃓⃓
=

⃓⃓⃓⃓
Eβ,N

[︄
ρ

(︄ ∑︂
e∈γ∖γ1

σe

)︄
ρ

(︄∑︂
e∈γ1

σe

)︄]︄ ⃓⃓⃓⃓

=

⃓⃓⃓⃓
Eβ,N

[︄ ∏︂
e∈γ∖γ1

ρ (σe)
∏︂
e∈γ1

ρ (σe)

]︄ ⃓⃓⃓⃓

=

⃓⃓⃓⃓
Eβ,N

[︄
E′

β,N

[︄ ∏︂
e∈γ∖γ1

ρ (σe)
∏︂
e∈γ1

ρ (σe)

]︄]︄ ⃓⃓⃓⃓

=

⃓⃓⃓⃓
Eβ,N

[︄ ∏︂
e∈γ∖γ1

ρ (σe)E′
β,N

[︄∏︂
e∈γ1

ρ (σe)

]︄]︄ ⃓⃓⃓⃓

≤ Eβ,N

[︄⃓⃓⃓⃓ ∏︂
e∈γ∖γ1

ρ (σe)E′
β,N

[︄∏︂
e∈γ1

ρ (σe)

]︄ ⃓⃓⃓⃓]︄
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= Eβ,N

[︄⃓⃓⃓⃓ ∏︂
e∈γ∖γ1

ρ (σe)

⃓⃓⃓⃓
·
⃓⃓⃓⃓
E′

β,N

[︄∏︂
e∈γ1

ρ (σe)

]︄ ⃓⃓⃓⃓]︄

= Eβ,N

[︄
1 ·
⃓⃓⃓⃓
E′

β,N

[︄∏︂
e∈γ1

ρ (σe)

]︄ ⃓⃓⃓⃓]︄
(6.64)
= Eβ,N

[︄∏︂
e∈γ1

⃓⃓⃓⃓
E′

β,N [ρ (σe)]

⃓⃓⃓⃓]︄
(6.65)

≤ Eβ,N

[︄∏︂
e∈γ1

e−C∗λ(β)12

]︄
= Eβ,N

[︂
e−C∗λ(β)12|γ1|

]︂
= e−C∗λ(β)12|γ1|

= e−C∗(ℓ−ℓc)λ(β)12 .

6.3 The last part of the proof

Recall that the inequality we want to prove is inequality (2.12):

|⟨Wγ⟩β − e−ℓ(1−θ(β))| ≤ C
′
[︃√

ℓc
ℓ

+ λ(β)2
]︃C′′

.

We begin with defining the constants C ′ and C ′′. Let

C ′ :=
√
2(CA2

4C∗/C∗)1/(1+4C∗/C∗) and C ′′ := 1/(1 + 4C∗/C∗). (6.66)

The proof is divided in two cases, one when ℓc ≥ ℓ
2

and one when ℓc <
ℓ
2
. The

inequality

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| ≤ C
′
[︃√

ℓc
ℓ

+ λ(β)2
]︃C′′

(6.67)

will be proved, which then implies inequality (2.12). Since we earlier proved
that the limit ⟨Wγ⟩ exists and both the right-hand side of the inequality and
e−ℓ(1−θ(β)) are independent of N , taking the limits of inequality (6.67) when N

goes to infinity proves inequality (2.12).

6.3.1 First case: ℓc ≥ ℓ
2

Assume that ℓc ≥ ℓ
2
. First, a lower bound for the right-hand side of (6.67)

is calculated. From the definitions of C∗ and C∗ (equations (6.42) and (6.1))
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follows that they are positive. Therefore, 4C∗/C∗ > 0 and C ′′ ∈]0, 1[. From the
definition of CA (equation (6.41)) follows that CA ≥ 9

2
. Thus,

C ′ =
√
2(CA2

4C∗/C∗)1/(1+4C∗/C∗)

=
√
2(CA)

1/(1+4C∗/C∗) · (24C∗/C∗)1/(1+4C∗/C∗)

≥
√
2 · 1 · 2 = 2

√
2.

From the assumption that ℓc ≥ ℓ
2

follows that√︃
lc
l
≥
√︃

1

2
.

Therefore, the lower bound of the right-hand side of inequality (6.67) is

C
′

[︄√︃
lc
l
+ λ(β)2

]︄C′′

≥ 2
√
2

(︄√︃
1

2
+ 0

)︄C′′

= 2
3
2
−C′′

2 ≥ 2.

For the left-hand side of inequality (6.67), we obtain

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| ≤ |Eβ,N [Wγ]|+ |e−ℓ(1−θ(β))|

=

⃓⃓⃓⃓
Eβ,N

[︄
ρ

(︄∑︂
e∈γ

σe

)︄]︄ ⃓⃓⃓⃓
+ |e−ℓ(1−θ(β))|

≤ Eβ,N

[︄⃓⃓⃓⃓
ρ

(︄∑︂
e∈γ

σe

)︄ ⃓⃓⃓⃓]︄
+ 1

≤ Eβ,N [1] + 1 = 1 + 1 = 2.

Hence, we obtain

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| ≤ 2 ≤ C
′
(︃√

ℓc
ℓ

+ λ(β)2
)︃C

′′

.

6.3.2 Second case: ℓc <
ℓ
2

Assume that ℓc <
ℓ
2
. Then ℓ − ℓc ≥ 1

2
ℓ. From this assumption and Proposition

6.11 follows that

|Eβ,N [Wγ]| ≤ e−C∗(ℓ−ℓc)λ(β)12 ≤ e−
1
2
C∗ℓλ(β)12 .

Therefore,

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| ≤ |Eβ,N [Wγ]|+ |e−ℓ(1−θ(β))|

≤ e−
1
2
C∗ℓλ(β)12 + e−ℓ(1−θ(β)).

(6.68)
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Since 5(|G| − 1)λ(β)2 < 1 and 0 < λ(β) < 1, we have

1− 5(|G| − 1)λ(β)2 > 0

⇔ λ(β)10

5
− (|G| − 1)λ(β)12 ≥ 0

⇒ 1

5
− (|G| − 1)λ(β)12 ≥ 0

⇔ 1− (|G| − 1)λ(β)12 ≥ 4

5
≥ 1

2
. (6.69)

The lower bound for 1− θ(β) is then

1− θ(β)
(6.2)
= 1−

∑︁
g∈Gℜ(ρ(g))e12βℜρ(g)∑︁

g∈G e12βℜρ(g)

=

∑︁
g∈G(1−ℜ(ρ(g)))e12βℜρ(g)∑︁

g∈G e12βℜρ(g)

=

∑︁
g∈G(1−ℜ(ρ(g)))e12β(ℜρ(g)−1)∑︁

g∈G e12β(ℜρ(g)−1)

=

∑︁
g∈G∖{0}(1−ℜ(ρ(g)))e12β(ℜρ(g)−1)

1 +
∑︁

g∈G∖{0} e
12β(ℜρ(g)−1)

(6.52)

≥
∑︁

g∈G∖{0}(1− cos(2π/n))e12β(ℜρ(g)−1)

1 +
∑︁

g∈G∖{0}maxg∈G∖{0} e12β(ℜρ(g)−1)

=
(1− cos(2π/n))

∑︁
g∈G∖{0} e

12β(ℜρ(g)−1)

1 + (|G| − 1)maxg∈G∖{0} e12β(ℜρ(g)−1)

≥
(1− cos(2π/n))maxg∈G∖{0} e

12β(ℜρ(g)−1)

1 + (|G| − 1)maxg∈G∖{0} e12β(ℜρ(g)−1)

(2.8)
=

(1− cos(2π/n))λ(β)12

1 + (|G| − 1)λ(β)12

=
(1− cos(2π/n))λ(β)12(1− (|G| − 1)λ(β)12)

(1 + (|G| − 1)λ(β)12)(1− (|G| − 1)λ(β)12)

=
(1− cos(2π/n))λ(β)12(1− (|G| − 1)λ(β)12)

1− ((|G| − 1)λ(β)12)2)

≥ (1− cos(2π/n))λ(β)12(1− (|G| − 1)λ(β)12)

= 4C∗λ(β)
12(1− (|G| − 1)λ(β)12)

(6.69)

≥ 2C∗λ(β)
12.

Thus,
e−ℓ(1−θ) ≤ e−2C∗ℓλ(β)12 (6.70)



CHAPTER 6. PROOF OF THE MAIN THEOREM 81

and

|Eβ,N [Wγ]− e−ℓ(1−θ(β))|
(6.68),(6.70)

≤ e−
1
2
C∗ℓλ(β)12 + e−2ℓC∗λ(β)12

≤ e−
1
2
ℓC∗λ(β)12 + e−

1
2
ℓC∗λ(β)12

= 2e−
1
2
ℓC∗λ(β)12 .

(6.71)

From Proposition 6.1 follows that

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| ≤ CAe
2C∗ℓλ(β)12

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
. (6.72)

By combining this with inequality (6.71), we obtain

|Eβ,N [Wγ]− e−ℓ(1−θ(β))|1+4C∗/C∗

(6.72),(6.71)

≤

(︄
CAe

2C∗ℓλ(β)12

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄)︄1

·
(︂
2e−

1
2
ℓC∗λ(β)12

)︂4C∗/C∗

≤ CA2
4C∗/C∗

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄(︂
e2C

∗ℓλ(β)12 · e−2C∗ℓλ(β)12
)︂

= CA2
4C∗/C∗

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄
.

Thus,

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| ≤

(︄
CA2

4C∗/C∗

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄)︄1/(1+4C∗/C∗)

=
(︁
CA2

4C∗/C∗
)︁1/(1+4C∗/C∗)

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄1/(1+4C∗/C∗)

≤
√
2
(︁
CA2

4C∗/C∗
)︁1/(1+4C∗/C∗)

·

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄1/(1+4C∗/C∗)

= C ′

(︄√︃
ℓc
ℓ
+ λ(β)2

)︄C′′

.

We have proved the main theorem.



Chapter 7

Svensk sammanfattning

Denna avhandling är baserad på artikeln "Wilson loops in finite Abelian lattice
gauge theories" av M. Forsström, J. Lenells och F. Viklund [1], där väntevärdet
för en Wilsonloopobservabel uppskattas. Avhandlingens mål är att förklara ar-
tikeln så att matematikstuderande på magisternivå kan förstå den. I denna
avhandling behandlas därför den matematiska teori som behövs för att förstå
artikeln. Därtill ges bevisen i artikeln i en mera detaljerad och förklarande form.

Det första kapitlet i avhandlingen är en introduktion som ger en bakgrund
till problemet som behandlas i denna avhandling. Matematiska modeller inom
gittergaugeteorier har länge studerats och målet med dem är att försöka förklara
kvantfältteorier inom standardmodellen. Även om dessa modeller inte ännu kan
användas inom kvantfysiken är de värdefulla också som matematiska modeller.

Det andra kapitlet introducerar artikelns huvudsats. Den teori som behövs för
att satsen ska kunna förstås diskuteras och satsen ges. Grundläggande teori om
grupper och representationer behandlas och både gruppen och representationen
som används i artikeln definieras. Gruppen som används är G = (Zn,+) som
är en ändlig abelsk grupp. Representationen som används är endimensionell,
unitär och injektiv. Det visas att om en representation uppfyller dessa krav
för den valda gruppen så ges den av ρ(g) = eg·2πim/n, där g tillhör gruppen
Zn och m ∈ {0, 1, . . . , n − 1} är relativt primt till n. Därtill definieras det
fyrdimensionella gittret Z4 vars noder är i varje heltalspunkt. Delmängder av
detta gitter och begrepp som hör till det ges, bland annat plaketter1 som bildas av
två riktade bågar. Därefter tas begrepp för loopar och bågar upp innan ett mått

1En svensk term är inte etablerad (eng. plaquette).
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med Wilsonverkan ges och Wilsonloopobservabeln Wγ definieras. Gränsvärdet
för denna observabels väntevärde betecknas med ⟨Wγ⟩β. Kapitlet avslutas med
att satsen ges och kommenteras. Som följande ges satsen.

Sats. Låt n vara ett heltal med n ≥ 2. Låt gittergaugeteorin ha strukturgruppen
G = Zn. Låt representationen ρ vara en endimensionell och injektiv representa-
tion av G. Låt γ ∈ Z4 vara en riktad cykel, ℓ dess längd och ℓc antalet hörnbågar
i γ. Då existerar gränsvärdet av Wilsonloopobservabelns väntevärde och β0 kan
väljas så att det existerar konstanter C ′(β0) och C ′′(β0) för vilka följande olikhet
gäller för alla β ≥ β0:

|⟨Wγ⟩β − e−ℓ(1−θ(β))| ≤ C
′
(︃√

ℓc
ℓ

+ λ(β)2
)︃C

′′

.

Funktionen θ(β) är definierad i ekvation (2.7) och λ(β) i ekvation (2.8).

Från denna sats kan dras som slutsats att väntevärdet på Wilsonloopobserv-
abeln tar ett värde väldigt nära 0 om ℓ(1 − θ(β)) är stort och ett värde väldigt
nära 1 om ℓ(1− θ(β)) är litet.

Det tredje kapitlet behandlar teori om diskret yttre algebra då Zr har valts
som gitter. Denna teori diskuteras alltså mera generellt än vad som skulle be-
hövas för resten av avhandlingen. Riktade differentialceller och -former både
definieras och ges exempel på (se Figur 3.1 för exempel på differentialceller).
Dessa kallas också för k-celler och k-former. En riktad 1-cell är detsamma som
en båge i gittret Zr och en riktad 2-cell detsamma som en plakett. Därefter ges
två operatorer för k-former. Dessa är den yttre derivatan, som avbildar en k-form
på en k+1-form, och koderivatan som avbildar en k-form på en k−1-form. Exem-
pel illustrerar hur dessa används. Ränder och koränder för k-former och speciellt
en plakett behandlas. Dessutom ges två olika versioner av Poincarés lemma som
både appliceras på en viss mängd av 2-former och används för att visa att måttet
med Wilsonverkan kan skrivas om så att det blir ett mått för plakettkonfigura-
tioner. Till sist diskuteras den diskreta Hodge dual-operatorn och bijektionen
mellan det ursprungliga gittret och det som skapas av Hodge dual-operatorn.
Lemman med Hodge dual-operatorn som är nödvändiga för fjärde kapitlets bevis
ges.

Det fjärde kapitlet behandlar teori för virvlar2 och riktade ytor. Dessa be-
grepp definieras och illustreras, observera att dessa definitioner kan variera mellan

2En svensk term är inte etablerad (eng. vortex).
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olika källor. Först behandlas uppdelningar av virvlar, sedan definieras minimala
virvlar och lemman med dessa som behövs till huvudbeviset ges och bevisas.
Dessutom ges en proposition för en viss fördelning för virvlar som har en stor
roll i huvudbeviset. Till sist ges några lemman för riktade ytor och en riktad ytas
koppling till loopar förklaras. Dessutom definieras inre bågar och inre plaketter
och ett lemma för riktade ytor ges.

I det femte kapitlet behandlas gränsvärdet för väntevärdet av en Wilson-
loopobservabel. Det viktigaste resultatet i detta kapitel är en sats som säger att
måtten Eβ,N konvergerar svagt i topologin av lokal konvergens när N närmar
sig oändligheten och det begränsade måttet är translationsinvariant i Zr. Denna
sats bevisas med hjälp av Ginibres olikhet. Till sist tillämpas satsen på Wilson-
loopobservabeln för att visa att dess väntevärdes gränsvärde både existerar och
är invariant under translation.

I det sjätte kapitlet bevisas slutligen huvudsatsen med hjälp av den teori och
de resultat som getts i de tidigare kapitlen. Beviset delas upp i två fall, först i
Proposition 6.1 där ℓλ(β)12 är stort och därefter i Proposition 6.11 där ℓλ(β)12

är litet. Beviset för Proposition 6.1 är uppdelat i flera delar där olika väntevär-
den beräknas innan de kombineras för att bevisa den önskade olikheten. Till
beviset behövs flera lemman som ges innan. Dessa lemman är främst olikheter
för funktionen θ samt sannolikheter för olika händelser, vilka beräknas med hjälp
av propositionen från det fjärde kapitlet. Därefter bevisas Proposition 6.11. Till
detta bevis behövs några lemman som först ges och bevisas och även vissa slut-
satser från beviset för Proposition 6.1 används. Därefter kombineras dessa två
fall för att bevisa olikheten

|Eβ,N [Wγ]− e−ℓ(1−θ(β))| ≤ C
′
(︃√

ℓc
ℓ

+ λ(β)2
)︃C

′′

.

Med hjälp av resultatet för gränsvärdets existens för Wilsonloopobservabeln kan
satsen därefter bevisas genom att ta gränsvärdet då N närmar sig oändligheten.

För de som är intresserade av liknande problem finns bland annat artiklarna
"Wilson loops in Ising lattice gauge theory" av S. Chatterjee [2] och "Wilson
loop expectations in lattice gauge theories with finite gauge groups" av S. Cao
[3] som båda publicerades år 2020.
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