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Abstract

This thesis is based on the article "Wilson loops in finite Abelian lattice gauge
theories" by M. Forsstrom, J. Lenells and F. Viklund [I]. In the article, lattice
gauge theories on Z* for a finite Abelian structure group are considered and the
expectation value for the Wilson loop observable at weak coupling is computed.
The purpose of this thesis is to explain this article in more detail and to give the
theory necessary to understand the article.

In this thesis, we consider the lattice Z*, the structure group Z, and a faithful
and one-dimensional representation. Basic theory for groups, representations
and lattices is discussed. To state the main result, several definitions, e.g. the
Wilson loop observable and Wilson action, are given. The main result is given
as a theorem, where we have an inequality for the limit of the expectation value
of the Wilson loop observable.

The theory necessary to prove the main result is given in this thesis. Theory
for discrete exterior calculus is given in the third chapter. This includes theory
for k-cells and k-forms as well as definitions and applications for both the exte-
rior derivative and the co-derivative. Furthermore, two versions of the Poincaré
lemma are given and applied to problems, e.g. for writing the given measure
as a measure on plaquette configurations instead of spin configurations. The
Hodge dual of the lattice Z" is defined and both examples and lemmas, which
are important for later proofs, are given.

In the fourth chapter, vortices and oriented surfaces are defined using the
theory from the previous chapter. It is important to note that these definitions
might differ from other sources. Various lemmas are stated and proved. The
most important result in this chapter is a proposition, in which a probability is
computed, that is applied several times in the proof of the main result.

Since the limit of the expectation of the Wilson loop observable is computed,
both its existence and translation invariance must be proved. A more general
theorem, which proves the existence and translation invariance for a real-valued
function, is given and proved with Ginibre’s inequality. This theorem is then

applied to the Wilson loop observable.



The last part of this thesis is the proof of the main theorem. To prove this
theorem, the theory and results given in the earlier chapters are applied. The
proof is divided into two parts, which are then combined to achieve the desired

result.
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Chapter 1
Introduction

Trying to mathematically describe the quantum field theories in the Standard
Model is both a fascinating and difficult task. One method aiming to do this
is lattice gauge theories. In these theories, space-time is discretised to a four-
dimensional Euclidean lattice. Then, quantum field theories are approximated
with methods from probability theory. Last, by taking a scaling limit, it might
be possible to extend the model back to the continuous case and, thus, describe
continuum quantum field theories.

Mathematical models for lattice gauge theories have been studied for a long
time. They can be divided into two groups depending on whether its coupling
constant is small or large. If the coupling constant is assumed to be small, we
say that the gauge theory is in the weak coupling regime. The recently published
articles by S. Chatterjee [2] and S. Cao [3] both compute the expectation values of
a Wilson loop at weak coupling. This thesis will focus on the article by Forsstrom
et al. [I], which extends Chatterjee’s article. Since this model is in finite Abelian
lattice gauge theories, it might not be relevant to the Standard Model, but it is
still an interesting mathematical model to study.

The purpose of this thesis is to explain the third version of this article so that
a master’s student in mathematics understands it. The reader is expected to be
familiar with probability theory, measure theory, complex analysis and algebra.
Other necessary mathematical theory, e.g. group theory and discrete exterior
calculus, will be discussed in this thesis and the reader is not required to have

prior knowledge of them.
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Chapter 2

The expectation value of the

Wilson loop

In this chapter, the result for the expectation value of the Wilson loop observable
will be given as a theorem. Before that, some theory necessary to understand
this theorem is given. First, some basic theory for groups and representations
is given. Second, the lattice used in the main theorem is described and terms
necessary to the theorem, such as the Wilson action and the Wilson loop, are

defined. Third, the main theorem is stated.

2.1 Groups

In this thesis, we will have a group (G, +), which is a finite non-trivial Abelian
group. Therefore, we have to define what that is, beginning with the definition
of a group. A group is a set equipped with a binary operation that satisfies the

group axioms in the definition below.

Definition 2.1. (Group) (G,+) is a group if :

Foralla,be G:a+be G (Closure)

For all a,b,c € G : (a+b) +c=a+ (b+c) (Associativity)

There exists an identity element e € G for alla € G: a+e = e+a = a (Identity)
There exists an inverse element —a € G for alla € G: a —a = —a+a = ¢

(Inverse).

An Abelian group is a group, for which the elements commute.
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Definition 2.2. (Abelian group) A group is Abelian if for all a,b € G :a+b =
b+ a (Commutativity).

Example 2.3. Some examples of Abelian groups under ordinary addition are

(Z,+), (R,+) and (Q,+). These groups are all infinite.

In this thesis, we assume that the group G, which is often called structure
group, is G = (Z,, +), which is a finite group under addition modulo n. Here, the
set Zy, is Z, = {0,1,...,n—1} and for a, b € Z,, we have that a+b = a+b mod n.
The identity element for this group is e = 0.

2.2 Representations

In this section, two different kinds of representations, which we will have use of
later, will be defined. Last, the representation that will be used in this thesis is
given. First, we must define what a representation is. Therefore, we define group
homomorphisms and the general linear group before giving the definition for a

representation.

Definition 2.4. (Group homomorphism) Let (G,*) and (H,©) be groups. Then
f (G, %) — (H,o) is a homomorphism if for all a,b € G it holds that

flaxb) = f(a)o f(b).

Definition 2.5. (General linear group of a vector space) The general linear group
of a vector space V' 1is the group of linear invertible mappings from V to V and

is denoted by GL(V).
It is well known that this is a group with the operation matrix multiplication.

Definition 2.6. (Representation) A representation p of (G, +) on a vector space
V' is a group homomorphism from G to GL(V').

From these definitions, it follows that the following property holds for a rep-
resentation p of (G, +) :

plg+49)=p(g)ply’) forgyg €q. (2.1)

We continue by discussing faithful representations.
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Definition 2.7. (Fuaithful representation) A representation p is faithful if it is

injective.

A representation p is injective if p(g) = p(¢’) implies g = ¢’. Let Iy be the
identity matrix for the vector space V. Then, from equation (2.1]) follows that

ple)p(g’) = ple+g) =p(g) forallg €G.

Thus,
ple) =1Ty.

In this thesis, p is defined as a faithful and one-dimensional representation of
the group G = Z,. That the representation is one-dimensional means that the
dimension of the vector space V is dim(V') = 1. We derive the representation
and begin with calculating the value of p(0). Since 0 is the identity element for
this group, we have

p(0) = ple) = 1. (2:2)
Since
p(1)" = pln - 1) = ple) = 1,
it follows that p(g) must be the nth roots of unity (Recall that a root of unity is
a complex or real solution to 2™ = 1, where n is a positive integer and the nth

2k7rz'/n)

root of unity is given by e . Since p is the roots of unity, we obtain

lp(g)l=1 forall g €G. (2.3)

Last, the representation must take the same value for g and g + n. Hence, it

follows that the representation must be given by
plg) = ™™ g € G =L, (24)

for some m € {1,...,n — 1} relatively prime to n. For faithfulness of the repre-
sentation, it is necessary that m is relatively prime to n.
We define a unitary representation and show that the representation p is

unitary.

Definition 2.8. (Unitary representation) A representation p is unitary if p(g)
is a unitary operator. The operator p(g) is unitary if p(g)* = p(g)~' for every
g € G, where p(g)* is the conjugate transpose of p(g).
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To show that the representation p, defined in equation ({2.4), is unitary, we
calculate p(g)p(g)*. The conjugate transpose of p(g) is p(g)* = e~ 92"/ and

p(g)p(g)* — eg-27rim/n€fg-27rim/n — 60 — 1.

Thus, p(g)* = p(g)~! and the representation is unitary.
To summarise this section, the representation p(g) = e92™™/™ is a faithful,
unitary and one-dimensional representation of G = Z,, p(0) = 1 and p(g) is a

root of unity. Last, the choice of m will determine the representation p.

2.3 The lattice Z*

Consider the lattice Z*, which is four-dimensional with a vertex at every integer
coordinate. An edge is called positively oriented if the coordinate increases when
traversing it. From every vertex x, exactly four positively oriented edges emerge
to its nearest neighbours. These edges are denoted by dz;, where ¢+ = 1,2, 3,4.
The opposite direction, the negative orientation, of an edge is given by —dx;. An
oriented plaquette p is a pair of oriented edges that share a vertex and is defined
as p := dx; Ndx;, where A is the wedge product. The boundary dp of a plaquette
p = dzj;, A dzj;, is given by the edges Op = {dxj,,dx;, + (dej,);,, —(dx; +
(dej,)j,), —dxj, }, where dej, and dej;, are unit vectors. An illustration of an
oriented plaquette and its boundary is given in Figure below. The terms
oriented edges, oriented plaquettes and boundary are defined in more detail in

Section 3.1l and Section [3.3]

dz;, Q

dxj,

Figure 2.1: An oriented plaquette p = dx;, A dz;, and the edges in its boundary
ap.

We continue by defining some subsets of the lattice. For a given N > 1, let
By = Z*N [N, N]*. Then the set Ey, whose elements are called e, is the set
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containing all oriented edges, whose both endpoints are in By. An oriented edge
with the opposite direction of e is given by —e. An edge e € Ey is a boundary
edge of By if there is a plaquette p with a corner that does not belong to By,
such that e € dp. The set of oriented plaquettes, which have all their boundary
edges in Fy, are denoted by Py. Elements in Py are called p. Let the set ) Ex
be the set of functions ¢ : Ey — G for which o, = —o_, and o, # 0 for all
e € Ey. The elements ¢ in ¥, are called spin configurations. For o € Xp,,

(do), is defined as
(dO’)p = O¢y + Oey + Oes + Oeys p € PNa

where e; are oriented edges in the boundary of p.

Last, we have some definitions for loops. Let ag, a1, ..., a, be vertices. A loop
is then a sequence of oriented edges ey, eq,...,e,, where ¢; is a vertex between
a;—1 and a; for © = 1,...,n such that a, = ag. Let 7 be a loop, then the length
7| is defined as the number of edges in it. A loop, which is closed and oriented,
is called simple if all oriented edges in v are distinct from each other. Let e
be an edge in 7. Then the edge ¢/ € v, ¢/ # e, is a corner edge if ¢ or —¢’
shares a plaquette with the edge e. Edges which are not corner edges are called
non-corner edges. This is illustrated in Figure 2.2] where the corner edges are

given by the black edges and non-corner edges by the grey edges.

Figure 2.2: Corner and non-corner edges of a loop.

2.4 The Wilson loop observable

We begin with the definition of the Wilson action before defining the probabil-

ity measure that will be used. Thereafter, the Wilson loop observable and the
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expectation value of it are defined. In the next definition, we have the notation

R(x), which gives the real part of the complex number z.

Definition 2.9. The Wilson action corresponding to the structure group G, rep-

resentation p and fived N is given by
= D _ Rpl(do),), o €Ty
pEPN

The probability measure uy is the uniform measure on the set > By From
this measure, an associated probability measure pi v on ) g, can be defined by

weighting the uniform measure by e=#5(),

Definition 2.10. For each 8 > 0, the probability measure pig N on ZEN 18

pp (o) = Z[;}Vefﬁs(“),uH(a), o€ Xpy, (2.5)

where Zz n 15 a normalising constant.

Definition 2.11. (The Wilson loop observable) Given a simple loop v C Ely,
the Wilson loop observable W, is

W, =W, (o) =p (Z ae> , 0EYp,. (2.6)

Definition 2.12. (Ezpectation of the Wilson loop observable) The expectation of
the Wilson loop observable with respect to the measure pig n, using free boundary

conditions, s

EsnWil= ) Wi(o)usn(o).

O'GZEN

Free boundary conditions means that they are no modifications at the bound-

ary of By. Last, the definition for the limit of this expectation.

Definition 2.13. (The limit of the expectation of the Wilson loop observable)
The limit of the expectation of the Wilson loop observable (W,)g is

<W7>B = A;;mm EB,N[WV]
when it exists.

In Chapter [5] we will see that the limit of the expected value of the Wilson

loop observable both exists and is translation invariant.
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2.5 The functions 6(5) and A\(5)

Before the main theorem is stated, two functions, 6(5) and A(S), must be defined.
For > 0, 6(B) is defined as

> geq Pg)et? R
0(8) = Zjec ) (2.7)
and \(f) as
BR(p(9))
A(B) = max ————— (2.8)

geG\{0} eBFR(p(0))
We define a function ¢s(g) and write the functions A\(3) and 0(8) with it. The
function ¢ : G = Z,, — R is defined by

¢s(g) =9 geq. (2.9)

Hence, the functions 0(3) and A\(f3) can be written as

~ YgecPl9)os(g)™
R SR (2.10)
and
= max ¢B—(g) (2.11)

= a.
geG\{0} ¢5(0)

2.6 The result for the expectation value

Theorem 2.14. Letn € Z and n > 2. Consider lattice gauge theory with the
structure group G = Z,, and a one-dimensional and faithful representation p of
G. Let v € Z* be any simple oriented loop, { = || its length and (. the number
of corner edges in vy. Then, the limit of the expectation value of the Wilson loop
observable exists. Furthermore, for all By > 0 chosen large enough, there exist
constants C" = C"(By) and C" = C"(By) such that for any 5 > By, the following
inequality holds:

1"

C
(W) 5 — e {10 < {g + )\(6)2] : (2.12)

The constants C” and C” are defined by equation in Section
From this inequality, the value of (WW,)s (the limit of the expectation of the

Wilson loop) can be estimated. The function e *1=%) takes values in ]0, 1],
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since the constant (3) only takes values in |0, 1] (This is proved in Section |6.3}).
The right-hand side is small, especially if we have a large 5 and a long loop with
few corners. If /(1 —6(p)) is very large, the exponential function will be close to
zero and hence (W, ) ~ 0. Likewise, if /(1 —6(f)) is very small, the exponential
function will be close to 1 and we have (W, )g ~ 1.

Another approach to this is that ¢(1 — 6(3)) is large when [ is chosen to be
much smaller than /. Then it is likely that there are a lot of plaquettes p near
the loop v for which do(p) # 0. This implies that there are so many plaquettes
that the model will have independence and therefore gives the result that the
expectation is close to zero. Similarly, when ¢(1—6(3)) is small, 8 is much larger
than ¢. Hence, it is unlikely that there are any plaquettes p near v for which
do(p) # 0. Therefore, the expectation will be close to one.

Remark 2.15. The theorem holds when [y is chosen such that both 5(|G| —
DA(By)? < 1 and

Yoege >kt Ro(g+gr) .
max g — |arg max e~ 2% 2ii=1 Relgtar)

g1,--,96EG maXgeq e*Qﬁ 22:1 Rp(9+9x) geq@
11— 2
< cos(2m/n)
8
hold.




Chapter 3
Discrete exterior calculus

In this chapter, we focus on discrete exterior calculus for cell complexes of the
lattice Z" and its subset By = [N, N|" N Z" when r > 1. However, the theory
will later only be used for cell complexes of Z*. We assume that the group G
is Abelian. Hence, the results can be applied to both G = Z and G = Z,,. We
begin with theory for k-cells and k-forms.

3.1 Oriented k-cells and k-forms

Earlier, both the oriented 1-cell and the oriented 2-cell were briefly discussed.
Then they were called an oriented edge and an oriented plaquette. The 1-cell
and the 2-cell will now be given new definitions and a general k-cell is defined.
Consider the lattice Z", which has a vertex at every point x € Z" with integer

coordinates. Between every two neighbouring vertices, there exists an edge é.

Definition 3.1. (Oriented 1-cell or edge) The edge é between two neighbouring
vertices can be divided into two oriented edges, e and —e, with the same endpoints.

These oriented edges are called 1-cells.

To define the direction of an oriented edge, unit vectors must first be defined.
Let e = (1,0,0,...,0),eo = (0,1,0,...,0),...,e, = (0,...,0,1) and consider
the edges from the origin to one of the vertices ej,es, ... e,. KEdges, which
have both the same length and direction as these edges, are unit vectors. These
unit vectors are denoted by deq,...,de,. Positive orientation is defined as the
direction of the unit vectors and negative orientation as the opposite direction.

Therefore, when x € Z" and j € {1,2,...,r}, a positively oriented edge e can

12
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be written as e = dx; = x + de;. Then, the negatively oriented edge is given
by —e = —dx; = x + e; — de;. Recall from Section that in Z* the set Ey
was denoted to be the set of oriented edges whose both endpoints are in the set
Z*N[—N, NJ*. We expand this definition to the lattice Z" and define Ey to be the
set of oriented edges, whose both endpoints are in the set By = Z" N [-N, N]".
Furthermore, the set of only positively oriented edges in By is given by the set
EY; and the set of only negatively oriented edges is given by Ej.

In the definition for oriented k-cells, the notation e; A ey will be used. This
is the wedge product between two oriented edges e; and e;. The wedge product

is defined to have the following properties: For two edges e, e5 € Ey, we have

€1 A €y = —(62 N 61) = (—62) N €1 = €9 A (-61)

and

€1 N €1 — 0.
For two or more oriented edges e, es, ..., e, in Ey, the wedge product e; A- - - Aey,
is zero if the edges ey, ..., ex do not have a common endpoint.

Definition 3.2. (Oriented k-cell) Let ey, ..., ey be oriented edges with
exN---Nep#0. Then e; N\ -+ N ey is an oriented k-cell.

A k-cell e; A --- A ey is positively oriented if there is an x € Z" and j; <
J2 < -++ < jj such that e; = dz;,. Correspondingly, the k-cell —(e; A--- Aey) is
negatively oriented. Some examples of k-cells are illustrated in the figure below.

Notice that a 0-cell is a vertex.

O-cell 1-cell 2-cell 3-cell

Figure 3.1: Examples of k-cells.

From now on, a k-cell will refer to an oriented k-cell.
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Definition 3.3. (Oriented plaquette) An oriented plaquette p is an oriented 2-

cell.

Since the oriented plaquette is a k-cell, the oriented plaquette p = e; A es
is positively oriented if there is an # € Z" and j; < js such that e; = dx;,
and ey = dxj,. Therefore, a positively oriented plaquette can be written as
p = dx;, Ndxj,. The set of oriented plaquettes whose all boundary edges are in
E is given by Py.

We continue with theory about k-forms, which are discrete differential forms.

Definition 3.4. (k-form) A function f, which is defined on a subset of k-cells
in Z", for which f(c) = —f(—c) is a k-form.

Consider a k-form f, which has the value f;, () on the k-cell ¢ = dx; A
-+ Adzj,. Then the k-form f is represented by

)= Y. frg@)dr, A Ada,. (3.1)

1<j1 < <jp<r

The function f;, ;. (x) can also be written shortly as f..

Example 3.5. Two exzamples of 2-forms in Z* are
f1($) = flg(l’)dl'l A\ dl’g -+ f34(l’)dl‘3 A dl’4

and

fo(x) = fia(x)dzy A dxg + fr3(x)dzy A dzs.
Next, we define both non-trivial k-forms and the set support.

Definition 3.6. (Non-trivial k-form) A k-form f is non-trivial if there ezists

one or more k-cells ¢ for which f. # 0.

Definition 3.7. (Support) The support of a k-form f is the set of oriented k-
cells ¢, for which the k-form f satisfies f(c) # 0. The support of f is denoted by
supp f.

Example 3.8. Let A be a subset of Ex and define for each e € En the function

I by
1 ife € A,

fle) =9 -1 if —ecA,

0 otherwise.
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Since f(e) = —f(—e) and e is a 1-cell, we have that f is a 1-form. The function

only takes the value zero outside A, hence supp f = A.

The set ¥, in Z" is defined as the set of G-valued 1-forms, whose support is
in Fy. Its elements are denoted by ¢ and called spin configurations. Recall the
definition for ¥g, in Z*: the set of functions ¢ : Ey — G for which o, = —0_,
and o, # 0 for all e € Ey. We see that this agrees with the definition for Z".

Last, the restriction (o|g). for a spin configuration o € ¥g,, a set £ C Ey

and an edge e € Ey is defined by

o, ifeeF,
(0lg)e = (3.2)

0 otherwise.

3.2 The exterior derivative

In this section, the exterior derivative is defined and some examples are given.

When the exterior derivative operates on a k-form, the result is a k& + 1-form.

Definition 3.9. (Exterior deriwative) Given h : Z" — G,x € Z", and i €
{1,2,...,r}, let

Oih(x) == h(x + €;) — h(zx). (3.3)
If k€{0,1,...,7 — 1} and f is a G-valued k-form, the exterior derivative d of
f is defined as

r

df(x) = > Oifp g (@)dr A(day, A Adxy), x €L (34)

1<j1 < <jp<r i=1

Next is an example for how the exterior derivative is calculated for 2-forms.

Example 3.10. We calculate the exterior derivative of the 2-forms
fi1 = fia(x)dxy Ndxo+ faa(x)drzsAdry and fo = fia(x)day Adzs+ fi3(x)dzy Adxs.
We begin with calculating the exterior derivative for the 2-form fi. By the defi-

nition of the exterior deriwative, we have
dfl = d(f12($)d$1 AN d.TQ + f34([l?)dl’3 VAN dSB4)

= O3 f12(x)dxy N\ dxg A dxz + Oy f1o(x)dzy A dag A dzy
+ 01 fas(x)dxg A dxg A\ doy + O f34(x)dxs A dxy A dxs.



CHAPTER 3. DISCRETE EXTERIOR CALCULUS 16

We calculate the exterior derivative for fo:

dfy = d(fr2(x)dzy A dzy + frz(x)dzy A drs)
= O3f12(x)dxy N\ dag A dxs + Oy fro(x)dzy A dxs A dry
+ Os fis(x)dxy A dxs A dxg + Oy fr3(x)day A dzs A day
= (03 f12(x) — Oa fr13(x))dxy A dxo A dxs + Oy fra(x)dzy A dxg A dzy
+ Oy fr13(x)dxy A dxs A dxy.

A closed k-form can now be defined.

Definition 3.11. (Closed k-form) A k-form f is closed if df = 0.

Last, we see that we earlier had an definition for the exterior derivative on a

spin configuration on the lattice Z*.
Example 3.12. Recall the definitions in Section[2.3. For o € X, , we defined
(do)y = 0ey + Oy + Oy +0¢,, D E Pu,

where e; are edges in the boundary of p. This is the exterior derivative of o €
XE

N

3.3 Boundary and co-boundary

Recall the definition for the boundary of a plaquette on Z* in Section . We
now expand this definition to Z". When x € Z" and j; < j,, the boundary of a
plaquette p = dx;, A dxj, is defined as

Op = {dleu dxjé + (dejl )Jév _(dle + (dejz)h)? _dxﬂé}'

This is illustrated in Figure [3.2) on page [I7}] The boundary for a plaquette can
also be defined as the set of edges dz; for which

(d(Io=zdx;))p = 1,

where I,_; is the Kronecker delta function of z with mass at £ € Z". Next, we

prove that these two definitions are equivalent.
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_('l"'fz Y N d‘r_i: + ((](EJ'l )J‘._,

Y
Cd

dxj,

Figure 3.2: The boundary of the plaquette p = dx;, A dx;,.

We prove this by letting the exterior derivative operate on the 1-form I,—;dz;,
when # € Z" and j € {1,2,...,r}. By equations (3.4) and (3.3) for the function

h = I,—;, we have

d(ly—zda;) =Y (Ole—s)dr; Aday = (Tote,—s — Lo—z)da; A da;
=1 =1
= (Lpse—s — Lg)da; Aday — > (Tote,—s — Loms)da; A da;.
i=1 i=j+1

For edges that are not in the boundary for neither the positive nor the negative
direction, both I, ¢,—; = 0 and I,_; = 0. Hence,
(Lpye=s — Li=z) if e € Op,
(d(Ly=zdxy)), = —(Iyre,= — Li=z) if —e € Op,
0 otherwise,
where p is chosen as an oriented plaquette and e = & + de; = dz; as an oriented
edge. Since I, e,z — I,—z = 1 for edges in the boundary, we have
1 if e € Op,
(d(Lp=zdzy)), = § =1 if —e € dp, (3.5)
0  otherwise.

Thus, the definitions are equivalent.
From this follows that if f is a 1-form, 1 < j; < jo < r and the plaquette p
is given by p = dxj, A dxj,, then we have that

(df)p = (df)jujo(x) = > fe. (3.6)

e€dp
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Next, the definition for the boundary for general k-cells and a general version
of formula (3.6) for k-forms.

Definition 3.13. (Boundary) Let k € {1,2,...,r} and ¢ be a k-cell. The bound-
ary 0¢ of ¢ is the set of (k —1)-cells ¢ = dxj, A--- NdZj, ~for which

(d(Ip—zdjy A+~ Ndij,_,))e = 1.
Let ¢y be a (k + 1)-cell, then

([f)ey = D fe (3.7)

c€dcy

The boundary is connected with the co-boundary, which is defined next.

Definition 3.14. (Co-boundary) The co-boundary de of a k-cell ¢ is defined as
the set of every (k + 1)-cells ¢ for which ¢ € d¢.

Example 3.15. The co-boundary de of an edge e is the set of all oriented pla-
quettes p that contain e. An illustration is given in Figure [3.3  Furthermore,
e € dp is equivalent to p € De.

SRR

Figure 3.3: An edge and two of the plaquettes in its co-boundary.

Example 3.16. For an edge e € Ey, a plaquette p cannot contain both e and
—e. Therefore, the intersection de N 3(—6) is empty. Moreover, if p € é(—e),
then —p € de.

Last, boundary cells are defined and one example is given. Notice that a

k-cell is in By if all corners of the k-cell is in By.

Definition 3.17. (Boundary cell) For k € {0,1,...,7 — 1}, a k-cell ¢ in By is
a boundary cell of By if there exists a (k+ 1)-cell ¢ € dc which is not in By.
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Example 3.18. An edge e € Ey is a boundary edge of By if there exists one
plaquette p € de which is outside By. A plaquette p € Py is a boundary plaquette
of By if there exists a 3-cell ¢ € 3]9 which is outside By. This is illustrated in
Figure where one of the boundary edges is given by the blue edge and one of
the boundary plaquettes is given by the blue plaquette.

Figure 3.4: Example of a boundary edge and a boundary plaquette.

3.4 The Poincaré Lemma

In this section, the Poincaré Lemma will be given without proof and then applied
to both the set ¥p, (which will be defined later in this section) and for writing
the earlier given measure as a measure on elements in the set Xp, instead of
spin configurations. Another version of this lemma, the Poincaré Lemma for the
co-derivative, will be given in the next section. Before the Poincaré lemma is

stated, the definition for a box and a cube is given.

Definition 3.19. (Box and cube) A set of the form ([a1,b1] X -+ X [a,,b.]) NZT
is a box if for each j € {1,2,...,7r},{a;,b;} C Z satisfies a; < b;. A boz is a

cube if all intervals [a;,b;],1 < j <, are of the same length.
An example of a box is the set By.

Lemma 3.20. (The Poincaré lemma). Let k € {0,1,...,7r — 1} and B be a
box in Z". Then the exterior derivative d is a surjective mapping from the set
of G-valued k-forms with support contained in B onto the set of G-valued closed
(k+1)-forms with support contained in B. If the group G is finite and the number

of closed G-valued k-forms with support contained in B is m, then the map is an
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m-to-1 correspondence. If k € {0,1,2,...,r — 1} and f is a closed (k + 1)-form
that vanishes on the boundary of B, then there is a k-form h that also vanish on
the boundary of B and satisfies dh = f.

For the proof, see |2, Lemma 2.2|.

3.4.1 The set Xp,

The set > py 18 defined as the set of closed G-valued 2-forms w with support in
Py. The 2-forms in ) p, are called plaquette configurations. Since the set Xp,

only contains closed forms, we obtain
dv=0 ifweXp,.

Recall that the 1-forms in the set Xp, do not have to be closed, while the set
Xp

. 15 defined to only contain closed 2-forms. The restriction for a plaquette

configuration w € Xp, is defined similar to how a restriction was defined for a
spin configuration o € Xp, in equation (3.2). For w € ¥p,, a set P C Py and a
plaquette p € Py, the restriction (w|p), is defined as

w, ifpePr,

(wlp)p = (3.8)

0  otherwise.
Next is an example of a restriction for a 2-form in Py.

Example 3.21. For w € Xp,, consider the restriction w|supp . BY definition,

each w has support in Py. Hence, w|supp o = w.

We apply the Poincaré lemma to the k-form w € ¥ p,, and the box By. Recall,
that the set of G-valued 1-forms with support contained in Py is the set Xpg,
and that the 1-forms in X, are called 0. Furthermore, we have that both o
and w vanishes on the boundary of Py. By the Poincaré Lemma, we have that
the exterior derivative from the set X, onto the set ¥p, is a surjective map.
Since G is finite, there exists an m for which the map is a m-to-1 correspondence.
Furthermore, since w is closed, there is a o such that do = w. As a result of these
three conclusions, we have that w € Xp, if and only if there exists a 0 € X,

for which do = w.
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3.4.2 The measure

Earlier, the measure psy was defined in Definition as a measure on spin

configurations:

1 B e py Ro((do)y)

Mﬂ7N<O> = Zﬁ,Ne MH(0>7 o€ Xpy.

We will later use this measure on plaquette configurations instead of spin con-
figurations. Therefore, we have to map spin configurations to plaquette config-
urations. A problem is that every plaquette configuration does not arise from a
spin configuration. Nonetheless, the Poincaré Lemma says that w € Xp, if and
only if there exists a o € X, such that do = w. Furthermore, the map from
spin configurations o € X, to plaquette configurations w € ¥p, is a many-to-1
correspondence. Since [{o € ¥, : do = w}| does not depend on the choice of

w, we have

Z eﬁzpePN §RP((do')p) — |{0. c EEN : dO' — W}|€B ZpEPN %P(“-’p)‘

JEEEN:do':w
Thus, a measure for plaquette configurations can be created:
By Rp((do)p)
ZUEEENZdU:w € PEFN g
By Rp((do)p)
ZO‘EEEN € PEPN ! :

psn({o € X, 1 do=w}) =

66 ZPEPN Rp(wp) (3 9)
TSy, & Srery FoD) '
WETpy
_ [Lep, 5(wp) —
- - 67N
Zw’EEpN HpEPN gbﬁ (wll))

{w}).

3.5 The co-derivative and its Poincaré Lemma

The definition of the co-derivative is similar to the definition of the exterior
derivative. They both operate on a k-form, but when the co-derivative operates

the result is a & — 1-form instead of a k& + 1-form.

Definition 3.22. (Co-derivative) Given h : Z' — G,x € Z", and an i €
{1,2,...,71}, let
Oih(z) == h(x) — h(z — e;). (3.10)
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If k€ {1,2,...,7r — 1} and f is a G-valued k-form, the co-derivative 0 of f is
defined by

(5f(x) = Z Z(_l)iéjifjl ~~~~~ Jk (fl?)dle ARERRA dsz‘q N dxjiﬂ ARERA dxjk

1<j1 < <gp<r 1=1

(3.11)
forxeZ’.

Example 3.23. We calculate the co-derivative of the 2-forms fi = fio(x)dzy A
dxe + f3s(x)dxs A dxy and fo = firo(x)dzy A dxe + fr3(x)dzy A dxs.
By definition, we have that the co-derivative of fi is

5j1(x) ::——éljagdlﬁ +-é%jﬁgdﬂhr—-gkj%4dlq +—éhj%4d$3

and the co-derivative of fo is

dfa(r) = —31f12dl’2 + 82fl2dl"1 - 51f13dl’3 — 53f13d$1-

Similarly to the calculations of (d(I,—;dz;)),, we calculate the co-derivative
of the 2-form f = I,_;dx;, A dx;, where x € Z". Let £ € Z", 1 < i3 <19 <1
and pg = di;, N, € Py. For j,j1,jo € {1,2,...,7}, we have by equation (3.10)
that

03 fi1,2(®) = Ojlloz ji=ir jomic = Lot jimir omiz — lami—e; jrmir omic-
Letting the co-derivative operate on f, we obtain

Of(x) = ) Z )i0i fjr o (2)djy Ao+ Ny, | Ndxj,, A A day,

1<j1 < <o <r i=1
= (—1)'0;L,—sdwi, + (—1)*0ily—zdrs, = —Ol—pdy, + O;l,—sdry,
= —Li—sdwi, + Ly—e; =adwi, + Lpepdriy — Lye, —2di, .
Thus,
1 if e € Opy,
(6f)e=1q -1 if —e € dpo,
0 otherwise.

As a result, when 1 < j < n and f is a 2-form, we obtain for an edge e = dz;

that
(6f)e = => fo

pede
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This result can be extended to general k-forms. For a k-form f and a (k — 1)-cell
co, We have
(6F)eo =Y fo (3.12)
ceéco

Last, the version of the Poincaré lemma for the co-derivative is stated.

Lemma 3.24. (The Poincaré lemma for the co-derivative) Let k € {1,2,...,r—
1} and f be a G-valued k-form on Z" which is zero outside a finite region and
satisfies 0 f = 0. Then there is a (k + 1)-form h such that f = dh. Moreover,
if fis equal to zero outside a box B, then there is a choice of h that is equal to

zero outside B.

For the proof, see |2, Lemma 2.7]. Notice that if a k-form is zero outside a
finite region, the support of the k-form is contained in this finite region. This

lemma will be applied when theory for oriented surfaces is discussed.

3.6 The Hodge dual

We call the lattice Z" for the primal lattice and create a copy of it, which does
not have its vertices at the same points as the primal lattice Z". This copy, whose
vertices are at the centres of the r-cells of the primal lattice, is called the dual
lattice and denoted *Z". Therefore, there is a bijection between the r-cells in
the primal lattice and the O-cells, i.e. vertices, in the dual lattice. Furthermore,
we have a bijection between the set of k-cells of the primal lattice Z" and the
set of (r — k)-cells of the dual lattice *Z", which we will define. For a cell ¢, the
Hodge dual of the cell is denoted by *c. The operator * is called the Hodge star
operator and is additive.

We aim to define the bijection between a k-cell and its Hodge dual. First,
some theory for permutations of sets is given. The sign of a permutation p is
given by sgn(p) and takes the value 1 if the permutation is even and —1 if the
permutation is odd. The sign can be calculated with the formula sgn(p) = (—1)™,
where m is the number of transpositions used to obtain the rearrangement from
the given set.

We begin with a vertex x and a r-cell dxy A --- Adx, in the primal lattice Z".
The point at the centre of this r-cell is in the dual lattice given by y = *(dx; A
-+« Adz,). The negatively oriented edges emerging from y are denoted by dy; =
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y—dey,...,dy. =y—de.. Let k€ {0,1,...;r}and 1 <i3 < ... <1 <r be
given. Since x € Z", the k-cell ¢ = dz;, A...Adx;, is also in the primal lattice Z".
Let j1,. .., jr—k be an enumeration of the set {1,2,... r}\{i1,...,ix}. Consider
the permutation that maps (1,2,...,7) to (i1,...,%,J1,---,Jr—k). Then the
Hodge dual of the k-cell ¢ is defined as

* (d:c“ VANRRIEIVAY d&lzk) = sgn(il, c. ,ik,jl, c. ,jT,k)dyjl VANRRIIVAY dyjrfk. (313)
Likewise, we can define the Hodge dual of a r — k-cell in the dual lattice by

*(dyjl A A dyjr—k) = sgn(jl, . ,jr_k, il, . ,ik)dl'il A A dZL‘Zk
= (=D P sgn(iy, ... g, jis o dror)dzs A Ada, .
(3.14)

We continue with some examples.

Example 3.25. Let the primal lattice be Z3. For a 3-cell in the primal lattice,
we have that r — k = 3 —3 = 0. Hence, the Hodge dual of a 3-cell is a 0-cell
at the centre of the 3-cell. For a 2-cell in the primal lattice, the Hodge dual is a
1-cell in the dual lattice. This is illustrated in the figure below. Furthermore, the
Hodge dual of a 1-cell is a 2-cell and the Hodge dual of a 0-cell is a 3-cell.

3-cell 2-cell

0-cell 1-cell

Figure 3.5: A 3-cell and a 2-cell in the primal lattice (the black cells) and their
Hodge duals in the dual lattice (the blue cells).

Example 3.26. We calculate the Hodge dual of the 2-cells dxy Ndxo and droNdxy

in Z*. In the first case, the permutation of {1,2,3,4} is even. The permutation
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of {2,4,1,3} is odd, since the set {1,2,3,4} is obtained from {2,4,1,3} with
three transpositions. Thus,

* (dxy A dxg) = sgn(1,2,3,4)(dys A dyy) = dys A dya,

% (drg N dxy) = sgn(2,4,1,3)(dy; Adys) = —dyr A dys.
Example 3.27. We calculate the Hodge dual of the 3-cell dzy A\ dxs A dxs in Z°.

The permutation of {1,3,5,2,4} is odd, since the set {1,2,3,4,5} is obtained
from {1,3,5,2,4} with three transpositions. Thus,

«(dry A dxs A dxs) =sgn(1,3,5,2,4)(dys A dyy) = —dys A dys.
Next is the definition for the Hodge dual of a box.

Definition 3.28. (Hodge dual xB of a box B) For a box B € 7", the correspond-

ing box in the dual lattice 7. is
B = {y € *Z" : 3x € B such that y is a corner in *x}.

Example 3.29. A cube B € Z? is represented by the black cube in Figure
where the vertices in the primal lattice are given by the grey points and the vertices
in the dual lattice by the blue crosses. Then *B € xZ? is given by the blue cube
and x * B € 7% is given by the red cube. Assume that B is of width b. Then we
see from the figure that xB is of width b+ 1 and x x B of width b+ 2.

x x x x x x x
x —N—N—0— x
® 3 x x x 3 x
x 3 x x x 3 ®
x 3 x x x 3 R 4
x H—H—H—H—X x
x x x x x x x

Figure 3.6: The Hodge dual of a cube in Z2.
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Example 3.30. The box B is defined as B = ([a1,b1] X ... X [a,,b.])NZ". Then,
the Hodge dual is

1 1 1 1 ,
xB = ([a1—§,b1+§} X ... X |:ar_§7b7“+§:|)m*z"

Taking the Hodge dual again, we obtain
xxB=([ag—1,b+1] x...x[a, — 1,0, +1])NZ".

Thus, the width of a side in xB is 1 larger than its corresponding side in B
and the width of a side in * x B 1is 2 larger than its corresponding side in B.
Consequently, B C xx B. For example, if B is a cube of width b, then xx B s a
cube of width b+ 2 containing B.

Next, one lemma for the Hodge dual of a box is given without proof.

Lemma 3.31. Let B be a box in Z". Then a k-cell ¢ is outside B if and only if
xc 1s either outside xB or in the boundary of xB. If ¢ is a k-cell outside B that
contains a (k — 1)-cell of B, then xc belongs to the boundary of xB.

For the proof, see [2, Lemma 2.4|. We define the Hodge dual for k-forms.

Definition 3.32. (Hodge dual of a G-valued k-form) Given a G-valued k-form
f onZ", the Hodge dual xf of f is an (r — k)-form defined as

*f(y) = Z fil ..... ik<x>sgn(i17-"Jikajh"'aj?’fk)dyjl /\“./\dyjrflﬂ
1<iy <--<ip<r
(3.15)
where y = *(dxy A -+ - Ndz,) and the sequence ji, ..., J— depends oniy,. .., .

From this definition and (3.13)) follows that
+f(xc) = f(c)
for a k-cell c =dz; A - - Adz,.

Example 3.33. We calculate the Hodge dual of the 2-form f = fio(x)dzy Adzo+
faa(x)dws A dxy in Z*. By Definition we have

xf(y) = fiz(x)sgn(1,2,3,4)dys A dys + sgn(3,4,1,2) fs4(x)dyy A dys
= fra(z)dys N dys + frs(x)dys A dys.



CHAPTER 3. DISCRETE EXTERIOR CALCULUS 27

For the Hodge dual of a k-form holds the following formula:

s« (xf) = (=DF=R £, (3.16)

We prove this by calculating *(xf):

(3.15) . . . .
*(*f) =% < Z fil ..... ik(x)sgn(zlw"7Zk’7]17"'7jr—k‘)dyj1/\"'/\dyjr_k>

1<y < <ip<r

= Z fil ..... ik(x)sgn@la"'?ikajla"'7j7‘fk)*(dyjj/\'“/\dyjrik)

1<iy << <r

B14) . o . _
— Z fi1 ..... zk(x) Sgn@la'"7Zk7]1a--'7j7“7k)(_1)k( ")

1< <<, <r

. sgn(il, R ,ik,jl, c. ;jrfk)dmil VANRIIVAN d.T,Lk
= Y @Dz, A A da,

1<y < <ip<r

= (=1)krh Z firiip(@)dzyy A - Aday,

1<y < <ip<r

Dby,

The exterior derivative has different definitions on the primal and on the dual

lattice.

Definition 3.34. (Exterior derivative on the dual cell lattice) The exterior deri-

vative d on the dual cell lattice is defined by

df(y) = Z Z 51]3’1 ,,,,, Ik (y)dyz A (dyj1 FANAN dyjk)v Y < YA

1<j1<<jp<r i=1

Note that 0; is used instead of 9;, although the exterior derivative is denoted

by the same symbol d in both cases. Last, a lemma is given.

Lemma 3.35. For any G-valued k-form f on Z" and any x € 77",
0f(x) = (1) "V (d(xf (y))),

where y = x(dxy A -+ Ndx,) is the centre of the r-cell (dzy A -+ Adx,).

For the proof, see [2, Lemma 2.3].



Chapter 4
Vortices and oriented surfaces

In this chapter, vortices and oriented surfaces are discussed. Lemmas crucial for
the proof of the main theorem are stated and proved. From now on, the lattice
is always Z*, the group G is a finite Abelian group and the representation p of
G is fixed.

4.1 Vortices

We begin with defining vortices before discussing both decompositions and dis-
tributions of vortices. Some theory for minimal vortices will also be given. First,
the definition for an irreducible plaquette configuration is given. This definition

is necessary for the definition of a vortex.

Definition 4.1. (Irreducible plaquette configuration) A plaquette configuration
w € Xp, s wrreducible if there does not exist a non-empty set P C supp w such

that w|p € ¥p,.

Recall from the definition of ¥p, that dw = 0 for w € Xp,. Therefore, in the

above definition w|p € Xp, is equivalent to d(w|p) = 0.

Definition 4.2. (Vortex) Let 0 € ¥g,. A non-trivial and irreducible plaquette

configuration v € Xp, is a vortex in o if (do)|supp» = V-

4.1.1 Vortex decompositions

The goal of this section is to prove that if a spin configuration o € X, then do

can be written as a sum of vortices with disjoint supports in o. To prove this

28
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claim, we need the results from the following two lemmas.

Lemma 4.3. Let w € Xp, and let v € Xp, be such that w|syyp, = v. Then

W|PN\supp v € ZPN .

Proof. We prove this by showing that d(w|py-supp ») = 0. Since w € X p, and
v € Xp,, we have that dw = 0 and dv = 0. Since w € Xp, C Py and supp v, it

follows that w|py-suppr = W|py — Wlsupp » = w — v. Thus,
d(w|pysupp v) =d(w —v) =dw—dv=0—-0=0
and w|py-supp v € Lpy - O

Lemma 4.4. Let w € Xp,. Then either w is irreducible or there exist non-
trivial v, v ¢ Ypy with disjoint supports contained in supp w, such that

w = ]/(1) _l_ ]/(2)_

Proof. We assume that w is reducible and then prove that there exists non-
trivial v, v

w = v + 1@ By Definition , there exists at least one non-empty set

€ Xp, with disjoint supports contained in supp w such that

P C supp w such that v = w|p € ¥p,. Consequently, P = supp v and
Wlsupp v = 0. (4.1)

Therefore, vV fulfils the assumptions for Lemma |4.3| and

V(Z) = W‘PN\supp v € EPN' (42)

Since supp vM is non-empty, v(!) contains at least one 2-cell for which v(1) £ 0.
Similarly, #(? contains at least one 2-cell for which v(®) % 0. Thus, they are both
non-trivial. Since supp v®® C Py ~ supp v, the intersection of supp v and
supp v? must be empty. Hence, they have disjoint supports. Last, we conclude
that

O u(z)w\

supp v(1) + w’PN\supp v(1) = Wipy = W.

]

We now have everything necessary to prove and state the main result of this

section.
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Lemma 4.5. Let 0 € ¥p,,. Then do can be written as a sum of vortices in o

with disjoint supports.

Proof. Since 0 € ¥g, and do|swpp 4o = do, it follows from Definition that
there are two cases to consider. First, if dw is irreducible, then do is a vortex.
Second, we consider the case when dw is not irreducible. Since do € Xp,, by
Lemma there exists non-trivial v, ) € ¥ py With disjoint supports in supp
do for which do = v + 2.

If v and v® are both irreducible, we have a sum of two non-trivial vor-
tices with disjoint supports. Otherwise, by Lemma , v and/or v? can be
decomposed further. This decomposition of 2-forms is repeated until we only
have irreducible and non-trivial plaquette configurations v¥9) € & py- Oince this
decomposition cannot consist of more than |Py| < oo parts, there must exist an
m < |Py| < oo for which do can be written as a finite sum of m vortices with

disjoint supports, i.e. do =", ), O

4.1.2 Minimal vortices

In this section, we define minimal vortices and prove that a minimal vortex v,
whose support does not contain any boundary plaquettes of Py, can be written
using an edge in Ey and an element g € G \ {0}. To achieve this result, two

lemmas are necessary. We begin with the definition for a minimal vortex.

Definition 4.6. (Minimal vortex) Let o € Xg,. A vortex v in o is minimal if

| supp v| = 12.

The following lemma says that the support of a minimal vortex, which con-
tains no boundary plaquettes of Py, can be written as a union of the co-boundary
of a positively oriented edge eq and the co-boundary of the negatively oriented

edge —ey.

Lemma 4.7. Let 0 € X, and let v in o be a vortex for which supp v contains
no boundary plaquettes of Py. Then |supp v| > 12. If|supp v| = 12, then there
exists an edge eqg € En such that supp v = deg U é(—eo).

For a proof of this lemma, see [3, Lemma 3.4.6]. Before stating the next

lemma about minimal vortices, the Bianchi Lemma is given.
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Lemma 4.8. (Bianchi Lemma) If w € Y p  and c is an oriented 3-cell in By,

then
> w,=0. (4.3)

pEdc

Proof. Let ¢ be an oriented 3-cell in By. Since w € ¥Xp,,, we have that

Z Wy &3 (dw). = 0.

pEdc

The following lemma is the main result of this section.

Lemma 4.9. Let 0 € X, and let v be a minimal vortexr in o. If the support
of v contains no boundary plaquettes of Py, then there exists an edge dv; € En
and g € G\ {0} such that for all p € Py, we have

v, = (d(gdzy)),-

Proof. By definition, | supp v| = 12. Since the support of v contains no boundary
plaquettes of Py, it follows from Lemma [£.7] that there exists an edge ey = dz; €
Ey such that supp v = deq U d(—eg).

A 3-cell ¢ can not contain more than two plaquettes in éeo U é(—eo). Hence,
we have two plaquettes p; and p, such that p; € dey and Py € 5(—60). By

Lemma [4.8
Zupzupl + vp, = 0.

pEdC
Since the plaquettes are in the support of v, we have v, # 0 # v,,. Hence,

vy, =g and v, = —g for a g € G\ {0}. To conclude,
g ifpe deo,
Vp = .
—g if p e d(—ep).
Since p € é(—eo) is equivalent to —ey € Jp, we see from equation 1. that
(d(gdx;)), can be written as

g ifpe éeo,
(d(gd;)), = .
—g if p € O(—ey).

Thus, v, = (d(gdx;)),. O
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This lemma will be applied in the proof of Proposition [6.1]

4.1.3 Distribution of vortices

In this section, the focus is on distributions of vortices. With the help of two
lemmas, we will state and prove Proposition [£.12] that is of great importance in
Chapter [6l We begin with the first lemma, which gives us an upper bound for a
useful probability.

Lemma 4.10. Let v € Xp,,. Then

({0 € Ty : (do)lsupp » = v}) < A(B)*PP 7.

Proof. Let P = supp v and define the sets £ = {w € Xp, : w|p = v} and
&Y% = {w € ¥p, : w|p = 0}. By the Poincare Lemma, there exists a 0 € X,
such that do = w if and only if w € ¥p,. Therefore, by equation we have
that us n(EF) = pen({o € gy 1 (do)|supp » = v}). We calculate an upper
bound for the probability. Since £} C Xp, and ¢z is positive, we have

weey Llpepy Pp(wp
Mﬁ,N({O— € EEN : (d0)|supp v — V}) = M,&N(E/']VD) = g ;:PI;[_[ P ;:(Wj)
Zwes,z [pepy 95(wp) .

< .
Ewesg HpePN ¢p(wp)
We aim to compare the denominator to a sum over w € €. From the definitions

of the sets £% and &Y follows that

Z H P(wp) = Z H Ps((w —v)p).

we&l pePy wesy, pePyn
Since the mapping w — w — v from &% to £Y is bijective, this gives
Zweglyg HpEPN Cbﬁ (wp) . Zwec‘); HpePN ¢5 (wp)

B Zweslg HpEP ¢5(wp) HpEPN\P Ps(wp)
- Ewe&; HpeP ¢s((w —v)p) HpEPN\P Pp((w—1v)p)

To simplify it further, notice that v, = 0 when p € Py \ P. Therefore,

(4.5)

¢p((w = v)p) = dplwy) forp e Py\ P. (4.6)
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For a plaquette p € P and a plaquette configuration w € £}, we have by definition
that w, = v,. Thus,

(wW—v)p=w,—1,=0 forpe Pandwe &}. (4.7)

Combining the previous conclusions, we obtain

(5” Zweslg HpEP Pp(wp) HpEPN\P Pp(wp)
HONAEP) = 5 e Toer 08((@ — 1)) Tepyp 05((@ — 1))
Zweqf, [Lep ?5(wp) HpEPN p Pa(wp)
a Ewesg HpEP $5(0) HpEPN\P Pp(wp)
B HpeP ¢5(vp) Zweg;f, HpEPN\P ¢p(wp)
B HpEP $5(0) Zwegl’ HpEPN\P Pp(wp)

:M_ I1 ¢5VP

HPEP ¢5( pESupp v
(2.11)
& [T B =A@
pESuUpp v
Thus, psn({o € Egy : (do)|supp » = V}) < A(B)lsuwp v, 0

The following lemma is about how many irreducible plaquette configurations

there can exist.

Lemma 4.11. For each py € Py and each m > 6, there are at most 5™ (|G| —
1)™ irreducible v € Xp,, with py € supp v and |supp v| > 2m.

Proof. We construct an injective map from the set of irreducible 2-forms in > p,
with py € supp v and |supp v| > 2m to the set of sequences vV, () p(™) of
G-valued 2-forms on Ply.

Let v € ¥p, be irreducible, py € supp v and |supp v| = 2m. Define v :=
0 € Xpy, p1 :=po and for p € Py:

I/Pl lfp:pb

VI(’I) = —Vp, lfp = —DP1,
0 else.
Let & € {1,2,...,m} and assume that the 2-forms v v® . v*) are given

such that for each j € {1,2,...,k}, the two following statements hold:
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(a) supp vW~supp vV~ = {p;, —p;} for some p; € Py. This implies that
| supp v19)| = 2.
(b) gy i = 19

We check that (a) and (b) hold if £ = 1. Since the sequence contains only one
element, we only have to check the conditions for v™). (a) supp v \supp v =
{p1, =21} \ {2} = {p1, —p1} and (b) V]sypp o0 = v,

We prove that v™ = v by considering two different cases: dv®) = 0 and
dv®) # 0. First, we assume that there exists an sequence satisfying (a) and (b)
for which dv®) = 0. From (b) follows that v/|

is irreducible, there exists no non-empty set P C supp v such that v|p € Xp,.

supp v(k) — V(k) S EPN‘ Since v
Since it followed from (a) that supp v*) is non-empty, we have v*) = v, Since

|supp v®| = 2k, we must have
2k = |supp v™| = |supp v| = 2m.

Thus, k = m and v(™ = p,

Consider the second case, where we assume that the sequence is such that
dv®) £ 0. Since we had k = m in the first case, we now have that k < m.
Therefore, we expand the sequence by defining v*+1) such that (a) and (b) hold.
Since dv® # 0, there exists an oriented 3-cell ¢ € By such that (dv™®)). # 0.
We assume that both the 3-cells in the set By and the arbitrary total ordering
of the plaquettes are given. Denote the first 3-cell for which (dv®), # 0 by

Ckt+1. Furthermore, (dv) = (0. Hence, there exists at least one plaquette

Ck+1

p € Oy, \supp v®. We denote the first plaquette for which p € 9,,,, \supp v
by pri1 and let

Vp(k+1) if P = Pk+1,
(k+1) ._ P
Vp T _Vp(k_H) lfp = —Pk+1,
k .
1/1() ) otherwise.

We saw earlier that (a) and (b) holds for k = 1. We assume that vV, ... v sat-
isfies both (a) and (b), then they also hold for v**+1). Therefore, (a) and (b) hold
for all v*®)| where k € {1,2,...,m}. Since it follows from a) that |supp (™| =

2m, from (b) that v| = 1™ and we assumed that |supp v| = 2m, we

supp p(m)
have that v(™ = v. Therefore, the injective map is constructed.
Since this mapping is injective, we can derive the upper bound for the set of

sequences instead of the irreducible vortices with py € supp v and |supp v| >
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2m. Therefore, we calculate how many such sequences (v, v® .. v(™) there
are. Since v, € G\ {0}, there is for each k € {1,2,...,m} |G| — 1 choices for
Vp,. For each k € {1,2,...,m —1}, there is a given 3-cell ¢, for which we have

at most 5 choices for pyi; for each £ € {1,2,...,m — 1}. Combining this, we
have at most 5" (|G| — 1)™ sequences (v, v® ... (™) Hence, there exists

at most 5™ (|G| —1)™ irreducible vortices py € supp v and |supp v| > 2m. O

Recall the definition of A(8). Since p(0) = 1 and the largest value Rp(g) =
cos(£2™) can take for g # 0 is cos(2m/n), it follows that A(3) can be written as

BR(p(g))
— € _ BR(p(g)—p(0))
AB) = seontoy PRGN geonioy

— max PRG@-1) _ Bleos@n/n)—1)
4G\ {0}

Hence,
lim A(5) = lim pBleos(2m/n)=1) _ ¢

B—o00 B—r00
Thus, there always exists a 3y for which 5(|G|—1)A(8)? < 1 for 8 > . Finally,

we have everything necessary to state and prove the proposition.

Proposition 4.12. Fiz any $y > 0 such that 5(|G| —1)A\(8)? < 1 for all 8 > By.
Fiz po € Py and M > 6. Then
psn({o € Xg, : 3 a vortex v in o with py € supp v and |supp v| > 2M})
< Gy )
for all B > By, where

MG = DY

(»)
C0 =TG- DAGE

(4.8)

Proof. Let m € Z and py € Py. For v € ¥p,, we have

4.10))

({0 € S+ (d0)pp » = 1}) S (AB)) 7P 1 = A(B)?™

From Lemma follows that there are at most 5™ '(|G| — 1)™ irreducible
plaquette configurations v € ¥p,, such that p, € supp v and |supp v| = 2m.
Therefore,

pan({o € Xg, : 3 avortex v in o with py € supp v and |supp v| = 2m})
<5"HIGI = D)™AB)™ < (BIG] = 1)"AB)™
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We sum over every m > M:

pan({o € Xg, : 3 avortex v in o with py € supp v and |supp v| > 2M)

[e. 9]
= Z psn({o € Xg, : 3 avortex v in o with py € supp v and
m=M

| supp v| = 2m})

< > 61 - 0y = S e — e e,

The second to last step follows from the sum being a geometric sum, which
converges when (5(|G| — 1))A(8)? < 1. O

4.2 Oriented surfaces

This section focuses on oriented surfaces. Their relation to simple loops is given
by the second lemma. First, the definitions for an oriented surface and its bound-

ary are given.

Definition 4.13. (Oriented surface) A Z-valued 2-form q on Py is an oriented

surface if we have for every e € En that

(5Q)e = Z qp € {_1707 1}' (49)

pEée

If a 2-form ¢ is such that |¢,| = 1 for all p € Py, then the oriented surface
is a collection of oriented plaquettes, where every plaquette shares at least one
edge with another plaquette in the collection. An example of an oriented surface

and its boundary is illustrated in Figure [4.1]

C|C
CIOP

Figure 4.1: Example of an oriented surface and its boundary when |g,| = 1.
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Definition 4.14. (The boundary of an oriented surface) Let q be an oriented

surface. Then

Bq::{eeEN:quzl}
peée

is the boundary of q.

Before stating the first lemma, we define for an oriented surface ¢ that

max(g,,0) for p € Py,
0 for p € Py.

Lemma 4.15. Let q be an oriented surface with boundary B,. Then,

Z g (do), = Z Oe, forallo € Xg,.

pEPN GEBq

Note that this lemma is a discrete version of Stokes theorem.

Proof. Let ¢ € Y¥g, and p € Py. Recall that the set Ef only contains the
positively oriented edges in the set £y and that the set E only contains the

negatively oriented edges. Furthermore,
Oe = —0_e. (4.11)

From equation (3.7) follows that (do), =} ,, 0c. Therefore,

Yoardo), =Y a4 Y o

pEPN pEPN e€dp

=D 0 > 4

e€EN  pe(He)nPy

DY 0y
p

ecEn pEde

DI IED IS A

eeElJ\r, peée eElE peée
(4.11) + +
P IEOIED LA+
eGE]"\', pede eEE?\} ped(—e)

DI DI S

eGE]J\r, pEde ped(—e)
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Recall from Example that de N d(—e) = @. Moreover, if p € d(—e), then
—-p € de. Since q is a 2-form, we have for p € de that q—p = —qp. Therefore,

q;r — qu = max(g, 0) — max(q_p, 0) = max(g,,0) — max(—g,,0) = ¢, (4.12)

and
+ + = + +
PRI DIEIDIRE EDILA DI ED I
eEE]\L, pEde peé(fe) eGE;\r, pEde pede
(@12
=D o) 0
eEE?\', peée
Furthermore,
0D =0 () =0 Gy =0 D =0 D G
pEde pEde p€de —p€de ped(—e)
(4.13)
Therefore,

ET3) 1 1
DD DN EAEDIEL DI N DI I
eGE']J\r, pede eEE]\L, pEde peé(fe) e€EN pede

@)1 1

S SRS SR D SIS 3"
ecEN: pede e€En: pEde
pEBeqP:_l pede W=

1
LY e
ecEN: d
Zpeaegfp peoe
1 1

=3 X Dbty D )6
ecEN: pede e€EN pEDe
pcde 9P pede Ip

1 1
=3 D Cd bty D 0D 6
GGENI peée GGEN peae
2 pcde I pede I
=D 0D =) o
e€Bq  pede e€Bq
Thus,
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This lemma is applied in the final proof of this section. The next lemma says

that a simple loop is the boundary of an oriented surface. This is illustrated in

Figure [4.2]

C
C

OOk
@

Figure 4.2: A simple loop v and an oriented surface, whose boundary is ~.

Lemma 4.16. Let v in By be a simple loop contained in the cube B C By.
Then there exists an oriented surface q, whose support is in B, such that vy is the

boundary of q.

Proof. Let v be a given simple loop contained in the cube B. For each e € El,
define the 1-form f7 as
1 ifeen,
Jd=49-1 if —ecn,
0  otherwise.

By definition, the cube B contains the support of f7. For the co-derivative of
/7, we have that 6f) = 0. Hence, the assumptions of Lemma are fulfilled
for f7. Therefore, there exists a 2-form ¢” on Py, with support only in B, for
which

[ =0q". (4.14)
From equation (3.12)) follows that
(0¢7)e = Z qy foree€ Ey. (4.15)
peée

By combining these conclusions, we obtain

f@-15) @ 14)
S B 5gn). B e (1,01},

pEée
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Thus, ¢” is an oriented surface with support contained in B and + is the boundary
of ¢7. O

This lemma is applied in the proof of Proposition[6.1] Next, we define internal
plaquettes and edges.

Definition 4.17. (Internal plaquette) Let q be an oriented surface and let p €
supp q. A plaquette p is an internal plaquette of q if

Z ¢ =0  for each e € Op.
pEée
We derive another definition of internal plaquettes. If p is not an internal

plaquette of the oriented surface g, then Zpeée ¢y € {—1,1}. For edges in the

boundary of ¢, we have Zpeée ¢y = 1. Since ¢_, = —g,, we obtain
Dh==D Gr=" 2 b
pEde pede —p€de

and

ZQPZ_l*:) Z qp = 1.

peée —peée
Recall that p € de is equivalent to e € dp. Therefore, a plaquette p € supp ¢ is

internal if
(OpUd(—p)) N B, =2. (4.16)

Definition 4.18. (Internal edge) An edge e € Ey is an internal edge of an
oriented surface q if there exists a plaquette p € supp q, such that e € Op and

neither e nor —e is in the boundary of q.
Last, we have the final lemma of this chapter.

Lemma 4.19. Let 0 € X, and let v € Yp, be a vortex in o. Let q be an
ortented surface. If there exists a box B, which contains the support of v, for
which the intersection (x x B) N supp q only contains internal plaquettes of q,
then

Z gy vp = 0. (4.17)

pePN
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Proof. Since v is a 2-form and the lattice is Z*, it follows from equation (3.16)
that
s (x) = (=1)2472y = p, (4.18)

Since v € Yp,, we have dv = 0. By Lemma [3.35| the co-derivative of *v is

(14.18)

S(xv) = (=1)* D s (d(x(+v))) = —xdv=—1-0=0.

Assume that the box B contains supp v. By Lemma [3.31] we have that the
2-form *v has no support outside *B. Thus, the assumptions of Lemma [3.24] are
fulfilled for xv. Therefore, there exists a 3-form ¢ without support outside % B,

such that xv = —dg. By Lemma [3.35, we have
dg = (=1)**TVx (d(xg)) = (1) * d(xg). (4.19)

Since ¢ is a 1-form, d(*g) is a 2-form and

# (#(d(x9))) = —120-D(d(xg)) = d(xg). (4.20)
Thus,
v B () = (~0g) D w(xd(x9)) Ed(xg). (4:21)

Since the support of ¢ is finite, we have that Zpe py Oy Vp is well defined. Let B,
be the boundary of ¢. From Lemma follows that

i, B2 S g (k) = 3 (xg)e

pEPN pEPN e€EBq

A k-form fj is elementary if there exists a k-cell ¢ for which supp fy = {¢, —c}.
Since g only has support inside x B, the support is finite. Therefore, we can write

the 3-form ¢ as a finite sum of elementary 3-forms gy, whose support is contained

Z(*g)e = Z Z(*go)ea

e€By e€EBg 9o

Z(*QO)e =0

e€By

in *B. Since

we only have to prove that

for each go.
Take any elementary 3-form gy whose support is contained in 5. Then, the

Hodge dual of gg is an elementary 1-form *gq. Since gq is elementary, there exists
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a 3-cell ¢g in B, such that supp go = {co, —¢o}. Likewise, we have supp (xgo) =
{eg, —eo}, where ey = *co. Since ey = *cy, we have dey = (5(*00) = *(0Jcy).
Since ¢y is in *B, it follows that x(dcy) = dey is in * * B. Therefore, (360 N
supp ¢) C (¥ * BNsupp ¢). Since we assumed that (x * B) N supp ¢ only
contains internal plaquettes of ¢, the plaquettes p € 3eoﬂsupp ¢ must be internal
plaquettes of g. Recall that a plaquette p € 360 Nsupp ¢ is an internal plaquette
if (Op U O(—p)) N B, = @. Since xey € Ip U I(—p), it follows that +ey & B,.

Therefore, B, only contains elements for which *g is zero. Thus,
Z (*90)6 =0
e€By

and

= (9= > ¢y

e€By pEPN



Chapter 5

The existence and translation

invariance of the limit

This chapter focuses on the limit of the expectation of the Wilson loop observable
W,. This limit is also called the infinite volume limit. Both the existence and
the translation invariance of this limit will be proved. For these proofs, Ginibre’s
inequality is needed. Before stating the inequality, we define both cones and

convex cones.

Definition 5.1. (Cone and convex cone) A set A C V', where V is a vector
space, is a cone if for every x € A and positive o« € R we have ax € A. The

cone is convez if for positive o, 5 € R and x,y € A we have ax + Sy € A [0/

We will use the notation Cone(A) for a convex cone generated by the set A.

This means that the cone is the intersection of all convex cones containing A.

Lemma 5.2. (Ginibre’s inequality). Let K be a compact metric space and let
w be a probability measure on K. Let C(K) be the algebra of complex-valued
continuous functions on K. Let S be a subset of C(K) which is both invariant
under complex conjugation and such that for any fi,... f,, € S and any choice

of signs si1,...,sm € {—1,1}, the inequality

[ [ s Tht) + sifit)) = 0 (5.1

holds. Let h be a real-valued function and let f € C(K). Define

= [ 10t [ [
43
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Let Cone(S) be the conver cone generated by the set S. Then, for any f, g, —h
in Cone(S), (f)n, (g)n and {fg)y are real and

(fa)n = ()nlg)n- (5.2)

For the proof, see [7].

In the following theorem, there is a function from the set of G-valued 1-forms
on the set of all oriented edges in Z*. Therefore, we introduce the two following
notations: F is the set of oriented edges in Z* and Yg__ is the set of G-valued
1-forms on E.. In the theorem, f only depends on the spins of the edges in
Ey and we have that f(o) = f(ol|g,,) for 0 € ¥g_. To simplify, when N > M
we write f(o) instead of f(o|g,,) and f for the natural restriction of f to g, .
A translation 7 of the lattice changes where the origin of the lattice is. That
the limit is translation invariant means that it does not depend on where in the

lattice the Wilson loop observable is.

Theorem 5.3. Let G = Z, and f : ¥ — R be a real-valued function, which
only depends on the spins of edges in Ey; for some integer M > 1. Let > 0.
Then,

(1) the limit imy_ Eg n[f(0)] exists.

(ii) for any translation T of Z*, we have

Jim Esnlfor(0)] = lim Esnlf(o)]

Proof. (i) To prove the existence of the limit, we write f as a finite sum of
functions g;, for which the limit of the expectation value exists. We will show
that (g;)n (h is defined later in the proof) is both increasing and bounded, which
implies that the limit for f exists.

First, we prove that f can be written as a finite sum and that we can use
Ginibre’s inequality on (g;),. For this, we need some statements from Example
4 in [7]. These statements hold when N > 1 for the group IT'™) = (3. . +).

(M) s C \ {0} are given by the functions

First, the group homomorphisms I'
o = [lecry 627”'%0:3/”7 where ¢’ is fixed and 0,0 € > gy We notice that o —
p((do),), o € Ey is one of these group homomorphisms. Second, let S™) be

the set of real parts of the group homomorphisms T'™) + C \ {0}. Denote the
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convex cone of this set by Cone(S™)), then
R(p((do),)) € ST C Cone(S™M).

Third, inequality holds for the functions fi,..., f, € S and the signs
S1,-++58m € {—1,1} when p is the uniform measure on ) .

We show that f can be written as a finite sum of functions g € S™). Since
M < N, the set Xp,, is finite. Thus, the group homomorphisms I'™) s C \
{0} span the set of all real-valued functions on the set ¥g,,. Therefore, there
exists scalars aq, as, . ..,a, € R and functions g1, s, ..., gm € S such that
the function f can be written as f = a;g1 + ... + a;ngm. Since the functions
g1, - gm € S they are also in Cone(S™)). For M" > M and j € {1,...,m},
we simplify and write g; for the natural extension of g; from Xg,, to the larger
set X B

We define the function —h and show that —h € Cone(S™")). Fix N’ > N >
M and let 8,3" > 0. Then, for 0 € ¥, define

—h(0) = —h(o)xnpp =B Y R( N+B D> R )p)) -

pEPN pEPN/NPn

By definition, S™) contains the function o — R(p((do),)), o € Tp,,. Since
both # and ' are non-negative, it follows from the definition of a convex cone
that —h(o) € Cone(SM)).

We check the assumptions for Ginibre’s inequality. Since the metric space
K=5 By 18 finite and equipped with discrete topology, it is compact. The set
S = S contains only continuous functions and since it consists of the real parts
of the group homomorphismes, it is invariant under complex conjugation. Let the
probability measure be the uniform measure u, thus, the third statement from
the example fulfils inequality . Since Ginibre’s inequality will be applied
t0 (95 2 pep,,py R(p((dop))))n, the functions g;(0), 3- cp , p, R(p((doy))) and
—h must be in Cone(S™)). We proved earlier that both g; and —h are in
Cone(S™). Since > pepypy R(p((doy))) is a sum of elements in SN it follows
that it is in Cone(S™V"). Therefore, all assumptions for Ginibre’s inequality are
fulfilled.

We show that the derivative of (g;); is non-negative in 8’ for j € {1,2,...,m}.
Ginibre’s inequality will be applied in the calculations:

d%,@w - (fgfe_h " (o ))
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a7 (J9i(0)e " Du(o)) - [e"p(o) = [ gi(o)e "D ulo) - 3 [ e ulo)
([ e p(o))?
> peryry R(p((d0)p)) [ gi(0)e™™ 7 (o)
[ e (o)
ZPEPN/\PN R(p((do)y)) fefh(”)u(a)

~ b f@ M) pu(o)
= (gi0) 3 Rpldo))) —lgso{ 3 Rlpldo(p))
Lol X Reln) ~ o X Rido),))
= 0.

Thus, we have proved that (g;) is increasing in . Moreover, g; depends

is bounded. The

hy.N' g8

on a finite set of edges. Hence, [|g;lloc < o0 and (g;)n, \ ,,

expectation value of g; is

Esnlgi(0)] = <gj>hN7N/’5’0,

which was proved to be both bounded and monotone in . Therefore, the limit
of Eg n[gj(0)] exists.
We have left to prove that limy_,., Eg n[f(0)] exists:

m m

Z;aj Jim Eg v[g;(0)] = ]gignooz;ajuﬁ,fv[gj(ﬂ)] = lim Egy
J= J=

= A}l_fpoo Es n[f(0)].

> ajgj(ﬂ)]

Jj=1

Thus, the limit exists.
ii) We prove that the limit is translation invariant. Let 7 be a translation of Z*
and choose N’ > N > M large enough for By to contain By, 7By and 77! By.

An illustration of this translation is given in Figure [5.1}

By

7By

By

Figure 5.1: The sets By, By and 7Byr.
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Define the functions hy = hy n' 50 and hys == hy n' 5. For a translation 7

of hy, we have

hyor =3 R((p((d0))) =5 Y R(p((do),)).

pEPN peT(Py)
Since both 7By and 77! By are in By and (g;), is increasing in N (This can be

proved with a similar argument to that in part i).), it follows that

(9 hwor < (G5)nys (5.3)
and
(i) hyor—1 < {gjhny- (5.4)

We derive two inequalities for the expectation value of g; and g; o 7:

Es n[gi(0)] = (95)ny
=(gjoToT Yy

= <gj © T>hNO7'
< (950 T)ny = Epgnr[gj o 7(0)]

and

Esnlgs 0 7(0)] = (650 P = (G hmwors 2 (050 = B gy (0]

Take the limits, first for N’ and then for N on both inequalities. We obtain

Jim Es nlgi(0)] < lim Es ni(g; 0 7(0)];

and
Jim Es nlgjor(o)] < lim Egnlg;(0)].

Combining these inequalities, we obtain

lim Esnlgjor(o)] < lim By nilg;(o)] < lim Egwilg;o7(0)]

N—o0 N’'— o0

and as a result,

Jim Egnlgjor(o)] = lim Egng;(o)].
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Thus, the limit of the expectation of g; is translation invariant, but we wish to
prove this property for the expectation of f. Similarly to the end of the proof in

part (i), we obtain

Jim Eg y[for(o)] = ]}EI;OE@N[Z;%% o7(0)] = 2% Jim Eg v[g; 0 7(0)]
J= J
Z hm E,BN lg;] = hm E,BN Za]gj
j=1 j=1
= Jim Esx[f(o)]
Therefore, the limit of the expectation value of f is translation invariant. O

We check the assumptions for the Wilson loop observable

W'y:,O(ZO-e) , 0 € EEN-

ecy

Since the Wilson loop observable maps g _ to R, has real values and only
depends on the spins of edges in F);, the function f in Theorem can be
chosen as W.,,. Thus, the limit

lim Eg n[W,] = (W,)s

N—oo

both exists and is translation invariant.



Chapter 6

Proof of the main theorem

12 45 small and one when

The proof is divided into two cases; one when ¢\(5)
(A(B)'? is large. In the final part of the proof, these two parts are combined. We

begin with the case when ¢A(3)'? is small.

6.1 The case when /\(53)'? is small

12 is small is stated, then some

First, the proposition for the case when ¢A(5)
lemmas necessary for the proof of the proposition are given and proved. Last,

the proposition is proved.

Proposition 6.1. Consider lattice gauge theory with the structure group G = Z,,
and a one-dimensional faithful representation p of G. Let v be a simple oriented
loop in Z*, { = || the length of it and (. the number of corner edges in ~y. Let
N be large enough so that v C Eyn and such that there exists a cube B of width
|v| containing v inside By. Let By > 0 be such that 5(|G| — 1)A(B)* < 1 for all
B > By. Then for all 5 > By, we have

. 1,
|Eﬁ,N[Ww] _ efﬁ(lfa(ﬁ))’ < CA62C A(B)2 < 7 + )\(ﬁ>2> .

Here 0(B) is defined by equation and C'y by equation . Furthermore,
C4 only depend on By, G and p.

To prove this proposition, we show that it is very likely that only minimal
vortices, which are centred at the edges in v, have an impact on a Wilson loop (A

minimal vortex is centred at dx; if it can be written as d(gdx;) for a g € G'\ {0}

49



CHAPTER 6. PROOF OF THE MAIN THEOREM 50

and a dz; € Ex.). A number of lemmas will be needed. We begin with defining
the constant C* and recalling the definitions for 6(5) and A(5). Let By > 0 be

given and define

C* = Sup (1= 0(B)A(B) ] (6.1)
Recall that 5 (0)65(0)"
9 _ ger g)Ps\g
S SR
and
1)
e (0) 95(0)”
where

43(g) = 0, gEG.

6.1.1 Technical lemmas

Lemma 6.2. The function 6(3) is a real-valued function and can be written as

_ 2y R(p(9))05(9)™
dogecb8(9)?

0(5) (6.2)

Therefore,
pp(—g) = PPN = WD) — g5(g) for g e .

Furthermore, since g — —g is a bijection, we have that

_ 1240 P(9)95(9)™ 1 > gec P(—=9)0s(—g)"
2 Yea®s(9)? 2 Y cqds(—9)"

_ 1220ecP19)05(9)7 | 13 0eq P(=9)95(9)"
2 Yea®(9)? 2 X cqds(9)"

_ Ygealplg) + p(=9)¢s(9)"

B > gec P5(9)2

 Ygea R(p(9))¢s(9)"

O Yea9s(9)?

0(5)

e R.
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Lemma 6.3. Let 3 > 0 be such that 5(|G| — 1)A\(8)? < 1. Then
2
1l <1-C* 12 < < 1. .
0< G <1-=CNB)* <H(B) < (6.3)

Proof. We calculate the upper bound for 1 — C*\(3)%:
L= O = 1= sup [(1- 0(3DAE) ] X3

<1 ((1=0(B)NB)2) A(B)" (64
= 0(8).
Since Lemma [6.2] gives that 6(/3) is real, we have
2 0ec P9)8(9)2 | Do P(9)|9s(9) P @2 gec P5(9)
e e = 1 R s [ s . 1)'
6.5

We calculate an upper bound for C*. Notice that £p(g) € [—1,1[ for g € G\ {0}
and ¢g > 0. Hence,

C’*up [( > gec R(p(9))¢s 59)12> )\(ﬁ)—u]

B>fo > gec 8(9)t
= :ZQEG\{%;G G >]
< | Sp o
i :qs G >Z+G2{}Z¢f(}g i%( e >]
< sup 2]

oh |7y 0

:supQZ)\ BB i|

B>Po | gea{oy

=2 > 1=2(G|-1).
geG~{0}
Therefore,
2 6
CAB)? < 2G| = VAP = Ssa— s (UG = DA(B)?)
2 (61— 1) 66)

= (G — 1)
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Thus,
2 ©-4) ©3)
l—- 1—C*NB2E < 0 < 1.
0< 56(|G| _ 1)5 < C (ﬂ> — (6) >~

O

Notice that C* > 0 by equations (6.4)) and (6.5). The next lemma gives two

inequalities for the function 6.
Lemma 6.4. Let > fy. For 0 < j </, we have

g7 < 20BN (6.7)
For1 <35 </, we have

077 — 1 < 2jCN\(B)2eC A" (6.8)

For the proof of this lemma, the two following inequalities are needed.

First, for z € [0, %], we have
(1—z)"! <2e, (6.9)
and second, Bernoulli’s inequality: For z > —1 and n > 1, we have
(14+2)" > 1+ nx. (6.10)

Proof of Lemma[6.4]. First, notice that

(
L& 2 _2

< e —
55(|G| — 1) — 56
Therefore, inequality can be applied on (1 — C*\(3)'2)7L. For 0 < j </,

we have

0 < C*A(B)

DN | —

<

6.3
07 <o £ 2007007,

((1 . O*)\(B)l2)_l)
For 1 < j < ¢, we have by inequality (6.10]) that

(6.11)

=1+ (0—-1)) >14+5(6—1).
Thus,
1—607 <j(1—-0)
and

. A . - (3),@11) .
07 —1=071—-60")<j(1-007 <  2jC*A\B)2 2@ (6.12)
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Lemma 6.5. For { > 1 and 0 = 0(f3), we have

C*IN 12
|95 - 6—5(1—9)| _ o2 B

< (6.13)

We state two inequalities necessary for the proof of the lemma. First, for
¢>1, |z| <1and |y| <1, we have

2t — ot < llz —y). (6.14)
Indeed, by the intermediate value theorem, there exists a £ € [—1, 1] such that
|2 =y = [ |z — y| < Ll —yl.

Second, for x > 0, we have
142 <e€. (6.15)

This follows from the Taylor series for the exponential function:

n

[o@)
=)
k=0

which is also otherwise useful in the proof.

8

Proof of Lemma[6.9. Since 0 <1 — 6 < 1, it follows from the Taylor series that

6—(1—9) <1+ (_(1 . 0)) + (_(12_0))2 =04+ (1 _29)2

(6.16)
From equation ((6.15]) follows that
1+(0—1)<eVeog<e 79 (6.17)

Thus,

e

10° — ™ 0(1-6)

€|0 —(1- 9)| -E( —(1- 9))

4(29 —20—(1—6)2) E(l —9)?
= 2 2
EI(LCA(B)")?

= 20

2C*Z)\

20

(6.18)
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6.1.2 Probabilistic bounds on vortex sizes

We want to calculate the probabilities for the events A;, Ay and As, which are
soon defined. Before that, some necessary definitions and notations are given.
Let v be a simple loop, then the cube B is defined as a fixed cube that contains 7,
is inside By and is of width ¢ = |y|. Let ¢ be an fixed oriented surface such that
its support is contained in B and such that 7 is the boundary of ¢ (we will later
prove that ¢ exists). Denote the support of this oriented surface by @) := supp g.
Then, define the set Q' as the set of plaquettes p € () for which the oriented
loop 7 does not intersect any cube of width b+ 2 containing p, where b is chosen
as the smallest number for which the support of any irreducible w € > py With

| supp v| < 48 is inside the cube. Last, the set

Ve ={e €7 :10(de) N (yU—7)| > 2}

is the set of corner edges in . Recall that the number of corner edges in v is
given by /..
We define the events:

Ay :={There exists no vortex v in o with |supp v| > 50 whose support

intersects @}

Ay ={There exists no vortex v in ¢ with |supp v| > 14 and

supp v N (Q\ Q') # o}

Aj = {There exists no vortex v in o : supp v = de U d(—e) for some e € 7, }.

Notice that the vortex in the event Aj is minimal by Lemma [£.7] The probabil-

ities of these events are calculated in the following three lemmas.

Lemma 6.6. Let By > 0 be such that 5(|G| — 1)A(B)? < 1 for all 3 > By. Then

psn(Ar) > 1= CPNB). (6.19)

Proof. Fix py € Py and define the event

E(py) ={There exists at least one vortex v in ¢ with py € supp v

and |supp v| > 50}.
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The assumptions for Proposition are fulfilled for F;. Therefore,
pp.n(Er(po)) < CEPN(B)™,  for any po € Py. (6.20)

Since B is of width ¢ and supp ¢ is contained in B, there is at most ¢ choices

for py € supp v for which supp v intersects ). Hence, by a union bound and

inequality , we have

pan(Af) < LCEIN(B)™.
Thus,

pan(Ar) = 1= pg n(AS) > 1= CEPN(B)™.
[
Lemma 6.7. Let 3y > 0 be such that 5(|G| — 1)A(8)* < 1 for all 8 > By. Then
pan(Az) > 1= C1CVIA(B)M

Proof. Fix py € Py. The event Es is defined by
Es(py) = {0 € ¥, : 3 avortex v in ¢ with py € supp v and |supp v| > 14}.
By Proposition .12 we have

1an(Ea(po)) < CEPOA(B)M.

Consider the plaquettes p € @ \ @'. By definition, any cube of width b+ 2 that

contains one of these plaquettes intersects . Hence

|Q\ Q' < Ci|y| =Cut, (6.21)

where the constant C'; depends on the width of the box.

By a union bound,
N (Ag) < Crlpg n(Ea(po))-
Thus,

ppN(A2) =1 —pgn(A5) > 1 — Cilug n(E2(po)) > 1 — 010(57)0\(5)14~
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Lemma 6.8. Let 3y > 0 be such that 5(|G| — 1)A(B)? < 1 for all 8 > By. Then
pan(As) > 1 — COLNB)2 (6.22)

Proof. By Proposition for a minimal vortex and the fact that there are at

most £, corner edges for which supp v = de U é(—e), we have that
pa,n (A5) < LCONB)

and

pp N (Az) > 1= COLAB)™.

6.1.3 The main argument

We continue with some more definitions and notations for sets and conditional

probability. Define the set of edges

T =7\ e
and the random set of edges
v = {e €~ :Ip,p € de with (do), # (do)y}.

Notice that v; is the set of the non-corner edges of 7 (Recall that both corner
and non-corner edges are illustrated in Figure [2.2]).

We investigate how do can be written on two different plaquettes p,p’ € de:

(do), = Z O = 0c + Z o

e'€0p e'cop~{e}

and

(do)y = Z O = 0c + Z Ter

e'cop! e’ cop' ~{e}
Therefore, the event (do), # (do), does not depend on the value of o.. Hence,
if we know the spins of the edges which are not in 4+, then the edges in +/
are determined. Furthermore, a plaquette cannot contain two non-corner edges.
Therefore, when we condition on (o¢)egt~,, the spins (o¢)ees, are independent.

This is concluded in the following lemma.
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Lemma 6.9. The random set ' is determined by the spins (0¢)egty, and con-

ditioning on the latter, (0¢)cey, are independent.

Lastly, we have one more inequality for an expectation value, the expected

value of the number of edges in the set +'.

Lemma 6.10. Let By > 0 be such that 5(|G| — 1)A(8)* < 1 for all B > By. Then
Esnln'l) < G5 OA(B)". (6.23)

Proof. 1f (do), # 0, then the plaquette is in the support of a vortex v. Since the
size of the vortex is 12 or larger, we have that |supp v| > 12 if supp v contains
(do), # 0. Then, from Proposition follows for a fixed pg that

ps N{A plaquette p is such that (do), # 0} < 066)/\(6)12.

Since |y| = £ and 7' C +, there are at most ¢ plaquettes in 4 for which (do), # 0.
Thus,
Esn[171) < G5V A(B)™

[]

We prove the proposition. Six inequalities and equations for expectations will

be calculated and then combined to obtain the desired inequality.

Proof of Proposition[6.1. Since v is a simple loop and B C By, we have by
Lemma [£.16] there exists an oriented surface ¢ such that its support is contained
in B and 7 is the boundary of ¢q. Recall that the support of this oriented surface
is Q. Let o ~ pg n.

Since o € FEy, it follows from Lemma that we can write do as a sum
of vortices vy, 1, ... with disjoint supports. Let the decomposition be fixed and
define the set V' as the set of vortices in this decomposition for which the support

intersects ). For the oriented surface ¢ with boundary v, we have by Lemma

4.15] that
Zae = Z gy (do), foroeXp,.

ecy pePn

Therefore, the Wilson loop observable W, can be written as

W, =p (Z ae> =p (Z q;(da)p> =p (Z > q;(da)p> :

ecy pEPN vEV pEsupp v
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Note that since |p(g)| =1 for g € G, we have |[W,| = 1.
The first expectation (Eg [/, — W?[])
We define the subset 1V of V as

Vo ={v eV :|supp v| <48}

and W$ as
WP =p <Z > q;(da)p> :
veVp pEsupp v
We estimate the expectation value of |W, — W$| First, consider the case when
the event A; occurs. Then there is no vortex with |supp v| > 50, thus, V; =V,
W, = W2 and [W, —W?| = 0. Second, consider the case when the event A; does

not occur. Then,
W, =W < [W, [+ W) =1+1=2.
Thus, by Lemma [6.6] the expectation value is
[Ean (W — WO <0 pan(Ar) +2 ppn(AS) < 20570NB)P. (6.24)

The second expectation (Eg n[|[W? — W?|])

Consider a cube B of width b, where b is chosen as the smallest number for
which the support of any irreducible w € >, with |supp v| < 48 is inside the
cube. Let

Vi={veVy:supp vNQ # o}

Fix v € V}. Since B is a cube of width b, we have from Example that the
cube x x B is of width b+ 2. By definition, for plaquettes p € @)’ the intersection
between a cube of width b+2 containing p and + is empty. Hence, the intersection

(x* B)NQ only consists of internal plaquettes of g. Recall that ~ is the boundary
of q. Thus, from Lemma follows that

Z gy (do), =0 forv e Vi.

peESsupp v
We define the set
Vo =Vo\ Vi

and

WSIP(Z > q;(dU)p>=p<Z > q;(da)p)

veVy pEsupp v veVy pEsupp v
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We define a subset V3 of V5, which only contains minimal vortices. Let
Va={veVy:|supp v|=12} ={r €V : |supp v| =12 and supp v N Q" = &}

and
WY =p (Z > q;(da)p> -
veV3 pEsupp v
We calculate the expectation value of [WJ — W2|. Consider the event Ay. If
As occurs, then there is no vortex v with |supp v| > 14. Thus, V3 = V; and
W2 = WY. Similarly as earlier, if A, does not occur, then [W? — W3 < 2. By
Lemma the expectation value is

Eon (W) = W2 <0 g n(As) +2- s n(A5) < 2C:C5A(B)™. (6.25)

The third expectation (Eg y[|W? — W)
Let
V, = {v € V5 : Je €  such that supp v = de U 3(—6)}

and

Wé 3:P<Z Z q;(da)p>-

veV, pEsupp v
Consider v € V53 \ V,. Since v is minimal, by Lemma there exists an edge
e € En such that supp v = de U é(—e). Furthermore, since v ¢ Vj, the edge
e cannot be in the boundary of q. Thus, e is an internal edge of q. By Lemma
.16}
Z gy (do), =0 forveVs\ V.

peESupp v

Therefore,

Wi =p (Z > q;f(da)p> =p (Z > q;f(dd)p> =Wy

veVs pEsupp v veVy pEsupp v

Since W32 = W3, the expectation of [W? — WJ| is
Esn[|W? — W] = Egn[0] = 0. (6.26)

The fourth expectation (Eg (W] — W?2]])
Let
Vs = {v € V; : Je € ~; such that supp v = de U d(—e)}
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and

W’? 3:P<Z Z q;(da)p>-

veVs pEsupp v
If the event A3 occurs, then V, = V5 and W74 = W$ . If A3 does not occur, then
W3 — W2| < 2. Thus, by Lemma , the expectation value of [W2 — W?| is

Esn[[Wi— W3] <0 g n(As) + 2us n(A5) < 2090 (B)". (6.27)

The fifth expectation (Eg y[|[W> — W2])
We first define a set of edges:

Es = {e €~ : 3w e Vs such that supp v = de Ud(—e¢)}.

Then W;r’ can be written as

Wﬁzp(z > q;f(dd)p> = (D Y. ¢ (do),

vEVs pesupp v ecls petde

= DD aldo),

6€E5 peée

Define
E¢={e €y :(do), = (do)y for all p,p’ € d(—e)}

and
Wo=p| Y > g (do),
ecEg pEée

Notice that the set Eg can be written as
EG =7 \ ’}//. (628)

Consider two disjoint edges e, e’ € ~1, then de U d(—e) and e’ U d(—¢') are
disjoint. Since any vortex v € V5 is minimal, we have by Lemma [1.9] for a vortex
v € Vs that (do), = d(gdz;), = {—g,g} for all p € Py. Thus, (do), does not
depend on p € de. For e € Eg, fix p. € de. Since q is an oriented surface and Ejg

only contains edges in the boundary of ¢, we obtain

Z Gp(do)y = Z Gp(do)y, = Z Gy | (do)y, = (do)p,, fore € Eg.

peée peée peée
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Therefore,

ij =p <Z<d0)pe> -

ecFEg
If the event Ay occurs, then F5 = Fg and W,? = W76 . If Ay does not occur, then
W2 — W?| < 2. Hence, by Lemma ,

o [[W2 — WO <0 g5 (A2) + 258 (A5) = 20,C5VNB)™. (6.29)

The sixth expectation (|Eg n[W?] — 6])

The strategy will be to first compute the conditional expectation of Wf given

(0e)ests~, and then apply the law of total expectation. Given (o¢)egss,, denote

the conditional probability by 1 , and the conditional expectation by Ej v
We calculate the conditional expectation value of W$ given (0¢)etis,. By

Lemma , we have that the spins (o¢)ce,, are independent. For e € 1 \ v/,

define 0 == 3", (. 0e such that

(do), = 0+ 0. for each p € De. (6.30)

Then,

Esn Wi =Esn |p (Z(da)peﬂ

ecFEg

= p( > (do)pe)]

e€yiNyY

=Esn | ] P((dd)pe)]

LeeviNy/

= H E's v [p((do)p. )]
e€v1NY
[T o lolo + o)
e€yi Ny
_ (O.e _|_g)12
- ee}:[w, (gezgp 7 g > gec P+ g)t2 )
B > gea P(9)0s(9)!
a 661:[\7, ( > gec 8(9)" >

(Syearl9)oale) 2\
Yy 03(9)"
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= 0(3).
By the law of total expectation, we have
s [W9) = B [ w[W3]) = Ean[0(8) 1) = B [0(8)19(3) )

= 0(8)" B n[0(8) "]
Note that since 6 < 1, it follows that

(6.31)

9(B)m! < 1. (6.32)

Since || is the number of non-corner edges in v and /. is the number of corner

edges in v, we have
|+ e =L, (6.33)

Let j be such that 0 < 7 < /. Then,
B n[WE] — 62 omIE, (6711 — 6|
EBgnlg, v~ — ol 4 ghnl — gnl+ée)
= [0 By w07 — 1) — 616" — 1)

< 06 = D] + 1878 — 1)

(%) ,
<Es [0~ = 1] + |6% — 1

(6.12) , .
< [Ean (07171 = 1] + 2070 N(8) 2O

= [Esn (07" = Eg n[07" Ly1<y] + Ban 077 T <pp] — 1]
+ 20" LN (B) 267

< [Ep (070 = B n [0 Ty 1<)l + [Ep v [0 Tipy<ip) — 1
+ 200N (B) 20T AT

(6.34)
We focus on the first term on the right-hand side above:
Es w07 — B [0~ i<l = B 677 Lo 53]
<0 usn({o € Bpy 1 [ >4}
—/ /
< U Ean(l]
J (6.35)
6~'Co” IA(B)"
B J

2C 900 (B)12eC7AB)
Z 0
- J
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Then we focus on the second term:
Esn [0 Ty1<y] = 1 < B n (0771 = D)<l + Eg v [Lgyi<i]

<07 —1)+ E@Nj“ﬂ] 636

(6) 12
*j)\(ﬁ)mec*b\(,@)l? + Co Q\(ﬁ)
J

We combine these two inequalities and choose j = /¢

\E@ N[9*W'] — Es w0 il + 1Bsn 07 Tgc] — 1

(6) 12 ,C*eX(B)"? . (6) 12
J J (6.37)

:: \/')\( )12 C* (B! + 20*\/’)\< )12 C*eN(B)12 + 0(6)\/_)\( )

= 2(CL + C*)VINB) 2T PO L COVIN(B)™2
We return to inequality (6.34)) and obtain

[E.x W] 020 4 CWINB) 2SO 4 O VA ()"
+ 2£CO*A(6>1260 x(B)1?

(6) * *
- (CO v Ce&> ONB) 27O 4 COVIA(B)

(6.38)
Combining the expectation values
We combine equations (6.24)), (6.27)), (6.26), (6.27), (6.29) and (6.38):
[Esn W3] = 0] < [Egn[W] = 0| + Es (W5 = W2I| + Esn[|[W) — W]
+Eg (W5 = W] + Egn W7 — W$|] +Eg (W] — W, ]

O Lo o .
<22 + == | EX(B)12e7 A0 VN
< ( 7 7 (8) e (8)"
+ 20,087 A (B)™ + 208 A (B)2 + 0 + 20, CSV EN(B)M
+ 2050\ (8)™
o9 Loy (A2
=9 ~0 '+~ + ~c C* I\ 12 _C*¢X(B)
( CVil l (5%
G 20:CVNB? L .
+ + 20* )\
<2C*x/2 Cr C*l (8)
(25))\ 2
CO (/B) (20*€>\(5)12)4

23(0*)4
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Note that for > 0 the two following inequalities hold:
r < e® and 2t < 5e”.

Hence,
C*g}\(ﬁ)lZeC*Z/\(ﬁ)u < 620*5)\(5)12

20*@\(@12 < e2CTINB)?

and
(20*€A<6)12>4 S 5620*@)\(ﬂ)12 )

Furthermore, since 1 < /. < ¢, we have

7 \/7 nd < \/7 (6.39)

Therefore,
s n[W,] — 6]
- 203“ +Cr 2 cl® 20,087 N(B)? . c®e,  5CFINB)?
S\ T Taovi - Cri T B(C)!
. 207 EN(B)!2

_ (5 +ac L2, 20,087\ (B)? . Ce  5CEINB C )
2C*/1 ¢ C* Cl 23(C)

5CYY +4C" 20,0 a5 1
< | —— +2 i 2
< < 50 t2+—F+ o +23(C*)4 / + A(B)

L 207N

(o 20,7 50 i 2\ e gz
— 4 zc B)
( o T oy ) (V7 TN

= (Ca—1/2) <@+ A(/3)2> 2T (6.40)

where

7c\9 20V 5 9
Ca= o + =5 MO (6.41)

Finally, we can calculate the last inequality:

B N [W,] — e O] = By y[W,] - 6° + 6 — =0~ 9<5>>|
< [BEp v [W,] — 6 + W €1-6(9))|
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(6-13), (6.40) ) L 2C*A(B)12
S —1/2) (e wapr | om0
14 20
=11 C4— 1/2 + — (
(f #A@2) AT
L 207 B)

(CA 12+ 2> <@+ A(ﬁ)“") R
= Ca (@ + A(6)2>

o207 A(B)1?

6.2 The case when /\(5)!? is large

We now consider the case when ¢A(()'? is large. First, some notations and
definitions of importance are stated.

Let the set K be a finite and non-empty index set. The arguments of the
maxima are the elements for which the value of the function is maximised and
is denoted by arg max. Likewise, the arguments of the minima are the elements
for which the value of the function is minimised and denoted by arg min. Given
gr € G, define for each K, the set

Gol(gr)rex] = argmax [ [ ¢s(g + gx).

9€G ek

Next, an assumption is given and we prove that it is satisfied if 3 is chosen large
enough.

(x) For all > Sy and choices of g, € G for k € K and any ¢’ € Go[(gk)kex], the
following inequality holds:

Z H b5(g + gr)? < 1—cos(27r/n).

9EGNGol(gr)ke k] kEK ¢B g+ i)’ 8
Let 8 > 0 and g € GG. Since

T 659+ ge) = J[ #7099 = ¢ Shew Roloton),
keK keK
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we obtain

Gol(gh)eex] = argmax e Drex X060 — arg max 3 R(ol(g + 1))
geG geG e K
We see that Go[(gr)rex] does not depend on 3. Let ¢’ € Go[(gx)rer]|. Then ¢ is
one of the elements in G for which ), _ . R(p(g + gx)) takes its maximum value.

For g € G'\ Go[(gr)rex], we have

> R(p(g' +gx)) > > R(plg + gx))-

keK keK

Thus, by taking the limit when S — oo we obtain

. $s(g+ 1) _ . / _

51131 Sold L) ﬁlim exp | 20 Z (Rp(g + gr) — Ro(g' +gx)) | =0.
*hex P\I T Gk > keK

Thus, there exists a [y for which (x) holds. This implies that there exists a /3, for

which (x) holds for all K simultaneously, since y can be chosen as the maximum

of By for all fixed K.

Proposition 6.11. Consider lattice gauge theory with structure group G = Z,
and a one-dimensional faithful representation p of G. Let v be a simple oriented
loop in Z*, { = || the length of it and (. the number of corner edges in vy. Let
N be large enough so that the edges of v are internal edges of By. Let 5y > 0
satisfy the assumption (x) when applied with sets K with |K| = 6, and be such
that 2\(5y)?5l < 1. Then for all B > By, we have

1 — cos(2m/n)

Esn[W,]| < 670*(646)’\(6)12, where C, == 1

(6.42)

To prove this proposition, three lemmas will be applied. We begin with
stating the main lemma of this section, which will require two lemmas to be

proved.

Lemma 6.12. Let K be a finite and non-empty index set and assume that Sy =
Bo(|K|) > 0 satisfies (%) applied with K and

2A(Bo)HEl < 1. (6.43)
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Then, for all choices of gr € G for k € K and in the setting of Lemma|6.11], we

have

dea p(9) Tliek 059+ gr)°
> gec iex 95(9 + 91)?

< 1—CB)HEI (6.44)

The left-hand side of inequality (6.44)) is the conditional expected value of
a single spin (see the beginning of the proof of this proposition). To lighten

notations, we define

dec p(9) [rex 95(9 + 9r)°
dec [Tiex ¢5(9 + gr)?

Se((gr)rex) = (6.45)

and
w = 1—55((gr)kex)- (6.46)

We state and prove two lemmas for the case when the set Go[(gx)rex| only
consists of one element (We will later prove that Go[(gx)rex] = {0} in this
case.). Thereafter, the proof of Lemma is given.

Lemma 6.13. Let K be a finite and non-empty index set and assume that By =
Bo(|K|) > 0 satisfies (%) applied with K. If Go[(gx)rex] = {0}, then

(1) |w|* < Rw, (6.47)
.. erK ¢5(g + gk>2
S ex)| < 1-—C, . 6.48
(4) |S5((gr)rex)] e ecx 6500+ g1)? (6.48)
Proof. (i) From equations and follows that
1 > gec P(9) rer 959 + 1)
>gec Hier 9809 + 91)?
_ 2gea(t = p(9) Tkex 9509 + 91)°
> gec ek 98(9 + gr)? 1o
2yl = () ke 509 + 95)*  Tlpew 98(0 + g0)’ (6:49)
[Ther 500 + gx)? dec [Tiex @5(9 + 9r)?
_ 059 +96)*\  Tlpex 9500 + g1)*
(gze;; kel—!( $5(0 + gi)? ) > gec Iler 98(9 + gx)*
Since Gol(gr)rex] = {0}, by (*) we have
d5(g + gr)? 1 — cos(2m/n)
> 11 2501 a0)? g : (6.50)

ge€G~{0} keK
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We focus on the second factor in (6.49)):

1> [k 950 + gx)?
~ > gec kex 9809 + gx)?
—1— >_gecfoy Lkex @8(9 + k)
>_gec Hier 8(9 + gr)?
>1— ZSJEG\{O} [lick 59+ g)*
[liex 500+ g1)* (6.51)
€, _ 1 cos(2n/n)
7+ cos(27r§n)

- =

L

-8 2

We calculate Rw. Notice first that

geréli?o}(l —Rp(g)) =1 — cos(2w/n) > 0. (6.52)
Thus,
Y — _ HkEK bs(g + %)2 ‘ erK $p(0 + gk)2
o= <g§“ R o0+ gk>2> 5 e oer 0309 + 97
_ _ [Licx @509 + g0)° - Tkex ¢80 + gr)?
- <g€§o}“ FPDL, om0+ gk>2) 5 pec icx 0500 + 907
ENED o [lier 509+ 91)* 1
>ﬂ (2 / ))geg\:{o} erK ¢5(0+gk)2 2
650 — cos(27/n — cos(27m/n))?
(1 _ cos(2m/n)) 8(2 /m _ {4 4(22 /)
(6.53)
Since
max |1 —p(g)| <1+1=2, (6.54)

geG
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we have
erK bs(g + 9r)? erK $5(0 + 9r)?
1-— .
= QEGZ\{Of L 0507 007 ) T I 9l + 0
s(g + gzc)2 [Licr @500 + gi)?
< x|l —
e | ge;{O} ,g( (0 + gx)? dec [lick 05(9 + 9i)?

€2, 3 H % 9+9k o hex 9800+ 1)
geG~{0} keK 0+ gk deG erK ¢B(g + gk)2
bs(g +gr)?
EEDINIE-
geG {0} keK ¢5(0 + gx)?
)1 — cos(2m/n)
1 :

I/\.

I
|/\g

Therefore,

_ 2 (653
wf? < (—1 COZ(%M) < Ruw.

(ii) We calculate |Ss((gx)ker)| = |1 — w|:

11— w| =1 —Rw)?2 + (Sw)? = /1 —2Rw + |w?

4
g\/l—Q%w+|w|2~l—§Rw( |w|2+3‘€w)+u

4
|("’|2 2 |("’|2
— 1 — AR =1 AR

(6-47) Rw w
<1—Rw+ 5 = 11— 5

623 1 [ (1 —cos(27/n)) [Licx 959 + gx)?
B 2 2 g€G~{0} [Tiex 950 + gr)?
—1-0. L;exc 05l + 9t)

geG~{0} HkEK ¢6(0 + gk)2.
L]

Before the following lemma, the notation Z(z1, z2) is introduced. Let 21, 25 €
C\ {0}, then Z(z1, z3) is the absolute value of the smallest angle between these

numbers.

Lemma 6.14. Let K be a finite and non-empty index set and assume that By =

Bo(|K|) > 0 satisfies (x) applied with K. For each k € K, let gv € G. If
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Gol(9k)kex] = {0}, then

0
gEG\{O} qﬁﬁ O + gk geG\{O} e (04 0)

Proof. Since
11 659+ g) = exp(BR(p(9) D _ plar))),

keK keK
inequality (6.55)) can be written as

e P (BR(p(9) Sker P(98)) - iy, P (BR(p(9) > pex £(0)))
9€G~{0} exp (5%(,0(0) D kek p(gk’))) ~ 9€GN{0} exp (5%(0(0) D ke ,0(0))) ’

which is equivalent to

Dhax exp ( (3‘3(,0(9) > plor) = R(p(0) Y p(%))))

> max exp ( (afe(p(g) S 0(0) = R(p(0) p<o>>>)

and

,thax (9?(/)(9) > plge) = R(p(0) > p(%)))

keK keK

> genGle?{(O} (?R(P(g) Z p(0)) = R(p(0) Z P(O))> ~

keK keK

(6.56)

Since p(g) and Y, ., p(—gx) are non-zero complex numbers, we have

R (p(g) > p(%)) =R (Z p(—gk)p(9)>

= 1> plgw)|lp(g)] cos (4 (ZP(_gk)’p(9)>> (6.57)
= Z cos( (Zp gk ))

Fix g € G\ {0}. Then g & Go[(gr)rex] and

1T 65+ ge) < ] 6500+ g),

keK keK
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which is equivalent to

R (p(g) > p(gk)) <R (p(O) > p(%)) =R (1 > p(gk)> . (6.58)

keK keK keK

From equation (6.57)) follows that inequality (6.58]) is equivalent to

> plgr)|cos (é (Z p(—gw), p(9)>)
> plge) | cos (Z (Z p(=98), 1)) :
Thus,

0s (l <Z p(—gk),p(g)» — cos (4 (Z p(—9x), 1)) <0.  (6.59)

We write Go[(gr)rex] with arg max and arg min. Note that cos(x) is decreas-

ing in [0, 7] and therefore takes it largest value when the angle is as small as

possible. Therefore,

{O} = Go[(gk)keK}

= argmaxexp | SR | p(g) g + gx)
rg max exp ( Z p gk COS (Z ( p gk )))
9€G keK keK
= argmaxcos | £ Z
9ee kEK
= arg min / <Z p(—g) p(Q)) :

9€G keK

Thus, p(0) is the point in p(G) that is closest to D, . p(—gk). Similarly, we
have for g that

ge argmax [] ¢slg+ ) =argminZ [ > p(—gi), p(g) | -
9EGNGol(gr)rek] e geG~{0} ek

Hence, p(g) is the point second closest to Y, ;- p(—gr). These results for 0 and
g are illustrated in Figure [6.I] Note that there are two possibilities for where

ZkGK p(—gr) is
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(9)
Dker P(=gr)

p(0) =1 p(0) =1

Zkeh’ p(fgk')
»(9)

Figure 6.1: The points in p(G) and the two possibilities for >, . p(—gx). The

figure is from [I].

We see that the angle Z(1, p(g)) can be written as a sum of two angles:

/ <Z p(=gr), 1) + / (Z p(—gk),p(é)) = Z(1, p(9))-

keK keK

Since cos(z) is decreasing on [0, 7], we have

(4 (Zm—gk),p(g))) > cos(Z(L, p(3)).

Furthermore,

1 =cos(£(1,1)) > cos (4 (Z p(—agr), 1)) :

keK

Therefore, we have

cos(Z(1,1)) + cos <4 (Z P(—gk)vp(§)>)

> cos (Z (Z P(—9k) 1)) + cos(Z£(1, p(9))
and
cos (4 <;§< p(—gk),p(?z))) — cos (l <kzg; p(—gr), 1)) 6.0
> cos (£(1,p(g))) — cos (£(1,1)).
Since
D plg)| <D (gl <> 1=K], (6.61)
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we have

R(p(3) Y p(gi)) = R(p(0)) Y plgr))

keK keK

Z p(gr)| cos (4(2 p(—gk),P@))>

keK keK

> plgw)| cos <4(Z (=), p(U))

keK keK

LR, ( (42 p(—gw,p(g))) — cos (42 p<-gk>vp<1>>>)

keK keK

K| cos (£(1, p(g)) — cos(£(L, 1))

me)' ( (42 p<o>,p<g>>> ~ cos (4(2 p<o>,p<0>>)>

B2 (0(9) > p(0)) = R(p(0) > p(0)).

keK keK

Since g € G \ {0}, it follows that

max (ﬁ(p(g) > plgn) = R(p(0)) Y p(%))

€G- {0
9eG {0} keK keK

> max (m(p(g) > p(0)) = R(p(0) > p(0)> :

T geG~{0
g€ {0} keK keK

This is the same as inequality (6.56]), which was shown to be equivalent to in-

equality (6.55)). O

We continue to the proof of Lemma [6.12

Proof of Lemma[6.13. We investigate how many elements Gy[(gx)rex] can con-

sist of:

T 659+ g)* = exp (6 > Riplg+ gk))> — exp (6 > ?R(p(g)p(gk))>

= exp <5§R(p(9) > p(%))) :

keK

Recall that Go[(gk)rex] is the set of the elements g € G for which the above

function is maximised.
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First, if Y, ;e p(gr) = 0, then [[,cx ¢5(g + gr)? = 1 for all g € G. Thus,
Gol(gk)rex] consists of G elements.

Second, we consider the case when ), . p(gr) € R\{0}. If >, p(gr) > 0,
then the function is maximised when Rp(g) is maximised, i.e. g = 0. Otherwise,
it is maximised when Rp(g) is minimised. This happens when p(g) = 927/ is

as close to €™ as possible. Thus, there is 1 or 2 elements in Go[(gk)rex]-
Third, if Y-, 5 p(gr) € R, then >, ;- p(ge) = re. Hence,

R(p(9) Y pg) = rR(p(g)e”).
keK
This is maximised when p(g) = e9?™™/" is as close as possible to e~*. Thus, we
have that there are 1 or 2 elements in Go[(gx)rex]-
To conclude, there are three possibilities for the numbers of elements in
Gol(gr)rek]: 1, 2 or G elements. We continue by proving that inequality
holds in all three cases.

First case: G elements
If |Go[(gk)rek]| = G, then [], g #s(g + g1)* = 1 for all g € G. Hence

2gec PO e 0809+ a0)? | | X pecap(@)] | S50, e2mimin)
> gec ek 98(9 + gr)? G| G
1 ermmg
=Gl 1

=0 <1—CAB)EL

Second case: two elements
If |Go[(gk)kex]| = 2, then

deG p(g) erz( bs(g + gr)? '
> gec Hrex #8(9 + g1)?
dec P(9) [ ek 059 + gr)?

2 gecoltgmner) L e 98(9 + 9r)?

2 gccolioniex) P9) Hiex 25(9 + 9x)°

2 gecoltomner) ke 98(9 + gr)?

deG\Go[(gk)keK] p(9) [ kek 98(9 + 9r)°

2 gecol(anner) Lrer @8(9 + 1)

1S5((gk)ker)| =

<

IN

+

Notice that for every g € Go[(gk)rek], the function ¢g(g + gx) takes the same
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value. Let ¢ € Gol(gk)kex]. Then,

2
|SB((gk)keK)‘ < ZQEGO[(gk)keK] p(g) ‘ + ZQEG\GO[(gk)kGK] HkEK ¢/B(g + gk)
| Gol(gr)rex] > geGol(goner] Lrer @8(9 + 9x)?
“[p(g)]
’ Z!JEGO[(Qk)keK] p(g)l + Z!JEG\GO[(gk)keK] HkEK ¢ﬁ<g + gk)Q
2 ZgEGo[(gk)keK erK ¢6(9 + gr)?
< [ 2scantionnen PO > elte?
N 2 os(9" + gr)?
9€G~Gol(gr)rex] keK 7P
(2) | 2 gecolonner) PL9)] N 1 — cos(2m/n)
< 5 S )
(6.62)
Since Gol(gr)kex] = {4,j + 1} for a j € Z,,, we have
|dec;0 ke k] P(g)| _ lp(7) + p(j + 1)
2 2
< V(1 + cos(2m/n))2 + sin®(27 /n)
- 2
1+ 2cos(2m/n) + cos?(27/n) + sin®(27/n)
N 2
B \/1 + cos(2m/n)
N 2
B \/1 1 — cos(2m/n)
N 2
< \/1 1 — cos(2m/n)
4
<1 1 — cos(2m/n)
- 4

Combining this with inequality (6.62), we have

1S5((gr)kex)] < 1— 1 — cos(2m/n) n 1 — cos(2m/n)

4 8
1 —
:1_M:1_10*
8 2

16.43)
<1 — C A (Bo) MKl

Third case: one element

Last, we focus on the case when |Go[(gx)rex]| = 1. First, we investigate which
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element is in Go[(gk)rex]. For any ¢’ € G, we have

‘decp 9) e @8(9 + (9 + gx))?
> gec Hiex @8(9 + (9 + gx))?
(o) >gec P(9) ek @809+ (9 + 1)
> gec rer @89 + (9" + g1))?
> gec P(9)P(9) ek d5(a + (9" + gr))?
> gec ner @8(9 + (9" + g1))?
>gec P+ ) e 05((9 + 9) + gr)?
>ogec Urer 88((g + 9') + gr)?
>gea P(9) Tier 05(9 + 9r)°
dea [Tiex @5(9 + 91)*

= |Ss((gr)rex)|-

Thus, it implies that 0 € Go[(gx)rex], which only consists of one element. There-
fore, Go[(gx)rex] = {0}. Then, from Lemma follows that

szeK ¢B(g + gk)2
S c <1-0C, E

1S5((9" + 9)rex)

Therefore, inequality (6.44)) holds if

Hicre 0219 + 90 > A (32Kl — ( X M)2|KI
seoioy Her @60 +g)* () ma

geG~{0} ¢5(0)
H pp(g +0)?
gGG\{O} gbg 0 + O bs(0 +0)2’
which holds if

P59 + gr) $s(g +0)
max 6.63
9EG{0} - H ¢5 0+ gx) geG\{O} H gf)ﬁ (0+0) ( )

Inequality (6.63]) was proved to be true in Lemma m Thus,

[Trex 8(9 + gr)?
geG~{0} [licx 5(0 + gx)*
(
(

1S5((gr)ker)| < 1 —C.

erK Pp(g + 0)2
2

=1—C\p)YEl
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We continue to the proof of Proposition [6.11]

Proof of Proposition|6.11. Recall, by Lemma follows that the spins (o¢)cen,
are independent if the spins (o¢)cg++, are given. Take an edge e € ;. For p € de,
let o == Ze’eap\ (e} Te'- For g € GG, the conditional probability when o, = g is

(o g) = 750
o ZQ’EG Hpéée ¢ﬁ(0§ + g/)2

and the conditional expectation of p(o.) is

> gec P(9) [ eae d8(oy + 9)°
ZgEG Hpeée ¢5(U§ + 9)2

Since the spins (o¢).cy, are independent, we obtain

I1 p(ae>] ~ T B nlotoo)) (6.64)

ecy1 ecy1

E/B,N [p(ae>] =

Before calculating the expectation of W, we apply Lemma for K = de and

gr = 0. Since |K| = 6, we obtain

|E 0_ | . ’deGp Hpeée ¢5<O-e +g)2
’ > gec I peae #8(05 + 9)°
(16.44]
S1 - CA(p)PH (6.65)
=1-CAP)"

< e~ C=AB)?

Thus, the upper bound for the expectation is

Esw [V, = [Eox p<zae>] = [Ea p( 5 ae>p<zae>“

L ecy ecy\Y1 ecy1

= Esw | I r(o0) Hp(ae)] ‘
eE'y\'yl ecy1

= EB:N E/IBN H p Oe¢ H,O O'e
L eeYN\Y1 eev1

= |Esn H p(oe EQ%N H'O Oe)
LeEvy~m ec7 |

< Eﬂ,N H P (Ue) E/B,N H P (Ue>] ’
ecyNTY1 ec1 i
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Es v

11 p(ae)] u

ecy1

By (o (00)] u

11 p(ae)] u

eem1

]E/B7N

:Eﬂ,N 1-

= 'l': H

Lec1

(16.64)
(16.65) [
By, [[10o]

LeEY1

_e—C*A(B)”Ml] _ o= CA(B) 2

6.3 The last part of the proof

Recall that the inequality we want to prove is inequality (2.12)):

1"

c
0= e 0000 <0 [V agap]
We begin with defining the constants C" and C”. Let

C" = \/2(C 4247/ C)VAHCT/C) and O = 1/(1 4 4C*/C,). (6.66)

£

The proof is divided in two cases, one when {. > 3

and one when ¢, < % The

inequality

C//
+ A(B)Z} (6.67)
will be proved, which then implies inequality (2.12). Since we earlier proved

that the limit (W,) exists and both the right-hand side of the inequality and
e~t1=0) are independent of N, taking the limits of inequality when N

goes to infinity proves inequality (2.12)).

[Egn[W,] — e ) < ¢ {\/f

6.3.1 First case: /. >

[NCIEaN

Assume that ¢, > £. First, a lower bound for the right-hand side of {}

2

is calculated. From the definitions of C* and C, (equations (6.42)) and (6.1))
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follows that they are positive. Therefore, 4C*/C, > 0 and C” €]0, 1[. From the
definition of Cs (equation (6.41])) follows that Cs > 3. Thus,

O = \/i(CA24C*/C*)1/(1+4C*/C*)
= \/§(CA)1/(1+4C*/C*) X (240*/0*)1/(1+4C*/C*)

>1/2:1-2=2V2.
From the assumption that ¢, > g follows that
/1. \/T
>z
I — V2

Therefore, the lower bound of the right-hand side of inequality (6.67)) is

1

z ¢ T\ .
\/%+ A(W] > 2v/2 <\[§+ 0) =2:"% >2,

For the left-hand side of inequality (6.67]), we obtain

/

C

[Eg n[W,] — 676(170(5)” < [Esn[W,]] + |€4(179(,3))‘

(2]

<Esn[l]+1=1+1=2

e

‘ + |€—l(1—9(ﬂ))|

< Egn +1

Hence, we obtain

C
g n[W,] — e )| <2 < ¢ (\/f_c + A(ﬁ)2> :

6.3.2 Second case: /. < %

Assume that /. < %. Then ¢ — (. > %E. From this assumption and Proposition
[6.11] follows that

|EBN[W7]| < o~ Cx (=L)X (B)"? < 6—%0*&(/3)12‘
Therefore,

IEgn[W,] — e 00| < By N [WS]| + e 000

< BOB)E | —1-09)) (6.68)
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80
Since 5(]G| — DA(B)? < 1 and 0 < A(8) < 1, we have
1= 5(G] — DAB)? > 0
& AT (61— nae =0
= == (61— AB)? 2 0
& 1= (6 -DNE)? 25 > o (6.69)

The lower bound for 1 — 0(5) is then

3, Dgec Rip(g))e* D
b Q(ﬁ)l - ggeG e128Rp(g)
_ Pgec(l = R(p(g)))e 9
o > gec e128%p(g)
> gec(1 = R(p(g)))ePOwo)=1)
deG e128(Rp(g)—1)
deG\{0}<]‘ - §R(p(g>))612ﬁ(%p(g)71)
T Y ey OO
dee\{o}(l — cos(2m/n))e!2P(Rela)=1)
T 1+ ZgEG’\{O} maXgea~ {0} el26(Relg)=1)
(1 —cos(2m/n)) 3_caq0y e128(Rp(9)—1)
1+ (|G| — 1) maxgeq oy €2/ Rel9)=1)
(1 = cos(2r/n)) max,eq o) ¢ 2P0l D
1+ (‘G‘ — 1) maXgea- {0} e128(Rp(9)—1)
g1 — cos(2r/n)A(H)"
LG =DAB)
_ (L—cos(2m/n))A(B)"*(1 — (G| = 1)A(B)™)
(1+ (|G] = DAB)2) (1 = (1G] = DA(B)")
_ (L—cos(2m/n))A(B)"*(1 — (|G| — 1)A(B)™)
1= ((IGI = 1)A(B)"2)?)
(1 = cos(2m/n))A(B)*(1 = (|G| = 1A(B)"™)
= 4CA(B)(1 = (1G] = DA(B)™)

20*)\(5)12.

>

Thus,

e—ﬁ(l—@) S e—QC*Z)\(/B)lz (670)
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and

5.63), (6-70)
|Esn[W,] — 6_“1_0(6%0*“(5)12 | OB

< e HONB)2 | OB (6.71)

_ e b
From Proposition [6.1] follows that

|]EB,N[W’7] o 6—4(1—9(5))| S OA€QC*Z)\([3)12 < % + A<6)2> ) (672)

By combining this with inequality (6.71]), we obtain

|E5N[W7] . eff(lfa(ﬁ))|1+40*/0*

1
(cAew*W“ («/ b, /\(5)2)> (e tee) /-
- 14

saﬁﬁm< @+MW)@WWW?5WWW3

1
=Q¢0m< %+Mmﬂ.
Thus,
B n[W,] — e "0700)) < <0A24C* s, ( \/% +)\(ﬁ)2>>1/(1+40*/c*)
= (CA24C*/C*)1/(1+4C*/C*) ( %+)\(5)2> 1/(144C* /C.)

7 1/(144C*/Cy)
-<¢;+WW>
o
L 2
=C <\/;+ A(B) ) :

We have proved the main theorem.



Chapter 7
Svensk sammanfattning

Denna avhandling ar baserad pa artikeln "Wilson loops in finite Abelian lattice
gauge theories" av M. Forsstrom, J. Lenells och F. Viklund [I], dér véntevirdet
for en Wilsonloopobservabel uppskattas. Avhandlingens mal ar att forklara ar-
tikeln sa att matematikstuderande pa magisterniva kan forsta den. I denna
avhandling behandlas darfor den matematiska teori som behovs for att forsta
artikeln. Dartill ges bevisen i artikeln i en mera detaljerad och forklarande form.
Det forsta kapitlet i avhandlingen &r en introduktion som ger en bakgrund
till problemet som behandlas i denna avhandling. Matematiska modeller inom
gittergaugeteorier har lange studerats och malet med dem é&r att férsoka forklara
kvantfiltteorier inom standardmodellen. Aven om dessa modeller inte #nnu kan
anviandas inom kvantfysiken ér de vérdefulla ocksa som matematiska modeller.
Det andra kapitlet introducerar artikelns huvudsats. Den teori som behovs for
att satsen ska kunna forstas diskuteras och satsen ges. Grundldggande teori om
grupper och representationer behandlas och bade gruppen och representationen
som anvénds i artikeln definieras. Gruppen som anvinds ar G = (Z,,+) som
ar en andlig abelsk grupp. Representationen som anviands dr endimensionell,
unitdar och injektiv. Det visas att om en representation uppfyller dessa krav
for den valda gruppen si ges den av p(g) = e92™™/" dir ¢ tillhoér gruppen
Z, och m € {0,1,...,n — 1} &r relativt primt till n. Dértill definieras det
fyrdimensionella gittret Z* vars noder ér i varje heltalspunkt. Delméingder av
detta gitter och begrepp som hor till det ges, bland annat plakettei|som bildas av

tva riktade bagar. Dérefter tas begrepp for loopar och bagar upp innan ett matt

'En svensk term #r inte etablerad (eng. plaquette).
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med Wilsonverkan ges och Wilsonloopobservabeln W., definieras. Gransvardet
for denna observabels véntevéirde betecknas med (WW.,)z. Kapitlet avslutas med

att satsen ges och kommenteras. Som foljande ges satsen.

Sats. Ldt n vara ett heltal med n > 2. Lat gittergaugeteorin ha strukturgruppen
G = Z,. Lat representationen p vara en endimensionell och injektiv representa-
tion av G. Lat v € Z* vara en riktad cykel, ¢ dess lingd och (. antalet hornbagar
v 7v. Da existerar gransvdrdet av Wilsonloopobservabelns vintevirde och By kan
vdljas s att det existerar konstanter C'(By) och C" (o) for vilka féljande olikhet
gdller for alla 8 > Py:

C//
+ A(ﬁ)Q) :
Funktionen 0(3) dr definierad i ekvation och \(B) @ ekvation (2.8).

- (Ve
‘<ny>g—€ £(1 0(,3))| <C < ;

Fran denna sats kan dras som slutsats att vintevirdet pa Wilsonloopobserv-
abeln tar ett virde vildigt néra 0 om ¢(1 — 6(f3)) &r stort och ett vérde véldigt
ndra 1 om £(1 — 0(B)) &r litet.

Det tredje kapitlet behandlar teori om diskret yttre algebra da Z" har valts
som gitter. Denna teori diskuteras alltsa mera generellt &n vad som skulle be-
hovas for resten av avhandlingen. Riktade differentialceller och -former bade
definieras och ges exempel pa (se Figur for exempel péa differentialceller).
Dessa kallas ocksa for k-celler och k-former. En riktad 1-cell dr detsamma som
en bage i gittret Z" och en riktad 2-cell detsamma som en plakett. Dérefter ges
tva operatorer for k-former. Dessa ar den yttre derivatan, som avbildar en k-form
pa en k—+1-form, och koderivatan som avbildar en k-form pa en k—1-form. Exem-
pel illustrerar hur dessa anviands. Rander och kordnder for k-former och speciellt
en plakett behandlas. Dessutom ges tva olika versioner av Poincarés lemma som
bade appliceras pa en viss méngd av 2-former och anvands for att visa att mattet
med Wilsonverkan kan skrivas om sa att det blir ett matt for plakettkonfigura-
tioner. Till sist diskuteras den diskreta Hodge dual-operatorn och bijektionen
mellan det ursprungliga gittret och det som skapas av Hodge dual-operatorn.
Lemman med Hodge dual-operatorn som ar nédvandiga for fjarde kapitlets bevis
ges.

Det fjiirde kapitlet behandlar teori for virvlai] och riktade ytor. Dessa be-

grepp definieras och illustreras, observera att dessa definitioner kan variera mellan

2En svensk term i#r inte etablerad (eng. vortex).
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olika kéllor. Forst behandlas uppdelningar av virvlar, sedan definieras minimala
virvlar och lemman med dessa som behdvs till huvudbeviset ges och bevisas.
Dessutom ges en proposition for en viss fordelning for virvlar som har en stor
roll i huvudbeviset. Till sist ges nagra lemman for riktade ytor och en riktad ytas
koppling till loopar forklaras. Dessutom definieras inre bagar och inre plaketter
och ett lemma for riktade ytor ges.

I det femte kapitlet behandlas gransvirdet for vantevirdet av en Wilson-
loopobservabel. Det viktigaste resultatet i detta kapitel dr en sats som siger att
matten Eg y konvergerar svagt i topologin av lokal konvergens nar /N nérmar
sig oandligheten och det begrinsade mattet ar translationsinvariant i Z". Denna
sats bevisas med hjalp av Ginibres olikhet. Till sist tillampas satsen pa Wilson-
loopobservabeln for att visa att dess vintevardes gransvirde bade existerar och
ar invariant under translation.

I det sjatte kapitlet bevisas slutligen huvudsatsen med hjilp av den teori och
de resultat som getts i de tidigare kapitlen. Beviset delas upp i tva fall, forst i
Proposition [6.1] dir ¢A(8)'? &r stort och direfter i Proposition dar (A(B)*2
ar litet. Beviset for Proposition ar uppdelat i flera delar dar olika vantevér-
den beréknas innan de kombineras for att bevisa den 6nskade olikheten. Till
beviset behovs flera lemman som ges innan. Dessa lemman &r framst olikheter
for funktionen 6 samt sannolikheter for olika hédndelser, vilka berdknas med hjalp
av propositionen fran det fjarde kapitlet. Dérefter bevisas Proposition [6.11] Till
detta bevis behovs nagra lemman som forst ges och bevisas och dven vissa slut-
satser fran beviset for Proposition anvands. Darefter kombineras dessa tva

fall for att bevisa olikheten

1

Ve + A(B)Q)C :

V] - 0 < ¢ (G

Med hjélp av resultatet for gransvérdets existens for Wilsonloopobservabeln kan
satsen darefter bevisas genom att ta griansvirdet da N ndrmar sig odndligheten.

For de som &r intresserade av liknande problem finns bland annat artiklarna
"Wilson loops in Ising lattice gauge theory" av S. Chatterjee [2] och "Wilson
loop expectations in lattice gauge theories with finite gauge groups" av S. Cao
[3] som bada publicerades ar 2020.
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