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Abstract

Introduction: Silver fir (Abies alba Mill.) is one of the most valuable conifer wood

species in Europe. Among the main opportunistic pathogens that cause root and butt

rot on silver fir are Armillaria ostoyae and Heterobasidion abietinum. Due to the

different enzymatic pools of these wood-decay fungi, different strategies in

metabolizing the phenols were available.

Objective: This work explores the changes in phenolic compounds during silver fir

wood degradation.

Methodology: Phenols were analyzed before and after fungus inoculation in silver fir

macerated wood after 2, 4 and 6 months. All samples were analyzed using

high-performance liquid chromatography coupled to a hybrid quadrupole-orbitrap

mass spectrometer.

Results: Thirteen compounds, including simple phenols, alkylphenyl alcohols,

hydroxybenzoketones, hydroxycinnamaldehydes, hydroxybenzaldehydes, hydro-

xyphenylacetic acids, hydroxycinnamic acids, hydroxybenzoic acids and

hydroxycoumarins, were detected. Pyrocatechol, coniferyl alcohol, acetovanillone,

vanillin, benzoic acid, 4-hydroxybenzoic acid and vanillic acid contents decreased

during the degradation process. Methyl vanillate, ferulic acid and p-coumaric were

initially produced and then degraded. Scopoletin was accumulated. Pyrocatechol,

acetovanillone and methyl vanillate were found for the first time in both degrading

and non-degrading wood of silver fir.

Conclusions: Despite differences in the enzymatic pool, both fungi caused a signifi-

cant decrease in the amounts of phenolic compounds with the accumulation of the

only scopoletin. Principal component analysis revealed an initial differentiation

between the degradation activity of the two fungal species during degradation, but

similar phenolic contents at the end of wood degradation.
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1 | INTRODUCTION

Phenolic compounds are commonly produced as secondary

metabolites from plant and fungal species. In plants they constitute

one of the most common and widespread groups of substances which

arise biogenetically from the pentose phosphate, shikimate and

phenylpropanoid pathways. The plant-associated fungi have symbioti-

cally adopted these pathways into their metabolic cycle and mimic the

plants by producing phenols.1 Plants need phenolic compounds for

antifungal activity and resistance to pathogen growth; moreover, both

plants and fungi use them for pigmentation, reproduction and many

other functions.2

The fungi Armillaria spp. and Heterobasidion spp. have dual life

strategies, being necrotrophic on living trees and subsequently

saprotrophic on dead wood. As both fungi are considered white rot

fungi, they have a versatile machinery of enzymes to attack directly

the lignin barrier. The two fungal genera differ also significantly in

symptomatology.3 Recently, the genomes of a European and a North

American Armillaria ostoyae strain were published4 while the

Heterobasidion abietinum sequence is not described yet. Interestingly,

in comparison with other white rot fungi, Armillaria shows an under-

representation of ligninolytic gene families and an overrepresentation

of pectinolytic gene families.4 Accordingly, recent studies considered

Armillaria spp. as white rot fungus, based on the presence of genes

encoding lignin-decaying enzymes in their genomes.4–7 However, pre-

vious studies have also shown that Armillaria species primarily decay

the cellulose, hemicellulose and pectin components of the plant cell

wall, and leave lignin unattacked during early stages of decay.8 They

have been discussed as white rot species, though their response to

wood deviates from that of typical white rotters. While we observed

an upregulation of a diverse suite of plant cell wall-degrading

enzymes, unlike white rotters, they possess and express an atypical

wood-decay repertoire in which pectinases and expansins are

enriched, whereas lignin-decaying enzymes are generally down-

regulated.9 Heterobasidion spp. have more gene families typically

involved in lignin degradation or modification, including laccases and

peroxidase.

Results for wood block degradation correlated well with the

ability of the Heterobasidion spp. to produce laccase in liquid and solid

culture conditions, with H. annosum ss. producing ca 5–6 times more

laccase than H. parviporum, indicating that great differences exist

between Heterobasidion species' abilities to cause wood decay.10 The

analysis of the Heterobasidion irregulare genome revealed a repertoire

of genes encoding lignocellulose-degrading enzymes, including

179 glycoside hydrolases (GHs), eight manganese peroxidases (MnPs)

and 17 multicopper oxidases (MCOs).11 In a study on the degradation

of pine wood during saprotrophic growth of H. annosum ss., the induc-

tion of many GHs, MCOs, five MnPs and one oxidoreductase was

observed, being specific for wood degradation. A total of 31 predicted

GH genes were found upregulated in heartwood, 20 in sapwood and

23 in bark compared to the control.12 In Heterobasidion parviflorum, a

close relative of H. abietinum, it was proved that in addition to trans-

criptome variation, also variation in the methylome (DNA cytosine

methylation) is an important epigenetic modification in the lifestyle

transition of this fungus.13 After wounding and inoculation of the bark

of Sitka spruce, different concentrations of cell wall-bound phenolic

compounds from the necrotrophic lifestyle of H. annosum were found,

including unknown2, unknown3, coniferin, astringin, taxifolin, piceid

and isorhapontin, whereas in sapwood the concentrations did not

differ following treatment. These results indicate that bark of Sitka

spruce has a stronger and earlier response to wounding and pathogen

inoculation than sapwood.14

White rot fungi have been investigated extensively since the

mid-1980s for their bioremediation capacities;15 in fact, they are con-

sidered the only organisms able to completely decompose lignin into

CO2 and water.16–18 Lignin, the second largest sink of fixed carbon,

after cellulose,19 is a complex phenolic biopolymer that plays a central

role in mechanical support of plant cell walls, water transport and

pathogen resistance in plants.20 The lignin molecule can be composed

of three different phenylpropane monomer units (monolignols),

namely, para-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol,

linked by ether and carbon–carbon type bonds.21 The composition

and amount of this polymer vary depending on the different botanical

groups (conifers vs. broadleaves), between different tree species and

even between the different woody tissues of the same tree.22

Conifers (softwood) are known to contain high amounts of lignin con-

sisting mainly of guaiacyl units (90%) derived from coniferyl alcohol;

broadleaf trees (hardwoods) and herbaceous species contain similar

amounts of both guaiacyl and syringyl units derived from coniferyl

alcohol and sinapyl alcohol, respectively.23,24 Moreover, softwood

lignin is estimated to be comprised of about 19% to 26% of phenolic

units, whereas hardwood lignin contains about 14 to 18% of

phenolic units.25 Due to the chemically complex structure, lignin

polymer is highly resistant to physical, chemical and biological

degradation.26

In order to depolymerize and mineralize the complex lignin mole-

cule, these fungi secrete various combinations of strong extracellular

oxidative lignolytic enzymes known as “ligninases”.27 Ligninases

include mainly lignin peroxidase, MnP and laccase.28,29 In particular,

lignin peroxidase directly attacks the non-phenolic lignin model

compounds, such as veratryl alcohol (VA), by producing intermediate

radicals,30,31 whereas Mn-dependent peroxidase and laccase are able

to oxidize the phenolic lignin units to phenoxy radicals, leading to the

decomposition of the woody structures.32,33 Different combinations

of these enzymes produced by white rot fungi underlie different

mechanisms of lignin degradation with the production of various

phenolic compounds.34–36 For example, the degradation of guaiacyl-

β-coniferyl ether in softwood lignin (e.g. pine and spruce lignins) leads

to the formation of coniferyl alcohol, coniferylaldehyde, ferulic acid,

several low-molecular weight aromatic acids and aldehydes, including

vanillin and vanillic acid.37–40 Other common degradation products of

hardwood are syringic acid, syringaldehyde, protocatechuic acid and

gallic acid.41 Many studies have extensively investigated the role

and activity of ligninolytic enzymes produced by white rot fungi, such

as Phanerochaete chrysosporium, during lignin depolymerization.42–45

Several studies have also described different strategies of fungi in
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metabolizing the phenolic compounds during wood degrada-

tion24,46,47; however, only a preliminary study has focused on silver fir

(Abies alba Mill.) wood which evaluated the distribution and variation

of extractable total phenols and tannins in the logs of four conifers

after 1 year on the ground.48 Silver fir, one of the most valuable

conifer wood species in Europe, is widely distributed in Central

and Southern European forests and therefore of significant ecological

and economic value.49 Among the main opportunistic pathogens

that cause root and butt rot on silver fir are A. ostoyae50 and

H. abietinum,51,52 which was previously called Heterobasidion annosum

F-group.53 The infections caused by these fungi can spread from tree

to tree through root connections. When a host tree dies or is cut,

both pathogenic fungi act as strong saprophytic organisms54,55;

consequently, these fungi are of major importance in the decay of

living trees and of dead silver fir wood.

Various chromatographic techniques have been used to identify

and quantify phenolic compounds of lignin, including gas chromatog-

raphy (GC), liquid chromatography (LC), size exclusion chromatogra-

phy (SEC), capillary electrophoresis (CE) and two-dimensional

chromatography.56 However, among these analytical techniques, the

coupling of high-performance LC and mass spectrometry (HPLC-MS)

proved to be a powerful technique for the analysis of low-molecular

weight compounds such as phenols with high selectivity and

sensitivity.57,58

Considering the already well-described lignin degradation realized

by rot fungi59 and also in vitro degradation,60,61 this work aimed to

study how the different enzymatic pools of the two rot fungi

influenced the trend of phenolic compounds at different wood

degradation periods (2, 4 and 6 months) on macerated silver fir wood.

Phenolic profiles were explored before and after fungal inoculations

in the laboratory using HPLC coupled to a hybrid quadrupole-orbitrap

mass spectrometer (LC-Q-Orbitrap).

2 | EXPERIMENTAL PROCEDURES

2.1 | Reagents and standards

LC-MS grade acetonitrile (99.9%), LC-MS grade methanol (99.9%) and

MS grade formic acid (98%) were purchased from Fluka (St. Louis,

MO, USA). Potato dextrose agar (PDA) was purchased from Oxoid

(Hampshire, England). Deionized water used for the preparation of

the sample and eluent solutions was obtained using an Arium®Pro

Lab Water System (Sartorius AG, Goettingen, Germany). The phenol

standards used for quantitative determination were grouped into

15 classes according to their chemical structure62 (Table 1). According

to the solubility of the various phenols, six aqueous solutions with

different percentages of methanol, ranging from 15% to 55%, were

used in the preparation of the stock solutions (Table 1, MeOH %).

Furthermore, phenols with the same m/z were dissolved in separate

solutions, for a final of eight total mixtures (Table 1, I.D.). The stock

solutions were then combined into a single intermediate solution

(water–methanol mixture; 75:25 v/v) with a concentration of

10 mg L�1 for each phenol and freshly diluted to the desired concen-

tration before each analysis. Stock solutions were stored at �4�C.

Mass calibration solution (Pierce® ESI Negative Ion Calibration

Solution) was purchased from Thermo Fisher Scientific Inc. (Waltham,

MA, USA).

2.2 | Evaluation of sample preparation

The extraction procedure is an important step for the quantification

of wood extractives, such as phenolic compounds. The extraction

yield of phenolics is affected by several factors, such as the solvents

used with varying polarities, the sample-to-solvent ratio, extraction

time, temperature and the characteristics of the sample.63 Studies

have reported that different solvents, such as methanol, ethanol, ace-

tone, ethyl acetate and their combinations with different proportions

of water, were used for the extraction of phenolic compounds from

wood and plant materials.64,65 In the present study, the extraction of

phenolic compounds from macerated silver fir wood containing the

fungal inoculum was evaluated at two different temperatures (30�C

and 80�C), using five different mixtures of methanol/water: 100%

H2O, 100% MeOH and H2O/MeOH at 75:25 (v/v), 50:50 (v/v) and

25:75 (v/v). The different sample preparation tests were conducted

on a sample of silver fir sapwood taken from a living tree located in

the Trentino Region (Italy).

2.3 | Fungal strains, culture conditions and sample
preparation

Two different species of white rot fungi, A. ostoyae and H. abietinum,

obtained from the fungal culture collection of the Pathology Lab of

the Edmund Mach Foundation (TN), were used. In order to promote

mycelium growth, both fungal species were axenically cultivated on

20 g L�1 of sterile PDA plates for about 20 days at room temperature.

A total of 12 Petri dishes were prepared (six replicates for each fungal

species). After fungal growth, the mycelium of A. ostoyae and

H. abietinum was scratched off from the plates and cut into small

pieces using a sterile scalpel blade and then inoculated axenically onto

3 g of sterile macerated silver fir wood in 18 sterile glass vials of

10 cm3 (Sartorius AG, Goettingen, Germany), in nine replicates per

each fungal species, out of which three were harvested per time point.

Macerated wood was prepared by milling sapwood of silver fir with

an M20 mechanical mill (IKA–WERKE, Staufen, Germany) to obtain

wood chips of about 3 mm in diameter. Silver fir sapwood was previ-

ously taken from a living tree located in the “Abeti Soprani” forest in

the Molise Region (Italy) using a chainsaw. To promote fungal growth

in macerated silver fir wood, 5 mL of sterile ultra-pure water was

added in each glass vial.66 In addition to the vials with fungal inocu-

lum, three other vials were prepared as controls (t0), containing only

sterile macerated wood, which were stored at �20�C. The inoculated

vials were stored at room temperature and after two (t1), four (t2) and

six (t3) months, six of them (three for each fungus) were put in the
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TABLE 1 Technical characteristics of phenolic analytical standards

Phenolic compounds

Stock solution

Purity Supplier I.D. MeOH%

Simple phenols

Phenol ≥99% Sigma Aldrich 4 22

Pyrocatechol ≥99% Sigma Aldrich 3 22

Alkyphenols

4-Ethylcatechol ≥98% Sigma Aldrich 4 55

4-Methylcatechol ≥98% Fluka 5 22

4-Vinylphenol n.d. Sigma Aldrich 5 55

m-Cresol ≥98% Sigma Aldrich 5 55

o-Cresol ≥99% Sigma Aldrich 5 35

p-Cresol ≥99.9% Sigma Aldrich 6 55

Methoxy- and alkylmethoxyphenols

4-Ethylguaiacol ≥98% Sigma Aldrich 6 55

4-Methylguaiacol ≥99% Sigma Aldrich 6 55

4-Vinylguaiacol ≥98% Sigma Aldrich 6 55

Guaiacol ≥99% Sigma Aldrich 6 55

Dimethoxyphenol and alkylphenylmethoxy alcohols

4-Methylsyringol ≥97% Sigma Aldrich 7 55

Syringol ≥99% Sigma Aldrich 7 35

Alkylphenyl alcohols

Coniferyl alcohol ≥98% Sigma Aldrich 3 22

Hydroxytyrosol ≥98% Sigma Aldrich 7 22

Homovanillyl alcohol ≥99% Sigma Aldrich 5 35

Hydroxyphenylpropenes

Eugenol ≥99% Fluka 7 55

Isoeugenol ≥98% Sigma Aldrich 8 35

Hydroxybenzoketones

Acetosyringone ≥97% Sigma Aldrich 1 40

Acetovanillone ≥98% Sigma Aldrich 3 40

Ethyl vanillate n.d. Sigma Aldrich 8 35

Isoacetosyringone ≥97% Sigma Aldrich 3 40

Isoacetovanillone ≥97% Sigma Aldrich 8 40

Isopropiovanillone ≥96% Sigma Aldrich 7 40

Methyl vanillate ≥99% Sigma Aldrich 2 40

Hydroxybenzoether

Vanillyl ethyl ether n.d. Fluka 8 35

Hydroxycinnamaldehydes

Coniferylaldehyde ≥98% Sigma Aldrich 2 55

Sinapinaldehyde ≥98% Sigma Aldrich 4 55

Hydroxybenzaldehydes

Syringaldehyde ≥98% Sigma Aldrich 2 40

Vanillin ≥99% Sigma Aldrich 1 40

Hydroxyphenylacetic acids

Homovanillic acid ≥98% Sigma Aldrich 1 15

Hydroxycinnamic acids

Caffeic acid ≥95% Fluka 4 15

(Continues)
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freezer to stop fungal activity and preserve the samples until analysis.

Before the analysis of phenolic compounds, all samples were dried in

the oven at 30�C for 1 week. After drying, 0.1 g of each sample was

transferred into 2-mL Eppendorf tubes and then extracted in 2 mL of

water–methanol mixture (H2O/MeOH 75:25, v/v). The solutions were

first homogenized for 2 min using an Ultrasonic processor (UP50H;

50 watts, 30 kHz; Hielscher Ultrasonics GmbH, Warthestraße,

Germany) and were then shaken using a Multi Reax (Heidolph

Instruments GmbH & Co. KG, Schwabach, Germany) for 15 min. The

samples were centrifuged at 15,000 rpm and 10�C for 5 min and then

suspended again with the Multi Reax; afterwards, they were left to

rest for 1 hour. Finally, all samples were centrifuged for 5 min at

15,000 rpm, the supernatants were filtered with 0.45-μm PTFE filter

cartridges (Sartorius AG) into analytical 2-mL vials and 10 μL per

sample was injected.

2.4 | LC-HRMS analysis

The analysis of phenolic compounds was carried out according to the

method described by Barnaba et al. (2018). In particular, the identifi-

cation and quantification of these compounds was performed using a

Thermo Ultimate™ 3000 HPLC (Thermo Scientific, Sunnyvale, CA,

USA) coupled to a hybrid quadrupole-orbitrap mass spectrometer

(Q-ExactiveTM; Thermo Scientific, Bremen, Germany), equipped with

heated electrospray ionization (HESI-II). Chromatographic separation

was carried out by injecting 10 μL of sample on an Accucore™ Polar

Premium LC column (150 mm � 3 mm, 2.6 μm particle size; Thermo

Fisher Scientific, Waltham, MA, USA), using a water–acetonitrile

gradient at a flow rate of 0.3 mL min�1. Mass detection was per-

formed in negative ion mode using full MS data-dependent MS/MS

analysis (full MS–dd MS/MS). Full mass spectra were recorded with a

resolution of 70,000 full width at half-maximum (FWHM, calculated

for m/z 200, 1.5 Hz), an automatic gain control (AGC) target of 5�105
ions and a maximum injection time (IT) of 150 ms. Data-dependent

mass spectra were recorded with a resolution of 17,500 FWHM

(m/z 200, 12 Hz), an AGC target of 1�105 ions and an IT of 50 ms. The

mass spectrometer was operated using the following parameters:

spray voltage, 2.80 kV; sheath gas flow rate, 30 arbitrary units; auxil-

iary gas flow rate, 20 arbitrary units; capillary temperature, 310�C;

capillary gas heater temperature, 280�C. Data acquisition and

processing were carried out with Thermo Scientific™ Dionex™

Chromeleon™ 7.2 Chromatography Data System software.

2.5 | Method validation

The characteristics of the method were studied using the 13 pure

standards corresponding to the phenolic compounds quantified in the

analyzed samples (acetovanillone, benzoic acid, coniferyl alcohol,

coniferaldehyde, ferulic acid, homovanillic acid, methyl vanillate,

4-hydroxybenzoic acid, p-coumaric acid, pyrocatechol, scopoletin,

vanillic acid and vanillin). Limits of quantification (LOQs) were

established as 10 standard deviations of 10 replicated blank samples

according to EURACHEM (1993). Method accuracy was estimated as

recovery (%) of one sample spiked at two increasing concentration

levels, covering the quantitation range of each phenol (high concen-

tration, 1 mg L�1; low concentration, 0.2 mg L�1), each one

TABLE 1 (Continued)

Phenolic compounds

Stock solution

Purity Supplier I.D. MeOH%

Ferulic acid ≥98% Fluka 2 15

p-Coumaric acid ≥98% Sigma Aldrich 1 15

Hydroxybenzoic acids

Benzoic acid ≥99.5% Sigma Aldrich 3 15

Gallic acid ≥97.5% Sigma Aldrich 4 15

Gentisic acid ≥98% Fluka 4 15

4-Hydroxybenzoic acid ≥99% Fluka 1 15

Protocatechuic acid ≥97% Fluka 2 15

Syringic acid ≥97% Sigma Aldrich 3 15

Vanillic acid ≥97% Fluka 3 15

Hydroxycoumarins

Aesculetin ≥98% Sigma Aldrich 8 30

Scopoletin ≥98.5% Sigma Aldrich 1 30

Flavanols

(�)-Epicatechin ≥90% Sigma Aldrich 7 30

(+)-Catechin ≥98.5% Fluka 8 30

n.d. = not detected; I.D. = identical dilution.
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analytically replicated three times. Precision was assessed as the

relative standard deviation (RSD%) of the same experimental samples

used for calculating accuracy.

2.6 | Statistical analysis

Statistical analysis was performed using XLSTAT (version 2020,

Addinsoft, France). Significant differences between the concentra-

tions of phenolic compounds measured during different times of

degradation were determined using the Kruskal–Wallis test (p < 0.05).

Principal component analysis (PCA) was carried out to evaluate the

relationships between phenolic compounds at different times of silver

fir wood degradation and the activities of two fungal species.

3 | RESULT AND DISCUSSION

3.1 | Evaluation of sample preparation

The evaluation of the best conditions for sample preparation was

conducted on a sample of silver fir sapwood taken from a living tree

located in the Trentino Region (Italy). The use of different tempera-

tures (30�C and 80�C) to dry the macerated wood samples did not

influence the final content of phenolic compounds in the extracted

samples (less than ±5%, data not shown). However, several studies

showed that the use of high temperatures in the drying process might

promote possible concurrent degradation of phenolic compounds.67,68

For this reason, all samples were dried in the oven at 30�C. As

regards the solvent mixtures, combinations of different solvents

produced different recoveries of phenolic compounds, and the best

compromise was obtained using H2O/MeOH at 75:25 v/v (Table 2).

3.2 | Method validation

Phenol quantification was performed on precursor ions detected in

the extracted ion chromatograms (EICs) corresponding to the

deprotonated molecules [M-H]�. Due to confirmed sample

compounds, accuracy-mass tolerance was set at <5 ppm and RT and

dd-MS/MS spectra were compared with those collected from

available standards (Figure 1).

The method characteristics including LOQ, linearity range,

precision and accuracy determined for each phenolic compound are

shown in Table 3. Accuracy, evaluated in terms of recovery (%), was

between 40% and 77% in the samples supplemented with 0.2 mg

L�1 of standard mixture solution, while it was between 51% and

106% in the samples supplemented with 1 mg L�1 of standard

mixture solution. The precision values (expressed as relative standard

deviations; RSD %) were always below 8% for the samples

supplemented with 1 mg/L of standard mixture solution, while for

those supplemented with 0.2 mg L�1 the values were always lower

than 16% (Table 3). The MS quantification channel chromatograms

of a standard mixture solution and a sample are reported in

Figure 2.

3.3 | Phenolic compounds in silver fir wood

Several phenolic compounds were identified in silver fir wood

samples. As reported in Table S1, among simple phenols, a low con-

tent of pyrocatechol (from 0.29 to 0.44 mg kg�1) was detected. To

the best of our knowledge, this compound was found for the first time

in fresh silver fir wood, while other studies showed the production of

pyrocatechol due to the action of ligninolytic enzymes of white rot

fungi during lignin degradation.69,70 As regards alkylphenyl alcohols, a

TABLE 2 Phenolic contents (mg kg�1) extracted in silver fir sawdust samples with five solvent mixtures of methanol/water at 30�C

Solvent mixture

Compound 100% H2O H2O/MeOH (75:25 v/v) H2O/MeOH (50:50 v/v) H2O/MeOH (25:75 v/v) 100% MeOH

Acetovanillone 0.020 ± 0.030 1.4 ± 0.060 0.100 ± 0.050 0.020 ± 0.020 0.010 ± 0.010

Benzoic acid 1.20 ± 0.218 1.42 ± 0.505 0.008 ± 0.003 0.658 ± 0.931 0.559 ± 0.788

Coniferyl alcohol 1.16 ± 0.153 0.431 ± 0.007 0.026 ± 0.008 0.008 ± 0.001 0.014 ± 0.006

Coniferaldehyde 0.065 ± 0.013 0.228 ± 0.303 0.030 ± 0.006 0.099 ± 0.001 0.044 ± 0.034

Ferulic acid 6.70 ± 2.40 8.60 ± 0.900 1.60 ± 0.100 1.70 ± 2.40 0.900 ± 0.600

Homovanillic acid 0.200 ± 0.100 4.30 ± 0.300 0.800 ± 0.500 1.10 ± 0.100 0.300 ± 0.100

Methyl vanillate 0.140 ± 0.085 0.460 ± 0.113 0.080 ± 0.028 0.140 ± 0.057 0.320 ± 0.198

4-Hydroxybenzoic acid 7.30 ± 2.90 7.90 ± 4.10 4.00 ± 0.200 0.100 ± 0.100 0.100 ± 0.100

p-Coumaric acid 2.50 ± 0.900 4.40 ± 0.500 0.400 ± 0.400 0.200 ± 0.020 0.100 ± 0.010

Pyrocatechol 0.016 ± 0.002 0.046 ± 0.059 0.005 ± 0.001 0.012 ± 0.001 0.005 ± 0.001

Scopoletin 0.100 ± 0.141 0.200 ± 0.100 0.100 ± 0.141 0.100 ± 0.141 0.200 ± 0.100

Vanillic acid 0.500 ± 0.020 12.9 ± 8.20 2.90 ± 0.100 0.400 ± 0.600 0.100 ± 0.100

Vanillin 5.00 ± 1.00 30.0 ± 7.30 10.0 ± 1.00 23.0 ± 3.00 20.6 ± 3.40

Note: Values are average ± standard deviation of triplicate analysis.
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high concentration of coniferyl alcohol (from 5.9 to 13.9 mg kg�1) was

found. Coniferyl alcohol is one of the main components of lignin,

particularly abundant in coniferous species, such as silver fir.71 Among

hydroxybenzaldehydes, notably high concentrations of vanillin (from

39.4 to 58.7 mg kg�1) were found. These results agree with

Zarzy�nski,72 concerning the identification and quantification of

phenolic compounds in wood of exotic and European tree species,

such as silver fir. As regards hydroxybenzoketones, acetovanillone

and methyl vanillate were found in detectable amounts, with

concentrations ranging from 2.5 to 3.9 mg kg�1 and from 0.15 to

0.20 mg kg�1, respectively. These compounds were detected for the

first time in silver fir wood. Among hydroxycinnamic acids, a low

content of ferulic acid (from 0.05 to 0.50 mg kg�1) was found. This

compound was previously identified in wood of other coniferous

species, such as Norway spruce, by Metsämuuronen and Siren

(2014). Finally, as regards hydroxybenzoic acids, benzoic acid,

4-hydroxybenzoic acid and vanillic acids were found with remarkable

concentrations ranging from 14.2 to 22.8 mg kg�1, from 4.4 to

6.3 mg kg�1 and from 59.3 to 79.7 mg kg�1, respectively.

In particular, among all the phenolic compounds, vanillic acid was

the most abundant. Few studies reported the presence of this

compound in the bark and wood extract of silver fir.73,74

F IGURE 1 Fragmentation spectra (ddscan
MS/MS) of detected phenols
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3.4 | Effect of fungal activity on phenolic
components

The changes in the phenolic profiles of silver fir wood, in relation to

the activity of the two different fungal species belonging to the

Armillaria and Heterobasidion genera, were evaluated during 6 months

of wood degradation. The phenol content was analyzed at 2, 4 and

6 months. Table S1 summarizes the phenolic compound content,

while the trends of these compounds at different times of degradation

can be observed in Figure 3(a, b).

Specifically, considering phenols already available in macerated

wood, a similar decay pattern was observed for coniferyl alcohol,

vanillin, benzoic acid, 4-hydroxybenzoic acid and pyrocatechol for

both rot fungi.

In particular, vanillin, benzoic acid, 4-hydroxybenzoic acid and

pyrocatechol were rapidly metabolized by both fungal species, show-

ing a decreasing trend during the degradation process with a total

consumption of vanillin and pyrocatechol. Considering vanillin, despite

starting from high concentrations (about 50 mg kg�1), complete deg-

radation of this compound was observed during the decay process,

differently from what was reported by several studies that observed

the production of vanillin during lignin degradation by different

species of basidiomycete fungi like Aspergillus sydowii,75 Pycnoporus

cinnabarinus76 and Schizophyllum commune.77 Moreover, in some

fungal species vanillin was described as an intermediate during lignin

degradation for the conversion of ferulic acid to vanillic acid.75,77

Benzoic acid and 4-hydroxybenzoic acid were already identified as

lignin degradation products,78–80 and several studies reported that

benzoic might arise after the oxidative cleavage of the α and β carbons

of the alkyl side chain by MnP.31,81 As regards pyrocatechol, studies

conducted on the white rot fungus P. chrysosporium highlighted the

production of this compound due to the oxidation of β-O-4 linkages

of lignin by lignin peroxidase.69,70 However, other studies indicated a

decrease of pyrocatechol levels after the action of laccase with the

subsequent conversion to phenoxyl radicals through oxidation

processes.19,82

Regarding coniferyl alcohol, the decreasing trend during the

degradation process appeared much slower for both fungi and the

consumption of phenols was not complete. Coniferyl alcohol

showed a concentration significantly lower after 6 months (t3) from

fungal inoculation compared to the other time points (Table S1).

This alcohol is reported as one of the most abundant

TABLE 3 Validation parameters of 13 phenolic compounds detected in silver fir sawdust samples for LC-Q-Orbitrap analysis

LOQ Linearity range

Precision

(RSD %) Accuracy (%)

Phenolic compound RT (min) [M-H]� (m/z) Fragment (m/z) μg mL�1

0.2 1 0.2 1

mg/L�1

Simple phenols

Pyrocatechol 10.6 109.0295 108.022 0.0005 0.0005–8.95 16 2 71 82

Alkyphenyl alcohols

Coniferyl alcohol 17.8 179.0714 121.029 0.0107 0.0107–5.35 8 8 43 51

Hydroxybenzoketones

Acetovanillone 20.0 165.0557 150.033 0.0001 0.0001–5.12 12 2 45 76

Methyl vanillate 29.9 181.0506 166.028 0.0005 0.0005–9.27 8 2 59 69

Hydroxycinnamaldehydes

Coniferylaldehyde 26.2 177.0556 162.032 0.0001 0.0001–5.07 2 4 43 51

Hydroxybenzaldehydes

Vanillin 17.1 151.0401 136.017 0.0001 0.0001–5.36 3 6 53 71

Hydroxyphenylacetic acids

Homovanillic acid 12.1 181.0506 137.061 0.0010 0.0010–2.97 8 4 52 79

Hydroxycinnamic acids

Ferulic acid 26.0 193.0506 134.037 0.0001 0.0001–6.21 5 3 47 51

p-Coumaric acid 29.6 163.0401 119.051 0.0001 0.0001–5.20 7 4 41 74

Hydroxybenzoic acids

Benzoic acid 30.0 121.0295 108.022 0.001 0.001–5 10 1 49 90

4-Hydroxybenzoic acid 18.1 137.0244 93.034 0.0001 0.0001–5.28 7 3 67 106

Vanillic acid 15.5 167.0350 152.011 0.0001 0.0001–3.04 10 2 77 58

Hydroxycoumarins

Scopoletin 21.5 191.0350 176.012 0.0010 0.0010–9.11 11 3 40 60

Note: RT = retention time; LOQ = limit of quantification.*Linearity ranges and LOQs are defined without considering sample dilution.
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monolignols of softwood lignin polymer23 and several studies

described its degradation by fungi and bacteria with the

consequent production of ferulic acid, coniferylaldehyde and vanillic

acid.76,83,84

Among the other phenols present in wood at t0, acetovanillone

levels showed a decreasing trend for both fungal species, but for

A. ostoyae the consumption of this phenol was faster and almost

complete already after 4 months. As regards acetovanillone, several

studies reported the presence of this compound during lignin

degradation by white rot fungi.85,86 A significantly decrease of ferulic

acid levels was observed for H. abietinum, while an initial accumulation

and subsequent degradation appeared in the samples inoculated with

A. ostoyae. In the literature, different pathways of ferulic acid

degradation induced by different fungal species were reported76,87,88

with the formation of other phenolic compounds, such as vanillic acid

and coniferylaldehyde.76 A similar behavior with an initial accumula-

tion (t1) was observed for methyl vanillate, which presented a low

initial concentration in wood (t0), especially in wood samples

inoculated with H. abietinum. However, in the following months,

methyl vanillate was completely consumed (Figure 3).

Homovanillic acid was completely consumed. The consumption

was very fast for H. abietinum and more gradual for A. ostoyae. On the

contrary, Takada et al.89 reported that homovanillic acid was produced

after lignin degradation by fungi. Vanillic acid levels showed a

decreasing trend during degradation by both fungal species, but was

completely consumed only in samples degraded by H. abietinum. In

wood samples degraded by A. ostoyae, the degradation was faster but

not complete.

During wood degradation, the formation of coniferaldehyde, p-

coumaric acid and scopoletin was observed; these compounds were

initially totally absent in the macerated silver fir wood. At 2 months

(t1) after the inoculation of both fungal species, the coniferylaldehyde

concentration exceeded 1 mg kg�1 and subsequently decreased until

this compound was almost completely degraded at 6 months (t3).

Several studies reported the production of this compound after the

enzymatic degradation of coniferyl alcohol by white rot fungi.84,90

Moreover, Falconnier et al.76 observed the formation of con-

iferylaldehyde after the reduction of the propenoic side chain of

ferulic acid by the action of ligninolytic enzymes in the white rot

fungus Trametes versicolor. Several studies reported the presence of

p-coumaric acid due to the action of lignin-degrading enzymes.56,91 In

particular, in both species there was an initial accumulation, with

average contents of about 0.99 mg kg�1 and 0.27 mg kg�1 of this

phenol after 2 months (t1) with A. ostoyae and H. abietinum,

respectively. After that, degradation was observed in both cases, with

total consumption only in the samples inoculated with A. ostoyae.

Several studies reported different strategies of p-coumaric acid

degradation by various fungal species.92–94 For example, in the basid-

iomycete P. cinnabarinus, the oxidative degradation of the p-coumaric

acid side chain led to the formation of p-hydroxybenzoic acid.92

Finally, the hydroxycoumarin scopoletin was the only phenol

investigated that showed accumulation during degradation, reaching a

F IGURE 2 Chromatograms of (a) standard phenol mixture solution at 2 mg/L and (b) wood sample
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concentration of 0.6 and 0.9 mg kg�1 after 6 months (t3) in samples

inoculated with A. ostoyae and H. abietinum, respectively. Scopoletin

is produced after the degradation of ferulic acid via the

phenylpropanoid pathway95 due to the action of ligninolytic enzymes,

such as MnP, lignin peroxidase and laccase, secreted in both fungal

species.96 Usually its accumulation is correlated with different kinds

of stress, such as the resistance to microbial attack.97 Rodriguez

et al.98 mentioned the possible antimicrobial functions of scopoletin

against a variety of different fungal and bacterial infections.

The decreases observed for many of the detected phenolic com-

pounds indicated that different fungal species are able to efficiently

metabolize most of the phenolic compounds.99 Despite the diversity

of enzymatic strategies of lignin depolymerization by the two differ-

ent fungal species belonging to the Armillaria and Heterobasidion

genera, the trends of phenolic compounds were not so variable.

However, according to previous studies,24,100 the degradation rates

and the final concentrations at t3 are significantly different for

acetovanillone, coniferaldehyde, ferulic acid and homovanillic acid

(Kruskal–Wallis test, P < 0.05; Table S1).

3.5 | Phenolic profiles and degradative fungal
activity

PCA was applied for the content of each phenolic compound quanti-

fied in macerated silver fir wood samples, in order to evaluate the cor-

relations between phenolic profiles and the activities of two fungal

species at different times of wood degradation (Figure 4). PCA, with

F IGURE 3 (a, b) Box plots with phenolic
compound content (mg kg�1 and μg kg�1 for
isoacetosyringone) at times t0, t1, t2 and t3
(different times of macerated silver fir wood
degradation) by Armillaria ostoyae and
Heterobasidion abietinum
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PC1 and PC2 collectively accounting for 76% of total variance,

revealed a good differentiation between the activities of the two

fungal species during the first period (at t1 and t2) of silver fir wood

degradation. In particular, PC1 clearly separates the data based on

time since inoculation and PC2 separates the data based on the fungal

species. Vanillic acid, methyl vanillate, acetovanillone and vanillin

better explained samples inoculated with H. abietinum after 2 months

of degradation, while, at the same time, coniferaldehyde and p-

coumaric acid better explained samples inoculated with A. ostoyae. In

particular, vanillin and vanillic acid were already present in wood

before the degradation process; these two compounds were probably

released from the degradation of guaiacyl-β-coniferyl ether.37

Subsequently, they underwent rapid consumption, while the methyl

vanillate concentration increased at t1. It was hypothesized that this

formation could directly be derived from the methylation of vanillic

acid by the fungi. Considering the greater production of methyl

vanillate in wood samples degraded by H. abietinum, but at the same

time a lower consumption of vanillic acid and a higher consumption of

ferulic acid, H. abietinum might converted ferulic acid to vanillic acid,

as reported for the ubiquitous white rot fungus S. commune.101 For

what concerns coniferaldehyde and p-coumaric acid, both were

produced due to the action of lignin-degrading enzymes,37,56 with a

particularly quicker production for p-coumaric by H. abietinum.

Subsequently (t3, 6 months), a homogenization was observed of

the samples based on the degradation of various investigated phenols

and the accumulation of scopoletin in samples inoculated with both

fungal species, suggesting a possible use of this parameter as a marker

indicative of fungal degradation of wood.

F IGURE 3 (Continued)
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