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A B S T R A C T   

This research aims at predicting sensory properties generated by the phenolic fraction (PF) of grapes from 
chemical composition. Thirty-one grape extracts of different grape lots were obtained by maceration of grapes in 
hydroalcoholic solution; afterward they were submitted to solid phase extraction. The recovered PFs were 
reconstituted in a wine model. Subsequently the wine models, containing the PFs, were sensory (taste, mouth
feel) and chemically characterized. 

Significant sensory differences among the 31 PFs were identified. Sensory variables were predicted from 
chemical parameters by PLS-regression. Tannin activity and concentration along with mean degree of poly
merization were found to be good predictors of dryness, while the concentration of large polymeric pigments 
seems to be involved in the “sticky” percept and flavonols in the “bitter” taste. Four fully validated PLS-models 
predicting sensory properties from chemical variables were obtained. Two out of the three sensory dimensions 
could be satisfactorily modeled. These results increase knowledge about grape properties and proposes the 
measurement of chemical variables to infer grape quality.   

1. Introduction 

Perceived intrinsic quality of wine is driven by volatile and non- 
volatile compounds involved in the formation of aroma, taste, mouth
feel and color (Sáenz-Navajas et al., 2015). Wine aroma is the result of 
aroma and aroma precursors in the raw grape material, the action of 
microorganisms during alcoholic and malolactic fermentation, and 
aging. Wine taste, mouthfeel, and color are driven principally by 
phenolic compounds present in grapes and their interaction with other 
wine components (e.g., polysaccharides, acids, alcohol or aroma among 
others). Grape phenolic compounds are extracted mainly from skins and 
seeds during the maceration and fermentation processes. The underlying 
aromatic and phenolic composition of the grape berry has an important 
impact on the final intrinsic quality of wines. Grape growers, wine
makers, and researchers seek to infer wine quality from both the sensory 
and the chemical properties of wine grapes. For this purpose, classical 

oenological measures are traditionally employed in addition to berry- 
tasting with the specific aims of evaluating both the evolution of 
grape properties during ripening and the grapes potential with which to 
elaborate wines. The determination of chemical parameters is usually 
limited to a reduced number of variables (total acidity, color intensity, 
total polyphenolic index or pH among others), which does not produce 
an overall quality potential classification of the grape lot. The sensory 
assessment of grapes is not a generalized practice probably because the 
proposed berry sensory assessment method (Mantilla et al., 2010; 
Rousseau & Delteil, 2000) has two main limitations that make the 
generation of reliable results difficult. The first is the use of a reduced 
number of panelists to carry out the sensory evaluation and second the 
lack of grape representativeness, because generally, in each evaluation 
one expert analyses a relatively reduced number of berries. These lim
itations, related to the sensory characterization of grapes, could be 
overcome by extracting the main sensory-active compounds of grapes, 
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mainly aroma, aroma precursors and phenolic compounds from a 
representative sample of grapes and characterize their sensory attributes 
with a sufficient number of panelists. 

Recently, a study published by Alegre et al. (2020) shows a prom
ising strategy for evaluating grape quality by focusing on the study of the 
aroma potential of wine grapes. The authors subjected reconstituted 
polyphenolic and aromatic fractions of grapes to accelerated hydrolysis 
in strict anoxia which yielded strong and differentiated aromas. This 
approach has proven useful for characterizing the potential aroma of 
grapes and thus, the evaluation of the potential aroma quality of grapes. 
The present research is focused on taste and mouthfeel induced by the 
phenolic fraction. Taste quality refers to the classical percepts of 
sweetness, sourness, bitterness, saltiness and umami which are the 
sensations that occur when the receptors present in the taste buds of the 
oral cavity are activated. Mouthfeel is related to tactile sensations 
generated in the oral cavity by the activation of the trigeminal nerve. 
The mechanisms modulating mouthfeel are the least understood; the 
study of “astringency” and its sub-qualities elicited by wine phenolic 
compounds have been scarcely found in the literature (Gawel, Ober
holster, & Francis, 2000; Piombino et al., 2020; Sáenz-Navajas et al., 
2017). 

Little is known about the sensory properties elicited by the phenolic 
fraction of grape berries and their relationship with chemical variables. 
This knowledge would be valuable for inferring grape quality. Despite 
the large amount of instrumental chemical strategies currently avail
able, perceived taste and mouthfeel cannot be predicted from chemical 
composition and consequently, these percepts can only be measured by 
sensory evaluation strategies. In this context, the present work aims at 
identifying chemical markers that allocate the inference of sensory 
properties driven by the phenolic fraction of grapes. One of the main 
challenges is to differentiate the phenolic fraction of grapes based on 
their mouthfeel properties. This could be attributed to the lack of 
reference materials illustrating these sensory characteristics. New stra
tegies have been developed and successfully applied for describing wine 
mouthfeel. These strategies are alternative to classical descriptive 
analysis and do not require consensus among participants and thus do 
not need reference materials (Ares et al., 2014; Valentin et al., 2012; 
Varela & Ares, 2012). These strategies include non-verbal and verbal 
approaches. Among the first, similarity based methods such as “free 
sorting task” (Chollet, Valentin, & Abdi, 2014) have shown to be 
interesting approaches that highlight the most salient sensory differ
ences among wines in terms of mouthfeel and taste perceptions (Sáenz- 
Navajas, Ferrero-del-Teso, Jeffery, Ferreira, & Fernández-Zurbano, 
2020). Verbal-based strategies such as “rate-all-that-apply” (RATA) or 
its variant rate-k-attributes have been successfully applied to differentiate 
red wines in terms of mouthfeel and taste by wine experts without 
previous training (Sáenz-Navajas et al., 2020). In this verbal-based 
strategy, the list of specific attributes of each product is a main 
concern to discriminate among samples. To this end, a relatively ample 
list of mouthfeel and taste properties elicited by phenolic fractions was 
recently developed (Sáenz-Navajas et al., 2017) and its use in discrim
ination trials was confirmed to be valuable with a wide range of wines 
(Sáenz-Navajas et al., 2020) and phenolic fractions (Ferrero-del-Teso 
et al., 2020). However, the efficacy of this strategy to discriminate 
phenolic fractions directly from grapes has remained unevaluated. 

In this context, the ability to differentiate the phenolic fraction of 
different grape lots based on their sensory properties following alter
native sensory descriptive methods such as sorting task or rate-k- 
attributes method was the first hypothesis of the present study. The 
second hypothesis was the ability to predict sensory differences elicited 
by grape phenolic fractions from chemical measurements. To test these 
hypotheses a wide range of Garnacha Tinta and Tempranillo Tinto 
grapes harvested at different maturation points from distinct geographic 
origins were selected in order to represent a large variability in their 
chemical composition. Tempranillo Tinto typically presents higher 
levels of phenolic compounds than Granacha Tinta (Santesteban, 

Miranda, & Royo, 2011); the variability endowed by the range of har
vests should also provide a wide array of taste and mouthfeel sensory 
attributes. The phenolic fraction (PF) of 31 grape batches (15 for Tem
pranillo Tinto and 16 for Garnacha Tinta) was obtained following the 
strategy proposed by Alegre et al. (2020). Reconstituted PFs were sen
sory evaluated following both verbal and non-verbal strategies and 
sensory descriptors derived from the verbal task were predicted by PLS- 
regression models from chemical variables. 

2. Material and methods 

2.1. Samples 

2.1.1. Grapes 
During the 2017 harvest, two different varieties, Tempranillo Tinto 

and Garnacha Tinta from different regions (DO Ribera del Duero and 
DOCa Rioja for Tempranillo Tinto and DOCa Rioja and DO Somontano 
for Garnacha Tinta) were harvested by hand from distinct blocks in 
different dates. For the Tempranillo Tinto variety, a total of 15 samples 
from five different blocks and in three different weeks were collected. 
For Garnacha Tinta, 16 samples from eight blocks were harvested in two 
different dates, each separated by one week (Table S1 and Table S2 of 
the Appendix B in Supporting Information are detailed lists of the 
samples). 

2.1.2. Preparation of grape extracts 
For each sample, ten kilograms of grapes were first destemmed, and 

8.5 Kg of the destemmed grapes were macerated with 5 g/hL of potas
sium metabisulfite and ethanol 15 % (p/p). After one week of macera
tion at 5 ◦C samples were pressed with a hydraulic wine press of 15 Kg of 
capacity and stored at 5 ◦C in the dark. Two weeks later, when the solids 
were precipitated, samples were bottled. For each grape batch, eight 
750 mL-bottles were obtained as average (corresponding to a yield of 
70%). 

2.1.3. Preparation of phenolic fractions (PF) 
A volume of 750 mL of each grape extract was centrifuged at 4500 

rpm, 10 ◦C for 20 min after which were separated from the alcohol in a 
rotary evaporator system (8 mbar, 28 ◦C, 30 min). The resulting deal
coholized extracts (containing no more than 2% ethanol) were passed 
through a 10g C18 prepared cartridge (Waters-Sep Pak-C18 35 cc). For 
cartridge conditioning, methanol followed by milli-Q water with 2% 
ethanol were employed. Then, the whole sample was loaded, and 
washed with milli-Q water pH 3.5 to remove sugars, amino acids, acids 
and ions. Cartridges were finally dried by letting air pass through them 
and phenolic fractions (PF) were recovered with 100 mL of ethanol as 
described by Alegre et al. (2020). 

2.1.4. Preparation of samples for sensory analysis 
PFs (coming from 750 mL of grape extract and eluted with 100 mL of 

ethanol in the SPE system) were twice concentrated by rotatory evap
orator system (i.e., the resulting PFs were 15 times concentrated). Then, 
PFs were reconstituted to their original volume in a solution prepared 
with mineral water, 1 g L− 1 of tartaric acid reaching 7% of ethanol 
concentration and pH was adjusted to 3.7. 

The level of ethanol in the hydroalcoholic model solution (7%) was 
selected in preliminary bench top tastings. It corresponds to the minimal 
level of ethanol able to induce the lowest “burning” and “hot” effect that 
is able to mask other sensations. 

2.2. Chemical analysis 

Chemical information is detailed in Appendix A of the Supplemen
tary material. 
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2.2.1. Conventional oenological parameters 
The concentrated PFs were reconstituted in a 3.7 pH solution pre

pared with 5 g L− 1 tartaric acid, milli-Q water, and hydroalcoholic so
lution (12%, v/v). 

Total polyphenol index (TPI) was estimated as absorbance at 280 nm 
(Ribéreau-Gayon, 1970) and color intensity (CI) as the sum of absor
bance at 420, 520 and 620 nm (Glories, 1984). 

2.2.2. Analysis of anthocyanin-derived pigments 
Determination of monomeric (MP), small polymeric pigments (SPP), 

and large polymeric pigments (LPP) in wines and fractions was carried 
out as described by Harbertson, Picciotto, & Adams (2003). 

2.2.3. Characterization of tannins 
Tannin activity was calculated as the specific enthalpy of interaction 

between tannins and a hydrophobic surface (polystyrene divinylbenzene 
HPLC column), as proposed by Revelette, Barak, and Kennedy (2014). 
The concentration of tannin and pigmented tannins were also deter
mined, and were reported in (− )-epicatechin equivalents. Detailed in
formation of the chromatographic conditions employed can be found in 
Appendix A of the Supplementary material. 

2.2.4. Mean degree of polymerization by phloroglucinol reaction 
The protocol was followed according to Arapitsas et al. (2021). 

Detailed information about the method is provided in Appendix A of the 
Supplementary material and chromatograms illustrated in Fig. S1 of 
Appendix B. 

The mean degree of polymerization (mDP) was calculated as the 
ratio between total units (extension + terminal) to terminal units 
(calculated as the difference between monomers before and after the 
phloroglucionolysis nucleophilic reaction). 

2.2.5. UHPLC-MS/MS quantification of low molecular weight polyphenols 
The quantification of anthocyanins was carried out using the method 

described by Arapitsas et al. (2012). All the compounds were quantified 
as equivalents of malvidin-3-O-glucoside. 

For the determination of flavanols, flavonols and hydroxycinnamic 
acids the method described by Vrhovsek et al. (2012) was employed. 

Chromatographic conditions of both methods are detailed in Ap
pendix A of the Supplementary material and chromatograms illustrated 
in Figs. S2 and S3 of Appendix B. 

2.3. Sensory characterization 

Two different sensory strategies were followed: sorting task (non- 
verbal) and rate-k-attributes (verbal). Both tasks were carried out by 21 
wine experts from Rioja area, Spain (18 women and 3 men, ranging in 
age from 26 to 55, with an average age of 39). They were all established 
winemakers with extended experience in wine production and tasting. 
Samples were served in normalized dark approved wine glasses (German 
Institute for Normalization, DIN) labeled with 3-digit random codes, in a 
randomized distinct order of presentation for each participant. Samples 
were served at room temperature and evaluated in a ventilated, air- 
conditioned tasting room (approximately 20 ◦C). 

Panelists were instructed to put the sample in the mouth and to 
gently distribute it during five seconds throughout the oral cavity (as a 
mouthwash) to reach the entire surface of the mouth (including the 
mouth wall, gums, back palate and tongue). After expectorating the 
sample, panelists had to wait one minute before rating the sample. After 
each sample, they were required to follow a mandatory rinsing protocol 
with mineral water and pectin (1 g L− 1) before tasting the next sample 
(Colonna, Adams, & Noble, 2004). Although samples were odorless, 
they were instructed not to smell samples in an orthonasal manner. 

Participants were informed that samples had been prepared in the 
laboratory and were not commercial wines. They were also required to 
sign a consent form prior to undertaking the sensory testing. They were 

neither informed about the objective of the study nor paid for their 
participation. 

2.3.1. Sorting task 
Two sorting task sessions (30 min each) were held on the same day 

(separated by at least 15 min), devoted to Tempranillo Tinto and Gar
nacha Tinta Garnacha sample sets, respectively. 

In each session, participants were simultaneously presented with all 
samples (15 for Tempranillo Tinto and 16 for Garnacha Tinta) and were 
asked to sort them on the table according to similarities in the sensations 
perceived in mouth (mouthfeel and taste). Participants could form as 
many groups as they wished (minimum of two groups) and put as many 
samples as they wanted in each group (groups could be formed by only 
one sample). After that, they were asked to note the three-digit codes of 
the samples belonging to each group on a paper sheet and were asked to 
describe the groups they formed with their own words (maximum of 
three terms per group). 

2.3.2. Rate-k-attributes 
Panelists attended two sessions (35 min each) held on different days; 

one for each variety. Each session was split into two parts separated by 
an imposed pause of 15 min. Samples were characterized following a 
rate-k-attribute method with a list of 23 taste and mouthfeel related 
attributes (Table S3 of the Appendix B in Supporting Information) that 
had been previously developed (Sáenz-Navajas et al., 2017). Partici
pants were asked to taste and rate the intensity of a maximum of five 
attributes appearing in each sample on a 7-point scale (1 = not intense; 
7 = very intense). Attributes that were not rated were allocated a value 
of zero when collecting data. To avoid bias due to order of presentation, 
attributes on the list appeared in a distinct randomized order for each 
participant. 

2.4. Data analysis 

2.4.1. Sorting task 
For each participant, results were encoded in an individual similarity 

matrix (wines × wines) with each cell indicating weather two wines 
were put in different groups or in the same group (0 and 1, respectively). 
These individual matrices were summed across participants; the 
resulting co-occurrence matrix represents the global similarity matrix, 
where larger numbers indicate higher similarity between samples and 
the main diagonal accounts for the number of participants. The resulting 
co-occurrence matrix was submitted to a non-parametric MDS analysis 
in order to obtain a spatial representation of the samples. Hierarchical 
cluster analysis with the Ward criterion was performed on all the MDS 
dimensions. 

Terms derived from the description of the groups were analyzed. 
First an initial list was built with all the terms elicited by participants. 
This list was reduced by omitting adverbs and words with hedonic or 
emotional character. Then, a lemmatization process was performed; 
words sharing the same lemma or root were grouped. Finally, a trian
gulation process was followed individually by three experienced re
searchers to achieve a final consensual list of terms. Terms belonging to 
the same semantic category were grouped, the frequency of citation of 
each consensual term was calculated, and only those cited by at least 
three panelists (15% of the panel) were considered. Chi-square (χ2) test 
was applied for calculating significance differences (P < 0.05) among 
clusters. In addition, two-way ANOVAs (panelists as the random and 
cluster as the fixed factors) were calculated with the scores of the 23 
terms obtained by rate-K-attribute method to get an alternative char
acterization of clusters derived from the sorting task. For significant 
attributes (P < 0.05), pair-wise comparison test (Fisher test) was applied 
(5% risk). 

2.4.2. Rate-k-attributes 
To find discriminate attributes a two-way ANOVA (panelists as the 
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random and samples as the fixed factors) was calculated for each of the 
23 attributes of the list. Then, for discriminate attributes, pair-wise 
comparison test (Fisher test) was applied (5% risk) for significant ef
fects. A principal component analysis (PCA) based on the correlation 
matrix was carried out with the mean intensity scores (n = 21) of the 
significant attributes. A hierarchical cluster analysis (HCA) with the 
Ward criteria was finally applied to all dimensions derived from the 
PCA. To identify the attributes defining clusters, a two-way ANOVA with 
the scores of attributes was calculated with panelists as the random 
factor and cluster as the fixed factor. For significant attributes (P <
0.05), pair-wise comparison test (Fisher test) was applied (5% risk). 

2.4.3. Comparison of sensory strategies 
The degree of similarity between the two sensory spaces derived 

from the sorting task and the rate-k-attributes was calculated employing 
an RV coefficient (Robert & Escoufier, 1976) and the Pearson correlation 
coefficients between the dimensions of both sensory spaces. 

2.4.4. Relationship between chemical and sensory variables 
To establish relationships between mouthfeel related attributes and 

chemical variables, the 31 samples (15 Tempranillo Tinto and 16 Gar
nacha Tinta) were considered. 

Firstly, to find discriminate attributes among the sample set, two- 
way ANOVAs (panelists as the random and samples as the fixed fac
tors) were calculated for each of the 23 attributes of the list. Then, for 
discriminate attributes, pair-wise comparison test (Fisher test) was 
applied (5% risk) for significant effects. On the first three PCs a PCA was 
carried out with the mean intensity scores (n = 31) of the significant 
sensory attributes with VARIMAX rotation. Rotation eases the inter
pretation of results by maximizing high- and low-value factor loadings 
and minimizing intermediate values. Further Pearson correlation co
efficients (r) and their significance were calculated between the signif
icant mouthfeel related attributes among samples (n = 6), PCA 
dimensions (n = 3), and the calculated chemical variables (n = 45). 

The six sensory attributes and the three PCA sensory dimensions 
were predicted by regressing calibration from chemical variables by 
PLS-regression attending to the following model: 

Y = XB+F  

where for a sample size n (n = 31),X(31,45) represents the input matrix, 
Y(31,6) the output matrix with the chemical variables, B(45,6) is the matrix 
of regression coefficients and F(31,6) the matrix of residuals. Single 
response models are analyzed. Then, single Y – variable Partial Least 
Square regression method is used for every sensory variable and the 45 
chemical variables (X). 

Input variables X have been filtered applying a 7 points window 
Stavizki-Golay smoothing; and, they have been standardized to com
parable noise levels. Likewise, sensory variables yi;1≤i≤6 have been 
standardized. 

Variable selection has not been considered to avoid the problem of 
overfitting. The model was validated using full cross validation. 

All the analyses have been carried out with Unscrambler X 10.5.1, 
Matlab R2018a, R 4.0 and XLStat v2018. 

3. Results and discussion 

3.1. Sensory characterization of Tempranillo Tinto and Garnacha Tinta 
sample sets 

The first objective of the present research was to evaluate the ca
pacity of the proposed chemosensory strategy to differentiate among 
distinct sample sets. Therefore, 15 and 16 phenolic fractions of the 
Tempranillo Tinto and Garnacha Tinta sample sets, respectively, were 
obtained and characterized with the two sensory strategies. 

3.1.1. Tempranillo Tinto sample set 
In the sorting task carried out with the 15 Tempranillo Tinto samples, 

participants formed 2 to 8 groups; 5 on average. Two samples were 
grouped together a maximum of nine times (43% of participants). 
Fig. 1a presents the dendrogram derived from the cluster analysis 
calculated with all the MDS dimensions that the sorting task data yiel
ded. Four main groups were identified containing three, four, two and 
six samples, respectively. Nine attributes including “dry” (62% of 
maximum citations for a given wine), “bitter” (52%), “astringent” (52%) 
and “sour” (43%), followed by “sweet” (19%), “watery” (19%), 
“persistent” (14%), “sticky” (14%) and “coarse” (14%) were among the 
most cited to describe the groups. Based on the highest frequency of 
citation for each cluster, cluster 1 was mainly described as “dry” (48%) 
and “bitter” (41%), cluster 2 as “dry” (50%), cluster 3 as “dry” (40%) 
and “astringent” (40%), and cluster 4 was mainly characterized as 
“astringent” (44%) and “sour” (31%). These results suggest that the most 
salient attributes of the set of Tempranillo Tinto PFs are “dry”, “bitter”, 
“astringent” and “sour”. However, no significant effect was observed 
among clusters according to Chi-square (χ2) test. Similarly, no signifi
cant effect of cluster was found for any of the attributes derived from the 
rate-k-method. Clusters obtained from MDS-HCA illustrate important 
sensory differences among the Tempranillo Tinto PFs herein studied. 
However, the specific attributes explaining such significant differences 
could not be identified. This, firstly suggests that differences among 
samples could not be verbalized in the description step of the sorting 
task and secondly, that the list of terms of the rate-k-attributes method 
did not contain the specific term differentiating among samples. 

Regarding the results derived from rate-k-attributes methodology, 
ANOVA results showed six significant attributes to differ among clusters: 
“coarse” (F = 7.35; P < 0.0001), “dusty” (F = 6.50; P < 0.001), 
“burning” (F = 6.23; P < 0.001), “bitter” (F = 4.56; P < 0.005) and 
“fleshy” (F = 3.91; P < 0.05), as well as “sticky” (F = 2.54; P < 0.1) when 
relaxing the criteria for significance. Further cluster analysis calculated 
on all PCA dimensions (PCA computed with the six significant terms) 
showed four main clusters of samples (Fig. 1b) with different sensory 
properties. Cluster 1, formed by two samples was mainly described as 
“sticky” (average = 1.26) and “dusty” (average = 0.98), cluster 2, 
formed by three samples, presented the lowest score value for the term 
“bitter” (average = 1.36) (Fig. S4 of Appendix B of the Supplementary 
material). Cluster 3, including two samples, was significantly charac
terized by “burning” (average 0.76) and reached the highest score for 
“bitter” (average = 2.43). Cluster 4, which is formed by eight samples, 
presented the lowest scores for the attributes “coarse” and “fleshy”. 

The two sensory spaces obtained by two different sensory strategies 
were compared. Therefore, MDS dimensions obtained from sorting task 
and the PCs derived from sensory characterization by rate-k-attributes 
method were employed to determine the RV coefficient. The RV coef
ficient was found to be 0.398 (P > 0.1), which indicates that the con
figurations of the two sensory spaces were different. A possible 
explanation for this result is that these two approaches, verbal (rate-k- 
attributes) and non-verbal (sorting task), induce participants to adopt 
different strategies when characterizing samples. In the sorting task 
panelists follow a holistic strategy in which overall and most salient 
differences among samples (Valentin, Chollet, Nestrud, & Abdi, 2017) 
are identified. While the rate-k-attribute methodology, which follows an 
analytical approach, is able to identify subtler and specific sensory dif
ferences among the sample set (i.e., “coarse”, “dusty” “burning”, 
“bitter”, “fleshy” and “sticky”). 

3.1.2. Garnacha Tinta sample set 
Based on the sorting task, the 16 Garnacha Tinta samples were 

grouped into 3 to 8 groups, 5 on average, similar to the Tempranillo 
Tinto sample set; illustrating the sensory variability associated with 
Garnacha Tinta PFs. Any two samples were grouped together a 
maximum of 10 times (48% of participants). As Fig. 2a shows, four main 
groups were identified. In this case, cluster 1 was formed by six samples, 
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cluster 2 and 3 were built by three and five samples, respectively, and 
cluster 4 was composed of only two samples. The analysis of the attri
butes employed to describe the groups led to a final consensual list of 8 
attributes including “dry” (62% of maximum citations for a given wine), 
“bitter” (52%), “sour” (48%), “astringent” (38%), and “watery” (24%), 
followed by “sticky” (19%), “sweet” (19%) and “alcoholic” (14%). Based 
on the highest frequency of citation for each cluster, all clusters were 
mainly described with the attributes “bitter” and “dry”: 44% and 41% of 
citations for cluster 1, 41% and 51% for cluster 2, 43% and 48% for 
cluster 3, and 38% and 55% for cluster 4. Notably, cluster 2 reached the 
highest frequency of citation with “sour” (40%) and cluster 4 with 
“astringency” (31%). However, there was no significant attribute that 
differed among clusters according to chi-square (χ2) tests. Distinctly, 
three significant attributes evaluated by rate-k-attribute method 
appeared to be significant among clusters derived from sorting task: “dry 
on the tongue” (F = 3.956; P < 0.05), “fleshy” (F = 4.648; P < 0.05), and 

“bitter” (F = 2.467; P < 0.1) (Fig. S5 in Appendix B of the Supporting 
Information). Cluster 3, which included five samples, was significantly 
characterized by “bitter” (average 2.05). Cluster 4, which was formed by 
two samples, presented the highest score for the attribute “dry on 
tongue” (average 1.26) and cluster 2, formed by three samples, was 
significantly characterized by “fleshy (average 0.37). 

In regards to the results derived from rate-k-attributes, as occurred 
for the Tempranillo Tinto samples, three out of 23 attributes presented 
the highest scores among the 16 PFs studied: “dry” (max = 4.00), 
“bitter” (max = 2.33) and “dry on palate” (max = 2.14). 

Fig. 2b illustrates the four clusters obtained from the hierarchical 
cluster analysis calculated on all the PCA dimensions. Even if this option 
(two clusters) was the most natural partition of the tree diagram, we 
chose the partition containing a total of four clusters as it permitted 
more precise descriptions of samples belonging to each of the groups. 
The ANOVA results identified significant differences among clusters for 

Fig. 1. Dendrogram of the polyphenolic fractions of Tempranillo Tinto derived from the sensory descriptions of samples by a) sorting task and b) rate-k-attribute 
methods. Attributes describing clusters refer to a) terms with highest average frequency of citation-FC-calculated with individual FC of wines which belong to 
each cluster and b) terms with highest average scores calculated with wines that belong to each cluster. 
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8 out of the 23 attributes evaluated, “dry” (F = 9.577; P < 0.0001), 
“bitter” (F = 6.705; P < 0.001), “dry on tongue” (F = 6.363; P < 0.001), 
“coarse” (F = 5.445; P < 0.005), “watery” (F = 3.827; P < 0.05), 
“grainy” (F = 3.097; P < 0.05), “sticky” (F = 2.851; P < 0.05) and “dry 
on palate” (F = 2.480; P < 0.1) when relaxing the criteria for signifi
cance (Fig. S6 of Appendix B of the Supplementary material). 

Clusters 1 and 2 (formed by six and two samples, respectively) pre
sent the lowest scores for “dry”, “dry on tongue”, “sticky” and “coarse”, 
yet the highest for “watery”. Cluster 2 presents the lowest value for the 
attribute “bitter” (average = 0.86), and the highest for “grainy” 
(average = 0.26). Clusters 3 and 4 (formed by four samples each) pre
sented the highest scores for the “dry” and “coarse” attributes. Cluster 3 
was characterized by “sticky” (average = 0.96); while, cluster 4 was 

mainly described as “dry on tongue” (average = 1.12) and “dry on 
palate” (average = 1.67). 

As in the Tempranillo Tinto sample set, when comparing the two 
sensory spaces derived from sorting and rate-k-attributes, differences 
are found according to the RV coefficient, which was not found to be 
significant (RV = 0.420; P > 0.1). This is consistent with the fact that 
although the sorting task approach can overcome the difficulties in 
verbalizing mouthfeel features of wine reported by various authors 
(Piombino et al., 2020; Sáenz-Navajas et al., 2017), only evident sensory 
differences among the studied samples can be identified. Distinctly, 
panelists follow an analytical strategy under the rate-k-attribute, in 
which more specific and subtle differences can be identified. 

Overall, these results confirm our first hypothesis related to the 

Fig. 2. Dendrogram of the polyphenolic fractions of Garnacha Tinta derived from the sensory descriptions of samples by a) sorting task and b) rate-k-attribute 
method. Attributes describing clusters refer to a) terms with highest average frequency of citation-FC-calculated with individual FC of wines which belong to 
each cluster and b) terms with highest average scores calculated with wines that belong to each cluster. 
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appropriateness of the proposed chemosensory strategy to identify intra- 
varietal sensory variability associated with phenolic fractions of grapes. 
The RATA methodology was more efficient in identifying subtle and 
specific sensory differences among PFs derived from the same variety. 

3.2. Relationships between mouthfeel properties and chemical 
measurements 

The main objective was to establish relationships and predict 
mouthfeel attributes from chemical variables of grape phenolic frac
tions. Therefore, the sensory data derived from the rate-k-attributes 
method and chemical variables for the two varieties were pooled 
together (total of 31 samples) in order to increase the robustness of the 
statistical tests. 

3.2.1. Sensory dimensions and significant taste and mouthfeel properties 
Six significant attributes among the 31 samples differed based on 

ANOVA results; “dry” (F = 2.382; P < 0.0001), “coarse” (F = 2.277; P =
0.0002) “bitter” (F = 1.538; P = 0.035), “dry on tongue” (F = 1.485; P =
0.048), “sticky” (F = 1.477; P = 0.050) and “watery” (F = 1.374; P =
0.090) when relaxing the criteria for significance. Fig. 3 shows the PCA 
calculated with these significantly different attributes. The first three 
dimensions, which explain 70% of the original variance, are considered 
significant according to Kaiser criterion (eigen value > 1). These three 
dimensions were rotated with VARIMAX algorithm to facilitate the 
interpretation of the results. The first dimension, after rotation (D1), 
explains 27% of the variance and is mainly positively contributed by the 
attributes “dry on tongue” (43% of contribution, r = 0.842) and nega
tively by “watery” (30%, r = -0.700). The second dimension, D2, pre
sents 19 % of the variance, and is mainly formed by “bitter” (59%, r =
0.824) and “sticky” (37%, r = 0.650). The third dimension explains 24% 
of the variance; it is mainly built by the attributes “coarse” (54%, r =
0.881) and “dry” (31%, r = 0.673). These results identify the presence of 
three main independent and non-correlated mouthfeel and taste di
mensions defining the sensory space of PFs. 

3.2.2. Correlation between taste and mouthfeel dimensions and chemical 
parameters: correlation coefficients and PLS-modeling 

Table 1 presents the correlation coefficients (r) between sensory at
tributes and dimensions and chemical variables. Table 2 contains the 
models that satisfactorily predict the sensory parameters (4 out of 9). 
Validated models explain more than 60% of original variance by full- 
cross validation which corresponds to high correlation coefficients (r) 
between predicted and measured values of at least 0.77. Explained 

variances by calibration, reach values at least of 80% (r > 0.90). Fig. 4 
lists the chemical variables included in models and the sign and 
magnitude of their coefficients following a color code. Interestingly, two 
out of three independent, non-correlated sensory dimensions identified 
(D1 and D2 of the PCA calculated with Varimax rotation) could be 
successfully modeled. 

The highest significant linear correlations (P < 0.0001) (Table 1) 
were found between two chemical variables (tannin activity and tannin 
concentration) and the attribute “dry” (r = 0.68 for both variables). The 
tannin activity was measured as the interaction of tannins with a hy
drophobic surface (Barak & Kennedy, 2013). Interestingly, “dry on 
tongue” was also positively correlated with both chemical variables (r =
0.55 for tannin activity, r = 0.50 for tannin concentration), but to a 
lesser extent than for “dry”. This is well in line with the PLS-models 
obtained for both the “dry” attribute and the PCA dimension D1 
(related to dry on the tongue). Both models highlight the importance of 
tannin activity because this chemical variable presents the highest 
positive correlation coefficients, followed by tannin concentration 
(Fig. 4). These results partly differ from previous studies in which no 
significant correlation between the tannin concentration or tannin ac
tivity and wine dryness perception was found (Watrelot, Byrnes, Hey
mann, & Kennedy, 2016). However, the results observed in the present 
research with grape PFs are well in line with other studies carried out in 
our laboratory with red wines, where linear (Ferrero-del-Teso et al., 
2019) and non-linear (Sáenz-Navajas et al., 2019) relationships between 
tannin activity and the global “astringency” attribute were reported. 

Regarding the mean degree of polymerization of tannins (mDP), 
significant positive correlations were found with “dry” (r = 0.62) and 
“dry on tongue” (r = 0.49). Accordingly, the coefficient for mDP is very 
high for the D1 model, and especially for “dry”. Thus, this data is in 
agreement with other studies (Arnold, Noble, & Singleton, 1980; Gawel, 
1998; Peleg, Gacon, Schlich, & Noble, 1999; Vidal et al., 2003) where an 
increase in mDP resulted in an increase in the perceived overall astrin
gency. A positive correlation was found between %PD and “watery” 
which is in line with the high positive correlation coefficient observed in 
the PLS-model. This could be explained in terms of decreases in the 
perception of astringency with higher %PD shown in previous research 
(Chira, Schmauch, Saucier, Fabre, & Teissedre, 2009; Lisjak et al., 2020; 
Vidal et al., 2003). 

The term “sticky” (r = 0.58) as well as the second dimension (D2 
contributed mainly by the attributes “sticky” and “bitter”) of the PCA (r 
= 0.40) are correlated with the level of large polymeric pigments (LPP), 
which present high positive correlation coefficients in the D2 of the PLS- 
model (Fig. 4). Besides this, low molecular weight anthocyanins 

Fig. 3. PCA plots with the projection of rotated dimensions a) D1–D2 and b) D1-D3 performed for the significant terms of the 31 samples.  
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measured by both Harbertson and Adams assay (MP, r = 0.54) as well as 
glycosylated (r = 0.51) and acylated (r = 0.48) anthocyanins, measured 
by chromatography, show significant positive correlations with “dry”. 
While the highest coefficient in the PLS-models was that of the 
condensed anthocyanins (mainly dimers of anthocyanin-flavanol), 
which contribute significantly to the “dry” sensation. The high posi
tive coefficients of MP presented by pigmented tannins and acylated 
anthocyanins in the D2 dimension model was a notable outcome. These 
results suggest the sensory importance of anthocyanins and 
anthocyanin-derived pigments in taste and mouthfeel sensations; they 
reinforce the results recently reported by other authors (Ferrer-Gallego 
et al., 2015; Ferrero-del-Teso et al., 2020; Paissoni et al., 2018). 

Bitter perception is related to phenolics with low molecular weights 
such as flavonol, aglycones, and monomeric flavanols (Preys et al., 
2006; Sáenz-Navajas et al., 2010). Results of this research are well in line 

with the previous research in the literature as significant positive cor
relations between flavonols such as kaempferol, myricetin, and laricitrin 
and the “bitter” attribute (r = 0.43, r = 0.47 and r = 0.39, respectively) 
were observed. Similarly, the model for the D2 dimension, to which 
bitterness greatly contributes, shows positive, high correlation co
efficients for flavonols. 

These results partly confirm our second hypothesis related to the 
relationships between taste and mouthfeel properties and chemical 
variables. Two (mainly D1 and D2) out of the three sensory dimensions 
representing taste and mouthfeel variability among the studied PFAs 
presented high and significant relationships with some of the chemical 
variables measured. Both sensory dimensions related to dryness and 
sticky/bitterness could be satisfactory modeled from the chemical var
iables studied. The exception was the third dimension (D3), in which 
“coarse” is the main contributor, from grape fractions. The individual 
term “coarse” presented no significant correlation with chemical vari
ables; neither it, nor D3 could be satisfactorily modeled. It cannot be 
ruled out that this percept is driven by other molecules present in wine 
such as aroma or mannoproteins or their sensory or physical interactions 
with polyphenols which were not examined in the present research. 

4. Conclusions 

The current research presents a new chemosensory strategy for 
characterizing the sensory properties of phenolic fractions of grapes. 
This approach has shown to be efficient in differentiating grape phenolic 
fractions based on mouthfeel and taste properties; both inter- and intra- 
varietal. 

The non-verbal and holistic sensory task, i.e., sorting task, high
lighted the salient sensory differences among samples. While the more 

Table 1 
Pearson correlation coefficients (r) calculated between chemical variables,1 significant taste and mouthfeel attributes and sensory dimensions (i.e., principal com
ponents derived from PCA of 31 samples). Significant correlations (P < 0.05) are marked in bold.   

Sensory attribute Sensory dimensions  

Bitter Dry Dry on tongue Sticky Coarse Watery D12 D23 D34 

Tannin characterization 
TA  0.05  0.68  0.55  0.25  0.2 − 0.27  0.54  0.23  0.28 
Tannin concentration  0.24  0.68  0.50  0.23  0.15 − 0.12  0.40  0.37  0.29 
Pigmented tannin  0.20  0.57  0.34  0.10  0.20 − 0.09  0.24  0.25  0.34 
mDp  0.1  0.62  0.49  0.15  0.19 − 0.20  0.42  0.21  0.30 
%PD  0.02  − 0.21  − 0.04  0.03  − 0.23 0.47  − 0.19  0.07  − 0.28 
%G  − 0.34  − 0.13  − 0.18  − 0.13  0.19 − 0.26  0.00  ¡0.38  0.09  

Conventional oenological parameters 
TPI  0.21  0.40  0.17  0.17  0.19 − 0.04  0.12  0.28  0.27 
IC  0.31  0.53  0.29  0.19  0.11 − 0.03  0.20  0.40  0.26  

Anthocyanin-derived pigments 
MP  0.18  0.54  0.34  0.21  0.15 − 0.09  0.28  0.30  0.25 
LPP  0.10  0.27  0.25  0.58  − 0.07 − 0.27  0.46  0.40  − 0.11  

Anthocyanins 
Acylated  0.29  0.48  0.21  0.08  0.18 − 0.05  0.11  0.31  0.33 
Glycosylated  0.01  0.51  0.01  − 0.04  0.3 − 0.07  0.02  0.03  0.44 
Vitisine A  − 0.36  − 0.02  0.00  − 0.25  0.14 − 0.25  0.09  ¡0.44  0.11  

Flavonols 
Kaempferol  0.43  0.28  0.15  0.18  0.04 0.07  0.03  0.45  0.16 
Myricetin  0.47  0.34  0.19  0.25  − 0.1 0.00  0.12  0.54  0.07 
Laricitrin  0.39  0.12  0.03  0.30  − 0.12 − 0.18  0.12  0.46  − 0.03  

1 TA: Tannin activity (-J/mol), Tannin concentration (mg/L), Pigments concentration (mg/L), TPI: Total polyphenol index (a.u.), IC: Colour intensity (a.u.), MP: 
Monomeric pigments (a.u.), LPP: Large polymeric pigments (a.u.), mDp: mean degree of polymerization, %PD: percentage of prodelphinidins, %G percentage of 
galloylation, Acylated (mg/L): Delphinidin 3-(6′′-acetyl)-glucoside, Cyanidin 3-(6′′-acetyl)-glucoside, Petunidin 3-(6′′-acetyl)-glucoside, Peonidin 3-(6′′-acetyl)- 
glucoside, Malvidin 3-(6′′-acetyl)-glucoside, Delphinidin 3-(6′′-p-coumaroyl)-glucoside, Cyanidin 3-(6′′-p-coumaroyl)-glucoside, Petunidin 3-(6′′-p-coumaroyl)- 
glucoside, Peonidin 3-(6′′-p-coumaroyl)-glucoside, Malvidin 3-(6′′-p-coumaroyl)-glucoside, Glycosylated (mg/L):): Delphinidin 3-glucoside, Cyanidin 3-glucoside, 
Petunidin 3-glucoside, Peonidin 3-glucoside, Pelargonidin 3-glucoside, Malvidin 3-glucoside, Delphinidin 3,5-diglucoside, Cyanidin 3,5-diglucoside, Petunidin 3,5- 
diglucoside, Peonidin 3,5-diglucoside, Malvidin 3,5-diglucoside, Vitisine A (mg/L), Kaempferol (mg/L), Myricetin (mg/L), Laricitrin (mg/L). 

2 Mainly built by dry on tongue and watery. 
3 Mainly built by bitter and sticky. 
4 Mainly built by dry and coarse. 

Table 2 
Variables successfully modeled in the set by PLS regression, % of explained 
variance by full cross validation (and the % of explained variance), the number 
of PLSs included in each model and the root mean squared error of prediction.  

Variable % explained variance P (number of PLSs) 
[% explained variance C] 

RMSEP 
[RMSE C]1 

Dry 64% (3) [82%] 0.63 [0.4] 
Watery 66% (3) [86%] 0.58 [0.38] 
D1 (dry on the 

tongue-watery) 
66% (3) [81%] 0.67 [0.43] 

D2 (dry/coarse) 63% (2) [80%] 0.57 [0.4]  

1 RMSE is given in z-units for a normal distribution. Given that 99.7% of 
normal values are between z = − 3 and z = 3, a RMSE of 0.6 represents around 
10% of the range. 

S. Ferrero-del-Teso et al.                                                                                                                                                                                                                      



Food Chemistry 371 (2022) 131168

9

specific descriptors and subtle differences varying among Tempranillo 
Tinto (“coarse”, “dusty”, “burning”, “bitter”, “fleshy”, “sticky”) or Gar
nacha Tinta (“dry”, “bitter”, “dry on tongue”, “coarse”, “watery”, 
“grainy”, “sticky”, “dry on palate”) PFs could be identified by the rate-k- 
attribute methodology; a methodology which follows an analytical 
verbal strategy. 

Three distinct, independent, non-correlated, sensory dimensions 
could be identified for the overall sample set: 1) “dry on tongue/ 
watery”, 2) “sticky/bitter” and 3) “dry/coarse”. 

Significant correlations and very satisfactory PLS models could be 
built to predict sensory variables from chemical parameters. Tannin 
activity and tannin concentration along with mDP of tannins proved to 
be good predictors of PF perceived dryness. Flavonols could have a good 
prediction power for the “bitter” attribute and the “sticky/bitter” 
dimension. In addition, low molecular weight anthocyanins seem to be 
involved in the formation of the “dry” attribute, whereas large poly
meric pigments in the “sticky” attribute and the “sticky/bitter” 
dimension. 

Distinctly, the “coarse” dimension could not be modeled which 
suggests that there are other macromolecules involved in the formation 
of this percept. Examination of the “coarse” dimension should be tackled 
in future research. 

With these results, grape properties and intrinsic quality could be 
inferred with the measurement of chemical variables. This approach 
provides an interesting tool to assess grape quality. 
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