
fevo-09-727023 September 4, 2021 Time: 17:19 # 1

METHODS
published: 10 September 2021

doi: 10.3389/fevo.2021.727023

Edited by:
Max A. Alekseyev,

George Washington University,
United States

Reviewed by:
Serge Morand,

Centre National de la Recherche
Scientifique (CNRS), France

Emma Louise Burns,
Australian National University,

Australia

*Correspondence:
Ferdinando Urbano

ferdinando.urbano@ec.europa.eu

†See Supplementary Table 1 for the
complete list of Euromammals

partners

Specialty section:
This article was submitted to

Environmental Informatics
and Remote Sensing,

a section of the journal
Frontiers in Ecology and Evolution

Received: 17 June 2021
Accepted: 10 August 2021

Published: 10 September 2021

Citation:
Urbano F and Cagnacci F (2021)

Data Management and Sharing for
Collaborative Science: Lessons
Learnt From the Euromammals

Initiative. Front. Ecol. Evol. 9:727023.
doi: 10.3389/fevo.2021.727023

Data Management and Sharing for
Collaborative Science: Lessons
Learnt From the Euromammals
Initiative
Ferdinando Urbano1* and Francesca Cagnacci2 on behalf of the Euromammals
Collaborative Initiative†

1 Joint Research Centre, European Commission, Ispra, Italy, 2 Department of Biodiversity and Molecular Ecology, Research
and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy

The current and future consequences of anthropogenic impacts such as climate change
and habitat loss on ecosystems will be better understood and therefore addressed
if diverse ecological data from multiple environmental contexts are more effectively
shared. Re-use requires that data are readily available to the scientific scrutiny of the
research community. A number of repositories to store shared data have emerged in
different ecological domains and developments are underway to define common data
and metadata standards. Nevertheless, the goal is far from being achieved and many
challenges still need to be addressed. The definition of best practices for data sharing
and re-use can benefit from the experience accumulated by pilot collaborative projects.
The Euromammals bottom-up initiative has pioneered collaborative science in spatial
animal ecology since 2007. It involves more than 150 institutes to address scientific,
management and conservation questions regarding terrestrial mammal species in
Europe using data stored in a shared database. In this manuscript we present some key
lessons that we have learnt from the process of making shared data and knowledge
accessible to researchers and we stress the importance of data management for data
quality assurance. We suggest putting in place a pro-active data review before data are
made available in shared repositories via robust technical support and users’ training in
data management and standards. We recommend pursuing the definition of common
data collection protocols, data and metadata standards, and shared vocabularies with
direct involvement of the community to boost their implementation. We stress the
importance of knowledge sharing, in addition to data sharing. We show the crucial
relevance of collaborative networking with pro-active involvement of data providers in all
stages of the scientific process. Our main message is that for data-sharing collaborative
efforts to obtain substantial and durable scientific returns, the goals should not only
consist in the creation of e-infrastructures and software tools but primarily in the
establishment of a network and community trust. This requires moderate investment,
but over long-term horizons.

Keywords: database, Data curation, wildlife monitoring, terrestrial ecology, European mammals, data sharing,
bio-logging, Ecoinformatics
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INTRODUCTION

The knowledge of intimate details of animal lives has immensely
grown in the last decades, alongside technologies and techniques
to study them (Kays et al., 2015; Harcourt et al., 2019). If
ecology is evolution in space and time, ecological processes
are characterised by spatial and temporal dimensions that only
recently could be taken into account (Cagnacci et al., 2010).
Bio-logging units mounted on individual animals have become
increasingly sophisticated, long-lasting and able to record near-
to-continuous information on animal behaviour and physiology.
In parallel, remote sensing sensors on- (e.g., camera traps)
or off-ground (e.g., drones, satellites) allow the extraction of
environmental variables associated with animal behaviour (Ossi
et al., 2019). One ultimate ambition is the reconciliation of
individual-based empirical knowledge and modelling, with a
population- (or ecosystem-) level state at a certain point in
time (or Lagrangian vs Eulerian approach; Smouse et al., 2010).
This step can only be made if data from individuals across
multiple populations and diverse ecosystems are analysed, and
such information is leveraged to parametrise mechanistic models
(Morales et al., 2010).

The ability to scale up from individual-based knowledge to
ecosystem complexity becomes particularly relevant to forecast
current and future scenarios of climate change and habitat loss
(Jeltsch et al., 2013). Further, the dramatic emergence of the
field of “crisis ecology” (Leigh, 2005) and the compelling need to
deeply understand the inter-relationship between human threats
and ecosystem resilience, emphasises the importance of joining
and analysing data from different sources in a timely, robust and
effective way (“data sharing readiness”). The importance of data
sharing and reuse is well recognised in the ecological community
(Michener, 2015) and in science in general (see e.g., Gewin,
2016), and it is becoming more and more urgent. Animal ecology
data that have been, or are being collected, might become of
paramount importance to address questions that were unforeseen
when data collection projects were initiated. This is, for example,
the case for the COVID-19 bio-logging initiative, which is using
data collected during the Anthropause (Rutz et al., 2020) to
disentangle animal behavioural responses to human presence and
disturbance, while data collection during COVID-19 pandemic
are ongoing. The concept of “data sharing readiness” refers
to reliable and consistently curated data that are stored in
accessible repositories for use by the scientific community. In
more technical terms this corresponds to standardised data
sources shared in repositories that are recognised and accessible
to the scientific communities. This is especially relevant in animal
ecology where the acquisition of large scale individual-based
information currently relies on collaborative networks and data
sharing initiatives due to the cost of field projects and bio-
logging equipment.

While possible standards to translate movement ecology
data and metadata into relevant conservation and management
practices (Hays et al., 2019) are being discussed in the literature
(Campbell et al., 2016; Sequeira et al., 2021), at this stage they
are not yet completely defined, shared with the community and
adopted. In particular, existing data are not exposed in a standard,

machine-readable format, limiting the establishment of a network
of automatically communicating repositories. Nevertheless,
examples of community-based data repositories that facilitate
data gathering, harmonisation and sharing can support this
process. In this manuscript we aim to provide practical directions
to a more effective data management and sharing in movement
ecology, presented as lessons learnt from the Euromammals
collaborative network for terrestrial animal ecology.

MATERIALS AND METHODS

The Euromammals Initiative
The Euromammals bottom-up initiative has pioneered
collaborative science in spatial animal ecology. Euromammals
began in 2007 as a data sharing platform to facilitate collaborative
work for the European roe deer working group (Andersen
et al., 1998; Cagnacci and Urbano, 2008). Since then, the
Euromammals collaborative network has expanded to include
research communities working on several European terrestrial
mammals. The network includes 7 species or groups of species
and more than 150 institutes from 34 countries in June 2021
(see Figure 1). The number of partners, once the project was
established and consolidated, has been growing quickly in
parallel with the trust from the scientific communities studying
the target species. The goal of the platform is to harmonise
(i.e., normalise in format, structure, information content and
terminology), data sets shared by different partners, to make
them analysis-ready to address ecological questions at broader
spatio-temporal scales.

For almost 15 years, Euromammals has tackled data
management problems for collaborative science while
considering the requirements for information and data sharing
emerging from species-based communities with a large number
of partners. Indeed, the direct and active involvement of the
larger scientific community makes knowledge gaps more visible
and encourages researchers to fill them (Costello et al., 2018).
Euromammals relies on a shared repository that stores species-
specific databases organised and managed to optimise support
to the scientific networks. The initial development of the system
was an extension of the platform created for one of the first
partner institutes (Cagnacci and Urbano, 2008) and contributed
to setting clearly defined principles in wildlife tracking data
management (Urbano et al., 2010). Currently, seven databases
have been developed: roe deer (Capreolus capreolus)1, red
deer (Cervus elaphus)2, wild boar (Sus scrofa)3, wildcat (Felis
silvestris)4, lynx (Lynx lynx)5, ibex (Capra ibex)6, and small
mammals.7 The core information collected is telemetry data
(GPS, VHF, and accelerometers) and, depending on the species,

1https://eurodeer.org
2https://eureddeer.org
3https://euroboar.org
4https://eurowildcat.org
5https://eurolynx.org
6https://euroibex.org
7https://eurosmallmammals.org
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FIGURE 1 | Distribution of the Euromammals network partners as of June 2021. The name of partners is reported in the Supplementary Table 1.

information about individuals, mortality, captures, contacts,
hunting regimes, and road kills. A simplified model of the core
components of the eurodeer database is illustrated in Figure 2.
Additionally, the longitudinal database EuroCaM, with image
analysis outputs from camera traps, has also been developed.

Euromammals databases are not meant to be the principal
repository of the data provided by partners. The Euromammals
databases store harmonised and quality checked copies of the
original data sets, integrated in a single, centralised repository
where partners can jointly analyse the combination of all available
data from different areas and environmental gradients. Each
database has a data curator with a background both in biology
and data management who collates data from partners. Data
quality is reviewed through formal and partially automated
controls of consistency and completeness, but also through
expert-based checks specific to the biology of each species. Errors,
outlier and suspicious information are relayed back to data
owners and fixed in an iterative and interactive process that often
lasts several weeks. Data curators are also available to provide
all necessary support to project partners, for example helping
to query the databases for specific analysis. At the end of the
process, all data is integrated under a common database data
model with the same semantic meaning, references, and units
across the different data sets. Data is then associated with a
set of environmental covariates (i.e., land cover/use, altitude,
slope, aspect, forest density, NDVI, snow cover) that are available
homogeneously for all of Europe, most of them obtained by
the EU Copernicus project (European Union, 2021). A database

manager develops the databases, defines the data processing
protocols, ensures that the same level of quality is reached in
all databases and manage the data access policy based on the
database permission tools.

The databases are built on an open software platform
(PostgreSQL + PostGIS) and are accessible to all partners. The
database server and IT support is provided by one of the founding
partners, the Edmund Mach Foundation, Trento, Italy. The
documentation about the databases is published on Github.8

Technical support is also provided when data is extracted for
specific studies, as described under the Terms of Use signed
by all partners (in essence, research institutes or organisations
that own the data must be asked permission for their use for
each new study).

To date (June 2021) the databases store movement data
of more than 4,500 individuals and 15,000,000 GPS locations
distributed across 120 study areas from southern Italy to north
of Sweden, and from Portugal to eastern Poland, extending
across a wide gradient of environmental, topographic and
climatic contexts.

The Euromammals collaborative network aims to produce
scientific outcomes based on data and knowledge sharing
regarding animal populations across environmental gradients.
Indeed, partners cooperate on the entire scientific process, from
analysis to publishing, so that data sharing is the mean for the
collaborative scientific work, rather than the final goal. This

8https://github.com/feurbano/eurodeer_db
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FIGURE 2 | Euromammals simplified database core data model for roe deer GPS data. The main elements are the research groups, the study areas, the animals,
the sensors, the deployments of the sensors on the animals, the animals captures, the animal generic contacts (e.g., direct sightseeing, carcass recovery), and the
locations generated by the sensors associated to an animal and to a set of environmental variables based on European wide data sets.

peculiarity also shapes the way data is made available, i.e.,
through the network that is open to any interested researcher
with data, knowledge or interest in the scientific goals, striving
toward the FAIR Principles for scientific data and metadata
(Findable, Accessible, Interoperable, and Reusable; Wilkinson
et al., 2016). Once harmonised and quality checked in the
Euromammals community-specific databases, data owners can
easily upload their data onto larger open data repositories, also
assuring a controlled data quality for downstream data users.

Further, Euromammals provides its partners with a data storage
infrastructure that is coherent with the TRUST guiding principles
to promote digital repository trustworthiness (Lin et al., 2020):
Transparency, Responsibility, User focus, Sustainability and
Technology. The idea behind these principles is that repositories
must earn the trust of the communities they intend to serve and
demonstrate that they are reliable and capable of appropriately
managing the data they hold. In the Euromammals repositories
this goal is reached by reversing the perspective: the repository is
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not distinct from the community it serves, but it is a tool created
and managed for, and by, the community itself, creating a deeper
sense of belonging.

RESULTS

The Euromammals network has been actively exploiting the
shared databases to produce collaborative science. Some of
the scientific outputs are listed in Table 1. The bottom-up
development of the Euromammals databases made us encounter
challenges and seize opportunities in the different phases
of the collaborative process: from data use policy to data
gathering, from the creation of mutual community trust to data
harmonisation, from financial sustainability to data analysis and
finalising scientific outputs. In the next sections, we focus on
the technical challenges and main lessons learnt from the data
management process over the years.

Quality Assurance/Quality Control
Process
The data collation could not simply consist of gathering data from
network members and depositing them in a common repository.
The data sets provided were affected by errors, inconsistencies
or incomplete information that, although rare (2–3% ca of the
whole data points), would impact the reliability of some analysis.
Indeed, some research questions target rare movements (e.g., rut
excursion, Debeffe et al., 2014) or behaviours happening in short
intervals of time (e.g., migratory movements between seasonal
ranges, Cagnacci et al., 2011), for which even rare data errors can
undermine robust analysis and lead to misleading conclusions.
Errors did not depend on negligence, rather on the lack of proper
tools, expertise and resources for optimised data management.
Further, data were often screened and quality checked for the
specific goals they were collected for, but inconsistencies could
emerge when other analyses were attempted. A sketch of the
typical process of the data quality control in Euromammals is
illustrated in the Figure 3.

Examples below provide further clarity on the types of
emerging issues we encountered.

Example 1
GPS sensors can miss the location acquisition and such
instances are normally recorded in the sensor records as missing
coordinates. This information is important to estimate the effect
of imprecise and habitat-biased locations in ecological analyses
(Frair et al., 2010) and to evaluate the efficiency of telemetry
devices (Hofman et al., 2019). When data providers omitted
these records from their data sets because it was not relevant
for their study, we had to request the full list of records to be
included instead.

Example 2
An imprecise definition of the time of deployment of the GPS
sensor on animals can be identified through suspicious patterns
of the trajectory (for example including the road from the
research centre to the animal capture site). These anomalies can

be easily spotted with ad hoc visual inspection of data but can be
potentially hard to identify with automated procedures.

Example 3
A common problem is the time zone of the time of deployment
of the GPS sensor on animals. The time of deployment is
often provided in local time, including light-saving time shifts,
with no explicit reference to the time zone. Instead, the
acquisition time of the GPS device is normally set to UTC
by default, so this can result in a mismatched identification
of the first animal relocations. Similarly, in some cases, data
providers excluded the first part of the animal trajectory (for
example, data were provided from the second week after release).
These inconsistencies can be particularly problematic for studies
focussing on post-capture-and-release behaviour. We always
verify these potential issues with data owners during the quality
assurance process.

Example 4
Many problems were identified by cross-checking the consistency
between different types of information, for example animal
capture history and the sensor deployment interval: sensors
often resulted in having been deployed before the capture, or
relocations were associated with an animal after its death.

Example 5
Erroneous GPS locations can be identified applying movement
models parametrised with species-specific values. In particular,
maximum speed constraints can automatically identify
impossible spikes in the trajectories. In some cases, though,
a further visual inspection pointed at movements that were
unlikely although not impossible so that we discussed with data
providers whether they were to be flagged as wrong, or acceptable
instead. Similarly, relocations in bodies of water are unlikely,
but not impossible, and a final decision on their reliability has
to be taken together with data providers who have specific
knowledge of the context.

To face these and many other similar problems, we developed
a protocol for quality checking based on the following principles:

1. data are requested from data providers in raw format
generated by sensors;

2. quality checks are run both using automated procedures
and expert-based assessments by trained data curators: this
is time consuming, but key for assuring a high-quality level;

3. data providers are engaged in the quality checks in an
iterative process: once identified, errors, inconsistencies
and missing information can be fixed only by those who
collected the data;

4. data are requested with a certain level of redundancy to
allow cross-checks;

5. data considered erroneous or suspicious are never removed
from the data set, instead are flagged with codes: when data
are queried from the database, the code selected indicates
the uncertainty embedded in the data.

The application of these principles have a cost in terms of
personnel time (especially Point 2), but the process guarantees
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TABLE 1 | Examples of Euromammals scientific outputs and the data requirements as of July 2021.

Paper Data and database management actions required

Survival and cause-specific mortality of European wildcat
(Felis silvestris) across Europe (Bastianelli et al., 2021)

22 wildcat populations, GPS and VHF datasets (211 individuals), start/end of
monitoring and reason for the end/fate of animals, DEM (elevation, slope),
Corine Land Cover/forest fragmentation (Vogt et al., 2007), OpenStreetMap
road data.

Climate change and anthropogenic food manipulation
interact in shifting the distribution of a large herbivore at its
altitudinal range limit (Bright Ross et al., 2021)

1 roe deer population, 1 VHF (32 individuals) and 1 GPS (23 individuals) data
sets, collected in two monitoring periods 15 years apart, spatio-temporal
distribution of feeding sites, local snow depth and Corine Land Cover spatial
layers. GPS data sub-setting to be comparable with the older VHF data set.
Spatio-temporal join with spatial layers. Spatio-temporal distribution of feeding
sites and GPS location distance from feeding sites.

Sex differences in condition-dependence of natal dispersal
in a large herbivore: dispersal propensity and distance are
decoupled (Hewison et al., 2021)

1 roe deer population, 1 GPS data set, 146 individuals. Identification of
dispersal behaviour and measurement of related metrics.

Stay home, stay safe - site familiarity reduces predation risk
in a large herbivore in two contrasting study sites (Gehr
et al., 2020)

2 roe deer populations, 2 GPS data sets (65 and 170 individuals, respectively)
from 2 sensor types, reasons for end of deployment, mortality causes.
Cross-check of mortality instances and causes, GPS data sub-setting for the
relocation frequency to match.

Fear of the dark? Contrasting impacts of humans vs lynx on
diel activity of roe deer across Europe (Bonnot et al., 2020)

12 roe deer populations, 12 accelerometer data sets (total: 431 individuals)
from 3 sensor types, population-level hunting periods and predator density,
Human Footprint Index Spatial layer (Venter et al., 2016). Spatio-temporal join of
population level information and activity data, accelerometer data
harmonisation.

Large herbivores migration plasticity along wide
environmental gradients in Europe: life-history traits
modulate forage effect (Peters et al., 2019)

10 roe deer populations/GPS data sets (273 individuals), 12 red deer
populations/GPS data sets (264 individuals), individual life-history traits (sex,
age), DEM (static), NDVI MODIS (dynamic) spatial layers. Identification of
migratory behaviour, derived measures of vegetation productivity,
spatio-temporal join between GPS locations and geographic dynamic layers.

Sequence Analysis Method (IM-SAM): characterising
spatio-temporal patterns of animal habitat use across
landscapes (De Groeve et al., 2019)

9 roe deer populations, 9 GPS data sets (total: 404 individuals) from 3 sensor
types, Corine Land Cover spatial layer. Regularisation and geographic
annotation of trajectories.

Truly sedentary? The multi-range tactic as a response to
resource heterogeneity and unpredictability in a large
herbivore (Couriot et al., 2018)

15 roe deer populations/GPS data sets (total: 251 individuals) from 3 sensor
types, NDVI MODIS dynamic spatial layers. Identification of spatial behaviour,
derived measures of vegetation productivity, spatio-temporal join between GPS
locations and geographic dynamic layers.

Migration in geographic and ecological space by a large
herbivore (Peters et al., 2017)

5 roe deer populations/GPS data sets (71 individuals) from 2 sensor types, life
history traits (sex, age), NDVI/Snow MODIS dynamic spatial layers,
DEM/nightlights (Small et al., 2005)/Corine Land Cover/Canopy closure static
spatial layers. GPS trajectory sub-setting, identification of spatial behaviour,
derived measures of vegetation productivity and winter severity, spatio-temporal
join between GPS locations and spatial dynamic layers.

Plastic response by a small cervid to ad libitum
supplemental feeding in winter across a wide environmental
gradient (Ossi et al., 2016)

9 roe deer populations/GPS data sets (180 individuals), spatio-temporal
distribution, use, and characteristics of feeding sites, presence of competing
species, Snow MODIS dynamic spatial layer, daily temperature spatio-temporal
data. Spatio-temporal join between feeding sites/Snow MODIS layers and GPS
locations.

How many routes lead to migration? Comparison of
methods to assess and characterise migratory movements
(Cagnacci et al., 2016)

2 roe deer populations/GPS data sets (29 and 22 individuals, respectively), 2
red deer populations/GPS data sets (18 and 23 individuals, respectively.
Identification of movement tactics.

A one night stand? Reproductive excursions of female roe
deer as a breeding dispersal tactic (Debeffe et al., 2014)

6 roe deer populations/GPS data sets (235 individuals), 2 sensor types,
life-history traits (sex-age). Identification of daily excursions.

Seasonality, weather, and climate affect home range size in
roe deer across a wide latitudinal gradient within Europe
(Morellet et al., 2013)

7 roe deer populations/GPS data sets (190 female individuals), 3 sensory types,
DEM/night lights (Small et al., 2005)/canopy cover static layers, NDVI/LFI SPOT
vegetation/Snow MODIS dynamic layers, daily spatio-temporal temperature.
Spatio-temporal join with GPS-location derived metrics (home range).

Partial migration in roe deer: migratory and resident tactics
are end points of a behavioural gradient determined by
ecological factors (Cagnacci et al., 2011)

5 roe deer populations/GPS data sets (88 individuals), 3 sensory types,
DEM/Corine Land Cover static layers, Snow MODIS dynamic layer.
Identification of migratory behaviour, spatio-temporal join between migratory
trajectories and geographic layers.

Spatial layers detailed references as in Section “Integration of Remote Sensing Products”, unless otherwise cited.
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FIGURE 3 | Entering data into Euromammals databases is an interactive and
iterative process with multiple steps between the partners who provide the
data and the data curators who check for their completeness, correctness
and consistency. The controls are not only formal, but also substantial. For
this reason, data curators are always biologists acquainted with the scientific
studies. The process can be time consuming, but it is the only way to ensure
the best possible quality of stored data.

FIGURE 4 | Schema of the main objects in bio-logging studies.

more robust and reliable scientific outputs, and improved quality
of the original data sets, so benefitting the data providers.

It is important to stress that whatever the data screening
procedures, not all errors can be detected, especially for internally
consistent data sets without clear anomalies.

Common Understand of Objects and
Vocabulary
In bio-logging studies, where the sensor is “animal-borne”
(attached to animals), the abstraction of the empirical context
into basic formal objects is pretty simple (Figure 4): a sensor is
deployed on an animal that records (and often transmits) data
related to the position, the movement, the physiology or the
external environment of the animal (Urbano et al., 2010).

BOX 1 | A deployment tale. When the first Euromammals database was
created and data collection from the network partners started, we initially
asked data recorded by the sensor during the “monitoring period” of the
animal by a “collar” (or “tag”), assuming that it was a clear, robust and
unambiguous concept. Soon after, we realised that “monitoring” was not a
correct term as we got some data sets with locations excluded from the data
set but showing movement that seemed to be that of the animal. We
investigated if this was an error of a wrong setting of the monitoring period,
and the partner group replied that it was not: the collar was still on the animal
but they stopped to monitor it. As we wanted all the available and valid
locations of the animal, we had to better specify the request. At the same
time, we saw that the concept of collar (tag) was wrong. The collar was just
the physical support for multiple sensors which are attached to it (typically,
GPS, VHF and accelerometer sensors for Euromammals). Even if the tag is
the same, the period of activity of each sensor can be different (for example,
one can stop working while the others still provide valid data), so the start and
end period had to refer to the sensor, not to the tag. The tag-deployment
approach is used by other systems (Kranstauber et al., 2011) and these
different models can potentially lead to inconsistencies if data and deployment
information from multiple repositories are joined, calling for a
community-based formalisation of the terms that describe the objects of
study. We reformulated our definition of deployment as the “period when the
sensor is attached to the animal.” Then, we noticed that many deployment
intervals were much longer than the period covered by data. When we
investigated, we discovered that, according to the definitions, many data
providers used as end date the date of the collar drop-off or recovery, even if
the battery discharged long before or the sensor stopped working because of
malfunctioning. To accommodate this situation, we adapted the definition as
“the period when the sensor is attached to the animal and records
information.” This seemed to be a solid definition, but then we detected
animals that remained for a long time in the same position at the end of the
monitoring. We discovered that this was because data providers, following the
definition that we gave, set the end of the deployment at the time when the
collar, still working, was removed from the animal even if the animal died days
before. We modified the definition as “the period when the sensor is attached
to the animal alive and records information.” We thought this was a robust
definition, until we received a data set of GPS data from animals that were
captured and collared in a country then moved and released in another
country, including all the locations taken during the relocation. This is our
current definition of deployment: “the period when the sensor is attached to
the animal alive and free ranging and records information.”

Nevertheless, we found that it was a challenge to formalise
this model [i.e., defining the various objects, their attributes,
relationships and the constraints governing the integrity of the
elements in the model (Chamanara and König-Ries, 2014)] so
that all partners had the same understanding and thus provided
comparable data. This is clearly illustrated by the example
described in Box 1.

Even a baseline definition of the bio-logging workflow, such
as the “sensor deployment,” or the reasons for the deployment
to end (drop-off, animal’s death, etc.) had to undergo multiple
revisions: this provides an idea of the complexity of the process
that has to accommodate situations that are hard to be a priori
identified given the variety of environmental conditions, projects’
goals, and technological options.

The study area is an additional object, the definition of which
is considered intuitive, but is instead very hard to formalise
beyond users’ subjective indications. The subject of most bio-
logging projects are individual animals. Therefore we formulated
a sampled animal-based (hence dynamic) definition, i.e., the
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union of all the minimum convex polygons of the locations of
each animal, plus a buffer of 1 km.

These issues might seem obvious and easily addressed
applying general principles of Ecoinformatics for consistent and
robust data management (Michener and Jones, 2012; Recknagel
and Michener, 2017), but they only emerged with the need of
formalisation to reuse and share the data in the collaborative
context of Euromammals. The bio-logging community is already
working on the definition of a community-controlled vocabulary
and set of data and metadata standards (Campbell et al., 2016;
Sequeira et al., 2021), trying to extend existing resources [e.g.,
Darwin Core (Wieczorek et al., 2012); Ecological Metadata
Language (Jones et al., 2019)]. The use by the community
of such standards for data and formats based on an agreed
semantic description of the wildlife monitoring objects and
events (Chamanara and König-Ries, 2014) is key for effective
combination of data from different sources.

Extending Bio-Logging Data With Data
Sets on Animals and Their Context
Euromammals started as a shared repository of telemetry data
(i.e., VHF relocations, and GPS and accelerometer sensors)
associated with some individual traits of the tagged animals (e.g.,
age at capture, sex), details about the sensors, and the study
area. These data sets were then integrated with environmental
covariates derived from remote sensing (see Section “Integration
of Remote Sensing Products”). Soon, this information was
revealed as insufficient to use movement data for process-based
(rather than patter only based) analysis. Additional information
on the individual and its context, including human activities
affecting the animals, was essential to answer the biological
questions that the network was addressing. Data providers
were requested to also share information on animal mortality,
captures, hunting regimes, and study area characteristics (not
derivable from remote sensing), among others. Such information,
initially added to the database as metadata of the bio-logging data,
finally contributed to stand-alone data sets, spurring research
questions and analysis (e.g., capture-mark-recapture analysis in
case of capture and mortality data). The integration of bio-
logging and ancillary data created a more complex but richer
information base that enabled and improved the formulation
of scientific questions, the interpretation of the results of the
analysis and opened up new frontiers. Instead of seeing animals as
moving objects, the database offered scenarios of individuals with
their life-history interacting with the environment under defined
pressures.

In addition to environmental and individual information,
the integration of data recorded by different devices for animal
monitoring can open up new research perspectives. Particularly,
in the context of Euromammals, camera trapping data became
so relevant that a dedicated cross-network shared database
was established.

We acknowledge that the additional information that can be
integrated with bio-logging data largely depends on the species-
specific traits and type of research and cannot be generalised.
While the species-specific networks of Euromammals were an

ideal context to develop such integration, repositories with a
more general taxonomic target would not be suitable for ad hoc
database expansion like the ones described.

From Data to Outputs: Pro-active
Involvement of Data Providers in the
Whole Scientific Cycle
The richness and complexity of the database reflects the
knowledge of the researchers who collected the data. This is
fundamental both for the formulation of research questions and
for a well-informed interpretation of results. In Euromammals
we have verified how the involvement of members in the full
process, from data collation, to quality-check, and pro-active
involvement in the formulation and development of research
goals and analysis has assured the quality and reliability of the
outputs. Often, the knowledge of the local system and context,
difficult to formalise in data and metadata (but see Section
“Extending Bio-logging Data With Data Sets on Animals and
Their Context”), has fundamentally helped to identify artifacts
in the analysis outputs, or contributed indications on relevant
explanatory variables.

Our experience suggests that the involvement of those who
collected the data in large, longitudinal projects is important not
only to valorise the contribution of data collection and stimulate
data sharing, but above all to improve the quality and robustness
of analyses and their interpretation.

Training in Data Management for All
Practitioners Providing Data
The involvement of scientists in data management has evolved
through time. Whereas before a certain disconnect was common
(Lynch, 2008), nowadays, the trend of ecological information
toward “Big data” makes data management a necessary skill
for spatial ecologists, as it has already happened with statistics
and GIS (Urbano et al., 2010). The quantity, frequency of
acquisition and complexity of data generated by bio-logging
projects require a software architecture that cannot be based
anymore on spreadsheets or flat files. More advanced data
management systems based on structured databases must be
handled by ecologists for the data to be fully exploited and not
wasted or, worse, misused (Urbano and Cagnacci, 2014).

Within Euromammals, the knowledge of basic principles of
data management by those who collect and share data was
important to increase the data quality and optimise their use
once stored in the database. To use the Euromammals database,
at least basic knowledge of the language for interacting with
relational databases (SQL) is needed. Users can either query the
database directly, or ask for data curators’ support to query and
export data according to the analysis requirements, usually in
a simple and easy to manage format (comma separated values,
CSV files). Although some basic training is needed, users have
appreciated the database potential for large data sets processing
and integration with analysis tools (e.g., R, R Core Team, 2021).
In this aspect, Euromammals is a privileged laboratory because
smaller groups initially without specific data management skills
have benefitted from support and training by data management
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experts within the network. One of the key activities of the
network has been the promotion of periodic summer schools
in data management (in 2012, 2015, and 2018) open to all but
especially targetting Euromammals members.

Another very important aspect of creating and consolidating
data management skills among the repository users is to convey
the concept that what drives the form in which data is organised
in a repository is not necessarily the form in which the data
will then be viewed and analysed, i.e., separating the logic of
using data from the logic of organising it. This is a key element
to organise the data in the right format without inconsistencies
across multiple data sets, whereas when stored locally data are
often adjusted to meet specific needs, rather than letting this be
done by operations within a relational database. This approach
has a positive impact also on the standardisation of the data
when recorded in the field, as how they will be stored and used
is accounted for in the collection protocols (Petters et al., 2019).

The more researchers who collect and process data are familiar
with data management, the higher the quality of the data shared
will be. In general, every data collection should a priori be based
on a good data management plan (Michener, 2015) that ensures
an optimised data workflow (Hackett et al., 2019). In this sense,
large training initiatives, such as Data Carpentry9 and CODATA10

are also important opportunities.

Data First, Then and Only Then the
Interfaces
Within Euromammals, the priority has always been to collect
and harmonise the data and provide them ready for analysis
by the researchers of the network. For this reason, all available
resources have been used to improve data quality and gather
and process more data. It has not been in the goals of
Euromammals to create Graphical User Interfaces (GUIs) for
data upload and query, rather we relied on expert knowledge
and existing tools for these tasks (see Section “Training in Data
Management for All Practitioners Providing Data”), and invested
in interoperability. This approach has always paid off and ensured
that the project could last more than 15 years independently from
software obsolescence.

Our experience is that the most critical step is not the
e-infrastructure to host, visualise and disseminate data, but the
creation of connections and trust inside the scientific community.
This can only be achieved in the medium and long term and once
established can easily adjust to more technical requirements with
limited and focussed investments. We think that this perspective
should be considered carefully by agencies that offer funding
opportunities that are often supporting development of data
sharing software platforms rather than network establishment,
data management training and data quality check and gathering.

Harmonisation of Data Collection
Protocols
In the absence of shared protocols, data sharing is limited
by the risk of pooling incoherent sources. Given the nature

9https://datacarpentry.org/
10https://codata.org/

of the Euromammals networks, in which the majority of
researchers working on a given species actively participate,
it was possible to harmonise not only the collation of
data, but also the data collection protocols, i.e., in the
field. For example, most movement analysis rely on regular
trajectories (Calenge et al., 2009), so that when data sets
from different sources are used, trajectories have to be
subsetted, or regularised. In Euromammals, members have
agreed upon a minimum species-specific frequency for GPS
location acquisition, so that trajectories can be easily collated
before analysis.

Integration of Remote Sensing Products
Remote sensing is a key data source to contextualise animal
movement and behaviour in species’ habitat. Since the start of
the project and with the support of the University of Natural
Resources and Life Sciences, BOKU, Austria (Vuolo et al., 2012;
Atzberger et al., 2013), the Euromammals spatial databases
integrated many remote sensing products with pan-european
coverage, updating the annotation of animal movement data with
more recent products as they became available, and progressively
dismissing the older ones, such as the Copernicus products
(European Union, 2021). Corine Land Cover, Digital Elevation
Model, Forest Density; the NASA MODIS-derived NDVI (Didan,
2015), and snow cover (Hall et al., 2006); CGIAR-DEM/SRTM1
(Jarvis et al., 2008) and ASTER-DEM (Hirano et al., 2003),
among the others. The opportunities (and challenges) in the
use of remote sensing for animal movement studies are quickly
evolving with the availability of new sensors in both domains.
In particular, the European Sentinel-1 and Sentinel-2 satellites
can potentially match the spatial and temporal scale of animal
movement studies for a large set of species (terrestrial, marine
and avian), with high resolution time series. Nowadays, the
increasing amount and spatio-temporal resolution of available
remote sensing data is making the annotation of movement
data by downloading the products and carrying out a local
spatio-temporal join outdated and impractical (Dodge et al.,
2013). Euromammals is now moving from an internal acquisition
and processing approach to the connection with cloud-based
infrastructures like Google Earth Engine (Gorelick et al., 2017)
and the emerging European Copernicus Data and Information
Access Services (DIAS).

The sensitive point in remote sensing data is its appropriate
use. Users without a specific remote sensing background
tend to rely on remote sensing data in their animal ecology
research without a proper assessment of the characteristics
and limits of such products. Using the nominal spatial and
temporal resolution as the only criteria to select the best
remote sensing product, assuming they provide an error-free
and homogeneous picture of the earth’s surface are common
pitfalls when annotating animal movement data. As no clear
rule can be set a priori to identify the best remote sensing
products and their limits, results must be correctly interpreted
case by case. The recommendation is to inform users of the
characteristics of the products and possibly involve remote
sensing experts in the study.
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Data Gathering and Engagement of
Contributors
A bottom-up, collaborative initiative like Euromammals can
rely on the open, participatory attitude of members. However,
as members mainly offer in-kind contribution of their time,
certain phases in the integration of different data sets inevitably
took a substantial amount of time, especially the phase of data
preparation, for data checking and documenting, or the gathering
of ancillary, non-sensor based standardised information (e.g.,
population level characteristics). The technical assistance by a
database manager and data curators has proved essential to assure
the effectiveness of these steps.

Further to technical help, researchers are motivated to provide
data and prioritise the initiative’s activities if they feel well-
informed and proactively involved, thus developing trust and a
sense of belonging to the network that overcomes the perplexities
raised by some researchers about possible misuse of shared data
(Mills et al., 2015, 2016). In Euromammals, writing joint papers
proposed by the community itself has been the signature trait
of the initiative, and has fuelled the engine of the network
(see Table 1). For this to be realistic, a scientific coordinator
recognised as an integral part of the community kept the
overview of the scientific goals and engaged the participants
to achieve them.

Long Term Sustainability
Euromammals is a bottom-up initiative also from a financial
point of view: there is no grant that financially has supported
its creation and maintenance. After an initial investment of
about 100KEuro from one of the founding members stemming
from institutional activities, the project has supported the
technical needs (i.e., database development, maintenance and
management, and partly data curatorship) through sponsorship
from a private company, and ad hoc contributions from the
partners. This constitutes an approximate annual investment of
25k Euro. To this, a large amount of in-kind time from several
members of the network engaging in the management tasks
(often Ph.D. students and postdocs) and from the IT support of
the institution hosting the database has to be added and proved
essential for the sustainability of the project.

For more than a decade, this model has worked and ensured
the sustainability of Euromammals even though no stable
funding has been provided. However, this system has pros and
cons. On the one hand, it has ensured that the initiative was
not limited by the temporal horizon of a grant (that rarely
goes beyond 3–5 years) and by the requests of funding agencies
that are necessarily constrained to specific objectives, so that
the researchers could be creative in proposing research topics
and member institutions could seek for immediate responses
to ad hoc issues. On the other hand, this system has reduced
the speed of Euromammals development and finalisation of
initiatives, because of limited dedicated resources. Additional
funding would be important to add new features, increase the
frequency of meetings, add more data sets per year into the
databases, work more closely to the implementation of standards,
but not necessarily to maintain the core structure, which is a
guarantee of long term sustainability. Essentially, Euromammals

always had more data and initiatives proposed than those that
could actually be processed.

In our experience, the significant and durable scientific return
of a collaborative project is not only due to the e-infrastructure
and software development, which can be achieved with
substantial financial support in the short term, but rather to
the establishment of trust in the network which in turn is the
expression of a scientific community based on community trust.
This requires moderate investment distributed over time, with a
long-term perspective.

DISCUSSION

The value and impact of scientific data increase when all
researchers within a community are able to share knowledge
and interact with one another (Michener and Jones, 2012;
Chamanara and König-Ries, 2014), and data sharing initiatives
are invaluable opportunities to this end. In this manuscript, we
report the main lessons that we have learnt in the 15 years of
the Euromammals project for collaborative science in animal
spatial ecology. In particular, re-using data to scale up from single
study areas to a broader range of habitat conditions allows to
address more generalisable scientific goals and support decision
making (Applegate, 2015). Conversely, it requires that data are
harmonised, managed and stored beyond the scope they are
collected for. These are the premises that since 2007 pushed
an increasing number of European institutes and organisations
studying or managing terrestrial mammals to join Euromammals.
The species-specific Euromammals scientific networks have
created, populated and managed shared databases that are
a fertile laboratory to identify challenges and opportunities
in collaborative science that we have summarised here. The
establishment of a collaborative network was achieved through
the involvement of those who collected the data in all stages,
from data quality checks, to financial support and production
of scientific outputs. We had to adapt our approach to data
management multiple times to take into account issues and
opportunities that arose as data types and network requirements
evolved over time, so that a diffused, basic knowledge of data
management was of great aid to the success of the initiative. These
good practices and critical points can help address solutions that
are currently being developed by larger standardisation and data
sharing initiatives (Sequeira et al., 2021).

According to our experience, quality of shared data is
an issue that is often overlooked, assuming that formal and
automated controls are sufficient to provide reliable information.
Once published in a repository, though, issues may remain
hidden to final users. We recommend putting in place more
active, controlled and scrupulous review before data are made
available in shared repositories. In our case, an intermediate
step of data sharing closer to the specific scientific community,
before sharing the data into generalist repositories represented
an incredible added value to obtain better science-based
information. In Euromammals, an insufficiently formalised
definition of monitoring events or procedures was observed as
a common reason for data inconsistency or incompleteness, even
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when recorded from bio-logging sources. In particular, to be fully
effective, we realised that standardisation should start from data
collection protocols. Ancillary, complementary data of individual
life- and capture-history, cause of death, sensor retrieval and
malfunctioning, as well as on population-level general descriptors
(presence of competing species, hunting regime, intensity of
tourism, presence of artificial feeding) also strongly contribute
to a well-informed and robust use of bio-logging data sets. Such
information is mostly species-specific, and difficult to generalise,
but it can be refined as new questions or observations emerge
from the users. Remote-sensing data are of great aid in obtaining
standardised descriptors of the environmental context of the
studied species, but should also be used coherently to their
spatio-temporal resolution and potential sources of bias.

From a technical point of view, there is an urgent need for
movement ecology to move forward in defining common data
collection protocols, data and metadata standards, and shared
vocabularies. The community should be involved, including
smaller players, the so-called long tail of scientific research
(Petters et al., 2019), so as to increase the consensus and
engagement in their use of standards. Often, standards remain a
topic for experts, limiting their impact and adoption and slowing
down the acceptance of data sharing principles by part of the
scientific community.

A direct involvement of those collecting the data in the
analysis phase fosters the willingness to share data and improves
the scientific outcomes. In general, the establishment of data
sharing networks and repositories requires a long process to
build trust in the communities. Conversely, the primary goal
by funding entities remains the creation of e-infrastructures
and software tools for data sharing and discovering. However,
a moderate, but distributed investment over time is essential
to engage the community and ensure sustainability after the
e-infrastructure has been created.

No scientific community “is an island entire of itself but is a
part of the main” (Donne, 1624): in the future Euromammals
plans to connect with broader international initiatives that aim
at setting cross-discipline guidelines, standards and tools for
an integrated approach to data and knowledge sharing. In this
regard, networks of networks like the European Open Science

Cloud (EOSC)11 are a key element to maximise the impact of
community based initiatives in science.

Whatever the model for managing the data sharing process, it
is clear that there is no alternative to data sharing in the medium
and long term in ecology and conservation biology to address the
emerging global challenges.
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