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Abstract: Lipids play many essential roles in living organisms, which accounts for the great di-
versity of these amphiphilic molecules within the individual lipid classes, while their composition
depends on intrinsic and extrinsic factors. Recent developments in mass spectrometric methods
have significantly contributed to the widespread application of the liquid chromatography-mass
spectrometry (LC–MS) approach to the analysis of plant lipids. However, only a few investigators
have studied the extensive composition of grape lipids. The present work describes the development
of an ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS)
method that includes 8098 MRM; the method has been validated using a reference sample of grapes
at maturity with a successful analysis and semi-quantification of 412 compounds. The aforemen-
tioned method was subsequently applied also to the analysis of the lipid profile variation during
the Ribolla Gialla cv. grape maturation process. The partial least squares (PLS) regression model
fitted to our experimental data showed that a higher proportion of certain glycerophospholipids
(i.e., glycerophosphoethanolamines, PE and glycerophosphoglycerols, PG) and of some hydrolysates
from those groups (i.e., lyso-glycerophosphocholines, LPC and lyso-glycerophosphoethanolamines,
LPE) can be positively associated with the increasing ◦Brix rate, while a negative association was
found for ceramides (CER) and galactolipids digalactosyldiacylglycerols (DGDG). The validated
method has proven to be robust and informative for profiling grape lipids, with the possibility of
application to other studies and matrices.

Keywords: grape; lipidomics; liquid chromatography; mass spectrometry; lipidome

1. Introduction

As stated by the Consortium of Lipid Metabolites and Pathways Strategy (Lipid
MAPS), lipids can be defined as small amphiphilic or hydrophobic molecules that are insol-
uble or partially soluble in water [1]. Their role is essential for all eukaryotic and prokaryotic
organisms, since they affect the cellular membrane structures and protein–membrane in-
teractions, provide a source of energy through oxidation processes and serve as signaling
molecules [2].

Ketoacyl and isoprene groups represent two fundamental building blocks for
carbanion-based condensations of ketoacyl thioesters and/or by carbocation-based con-
densations of isoprene units, which classifies lipids into eight categories: fatty acyls (FA),
glycerolipids (GL), glycerophospholipids (GP), sphingolipids (SP), saccharolipids (SL),
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polyketides (PK), sterols (ST), and prenol lipids (PR) [3]. Each category is further divided
into classes and subclasses, which substantially leads to a wide-ranging diversity of lipid
species in complex biological matrices, also known as lipidome [3,4].

Due to the chemical complexity and wide concentration range of the lipids present in
biological matrices, to identify and potentially quantify all lipids simultaneously with a
single analytical strategy is a challenging task [1]. Nonetheless, mass spectrometry (MS)
coupled with soft electrospray ionization (ESI) has proven to be a powerful technique
to perform such a challenging analytical task, due to its unique superiority in terms of
specificity, sensitivity, dynamic range, and throughput [5–8]. Reducing matrix effects
in biological samples as well as limiting the complexity of analytes at the moment of
detection have contributed to a more frequent use of the liquid chromatography–mass
spectrometry (LC–MS) approach, despite the fact that the direct infusion MS strategies were
initially prevalent in lipidomic research, due to their relative simplicity of operation and
fast analysis [9,10]. In the field of lipidomics, the good reproducibility and high resolving
power of high-performance liquid chromatography (HPLC) enhance the separation of
almost all the lipid molecular species [5]. However, the development of stationary phases
and ultrahigh performance LC (UHPLC) provided much higher resolution and made the
process less time-consuming than traditional HPLC [11].

In recent years, MS-based lipidomics has proven to be a suitable approach for in-
vestigating the lipidome size in biological systems, where the entire collection of chemi-
cally distinct lipid species is included [12]. Since in this paper we are focusing on grape
lipidomics, it is important to point out that the majority of plant lipids are similar to those
present in mammals, except for some classes of galactolipids, sulfolipids, galactosyl group-
containing sphingolipids, and plant sterols, which are only minimally present or even
absent in mammals [13]. For example, diacylglycerolipids, such as monogalactosyldiacyl-
glycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol
(SQDG), are involved in photosynthesis and are therefore most prominent in chloroplast
membranes [14,15].

The vast majority of lipid molecules can be found in the membranes of plant cells and
together they represent 5–10% of the dry weight of vegetative plant cells [16]. In grapes, this
quantity slightly increases, as the proportion of lipids falls within the range of 0.15–0.24%
of the fresh weight [17], which makes them an important modulator of yeast metabolism,
during the white and rosé winemaking process, due to the short contact of grape skins with
must [16]. This ultimately affects the aromatic profile of the produced wines. For instance,
it has been observed that a higher lipid concentration in the fermenting medium results
in a lower production of acetic acid, whereas it stimulates 3-mercaptohexan-1-ol thiol
liberation, which contributes to the increase of the perception of citrus notes in wine [18].
Similarly, polyunsaturated fatty acids (i.e., linoleic, and linolenic acid) may be oxidized by
lipoxygenase-hydroperoxidelyase, thus forming C6 and C9 aldehydes (e.g., trans-2-hexenal,
trans-2-nonenal, and cis-2-hexenol) that are related to green and herbaceous odors [19,20].
In order to promote yeast cell growth under hypoxic conditions, a sufficient degree of
unsaturation in the yeast plasma membrane is required, since the biosynthesis of fatty acids
is repressed as ethanol concentration in the environment increases [21–23]. The unsaturated
fatty acids are therefore required for physiological functions related to yeast adaptation.
The availability of these lipids, however, is related to the introduction of double bonds
in the fatty acyl chains, catalyzed by desaturases [24]. Complex forms of exogenous GP
and GL from grapes thus represent a potential source of free fatty acids (FA) for yeast
utilization, which are liberated through lipolytic activity [25].

It can be therefore concluded that lipid molecules have an important physiological
role in yeast cells, and consequently on the wine aroma. This can be a sufficient reason
to explore the lipidome of grapes. In recent years, the investigators have focused on the
characterization of predominantly fatty acids that are present in Vitis vinifera [17] and non-V.
vinifera [26] grape cultivars. In addition, the evolution of fatty acids [27], phytosterols [28],
and TG [29,30] in grapes during berry development has been established. However, with a
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few exceptions [16,31,32], relatively few studies addressed a more holistic lipid profiling of
grapes, in order to better understand lipid metabolism.

The aim of this work is to introduce and validate a sensitive and accurate UHPLC–
MS/MS method for the simultaneous determination and semi-quantification of multiple
classes of lipids in grapes of the Ribolla Gialla variety. In addition, the effectiveness of
this method is verified by monitoring the changes occurring in the lipid profile during
grape ripening.

2. Results and Discussion
2.1. Compounds of Interest

Since the method was designed to be validated and applied to a vegetal matrix, it was
decided to consider only chemical backbones made up of an even number of carbons, from
14 to 22, and with up to six double bonds that configure the fatty acids as the building
block of other lipid species [33]. Figure S1A summarizes the total number of various
saturated and unsaturated chains that have been detected in our reference sample. As can
be observed, lipids with 18:2 and 16:0 fatty acid chains prevailed in our grape samples,
which was also confirmed by the area percentage of chains found in the reference grape
extract (Figure S1B). As it has been previously reported in the literature [34], the plant
tissues most often contain between 14 and 24 carbon atoms, which could confirm our
decision regarding the chain length for the validation.

The instrument parameters were optimized using the standard mix as described in
the Materials and Methods section; following LIPID MAPS® recommendations [35], four
categories of compounds were considered in the method, with their relevant Multiple
Reaction Monitoring (MRM) transitions and parameters (Table S1). For MRM selection, we
followed the criteria described in Section 3.2.

We studied the fragmentation pattern for each class of compounds, taking into account
the existing literature. Q1 scan spectra of each lipid showed different ion species, due to
the presence or the absence of adducts (Table 1).

In detail, glycerophosphate (PA), glycerophosphoethanolamine (PE), glycerophos-
phoglycerol (PG), glycerophosphoinositol (PI), and glycerophosphoserine (PS) are identi-
fied in negative mode using [M–H]− as precursor ion; instead, glycerophosphocholines
(PC) are characterized by the adduct ion [M+HCOO]− as the base peak; for all the glyc-
erophospholipids the [sn2 FA]− chain has been reported as product ion [33,36–42]. Lyso-
glycerophosphate (LPA), lyso-glycerophosphoethanolamine (LPE), lyso-glycerophospho-
glycerol (LPG), lyso-glycerophosphoinositol (LPI) and lyso-glycerophosphoserine (LPS)
are characterized by a negative ionization using a [M–H]− as a precursor with a [sn2 FA]−

fragment as a product ion [33,36,37,40–42]; instead, lyso-glycerophosphocholines (LPC)
are characterized by a positive ionization [M+H]+ with a product ion characteristic of m/z
184.1 which represents the head group of phosphoryl choline [33,43]. Monoacylglycerols
(MG) are characterized by a positive ionization mode [M+H]+ with a product that consists
of the molecule after the loss of glycerol [M–C3H7O3]+ [33,44]. In addition, diacylglycerol
(DG) and TG ionize in positive mode with a sodium adduct [M+Na]+, the product ion being
the molecule after the loss of [M–(sn2 FA)]+ for DG and [M–(sn3 FA)]+ for TG [33,44,45].
MGDG and DGDG are identified with a positive ionization mode with the sodium adduct
[M+Na]+ and a loss of the fatty acid with a rearrangement of the molecule for the product
ion [M+Na–R2CO2H]+, as described by Guella et al. [46]. Sphingomyelins (SM) have been
included with a positive ionization [M+H]+ as precursor ion and a m/z 184.1 as product
ion [33,47]. CER are ionized in a positive mode with the abduction of a molecule of water
[M+H–18]+ with a product ion of m/z 264.1 for CER, glucosyl ceramide (glcCER) and
lactosyl ceramide (lacCER) and of m/z 266.1 for all the dihydroceramide (dhCER) [33,48].
Carnitine (CAR) ionizes in a positive mode [M+H]+ with a product fragment of m/z 85.1,
which was described as a specific product ion of acylcarnitine fragmentation [33,49]. FA
ionization polarity is in negative mode with [M–H]− as Q1 and as the entire molecule
without fragmentation as product ion [33,50].
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Among the 8098 MRM considered (included 21 internal standards, IS), 1045 were
detected in our reference matrix (grapes at the final maturation point). Due to the extensive
number of MRM, two independent analytical methods for grapes samples were built: one
in positive and one in negative ionization mode. In this way, we avoided polarity switch,
guaranteeing a suitable number of points per peak along the chromatographic run.

Table 1. Fragmentation pattern for each class of lipid compounds.

Class Ionization
Mode Precursor Ion Product Ion Reference Internal

Standard
DP

(Volts)
EP

(Volts)
CE

(Volts)
CXP

(Volts)

CAR pos [M+H]+ 85.1 [33,49] 24:0 (d4)
Carnitine 93 10 31 16

CER pos [M+H–18]+ 264.1 [33,48] C15 Ceramide-d7 130 10 55 10

DG pos [M+Na]+ [M– (sn2 FA)]+ [33,44] 15:0–18:1(d7)
DG-Na 93 9 42 25

DGDG pos [M+Na]+ [M+Na–
R2CO2H]+ [46] Hydrog DGDG

(18:0–18:0) 80 10 65 20

dhCER pos [M+H–18]+ 266.1 [33,48] C15 Ceramide-d7 130 10 55 10

FA neg [M–H]− [M–H]− [33,50] Stearic acid-d3 −80 −10 −17 −20

glc-dhCER pos [M+H–18]+ 266.1 [33] C15 Ceramide-d7 130 8 45 27

glcCER pos [M+H–18]+ 264.1 [33] C15 Ceramide-d7 130 8 45 27

lac-dhCER pos [M+H–18]+ 266.1 [33] C15 Ceramide-d7 126 10 56 15

lacCER pos [M+H–18]+ 264.1 [33] C15 Ceramide-d7 126 10 56 15

LPA neg [M–H]− [sn2 FA]− [33,41] 17:0 Lyso PA −80 −6 −45 −20

LPC pos [M+H]+ 184.1 [33,43] 18:1(d7) Lyso PC 90 6 35 20

LPE neg [M–H]− [sn2 FA]− [33,40] 18:1(d7) Lyso PE −88 −12 −42 −20

LPG neg [M–H]− [sn2 FA]− [33,42] 17:1 Lyso PG −75 −10 −38 −24

LPI neg [M–H]− [sn2 FA]− [33,36] 17:1 Lyso PI −90 −6 −40 −24

LPS neg [M–H]− [sn2 FA]− [33,37] 17:1 Lyso PS −72 −10 −53 −24

MG pos [M+H]+ [M–C3H7O3]+ [33,44] 18:1(d7) MG 140 10 16 10

MGDG pos [M+Na]+ [M+Na–
R2CO2H]+ [46] Hydrog MGDG

(18:0–16:0) 100 10 50 30

PA neg [M–H]− [sn2 FA]− [33,40,41] 15:0–18:1-D7-PA −80 −6 −45 −20

PC neg [M+HCOO]− [sn2 FA]− [33,38–40] 15:0–18:1(d7) PC −90 −10 −50 −20

PE neg [M–H]− [sn2 FA]− [33,38,40] 15:0–18:1(d7) PE −88 −12 −42 −20

PG neg [M–H]− [sn2 FA]− [33,40,42] 15:0–18:1(d7) PG −75 −10 −38 −24

PI neg [M–H]− [sn2 FA]− [33,36,40] 15:0–18:1(d7) PI −50 −10 −55 −10

PS neg [M–H]− [sn2 FA]− [33,37,40] 15:0–18:1(d7) PS −72 −10 −53 −24

SM pos [M+H]+ 184.1 [33,47] d18:1–18:1(d9)
SM 124 10 32.5 23

TG pos [M+Na]+ [M– (sn3 FA)]+ [33,44,45]
15:0–18:1(d7)-

15:0
TG-Na

90 10 40 10

Declustering potential, DP; entrance potential, EP; collision energy, CE; collision cell exit potential, CXP.

2.2. Chromatographic Optimization

In order to optimize the method that includes such a large number of compounds,
the chromatographic separation was carefully tested with three different columns and two
chromatographic methods. To evaluate the quality of the chromatographic separation,
positive and negative mode graphs with m/z and retention time were built (Figure 1).
The graphs show how the compound classes are distributed along the separation time
according to their m/z for the three types of columns. The XBridge Amide column, which
was recently used by Khan et al. [51] for the lipidomic analyses of human plasma, did not
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guarantee, in our application, a suitable separation of TG, DG and MGDG, which represent
around 60% of the compounds identified in our matrix (Figure 1).
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Figure 1. Distribution of the different compound classes along the retention time (RT) according to their m/z; the three
tested columns (XBridge Amide column, Aquity CSH-C18 column and Aquity BEH-C18 column) are shown. Posi-
tive analytes: CAR, carnitines; CER, ceramides; DG, diacylglycerols; DGDG, digalactosyldiacylglycerols; LPC, lyso-
glycerophosphocholines; MG, monoacylglycerols; MGDG, monogalactosyldiacylglycerols; SM, sphingomyelins; TG, triacyl-
glycerols. Negative analytes: FA, free fatty acids; LPA, lyso-glycerophosphates; LPE, lyso-glycerophosphoethanolamines;
LPI, lyso-glycerophosphoinositols; LPG, lyso-glycerophosphoglycerols; LPS, lyso-glycerophosphoserines; PA, glycerophos-
phates; PC, glycerophosphocholines; PE, glycerophosphoethanolamines; PI, glycerophosphoinositols; PG, glycerophospho-
glycerols; PS, glycerophosphoserines.

The AquityBEH-C18 and AquityCSH-C18 columns, used following Isaac et al. [52],
showed a better separation potential. In terms of numbers, both columns gave us a good
separation of those critical compounds (TG, DG and MGDG), which appear spread along
the chromatographic time (Figure 1). Between the two we finally chose the Aquity CSH-C18
column, due to the best peak shape obtained (data not shown).
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2.3. Method Validation

The compound annotation has been evaluated using the Kendrick mass defect (KMD)
to the CH2 base [53]. The KMD value of each compound has been plotted versus the
specific retention time (Figure S2). Following this validation method, compounds with the
same number of carbons should be aligned in the same diagonal and compounds with the
same number of double bounds should be horizontally aligned. We decided then to exclude
the compounds that do not reflect these rules (falling out of the diagonal and falling out
of the horizontal line). The method was validated using either the IS mix or the reference
matrix sample as described in Section 3.5. Table 2 shows the number of compounds per
class included in the method, the validation parameters evaluated using the IS mix, the
number of compounds identified in our reference matrix and those validated.

Table 2. Method validation parameters.

Class Compounds
in Method

Based on the IS Compounds

Matrix Validated

Based on the Reference Matrix

Recovery
%

LOD
(µg/g)

Linearity
(µg/g)

Repeatability
Range
(CV%)

Intra-Day
Range
(CV%)

Inter-Day
Range
(CV%)

CAR 48 99 0.00003 0.0003–3 5 4 9–17 7–10 8–19

CER 210 118 0.005 0.03–150 11 7 8–15 2–15 6–21

DG 630 118 0.00003 0.0015–3 132 26 3–19 2–12 5–20

DGDG 630 96 0.00003 0.0003–30 43 37 2–18 2–15 6–21

FA 35 94 0.00003 0.003–300 8 5 9–19 4–13 6–18

LPA 35 76 0.05 0.15–300 0 0 – – –

LPC 35 100 0.00003 0.0003–3 12 12 4–9 2–7 5–7

LPE 35 98 0.00003 0.0003–150 8 8 2–7 2–4 4–7

LPG 35 29 0.00003 0.0003–150 5 5 5–19 3–8 4–11

LPI 35 4 0.00003 0.00015–300 5 2 11–14 14–15 17–19

LPS 35 39 0.003 0.015–300 0 0 – – –

MG 35 106 0.001 0.003–150 3 2 10–20 5–7 8–13

MGDG 630 100 0.00003 0.00015–3 150 36 2–17 1–14 4–21

PA 630 101 0.001 0.003–300 53 45 4–20 2–16 4–21

PC 630 105 0.005 0.015–300 51 25 3–20 3–16 10–21

PE 630 101 0.00003 0.0003–150 60 34 4–20 2–15 6–21

PG 630 92 0.0001 0.0003–30 104 32 4–19 2–12 5–21

PI 630 68 0.00003 0.0003–30 31 20 6–21 3–16 6–21

PS 630 103 0.0003 0.015–300 59 11 5–18 3–14 9–20

SM 35 81 0.0003 0.03–30 0 0 – – –

TG 1834 95 0.005 0.015–30 305 101 4–21 1–16 5–21

TOTAL 8077 1045 412

Limit of detection, LOD; internal standard, IS; number of compounds identified in the reference matrix, #matrix; numbers of compounds
successfully validated in the reference matrix, #validated.

The final value of recovery reported in Table 2 was calculated as the mean of the three
recovery level points for each class of compounds (% within a single class). As shown
in the table, the recovery was over 80% for 16 classes (CAR, CER, DG, DGDG, FA LPA,
LPC, LPE, MG, MGDG, PA, PC, PE, PG, PS, SM and TG), 76% for LPA, and 68% for PI; we
obtained a good recovery for almost all the classes except for LPG (29%), LPI (4%) and LPS
(39%). The Folch extraction method consists of a mixture of chloroform, methanol, and
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water, therefore some hydrophilic compounds can be contained in the aqueous phase [54].
Regardless, we obtained good recovery results for the majority of classes of our compounds
of interest. We are aware that the extraction method used was a sort of compromise and
cannot be optimized for all the compound classes together, but this situation has to be
accepted to ensure a large coverage of the different lipid classes.

The linearity range for each class of compounds was evaluated using the IS mix
calibration curves spiked to the matrix; the ranges are reported in Table 2. The limit of
quantification (LOQ) was identified as the lowest point of the calibration curve included in
the linearity range; the limit of detection (LOD) was calculated as 3.3 × (S/N).

From the point of view of repeatability (six independent extraction) of the 1045 com-
pounds detected in the reference matrix, we decided to include only those 412 with a
repeatability value of CV ≤ 20%, following [55], taking into account the KMD validation.
We evaluated the intra-day and inter-day repeatability of those using one extract of the
reference matrix injected six times consecutively during the same day and performing
three injections per day during seven consecutive days. CV% should not exceed a value of
15% for intra-day assay and 20% for inter-day assay [55]. We are aware that LPG, LPI and
LPS had shown low recovery values due to the extraction method used in this application,
which is not the most suitable for these classes of compounds; however, their repeatability
and stability gave good overall results. For this reason, we believe they can be used for the
comparison of our samples, and we therefore decided to consider them.

Table S2 shows the intra-day and inter-day repeatability values for the successfully
validated compounds.

2.4. Method Application for Grape Maturation Samples

Table S3 provides the semi-quantification of the 412 identified and validated lipid
compounds in the samples, expressed as µg/g of fresh grape powder. In this benchmark ex-
periment, the proposed lipidomics method was applied to characterize the ripening process
of Ribolla Gialla grapes. An exploratory analysis of the lipidomic dataset was performed
through Principal Component Analysis (PCA, Figure 2). The scores plot (Figure 2A) shows
that the first two principal components accounted for 54% of the total variance. In the plot,
it can be observed that the quality control (QC) samples (indicated in grey) are clustered
together, close to the origin of the scores plot. This indicates that their variability was lower
than that observed among the study samples. This is a clear indication of a good analytical
reproducibility. In terms of study samples, a certain degree of separation between the
samples corresponding to the first (from maturation point 1 to 7) and second half of the
maturation period (from maturation point 8 to 13) was observed. In particular, the points
that tend to cluster in the upper left side of the plot correspond to the initial maturation
samples (the maturation time-point is indicated by the numbers under each sample from
1 to 13), whereas the samples corresponding to the last ripening stages extend mainly
across the bottom right part. The global picture is less clear in the case of the loadings plot
(Figure 2B). There, it is difficult to find any specific trend that could directly connect certain
classes of lipids to an observed ripening trend. The only exception appears to be that the
TG seem to be located on the right side of PC1, where the samples from the second half of
the maturation process tended to concentrate.

In order to pinpoint the lipids which were strongly associated with the ripening
process, a more powerful regression approach was applied. The idea was to use Partial
Least Squares (PLS) regression to find the lipids which can be used to predict the ◦Brix value
(a measure associated with the fruit maturation state). Model optimization resulted in a
two-component model able to explain a substantial amount of ◦Brix variability (R2 = 0.889,
median Q2 = 0.855).

To get a general overview of which types of compounds were more strongly associated
with the ◦Brix, the regression coefficients of the validated PLS model were taken into
consideration. The regression coefficient of each lipid in the model is, indeed, giving a



Metabolites 2021, 11, 827 8 of 17

measure of its association with the ◦Brix level. Large positive values speak of positive
association, while large negative values are the indication of negative association.
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To work at the lipid class level, one could check if the lipids belonging to a specific
class were prevalently positively or negatively associated with the maturation, by checking
if the majority of them was getting a relatively large positive (or negative) regression
coefficient. In order to do that, we used the first and the last quartile of the distribution
of the regression coefficients as thresholds to define large positive or negative association.
The results of this type of analysis are summarized in Figure 3. Figure 3A displays the
distribution of the regression coefficients and the thresholds for the first and fourth quartiles.
Figure 3B, instead, shows the fraction of lipids of each specific class which were getting
regression coefficients in the upper or lower quartile. In the case of CER, for example,
around 60 percent of the lipids were showing a regression coefficient in Q1 (negative
association). This is an indication that ceramides are “globally” negatively associated with
maturation. This resulting regression lines for a subset of the more interesting lipid classes
are presented in Figure 3C.

In general, we considered that the classes of lipids showing a higher proportion of indi-
vidual compounds in the first quartile (Q1, i.e., those with the lowest regression coefficients)
would represent the categories with a general decreasing behavior over the maturation
process, whereas those classes with higher proportions of individual compounds in the
fourth quartile (Q4) would indicate the lipid classes with a direct connection to the sugar
level of the grapes (i.e., maturation process).

Figure 3 shows that the classes of CER, MG, LPG, DGDG and MGDG were negatively
related to the increasing ◦Brix value, whereas LPC, LPE, PE, PG and PI were globally
growing with the ◦Brix value. For example, 55% (n = 20) of MGDG were allocated in Q1,
while 16% (n = 6) had a regression coefficient in Q4, and 20% (n = 7) and 50% (n = 17) of PE
were distributed in Q1 and Q4, respectively (Table S4).
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The fluctuation of “neutral lipids” (i.e., TG, DG, and FA) has been confirmed with
some previous studies. Namely, Barron et al. [30] found out that TG with unsaturated fatty
acid residues changed significantly towards the end of the grape ripening process, but
without a clear trend, which could explain our findings regarding TG positioning in the
second or third quartile groups. Plants synthesize fatty acids and store them as TG in seeds,
and subsequently utilize them as energy during seed germination and early seedling devel-
opment [56,57]. However, stressful conditions, such as cold, heat, mechanical wounding,
and phosphorus deficiency [13] can cause the activation of lipases that substantially liberate
fatty acids from molecules and convert them to acetyl-CoA units, which are precursors
of sugar synthesis. [56]. Given the fact that TG is the most abundant class of lipids also
in grape seeds [58], it can therefore only be speculated that the fluctuations of the neutral
lipids are caused by stress factors.

Among the compounds whose concentration increased with grape maturity, we iden-
tified phospholipids PG and PE (Figure 3B) which are common constituents of biological
membranes. Between the two, PG is of particular importance, since it makes up the
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lipid bilayer of the thylakoid membrane in plant chloroplasts, together with galactolipids
(i.e., DGDG and MGDG) and sulfolipids (i.e., SQDG) [59].

CER and DGDG turned out to be two major classes of lipids showing a general de-
crease during grape maturation. The wide range of sphingolipid structures enables their
function in a variety of cellular processes: from acting as structural integrity elements of
the membrane to mediating cellular processes such as programmed cell death, which can
be promoted by CER accumulation [60,61]. Moreover, the decreasing trend of DGDG could
be linked to the decreasing concentration of linolenic acid during grape maturation [62], in-
dicating an important role of the lipoxygenase pathway in combination with galactolipases
and phospholipases during the ripening period [63].

3. Materials and Methods
3.1. Chemicals

EquiSPLASH™ LIPIDOMIX® Quantitative Mass Spec Internal Standard mix contain-
ing 13 deuterated compounds was purchased from Avanti® Polar Lipids (Alabaster, AL,
USA). All of the following were purchased from Avanti® Polar Lipids (Alabaster, AL, USA):
17:0 lyso PA, 15:0–18:1-D7-PA, Hydrogenated MGDG (18:0–16:0), Hydrogenated DGDG
(18:0–18:0), 17:1 lyso PG, 17:1 lyso PS, 17:1 lyso PI, 24:0 (d4) carnitine and stearic acid-d3.

The following mix and single compounds were purchased from Avanti® Polar Lipids
(Alabaster, AL, USA): Soy PA, Soy PC, Soy PE, Soy PG, Soy PI, Soy PS, Soy Lyso PI,
Soy Lyso PC, MGDG, DGDG, Brain SM, Ceramide (Egg), C12 Carnitine, C16 Dihydroce-
ramide (d18:0/16:0), C18 Glucosyl(ß) Ceramide (d18:1/18:0) and C24 Lactosyl(ß) Ceramide
(d18:1/24:0); Lipid Standard Mono-, Di-, and Triglyceride Mix was purchased from Sigma-
Aldrich (Milan, MI, Italy).

The chemicals acetonitrile (ACN, LC–MS grade), 2-propanol (IPA), methanol (CH3OH,
LC–MS grade) and chloroform (CHCl3) were purchased from Sigma-Aldrich (Milan, MI,
Italy). Formic acid (HCOOH) and ammonium formate (NH4COOH) additives for LC–MS
were from FLUKA Sigma-Aldrich (Milan, MI, Italy). Purified water was used for the
extraction procedure and mobile phase preparation using a Milli-Q system (Millipore,
Milan, Italy). During the extraction procedure butylated hydroxytoluene (BHT) was used
as antioxidant, provided by Aldrich-Fluka-Sigma S.r.l. (Milan, MI, Italy).

3.2. Compounds of Interest and Their Characteristics

Four categories of compounds were considered for this method: glycerophospholipids:
PA, PC, PE, PG, PI, and PS; LPA, LPC, LPE, LPG, LPI and LPS; glycerolipids: MG, DG, and
TG, MGDG and DGDG; sphingolipids: SM, CER, glcCE, lacCER, dhCER and fatty acids:
CAR and FA.

The MRM transitions were built by studying the chemical characteristics of each class
of compounds, using the corresponding class compounds included in the standard mix.
MRM covers all the possible combinations in a range of even carbon numbers from 14 to
22, with the double bond possibilities ranging from 0 to 6. Following the criteria described
above, we obtained 35 combinations for the single-chain compounds and 630 combinations
for those compounds having two chains; for the three-chain compounds, 7700 combinations
are possible; however, the number was reduced to 1834 Q1/Q2 unique combinations
reported in Table S1. As reported by Michaelson et al. [60], the SM and its precursor
CER are mainly characterized by an 18:1 fatty acyl chain; following this consideration we
evaluated them as single-chain compounds (with a constant 18:1 fatty acyl chain) with the
inclusion of 35 possible Q1/Q2 combinations (Table S1).

A detailed list of MRMs is shown in Table S1, including compound class, ionization
mode, precursor ion, product ion and the mass spectrometry parameters (declustering
potential, DP; entrance potential, EP; collision energy, CE; and collision cell exit poten-
tial, CXP).
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3.3. Instrumental Conditions
3.3.1. Optimization of Liquid Chromatography Conditions

Due to the large number of compounds of interest and their chemical diversity, LC
conditions were optimized.

The first tested method was set up with an XBridge Amide HPLC column (4.6 × 150 mm,
3.5 µm) (Waters, Milford, MA, USA) [51].

Separation was carried out with an initial flow of 0.7 mL/min following the gradient:
0 min 0.1% B; 0–6 min 6% B; 6–10 min increase to 25% B; 10–11 min 98% B; 11–13 min
100% B, held until 18.6 min. Then at 18.6–18.7 min the percentage of B decreased to 0.1%
and maintained until 24 min. At 13.5 min the flow changed to 1.5 mL/min; then the flow
returned to 0.7 mL/min at 23.5 min. The column was kept at 35 ◦C; the total duration of
the analysis was 24 min. The mobile phase A consisted of 1 mM ammonium acetate in 5:95
water/acetonitrile (v/v) solution with pH 8.4, while the mobile phase B consisted of 1 mM
ammonium acetate in 50:50 water/acetonitrile (v/v) solution, with pH 8.2.

For the second tested method, the Waters’ application note was considered, with some
modifications [52]. The column was an Acquity UPLC CSH-C18 (2.1 × 100 mm, 1.7 µm)
(Waters, Milford, MA, USA) at a flow rate of 0.6 mL/min. The mobile phase A consisted
of 60:40 (v/v) H2O:ACN, 10 mM NH4COOH, and 0.1% HCOOH; B 90:10 (v/v) IPA:ACN
10 mM NH4COOH, and 0.1% HCOOH. The separation gradient was: 0–0.5 min 10% B;
0.5–22 min 97% B maintained for 4 min; 26–26.5 min 10% B held for 3.5 min. The Acquity
UPLC BEH-C18 column (2.1 × 100 mm, 1.7 µm) (Waters, Milford, MA, USA) was also
tested by applying this chromatographic method, as suggested by Cajka and Fiehn [9].
The column was kept at 55 ◦C; the total duration of the analysis was 30 min. The injection
volume for all tested methods was 5 µL.

3.3.2. Mass Spectrometry Parameters

The AB SCIEX Triple Quad™ 6500 LC–MS/MS system was used in positive and nega-
tive ESI mode. The mass analyzer conditions were optimized for each class of compounds.

The ion spray voltage was set at 5500 V for positive mode and −4500 V for negative
mode. The source temperature was set at 500 ◦C, the nebulizer gas (Gas 1) and heater
gas (Gas 2) at 50 and 60 psi, respectively. Instrument control and data acquisition were
performed by Analyst software version 1.7 (Applera Corporation, Norwalk, CT, USA).

3.4. Sample Collection and Lipid Extraction

Ribolla Gialla (V. vinifera) grape samples originated from the Corno di Rosazzo
vineyard site, located in the Friuli Colli Orientali and Ramandolo districts in the Friuli
Venezia Giulia region of Northeastern Italy (46◦00′19.1′′ North; 13◦26′30.6′′ East; elevation
94 m a.s.l.). The clone used for the present study was the VCR 100 (Vivai Cooperativi
Rauscedo, Rauscedo, PN, Italy) grafted onto the Kober 5BB rootstock. The training system
adopted is a single arched Guyot. In order to determine how the lipid profile changes
during grape ripening, the bunches were sampled regularly every 3–5 days from the
véraison stage onwards. A total of 13 sampling points were collected from 6 August to 24
September 2019, each of which represented a single sample. Moreover, for each sampling
point, five biological replicates were collected, with the exception of the last two points,
where three replicas were available. Total soluble solids (◦Brix) were measured using a
manual refractometer (ATC-1, Atago, Tokyo, Japan).

Once the grape samples were collected and transferred to the laboratory, the berries
with pedicels were randomly separated from different parts of grape bunch and frozen
at −80 ◦C. A certain quantity of frozen grape berries without pedicels was subsequently
homogenized under liquid nitrogen with an IKA A11 (Staufen, BW, Germany) homogenizer
to generate ~30 g of powder, as previously described by Gika et al. [64]. Based on the Folch
method [65], a pre-existing protocol [16] was followed for the extraction of the lipids from
the grape powder, with some minor modifications. Briefly, 300 µL of CH3OH was added
to the previously weighted 100 mg of frozen grape powder into an Eppendorf microtube,
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and the mixture was vortexed for 30 s. Afterwards, 600 µL of CHCl3, containing butylated
hydroxytoluene (BHT 500 mg/L) was added, with 15 µL of IS (10 mg/mL), and placed
in an orbital shaker for 60 min. Subsequently, 250 µL of Milli-Q purified H2O was added
to the extracting mixture, followed by centrifugation at 3600 rpm for 10 min at 4 ◦C. The
total lipid-rich layer was collected into the fresh Eppendorf microtube. For the second
round of extraction, 400 µL of CHCl3/CH3OH/H2O 86:13:1 (v/v/v) was used, followed
by centrifugation, extraction, and the addition of the lower lipid phase to the previously
obtained lipid fraction. The remaining solvent present in the samples was then evaporated
under a stream of N2, and the dried extracts were reconstituted in 300 µL of IPA. A QC
sample was created by pooling the samples using 20 µL of each extract, used as QC and
injected in the same sequence as the samples.

3.5. Method Validation

To ensure a confident lipid identification, we manually curated lipid annotations
by plotting the retention time of a given lipid species against its KMD value to the CH2
base [53]. The IS mix was used to assess the recovery and to build the calibration curves
determining the range of linearity and limit of detection (LOD).

For repeatability and stability, a reference matrix sample was used, corresponding
to the grounded mature grape of Ribolla Gialla (final point of maturation stage, see
Section 3.4). The method was validated according to the currently accepted US Food
and Drug Administration (FDA) bio-analytical method validation guide [55].

3.5.1. Recovery

Recovery was estimated on reference matrix samples spiked using the IS mix at three
different levels (0.1, 0.5 and 1 mg/L). Five replicates for each point were performed and
the values were calculated as the average of the “measured value/expected value” ratio
(%). The final value of recovery reported in Table 2 is represented by the mean of the three
levels for each class of compounds (% within a single class).

3.5.2. Linearity, Limit of Detection and Limit of Quantification

Calibration curves were made in the reference matrix extract by adding increasing
concentrations of the IS mix in different concentrations. The calibration curves were used
to evaluate the range of linearity for each class of compounds and their LOD and LOQ
were expressed in µg/g of fresh grape.

3.5.3. Repeatability

Repeatability was evaluated using six independent extractions of the reference matrix
and expressed as coefficient of variation (CV%). The repeatability was evaluated on the
compounds detectable in our reference matrix.

3.5.4. Intra- and Inter-Day

Intra- and inter-day variability were evaluated using six extractions using the reference
matrix merged in a single vial. To evaluate the intra-day variability 6 consecutive injections
were performed during the same day. To evaluate the inter-day variability three injections
per day were performed during 7 consecutive days. Intra-day and inter-day variability
were evaluated by calculating the coefficients of variation (CV%).

3.6. Data Analysis

Data processing was performed using MultiQuant, version 3.0 (Sciex, Concord, Vaughan,
ON, Canada). The compound semi-quantification was calculated using one internal stan-
dard for each class (Table 1) and normalized for the exact weight of grape powder.

Missing values were replaced by a random value between 0 and half of the corre-
sponding minimum value for each compound. PCA was performed using the “prcomp”
function of R (version 4.0.3) on log-transformed and Pareto-scaled data.
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The PLS regression model was fitted using the “pls” R package on log-transformed,
scaled, and centered data. The contribution of each variable (i.e., lipid compound) to the
prediction of the ◦Brix in the PLS model was evaluated using the regressions coefficients.
The number of components of the model was estimated by 10-fold cross-validation. The
coefficient of multiple determination (R2) from the fitted model was used as a measure
of prediction accuracy of the model. The predictive performance of the model on an
independent test set was assessed by repeatedly (1000 times) splitting the data in training
and test segments (2/3 training, 1/3 test). The median of the resulting Q2 was used as a
global measure of model fit. As a further validation strategy, a label permutation approach
was implemented. This last strategy was also applied on 1000 models assigning the ◦Brix
degree randomly. This strategy resulted in a median Q2 of−0.033. The full set Q2 is plotted
in Figure S3.

Heatmaps were plotted using the “pheatmap” R package.

4. Conclusions

Despite the reported difficulties in analyzing such a chemically complex class of
compounds, in the present work we developed a UHPLC–MS/MS method that includes
8098 MRMs (including 21 IS). By exploring the liquid chromatographic separation and the
available columns, we identified a good resolutive method to achieve the best results for
such a large number of compounds supported by the MRM mass spectrometry. A total
of 1045 compounds were detected in our reference matrix; 412 of these were successfully
validated and semi-quantified in a grape ripening study involving the Ribolla Gialla
variety. The presented method allows the semi-quantification of single compounds; our
first purpose was to provide a general overview of the application results, presenting the
412 compounds by class. Different classes of compounds were identified as directly or
inversely related to the Ribolla Gialla grape ripening, showing the success of the analytical
platform. The method can be applied to different studies and matrices starting from the
8098 MRMs, following the detection, validation and semi-quantification steps as presented
in this work and allowing a broad overview of the major lipid classes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11120827/s1, Figure S1: Number of detected chains and their area percentage of chains
in our reference matrix, Figure S2: Kendrick mass defect (KMD) plotted against lipid retention time
to increase the confidence of lipid identification; Figure S3: Validation of the PLS model, Table S1: The
8077 compounds included in the method with their internal standards (IS), ID, formula, molecular
weight (MW), and MRM parameters, (declustering potential, DP; entrance potential, EP; collision
energy, CE; collision cell exit potential, CXP), Table S2: Validation results; repeatability, intra- and
inter-day of the 412 validated compounds, Table S3: Compound semi-quantification expressed as
µg/g of fresh grape powder; sample name, sampling date, biological replicate and ◦Brix for each
sample are reported, Table S4: Compound classes percentage (%) and number per class (n) for each
of the quartiles.
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Abbreviations

ACN acetonitrile
BHT butylated hydroxytoluene
CAR carnitine(s)
CE collision energy
CER ceramide(s)
CV coefficient of variation
CXP collision cell exit potential
DG diacylglycerol(s)
DGDG digalactosyldiacylglycerol(s)
dhCER dihydroceramide(s)
DP declustering potential
EP entrance potential
ESI electrospray ionization
FA free fatty acid(s)
GL glycerolipid(s)
glcCER glucosyl ceramide(s)
glc-dhCER glucosyldihydroceramide(s)
GP glycerophospholipids(s)
HPLC high-performance liquid chromatography
IPA 2-propanol
IS internal standard(s)
KMD Kendrick mass defect
lacCER lactosyl ceramide(s)
lac-dhCER lactosyldihydroceramide(s)
LC liquid chromatography
LOD limit of detection
LOQ limit of quantification
LPA lyso-glycerophosphate(s)
LPC lyso-glycerophosphocholine(s)
LPE lyso-glycerophosphoethanolamine(s)
LPI lyso-glycerophosphoinositol(s)
LPG lyso-glycerophosphoglycerol(s)
LPS lyso-glycerophosphoserine(s)
MG monoacylglycerol(s)
MGDG monogalactosyldiacylglycerol(s)
MRM multiple reaction monitoring
MS mass spectrometry
PA glycerophosphate(s)
PC glycerophosphocholine(s)
PCA principal component analysis
PE glycerophosphoethanolamine(s)
PI glycerophosphoinositol(s)
PG glycerophosphoglycerol(s)
PK polyketide(s)
PLS partial least squares
PR prenol lipid(s)
PS glycerophosphoserine(s)
SL saccharolipids(s)
SM sphingomyelin(s)
SP sphingolipid(s)
SQDG sulfoquinovosyldiacylglycerol(s)
ST sterol(s)
TG triacylglycerol(s)
UPLC ultrahigh performance liquid chromatography
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