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Abstract—This article develops a robust feature fusion approach
to enhance the classification performance of very high resolution
(VHR) remote sensing images. Specifically, a novel two-stage multi-
ple feature fusion (TsF) approach is proposed, which includes an in-
tragroup and an intergroup feature fusion stages. In the first fusion
stage, multiple features are grouped by clustering, where redun-
dant information between different types of features is eliminated
within each group. Then, features are pairwisely fused in an inter-
group fusion model based on the guided filtering method. Finally,
the fused feature set is imported into a classifier to generate the
classification map. In this work, the original VHR spectral bands
and their attribute profiles are taken as examples as input spectral
and spatial features, respectively, in order to test the performance of
the proposed TsF approach. Experimental results obtained on two
QuickBird datasets covering complex urban scenarios demonstrate
the effectiveness of the proposed approach in terms of generation
of more discriminative fusion features and enhancing classification
performance. More importantly, the fused feature dimensionality
is limited at a certain level; thus, the computational cost will not be
significantly increased even if multiple features are considered.

Index Terms—Classification, feature fusion, guided filtering
(GF), spectral-spatial features, very high resolution (VHR) image.

I. INTRODUCTION

THE current development of very high resolution (VHR)
remote sensing satellites allows the acquisition of submeter

extremely high spatial resolution images. This provides great
opportunities to enhance the earth’s surface mapping at a very
detailed level, as land-cover classification can benefit from this
in many different remote sensing application fields, e.g., urban,
agriculture, disaster mapping, and forestry [1]–[6]. Unlike the
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traditional moderate resolution multispectral images, VHR im-
ages are characterized by a higher spatial detail of land objects,
so context coherence and spatial patterns are as important as
spectral information in the classification process in order to
produce an accurate land-cover thematic map. In this article,
many advanced techniques have been proposed to utilize multi-
ple features, especially spectral-spatial features and to improve
the classification or detection performance, such as the mor-
phological reconstruction [7], the attribute profiles (AP) [8], the
edge-preserving filtering [9], the superpixel segmentation [10],
and the convolutional neural networks [11]–[14]. Despite their
effectiveness in extracting multiscale spectral-spatial features,
many of them do not address the feature fusion problem due
to increasing feature complexity and computational cost, which
may limit their utilization in practical applications.

Information fusion plays a very important role in remote
sensing processing and application, either from the data, feature,
or the decision level [15]–[18]. For feature-level fusion, a simple
fusion strategy is the direct feature stacking [1], [19], [20], [21].
However, this may lead to information redundancy and to a great
increase of computational cost. In some sense, features are cas-
caded, not really “fused” intrinsically. Several other works were
carried out to design advanced fusion models. In [22], a fusion
method based on feature transformation was proposed, where the
spectral bands, the Gabor features, and the pixel-shaped features
were unified, and then, manifold learning was applied to extract a
low-dimensional representation of the stacking features. In [23],
a multifeature fusion framework was developed to combine the
original spectral features with extended morphological profile
features based on the multiscale spatial and spectral kernels. In
[24], a probabilistic weighted strategy was proposed for spectral-
spatial feature fusion using multiple classifiers on different
features. Although the manifold learning and the multikernel
learning methods have improved the nonlinear discriminability,
they did not consider the physical meaning of features and may
lose a part of the original information. Moreover, the processing
time may significantly increase, especially in the commonly
used kernel-based methods, where the dimensionality of the
data space is still high and the selection of proper kernels is
also difficult [8], [25]. This is the first problem that needs to be
properly addressed.

Taking into account the advantage of the spatial features,
edge-preserving filtering methods become more noticeable.
Among them, the guided filtering (GF) shows a good perfor-
mance for edge-preserving that has been widely used in image
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Fig. 1. Block scheme of the proposed TsF approach.

fusion. With the help of the guidance image (e.g., the geometric
and spatial features of image objects), GF can make the filtering
output more structured and smoother than the input [26]. In
practical applications, GF can be directly used as a fusion algo-
rithm, or as a part of fusion models to further improve the fusion
performance. For example, in [27], a guided filtering-based
weighted average fusion method (GFF) was proposed based on
double-scale decomposition of images for fusing multifocus,
multimodal, and multiexposure pictures. It can make full use
of the spatial consistency to fuse the base layers and the detail
layers. Note that in [27], the considered images are quite similar
to each other that are imported to GFF, since they are multi-
focus images. However, for multispectral VHR remote sensing
images, different kinds of features are often characterized in
significantly different representations. Therefore, the selection
of proper features as guidance and input image in GF-based
methods will lead to very different fusion results, which usually
are more similar to the input image. This is the second open
issue in the current development of GF-based fusion methods
[28], [29].

To solve the aforementioned problems, a novel two-stage
multiple feature fusion (TsF) approach for VHR image classifi-
cation is proposed in this article. The proposed approach aims to
take full advantage of the information representation in multiple
features. Experimental results obtained on two QuickBird (QB)
VHR datasets covering complex urban scenarios demonstrated
its effectiveness, compared with the state-of-the-art methods.
The main novelty and contributions of this article can be sum-
marized as follows.

1) The proposed TsF approach can preserve discrimina-
tive information via the intragroup fusion step, and cap-
ture more significant information via the intergroup fu-
sion step, respectively. Therefore, fusion results are not
selection-driven but feature-driven.

2) The dimensionality of the fused feature set is controlled
at a certain level according to the fusion step, and this re-
sulted in a limited increase in dimensionality with respect
to other multifeature-based methods. From the computa-
tional cost point of view, the proposed approach is also
competitive.

3) The proposed fusion model is not feature-specific; thus,
theoretically, it is suitable for fusing any kinds of features.

The remainder of the article is organized as follows. The
proposed TsF feature fusion method is described in Section II.

Experimental results and analysis are presented in Section III.
Finally, Section IV draws the conclusions.

II. PROPOSED TWO-STAGE MULTIPLE FEATURE

FUSION APPROACH

Based on the considered multiple features, the proposed TsF
approach mainly consists of the following two processing steps:
1) intragroup feature fusion; and 2) intergroup feature fusion.
Its block scheme is shown in Fig. 1, and details are provided as
follows.

A. Step 1: Intragroup Feature Fusion

In order to model the feature integration problem, in this
article, we take spatial and spectral features as an example to
generate a multiple feature set X:

X = {fspe, fspa}, X ∈ Rh×w×n (1)

where h × w represents the feature size, and n is the number
of features, and fspe and fspa denote the spectral and spatial
features, respectively. For fspe, raw bands are directly used. We
considered the AP as fspa, since the morphological features are
capable to preserve spatial information [30]. In particular, the
fspa is built based on the attribute: the length of the diagonal of
the bounding box (d). As a result, based on the original spectral
feature fspe, its corresponding fspa is calculated as

fspa = {γλd
(fspe), ϕλd

(fspe)} (2)

where γ and ϕ represent attribute thinning and thickening op-
erations, respectively, and λd is the predefined threshold for d
with a value of 200 in this work. Note that the dimensionality
of AP is usually high due to the fact that the multiscale and the
multiattribute are jointly modeled.

Efficient extraction of the low-redundancy and low-
dimensional spatial information features is preferable when
classifying VHR imagery, especially for a large study area [1].
To this end, k-means clustering is first applied to divide the whole
feature set X into k groups, resulting in

X = {X1, X2, . . . , Xk} (3)

where Xi ∈ Rh×w×ni ,
∑k

i=1 ni = n.
In literature, the mutual information (MI) has been widely

applied for feature selection in remote sensing image processing
[31], [32]. It represents the maximal relevance criterion between
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feature and class label. MI can effectively measure the interde-
pendence between two given features (e.g., xi, xj) in X from the
entropy point of view. Therefore, the values of MI and original
pixels are selected as the input for feature grouping.

MI(xi, xj) = H(xi) +H(xj)−H(xi, xj) (4)

where H(xi) and H(xj) represent the entropy of feature xi and xj,
respectively, and H(xi, xj) is the joint entropy of xi and xj.

In order to avoid the random selection of an initial class
center Xc1, we manually assign it according to the equidistance
principle [see (5)]. In this work, the MI matrix computed by
different features is used as the input for k-means clustering to
generate a more accurate class center Xc2. The final grouping
feature {X1, X2, . . . , Xk} is then clustered by the pixel values
of X and the class center Xc2

Xc1 = {xs, x2s, . . . , xks} , s =
∣∣∣n
k

∣∣∣ . (5)

After that, the principal component analysis (PCA) is adopted
to reduce the dimensionality of each intragroup feature subset
by retaining the first principal component (PC1). Then, the
intragroup fusion feature set Y can be built as

Y = {PC1 (X1) ,PC1 (X2) , . . . ,PC1 (Xk)} . (6)

It is worth noting that the intragroup feature fusion step in the
proposed TsF approach can retain more distinctive information
represented in different features, while reducing the input feature
dimensionality.

B. Step 2: Intergroup Feature Fusion

This step aims to further combine the intragroup fusion result
and integrate significant information representations in different
types of features. To this end, the intragroup fusion feature sets
Y are pairwisely fused in the intergroup fusion step based on the
GF algorithm. Following are the details.

1) Double-scale feature decomposition: In order to make full
use of the features complementarity in different layers, the
input feature pair [Yi, Yj] are first decomposed into base
layers [Bi, Bj] and detail layers [Di, Dj] as follows:{

Bi = Yi ∗ z, Bj = Yj ∗ z
Di = Yi −Bi, Dj = Yj −Bj

(7)

where i ∈ [1, k − 1], j ∈ [i+ 1, k], B and D represent the base
layer and detail layer of the input feature, respectively, z is the
moving window size of the mean filter, and ‘�’ represents the
convolution.

2) Double-scale feature fusion with GF: GF assumes that the
filtering output O is a linear transformation of the guidance
image I in a local window ωj with the center pixel j.

Oi = ajGi + bj , ∀i ∈ ωj (8)

where ω is equal to (2r + 1)2, r is the window parameter
that needs to be defined in advance, and Oi (Gi) represents
the value in pixel i. Then, to satisfy the minimum difference
between Oi and the input image, the optimal values of two linear
coefficients aj and bj in eachωj can be calculated by minimizing

the following cost function as:

E(aj , bj) =
∑
i∈ωj

[
(ajGi + bj − Ii)

2 + δaj
2
]

(9)

where δ represents the regularization parameter. Hence, the final
Oi can be calculated as

Oi = āiGi + b̄i (10)

where āi and b̄i are the average values of aj and bj in all windows
overlapping i, respectively.

To retain the saliency information inherited from different
features and layers, the input maps of GF is generated from the
base (detail) layers based on the multiple fusion. Then, the base
(detail) layers are selected as the guidance maps in GF. Finally,
the GF fusion features can be calculated as

{
B = Gr,δ(Bi ×Bj , Bi)+Gr,δ(Bi ×Bj , Bj)
D = Gr,δ(Di ×Dj , Di)+Gr,δ(Di ×Dj , Dj)

(11)

whereB andD represent the fusion results of the base and detail
average features, respectively, Gr,δ(P, I) represents the GF
algorithm with two parts: the input map P = {Bi ×Bj , Di ×
Dj} and the guided map I = {Bi, Bj,Di, Dj}.

3) Double-scale feature reconstruction: In this last step, both
fusion results of the base layer B and detail layer D
average features are summed to generate the final fusion
feature F.

F = B +D (12)

where F ∈ Rh×w×m. Note that m = k(k − 1)/2 is the total
number of fused features.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets Description

Experiments were conducted on two multispectral VHR re-
mote sensing images acquired by the QB satellite over urban
areas of the city of Zurich, Switzerland. Two scene images,
including Zurich 1 (with the pixel sizes of 1295 × 1364) and
Zurich 2 (with the pixel sizes of 833 × 881) were considered
in the experiments, which are denoted in the rest of the arti-
cle as ZH1 and ZH2, respectively. Note that the original four
multispectral bands (blue, green, red, and near-infrared) were
fused with the panchromatic band by using the Gram–Schmidt
(G-S) algorithm to generate the pan-sharpened results having
an approximate resolution of 0.62 meter. Figs. 2 and 3 present
the false color composite image (a) and the reference map (b)
of the two multispectral VHR images. The ZH1 scene contains
seven land-cover classes, including roads, buildings, trees, grass,
bare soil, railways, and swimming pools, as shown in Fig. 2(b).
The ZH2 dataset contains four land-cover classes (i.e., roads,
buildings, trees, and grass), as shown in Fig. 3(b). Details of the
reference samples for each class in two datasets are provided in
Table I.
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Fig. 2. ZH1 scene of QB dataset. (a) False color composite image (RGB:
near-infrared, red, and green bands). (b) Reference sample map.

Fig. 3. ZH2 scene of QB dataset. (a) False color composite image (RGB:
near-infrared, red, and green bands). (b) Reference sample map.

TABLE I
DETAILED REFERENCE SAMPLE INFORMATION IN TWO DATASETS

B. Parameter Settings

The proposed feature fusion TsF approach was evaluated
according to the classification performance by using a support
vector machine (SVM) classifier, where the radial basis function
(RBF) was selected as the kernel function.

In the intragroup fusion step, the feature grouping was con-
structed by assigning the group numbers k. Therefore, a detailed
quantitative analysis and performance evaluation based on the
overall accuracy (OA) and computational time cost (T) indices
was conducted under different k values. In order to obtain a
reliable conclusion under different input conditions, the classi-
fication performances were compared by changing the number
of training samples, which were selected as 20, 50, 100, 200,
500, 1000, and 2000 pixels for each class. The results and
comparison are shown in Figs. 4 and 5 for ZH1 and ZH2 scene
datasets, respectively. It is worth noting that the OA achieves
a rapid increase with k in the range of [1, 6], and tends to

Fig. 4. Comparison of (a) OA and (b) T obtained by different group numbers
k on ZH1 scene dataset.

Fig. 5. Comparison of (a) OA and (b) T obtained by different group numbers
k on ZH2 scene dataset.
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Fig. 6. Visual comparison between different features obtained on the ZH1 scene subset. (a) Spectral feature. (b) Spatial feature. (c) GF feature. (d) GFF feature.
(e) TsF feature. Row 2 shows the 3-D visualization corresponds to the features in row 1.

be stable when k exceeds 7. Meanwhile, time cost T is at a
relatively low level when k is defined in the range of [3, 7],
whereas when k is larger than 7, T increased dramatically. This
behavior is similar in all training samples’ conditions, and it
accentuates when the number of training samples is large (e.g.,
2000 pixels/class). Accordingly, searching for a compromise
between the classification accuracy and the computational cost,
k was set to 7 in the experiments.

In the intergroup fusion step, by taking into account the
distinctive features at different fusion scales, the size of the
moving window z and r were set to [3, 10] to search more
significant feature information. For the compared GF algorithm,
the parameter δ was manually fixed to 0.02 due to the fact that
it has less influence on the classification results. For the GFF
algorithm, it performs guiding with different input parameters
in two kinds of layers [27], in order to better distinguish the
information of the base layer and the detail layer. Therefore,
based on multiple trials, two window parameters (r1 and r2) and
two regularization parameters (δ1 and δ2) were defined in GFF
as follows: r1 = 45, δ1 = 0.3; r2 = 7, and δ2 = 10−6.

C. Qualitative Analysis and Comparison of Different
Fusion Features

To visually evaluate the fusion performance of the proposed
TsF approach, qualitative analysis was made by comparing our
results with the original GF [26] and its improved version GFF
[27]. In particular, the first spectral band (blue band) was selected
as the spectral feature input ( fspe) and the AP feature based on
the attribute thinning of the fourth spectral band (near-infrared
band) was selected as the spatial feature input (fspa). Note that
in order to have a fair comparison, only the second intergroup
feature fusion step is performed in the TsF.

In Fig. 6(a-1) and (b-1), spectral and spatial features for a sub-
set in ZH1 scene dataset are shown. Three fused images obtained
by GF, GFF, and the TsF methods are shown in Fig. 6(c-1)–(e-1),
respectively. From the image details, one can see that the original

GF method focuses more on the spectral information (more
similar to the input spectral feature), while the GFF method
focuses more on the spatial information representation (more
similar to the input spatial feature). However, in both GF and
GFF fusion results, details of land-cover objects area are either
eliminated or overexaggerated, and thus, they are not properly
inherited from the two input features [Fig. 6(c-1) and (d-1)].
In contrast, the proposed approach is able to generate better
fusion results by integrating the distinctive information of two
input features. This can be more clearly verified from the 3-D
visualization of the different features (see Fig. 6 row 2): the
proposed TsF resulted in a better fusion output [Fig. 6(e-2)] than
two reference methods [Fig. 6(c-2) and (d-2)]. It preserves the
original spectral shapes and spatial modeling information, but
also enhances the feature representation, thus providing more
discriminable features in the fusion result [Fig. 6(e-2)].

Fig. 7 row 1 presents the spectral, spatial features along with
three fused features for a subset of the ZH2 scene, while the 3-D
visualizations in row 2 correspond to the five features in row 1.
It is clear that the TsF method offers the optimal fusion output
due to the fact that both the spectral and the spatial information
are well preserved [see Fig. 7(e)]. For instance, some bright
objects associated with building and trees in Fig. 7(a-2) and
(b-2) are well represented in reasonable peaks and plains in
Fig. 7(e-2). However, the fused features of the reference GF
[see Fig. 7(c-2)] and GFF [see Fig. 7(d-2)] methods only tend
to keep partial information that is dominated by the spectral or
the spatial features.

D. Quantitative Analysis and Comparison of Classification
Results Based on Different Features

To further validate the effectiveness of the proposed TsF
approach for VHR image classification, quantitative analysis
was carried out by comparing the SVM classification results
obtained on the baseline features, i.e., two raw input fspe and
fspa features (i.e., the original four spectral bands and eight AP
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Fig. 7. Visual comparison between different features obtained on the ZH2 scene subset. (a) Spectral feature. (b) Spatial feature. (c) GF feature. (d) GFF feature.
(e) TsF feature. Row 2 shows the 3-D visualization corresponds to the features in row 1.

TABLE II
COMPARISON OF THE OA VALUES OBTAINED BY SIX CONSIDERED METHODS WITH DIFFERENT TRAINING SAMPLES (ZH1 DATASET)

TABLE III
COMPARISON OF THE OA VALUES OBTAINED BY SIX CONSIDERED METHODS WITH DIFFERENT TRAINING SAMPLES (ZH2 DATASET)

Fig. 8. Comparison of the accuracy and time cost obtained by six considered methods with different training samples on (a) ZH1 and (b) ZH2 scene datasets.

features based on the structure attribute d), and four fusion results
obtained by feature stacking ( fspe+spa), the GF, the GFF, and the
proposed TsF methods. In particular, we randomly generated ten
groups of training samples for testing. Numerical experimental
results are shown in Tables II and III. The standard variances

of OA after ten times of randomizations are illustrated by the
shaded areas [see Fig. 8(a-1) and (b-1)], and the average T was
shown in Fig. 8(a-2) and (b-2). Classification maps obtained
on two scene datasets with 2000 training samples per class are
compared in Figs. 9 and 10.



470 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Fig. 9. Classification maps obtained on the ZH1 scene dataset based on 2000 training samples per class and (a) fspe, (b) fspa, (c) fspe+spa, (d) GF, (e) GFF,
and (f) TsF six methods.

Fig. 10. Classification maps obtained on the ZH2 scene dataset based on 2000 training samples per class and (a) fspe, (b) fspa, (c) fspe+spa, (d) GF, (e) GFF,
and (f) TsF six methods.

Fig. 11. Comparison of the obtained classification maps at the local scale on the ZH1 scene dataset. (a) fspe. (b) fspa. (c) fspe+spa. (d) GF. (e) GFF. (f) TsF
methods. (g) Reference map. Rows 1–3 correspond to the subregion highlighted in red boxes in Fig. 9.

From the experimental results, it is clear that the proposed TsF
approach significantly outperformed the state-of-the-art fusion
methods and the baseline ones in terms of the highest OA
values with different training samples (see both dataset results in
Tables I and II). Moreover, as shown in Fig. 8(a-1) and (b-1), the
improvement is also significant especially when the number of
training samples is small (e.g., 20 pixels/class). With the increase
of training samples, we can notice that the change of accuracy
tends to be more stable, and the influence of random samples
becomes negligible.

From the computational cost point of view [see Fig. 8(a-2) and
(b-2)], it is obvious that the fspe, fspa, and fspe+spa methods
have low computational cost as they do not implement complex

fusion operations. However, their accuracies are lower than the
GF-based fusion methods. Among the GF, GFF, and TsF fusion
methods, the computational cost of the proposed TsF is at a
relatively low level, whereas its classification accuracy is the
highest.

From the visual comparison of the obtained classification
maps based on 2000 training samples per class (with the highest
OA output) (see Figs. 9 and 10) with respect to the reference
maps shown in Figs. 2(b) and 3(b), the raw spectral features fspe
[see Figs. 9(a) and 10 (a)] resulted in the worst classification
results in the two datasets having numerous commission and
omission errors. Considering only the AP spatial features fspa
[see Figs. 9(b) and 10(b)], the classification results improved,
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Fig. 12. Comparison of the obtained classification maps at the local scale on the ZH2 scene dataset. (a) fspe. (b) fspa. (c) fspe+spa. (d) GF. (e) GFF. (f) TsF
methods. (g) Reference map. Rows 1–2 correspond to the subregion highlighted in red boxes in Fig. 10.

but there are still many misclassified pixels. Among the four
fusion methods compared, we can see that the proposed TsF
approach achieved the best results [see Figs. 9(f) and 10(f)]
outperforming the other three fusion methods with respect to
less false alarms or misclassification. It indicates that more
discriminant information can be obtained and enhanced after the
effective fusion steps of the proposed TsF approach to reduce
the classification errors.

In order to further evaluate the classification performance
on local subsets, we investigated the classification results at
a local scale. Fig. 11 shows the classification and reference
data for three subsets of the entire map. Each row corresponds
to the highlighted regions in red boxes, as shown in Fig. 9.
Compared to the reference map [see Fig. 11 (g)], we can observe
that the TsF method produced the most accurate classification
results [see Fig. 11(f)]. Moreover, the geometric boundaries of
the land-cover objects are well depicted while the inner-class
spectral homogeneity is preserved to a great extent. For the
five reference methods, commission errors are mainly presented
between the following classes: grass (yellow color) and trees
(cerulean color), roads (green color) and buildings (blue color).
In particular, in this case, fspe [see Fig. 11(a)] and the original
GF [see Fig. 11(d)] resulted in a higher misclassification rate
compared to the other methods.

Two subsets of the ZH2 scene dataset [see the highlighted red
boxes in Fig. 10)] are selected and further compared in Fig. 12.
Unlike the previous dataset, this image scene is dominated by
roads (green color) and buildings (blue color), so these classes
are more likely to be mixed and may lead to classification errors.
In the two reference baseline results and the three fusion methods
results, it is also clear that many pixels of the buildings are
misclassified as roads, as shown in Fig. 12 (a)–(e). The proposed
TsF approach presents the best classification performance in
such complex local regions [see Fig. 12(f)].

IV. CONCLUSION

In this article, a novel TsF approach has been proposed to
address the multiple feature fusion problem in VHR remote
sensing image classification. The main novelty of this work is the

design of a sequential fusion process that can not only preserve
discriminative information via the intragroup fusion step, but
can also capture more significant information via the intergroup
fusion step. Moreover, feature redundancy is eliminated and
the most significant information in different types of features is
preserved without losing their discriminative capability. Experi-
mental results obtained on two VHR scene datasets demonstrate
the effectiveness of the proposed TsF approach in terms of
higher classification accuracy. Both qualitative and quantitative
evaluation of the classification results at global and local scales
further confirmed its superiority. Future developments will be
focused on the design and improvement of the fusion strategies
to take full advantages of different types of features.
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