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ABSTRACT 

 

 

Browder, Andrew Blake Austin. M.S., Department of Biochemistry and Molecular 

Biology, Wright State University, 2021. Quantitated Effects of Nutritional 

Supplementation on Exercise Induced Sweat 

 

 

Discovery studies have identified many metabolites contained in human sweat.  

However, quantitative analysis of the sweat metabolome content remains mostly 

unknown.   Furthermore several attributes, including rate, have been defined to affect 

sweat metabolite content, while other effectors, like diet, remain unknown.  This study 

works to quantitatively define the metabolite impact caused by nutritional 

supplementation. 

To better understand the effect diet plays, a LC-MS method was developed 

focusing on improving resolution and peak width.  While the literature provided 

examples of how diet affected sweat metabolite concentrations, the long-term effects of 

diet have not been explored. The experiment described here attempts to fill that gap. 

Partial data separation was found among groups ingesting high and low nutritional 

supplementation.  Several subjects given the high nutritional supplementation had 

decreased sweat metabolite concentrations after twelve weeks.  These results suggest 

nutritional supplementation can impact the sweat metabolome, and diet should be 

considered in biomarker discovery experimentation. 
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Hypothesis and Aims 

The impact of diet on sweat metabolomics has been minimally investigated and 

holds the potential to drastically impact biomarker discovery. The hypothesis is by 

ingesting a dietary supplementation that contains proteins and vitamins sharing metabolic 

pathways with the metabolites of interest, the amount of those metabolites will be 

quantifiably affected in sweat. In order to test this hypothesis, a new analytical method 

will need to be developed to adequately separate the metabolites of interest. After 

determining a separation method, calibration curves for each metabolite, in both mass and 

dynamic range, must be developed.  Application of the developed methodology will be 

applied to samples acquired from subjects before ingesting a high nutritional supplement 

and then again after 6 and 12 weeks of dietary supplementation. To account for other 

sources of change in sweat metabolites, a control group will be administered a low 

nutritional supplement and undergo the same testing as the high nutritional supplement 

group.   

AIM1: Improve upon the liquid chromatography and mass spectrometry analytical 

methods used to analyze sweat for quantitative analysis. 

AIM2: Analyze sweat samples from volunteers who were administered a dietary 

supplement or placebo to determine the effects of dietary supplementation on sweat 

metabolite content.   
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Chapter 1: Optimization of Liquid Chromatography 

Methods for Sweat Metabolite Quantitation 

Introduction 

Significance 

The mission of the United States Air Force “to fly, fight and win in air, space, and 

cyberspace” is negatively impacted by diminished airman performance. In the field, 

commanders making mission personnel selections consider training as well as the current 

performance state of the airman.  Additionally, airman serving at home, such as security 

officers and drone operators, can develop fatigue degrading job performance. Therefore, 

the Air Force has a significant investment in attempting to predict human performance 

and to enable commanders to choose “the right person at the right time” for missions both 

in the field and at home. To accomplish this overall goal, bio-fluids that can be collected 

without hindering job functions (non-invasive, on demand, and field applicable 

collections) must be evaluated.  While other bio-media have been evaluated, such as 

saliva, to meet this goal, novel fluids must be continually evaluated to meet the Air 

Force’s ever-changing demands.  
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Sweat: A Non-Invasively Collected Bio-fluid for Performance 

Monitoring 

Several potential bio-fluids that could be utilized to predict a subject’s 

performance exist including blood, saliva, urine, and sweat. The most often studied bio-

fluid for human performance prediction is blood based, such as whole blood, serum, or 

plasma (36, 37).  For example, potassium (K⁺) ions have been shown to increase in serum 

after exercise (36).  However, while holding potential, the Air Force requires a bio-source 

that does not inhibit job duty, i.e., non-invasive. In the field obtaining a blood sample 

from every soldier prior to every mission is logistically unrealistic and dangerous.  

Additionally, complications to the solider and the overall operation from poor sterility or 

fainting from blood draws cause serious concerns.  

A second alternative to sweat is saliva. While saliva is a viable option, strict 

protocols in the time prior to testing to reduce the influence of food and drink on the 

detectable compounds are substantial drawbacks (3, 19).  For example, xylitol, which is 

present in some chewing gums, can be detected in saliva for over an hour post chewing 

(19). Additionally, a significant fasting time, i.e., time between eating, drinking or other 

oral activities such as using toothpaste or mouthwash, chewing gum, smoking and 

smokeless tobacco, is required prior to sampling (3, 19).  These attributes of saliva 

sampling are often difficult to control during military operations thereby precluding 

saliva from being the sample of choice for the Air Force’s performance analysis.  

Urine, a frequently analyzed bio-fluid, is the third alternative bio-media with 

potential to be used to predict performance.  For example, Gorski et al. found that uric 
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acid is reduced in participants’ urine following short term high intensity workouts (21).  

In contrast, Saat et al. illustrated that heat acclimation has no significant effect on urine 

ion content (36).  Urine analysis has difficulty meeting the long-term goals of the Air 

Force. The primary issue in utilizing urine to predict performance is that urine cannot be 

produced on demand.  For performance prediction it is imperative to the Air Force that a 

bio-fluid is available at any given moment because a mission assignment could present 

itself at any time. Urine’s inability to be produced on demand precludes it from selection 

for performance analysis.  

As a result of the shortcomings of the above mentioned bio-sources, the Air Force 

is continually investigating non-invasive bio-media for potential real-time continuous 

human performance monitoring. Currently, focus has transitioned to the investigation of 

sweat to predict human performance. Sweat glands, small diameter tubes that lead to the 

surface of the skin, are located all over the body (41). There are two types of sweat 

glands, apocrine and eccrine. Apocrine sweat glands develop during puberty and are 

located in hairy places. Apocrine glands function as scent glands (41). In contrast, eccrine 

sweat glands function in temperature regulation.  Sweat and sweat glands mentioned 

throughout this paper are referring to eccrine sweat and sweat glands unless apocrine is 

specified.  The autonomic nervous system controls the eccrine sweat glands, as the body 

senses an increase in temperature the glands are stimulated to release sweat.  In addition 

to temperature, stress and fear and also cause the body to release sweat (41). While the 

primary components are water and salt, proteins and metabolites have also been detected 

in sweat (23, 41).  
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In contrast to the previously mentioned bio-sources, sweat samples can be 

acquired directly from the outer epidermal layer of the skin there by avoiding invasive 

contact.  Additionally, sweat can be produced on demand in most any situation through 

iontophoretic stimulation or light exercise (30). Iontophoresis is the process of delivering 

a transdermal drug, such as pilocarpine, to the dermal layer utilizing a voltage gradient on 

the skin thereby inducing sweat.  For instance clinical cystic fibrosis testing uses this 

pilocarpine aided stimulation on infants to generate sweat for chloride ion determination, 

an estimation of a genotypic modification of the cystic fibrosis transmembrane 

conductance regulator protein (30).  Accurate calculation of sweat chloride is important 

for clinical diagnosis of cystic fibrosis.  For example, a concentration of sweat chloride 

≥60 mmol L
-1

 is indicative of a positive diagnosis and values ranging between 30-59 

mmol L
-1

 are inconclusive (30), while values under 30 mmol L
-1

 are indicative of a 

negative diagnosis.   

For initial analytical development a greater volume of sweat than iontophoresis 

produces (~30-40 µL) is required. Light exercise can produce significant amounts of 

sweat (1-2 mL) (10, 23).  In addition, exercise can also be used to link sweat to physical 

performance. The Air Force has developed a list of factors, including aerobic and 

anaerobic measurements, to analyze performance during exercise.  Measurements of 

sweat analytes paired with these physical performance factors could hold the potential to 

link sweat content and performance.  

Not only does sweat allow for the sampling attributes the Air Force desires, sweat 

has been illustrated to have potential as a diagnostic bio-fluid. For example, a group of 

twenty-six immune response and auxiliary protein transport proteins, not usually found in 
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human sweat, have been found in the sweat of tuberculosis patients (1) suggesting that 

sweat composition can change based on the individual’s health.  Additionally, five sweat 

metabolites have been used to differentiate between lung cancer patient risk groups (9) 

further supporting the hypothesis that sweat composition can be used as a predictor of 

human health. While only a few examples exist, sweat shows early promise as a 

diagnostic bio-fluid. 

As with any human biological sample, many factors, known and unknown, 

surround sweat content including sampling and analysis methods. These factors must be 

defined to understand what can affect the concentrations of sweat analytes. For example 

personal care products have been implicated in sweat metabolite abundance with links to 

approximately 54% of metabolites frequently found in sweat (23).  These results provide 

evidence for the impact of exogenous metabolite contamination in sweat analysis.  

Furthermore, sweat rate has also been recently connected to variable concentration of 

sweat molecules. For instance, sweat ion variability has been illustrated to be reduced 

significantly by normalizing to sweat rate (24).  The concentration of sodium increases 

linearly with sweat rate (2), such that subjects with higher sweat rates will have a higher 

concentration of sodium in their sweat regardless of current performance ability.  In 

addition to the previously mentioned attributes that may impact sweat metabolite content, 

several methods for sweat sampling exist, each with its own advantages and 

disadvantages, and potential to influence sweat content (5, 22, 39). 
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Sweat Collection Methods 

 Several sweat collection techniques have been developed over the years both 

simple and complex. The techniques to be discussed include sweat scraping, filter paper 

absorption, bag collection, Macroduct collection, and the patch. First, on the simplistic 

side, sweat scraping (scraping sweat from the skin into a container) and filter paper 

absorption (porous paper applied to the skin to absorb sweat) are among the most 

common.  However, these techniques have been shown to lead to significant 

contamination of the resulting samples from the epidermal layer of skin (5).   

Conversely, a more complex method pioneered by Boysen et al, creates a pouch 

on the subject’s back to collect samples (5). Briefly, the area is cleaned and a layer of 

Vaseline is applied.  Plastic wrap is glued to the edges of the cleaned and lubricated 

sample area to create a bag. The bag is filled with mineral oil to induce sweat pooling at 

the bottom. Tubing is inserted in the bottom of the bag for removal as sweat pools 

(Figure 1A) (5). Many of the molecules analyzed by Boysen et al. including sodium, 

potassium, lactate, and glucose, showed little concentration differences when collected 

using the mineral bag collection approach compared to simplistic collection methods (5). 

However, other molecule concentrations, including calcium, urea and proteins were 

found in significantly higher amounts in the simplistic methods during the first ten 

minutes of the trial (5).  These results were hypothesized to be a consequence of 

epidermal contamination (5, 16).  The collection method, by Boysen et al., allows for 

multiple collections and removes epidermal contaminates. While advantageous, the setup 

put forth by Boysen et al. is too complex to be the model for a field collection. 
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 As an alternative to the bag collection method, the Macroduct is a well-accepted 

standardized sweat collection technique utilizing microbore tubing attached to a hole in a 

concave surface placed on the skin.  The microbore tubing coil collects the sweat as it is 

pushed through the hole of the collector. This approach, using the Macroduct sweat 

collection system, is currently utilized to aide in the diagnosis of infants with cystic 

fibrosis (Figure 1B) (30).  The advantages of using the Macroduct to collect sweat 

include reduced evaporation (leading to increased accuracy of concentration 

measurements), the ability to calculate sweat rate (24), and commercial availability. 

However, the microbore tubing of the Macroduct collection system yields small sample 

volumes (80-90 µL) limiting analytical approaches. Therefore, while advantageous for 

future collections, analytical development requires larger volumes. As a result, alternative 

collection methods need to be investigated. 

Finally, the most frequently utilized sweat collection technique, for discovery 

applications, is the patch (Figure 1C).  A patch collector is a packet of nylon mesh 

covered by a polyethylene layer attached to the epidermis by a bandage. For this 

experiment the advantages of the patch collection setup outweigh the negatives. For 

instance, the patch can collect relatively large sample collection sizes of 1-2mL (22), can 

be utilized at versatile localized-collection sites, and has a simplistic affordable setup 

(39).  However, a downside to the patch collection method includes possible epidermal 

contamination (5) leading to the need for the samples to be filtered after collection (22).  

However, as analytical development currently requires large volumes, the patch method 

was utilized for sweat collection in the experiment outlined here. 
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Figure 1: Selection of sweat collection devices A: Pouch (figure modified from Boysen 

et al. 5) B: Wescor Macroduct C: Sweat Patch  



 

10 
 

Sweat Content: Ions 

Human sweat has been shown to contain many ions including sodium, chloride, 

and urea (18). Sweat ions are often studied using ion chromatography. Ion analysis could 

be useful in linking performance to sweat as sweat ions have been shown to change 

depending on the sweat induction method (17, 18). For example, in a physical exertion 

model, sweat sodium and chloride ions increase in response to running when compared to 

heat induced sweat (18). In heat stress, sweat potassium ions as well as urea nitrogen 

increase when compared to sweat induced by running (18). Based on these few examples 

sweat ion content could possibly be used as an indicator of changes in physical 

performance.  While holding potential and a source of future experimentation, for this 

experiment ion analysis was not performed due to current instrumentation availability.  

Sweat Content: Proteins 

 The sweat proteome is defined as the identification of all proteins found in sweat 

samples. Proteomic analysis of sweat has revealed a great deal about sweat makeup and 

purpose.  For example, a group of 26 proteins were identified in sweat from active 

tuberculosis patients suggesting the sweat proteome may change in response to illnesses 

(1). Some proteins have also been shown to decrease with illnesses, such as those linked 

with ectodermal dysplasia, a skin condition characterized by abnormalities of the skin 

and other ectoderm derivatives (7).  One of the abnormalities often associated with 

ectodermal dysplasia is reduced sweating. Reduced sweat precludes a reduction of the 

sweat proteins in the human immune system (7, 11). These proteins act as antimicrobials, 

killing off many of the infections that could attack the epidermal or dermal layers of the 

skin (7).  Illness is likely not the only source of systemic changes that  illustrate 
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variations in the sweat proteome, but further research is required to understand the links 

between human performance and sweat protein content.  

 While understanding sweat proteomics is a current research area, proteins that 

have been identified in sweat serve a plethora of other functions as well, including 

chaperone proteins metabolic proteins, and apoptosis proteins (7, 23). Unfortunately, 

many of these proteins are found in very low concentrations. The low concentrations 

combined with the large dynamic range of proteins within sweat leads to the need for 

increased sample handling and state-of-the-art analytical tools (23).  For examples, 

nanoflow liquid chromatography (nLC) allows for greater sensitivity and high-end mass 

spectrometers allow for the greatest depth of protein analysis at the expense of great 

monetary cost (12).  While the proteomics analysis of sweat may hold potential for 

performance monitoring, illustrated by the links of illnesses to sweat content, the 

properties of sweat proteins will require substantial analytical development, beyond the 

scope of this project to achieve this goal. 

Sweat Content: Metabolites 

Similar to the sweat proteome, the sweat metabolome is the complete set of all 

small-molecules that can be found in sweat samples.  Several methods for analyzing 

metabolites exist including nuclear magnetic resonance (NMR), gas chromatography 

mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS).  

While LC-MS was chosen for the analysis performed here, each method has advantages 

and disadvantages.  
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Methods for Sweat Metabolite Analysis: NMR 

NMR analysis has been used to map sweat composition (29, 40).  For example, an 

experiment by Kutyshenko et al. using NMR analysis found the main constituents of the 

sweat metabolic profile are lactate, glycerol, pyruvate, and serine (29). Sauza et al. 

utilized NMR to discover 34 different metabolites in sweat samples, including lactate and 

several amino acids (40). This experiment also found that sweat stimulation by 

pilocarpine and physical exercise both produce similar results (40). Although utilized 

with sweat, NMR has both advantages and disadvantages as an analytical approach. 

Advantages of NMR analysis compared to mass spectrometry analyses include 

reusability of samples, short analysis time, and high reproducibility (27). Conversely the 

disadvantages of NMR analysis compared to mass spectrometry analysis include 

decreased sensitivity and need of larger sample size. Both these disadvantages generally 

lead to decreased biomarker detection (27). Lastly, and most importantly, our lab does 

not have NMR instrumentation available.  While a viable method for sweat analysis, due 

to the dilute nature of human sweat paired with NMR’s decreased sensitivity and our lack 

of instrumentation, NMR analysis was not utilized for this study. 

Methods for Sweat Metabolite Analysis: Gas Chromatography-Mass 

Spectrometry  

Gas chromatography-mass spectrometry (GC-MS) has been utilized in sweat 

analysis (14, 20).  Gentili et al. developed a procedure to detect drugs of abuse in sweat 

collected from individuals’ foreheads.  Additionally, 60 drivers displaying intoxicated 

behaviors tested positive for one or more drugs of abuse when headspace solid-phase 
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microextraction (HS-SPME) was utilized with GC-MS.  Furthermore, Delgado et al. 

utilized GC-MS to tentatively identify 135 compounds in sweat including lipids, 

benzenoids, and alkaloids (14).  While GC-MS has been utilized to analyze sweat, similar 

to NMR analysis, advantages and disadvantages to utilizing GC-MS as an analytical tool 

have been illustrated. 

An advantage of GC-MS analysis compared to other analytical methods utilizing 

chromatography is an improved ability to separate volatile compounds. However the 

compounds selected for this experiment are non-volatile and require derivatization 

(attaching a large volatile molecule to a non-volatile compound) for analysis by GC-MS. 

Derivatization alone has several analytical challenges including reduced throughput, 

compared to other methods such as LC-MS, and the need to check derivatization 

efficiency associated with it.  Due to the non-volatility of the metabolites selected for 

analysis GC-MS was precluded from our study. 

Methods for Sweat Metabolite Analysis: Liquid Chromatography-Mass 

Spectrometry  

While other discovery analytical methodologies have been applied to sweat, such 

as NMR and GC-MS, the most frequently utilized technique to analyze sweat, and the 

analytical technique utilized in the experiments outlined here, is liquid chromatography-

mass spectrometry (LC-MS) (1, 8, 9, 11, 15, 22- 24, 26, 35). Discovery studies utilizing 

LC-MS have tentatively identified several small molecules in human sweat (8, 9, 15, 22-

24, 26). For example, Hooton et al. identified 83 metabolites while Delgado-Povedano et 

al identified 118 compounds in human sweat (15, 26).  While only a few examples are 
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discussed here, the advantages associated with LC-MS analysis, as well as the instrument 

availability within our lab make it the analytical method of choice.  

An LC-MS experiment utilizes high pressure liquid chromatography (HPLC) or 

liquid chromatography (LC) to separate analytes to allow for decreased complexity when 

introduced into the detector. HPLC involves pumping a sample through a piece of tubing 

filled with a liquid mobile phase.  Typically two mobile phases are being pumped 

through the system under variable compositions.  The mixture of mobile phase and 

sample is consistently pushed on to a column, a separate piece of tubing filled with a 

stationary phase, allowing the sample to interact with the stationary phase based on the 

chemical properties of the analytes in the sample (Figure 2).  For example, different 

molecules within a sample will have variable affinities for the stationary phase or the 

mobile phase allowing separation over time, so that molecules with higher affinity for the 

stationary phase will be detected after those with a higher affinity for the mobile phase 

(Figure 2).  

Liquid chromatography will only yield separated compounds, leaving the analytes 

with the need to be detected. HPLC separations can be detected by many types of 

detectors such as UV/Vis, photodiode array, and conductivity.  However, the detection 

type utilized in the experiments described here uses mass spectrometry (MS). Mass 

spectrometry is the most frequent discovery detection method used in conjunction with 

HPLC.  A mass spectrometer generally has two specific parts, the ion source and the 

mass detector.  Following separation, the molecules are ionized within the ion source, 

frequently performed using electrospray ionization (ESI).  
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Figure 2: Liquid chromatography map with an extended view of the column (stationary 

phase).  Mobile phase is drawn through the tubing by the pump. An injector adds the 

sample to the mobile phase. The sample is separated by the stationary phase in the 

column. The separated sample is then sent to the detector, in this case a mass 

spectrometer. 
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This soft ionization technique involves running a high voltage across the sample as it 

leaves the LC instrument aerosolizing and charging the analytes producing analyte ions. 

Then, the ions are transferred to the mass analyzer. Several types of mass analyzers 

available, such as a quadrupole or an ion trap. All these analyzers have pros and cons. 

However, the detector utilized in the experiments described here is an Orbitrap mass 

analyzer. The Orbitrap mass analyzer uses electric fields to separate ions based on their 

mass to charge (m/z) ratio by Fourier transformation of frequency of ion oscillations 

about a central ring electrode.  While an Orbitrap mass spectrometer has high resolution 

and accurate mass measurements, drawbacks include low sensitivity and scan speed 

compared to other mass analyzers.  Although there are several drawbacks to utilizing LC-

MS and an Orbitrap detector, it is an effective analytical tool to for complex samples like 

sweat. 

Due to metabolite separation by LC, metabolites in a complex sample are detected 

by the mass spectrometer at different times. A combination of repetitive scans from the 

mass spectrometer can be plotted to determine a chromatographic peak over time.  As a 

result, a link between the metabolite abundance and the chromatographic peak area can 

be established.  While analyzing several compounds simultaneously the high resolution 

mass/charge measurement afforded by the Orbitrap instrument can allow for 

differentiation of analytes of similar m/z ratio.  Through the use of mass spectrometry 

software, the abundance of hundreds of analytes, based on m/z values can be determined 

across a chromatographic run.  Therefore, the complexity of sweat samples can be broken 

down and analyzed after LC-MS analysis. 
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LC-MS based metabolomics of sweat, utilizing high resolution accurate mass 

instrumentation appears very promising for studying correlation between performance 

and sweat. However, significant analytical development is still necessary to accurately 

determine sweat concentrations of amino acids and several other metabolites to meet the 

human performance predictive goals of the United States Air Force (14, 15, 22-24).   

 Summary 

The long-term goal of the US Air Force is to develop a wearable sensor to predict 

an individual’s performance state.  A downstream vision of a sensor could be something 

integrated onto a bracelet or smart watch with inexpensive and easily deployable 

components.  Additional significant research is required to evaluate the potential to 

obtain this goal. 

Of all the bio-fluids sweat may be useful in detecting changes in a human 

subject’s performance state.  Although several of the analyte types found within sweat 

show promise, the metabolome will be the focus of this study.  While some initial studies 

have been performed on the analysis of sweat metabolites much is still unknown. 

Additionally, only a few LC-MS studies have looked quantitatively at sweat metabolites 

(26).  

Analyzing quantitatively is important for several reasons. First, if a sensor was 

created to monitor human performance (the long term goal) the sensor would need to 

have a defined working range. Second, while many things are known to affect sweat 

metabolite content, including sweat rate, personal hygiene, drugs, and topical products 

the extent of the effects are unknown.  Further, the extent of unknown sweat content 
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affecters will need to be defined.  So, while the ultimate goal for the Air Force is to link 

sweat to performance, this study strives to define the metabolite deviations caused by 

diet, by quantitating selected sweat metabolites in subjects consuming different diets. 

Methods 

Sweat Collection 

The sweat collection for the experiments throughout this document was performed 

previously as part of another experiment (22). Briefly, the forearms of each subject were 

wiped with isopropyl alcohol wipes (one per arm) and rinsed with tap water.  After the 

subject’s forearms were given ample time to air dry a sweat patch, as described above, 

was placed on each forearm. The sweat patch consisted of a packet of four pieces of heat 

fused 100 um nylon mesh covered with a virgin polyethylene layer.  An Opsite adhesive 

bandage was placed over the mesh and polyethylene to hold everything in place. This 

combination of materials was collectively called the “Patch” (Figure 1C). Patches were 

placed on the hairless section of the upper forearm of the 14 subjects prior to periods of 

exercise.  

Once the exercise protocol was complete, the sweat contained in the patch was 

collected with a blunt tipped needle into a 5mL syringe and placed into separate (one per 

arm) Ultrafree-CL 0.1 µm PVDF membrane centrifugal filters.  The nylon mesh was 

removed from each patch with forceps and added to the respective filters to insure all 

sweat was collected.  After the sweat and mesh were placed in the filters they were 

individually centrifuged at 3000 ×g for 10 min at 4 °C.  After filtration sweat samples 

from each subject’s arms were combined and vortexed. The pooled samples were 
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aliquoted into 250 µL aliquots and lyophilized (Labconco, Kansas City, MO, USA) 

overnight to insure dryness. The samples were then stored at −80 °C until analysis.  

Optimization of the Liquid Chromatography with an Amino Acid 

Standard 

Previous work within our lab utilized an LC-MS method to aid in sweat metabolite 

discovery (23). From these data, twenty four metabolites (Table 1) were chosen to be 

investigated further by quantitative approaches. In order to achieve this goal, evaluation 

and optimization of the liquid chromatography method was needed to improve separation 

and ultimately quantitation by mass spectrometry, which was the objective and focus of 

this thesis.  

Standards Preparation 

The Amino Acid Standard H by Thermo Scientific (Waltham, MA, USA) was 

used to perform all optimization of the LC separation experiments. The standard is a 

mixture of 17 amino acids with a concentration of 2.5±0.1 µM mL
-1

 with an additional 

amino acid (cysteine) concentrated at 1.25±0.1 µM mL
-1

.  Of the 17 amino acids 

contained in the Amino Acid Standard H, 12 can be effectively detected by  positive 

ionization mass spectrometry (denoted with an * in Table 2). The neat standard solution 

as provided by the manufacturer was diluted to a 1000 µM stock solution using 50% 

acetonitrile (aq) (water, acetonitrile Optima Grade, Thermo Scientific) and stored at 4⁰C 

until use. Additionally, a second dilution of 10µM was made using 50% acetonitrile (aq) 

and stored at 4⁰C until use.  



 

20 
 

Table 1: General information for metabolites of interest and other compounds utilized 

throughout this study  
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Table 2: Metabolites contained in the Amino Acid Standard H (* indicates metabolite 

analyzed in this study)   
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Mass Spectrometry Settings 

A Thermo Scientific LTQ Orbitrap XL mass spectrometer affixed with a heated 

ESI source was used for all experiments performed in chapter one. The ESI source was 

operated in positive ionization mode at 3.5 kV with a capillary temperature of 280 °C, a 

sheath gas of 30(no units), and aux gas of 10 (no units).  Scans were made at a resolution 

of 60,000 (no units) across 65-400 mass over charge (m/z). 

High Performance Liquid Chromatography: Initial Settings 

All analyses were performed on a Vanquish Ultra High Pressure Liquid 

Chromatography (UPLC) system from Thermo Fisher Scientific. The analysis used a 2µL 

injection of the 1000µM Amino Acid Standard H solution prepared as described in the 

previous section unless otherwise noted.  

The Vanquish system was setup with a flow rate of 1mL min
-1

 affixed with a 

Phenomenex Luna Hydrophilic Interaction Chromatography (HILIC) column (3µm, 200 

Å, 100 x 3mm, Torrance, CA, USA). The mobile phase A consisted of 10 mM 

Ammonium Formate (≥99.0%, Sigma Aldritch, St. Louis, MO, USA) in 4.5% acetonitrile 

(aq). Mobile Phase B contained 10mM Ammonium Formate in 95.5% acetonitrile (aq). 

The initial starting conditions were 97% B mobile phase held for five minutes. From five 

minutes to 18.5 minutes the percent of mobile phase B transitioned to 65% with a five 

minute hold at 65% (23.5 minutes).The mobile phase composition returned to the initial 

conditions (97% B) from 23.5 minutes to 24.5 minutes and held at 97% B for an 

additional 5.5 minutes for a 30 minute total analysis time.  The resulting data was 
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evaluated for chromatographic peak shape and resolution as described in the following 

section. 

Data Analysis 

Raw data (samples and blanks) were collected and analyzed using Xcalibur (2.2 

Thermo Fisher) software. For the optimization of the liquid chromatography the peak 

shape was defined by full width at half maximum (FWHM) (Figure 3). Resolution 

between two peaks is defined as the difference between the two peaks retention time (RT) 

divided by the average FWHM (W) of the two peaks or 

R = (RT2-RT1) / (½(W1+W2). 

Figure 3 shows an example for the calculation of FWHM and resolution.  Both the peak 

shape and resolution were determined using the Xcalibur software.  

For the development of the calibration curves scatter plot graphs were generated 

in Microsoft Excel (v. 2007, Remond, WA).  Each calibration curve graph used the 

theoretical concentration of each calibrant (x value) and the peak area of the given 

compound (instrument response, y value) as the coordinates of the scatterplot points.  

Raw data analysis for peak area determination was performed with the Xcalibur software.  

Excel was used to provide a line of best fit for the y scatter points. Using the equation of 

the line of best fit and the unknown peak area corresponding to calibrated compounds 

from the sweat samples, the concentration of the specific metabolites in the sweat were 

approximated. The sweat sample’s peak area for a given metabolite was entered as the y 

value in the line of best fit, (y=mx+b) and the found value of x yielded the approximated 

metabolite concentration of the sample. 
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Figure 3: Example for calculating full width at half maximum (FWHM) and resolution 

between peaks (R)  

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Initial and optimized liquid chromatography parameters  
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Optimization of the Liquid Chromatography 

 All HPLC optimization experiments utilized the Amino Acid Standard H 

dilutions, as described previously, 1000 µM or 10 µM.  The flow rate was evaluated to 

improve the liquid chromatography methodology to achieve optimized separations. Flow 

rate was evaluated on two stationary phases, the Luna HILIC Column and the Waters 

Acquity BEH Amide Column (130 Å, 1.7 µm, 2.1mm x 100mm, Water Corp., Milford, 

MA, USA). To further optimize separations, the mobile phase gradient was evaluated on 

the Waters Acquity BEH Amide Column. Three parameters were evaluated to improve 

the liquid chromatography methodology (flow rate, stationary phase, and mobile phase 

gradient) to achieve optimized separations (Table 3). 

Flow Rate Optimization 

To begin, utilizing the initial conditions described above, several mobile phase 

flow rates (1.000mL min
-1

, 0.500 mL min
-1

, 0.300 mL min
-1

, 0.170 mL min
-1

, and 0.100 

mL min
-1

) were evaluated with the Luna HILIC column. A 2 µL injection of the 1000 

µM Amino Acid Standard H was evaluated with each flow rate for improvements, as 

compared to similar injections performed under the initial conditions, in peak shape 

(narrower individual peaks) and resolution (peaks better separated).  Additionally, as 

described in the previous section, the Waters Acquity BEH Amide column was assessed. 

As a result, the flow rate was reevaluated with the alternative column at 0.300 mL min
-1

, 

0.170 mL min
-1

, and 0.100 mL min
-1

.  The data were evaluated for peak shape and 

resolution as described previously. 
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Mobile Phase Gradient Optimization 

Once the optimized flow rate was decided upon (0.170 mL min
-1

) two mobile 

phase gradient initial conditions (97% B and 90% B) were evaluated with the Waters 

Acquity BEH Amide Column. A two µL injection of both the 1000 µM and 10 µM 

Amino Acid Standard H were evaluated with each mobile phase gradient initial condition 

for narrowing of the peak shapes and an increase of the resolution with the goal of 

increasing separation among the metabolite peaks.  

Final Optimized LC Conditions 

The optimized settings were utilized by the Vanquish system affixed with a 

Waters Acquity BEH Amide column.   The flow rate was 0.170 mL min
-1

 (Table 3).  

Mobile phases A and B remained unchanged. The initial starting conditions were 90% B 

mobile phase held for five minutes. From five minutes to 18.5 minutes the percent of 

mobile phase B transitioned to 65% with a five minute hold at 65% (23.5 minutes).The 

mobile phase composition returned to the initial conditions (90% B) from 23.5 minutes to 

24.5 minutes and held at 90% B for an additional 5.5 minutes for a 30 minute total 

analysis time.   

Validation of the Liquid Chromatography 

Optimization of the HPLC parameters was performed with only the Amino Acid 

Standard H solutions (Table 2).  However, the target compound list, determined from a 

previous experiment, contained several additional metabolites (ornithine, 5-

hydroxyectoine, carnitine, pyrrolidine, taurine, diolamine, dimethylethanolamide, 

trolamine, choline, creatinine, and prolinamide) that require evaluation for analytical 
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performance in conjunction with the Amino Acid Sandard H solution (Table 1). 

Therefore, further analysis of these additional compounds, is required to fully validate the 

optimized parameters for use with sweat samples. 

Standard Preparation 

For the remaining metabolites of interest, 10 mL of 200 mM solutions were 

prepared in water (Optima, Thermo Scientific). These solutions were then combined with 

the neat Amino Acid Standard H (2.5 mM) and 50% acetonitrile (aq) to yield an overall 

concentration of 1000 µM of all compounds. The mixture of all the metabolites of 

interest was created to be analyzed in subsequent experiments.  The overall mixture was 

further diluted to 10 µM for LC-MS analysis utilizing the optimized parameters along 

with the 1000 µM mixture. 

Sweat Metabolite Calibration Curve Development 

In order to determine the accurate range of each metabolite of interest in sweat, 

three calibration curves were created and analyzed. Each calibration curve was created 

with increasingly refined ranges of concentration to find the most accurate concentration 

range for the selected metabolites.  

Standards Development 

The standard prepared for the LC validation, containing the 24 selected 

metabolites (Table 1) and concentrations at 1000 µM was used for this experiment.  The 

standard was used as a stock and diluted to create the different calibration points used in 

the calibration curve tests. 
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Calibration Curve Test 1 

The stock of all 24 metabolites was diluted into several aliquots with several 

concentrations ranging from 10 µM-1000 µM (Table 4). To check to see if this range was 

accurate for sweat samples, five lyophilized sweat samples (250 µL before being 

lyophilized) were re-suspended in 250 µL of 50% aqueous acetonitrile. The calibration 

curve and samples were analyzed by LC-MS using the optimized HPLC method with the 

peak areas determined using Xcalibur software as described previously.  As described 

previously, a scatter plot graph was developed in Microsoft Excel to find the line of best 

fit.  The concentration of the metabolites in the sweat samples was approximated using 

the peak area and the line of best fit equation.  

Calibration Curve Test 2  

In the first calibration curve test the different selected metabolites had widely 

varying concentrations compared to the calibrated range. To better capture selected 

metabolites within a calibration curve, two separate curves, a low 5-50 µM and a high 5-

500 µM curve (Table 5) were developed from the mixture containing the 24 metabolites.  

The two calibration ranges were chosen based on the outcomes of the sweat results from 

the first calibration test.  The two calibration curves were analyzed with ten new sweat 

samples in the same manner as described previously. Data were evaluated as described in 

the previous section.  

Calibration Curve Test 3 

Calibration curve tests showed that the different metabolite concentrations were 

too diverse for one or several grouped calibration curves.  
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Table 4: Test 1 results.  Calibration curve and observed sample ranges for twenty-four 

selected metabolites of interest from sweat. The dynamic range among the selected sweat 

metabolites was too great for a universal calibration curve. 
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Table 5: Test 2 results.  Calibration curves and observed sample ranges for twenty-four 

selected metabolites of interest from sweat. The dynamic range among the selected sweat 

metabolites was too great for only two calibration curves.  



 

31 
 

Table 6: Test 3 results.  Calibration curves, observed sample ranges, and limit of 

detection (LOD) determination for twenty-four selected metabolites of interest from 

sweat. Sweat metabolites required individualized calibration curves, however the 

concentration of some metabolites was too low for quantification.  
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Therefore individual calibration curves were developed for each selected metabolite 

(Table 6). The curves were generated based on the ranges of the samples from the 

previous two calibration curve tests. Ten new sweat samples were analyzed with the 

refined calibration ranges in the same manner performed as described for the previous 

calibration curve tests.  

Limit of Detection Tests   

           The 1000 µM stock of all the metabolites of interest was diluted to concentrations 

at every 0.5 µM from 0 µM to 5 µM.  Each of these samples was analyzed using the 

optimized LC settings previously developed. Using Excalibur software each metabolite 

of interest at each concentration was compared to the surrounding noise discovering, the 

ratio of signal to noise based on peak height. The limit of detection was determined by 

finding the lowest concentration at which the metabolite peak height was at least five 

times the surrounding noise height, thus the minimum S/N ratio was five (Table 6). 

Results and Discussion 

Optimization of the Liquid Chromatography 

In a previous discovery experiment within our lab, 48 metabolites were tentatively 

identified from human sweat with 29 verified utilizing retention time comparisons with 

neat standards and MSⁿ fragmentation patterns (23). As the methodologies were 

evaluated to transition from discovery to quantitative approaches, the need for LC 

methodology optimization became evident.  For example, the LC method, utilized by 

Harshman et al., was unable to separate high abundant metabolites such as phenylalanine, 
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isoleucine and leucine.  One possible reason for the inability to separate phenylalanine, 

leucine and isoleucine is the oxygen tails on these metabolites.  Additionally, co-elution 

of several of the other metabolites, including methionine, proline, and valine was 

observed in the study (Figure 4). To address this problem, chromatographic parameters 

influencing peak shape and peak resolution, such as flow rate and analytical column 

stationary phase, were evaluated for optimization. As a result, a much improved liquid 

chromatographic method for the detection of sweat metabolites was determined. 

Standard Selection 

Several discovery studies have tentatively identified a variety of small molecules 

in human sweat encompassing a wide variety of chemical families including lipids, 

benzene derivatives, amino acids, carboxylic acids, organoheterocyclic compounds, 

alkaloids, and carbohydrates (6, 8, 9, 15-18, 21- 24, 26, 29, 30- 32). For example, in a 

2016 study by Hooton et. al. 83 metabolites were identified from human sweat while a 

more recent study conducted by Delgado-Povedano et. al identified 118 compounds (15, 

26). Of the many discovery investigations into sweat metabolite content, individual 

amino acids were found most frequently among the highest abundant metabolites (8, 9, 

15, 16, 22-24, 26, 29- 31). As a result, focus has been placed on amino acids for 

biomarker discovery applications. For instance, a study by Calderon-Santiago et.al. 

successfully used select sweat amino acid content, among other metabolites, to screen for 

lung cancer (9). Furthermore, research conducted in our lab evaluating sweat metabolite 

abundance from airman illustrated that several amino acids were some of the most 

abundant metabolites in exercise induced sweat (22-24).   
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Figure 4: Chromatogram of the Amino Acid Standard H when analyzed utilizing the 

original LC-MS method.  Poor peak shape and resolution lead to peak co-elution.  

(Unlabeled peaks are made of amino acids from the Standard H that were not of interest 

in this study.) 
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From these studies, alanine was identified as the most abundant amino acid in 

sweat with an approximate concentration range of 99µM to 355µM (22-24). It is possible 

alanine sweat concentrations are linked to the high alanine concentrations in blood.  

While the amino acids have been found most frequently in sweat, other compounds have 

been routinely identified from human sweat discovery experimentation (8, 14, 15, 23, 26, 

30). For example, citrulline, choline and creatinine are frequently identified in sweat 

discovery experimentation (15, 23, 26). As a result, 24 total compounds were selected for 

further quantitative investigation within sweat based on data generated from our lab and 

literature reports (Table 1) (9, 14-16, 22, 23, 26, 29).  

In addition to overall frequency of identification within sweat discovery 

experiments, the metabolites selected for quantitative analysis were also chosen for their 

participation in specific metabolic pathways. As the Air Force has a unique interest in 

prediction of performance, metabolite participation in energy metabolism are considered 

interesting candidates. For example, during prolonged exercise anaerobic metabolism 

becomes inefficient for the energy expenditure. Aerobic metabolism utilizing glucose, 

pyruvic acid, free fatty acids from adipose tissue, and amino acids from protein 

catabolism are used (34). Small molecules related to protein catabolism, for instance 

alanine, and small molecules related to oxidation of fatty acids, particularly carnitine, 

were among the candidates chosen (Table 7) (34).  The urea cycle is used to process 

waste from protein catabolism (34).  Metabolites in the urea cycle, such as ornithine, 

were also considered for analysis (Table 7) (34).  While these are only a few examples of 

potential pathways associated with metabolites selected, further mechanistic studies for 

the source of sweat metabolites are warranted. 
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Table 7: A sample of metabolic pathways represented by the metabolites of interest 

provides a possible link between sweat content and human performance.  Pathways were 

determined from the Human Metabolome Database (https://hmdb.ca) 
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Method optimization requires a consistent representative sample to adequately 

determine improvements. For this reason, the Thermo Scientific Amino Acid Standard H, 

a neat mixture of 17 amino acids, was chosen for chromatographic optimization 

experiments. Interestingly, the isobars (compounds that have the same exact mass), 

leucine and isoleucine, contained in the Amino Acid Standard H cannot be separated by 

mass spectrometry and must be chromatographically separated for detection. The Amino 

Acid Standard H was utilized at both 1000µM, a concentration to allow for optimum 

signal within the mass spectrometer, and 10µM, a representative concentration similar to 

that observed in excreted human sweat. 

HPLC Parameters 

The liquid chromatographic settings utilized in previous discovery experiments 

within our lab have illustrated poor separation, low chromatographic peak resolution, and 

broad peaks with standard injections of the Amino Standard H (Figure 4) (22- 24). Peak 

separation is the ability to separate metabolites into individual peaks. Chromatographic 

peak resolution is the ability to adequately distinguish between two peaks. Peak width is 

the length of time needed for a peak to complete elution. For example, the first two peaks 

in Figure 4 contain phenylalanine, leucine, isoleucine, methionine, proline and valine.  

Breaking the poor chromatogram down further the phenylalanine peak had poor 

shape as characterized by a full width at half height (FWHM; lower FWHM= narrower 

peak ) of 0.25 minutes, while the FWHM for the isoleucine peak was 0.35 minutes 

(FWHM is rounded to nearest half of a tenth of a minute). The resolution between the 

two peaks was 0.30 (no units) suggesting they are heavily overlapping (larger resolution= 
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better separation). Each of these attributes, peak width and resolution, can lead to poor 

instrumental sensitivity resulting from dynamic range limitations of the mass 

spectrometer.  

As a result, the chromatographic methodology required optimization to improve 

overall sensitivity (intensity of signal recorded) for quantitation.  Method optimization 

began with varying the mobile phase flow rate to allow compounds more time to interact 

with the stationary phase of the column yielding greater separation (Figure 5).  

The chromatogram in Figure 5 of a 1000 µM injection of Amino Acid Standard H 

showed reducing the flow rate from 1.000 mL min
-1

 to 0.300 mL min
-1

 had a slight 

positive effect on the resolution of the first two peaks containing phenylalanine, leucine, 

isoleucine, methionine, proline, valine, and tyrosine (Figure 5). However, many of the 

metabolites continued to co-elute.  For example, the resolution between phenylalanine 

and isoleucine increased from 0.30 to 0.40. In contrast, the peak width of the compounds 

worsened with the FWHM of phenylalanine and isoleucine increased from 0.25 minutes 

to 0.30 minutes and from 0.35 minutes to 0.55 minutes respectively. 

While reducing the flow rate provided some positive results, the resolution was 

still poor with heavy overlapping between peaks (Figure 5). Later eluting compounds 

showed improvement in their resolution. For example, arginine and lysine which were 

unresolved with the original flow rate (1.000 mL min
-1

) began to separate (compare 

Figures 4 and 5).  While a slight improvement in resolution was observed by reducing the 

flow rate, many peaks remained unresolved and peak shape remained poor or worse 

(Figures 4 and 5).    
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Figure 5: Chromatogram of the Amino Acid Standard H when analyzed utilizing the 

original LC-MS method except, with the flow rate decreased from 1.000 mL min
-1

 to 

0.300 mL min
-1

.  While an improvement from the original methods, greater separation is 

needed.   (Unlabeled peaks are made of amino acids from the Standard H that were not of 

interest in this study.)  
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Since reducing the flow rate showed minimal improvement in chromatographic 

separations, an evaluation for an alternative analytical column was conducted. The initial 

experimentation, performed by Harshman et al., used a silica based HILIC Luna column. 

As an alternative, a BEH Amide column, which utilizes the chemically stable, tri-

functionally bonded amide phase for separation was identified. A bridged ethylene hybrid 

technology with no net charge makes up the remainder of the column packing, allowing 

the amide phase to separate without interference from the remainder of the column.  As a 

result, the BEH Amide column was evaluated to determine the efficiency of separation 

utilizing the Amino Acid Standard H solution. Figure 6 shows a 1000 µM injection of the 

Amino Acid Standard H on the BEH Amide column. Compared to the Luna HILIC 

column, where many compounds co-eluted with poor chromatographic resolution, the 

BEH Amide column separated many of the compounds with baseline resolution among 

peaks (Figures 6). For instance, the phenylalanine peak and isoleucine peak were not 

separated by the Luna HILIC column with the best resolution achieved being 0.40. The 

two metabolite peaks were separated by the BEH Amide column with a resolution of 

4.90. However, not all compounds were separated. For example, phenylalanine and 

leucine continue to co-elute with the BEH Amide column (Figure 6). The BEH Amide 

column also improved peak shape. The FWHM of phenylalanine and isoleucine were 

respectively 0.30 minutes and 0.55 minutes when analyzed at a flow rate of 0.300 mL 

min
-1

 on the Luna HILIC column. When analyzed under the same conditions using the 

BEH Amide column the FWHM improved for phenylalanine and isoleucine to 0.20 

minutes and 0.20 minutes respectively.  Although the BEH Amide column showed  
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Figure 6: Chromatogram of the Amino Acid Standard H when analyzed utilizing the 

original LC-MS method, except with the flow rate decreased from 1.000 mL min
-1

 to 

0.300 mL min
-1

 and the BEH Amide analytical column in place of the Luna HILIC 

column.  The separation from the BEH Amide column is significantly improved over the 

Luna HILIC column.  (Unlabeled peaks are made of amino acids from the Standard H 

that were not of interest in this study.)  



 

42 
 

improved separations and peak widths, additional parameters were required for full 

optimization to separate co-eluting compounds.  

Similar to the flow rate changes performed with the HILIC Luna column a 

reduced flow rate was evaluated on the BEH Amide column with a 1000 µM injection of 

the Amino Acid Standard H. The change in flow rate from 0.300 mL min
-1

 to 0.170 mL 

min
-1 

illustrated significant improvement in peak width.  For example, the FWHM of 

phenylalanine and isoleucine both decreased from 0.20 minutes with 0.300mL min
-1

 flow 

rate to 0.10 minutes at 0.170 mL min
-1 

column flow.  In contrast, the resolution had 

improvements and deteriorations with the resolution between the example phenylalanine 

and isoleucine peaks decreasing from 4.90 to 4.80, but resolution improving between the 

phenylalanine and the leucine peaks leading to separation (Figure 7). The overall effect of 

reducing the flow rate was an improvement.  However, one more parameter remained to 

be optimized. 

The initial mobile phase composition of 97% mobile phase B was a residual 

parameter from experimentation performed with the Luna HILIC column. As the 

literature provided with the BEH Amide column recommended higher aqueous phase 

(mobile phase A) compositions, the final parameter assessed was evaluating the mobile 

phase gradient.  To this end, the percentage of mobile phase B (with mobile phase A 

completing the total mobile phase) was lowered from 97% to 90% at initial conditions.  

Utilizing both the 1000 µM and 10 µM standards the higher initial mobile phase B 

percentage (97%) illustrated increased background noise, compared to the lower percent 

mobile phase B (90%) in the lower concentration injections. As a result of the reduction  
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Figure 7: Chromatogram of the Amino Acid Standard H when analyzed utilizing the 

original LC-MS method except, with the flow rate decreased from 1.000 mL min
-1

 to 

0.170 mL min
-1

 and the BEH Amide analytical column in place of the Luna HILIC 

column.  By reducing the flow rate with the BEH Amide column separation is improved.   

(Unlabeled peaks are made of amino acids from the Standard H that were not of interest 

in this study.)  
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in background noise, the lower initial mobile phase B percentage (90%) allowed for 

improved signal to noise ultimately leading to the potential for quantitation of low 

abundance metabolites. The improvements outweighed the increase in peak width at the 

lower concentration (Figure 8). Utilizing the higher concentration not only was the signal 

to noise improved, resolution also improved. For example, the resolution between the 

phenylalanine and isoleucine peaks increased from 4.80 to 5.4. The FWHM for 

phenylalanine remained at 0.10 minutes while it decreased for isoleucine from 0.10 

minutes to 0.05 minutes (Figure 9). Changing the initial conditions of the mobile phase 

gradient as suggested in the column literature improved the quantitation potential of the 

analysis.  

Using the optimized LC settings the resolution between the phenylalanine and 

isoleucine peaks was 5.47 compared to 0.30 when utilizing the original settings used by 

Harshman et.al. (23). The FWHM of both phenylalanine (0.25 minute to 0.10 minute) 

and isoleucine (0.35 minute to 0.05 minute) were also improved (Figure 4 & 9). The 

improvements as illustrated by the phenylalanine and isoleucine examples, to resolution 

and peak shape increased instrumental sensitivity and quantitation potential.  

This investigation represents the first study to optimize an LCMS method for 

quantitation of sweat metabolites. Previous studies have relied on Luna HILIC columns 

much like Harshman et. al. (8, 22- 24), or reverse phase columns (9, 15, 26).  The 

resolution provided by the BEH Amide column greatly enhances the sensitivity and 

quantitation potential for sweat metabolomics. The lower flow rate associated with the 

optimization (0.170 mL min
-1

) provided increased resolution and sensitivity over the  

higher flow rates used previously (1.000 mL min
-1

 and 0.600 mL min
-1

).  
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Figure 8: Comparison of initial conditions of mobile phase gradient (97% B vs 90%B).  

Chromatograms of the Amino Acid Standard H at 10µM were analyzed utilizing the 

original LC-MS method, except with the flow rate decreased from 1.000 mL min
-1

 to 

0.170 mL min
-1

 and the BEH Amide analytical column in place of the Luna HILIC 

column. The ratio between metabolite peak height and noise is improved utilizing higher 

aqueous phase, as suggested in the column literature.  At the 90% B concentration the 

mobile phase is more attractive to the metabolites at the start of the analysis, leading to 

quicker elution times. The chromatograms were set to the same scale for the comparison.  

  
Metabolites 

Noise 97% 

Metabolites 

Noise 

90% 
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Figure 9: Chromatogram of the Amino Acid Standard H when analyzed utilizing 

optimized LC-MS settings.  Optimal separation and peak shape was achieved using the 

optimized settings.  (Unlabeled peaks are made of amino acids from the Standard H that 

were not of interest in this study.)  
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Since the original method we utilized was the method utilized by Harshman et al. (23) a 

direct comparison between the LC methods can be made by both looking at the 

chromatograms (Figure 4 and 9) and by the calculated resolution between the 

phenylalanine and isoleucine peaks (0.30 to5.47).  By developing a LC method with low 

flow rate specifically for improved quantitation potential the resolution and sensitivity of 

the mass spectrometer were maximized allowing for better quantitation as well as 

discovery of low abundance metabolites in sweat. 

Validation of the Liquid Chromatography 

 While optimization of chromatographic parameters was performed with the 

Amino Acid Standard H, amino acids were not the only compounds identified for further 

quantitative exploration in sweat. Therefore, it was necessary to insure the optimized 

parameters would sufficiently separate the remaining metabolites of interest (Table 1).  

An injection of a 1000 µM mixture of the 24 total metabolites was performed on the BEH 

Amide column utilizing the optimized method settings (Figure 10). The addition of the 

remaining 12 selected metabolites to the amino acids mildly reduced the efficiency of the 

separation.  For example, resolution of the phenylalanine and isoleucine peaks decreased 

from 5.47 to 5.43 (Figure 9, 10). Additionally, several of the added metabolites co-eluted 

with previous peaks (Figure 10). The peak width of all the metabolites remained narrow. 

For example the FWHM of phenylalanine and isoleucine was 0.15 minutes and 0.20 

minutes respectively.  Although the efficiency of the separations was reduced by the 

addition of the 12 additional compounds, the data illustrated sufficient peak shape 

improvements and enough resolution between the metabolites of interest for the mass  
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Figure 10: Chromatogram of all selected metabolites of interest when analyzed utilizing 

optimized LC-MS settings.  The optimized settings achieved acceptable resolution and 

peak shape even when all 24 selected metabolites are analyzed.   (Unlabeled peaks are 

made of amino acids from the Standard H that were not of interest in this study.) 
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spectrometer to perform quantitation.  As a result, the optimized liquid chromatography 

method was further utilized to define the metabolites present in excreted human sweat. 

Sweat Metabolite Calibration Curve Development 

A goal of the project presented here is to quantitate specific metabolites from 

human sweat samples. Following liquid chromatographic optimization, developing 

calibration curves was necessary to quantitate the specific metabolites of interest. An 

accurate calibration curve will be centered on the data range, with calibration points 

outside the overall range of the data. Five calibration points are minimally required to 

fully define a linear range associated with the line of best fit. The range 10µM to 

1000µM was utilized by Harshman et al. in a previous experiment (23). In light of this, 

the 10 µM- 1000 µM range was utilized for the first calibration curve test.   

While the 10 µM to 1000 µM range had been effective for Harshman et. al.’s 

exploratory study it was insufficient for this study.  A 2 µL injection of the samples was 

analyzed alongside the 24 metabolite standard calibration range (10 µM to 1000 µM) 

required utilizing the optimized LC-MS method.  The concentration of the sample 

metabolites was estimated based on the line of best fit.  The dynamic range of the 

samples was smaller than the calibration curve (Table 4).  For example, in the test 

samples the phenylalanine concentration was between 0-30 µM (Figure 11) and taurine 

was concentrated below 10 µM (Table 4), while sample alanine concentration was 

approximated near 300 µM (Table 4).  Therefore the 10-1000µM calibration curve did 

not match the dynamic range of the individual selected metabolites from the sweat 

samples (Table 4). In order to improve the calibration curves ranges, patterns in the data  
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Figure 11: Calibration Curve Test 1; a representative example of data illustrated by the 

amino acid phenylalanine showing sample data points and the line of best fit from the 

calibration. The calibration range is not centered on the sample points. 
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where analyzed. Two categories of metabolite concentration were observed in the sweat 

samples, a high concentration group (including alanine) and a low concentration group 

(including taurine). 

The calibration range performed in Trial 1 was determined to not adequately 

represent dynamic range of the test sweat samples.  As a result, two new calibration 

ranges were developed for the metabolites of interest, a high range 5-500 µM and a low 

range 5-50 µM.  The low point of the calibration curves was placed at 5µM to insure the 

concentration was detectable by the mass spectrometer.  While the calibration ranges 

were an improved from Trial 1 the dynamic range of the samples was not matched by the 

two, low and high, calibration curves (Table 4, 5). For example, phenylalanine was 

placed in the low (5-50µM) calibration range and had a sample range of 6µM to 18µM 

(Figure 12).   

 By decreasing the lowest point of the calibration curve from 10 µM to 5 µM 

additional low abundant metabolites were fit into the calibration range when compared to 

the first trial. For example, one sample had a phenylalanine concentration of 6 µM, 

another had a histidine concentration of 7µM, and yet another had an isoleucine 

concentration of 5µM (Table 5). These data suggest lowering of the bottom point of the 

calibration range should be considered for accurate quantitation.  While lowering the 

range to 5µM was an improvement upon Trial 1, many of the concentrations of the 

selected metabolites remained below the calibration range (Table 5). For example, taurine 

sample concentration never approached 5 µM (Table 5).  
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Figure 12: Calibration Curve Test 2; A representative example of data illustrated by the 

amino acid phenylalanine showing sample data points and the line of best fit from the 

calibration. While closer the calibration range can be reduced further to better center the 

sample points within the range. 
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Additionally, the calibration range of both categories was not centered for several 

metabolites. For instance, ornithine had a samples range of 33-106 µM while the 

calibration range was 5-500 µM (Table 5).  Due to the high dynamic range of sweat 

metabolites and in order to provide the best calibration fit for all the selected metabolites 

individual calibration curve ranges needed to be developed.  

After the second trial was unable to account for the differences in dynamic range 

among the specific metabolites, each metabolite was given an individual calibration 

range. By looking at the approximated concentration of the tested samples from Trials 1 

and 2 (Tables 4, 5) the range of each metabolite was approximated to develop the 

individual calibration range for Trial 3 (Table 6).  These ranges were introduced to center 

the metabolites within the calibration range and better account for the dynamic range in 

sweat metabolites.  For example, phenylalanine was given a range of 5-25µM (Figure 13) 

and ornithine was given a range of 5-300 µM (Table 6).  In contrast, several metabolites 

including citrulline, taurine, and choline had sample concentrations below the calibration 

curve suggesting these compounds were approaching the limit of detection and limit of 

quantitation for the instrument (Table 6). Overall, the individualized calibration curves 

better represented the metabolites’ ranges in the sweat samples compared to trials 1 and 2 

(Table 4, 5, 6). However, many metabolites had lower sample concentrations than the 

lowest point of their calibration curves. Defining the sweat concentration ranges of the 

select metabolites will improve sweat quantitative analysis. 

Very little quantitative work has been performed on the sweat metabolome (18, 

26, 29). Hooton et al. pooled and labeled a portion of all their samples. They spiked the 

labeled sample back into all the samples allowing for direct comparison between labeled  
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Figure 13: Calibration Curve Test 3; A representative example of data illustrated by the 

amino acid phenylalanine showing sample data points and the line of best fit from the 

calibration.  The individualized calibration range was well centered on the sample points 

allowing for improved accuracy when quantitating. 
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and unlabeled samples (26). While metabolite ratios and relative concentrations could 

prove important, the method from Hooten et al. only provides relative quantitation not 

absolute concentrations which are needed for sensor development.  Creatinine and urea 

nitrogen were both quantitated by Fukumoto et. al. utilizing an AutoAnalyzer (18).  

Liappis et al. utilized an amino acid analyzer for the analysis of the concentration amino 

acids in sweat (29). The LC-MS method is able to corroborate the findings as well as be 

utilized for the quantification of additional metabolites found in human sweat. The 

development of an LC-MS method to quantitate sweat metabolites allows for improved 

understanding of how not only diet or exercise change sweat composition, but also sweat 

composition to predict performance.  These values are in line with the overall goal of, 

and having concentration ranges for the development of sweat metabolite sensor devices.  

Limit of Detection Tests 

 In order to quantitate the less abundant metabolites the limit of quantification 

(lowest concentration of analyte that can be quantified within defined limits of certainty) 

needed to be decreased.  As the concentration of the metabolites is reduced a point is 

reached where the metabolite peaks become indistinguishable from the background noise, 

called the limit of detection, placing a lower limit on the ability to quantitate (limit of 

quantification). Therefore, an experiment to define the limit of detection for the selected 

metabolites was performed.  For this experiment, the limit of detection was defined as 

five times the height of the surrounding noise.  The 1000 µM mixture of the 24 total 

metabolites was diluted to 10 µM, 8µM, 5 µM, 4.5 µM, 4.0 µM, 3.5 µM, 3.0 µM, 2.5 

µM, 2.0 µM, 1.5 µM, and 1.0 µM.  A 2 µL injection of the diluted mixtures were 

analyzed using the optimized LC-MS methodology to determine the limit of detection for 
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each metabolite (Table 6). For example, the limit of detection for ornithine was 

determined to be 2 µM as the peak height of ornithine was five times greater than the 

height of the surrounding noise but less when the 1.5 µM concentration was evaluated. 

Of note alanine was only analyzed at 10 µM due to the high concentration observed in 

sweat.  Once the limit of detection was found for each selected metabolite (Table 6), the 

data was evaluated to determine if the lower limit of the calibration range could be 

reduced.  

In this experiment the limit of quantitation concentration is required to be higher 

than the concentration for the limit of detection to achieve the lowest defined limits of the 

calibration range.  For example, the calibration curves used to quantitate the sweat in the 

samples utilize peak area, which is reliant on peak shape. The peak tails define the area of 

the peak near the background noise. When quantitating at concentrations near the limit of 

detection, differentiation is difficult between the background noise and the peak tails. 

Once the concentration is too low background noise can contribute significantly to the 

peak area.  Therefore, in this experiment as the limit of detection for all the selected 

compounds was only slightly lower than the 5µM, further lowering the lowest calibration 

point would have a high chance for inaccuracy.  For this reason, the lowest calibration 

point was left at 5 µM. In future experimentation an instrument with greater sensitivity 

(the smallest signal that can be detected) could be used to reduce the limit of detection 

and likely the limit of quantitation. Many sweat metabolites, outside of the 24 being 

analyzed in this study, are very dilute. Quantitating them will require instrumentation 

with greater sensitivity or signal to noise. The dilute nature of sweat is one of the reasons 



 

57 
 

it has not been as well studied as other bio-fluids. As new technologies allow for greater 

sensitivity the ability of sweat to be used as a bio-marker will increase.  

Conclusion   

 The previous liquid chromatography methodology within our lab, as utilized by 

Harshman et. al., required optimization to transition from discovery to quantitative 

approaches (23). A collection of 24 metabolites were chosen for quantitative analysis 

based on data generated in our lab and found in the literature.  A subset of these 

metabolites, found in the Amino Acid Standard H, was utilized to optimize the LC 

methodology. Three settings were altered to the previous LC methodology, flow rate, 

column, and the initial settings of the mobile phase gradient. Once the LC method was 

optimized an injection of the 24 selected metabolites of interest was analyzed utilizing 

the optimized methods to ensure sufficient separation. The optimized methodology 

showed improvement in peak shape, peak resolution, and instrumental sensitivity. 

 A sweat metabolite calibration curve was developed for each of the 24 metabolites 

to facilitate the project goal of quantification.  Optimized curves for each individual 

metabolite were developed over a period of three trials. While successful calibration 

curves were developed, several sample metabolite concentrations remained below the 

limit of quantitation.   

The development of a LC-MS method for quantitating sweat metabolites may 

unlock the potential of sweat bio-markers.  By quantitating the sweat metabolites the full 

effects diet and exercise have on the sweat metabolome can be examined.  Quantitation 

also allows for finding specific concentration ranges for the metabolites of interest. 
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Having concentration ranges for sweat metabolites allows for the development of sensor 

technology that could predict performance or alert the user to possible health issues.   
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Chapter 2: Application of Optimized Method for Sweat 

Metabolite Determination 

Introduction 

Sweat Biomarker Discovery 

 Several sweat biomarker discovery experiments have been performed utilizing 

different metabolomics analytical techniques.  As a result of these experiments many 

metabolites have been identified in human sweat, including amino acids and the other 

metabolites selected for analysis in this study (6, 8, 9, 14-18, 21- 23, 25, 26, 29, 30- 32). 

For example, Liappis et al. identified 20 amino acids in exercise induced human sweat 

(29). Some of the most often identified metabolites in discovery investigations into sweat 

metabolite content are amino acids (8, 9, 15, 16, 22, 23, 26, 29-31).  Other metabolites 

are also often found in sweat research including ammonia (6) and sugars (14).  While 

many metabolites can be found in sweat, amino acids are often among the most abundant 

(22, 23).  For this reason amino acids are often selected for biomarker discovery 

experiments, including this experiment. 

Sweat Quantitation 

Only a few studies have been performed where sweat metabolites were quantified 

(18, 26, 29, 32, 37). Sweat lactate is one of the metabolites that have been quantified (37). 
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Sakharov et al. found that by measuring sweat lactate concentration the blood 

concentration could be predicted allowing for non-invasive monitoring for oxygen 

deficiency in athletes (37). Planar electrodes were used to measure the lactate 

concentration; however the measurements were not accurate (37).  A study utilizing LC-

MS to quantitate a large selection of sweat metabolites was performed by Hooton et al. 

This study utilized labeled metabolites to compare between sweat samples (26).  

However, the study was not designed to produce an exact concentration of each 

metabolite in the samples. While a few studies have been performed concentration ranges 

for the metabolites need to be developed for the Air Force’s overall goal to develop a 

sensor that can link performance to sweat content.  

Sweat Composition Effectors  

The goal of the Air Force is to use excreted human sweat to predict airman 

performance levels. To achieve this goal, sources of sweat alteration must be analyzed.  It 

has been shown that sampling method, medication, and sweat rate can all affect sweat 

composition (4, 5, 24, 33).  For example, anticholinergics and antidepressants can cause 

hypohydrosis, a condition in which the ability of the sweat glands to make sweat is 

reduced (4).  Additionally, normalizing for sweat rate has been shown to greatly reduce 

the variability of sweat ions among samples (24). Furthermore, sampling methods have 

also been shown to have an effect on perceived sweat composition (5).  Based on these 

few examples, further investigation in to factors that influence sweat composition is 

necessary for accurate biomarker discovery.  

 



 

61 
 

Effects of Diet on Sweat 

Understanding dietary effects on sweat metabolites is necessary to remove factors 

that can influence biomarker discovery results. For example, a study by Boysen et al. has 

shown that sweat glucose levels can be affected by diet (5). In this study, thermally 

induced sweat and plasma were collected from two subjects before and after oral 

administration of glucose.  A concurrent rise in glucose concentrations was observed in 

both the sweat and plasma.  Additionally, sweat ammonia concentrations have been 

linked to diet. In a study by Czarnowski et. al. sweat ammonia concentrations were 

measured from a control group as well as a group that ingested ammonium chloride(13). 

The subjects that ingested the ammonium chloride had increased sweat ammonia 

concentrations.  Interestingly, no increase in sweat urea (the product of ammonia 

breakdown) concentrations was observed (13).  While sweat glucose and ammonia have 

been illustrated having a correlation with diet the same cannot be said of amino acids in 

sweat.  

As stated previously, amino acids are typically the most frequently identified and 

most abundant metabolites in sweat (8, 9, 14-16, 22, 23, 26, 29-31). Surprisingly, only 

one experiment correlating sweat amino acids with diet was found in the literature. The 

experiment by Hier et al. found no correlation between diet and sweat amino acid content 

(25). However, the experiment only analyzed the differences between pre-breakfast sweat 

and post-lunch sweat, failing to account for long term dietary differences. As a result, the 

long-term impact of diet on sweat metabolite content remains unknown.  
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Summary 

To address the gaps in the literature surrounding the quantitative long-term dietary 

impact on sweat metabolite concentrations, here, the optimized method determined 

within Chapter 1 was applied to analyze 42 sweat samples. These sweat samples were 

analyzed to quantitatively assess sweat metabolite concentrations from individuals who 

were given a high or low nutritional supplement twice daily over a 12 week period.  The 

data from this experiment shows that the concentrations of the chosen sweat metabolites 

from the subjects who received high nutritional dietary supplementation were increased 

over the 12 week period.  Therefore, these data suggest dietary intake must be considered 

in future sweat biomarker discovery studies. 

Methods 

Human Subjects 

 Volunteer subjects were taken from of an ongoing unrelated exercise and nutrition 

intervention study being performed within the Air Force Research Laboratory. Subjects 

were given the protocol and permitted to ask questions.  The subjects provided informed 

written consent to participate.  The subjects (n=14) were male volunteers from the United 

States Air Force, stationed at Wright-Patterson Air Force Base in Dayton, Ohio, of 

variable age (19-35) and rank. Prior to the start of the study permission for human subject 

research was obtained from Wright-Patterson AFB Institutional Review Board (IRB# 

FWR20150032H).  
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Sweat Stimulation and Sample Collection 

The sweat used in this study was collected from participants taking part in the 

ongoing exercise and nutrition study being performed within the Air Force Research 

Laboratory mentioned previously (42). Participants were randomly selected to receive 

either a high nutritional supplementation drink (HNSD) or a low nutritional 

supplementation drink (LNSD), produced by Abbot Nutrition for the ongoing study, 

twice daily for the duration of the 12 week experiment. Table 8 shows the contents of 

both high and low nutritional supplementation drinks. Six subjects were given the low 

nutritional supplementation drink and eight subjects were given the high nutritional 

supplementation drink.  Both supplements were taken orally as 8oz of liquid immediately 

prior to or immediately following the subjects’ exercise and sweat collection protocols. 

The supplements were taken from weeks 1 to 12 of the ongoing experiment. Throughout 

the 12 weeks the unrelated experiment prescribed metabolic and resistance circuits as 

well as cardiovascular exercise routines for the subjects each weekday. Sweat was 

collected from each participant three times, at the start of week 1, in the middle of week 

6, and at the end of week 12. Between the six LNSD subjects and the eight HNSD 

subjects, samples from 14 subjects were available. These subjects had sweat samples 

taken at week one, six, and twelve making a total of 42 samples (Figure 14). 

For this study, subjects’ exercise induced sweat was sampled during 

cardiovascular training routines from the larger unrelated study.  The subjects were given 

identical heart rate zone prescriptions to attempt to homogenize exhaustion levels, and 

subjects exercise was performed in the same room to maintain environmental conditions. 

The training routines gave the subject the choice of stationary bike, treadmill, or elliptical 
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to perform continuous cardiovascular exercise. During these exercises the subjects had 

their intensity regulated by percent max heart rate (HR).  Max HR had been determined 

prior using a VO2 max running test.  

  The sweat samples were taken from the subjects’ forearms using sweat patches 

as described in Chapter 1. Briefly, the samples from each individual’s forearms were 

collected with needle and syringe, filtered, centrifuged, and pooled. An individual’s 

combined sample was then separated into 250µL aliquots.  The aliquots were next frozen 

using liquid nitrogen and lyophilized to dryness. Finally, the sweat aliquots were stored at 

-80⁰C until needed for analysis as described in Chapter 1.  

Resuspension Buffer, Standards, and Sample Preparation 

Twenty mL of a 1000 µM stock of each isotopically labeled compound was 

developed.  A 50% acetonitrile (aq) solution was supplemented with the 1000µM stock 

of the previously described isotopically labeled standards for taurine, choline, creatinine, 

citrulline, pyrrolidine, alanine, arginine, glutamic acid, histidine, isoleucine, leucine, 

lysine, methionine, phenylalanine, proline, tyrosine and valine resulting in a final 

concentration of 30µM for each labeled compound (called Resuspension Buffer). 

Isotopically labeled standards for the remaining selected compounds of interest were 

unavailable (see Table 1 for labels).  The samples were re-suspended to the starting 

volume of sweat (250 µL) in the resuspension buffer. Following re-suspension 10 µL of 

each sample (Figure 14) was taken and pooled to provide a standard. The pooled sample 

was used to help account for ionization drift during the analysis.  

  



 

65 
 

Table 8: Contents of the high nutritional supplementation drink and the low nutritional 

supplementation drink produced by Abbott Nutrition adapted from Zwilling et al. (42).  

While further breakdown of the amino acid content from the protein could be useful the 

information was unavailable. 
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Figure 14: A figure illustrating the breakdown of sweat samples for analysis.  
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Table 9:  Finalized calibration curves for the metabolites with sample concentration 

ranges. Of note 5-hydroxyectone, carnitine, pyrrolidine, taurine, diolamine, 

dimethylethanolamine, trolamine, choline, prolinamide, and methionine compounds were 

removed from the analysis as the concentrations were below 5 µM and approach the limit 

of detection.  
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A custom calibration curve for each compound was made of unlabeled standards 

as defined in a previous section (Table 6). These calibration curves consist of at least five 

different known concentrations of unlabeled standard. The calibration curve standards 

were then dried down, and re-suspended to concentration using the resuspension buffer. 

An additional calibration range of 5-300 µM was made for each metabolite standard in 

the same manner.  The calibration curves were finalized using both groups of 

concentrations after analyzing the metabolite concentration of the samples (Table 9). 

High Performance Liquid Chromatography 

The optimized LC method as discussed in chapter one was used for this 

experiment. Briefly, the optimized settings utilized a Vanquish system with a flow rate of 

0.170 mL-min
-1

 affixed with a Waters Acquity BEH Amide Column.  A 30 minute 

analytical gradient was used with a mobile phase composition starting at 90% mobile 

phase B. Please refer to Table 3 for additional details surrounding the optimized 

parameters. 

Mass Spectrometry  

A Q-Exactive HF – Orbitrap mass spectrometer utilizing a heated electrospray 

ionization source was used in all chapter two experiments.  To ensure mass accuracy, the 

instrument was calibrated within 24 hours of the experimental analysis. The instrument 

was used in positive ionization mode with the following settings: spray voltage 3.5 kV, 

capillary temperature 280 ⁰C, sheath gas 30, and the aux gas 10. The resolution was set to 

60,000 over a scan range of 65-400 m/z. 
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Three calibration curves were analyzed, at the beginning middle and end of the 

overall analysis. Samples were analyzed randomly, with a pooled sample run 

approximately every tenth sample analysis. In order to eliminate crossover contamination 

a blank of 50% aqueous acetonitrile was used to flush the instruments after each sample 

and pooled sample.  

Data and Statistical Analysis 

Sample metabolites were confirmed based on retention time comparison to the 

metabolite standard and/or labeled metabolite in the resuspension buffer if available.  The 

Xcalibur software package was used for collecting the raw data (samples, and blanks) and 

peak area determination as describedin Chapter 1 (v. 2.2. Thermo Scientific).  Briefly, 

unknown sample concentrations were determined utilizing the line of best fit equation 

from the calibration of the known concentrations to peak area ratios plotted in Microsoft 

Excel (Figure 13).  The area of an unknown sample metabolite peak area can then be fit 

into y value of the line of best fit to estimate the metabolite concentration (x value) of the 

samples from a y=mx+b equation.  

For the selected metabolites with a labeled version available (taurine, choline, 

creatinine, citrulline, pyrrolidine, alanine, arginine, glutamic acid, histidine, isolucine, 

lucine, lysine, methionine, phenylalanine, proline, tyrosine and valine) (Table 1 for 

labels) the method was supplemented to improve accuracy related to ionization 

fluctuations.  For these compounds the ratio of the area of the metabolite peak divided by 

the peak of the labeled version of the same metabolite and the known concentration of the 

standards were plotted in Excel, rather than the peak area of the metabolite, to determine 
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the line of best fit.  Therefore, a similar ratio was calculated (unlabeled/ labeled) for each 

sample to determine the unknown concentrations from the line of best fit equation.  

Statistical analyses of calculated metabolite concentrations were performed using 

the RStudio software suite.  The ggplot2 package was used to generate the PCA plots and 

the heatmaps, while the ropls package was used for Orthogonal Projections to Latent 

Structures Discriminant Analysis (OPLS-DA) 

Results and Discussion 

Quantification of the Selected Metabolites 

Quantitation for this experiment utilized calibration curves formed from standards 

of the selected metabolites as illustrated in the previous chapter.  During the development 

of the calibration curves twenty sweat samples were analyzed (five in Test 1, five in Test 

2 and 10 in Test 3) to insure acceptable calibration range for all compounds. However, as 

found previously, several of the selected metabolites were not abundant enough in the 

sweat samples to allow for accurate quantitation. For example, pyrrolidine yielded 

concentration values less than zero in every sample (Table 6).  Quantitation utilizing 

calibration curves relies on the line of best fit for the calibration points. In the case of 

pyrrolidine choline, methionine, hydroxyectoine, carnitine, taurine, diolamine, 

dimethylethanolamide, trolamine and prolinamide the line had a negative y intercept, 

leading to negative x values (concentration) when y values (area under the metabolite 

peak) are small.  While several metabolites were below quantifiable levels (pyrrolidine, 

choline, methionine, hydroxyectoine, carnitine, taurine, diolamine, 

dimethylethanolamide, trolamine and prolinamide), other metabolites were well within 
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quantifiable ranges.  Although accurate calibration curves were developed, removing the 

ten metabolites with quantified values frequently below calibrated ranges from the final 

analysis was decided to be the best course of action due to the impact of noise on the 

values. Removing these metabolites allowed focus to be placed on those compounds 

(citruline, ornithine, creatinine, phenylalanine, alanine, arginine, glutamic acid, histidine, 

isoleucine, leucine, lycine, proline, tyrosine, and valine) accurately quantified within the 

method.  

While the initial 20 samples from the calibration curve tests test suggested the 

calibration curve ranges from Test 3 would be appropriate for the larger analysis, the 

dynamic range of several metabolites exceeded the calibration curve limits.  However all 

metabolites were analyzed from 5- 300 µM within the analysis.  Therefore, expansion of 

the calibration curves to accommodate many of the samples was performed (Table 6, 9).   

The concentrations in some samples were above the upper point in the calibration curve 

(300 µM) (Table 9).  While the sample concentrations below the lower calibration point 

were removed, the metabolite concentrations above the upper calibration curve limit were 

utilized but considered estimated values. The range of the high metabolite concentrations 

was limited by the line of best fit. In LC-MS detection, as the instrument approaches 

saturation the linear relationship between peak area and concentration are reduced.  

Manual inspection of the data suggested instrumental saturation had not occurred. 

Therefore, while not as accurate as concentrations within the calibration curve, the 

estimations are unlikely to lead to false conclusions.  

The dynamic ranges of the sweat metabolites are larger than was illustrated by the 

test samples from the calibration development (Chapter 1). For example, in most samples 
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alanine concentration was between 50 µM and 300 µM however one individual had 

alanine concentrations over 1000 µM (Table 9).  While accurate quantitation for these 

samples could not be achieved directly with the developed methods, they were left in the 

analysis as estimations.  For future experimentation, additional samples need to be 

analyzed before defining the range of the calibration curve. Alternatively, to achieve an 

accurate calibration range a wide range of standard concentrations could be analyzed with 

the samples and then calibration ranges could be determined based on the unknown 

values.  While ten of the selected metabolites were removed from the analysis due to low 

abundance, the remaining 14 selected metabolites provided sufficient quantitative data 

for analysis. 

Principal Component Analysis (PCA) 

Exploratory data analysis often utilizes principle component analysis (PCA) to 

visualize large data sets.  Data sets with multiple variability dimensions can be difficult to 

visualize. The PCA model reduces the variable dimensionality while preserving the 

variation of the data to the greatest degree possible. PCA allows for visualization of data 

subsets but does not determine factors that differentiate the subsets.  Instead, PCA allows 

focus to be placed on what best separates the explained variability of the data as a whole 

(38).  If the subsets are well defined by the PCA, the variable being analyzed is likely a 

major factor in the separation of data points. 

A PCA was used to visualize variability among the sweat samples. To reduce 

interpersonal variation among the data, the week 6 and week 12 data were normalized to 

the week one results. The data was then transformed (log2) and the fold change among 



 

73 
 

the data points was determined.  Figure15 illustrates the first two principal components 

(PC1 & PC2) from the week 1 normalized log2 fold change of all the data. The data show 

PC1 and PC2 account for 86.7% of the variability within the data.  PC1 shows partial 

separation between the samples of the subjects who took the high nutritional supplement 

(red) and those taking the low nutritional supplement (blue).  For example the six points 

representing subjects 9, 11, and 12 (low nutritional supplement) at both week six and 

week 12 remained outside the confidence ellipse for the high nutritional supplement 

subject points.  Three of the 16 points for subjects who took the high nutritional 

supplement, are found outside the confidence ellipse for the low nutritional supplement 

subject points (Figure 15).  These data provide evidence supporting the hypothesis that 

low and/or high nutritional supplementation may alter the sweat metabolome 

concentration including the selected metabolites.   

To further investigate the data PCAs were generated for each time point 

separately (i.e. separated by week). This analysis yielded similar results to the analysis of 

all data points (Figures 15- 17).  For instance, in the week 6 data, the variability 

explained by PC1 is 80.5 compared to 80.9 when all the data is analyzed (Figures 15, 16). 

Similarly, the week 12 PCA shows the variance explained by PC1 is increased from 

80.9% to only 83.8% when comparing only week 12 data to the whole data (Figures 15, 

17).  Interestingly, the high nutritional supplementation data points of week 12 show 

increased clustering compared to the data points of week 6.  These results suggest the 

effects of the nutritional supplementation will have mostly taken affect after six weeks.  

The PC2 and PC3 graph of the whole data set and of both single time points were 

also examined.  Little was expected from PCAs 2 and 3as greater than 80% of the 
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variance was previously explained by PC1 in all three cases.  Supplemental Figures 1, 2, 

and 3 show PC2 and PC3 only account for around 10% of the overall explained 

variability of each data set.  Furthermore, PC2 and PC3 were unable to separate the 

subjects based on high or low nutritional supplementation for all scenarios.  Therefore 

while evaluated, these PCAs do not reveal much separation for this analysis and account 

for low amounts of overall variability. 

The PCAs illustrate a contradiction with the idea put forth by Hier et al. that diet 

and sweat amino acid content have no correlation (25). The experiment by Hier et al. 

attempted to analyze the effects of diet on sweat amino acid content by sampling sweat 

from students before they ate breakfast and after eating lunch. The data in the experiment 

by Hier et al. showed what appeared to be random fluctuations in amino acid 

concentrations from pre-breakfast to post-lunch (25).  The subjects in this experiment 

who were given the high nutritional supplement for 12 weeks showed partial separation 

from the subjects given the low nutritional supplement. The data in this experiment 

suggests amino acids, as well as the other selected sweat metabolite concentrations may 

be affected by diet over a period of weeks in contrast to the idea put forth by Hier et al.   

The partial separation in the PCA illustrates that the nutritional supplements could 

be influencing the sweat metabolome (Figure 15- 17). One of the weaknesses of this 

study is the small number of subjects. It is possible true separation or lack of separation 

of the data between the high and low nutritional supplement groups could be observed in 

a study involving more participants. While the number of subjects was out of our control 

for various reasons, such as participant attendance, the data established evidence that 

accounting for diet in sweat metabolite biomarker studies is necessary.     
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Figure 15: PCA of the week 1 normalized log2 fold change of all data shows the partial 

separation of the high and low nutrition supplementation groups. Supporting the 

hypothesis that dietary supplementation does affect sweat metabolite concentrations. 

 

 

 

 

 

 

 

 

 

Figure 16: PCA of the week 1 normalized log2 fold change of week six data shows a 

slight decrease in separation of the high and low nutritional supplementation groups in 

comparison to the whole data. Suggesting that the effects of supplementation have taken 

affect by week 6.  
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Figure 17: PCA of the week 1 normalized log2 fold change of week 12 data shows 

greater clustering among the high nutritional supplementation points than at six weeks. 

Suggesting that while the majority of the supplementation’s effects have occurred by 6 

weeks it may have greater effects if supplementation continues.  
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For the Air Force to utilize the sweat metabolite abundance to predict human 

performance developing a way to account or control dietary intake will be necessary.  

Discriminate Analysis  

Similar to PCA, discriminate analysis is often used in making predictive models 

for exploratory data analysis. However, discriminant analysis allows the user to define 

subsets within the data (38). The analysis then maximizes the separation between the 

defined groupings instead of the data as a whole.  However the variable that best 

separates the data groupings may not separate the whole data as well as other variables.  

For example, a selection of individuals could be grouped and separated into two groups 

by eye color (brown and blue) utilizing a discriminate analysis while more separation 

among the individuals could be found by separating them by height.  

The discriminate analysis, applied to the sweat results, was better able to separate 

the samples based on high (red) and low (blue) nutritional supplementation than the PCA 

(Figure 15, 18). However, the 95% confidence ellipses overlapped, similar to the PCA 

with several samples remaining in the overlapping space of the two ellipses (Figure 18).   

Along with the partial separation, the discriminate analysis did not well represent 

the data.  The Q2Y value, a number between 0 and 1, tells how well the model fits the 

data, with one being a perfect fit.  The Q2Y value for these data was only 0.415 most 

likely due to the low n-value (Figure 18). Furthermore the model was over fit, likely due 

to the data containing a large number of features (metabolites) and very few observations 

(subjects). The overfitting of the data is worse when performed on single time points only 

(i.e. separated by week Supplemental Figures 4, 5).   
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Figure 18: Discriminate analysis of the week 1 normalized log2 fold change of all data 

shows better separation of the high (red) and low (blue) nutritional supplementation 

groups than the PCA (bottom right) further supporting the hypothesis that nutritional 

supplementation affects sweat metabolite concentration. Interestingly the model shows 

low nutritional supplementation produced outliers while high nutritional supplementation 

did not (bottom left).   However, the model was over fit to the data reducing its potential 

impact achieving a Q2Y value, for the only known factor, of less than 0.5 (top left) and 

an overall Q2Y value of only 0.415.   The top right section shows randomly permuted y 

responses plotted with the x value being the observed value.  The loose clustering shows 

the model’s poor predictive capability while the points being below their lines show that 

the model makes significant calculations.  
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The poor representation of the data through overfitting by the discriminate analysis 

reduces its usefulness to the analysis.  Additional samples will be required to fully utilize 

the analytical approach. 

The discriminate analysis model achieved slightly better separation than the PCA 

having, i.e. fewer subjects within the overlapping sections of the confidence ellipses. 

However, the separation improvement does not justify utilizing the model when it has a 

low Q2Y value suggesting the data has been over fit.  The discriminate analysis further 

emphasizes the need for testing with a larger population to verify the findings.  However, 

evidence that accounting for subjects dietary differences continues to be established.  The 

need to develop a method to account for dietary intake remains important to the goal of 

the Air Force to utilize sweat metabolites to predict human performance. 

Hierarchical Cluster Map Analysis 

The PCA results suggest potential separation among the data as illustrated by 

Figure 15. To better visualize the results a hierarchical cluster map was utilized. Figure 

19 illustrates the clustering of the samples into three groups based on relative metabolite 

fold change to week 1.  The data suggest three groupings of samples- those with reduced 

metabolite concentrations, increased metabolite concentrations, and those with little to no 

change in metabolite concentration over time (Figure 19).   

Further evaluation of the data show the samples with increased relative metabolite 

concentrations (bottom) are composed completely of subjects who took the low 

nutritional supplement.  Conversely, the samples showing decreased metabolite 

concentrations (top) are entirely made up of subjects who took the high nutritional 
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supplement. Finally, the samples illustrating little to no change to the relative metabolite 

concentration (middle) contain a mixture of both nutritional supplement groups (Figure 

19).   

Of the eight participants given the high nutritional supplement two subjects were 

in the decreased relative abundance grouping both weeks while three did not achieve the 

observed trend of decreased relative abundance grouping until week 12 (Figure 19).  

Collectively, these five subjects support the hypothesis that long-term ingestion of a high 

nutritional supplement decreases the relative sweat metabolite composition over time.  

However, two subjects that received the high nutritional supplement were in the 

decreased relative abundance grouping at week 6 and then dropped to the little to no 

change in relative abundance grouping at week 12 (Figure 19).  Additionally, one subject 

who was given the high nutritional supplement remained in the little to no change in 

relative abundance grouping for both the week 6 and the week 12 analysis (Figure 19). 

These subjects highlight the variability in human studies and a greater number of subjects 

is required to truly confirm the results that high nutritional supplementation decreased the 

relative abundance of sweat metabolites.   

Other hierarchical cluster maps of single time points (i.e. separated by week) and 

of high or low nutritional supplementation only were also analyzed. These figures show 

similar grouping to the hierarchical cluster map of the whole data. No new separations or 

information could be deduced from the partial cluster maps. Please refer to Supplemental 

Figures 6 to 9 for the individual cluster maps. 
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Figure 19: The hierarchical cluster map of the week 1 normalized log2 fold change of all 

data shows separation into 3 groupings, reduced metabolite concentrations, increased 

metabolite concentrations, and those with little to no change in metabolite concentration 

over time. The reduced and increased metabolite concentration groupings show 

separation in sweat metabolite concentration between the low and high nutritional 

supplementation subjects. 

Subjects 1- 8 received high nutritional dietary supplementation.  Subjects 9-14 received 

low nutritional dietary supplementation.                        
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The data shown in the hierarchical cluster map further illustrates the contradiction 

between the data collected in this experiment and the conclusions of Hier et al. that diet 

and sweat amino acid content have no correlation (25). However, the random daily 

fluctuations in sweat amino acid concentrations illustrated in the data collected by Hier 

et. al. (25) could explain the inability of the high nutritional supplement to universally 

decrease sweat metabolite content. The fluctuations could also be an explanation for the 

subjects who received low nutritional supplementation and had an increase in their 

metabolite concentrations.  This is only one possible explanation for the observed 

inconsistencies in nutritional supplementation.  

As mentioned previously, high nutritional supplementation was not shown to 

uniformly decrease subjects sweat metabolites (Figure 19). Taking the supplement did 

not account for the remainder of the subjects’ diet.  A hypothesis for why the high 

nutritional supplementation did not uniformly decrease sweat metabolites among subjects 

is that some subjects who had little change to their metabolite concentrations may have 

had a decrease in normal dietary protein intake during the experiment.  Another 

hypothesis is the subjects’ diet was already high in proteinbefore the experiment 

providing the same nutritional benefits as the supplement.  Two subjects had a decrease 

in their metabolite concentrations in week six and then rose back to the week one 

metabolite concentrations for the week twelve test. I hypothesize the variable effects of 

the high nutritional supplementation was caused by a changes in diet during the 

procedure.  Similar to subjects with high nutritional supplementation, the subjects with 

low nutritional supplementation did not illustrate uniform relative sweat concentration in 

their metabolite compositions. 
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As expected, several subjects who took the low nutritional supplement had little to 

no change to their sweat metabolite concentration (Figure 19).  However, some subjects’ 

sweat metabolite concentration increased (Figure 19). A possible reason for the 

concentration increase could be that these subjects decreased their daily caloric intake to 

compensate for what they thought was a high calorie supplement. The inconsistences 

between the subjects who took the same supplement could also be explained by differing 

physical fitness, levels of hydration, etc. Since many uncontrolled variables still exist, 

further testing with a larger number of subjects is needed to confirm that long-term 

nutritional supplementation can influence the sweat metabolite concentrations.  

Comparison of Metabolite Subsets 

 The hierarchical cluster map analysis divided the samples into three subsets 

(metabolites reduced, little to no change, or increased).  The increased metabolite subset 

(consisting of subjects given the low nutritional supplement) and the reduced metabolite 

subset (consisting of subjects given the high nutritional supplement) were then taken and 

the individual metabolite concentrations were compared.  Creatinine and glutamic acid 

were the only two metabolites with overlap within the concentrations of the two subsets 

(Figure 20).  Even though there was slight overlap between the two groups in creatinine 

and glutamic acid both did show significance in separation with glutamic acid’s p-value 

being the largest at 0.0113. Significance of p<0.05 was determined utilizing an unpaired 

t-test with Welch’s correction.  The next highest p-value was isoleucine at 0.0014 and 

several metabolites (alanine, arginine, lycine, and valine) had p-values <0.0001 with the 

other metabolites within that p-value range.  
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Figure 20: By only comparing the increased and decreased subsets from the Hierarcical 

cluster map significant separation can be found between 13 of the 14 metabolites of 

interest (p<0.05) utilizing a unpaired t-test with Welch’s correction.  The high nutritional 

supplementation resulted in decreased metabolite concentrations while the low nutritional 

supplementation resulted in increased metabolite concentrations from week 1 to week 6 

and 12.  The vertical red bars encompass the 95% confidence intervals for each dataset 

while the horizontal red bars represent the median of each dataset.  
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Using only the two subsets, complete separation was achieved among 12 of the 

selected metabolites (Figure 20).  Focusing on the two groupings from the hierarchical 

cluster map hopefully allows for the removal of the human variation and shows a more 

accurate depiction of how the dietary supplementation effected the sweat metabolite 

composition. It is more clearly shown that the high nutritional supplementation reduced 

the metabolite concentration in sweat while the low nutritional supplementation increased 

the metabolite concentration of sweat.  By comparing just the two data subsets the 

hypothesis that dietary supplementation effects the metabolite concentration is strongly 

supported.  The analysis confirms the need for continued study with a larger subject pool 

on how diet can affect metabolite concentration in sweat as well as confirming the need 

to account for dietary supplementation in other sweat studies.  

The data from this experiment are in line with data found in the literature on 

several sweat metabolites. For example, when dietary glucose is supplemented in diet 

sweat glucose concentration increases (5).  In addition to sweat glucose concentration 

another sweat metabolite, ammonia, has been observed increasing when supplemented in 

the diet in the form of ammonium chloride (13). Curiously, sweat urea (the product of 

ammonia breakdown) concentrations remained consistent with the ammonia 

supplementation (13).  The results presented here in addition to these few example 

studies on the impact of diet on sweat metabolite abundance provide further justification 

for continued research into dietary effects on sweat metabolites. 
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Conclusions  

Ten of the chosen metabolites had to be removed from the analyses performed in 

this experiment. Metabolites with concentrations under 5 µM were unable to be 

quantitated with the method and instrumentation available.  A more sensitive mass 

spectrometer must be utilized to analyze low abundant metabolites in sweat. 

Although the goal of the experiment in Chapter 2 was to apply the experimental 

methods determined in Chapter 1 to evaluate the influence of diet on sweat content the 

statistical analysis performed in this study would have benefited from a larger subject 

population to ensure a more representative population.  While the study started with a 

greater number of subjects, throughout the 12 weeks attendance was variable, precluding 

samples from inclusion in the analysis.  Despite the low sample number, the data suggests 

diet could impact sweat metabolite content.  

Despite the setbacks in sample number, this study was able to advance the 

understanding of the sweat metabolome. Past research had shown that concentration of 

amino acids in sweat had no correlation to dietary intake (25).  However, no quantitative 

studies on the effects of long term diet supplementation on sweat metabolites had been 

attempted.  This study provides data supporting the hypothesis that high nutritional 

supplementation can affect the concentration of metabolites including amino acids in 

human sweat.  These results support the need for diet to be considered in biomarker 

discovery experimentation.  
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Supplemental Figure 1: PC2 & 3 of all data 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 2: PC2 & 3 of week 6 data 
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Supplemental Figure 3: PC2 & 3 of week 12 data 

Supplemental Figure 4: Discriminate analysis of week 6 data 
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Supplemental Figure 5: Discriminate analysis of week 12 data 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 6: Hierarchical cluster map of week 6 data 
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Supplemental Figure 7: Hierarchical cluster map of week 12 data 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 8: Hierarchical cluster map of low nutritional supplementation 

subjects 
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Supplemental Figure 9: Hierarchical cluster map of high nutritional supplementation 

subjects 
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