
University of Wollongong University of Wollongong 

Research Online Research Online 

University of Wollongong Thesis Collection 
2017+ University of Wollongong Thesis Collections 

2022 

Optical dosimeters for Radiotherapy with MRI-LINACs Optical dosimeters for Radiotherapy with MRI-LINACs 

Levi J. Madden 

Follow this and additional works at: https://ro.uow.edu.au/theses1 

University of Wollongong University of Wollongong 

Copyright Warning Copyright Warning 

You may print or download ONE copy of this document for the purpose of your own research or study. The University 

does not authorise you to copy, communicate or otherwise make available electronically to any other person any 

copyright material contained on this site. 

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, 

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe 

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court 

may impose penalties and award damages in relation to offences and infringements relating to copyright material. 

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the 

conversion of material into digital or electronic form. 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily 

represent the views of the University of Wollongong. represent the views of the University of Wollongong. 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F1366&utm_medium=PDF&utm_campaign=PDFCoverPages


Optical dosimeters for Radiotherapy with MRI-LINACs

Levi J. Madden

This thesis is presented as part of the requirements for the conferral of the degree:

Doctor of Philosophy

Supervisor:
Dr. E. Li

Co-supervisors:
Assoc. Prof. L. Holloway & Dist. Prof. A. Rosenfeld

The University of Wollongong
School of Physics

May 15, 2022



This work © copyright by Levi J. Madden, 2022. All Rights Reserved.

No part of this work may be reproduced, stored in a retrieval system, transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the
author or the University of Wollongong.

This research has been conducted with the support of an Australian Government Research Training
Program Scholarship.



Contents

Table of Contents iii

Acknowledgements vi

Declaration viii

List of Figures ix

List of Tables xii

Abstract xiii

1 Introduction 1
1.1 Thesis aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions and publications . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature review 8
2.1 Luminescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Luminescence of inorganic materials . . . . . . . . . . . . . . . 10
2.1.2 Luminescence of organic materials . . . . . . . . . . . . . . . . 15
2.1.3 Time-resolved methods for fluorescence and luminescence . . . . 17

2.2 Dosimetry with LINACs . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Ionisation chambers . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Diode detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Diamond detectors . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) 20
2.2.5 Radiochromic film . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.6 Fibre-coupled luminescent dosimeters . . . . . . . . . . . . . . . 21
2.2.7 Monte Carlo simulation toolkits . . . . . . . . . . . . . . . . . . 28

2.3 Dosimetry with MRI-LINACs . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 Ionisation chambers . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



CONTENTS iv

2.3.2 Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Diamond detectors . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 MOSFETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.5 Radiochromic film . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.6 Plastic scintillation dosimeters . . . . . . . . . . . . . . . . . . . 33

3 Novel stem signal correction methods for PSDs 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 The PSD dosimetry system . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Background subtraction . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Least squares corrections . . . . . . . . . . . . . . . . . . . . . . 39
3.2.4 Neural network corrections . . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.1 Dosimetric performance . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Comparison of estimated scintillation with known scintillation . . 64

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Feasibility of PSDs for MRI-LINAC dosimetry 74
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 The Australian MRI-LINAC . . . . . . . . . . . . . . . . . . . . 75
4.2.2 The PSD dosimetry system . . . . . . . . . . . . . . . . . . . . . 75
4.2.3 Experimental measurements . . . . . . . . . . . . . . . . . . . . 78
4.2.4 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . 83
4.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 Output factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.2 Beam profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.3 Percent depth dose distributions . . . . . . . . . . . . . . . . . . 99

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Non-linearity correction of real-time OSL 110
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Experimental measurements . . . . . . . . . . . . . . . . . . . . 112
5.2.2 Non-linearity correction methods . . . . . . . . . . . . . . . . . 116



CONTENTS v

5.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.4 Simulation of real-time deconvolution . . . . . . . . . . . . . . . 122

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.3.1 Fitting an LIRF to measured rtOSL . . . . . . . . . . . . . . . . 123
5.3.2 Calculation of F(D) using exponential correction . . . . . . . . . 124
5.3.3 Time dependence of corrected rtOSL . . . . . . . . . . . . . . . 125
5.3.4 Dosimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.5 Simulation of real-time deconvolution . . . . . . . . . . . . . . . 133

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.1 General discussion . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.2 Inference of kinetics from the LIRF . . . . . . . . . . . . . . . . 136
5.4.3 Translation of theory, algorithm and results . . . . . . . . . . . . 138

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Conclusions and future work 140
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

References 144

A MATLAB code 165
A.1 OLS correction MATLAB code . . . . . . . . . . . . . . . . . . . . . . . 165
A.2 NLLS correction MATLAB code . . . . . . . . . . . . . . . . . . . . . . 168
A.3 LIRF calculation MATLAB code . . . . . . . . . . . . . . . . . . . . . . 171
A.4 Deconvolution rtOSL correction MATLAB code . . . . . . . . . . . . . . 172



Acknowledgements

I am indebted to the many people who’ve supported me during my PhD. I’d like to ac-
knowledge everyone who helped me and made it possible.

Firstly, I want to thank my supervisors: Enbang Li, Lois Holloway, Urszula Jelen and
Anatoly Rosenfeld. Thank you all for taking me on as a student during my PhD. My time
spent researching under each of you was incredibly rewarding, and the encouragement
each of you provided me allowed me to thrive. I am incredibly grateful to each of you
and I could not have achieved a fraction of what I did without your support.

I’m extremely grateful to the many others who’ve assisted me with research during
my PhD. I would like to thank Bin Dong for the many hours, days and weeks you spent
supervising and assisting me with my measurements with Australian MRI-LINAC. I’d
like to thank Brad Oborn for providing me with the Geant4 simulations of the Australian
MRI-LINAC, as well as all the support needed to get the G4MRL workflow set up and
running. I’d like to thank Dean Wilkinson, Martin Carolan and Trent Causer for supervis-
ing the many nights of measurements at Wollongong Hospital. I’d also like to thank Alex
Santos for providing me the opportunity to collaborate on the BeO rtOSL project, it was
incredibly rewarding.

I want to thank the many peers and students who have assisted me during my stud-
ies. Firstly, thank you James Archer for enduring the ups and downs with me, assisting
with measurements and reading the numerous drafts and manuscripts. Thank you also to
Nuwangi Cooray for helping with the many measurements. I’d also like to thank Natalia
Roberts for collaborating and assisting with the measurements made with the Australian
MRI-LINAC. I also want to thank Erin Lukas for collaborating and assisting with the
BeO measurements and manuscripts. I also want to express my gratitude to the staffs
of CMRP, Ingham Institute, Wollongong Hospital and Liverpool Hospital that have sup-
ported myself and other students, making our research possible.

I’d like to express my gratitude for the financial support that supported this research.
Thank you to the Australian Government for providing financial support of this research
under the Australian Government Research and Training Program. Thank you to Liv-
erpool Hospital and Ingham Institute for enabling my investigations with the Australian

vi



CONTENTS vii

MRI-LINAC and providing financial support under the South West Sydney Local Health
District scholarship support program.

I would also like to thank my family and friends for supporting me outside of my
studies, for just being there and enduring them with me. Finally, I want to express my
deepest gratitude and adoration to my wife, Elle, for her love and encouragement during
these studies.



Declaration

I, Levi J. Madden, declare that this thesis is submitted in partial fulfilment of the re-
quirements for the conferral of the degree Doctor of Philosophy, from the University of
Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This
document has not been submitted for qualifications at any other academic institution.

Levi J. Madden

May 15, 2022



List of Figures

2.1 Simple kinetic model of inorganic luminescence . . . . . . . . . . . . . . 11
2.2 Simple kinetic model of organic scintillation . . . . . . . . . . . . . . . . 15

3.1 Experimental setup for measurement of PSD signals with a clinical LINAC 38
3.2 Architecture of the developed ANNs . . . . . . . . . . . . . . . . . . . . 45
3.3 Example of measured and preprocessed signals for the ANN correction . 46
3.4 Models of the scintillation and Cerenkov radiation dose profiles used for

synthesising training data . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Architecture of the developed CNNs . . . . . . . . . . . . . . . . . . . . 50
3.6 Example of measured and preprocessed signals for the CNN correction . 51
3.7 6 MV, 3 cm × 3 cm cross-plane beam profile for comparison of temporal

stem signal correction methods with background subtraction . . . . . . . 55
3.8 6 MV, 5 cm × 5 cm cross-plane beam profile for comparison of temporal

stem signal correction methods with background subtraction . . . . . . . 56
3.9 6 MV, 10 cm × 10 cm cross-plane beam profile for comparison of tempo-

ral stem signal correction methods with background subtraction . . . . . 57
3.10 6 MV, 10 cm × 10 cm in-plane beam profile for comparison of temporal

stem signal correction methods with background subtraction . . . . . . . 58
3.11 10 MV, 5 cm× 5 cm cross-plane beam profile for comparison of temporal

stem signal correction methods with background subtraction . . . . . . . 60
3.12 10 MV, 10 cm × 10 cm cross-plane beam profile for comparison of tem-

poral stem signal correction methods with background subtraction . . . . 61
3.13 10 MV, 10 cm × 10 cm in-plane beam profile for comparison of temporal

stem signal correction methods with background subtraction. . . . . . . . 62
3.14 OLS, NLLS and ANN estimates of the time-dependent scintillation . . . 66
3.15 OLS, NLLS and CNN estimates of the time-dependent scintillation . . . . 67
3.16 NLLS exponential constants for the 10 cm × 10 cm fields . . . . . . . . . 70
3.17 Comparison of OLS and NLLS estimates of scintillation with known scin-

tillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 3D model of the in-house PSD used for MRI-LINAC dosimetry . . . . . 76

ix



LIST OF FIGURES x

4.2 Typical PSD and reference probe waveforms measured with the MRI-
LINAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Perspex stand used to house the Solid Water . . . . . . . . . . . . . . . . 79
4.4 Solid Water setup used for the microDiamond detector . . . . . . . . . . 80
4.5 3D model showing the measurement setup for OFs and PDDs with the

in-house PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.6 3D model showing the measurement setup for beam profiles with the in-

house PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.7 Diagram showing the film setup in Solid Water . . . . . . . . . . . . . . 83
4.8 Simulation geometry for the Australian MRI-LINAC, modelled in Geant4 84
4.9 Output factors measured at 2.469 m SID, 10 cm depth . . . . . . . . . . . 88
4.10 Output factors measured at 2.469 m SID, 20 cm depth . . . . . . . . . . . 89
4.11 Film and PSD beam profiles at 1.869 m SID for the 1.9 cm × 1.9 cm field 92
4.12 Simulated and PSD beam profiles at 1.869 m SID for the 1.9 cm× 1.9 cm

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.13 Film and PSD beam profiles at 2.469 m SID for the 2.6 cm × 2.6 cm field 94
4.14 Simulated and PSD beam profiles at 2.469 m SID for the 2.6 cm× 2.6 cm

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.15 Gamma indices evaluating the PSD beam profiles using film profiles as

the reference distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.16 Gamma indices evaluating the PSD beam profiles using simulated beam

profiles as the reference distribution . . . . . . . . . . . . . . . . . . . . 97
4.17 Gamma indices evaluating the simulated beam profiles using film profiles

as the reference distribution . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.18 PDDs for the 2.469 m SID, 2.6 cm × 2.6 cm field . . . . . . . . . . . . . 100
4.19 PDDs for the 2.469 m SID, 5.3 cm × 5.3 cm field . . . . . . . . . . . . . 101
4.20 PDDs for the 2.469 m SID, 10.5 cm × 10.5 cm field . . . . . . . . . . . . 103
4.21 PDDs for the 2.469 m SID, 18.6 cm × 18.6 cm field . . . . . . . . . . . . 104

5.1 Schematic of the OSL and RL signals during the rtOSL technique . . . . 111
5.2 3D model of the BeO dosimeter, set up with Solid Water for measure-

ments with the superficial X-ray unit . . . . . . . . . . . . . . . . . . . . 113
5.3 Sample measured waveform during the rtOSL measurement scheme . . . 114
5.4 3D model of the BeO dosimeter, set up in Solid Water for measurements

with the LINAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5 Comparison of BeO’s LIRFs from measurements with the superficial X-

ray unit and LINAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Comparison of fitted rtOSL signals calculated using the optimal LIRF

against measured rtOSL signals . . . . . . . . . . . . . . . . . . . . . . . 124



LIST OF FIGURES xi

5.7 Analytical calculation of F(D) for measurements with the superficial X-
ray unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Comparison of measured and corrected time-dependent rtOSL signals . . 126
5.9 Comparison of corrected rtOSL signals with the expected accumulated

dose in BeO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.10 Corrected rtOSL dose-rate dependence with measured rtOSL signals from

the superficial X-ray unit . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.11 Corrected rtOSL dose-rate dependence with measured rtOSL signals from

the LINAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.12 Corrected rtOSL dose-rate dependence with fitted rtOSL signals from the

superficial X-ray unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.13 Corrected rtOSL dose-rate dependence with fitted rtOSL signals from the

LINAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.14 Real-time simulation of the deconvolution correction . . . . . . . . . . . 133
5.15 Comparison of fitted LIRFs . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of Tables

2.1 Summary of the stem signal correction methods. . . . . . . . . . . . . . . 22

3.1 MADs calculated between corrected PSD responses and ionisation cham-
ber responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 RMDs and RMADs for comparison of estimated scintillation with known
scintillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Mean absolute differences for MRI-LINAC output factors. . . . . . . . . 90
4.2 Mean absolute differences and γ pass-rates for MRI-LINAC beam profiles 97
4.3 Mean absolute differences for MRI-LINAC PDDs . . . . . . . . . . . . . 106

5.1 Performance of the rtOSL correction methods using measured rtOSL signals127
5.2 Performance of the rtOSL correction methods using fitted rtOSL signals . 132

xii



Abstract

In modern radiation therapy, treatment delivery techniques are getting increasingly com-
plex to optimise patient outcomes. In modern radiation therapy clinics, there are condi-
tions where accurate dosimetry is challenging, yet essential to ensure that optimal treat-
ments are being delivered. These challenging dosimetry conditions require specialised
dosimeters with a set of dosimetric qualities that allow them to remain accurate in such
conditions. Fibre-coupled luminescent dosimeters possess a wealth of desirable quali-
ties that make them advantageous for a wide range of dosimetry conditions. Due to their
all-optical composition (i.e. no electronics or wires attached to the sensitive volume) and
their typically compact sensitive volume sizes, fibre-coupled luminescent dosimeters have
high spatial resolutions whilst minimising the perturbations of radiation fields in water.
Dosimetric properties such as water equivalence, energy independence and dose-rate in-
dependence are inherited through their luminescent sensitive volumes, allowing for the
luminescent material to be chosen to suit the measurement conditions. In this thesis,
two fibre-coupled luminescent dosimeters are developed and investigated for two such
challenging clinical dosimetry conditions. Firstly, plastic scintillation dosimeters (PSDs)
are investigated for dosimetry with MRI-LINACs, a technology that combines an MRI
scanner with a linear accelerator (LINAC) to provide the opportunity for real-time image
guidance with optimal soft tissue contrast during radiotherapy treatments. Secondly, an
in-house fibre-coupled BeO dosimeter is investigated for it’s potential as a real-time in

vivo dosimeter during LINAC and brachytherapy treatments.

PSDs were identified as promising prospects for MRI-LINAC dosimetry given they
are highly water equivalent and their responses are near-correctionless for dosimetry with
LINACs. The main challenge faced when applying fibre-coupled luminescent dosimeters
such as PSDs for LINAC dosimetry is that their response becomes degraded by stem
signals, requiring corrections to restore the PSD’s accuracy. Prior to the investigations
with an MRI-LINAC, an in-house PSD was developed and optimised for it’s performance
with a clinical LINAC. In these investigations, novel stem signal correction methods were
developed and compared against “background subtraction”, a robust benchmark method
for this study’s measurement conditions. In this study, the stem signal reached a maximum
output that was 54 % of the maximum scintillation response. Background subtraction was

xiii
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determined to be the most suitable correction method investigated for LINAC dosimetry,
though the novel “Non-linear least squares correction” was a suitable alternative for cases
when background subtraction was unsuitable.

An in-house PSD was developed for MRI-LINAC dosimetry, with the PSD dosimetry
system optimised to ensure that background subtraction remained accurate. The in-house
PSD was applied to measure output factors, beam profiles and percent depth dose distri-
butions (PDDs) with the Australian MRI-LINAC, compared with reference distributions
and results for other dosimeters in the literature. The in-house PSD was conclusively
demonstrated to be effective and accurate for the measurement of output factors, beam
profiles, and for PDDs at field sizes 10.5 cm× 10.5 cm and 18.4 cm× 18.4 cm. However,
for the PDDs at field sizes of 2.6 cm × 2.6 cm and 5.3 cm × 5.3 cm, it could not be con-
firmed whether the PSD was generally suitable as there were conflicting trends between
the reference distributions and the in-house PSD. The presented investigations with an in-
house PSD and the Australian MRI-LINAC were an important first step in demonstrating
that PSDs in general are highly suitable for MRI-LINAC dosimetry. It was concluded
that further work was required to verify that all PSDs in general are suitable for MRI-
LINAC dosimetry, and it was recommended that PSD dosimetry systems are investigated
to validate they are as accurate as is required prior to clinical MRI-LINAC dosimetry.

For real-time in vivo dosimetry during LINAC and brachytherapy treatments, fibre-
coupled BeO dosimeters were identified as being highly suitable given their near-tissue
equivalence and minimal energy dependence for photons with energies between 10 keV
and 20 MeV. Further, BeO’s optical stimulated luminescence response is dose-rate in-
dependent, and when this luminescence is read out in real-time using the “real-time OSL
(rtOSL) technique”, the measured rtOSL signals are free of stem signals. Measured rtOSL
signals are typically non-linear with respect to dose, requiring a correction to restore the
rtOSL dosimeter’s dose-response linearity. Novel correction methods were developed to
correct the measured rtOSL, compared against the prior rtOSL correction method. Two
fibre-coupled BeO rtOSL dosimeters were developed and applied for measurements with
a superficial X-ray unit and a clinical LINAC. The novel “deconvolution correction” sig-
nificantly improved upon the performance of the prior correction method in terms of ac-
curacy, robustness, reproducibility and uncertainty in dose-response. Through a compu-
tational simulation, the deconvolution correction was also determined to be applicable
in real-time. The development of the deconvolution correction was a significant step in
realising a fibre-coupled BeO dosimetry system capable of accurate, real-time in vivo

dosimetry during LINAC and brachytherapy treatments.



Chapter 1

Introduction

It has been estimated that approximately 50 % of cancer patients would benefit from ra-
diation therapy as part of their treatment [1, 2]. In radiation therapy, ionising radiation is
used to induce damage in biological matter through the deposition of energy and radia-
tion doses. In Australia, the most commonly applied form of radiation therapy is External
Beam Radiation Therapy (EBRT). In modern EBRT, a linear accelerator (LINAC) is typi-
cally used to produce a beam of ionising radiation that is shaped to tumour volumes. Mod-
ern EBRT treatments are capable of reproducibly delivering high radiation doses to small,
complex tumour volumes within the human body, whilst sparing the surrounding healthy
tissues. For this precision to be realised, treatments are planned using accurate knowl-
edge of the LINAC’s radiation beam and the patient’s anatomy. Through routine quality
assurance (QA) dosimetry, measurements are made with radiation detectors (referred to
as dosimeters) to monitor the characteristics of the LINAC’s radiation beam in order to
ensure that it remains consistent, thereby mitigating dose delivery errors. Many QA mea-
surements are made by placing the dosimeter in a volume of water (or water equivalent
material), irradiating the dosimeter, and converting it’s response to an absorbed dose in
water. In modern radiation therapy clinics, there are conditions where accurate dosimetry
is challenging, yet essential to ensure that optimal treatments are being delivered. These
challenging dosimetry conditions require specialised dosimeters with a set of dosimet-
ric qualities that allow them to remain accurate in such conditions. Fibre-coupled lumi-
nescent dosimeters possess a wealth of desirable qualities that make them advantageous
for a wide range of dosimetry conditions. In this thesis, two fibre-coupled luminescent
dosimeters are investigated for their efficacy in two specific challenging dosimetry condi-
tions. An in-house plastic scintillation dosimeter (PSD) is investigated for MRI-LINAC
dosimetry, and fibre-coupled BeO dosimetry systems are investigated for their potential
as real-time in vivo dosimeters for orthovoltage therapy and LINAC treatments.

1
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Fibre-coupled luminescent dosimeters

Fibre-coupled luminescent dosimetry systems consist of a luminescent material volume
that is optically coupled to an optical fibre, and a photodetector that is connected to the
opposite end of the optical fibre. When the luminescent material is irradiated, it pro-
duces photon emissions that are collected by the optical fibre, and these photon emis-
sions are subsequently measured by the photodetector. The number of photons emitted
by the luminescent material is related to the dose-deposited in the luminescent material
volume. Fibre-coupled luminescent dosimetry systems inherit many of their dosimetric
properties through the luminescent material. There exists many luminescent materials
with a variety of dosimetric properties, and so the luminescent material can be chosen to
suit specific irradiation conditions. Their luminescent sensitive volumes can be manufac-
tured to be small in size so that these dosimeters have high spatial resolutions. No cables
or electronics are required around the luminescent material for it’s operation, reducing
the perturbation of radiation fields in water during dosimetric measurements. Addition-
ally, the luminescence response can be produced in real-time, providing the opportunity
for fibre-coupled luminescent dosimeters to be applied for real-time dosimetry. Each of
these qualities are extremely advantageous for measurements in a number of challenging
dosimetry conditions.

Fibre-coupled luminescent dosimeters face one main challenge that has limited their
application as clinical dosimeters. When the optical fibre is irradiated by high energy
photons and electrons, the optical fibre produces it’s own photon emissions that are also
measured by the photodetector. These photon emissions, referred to as the stem signal,
are independent of the dose deposited in the luminescent material, thereby reducing the
dosimeter’s accuracy. Many stem signal correction methods have been developed to over-
come this challenge, with each method having it’s own advantages and limitations. In this
thesis, the efficacy of existing and novel stem signal correction methods will be investi-
gated for an in-house fibre-coupled plastic scintillation dosimeter.

MRI-LINAC dosimetry

Hybrid MRI-LINAC systems combine an MRI-scanner and a LINAC, with the MRI-
scanner providing superior soft tissue contrast and image quality to current standard of
imaging available on LINACs for those common tumour sites [3–5]. Hybrid MRI-LINAC
systems therefore allow for improved target tracking at these sites, with the potential for
improved targeting of tumour volumes during treatments. However, the MRI’s magnetic
field imparts a Lorentz force on charged particles, causing them to follow curved trajec-
tories. This effect alters the dose distribution delivered to patients and target volumes,
therefore dosimetry for the MRI-LINAC must be performed in the presence of the mag-
netic field. The curved trajectory taken through a material depends on the material’s den-
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sity and electronic stopping power. The trajectories taken through volumes of non water
equivalent materials will deviate from the trajectories taken through matching volumes of
water. As a result, there is the potential for dosimeters comprised of non water equivalent
materials to misrepresent the dose distributions that are deposited in water, complicating
MRI-LINAC dosimetry. Conversely, for highly water equivalent materials, the trajecto-
ries taken through the material will closely match those taken through water. Dosimeters
that are comprised of highly water equivalent materials can be expected to more closely
reproduce the dose distributions deposited in water during MRI-LINAC dosimetry and
avoid the aforementioned effects that can perturb non-water equivalent dosimeters.

PSDs are comprised of highly water equivalent materials and their response is near-
correctionless for dosimetry with clinical LINACs [6]. The plastic scintillator materials
comprising the PSD’s sensitive volumes are engineered to make their physical densities,
electron densities and effective atomic numbers match those of water and tissue. Conse-
quently, PSDs do not perturb the homogeneity of water media during dosimetry with a
LINAC. Therefore, PSD measured dose distributions should closely match the dose distri-
butions deposited in water, making them promising candidates for MRI-LINAC dosime-
try. However, there have been no studies in the literature where the feasibility of PSDs
are investigated for MRI-LINAC dosimetry. A primary motivation for this thesis was to
investigate the feasibility and characterise the accuracy of PSDs as MRI-LINAC dosime-
ters.

Real-time in vivo dosimetry

In vivo dosimetry is the process of measuring radiation doses during a patient’s treatment.
Such a process provides feedback of the treatment to clinicians in real-time, enabling
clinicians to intervene when delivered treatments deviate from planned treatments. The
dosimetric qualities required for in vivo dosimetry varies with the treatment modality. For
LINAC and brachytherapy treatments, many of the desirable qualities of fibre-coupled
luminescent dosimeters are highly advantageous for in vivo dosimetry. For example,
a fibre-coupled luminescent dosimeter’s compact size and all-optical composition (i.e.

no electronics or wires around the sensitive volume) ensures that the dosimeter’s pres-
ence does not alter the treatment being delivered. Dosimetric properties such as tissue
equivalence, energy independence and dose-rate independence are inherited through the
luminescent material. The luminescent material BeO is near-tissue equivalent for the
high energy photons and electrons produced by brachytherapy sources and LINACs, and
it’s optically stimulated luminescence (OSL) response is energy independent and dose-
rate independent [7]. Additionally, BeO’s OSL can be read out in real-time through a
measurement scheme referred to as “the real-time OSL (rtOSL) technique”, which also
corrects the optical fibre’s stem signal in real-time. Given this wealth of qualities, fibre-
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coupled BeO dosimeters are promising prospects for real-time in vivo dosimetry during
orthovoltage therapy, brachytherapy and LINAC treatments.

When the OSL is read out in real-time using the rtOSL technique, the measured rtOSL
signal is non-linear with respect to the absorbed dose. Currently, only one correction
exists to restore the linearity between the measured rtOSL and the absorbed dose. This
correction method is theoretically derived, however, it exacerbates measurement noise
and causes noisy rtOSL signals to become increasingly uncertain as measurement du-
ration increases. Due to the non-linear nature of rtOSL signals, heavy signal averaging
distorts the real-time response of the measured rtOSL, making this approach of noise re-
duction unsuitable. To take advantage of a fibre-coupled BeO dosimeter’s advantageous
dosimetric qualities, an alternative non-linearity correction may be required to reduce the
rtOSL dose-response uncertainty. A secondary aim of this thesis is to investigate novel
correction methods for the rtOSL’s non-linearity.

1.1 Thesis aims

The aims of this thesis are:

1. To investigate novel and established PSD stem signal correction methods that are
applicable with clinical LINACs. From these investigations, determine which of the
available correction methods are most suitable for applications with the Australian
MRI-LINAC.

2. To apply an in-house PSD for dosimetry with the Australian MRI-LINAC. From
these measurements, determine whether the in-house PSD was suitable for MRI-
LINAC dosimetry, and make recommendations for other PSD dosimetry systems
based off these results.

3. To investigate novel and established correction methods for a fibre-coupled BeO
rtOSL dosimetry system in order to reduce the system’s dose-response uncertainty.

1.2 Thesis outline

In Chapter 2, the literature is reviewed with regards to radiation induced luminescence,
luminescent dosimeters and dosimetry with LINACs and MRI-LINACs. The first thesis
aim is addressed in Chapter 3, where novel temporal stem signal correction methods are
investigated, along with the existing “background subtraction” method. An in-house PSD
is applied to measure beam profiles with a clinical LINAC, and each correction method’s



CHAPTER 1. INTRODUCTION 5

resultant beam profiles are evaluated with respect to reference data. In Chapter 4, the sec-
ond thesis aim is addressed, where an in-house PSD is applied for MRI-LINAC dosime-
try using the most suitable stem signal correction method. In this chapter, output factors,
beam profiles and percent depth dose distributions are measured using the in-house PSD,
compared against reference distributions and results for other dosimeters in the litera-
ture. In Chapter 5, the final thesis aim is addressed, where fibre-coupled BeO dosimeters
are applied for dose-rate dependence measurements with a superficial X-ray unit and a
clinical LINAC. In this chapter, novel rtOSL correction methods are presented, and their
performance is compared against that of the existing correction method. In Chapter 6, the
potential avenues for future works are discussed, and concluding remarks are given.
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Chapter 2

Literature review

Radiation dosimetry involves the measurement of quantities of ionising radiation. The
radiation quantity of interest for the work in this thesis is absorbed dose, defined as the
mean energy imparted per unit mass of a material [8]. Instruments that measure radiation
doses are referred to as dosimeters, operating on the principle that energy depositions
within their sensitive volume produces a measurable response. In the scope of radiation
therapy, the dose absorbed by a volume of water is the desirable quantity [9, 10]; radiation
therapy dosimetry aims to measure the absorbed dose in volumes of water equivalent
material at known locations in a patient or phantom [9, 10].

In typical modern EBRT treatments, the LINAC outputs a high energy photon beam
[8]; this is also the case for many of the developed MRI-LINAC systems to date [11].
The high energy photons produced by LINACs can undergo three main interactions with
matter: the photoelectric effect, the Compton effect and pair production. For water, tissue
and water equivalent materials, the Compton effect is the dominant interaction for the
LINAC’s high energy photons [12]. In the Compton effect, an orbital electron absorbs
an incident photon, emits a scattered photon with some fraction of the absorbed energy,
and the orbital electron is ejected from it’s orbital with the remainder of the absorbed
energy as kinetic energy. As energetic free electrons traverse through matter, they transfer
fractions of their energy to other orbital electrons, resulting in the ionisation and excitation
of orbital electrons in matter. In biological matter, the ionisation of orbital electrons
produces biological damage, either by ionisation of the molecules in the DNA or through
the production of free radicals in molecules that diffuse and interact with DNA [8]. The
severity of biological damage to irradiated tissues depends on the absorbed dose within
that tissue, where increasing radiation dose causes increasingly severe biological damage.

8
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2.1 Luminescence

In the scope of radiation measurement and dosimetry, luminescence is a phenomenon
where ionising radiation deposits energy in a material and the irradiated material emits
photons [13]. Materials capable of radiation induced luminescence include inorganic
crystals and ceramics, organic molecules and single atom gasesa. Inorganic crystals and
ceramics produce luminescence emissions via optically stimulated luminescence (OSL),
thermoluminescence (TL) and inorganic scintillation (often referred to as radiolumines-
cence in the literatureb). For inorganic materials, the luminescence mechanisms arise due
to the ionisation of valence electrons within a crystalline lattice [14]. Due to the pres-
ence of defects and impurities in the crystalline structure, free charges can be trapped,
thus inorganic luminescent materials are capable of both prompt luminescence and stim-
ulated luminescence. Organic molecules produce luminescence emissions via the organic
scintillation and phosphorescence mechanisms. For organic molecules, the luminescence
mechanisms arise due to the excitation of organic molecules with π electronic structures
[13]. A crystalline lattice is not required for organic molecules to produce luminescence
emissions, however these molecules are only capable of prompt luminescence such as
organic scintillation and phosphorescence.

For radiation dosimetry with luminescent dosimeters, photodetectors are used to mea-
sure the typically weak photon emissions and convert these photon-intensity signals to
electrical signals [15]. Measured luminescence signals are then analysed to determine
the energy that is deposited into the luminescent material. Photodetectors are typically
operated in one of two main measurement modes, referred to as current and pulse opera-
tion modes [15]. In current mode, the response is continuously integrated. The measured
signal is directly related to the energy deposited in the detector’s sensitive volume as a
function of time [15]. This operation mode is typically used by the detection systems
employed for the measurement of absorbed dose and absorbed dose-rate. In pulse mode,
the detector’s response to each individual radiation event is recorded [15]. The integral
of each signal is directly related to the energy deposited in the sensitive volume for that
event; the statistical analysis of these measured events is directly related to the incident
radiation’s energy spectrum. This approach is difficult to employ for measurements in ra-
diation fields with high fluences, such as with LINACs [15]. All measurements presented
in this thesis operate the photodetectors in current mode; for the remainder of this thesis,
it is assumed that radiation detectors are operated in current mode.

aGaseous scintillation will not be reviewed in this thesis; the reader is referred to Birks’ The Theory and
Practice of Scintillation Counting [13].

bIt should be noted that radioluminescence collectively describes all mechanisms that result in the
prompt emission of photons in response to ionising radiation, including scintillation, phosphorescence and
delayed fluorescence, but not Cerenkov radiation.
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2.1.1 Luminescence of inorganic materials

The luminescence of inorganic materials can be predicted by modelling the transport of
charges throughout the crystalline material’s band structure [14, 15]. With regards to
the band structure, energy absorption by the luminescent material causes valence band
electrons to excite to the conduction band, leaving a “hole” in the valence band [14,
15]. These electrons and holes can move freely throughout their respective bands in the
inorganic crystal. Impurities and lattice defects in the luminescent material are present for
many inorganic materials. These impurities and defects can capture the free electrons and
holes created during irradiation. In the literature, these impurities and defects are referred
to as trapping centres if electrons are captured, and recombination centres if holes are
captured [14].

The allowed transitions for electrons are shown in Figure 2.1. These transitions include
capture from the conduction band by trapping centres, release from trapping centres to the
conduction band and recombination with a captured hole [14, 15]. Stimulation is typically
required to release trapped electrons from trapping centres [14]. Holes are limited to cap-
ture from the valence band by recombination centres and recombination with a conduction
band electron. In this model, luminescence photons are emitted when free electrons are
captured by trapped holes at recombination centres [14, 16]. Luminescence emissions
occurring without stimulation are referred to as radioluminescence [15]; emissions oc-
curring as a result of optical or thermal stimulus are referred to as optically stimulated
luminescence and thermoluminescence, respectively [14, 16].

Kinetics of inorganic luminescence

The intensity of luminescence photon emissions is proportional to the rate of recombi-
nation of electrons and holes. Through kinetic modelling of the charge traffic between
energy states, the electron-hole recombination rate can be modelled mathematically as a
function of time, and an expected time-dependent intensity of luminescence can be deter-
mined [14, 16]. The following kinetic modelling is adapted from Kitis et al. [17], used to
model radioluminescence and OSL, but not TLc. For a simple material with one trapping
centre species, one recombination centre species and one deep trap species as shown in
Figure 2.1, the rates equations describe the post-irradiation traffic of charges throughout
the material:

cThe reader is referred to McKeever and Chen [14] for advanced kinetic models of OSL and TL.



CHAPTER 2. LITERATURE REVIEW 11

Figure 2.1: Kinetic model of a material with one species of optically active trapping
centre, one species of recombination centre and one species of deep trap. In the diagram,
CB is the conduction band, VB is the valence band, N1 is the maximum population of
the trapping centre and N2 is the maximum population of the deep trap. Additionally, nc

is the population of the conduction band, n1 is the population of the trapping centre, n2 is
the population of the deep trap and m is the population of the recombination centre. The
rates An, Ad and Am are the probabilities of free electron capture by trapping centres, deep
traps and recombination centres, respectively. Finally, the rate g is the optical stimulus
rate. Adapted from Kitis et al. [17].

dnc

dt
=−n1g(t)+nc(N1−n1)An (2.1)

dn1

dt
= nc(N2−n2)Ad (2.2)

dn2

dt
= n1g(t)−nc(N1−n1)An−nc(N2−n2)Ad−nc(n1 +n2 +nc)Am (2.3)

I =−dnc

dt
− dn1

dt
− dn2

dt
(2.4)

The parameters n1, n2, nc, m and g are defined in the caption of Figure 2.1. These
population parameters are time-dependent and the solution to this model yields the ex-
pected time-dependent intensity of post-irradiation luminescence emissions as a function
of time. This simple kinetic model can be generalised to contain multiple species of each
type of centre; when the number of species of each trap is known for a material, the ki-
netic model can be adapted to predict the post-irradiation luminescence of the material d.
For inorganic luminescent materials, there exists a complementary relationship between
the light output for radioluminescence and the light output for stimulated luminescence,
such that inorganic materials with relatively high scintillation yields possess relatively

dIt should be noted that other transitions can be modelled, leading to different predicted luminescence
functions. The choice of kinetic model and the transitions modelled are important for accurate prediction
of a material’s luminescence. The reader is referred to McKeever and Chen [14] and Kitis et al. [17] for
derivations of analytical solutions to the simple model and more advanced models.
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low stimulated luminescence yields, and vice versa [18, 19]. This relationship arises
as trapping centres compete with recombination centres to capture free electrons, with
relatively high concentrations of trapping centres in the inorganic materials promoting
trapping of free electrons and stimulated luminescence. Further, the competition between
the numerous species of centres can make the luminescence responses of some inorganic
materials non-linear with respect to the absorbed dose [20]. The following subsections
review the characteristics of thermoluminescence, optically stimulated luminescence and
radioluminescence.

Thermoluminescence Thermoluminescence dosimetry applies heating to an irradiated
inorganic material to release the charges stored in trapping centres [14]. Typically, the
material is heated uniformly, such that the material’s temperature increases linearly as a
function of time [21]. The maximum temperature reached by the material is chosen to be
below the temperature at which the material glows incandescently [21]. The intensity of
thermoluminescence is proportional to the rate of the recombination of free electrons and
holes, dependent on the rate at which trapped charges are thermally liberated [14, 21].
The probability that a trapped charge is thermally liberated, p(T ), follows the Arrhenius
rate law [14, 21]:

p(T ) = s(T )e
−E
kT (2.5)

Where s(T ) is a weakly temperature dependent factor related to the vibration of the
trapped charge in a potential well, E is the thermal activation energy of the trapping cen-
tre, k is Boltzmann’s constant and T is the material’s temperature (in Kelvin) [14, 21].
During readout, the thermoluminescence intensity is measured and recorded as a function
of time. The resultant intensity-time spectrum is converted to an intensity-temperature
spectrum, referred to as a glow curve. The kinetic model for charge transport can be mod-
ified to analytically determine the expected glow curve produced in response to a given
linear heating rate [14, 21]. It should be noted that the heating rate affects the shape of
the measured glow curve [14]. After readout, the thermoluminescent material is heated
to high temperatures (in excess of 600 ◦C) to empty any remaining filled traps in a pro-
cess referred to as annealing [22]. The annealing process affects the thermoluminescence
dose-response, thus reproducible annealing procedures are required to ensure accurate
dosimetry with thermoluminescent dosimeters [23]. For many thermoluminescent mate-
rials, the total number of photons emitted during readout is increasingly supra-linear as
absorbed dose increases; the supra-linear behaviour can become significant for absorbed
doses exceeding orders of 1 Gy, though this is material dependent [23].

Optically stimulated luminescence Similar to thermoluminescence, the total number
of photons emitted during readout is increasingly supra-linear as absorbed dose increases
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[22, 24]. This supra-linear behaviour is material dependent; for BeO, the supra-linearity is
insignificant for doses below 10 Gy [7]. In optically stimulated luminescence dosimetry,
an optical stimulus such as a laser is applied to the irradiated inorganic material to liberate
trapped charges. The light source is chosen to have a photon energy that is tuned to the ac-
tivation energy of the optically active trapping centres. To ensure accurate OSL dosimetry,
the OSL dosimeters undergo a post-readout exposure to intense optical stimulus (referred
to as bleaching). Bleaching is required to optically liberate any remaining filled traps after
readout to ensure reproducible dosimetric characteristics, serving the same purpose as the
annealing process for thermoluminescent dosimeters. The rate at which trapped charges
are optically liberated is given by [17]:

g(t) = σφ(t) (2.6)

Where σ is the material’s photo-ionisation cross section (at the photon’s energy) and
φ(t) is the time-dependent intensity of the laser. OSL dosimetry methods typically ap-
ply spectral filtration to avoid measuring stimulus photons whilst measuring OSL emis-
sions [25, 26]. In the literature, 3 main stimulation schemes are used for the readout
of optically stimulated luminescence: these schemes are the continuous-wave [27], the
linear-modulated [28] and the pulsed stimulation schemes [29]. In the continuous-wave
stimulation scheme the intensity of the laser is fixed, and the kinetic model in Equation
2.1 reduces to a first order system of differential equations. Consequently, traps are emp-
tied following an exponential decay with respect to time and the intensity of OSL emis-
sions follows an exponential decay with respect to time. This form of kinetic model and
it’s resultant exponential decay are referred to as first order kinetics [17]. In the linear-
modulated stimulation scheme, the laser intensity is increased linearly as a function of
time [17, 28]. Optically active trapping centres are emptied following second order ki-
netics, resulting in a time-dependent OSL intensity that follows a quasi-exponential rise
and decay with respect to time [17]. In the pulsed stimulus scheme, the laser stimulus
is periodically pulsed on and off following a square wave. For post-irradiation readout,
the pulse duration is typically chosen to be less than the decay constant of luminescence,
and the stimulation’s period is chosen to be approximately 10 to 20 times longer than the
decay constant of luminescence [26]. The corresponding time-dependent luminescence
follows an exponential rise and decay as a function of time [17].

A variation of the pulsed stimulus scheme allows for the real-time measurement of
optically stimulated luminescence, referred to as the real-time OSL technique [29, 30].
While the inorganic material is irradiated, it continuously produces prompt luminescence
emissions. For materials with relatively short luminescence decay constants, OSL is only
measurable while the optical stimulus is applied. The difference between the lumines-
cence signal measured with and without the stimulus corresponds to the OSL signal in
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real-time. It should be noted that traps may not get completely emptied by the optical
stimulus during each stimulation period, leading to a convoluted relationship between the
absorbed dose and total number of OSL photons emitted during irradiation. When traps
are not completely emptied in a single stimulus pulse, the measured rtOSL is non-linear
with respect to the absorbed dose [29, 30]. Currently, the only method to correct the
non-linear relationship between absorbed dose and rtOSL emissions applies a non-linear
correction function to linearise the measured rtOSL signal with respect to absorbed dose
[29, 30].

Radioluminescence The relationship between absorbed dose and radioluminescence
emissions is dependent on the material being irradiated. For inorganic materials that have
low concentrations of trapping centres, the intensity of scintillation is proportional to the
absorbed dose-rate in the material [31]. For materials with high concentrations of trap-
ping centres, the scintillation dose-response can be dependent on the absorbed dose in the
crystal [32]. This occurs as recombination centres and trapping centres compete to cap-
ture conduction electrons. As the accumulated dose increases, the number of unoccupied
trapping centres decreases, increasing the probability that a conduction electron is cap-
tured by a recombination centre [32]. This increased recombination probability results in
an increased sensitivity to absorbed dose as the accumulated dose increases [32, 33]. This
sensitivity dependence has been referred to as the “memory effect” in the literature. Mate-
rials with high concentrations of trapping centres such as Al2O3:C suffer from this effect,
such that Al2O3:C requires a method that mitigates or corrects the increasing sensitivity of
the dosimeter [33–35]. The gold standard memory effect correction method pre-irradiates
the inorganic crystal prior to the dosimetric measurements [34]. In this method, the inor-
ganic crystal is irradiated with a significantly high radiation dose that completely fills the
trapping centres, eliminating the free capture mechanism for trapping centres, thus sta-
bilising the scintillation sensitivity for the dosimetric measurements. Alternatively, some
inorganic crystals are engineered to have minimal concentrations of trapping centres at
room temperature, making their sensitivity stable without needing prior irradiation [31].
In other methods, the inorganic crystal is not pre-irradiated; instead the time-dependent
intensity of scintillation is measured and analysed to correct for the memory effect. An-
dersen et al. iteratively corrected Al2O3:C’s RL by multiplying the measured scintillation
by a sensitivity correction function [33]. Magne et al. implicitly corrected Al2O3:C’s
RL by transforming the measured signal to the integral dose through the application of
kinetic modelling [35]. With the memory effect corrected or avoided, the total number of
photons emitted is proportional to the absorbed dose [31, 33–35].
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2.1.2 Luminescence of organic materials

The luminescence of organic materials can be predicted by modelling the populations of
molecules throughout each available energy state as a function of time [15]; the following
paragraphs are adapted from Knoll [15]. The absorption of energy by organic molecules
with π electronic structures causes the molecule to excite and vibrate to excited energy
states [15]. Typical energy states of a luminescent organic molecule is shown in the
Jablonski diagram in Figure 2.2. Each energy state corresponds to a different configu-
ration of the molecule’s orbital electrons. In the Jablonski diagram, two subscripts are
used to classify each energy state into levels and sub-levels. Energy levels are typically
separated by the order of 1 eV (e.g. S00, S10, S20 and S30). Energy sublevels are more
narrowly separated by the order of 0.1 eV (e.g. S00, S01, S02 and S03). These sublevels
correspond to vibrational energy states of the level, where sublevels with second index
greater than 0 have excess vibrational energy for that energy level.

Figure 2.2: Energy levels of π orbitals in organic scintillators. S states correspond to
singlet states (electron configuration with spin equal to 0) and T states correspond to
triplet states (electron configuration with spin equal to 1). The first subscript denotes the
energy level of the molecule, and the second subscript denotes a vibrational energy state
at that level. Finally, the S00 state corresponds to ground state for the molecule. Diagram
from Mdhluli et al. [36], adapted from Knoll [15].

The absorption of energy by molecules in the ground state, S00, causes them to excite
to the higher energy levels S1, S2 and S3. Through a process known as radiationless inter-
nal conversion, the unstable energy states S2 and S3 relax to the metastable S1 states with
no photon emissions. The vibrational states with excess energy (e.g. S11, S12 and S13)
dissipate their excess vibrational energy via radiationless interactions and relax to the S10

state. Relaxation from the S10 excited state to S00 ground state occurs with prompt photon
emissions, referred to as scintillation. Through the inter-system crossing phenomena, ex-
cited singlet states can transition to excited triplet states with lesser energy; the relaxation
of excited triplet states to the ground singlet state produces luminescence emissions that
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are referred to as phosphorescence. The excited triplet states can absorb vibrational en-
ergy and heat energy from neighbouring molecules and transition to excited singlet states,
resulting in the phenomena known as delayed fluorescence.

In general, the intensity of organic luminescence typically follows a multi-exponential
rise and decay, comprised of “fast” and “slow” components with short and long decay
constants. For the high energy photons and electrons produced by LINACs, the pop-
ulation of excited singlet states dominates the population of excited triplet states and
the “fast” component of luminescence dominates the “slow” component. In this case,
a mono-exponential rise and decay suffices to describe measured luminescence. How-
ever, for radiation with high linear energy transfers (LETs) such as slow neutrons and
alpha particles, many organic scintillators exhibit luminescence where the slower com-
ponent is significant and non-negligible. This occurs as the higher LET radiations cause
significant population of the triplet states associated with the “slow” component of or-
ganic luminescence [15]; organic luminescence in response to these high LET radiations
are described by a multi-exponential rise and decay with respect to time. Due to the intrin-
sic dependence of luminescence emissions on LET, organic scintillators have been used
for discrimination of high LET and low LET particles in mixed radiation fields such as
neutron-gamma mixed fields.

Kinetics of organic scintillation

The intensity of luminescence emissions is proportional to the rate of relaxation of ex-
cited singlet and triplet states to the ground singlet states. The deposition of energy by
ionising radiation causes a net population shift of molecules from the S0 ground state to
the S1 excited state due to the near instantaneous radiationless conversion. The net shift
in population to the S1 state is characterised by an exponential rise time constant, τr [13,
15]. The relaxation of S1 molecules to the S0 ground state occurs spontaneously, and is
characterised by an exponential decay constant, τd [13, 15]. In response to a Dirac delta
pulse of irradiation, δ (t), the expected luminescence, h(t), is given by [15]:

h(t) ∝ e(−
t

τd
)− e(−

t
τr ) (2.7)

For the case where the linear energy transfer of incident radiation is significantly low,
the total number of photons emitted is proportional to the absorbed dose in the organic
scintillator. In the scope of the work presented in this thesis, the LET of high energy
photons and electrons is low, such that quenching has negligible impact on the presented
measurements.
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2.1.3 Time-resolved methods for fluorescence and luminescence

Time-resolved methods measure the fluorescence and luminescence of materials in re-
sponse to ultra-fast stimulation pulses with high temporal resolution photodetectors [37–
39]. Through analysis of these responses, the fluorescence and luminescence lifetimes
can be determined [37]; these characteristics can then be correlated with the kinetics and
physical processes occurring in the material [40, 41]. Time-resolved methods are most
frequently applied for fluorescence microscopy in chemistry, allowing for improved dis-
crimination of the physical processes occurring in organic molecules, biological matter
and chemical reactions [41, 42]. These methods have also recently been applied during
pulsed OSL measurements for both dosimetry [38] and investigations into the kinetics
occurring in desirable materials [40]. In the time-resolved fluorescence literature, the
measured fluorescence, I(t) is characterised by the convolution equation [43]:

I(t) = h(t)∗ p(t)∗L(t) (2.8)

Where h(t) is the material’s fluorescence impulse response function (fIRF), p(t) is
the photodetector’s impulse response function and L(t) is the stimulation profile [43]. It
should be noted that the fIRF is the material’s hypothetical response to an ideal Dirac
δ pulse stimulus, an equivalent function to h(t) in Equation 2.7 for the case of organic
scintillators [15]. The stimulation profile describes the time-dependent intensity of the
stimulation source [43]. The photodetector’s impulse response function describes it’s
ability to temporally resolve measured signals. It should be noted that the relationship in
Equation 2.8 precisely models the components in a real-time fibre-coupled luminescence
dosimetry system: a luminescent material is stimulated by a radiation source, producing
a luminescence signal that is measured by a photodetector. In the scope of fibre-coupled
luminescence dosimetry, the component h(t) corresponds to the luminescent material’s
impulse response function, L(t) corresponds to the dose-rate as a function of time, and
p(t) corresponds to the photodetector’s response function. Often in modern time-resolved
fluorescence literature, the convolution of the photodetector response function, p(t) and
the stimulation profile, L(t) are combined into a single term referred to as the instrument
response function, x(t) [44]. Equation 2.8 is thus often stated as:

I(t) = h(t)∗ x(t) (2.9)

2.2 Dosimetry with LINACs

In radiation therapy, quality assurance (QA) is the process of measuring and validating the
geometric and dosimetric accuracies in the planned radiation therapy treatments [45, 46].
Dosimetry plays an important role in EBRT QA, performed routinely with the LINAC as a
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means to ensure that the planned dose distribution is delivered accurately to the patient as
intended. In these QA measurements, dose distributions are delivered to a volume of water
(simulating the tissue of the human body, referred to as a phantom) housing a dosimeter
at some known position within the water volume [9, 10, 12]. In these measurements, the
LINAC’s output is measured under specific conditions and compared against the expected
output under these conditions. This process provides a means for verification that the
output and functionality of the LINAC remains within acceptable limits (based off studies
and recommendations in the literature) [9, 10, 12]. When the LINAC’s output deviates
outside the acceptable limits, treatments can result in poor patient outcomes.

Modern EBRT treatments have become increasingly complex in order to improve dose
confinement and patient outcomes, with treatment techniques advancing from fixed field
3D conformal radiation therapy (3DCRT), to dynamic field intensity modulated radia-
tion therapy (IMRT) and volumetric modulated arc therapy (VMAT). This trend where
increasing dose confinement is achieved through increased treatment complexity is ex-
pected to continue with the realisation of 4π therapy in the near future [47]. In these
treatments techniques with modern LINACs, the gantry, multileaf collimators (MLCs)
and patient couch can be moved dynamically. Through the coordination of these com-
ponents, more optimal dose confinements and reduced treatment speeds can be achieved,
with the potential for further improvements to patient outcome [46]. With the increasing
treatment complexity, there exists an increased likelihood for errors in delivered treat-
ments, with increased risks of poor treatment outcomes [46]. This trend of increasing
treatment complexity makes QA dosimetry more important than ever as other previously
established methods make it difficult for a clinician to detect treatment errors and avoid
mistreatments.

The QA dosimetry process requires reliable dosimeters with well characterised re-
sponses to achieve the desired levels of accuracy in measured doses. There exists many
types of dosimeters, each with their own dosimetric properties that can affect the dosime-
ters response to radiation doses [48]. There are no ideal dosimeters that suit all mea-
surement conditions for LINACs, especially when considering the qualities required for
verification of highly conformal dose distributions. Consequently, dosimeters must be
selected to suit the measurement conditions. Certain dosimetric properties are generally
desirable for measurements with LINACs. Desirable properties for LINAC dosimetry
include: water equivalence of the sensitive volume, energy independence, a linear re-
sponse with dose, dose-rate independence, directional independence, radiation hardness,
real-time response, high spatial resolution, minimal perturbation of the homogeneity of
water media, high accuracy and reproducibility, and independence of ambient conditions
[8]. The following section provides an overview of the common LINAC dosimeters, their
advantages and disadvantages in the scope of LINAC dosimetry.
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2.2.1 Ionisation chambers

Ionisation chambers are gas-filled cavity dosimeters that use high voltages to produce
electric fields across their cavity volume. They operate on the principle that energy de-
positions in the gaseous volume (typically air) produce electron-ion pairs, such that the
charge collected is proportional to the dose deposited in the gaseous volume. Ionisa-
tion chambers are routinely used for QA dosimetry in radiation therapy clinics, owing
to their linear response with dose, dose-rate independence and energy independent sen-
sitivity. Ionisation chambers are capable of calibration against a national standard, en-
abling their use for direct measurement of the absorbed dose in water for a wide range
of beam qualities. Because of this, ionisation chambers are frequently used to cross-
calibrate the response of other dosimeters for relative dosimetry measurements. Ioni-
sation chamber volumes for EBRT QA dosimetry range from the order of 0.1 cm3 for
typical Farmer chambers to 0.001 cm3 for micro-ionisation chambers. Farmer chambers
are recommended by the IAEA codes of practice for measurements of absorbed dose in
water for the high energy photon and electron beams produced by clinical LINACs [9,
10]. Small volume ionisation chambers are recommended for dosimetry in small fields
and steep dose gradients [12].

2.2.2 Diode detectors

Diode detectors have sensitive volumes comprised of silicon, operating on the principle
that energy depositions within the silicon sensitive volume produce a measurable charge
proportional to the absorbed dose (in silicon). Diodes have sensitivities to radiation that
are approximately 18000 times greater than the sensitivity of equivalent volume ionisation
chambers, and their sensitive volumes are typically of the order of 0.1 mm3. The diode’s
sensitivity however depends on factors such as temperature, beam direction, photon beam
energy and dose-rate [49]. The dependence on temperature arises from variations in the
band structure of silicon with temperature, reported to range from 0.05 %/◦C to 0.5 %/◦C
[50, 51]. This effect is easily mitigated through stabilisation of the diode’s temperature.
Their directional dependence arises due to the non symmetrical geometry and construc-
tion of the diode and it’s packaging; several geometries of diodes have been developed to
negate this directional dependence [52, 53]. The sensitivity of diodes to electrons remains
flat for the high energy electrons produced by LINACs. However, a diode’s sensitivity to
photons is energy dependent, where diodes over-respond to low energy photons [49]. To
mitigate this over-response to low energy photons, shielding with heavy metals may be
used as a means to attenuate the low energy photons (diodes with shielding are referred to
as shielded diodes; diodes without shielding are referred to as unshielded diodes). Small
volume unshielded diodes are recommended for measurements in small fields by a dedi-
cated code of practice [12, 54], however their response requires correction for conversion



CHAPTER 2. LITERATURE REVIEW 20

from absorbed dose in silicon to absorbed dose in water due to their energy dependent
sensitivity for low energy photons.

2.2.3 Diamond detectors

Diamond detectors operate on a similar principle to diode detectors, such that energy
depositions in the sensitive volume produces a measurable change in the voltage across
it’s sensitive volume, proportional to the absorbed dose-rate in diamond. The diamond
sensitive volume is water equivalent for the high energy photons and electrons produced
by LINACs [55], and it’s response is real-time and typically directionally independent.
Typically, their sensitive volumes are of the order of 0.1 mm3, making them desirable for
measurements in steep dose gradients and small fields [55]. However, diamond detectors
can suffer from an energy dependent sensitivity, arising from the perturbation of low
energy photons by the diamond’s casing and electric contacts [56].

The diamond detector, PTW60019 microDiamond detector (referred to as the micro-
Diamond detector from this point onwards), is of particular interest for dosimetry with
modern LINACs [57]. The microDiamond detector has been engineered to have a cylin-
drical sensitive volume with 2.2 mm diameter and 1 µm thickness, giving the microDia-
mond high spatial resolutions and a directionally dependent sensitivity [58]. It’s diamond
sensitive volume is synthetically grown to ensure high reproducibility in it’s dosimetric
properties and characteristics. The microDiamond is characterised by a linear response
with dose and dose-rate. The microDiamond thus has a set of qualities that are attrac-
tive for small field dosimetry. For use in small fields, a field size dependent correction is
required for the energy dependent sensitivity due to perturbations from the packing and
contacts [56]. With correction, the microDiamond detector has been recommended in the
small field dosimetry code of practice TR483 for measurement of lateral beam profiles in
small fields [12].

2.2.4 Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)

MOSFET dosimeters operate on the principle that energy depositions in their sensitive
volume produce a shift in threshold voltage, proportional to the absorbed dose in their
silicon dioxide sensitive volume [59]. Their sensitive volumes are approximately 1 µm
thick, and their response is able to be read out in real-time. Their sensitivity is direction-
ally dependent, arising from asymmetrical geometries of material and packaging [60].
The sensitivity shows weak temperature dependence that does not typically warrant cor-
rection [49]. An energy dependent correction may be required to convert the absorbed
dose in silicon dioxide to absorbed dose in water for conditions where significant flu-
ences of low energy photons are present [61]. Given these qualities, they are appealing
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for photon and electron beam dosimetry in high spatial dose gradients [62], as well as
in vivo skin dosimetry [63]. In general, MOSFETS are not recommended in small fields
[12]; however, the MoSkinTM (CMRP, UOW, Australia) MOSFET is suitable for use in
small fields, engineered with advanced packaging that provides a skin equivalent depth of
measurement [64].

2.2.5 Radiochromic film

Radiochromic films are two dimensional dosimeters with a thin sensitive volume layer
(approximately 30 µm). Their sensitive volumes contain radiation sensitive monomers
that are distributed throughout a polymer matrix [65, 66]. Energy depositions in their
sensitive volume induce the polymerisation of these monomers, forming coloured dyes
at the site of the energy deposition. Due to this operation principle, radiochromic films
are self developing, have intrinsically high spatial resolutions, and are single use only.
Their dose-response is read out as a function of optical density using a flat-bed scan-
ner or densitometer [65, 66]. This response is non-linear as a function of absorbed dose
in water and requires calibration to correct for it’s non-linearity. The commercial ra-
diochromic film, GafChromic EBT3 (Ashland Inc, USA), has been optimised for clinical
LINAC dosimetry, designed to be highly water equivalent, directionally independent and
dose-rate independent for high energy photons and electrons [65, 66]. The main source
of uncertainties in radiochromic film measurements arise from limits in the uniformity
of films, variations between different batches of film, variations in the readout of these
films by flat-bed scanners and conversion of their non-linear responses to absorbed dose
[67, 68]. GafChromic EBT3 film has been recommended for relative dosimetry measure-
ments of small fields, and broad photon and electron beams [9, 12, 69], however it is not
recommended for absolute dosimetry measurements.

2.2.6 Fibre-coupled luminescent dosimeters

Fibre-coupled luminescent dosimeters are comprised of a luminescent material volume
that is optically coupled to an optical fibre, with the optical fibre connected to a pho-
todetector. The luminescence dosimetry process can be summarised as follows: the lu-
minescent dosimeter is irradiated, a luminescence signal is generated, the luminescence
signal is measured using a photodetector and the measured signal is analysed to determine
the dose absorbed in the luminescent material. A fibre-coupled luminescent dosimeter’s
all-optical composition (i.e. no electronics or wires around the sensitive volume) and typ-
ically compact dosimeter size minimises the perturbation of the radiation field in water
during dosimetry, advantageous in many clinical dosimetry conditions. However, fibre-
coupled luminescent dosimeters encounter one main challenge that has limited their use
as clinical dosimeters: stem signals.
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Stem signals and correction methods

When the fibre-coupled luminescent dosimeter’s optical fibre is irradiated by high en-
ergy photons and electrons, the optical fibre produces it’s own photon emissions. These
photon emissions, referred to as stem signals, are subsequently measured by the photode-
tectors and are effectively noise with respect to the desired luminescent signals. These
stem signals are comprised of two independent components, being Cerenkov radiation
and the luminescence of the optical fibre [70]. For dosimetry with LINACs, Cerenkov
radiation is the dominant component of the optical fibre’s stem signals [70]. Cerenkov
radiation is produced when a charged particle traverses through an optical medium at a
speed greater than the local speed of light in that optical medium [71]. Cerenkov radiation
is directionally dependent [71], and the magnitude of Cerenkov radiation that is collected
by the optical fibre depends on the orientation of the optical fibre with respect to the ra-
diation beam [72]. For common plastic optical materials, the photon and electron energy
thresholds for Cerenkov radiation generation are of the order of hundreds of kiloelectron-
volts [73]. Clinical LINACs typically produce photon and electron beams with average
energies of the order of megaelectron-volts [73], making the generation of Cerenkov ra-
diation and stem signals unavoidable. As a result of these stem signals, the response
of the fibre-coupled luminescent dosimeters is perturbed, increasing their uncertainties.
Fibre-coupled luminescence dosimetry methods must therefore correct the stem signal to
ensure that the dosimeter remains accurate in it’s measured dose-response [72, 74]. The
following section reviews the existing stem signal correction methods for fibre-coupled
luminescent dosimeters; a summary of the correction methods is provided in Table 2.1.

Advantages Disadvantages
Background
Subtraction

Robust and accurate in fields
with low dose gradients

Accuracy degraded in fields with
high dose gradients

Chromatic
Removal

Gold standard, robust and
accurate -

Air
Core

No Cerenkov radiation generated
in optical fibre

Fragile, significant attenuation
of optical signals

Temporal
Filtration

Avoids measuring Cerenkov
radiation

Significant reduction in
scintillation, pulsed sources only

Remote
Imaging

Minimal Cerenkov radiation,
capable of 2D and 3D dosimetry

Requires calibrated scientific
CCD camera

Real-time
OSL

Real-time, permits use of many
inorganic luminescent materials

Requires repeatable post
measurement bleaching

Table 2.1: Table summarising the advantages and disadvantages of the stem signal cor-
rection methods for fibre-coupled luminescent dosimeters.



CHAPTER 2. LITERATURE REVIEW 23

Background subtraction The original correction method, background subtraction, ap-
plies a second optical fibre with no scintillator (referred to as the reference probe) to
measure only stem signals [75]. It should be noted that the reference probe has dimen-
sions, materials and construction that matches the dosimeter’s optical fibre. In the experi-
mental setup, the fibre-coupled luminescent dosimeter and reference probe are positioned
abreast to one another, and are aligned so that equal lengths of optical fibre are irradi-
ated. With this setup, approximately equal magnitudes of stem signal will be produced by
the dosimeter and the reference probe. Consequently, the luminescence response can be
corrected for stem signals by taking the difference between the measured fibre-coupled
luminescent dosimeter’s signal and the reference probe’s signal. It should be noted that
the approximate equality is invalid when there are high spatial dose gradients between
the dosimeter and the reference probe [76]. Most LINAC dosimetry occurs in radiation
fields with low spatial dose gradients [76], enabling the use of background subtraction
with LINACs. Other stem signal correction methods have been developed to avoid the
high dose gradients limitations of background subtraction.

Chromatic removal In the chromatic removal method, a bifurcated optical fibre is used
to produce two identical signals from the fibre-coupled luminescent dosimeter [74]. Dif-
ferent optical filtration is applied to the two optical signals. The first set of optical fil-
tration is designed to filter out as much stem signal and preserve as much scintillation as
possible, and the second set of filtration is designed to filter a significantly different set
of wavelengths to the first filter. Through analysis of the optical signals under these two
differing filtration schemes, the stem signal and the luminescence signal can be separated
[74]. Chromatic removal method has achieved marginally superior accuracies compared
to background subtraction [76], and is applicable in radiation fields with high spatial dose-
gradients, making chromatic removal superior to background subtraction.

Temporal filtration Another set of approaches to correct for stem signals present in
measured luminescence signals uses scintillators with long decay constants (i.e. in the or-
der of hundreds of nanoseconds to milliseconds and longer) for dosimetry with pulsed ra-
diation sources. It should be noted that Cerenkov radiation is produced near-instantaneously
and decays with sub nanosecond half lives [77], such that Cerenkov radiation can only be
measured as the optical fibre is irradiated. To take advantage of this difference in lifetimes,
[78–80], temporal pulse gating is used to wait for the Cerenkov radiation to subside, so
that only scintillation remains after the pulse gating. It should be noted that no reference
probe is required for temporal filtration, however this method is not applicable with con-
tinuous radiation sources. This method has been highly successful with slow inorganic
scintillators such as Al2O3:C [33], Al2O3:CrO3 [78] and SiO2:Cu [80]. However, tem-
poral filtration was suboptimal when investigated for use with the slow plastic scintillator
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BC444G (Saint Gobain, France) and a clinical LINAC [76, 79]. This result occurred as
a large portion of the plastic scintillators signal was emitted prior to the pulse gating,
increasing the PSD’s uncertainty.

Air core optical fibres An interesting take on dealing with stem signals avoids their
production by replacing the solid-core optical fibres with air-core optical fibres [81, 82].
Air-core optical fibres use a mirrored inner surface to reflect photons through the length
of the optical fibre. Air can not produce Cerenkov radiation for electron energies below
20 MeV, thus they avoid producing Cerenkov radiation in their core during dosimetry
with modern LINACs [81]. Air-core optical fibres face practical drawbacks that make
them more difficult to implement in clinics such as high attenuation of optical signals per
unit length and the fragility of the air-core fibre.

Remote imaging Another worthwhile luminescence dosimetry method obviates the use
of an optical fibre to transport scintillation signals, instead imaging the scintillation from
a distance with a scientific charge coupled device type camera [83–85]. It should be
noted that 3D scintillation imaging is possible if the luminescent material is transparent,
allowing for reconstruction from orthogonal views. The spatial and temporal resolutions
of calculated dose distributions are only limited by the corresponding resolutions of the
camera, and enable such a dosimetry system to measure 2D and 3D dose distributions
with high spatial and temporal resolutions. Given these qualities, this approach has been
applied for real-time 2D dosimetry with LINACs [86], 3D dosimetry with proton beams
[83, 84] and real-time 3D dosimetry (coined “4D dosimetry”) with an MRI-LINAC [85].
Cerenkov radiation is still produced in the scintillator block when this method is applied
for LINAC dosimetry, though the intensity of Cerenkov radiation is reported to have an
amplitude less than 0.5 % of the scintillation in these blocks [85].

The rtOSL technique The rtOSL technique was discussed in Section 2.1.1 with re-
gards to the kinetics of OSL, and is only applicable with inorganic materials that have
relatively high concentrations of optically active traps. In the rtOSL technique, a pulsed
optical stimulus is applied as the luminescent material is irradiated [24, 29]. The lumi-
nescence signals measured during the stimulation consist of OSL, RL and stem signals.
Conversely, the luminescence signals measured without stimulation consist of only RL
and stem signals assuming that the RL, OSL and stem signals are significantly faster than
the temporal resolution of the photodetector. In the rtOSL technique, the difference be-
tween the signals measured with and without stimulation corresponds to pure OSL, which
is free of stem signals.
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Luminescent materials

With stem signals corrected, the fibre-coupled luminescent dosimeter preserves it’s accu-
racy and desirable dosimetric properties. Many of these properties are inherited through
the luminescent materials used by fibre-coupled luminescent dosimeters. Desirable prop-
erties such as water and tissue equivalence or energy independence are material depen-
dent. Therefore, which luminescent material is used by a fibre-coupled luminescent
dosimeter is often dictated by the qualities required for accurate dosimetry in the desired
conditions. The following sections presents a review of the particularly advantageous
luminescent materials for the dosimetry of high energy photons and electrons.

Plastic scintillators Plastic scintillators have been shown to possess many qualities and
properties that make fibre-coupled plastic scintillation dosimeters (PSDs) near correction-
less for use with clinical LINACs [6, 34]. Through Burlin cavity theory, many commer-
cially available plastic scintillator materials have been calculated to be water equivalent
across the therapeutic energy range for photons and electrons [75, 87], making their re-
sponse proportional to the absorbed dose in water [87, 88]. It should be noted that plastic
scintillators suffer from an under-response to photons with energies below 100 keV, aris-
ing from their reduced effective atomic of Zeff ≈ 5.7 when compared to water’s effective
atomic number of Zeff ≈ 7.4. The scintillation mechanism is isotropic, and so PSDs have
angular independent scintillation responses [89, 90]. For the high energy photons and
electrons produced by LINACs, a plastic scintillators response is independent of beam en-
ergy [88] and dose-rate [88]. Plastic scintillator materials can suffer response quenching
[91] when track structures are dense, as is the case for proton and heavy ion beams [92];
however, scintillator quenching is of negligible effect for LINAC radiation [88]. Being
entirely plastic, PSDs are water proof. Each of these qualities makes plastic scintillators
well suited to relative LINAC dosimetry with LINACs [6].

Although there exists much research interest for PSDs, there are currently only two
commercial PSD systems available: the Exradin W1 (Standard Imaging, USA) and Exradin
W2 (Standard Imaging, USA). Most of the literature available for PSDs are results from
studies with in-house systems. The Exradin W1 was studied by Beierholm et al., shown
to be dose-rate independent [93]. Exradin W1’s Cerenkov radiation removal was shown
to be accurate within 1.1 %, and the relative response was accurate within a 1.5 % relative
response of measurements made by ionisation chambers [93].

Early research with PSDs evaluated their performance for dosimetry in large field pho-
ton and electron beams [88, 94, 95]. These research groups measured photon and electron
beam dose distributions such as percent depth dose distributions, beam profiles and output
factors, comparing them with the respective reference dosimeters for those distributions
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[88, 94, 95]. In these early measurements, the PSD was shown to be accurate for relative
dose measurements of absorbed to water. In more recent work, in vivo measurements
were made with PSDs. These measurements aimed to validate treatment planning system
distributions and determine uncertainty budgets in highly conformal radiation conditions
[96, 97]. In these treatment planning system evaluations, the PSD was found to be within
1 % of the treatment planning system measured doses.

Dosimetry in small fields and fields with steep dose gradients requires dosimeters with
small sensitive volumes or high spatial resolution [98–101]. In these conditions, other
physical effects such as volume averaging, source occlusion and loss of charged particle
equilibrium can increase a dosimeter’s uncertainty [102–104]. A PSD’s sensitive volume
is defined by the volume of it’s plastic scintillator, thus the plastic scintillator volumes
can be manufactured to sub-millimetric volumes to give them high spatial resolutions [6,
105, 106]. Studies have shown that PSDs with small sensitive volumes mitigate these
small field effects [102–104], while other small field dosimeters such as micro-ionisation
chambers require corrections for these effects [103, 104].

Al2O3:C Al2O3:C possesses many desirable qualities that are inherent to plastic scin-
tillators [34], though it is not as water equivalent as plastic scintillators. Through Burlin
cavity theory, Al2O3:C is water equivalent for photons with energy greater than approx-
imately 1 MeV. However, Al2O3:C becomes less water equivalent as photon energy de-
creases below 1 MeV [107, 108]. As photon energies decrease below 100 keV, Al2O3:C
suffers from an over-response that is approximately 3.5 times greater than the response per
unit absorbed dose expected at 1 MeV [107, 108]. This arises from Al2O3:C’s increased
effective atomic number of Zeff ≈ 11.3 when compared to water’s effective atomic num-
ber of Zeff ≈ 7.4. This energy dependence makes Al2O3:C less suitable for dosimetry in
radiation fields where there are high fluences of photons with energies less than 1 MeV
[107, 108].

Al2O3:C’s RL has a dose dependent sensitivity that requires correction to restore the
linearity between it’s response and the absorbed dose [31, 33–35]. When corrected,
Al2O3:C’s RL is proportional to the absorbed dose-rate in Al2O3:C and it’s integral RL re-
sponse is dose-rate independent [35]. Al2O3:C can also be optically stimulated to produce
OSL, which provide secondary means for a fibre-coupled Al2O3:C dosimeter to determine
the absorbed dose post-irradiation [24, 34]. Al2O3:C’s OSL has been demonstrated to be
dose-rate independent, with this secondary means of dose calculation advantageous for
clinical dosimetry [24]. Alternatively, when Al2O3:C’s OSL is read out using the rtOSL
technique, this rtOSL signal is also dose-rate independent [24, 109]. It should be noted
that rtOSL signal is non-linear with respect to absorbed dose due to complex kinetics in-
herent to this technique; these kinetics were described in Section 2.1.1. The luminescence
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mechanism is isotropic in nature, thus fibre-coupled Al2O3:C dosimeters have negligible
directional dependences. Although Al2O3:C dosimeters face additional challenges when
compared against plastic scintillation dosimeters, Al2O3:C possesses a similar set of de-
sirable qualities that makes them suitable for dosimetry with LINACs [34].

BeO ceramics BeO has not received as much attention as have plastic scintillators or
Al2O3:C for fibre-coupled luminescence dosimetry. However, BeO possesses a similar set
of dosimetric qualities to plastic scintillators and Al2O3:C. Through Burlin cavity theory,
it is near-tissue equivalent for the high energy photons and electrons produced by LINACs
[110]. Through it’s effective atomic number of Zeff≈ 7.3, BeO has a significantly reduced
energy dependence for photons with energy between 10 keV and 20 MeV, experiencing a
maximum deviation of 13 % in it’s relative response across this energy range [110]. In
comparison, plastic scintillators experience a maximum deviation approaching 60 % in
it’s relative response in this energy range, and Al2O3:C experiences maximum deviations
approaching 250 % in it’s relative response across these energies. Given this quality, BeO
is well suited for dosimetry when minimal energy dependences are required such as high
dose-rate brachytherapy dosimetry [111].

A fibre-coupled BeO dosimeter was characterised for use as a high dose-rate brachyther-
apy dosimeter, investigated for both it’s RL and OSL. BeO’s RL response was linear with
dose, and it’s RL did not appear to suffer from the non-linear deep trap sensitisation
effects [7]. Additionally, BeO’s real-time RL is proportional to the dose-rate, and the
integral RL response is independent of the dose-rate [7]. BeO’s OSL was demonstrated
to be dose-rate independent, but it exhibited a supra-linear response with respect to ab-
sorbed dose that becomes significant as doses increase above approximately 10 Gy [7].
Due to the fibre-coupled BeO dosimeter’s compact size, it was capable of being inserted
into catheter. However, a second optical fibre was required for stem signal correction
by background subtraction, thus it was concluded that the OSL was more suitable for
in vivo dosimetry during brachytherapy treatments. Following this investigation, BeO’s
OSL was investigated for it’s feasibility when read out using the rtOSL technique. BeO’s
rtOSL was characterised by the same non-linear response as Al2O3:C [30]. In the sin-
gle investigation of BeO’s rtOSL in the literature, the uncertainty in the dose-response
was significantly increased when compared against the performance of Al2O3:C and it’s
rtOSL dose response [30]. From these investigations, it was concluded that the fibre-
coupled BeO rtOSL dosimeter required optimisation to reduce it’s uncertainties.

It should be noted that BeO is toxic when inhaled in powdered form [112]. When
inhaled, the beryllium in BeO can cause Chronic Beryllium Disease, which results in
hypersensitivity and severe inflammation of the tissues in the lungs. BeO in it’s ceramic
form does not present this health risk [113], thus BeO should be used in it’s ceramic form
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for fibre-coupled luminescence dosimetry.

2.2.7 Monte Carlo simulation toolkits

In the scope of radiation therapy, Monte Carlo simulations are considered the gold stan-
dard method for calculating radiation doses from radiation sources [114]. The software
for these Monte Carlo simulations are toolkits, such that the user is required to define
geometries in an experimental setup, as well as a radiation source where primary particles
are generated, and the interactions particles can undergo. In these simulations, individual
particles are stepped iteratively and tracked throughout the simulation geometry. The sec-
ondary particles generated through the interaction of primary particles are also tracked.
Random number sampling is applied to determine the interactions taken at each step.
Typically, a voxelised scoring mesh is defined to score the energy depositions deposited
in each voxel; radiation dose is subsequently calculated by normalising the energy de-
posited in each voxel by the voxel’s mass. Through the simulation of several primary
particles, statistical analysis yields the desired dose distribution for a modelled target vol-
ume. The Geant4 simulation toolkit [115] will be used in this thesis to calculate reference
dose distributions in water for the Australian MRI-LINAC.

2.3 Dosimetry with MRI-LINACs

MRI-LINAC systems combine an MRI scanner with a LINAC. The combination of these
technologies presents many engineering challenges that affects the operation of the LINAC
and the MRI, such that LINAC components can affect MRI scanner’s functionality and
the magnetic field affects the operation of the LINAC. In terms of the LINAC’s oper-
ation, the MRI scanner typically has fringe fields that can permeate into the LINAC’s
components, imparting a Lorentz force on electrons as they are transported throughout
the LINAC, resulting in reduced outputs [116]. To overcome the magnetic field’s perme-
ation into the LINAC, the affected components can be designed to account for the effect
of magnetic field permeation [117], or magnetic shielding can be used [118]. In terms of
MRI imaging, the LINAC’s components can cause distortions in the magnetic field [119];
magnetic shielding can exacerbate this distortion. Irradiation of the MRI’s coils leads to
the formation of radiation induced currents in the coils, degrading image qualities [120,
121]. Several techniques and solutions have been developed to synergise and integrate the
MRI and LINAC technologies [122–126].

Dosimetry for the MRI-LINAC is impacted by the presence of the MRI’s magnetic field
as a Lorentz force is imparted on charged particles traversing through the magnetic field.
The Compton interaction is the dominant interaction for photons produced by the LINAC,
thus dose distributions are altered by the magnetic field at a macroscopic level [11, 127,
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128]. For dosimetry, the changes to dose distributions are dependent upon the orientation
of the MRI’s magnetic field with respect to it’s photon beam [11]. Two orientations are
used by MRI-LINAC systems, with each orientation producing their own characteristic
changes in the dose distributions. These orientations are the in-line orientation where the
photon beam is aligned parallel to the magnetic field [11, 124], and the perpendicular
orientation where the photon beam is aligned perpendicular to the magnetic field [127,
129].

For the in-line orientation, the Lorentz force imparted on charged particles causes them
to follow helical trajectories [11, 124]. As a result, electron penetration depth and lateral
spreading of electrons are reduced. At the macroscopic level, this produces narrowed
penumbras [130], and enhanced doses in low density media like lung [131]. Additionally,
the presence of an in-line fringe field causes electrons created between the LINAC and the
patient to be directed towards the isocentre. These electrons typically have low energies,
created in the air volume between LINAC or patient, or are contaminant electrons from the
LINAC’s target. The focusing of these low energy electrons results in increased entrance
doses and high dose gradients in the entrance region, with the magnitude of these effects
dependent on field size and strength of the fringe field [132, 133]. This electron focusing
effect is significant for the Australian MRI-LINAC, where the entrance dose for a 3 cm ×
3 cm field is approximately 300 % of the dose at the classical depth of maximum dose for
a 6 MV beam [133, 134].

In the perpendicular orientation, the Lorentz force imparted on secondary electrons
causes secondary electrons to follow a circular-curved trajectory with an axis of gyration
orthogonal to the photon beam and magnetic field directions [127]. As a result, electron
penetration depth is reduced, and the resultant dose kernel experiences a lateral shift and
reduced penetration depths [127, 129]. At the macroscopic level, the dose distributions
are asymmetric and laterally shifted [127, 135]. Dose enhancements occur at interfaces
of high and low densities [127, 129, 135], with increased doses in the high density media
(referred to as the electron return effect). With the photon beam orientated perpendicular
to the MRI’s magnetic field, fringe fields are unable to influence the LINAC or cause the
focusing of electrons as occurs for in-line orientation MRI-LINACs [126, 127].

Dosimeters used for MRI-LINAC dosimetry can be affected by an MRI’s magnetic field
in several ways [136]. Dosimeters with directionally dependent sensitivities can have their
accuracy degraded as the charged particles follow curved trajectories through the dosime-
ter’s sensitive volumes [137, 138]. Many dosimeters experience directional dependences
due to asymmetrical geometries and packing, including ionisation chambers [137, 138],
PTW microDiamond [138] and many diode detectors [139]. Dosimeters that perturb the
homogeneity of water cause secondary electrons to follow a different trajectory than that
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expected through water. This effect can cause non-water equivalent dosimeters to mis-
represent the dose distributions that are deposited in water [137, 138], and can be prob-
lematic if not corrected for absolute dosimetry measurements with ionisation chambers
[140, 141]. For perpendicular orientations, this inhomogeneity induced effect produces
variations in the measured lateral shift and asymmetry of profiles, where high density
dosimeters such as diodes underestimate the lateral shift and low density dosimeters such
as ionisation chambers overestimate the lateral shift [135]. This inhomogeneity effect can
also increase uncertainties when using water equivalent plastic phantoms such as Solid
Water (Gammex RMI), as the presence of air gaps around dosimeters can lead to inaccu-
racies in measured doses [142, 143].

2.3.1 Ionisation chambers

The magnetic field alters the trajectories of secondary electrons, significant for the low
density air cavities of ionisation chambers. Consequently, the dose-response of an ionisa-
tion chamber is influenced by the magnetic field [127]. When the MRI-LINAC concept
was first conceived, it was suspected that an ionisation chamber’s dosimetric character-
istics could also be influenced. Early work into MRI-LINAC dosimetry investigated the
dosimetric characteristics of ionisation chambers in the magnetic field [144]. The ionisa-
tion chamber retained it’s linearity with respect to monitor unit output for a perpendicular
1.5 T MRI-LINAC system [144]. The ionisation chamber’s sensitivity was studied for
it’s orientation dependence with a perpendicular MRI-LINAC. For perpendicular MRI-
LINACs, the chamber’s orientation dependence was concluded to be dependent on the
chamber cavity’s geometry; cylindrical chambers were most effective for MRI-LINAC
dosimetry when orientated perpendicular to the magnetic field and photon beam [144,
145]. The orientation dependence of similar cylindrical chambers was mitigated for an
in-line MRI-LINAC setup [145, 146]. Several groups demonstrated that for cylindrical
geometry ionisation chambers [140, 141, 145], the correction factors for polarity and re-
combination were unaffected, regardless of magnetic field strength and orientation. The
ionisation chamber’s change in response due to the magnetic field was therefore deter-
mined to arise as a result of the curved trajectories followed by charged particles [144].
To account for this response change during absolute dosimetry, a new correction factor
was proposed, being strongly magnetic field strength and orientation dependent [140, 141,
145].

Due to the ionisation chamber’s low density sensitive volume, the effective point of
measurement (EPOM) of an ionisation chamber is positioned upstream of the geometric
centre of the cavity volume. For a Farmer chamber or cylindrical chamber with no mag-
netic field present, the EPOM is positioned three fifths of the chamber’s radius upstream
of the chamber’s geometric centre [9]. However, the EPOM shifts in the presence of the
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MRI’s magnetic field [135, 137, 147]. For perpendicular MRI-LINACs, the EPOM shifts
downstream towards the geometrical centre, as well as laterally [135, 137, 147]; for in-
line MRI-LINACs, the EPOM shifts downstream towards the geometrical centre, but not
laterally [145].

Measurements with ionisation chambers in Solid Water phantoms can be problematic
as small air gaps surrounding the ionisation chamber cause non-negligible deviations in
the absorbed dose [142, 143]. From simulation studies, an asymmetric 0.2 mm air gap
surrounding the chamber caused a 1.6 % change in dose compared to the case with no air
gap [142]. The severity of this effect was reduced to less than 0.5 % when the air gap
was symmetric. The authors of this study concluded that this resulted from a reduction of
energy depositions by electrons produced within the air gap [142].

Ionisation chambers remain an important tool for QA dosimetry with MRI-LINACs.
Several groups used ionisation chambers with scanning water tanks for the commission-
ing of MRI-LINACs [148]. Scanning water tank measurements were also used to vali-
date the dose calculation algorithm of an MRI-LINAC’s treatment planning system [147].
With accurate magnetic field corrections, their use as absolute dosimeters are vital for the
commissioning and routine QA of beam output validation [134].

2.3.2 Diodes

As with all dosimeters in magnetic fields, diodes experience response changes due to
the curved trajectories followed by charged particles. In perpendicular magnetic fields,
measured dose profiles and distributions are shifted laterally as a result of the curved
trajectories. This lateral shift in perpendicular magnetic fields was experienced by all
investigated dosimeters in a simulation study, where it’s magnitude was dependent on
the dosimeter’s density [135]. It was found that dosimeters with near-water densities
experience a shift that matches the deposited distribution in water. Due to the increased
density of silicon with respect to the density of water, diodes underestimated the lateral
shift that occurred in water [135].

As a consequence of the secondary electrons’ curved trajectories, a diode’s directional
dependence can be exacerbated in the presence of magnetic fields. In perpendicular mag-
netic fields, unshielded diodes are reported to experience changes in response up to the
order of 20 % [149]. For measurements of perpendicular MRI-LINAC beam profiles,
unshielded diodes misrepresented the penumbras when their response was converted to
absorb dose in water by up to 14 % [149]. For in-line magnetic fields, the change in re-
sponse was limited to less than 1 % [150]. Unshielded point diodes were demonstrated
to be acceptable for near surface depth dose measurements with a perpendicular MRI-
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LINAC [151]. However, it has been recommended that unshielded diodes not be used for
measurements of perpendicular MRI-LINAC output factors or beam profiles [137].

Shielded diodes have been observed to be less susceptible to the magnetic field induced
effects than unshielded diodes as their shielding perturbs the external magnetic field. The
local magnetic field across their sensitive volume is weakened, such that shielded diodes
significantly misrepresent the absorbed dose distributions in water, appearing more sym-
metric than the dose distribution that is absorbed by water [137]. Consequently, shielded
diodes are not recommended for dosimetry measurements with perpendicular orientation
MRI-LINACs [137].

Diode arrays have been demonstrated accurate and effective for measurements with
both in-line and perpendicular orientation MRI-LINACs. The high resolution 2D diode
array, MagicPlate-512, achieved agreement within 0.5 mm of GafChromic EBT3 film in
both MRI-LINAC orientations for beam profiles measured in Solid Water [152]. The
MagicPlate-512 was also accurate for real-time 2D dosimetry during an MRI image se-
quence, verified against film [153]. The 3D diode array, ArcCheck-MR was shown to be
accurate for 3D dose distribution measurements with a perpendicular MRI-LINAC [154].

2.3.3 Diamond detectors

Similar to diodes, diamond detectors experience response changes in the presence of per-
pendicular magnetic fields. For the natural diamond detector, PTW60003, changes in
response up to 20 % were experienced [149]. Similar to the diode, the PTW60003 mea-
sured beam profiles had misrepresented the penumbral regions of expected profiles in
water for a perpendicular MRI-LINAC [149]. Additionally, the PTW60003 experiences
a lateral EPOM shift when in perpendicular magnetic fields [135]. Similar to the diode,
the lateral shift underestimates the shift that occurs in water [135], problematic for central
axis measurements.

The synthetic diamond detector, PTW60019 microDiamond, was shown to be accurate
for scanning water tank measurements in small fields for perpendicular orientation MRI-
LINACs by several groups [137, 147]. The microDiamond detector has been demon-
strated to be accurate for depth dose measurements and output factor measurements with
perpendicular MRI-LINACs [138, 147, 151]. It possesses a significant orientation depen-
dence with perpendicular MRI-LINACs, where correction would be required for scanning
measurements in large radiation fields [137]. The orientation dependence of microDia-
mond is minimised for in-line orientation MRI-LINACs [149]. In-line orientation output
factors measured with microDiamond were in close agreement with those measured by
ionisation chambers [134]. Additionally, the microDiamond detector was used to charac-
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terise the high entrance doses characteristic of the in-line MRI Australian MRI-LINAC,
in close agreement with radiochromic film and MOSFET dosimeters [133].

2.3.4 MOSFETs

MOSFETs have been investigated extensively for dosimetry with perpendicular MRI-
LINACs. For measurements at depth in phantoms, MOSFETS possess sensitivities in-
dependent of their orientation in perpendicular magnetic fields [155]. The linearity of
MOSFETs remains unaffected by external magnetic fields [155]. However, MOSFETs
experienced an approximate 5 % increase of response in the presence of perpendicular
magnetic fields, requiring special calibration for measurements of absorbed dose in water
[156]. For measurements of surface doses, MOSFETs were unaffected by the electron
return effect as their 1 µm sensitive volume was much shorter than the average gyra-
tion radius of electrons at the surface of the phantom [133, 157]. These qualities make
MOSFETs attractive for in vivo dosimetry measurements during MRI-LINAC treatments
[157].

For relative dosimetry measurements with MRI-LINACs, the magnetic field has been
demonstrated to have negligible effect on the accuracy of MoSkin [133, 158]. MOS-
FETs have been demonstrated to be accurate for PDD measurements with MRI-LINACs
[157, 158]. The response of the commercially available MOSFET dosimeters (Best Med-
ical, Canada) were in agreement with ionisation chambers for output factor measurements
[157]. The commercial MOSkin dosimeter was used for characterisation of the high en-
trance doses and electron contamination of the Australian MRI-LINAC [133]. MOSFET
dosimeters remain desirable for relative dosimetry measurements with MRI-LINACs.

2.3.5 Radiochromic film

The radiochromic film, GafChromic EBT3 (Ashland Inc., USA), has been investigated
thoroughly for it’s efficacy in magnetic fields. The sensitivity of EBT3 film to absorbed
dose is reduced in the presence of magnetic fields [159], however, it’s relative response is
unaffected by magnetic fields [129, 160]. As it retains it’s desirable qualities for relative
dosimetry, it has been used in the commissioning, validation and QA of several MRI-
LINAC systems [134, 147, 161, 162].

2.3.6 Plastic scintillation dosimeters

Dosimeters that possess directional independence and water homogeneous volumes are
desirable for dosimetry with MRI-LINACs [137, 138, 160, 163]. PSDs possess these
qualities, however limited literature is available on the use PSDs with MRI-LINACs.
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Therriault-Proulx et al. studied how a magnetic field’s magnetic flux density affected
the magnitude of scintillation and Cerenkov radiation responses for an in-house PSD and
the Exradin W1 PSD [164]. In the study, both Exradin W1 and an in-house PSD were
found to increase at most by 2.4 % (relative to their 0 T response) for the various magnetic
flux densities tested, while the Cerenkov radiation signal in a bare optical fibre increased
by up to 80 % relative to it’s 0 T response. A similar study was performed by Stefanowicz
et al. and a 7 % increase in scintillation signal was observed for their two in-house PSDs
[165]. PSDs are relative dosimeters, such that they are inherently immune to sensitivity
changes in the presence of the magnetic field. The directional dependence of the Exradin
W1 PSD was investigated by Yoon et al. [166]. The results of their study demonstrated
that Exradin W1 retained it’s directional independent sensitive. Yoon et al. measured
MRI-LINAC output factors with Exradin W1, finding that Exradin W1 suffered an under-
response for large field sizes [166].

Another method successful for MRI-LINAC dosimetry is remote scintillation imaging,
where volumes of plastic scintillator are simultaneously irradiated and imaged. Bruza
et al. demonstrated high dosimetric accuracy using the time resolved scintillation imag-
ing to measure an MRI-LINAC’s IMRT C-shape treatment plan [85]. Alexander et al.

performed 2D transmission imaging of a thin scintillator sheet to measure 2D dose dis-
tributions with their perpendicular MRI-LINAC, shown to be acceptable with respect to
film [167]; the main source of uncertainty arose due to the oblique angle of the scintillator
sheet with respect to the camera.



Chapter 3

Novel stem signal correction methods
for PSDs

This chapter presents the investigations into temporal stem signal correction methods with
an in-house PSD and a clinical LINAC. The in-house PSD uses the slow plastic scintil-
lator, BC444 (Saint Gobain, France), allowing for novel temporal stem signal correction
methods to be investigated. The time-resolved convolutional model described in Sec-
tion 2.1.3 is applied in a least squares curve-fitting algorithm to identify the scintillation
present in the measured PSD signals. Neural network based stem signal correction meth-
ods are also investigated. These proposed stem signal correction methods were compared
against background subtraction. Some of the results from this chapter have been presented
in peer reviewed journal articles:

L. Madden, J. Archer, E. Li, D. Wilkinson, A. Rosenfeld. Temporal separation of
Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs.
Phys. Medica. 2018; 54:131-136. 10.1016/j.ejmp.2018.10.007.

L. Madden, J. Archer, E. Li, D. Wilkinson, A. Rosenfeld. Temporal separation of
Cerenkov radiation and scintillation using a Clinical LINAC and artificial intelligence.
Phys. Med. Biol. 2018; 63(22):225004. 10.1088/1361-6560/aae938.

J. Archer, L. Madden, E. Li, D. Wilkinson, A. Rosenfeld. An algorithmic approach to
single probe Cherenkov removal in pulsed X-ray beams. Med. Phys. 2019; 46(4):1833-
1839. 10.1002/mp.13383.

3.1 Introduction

PSDs possess a wealth of desirable qualities for dosimetry with LINACs. These qualities
include water equivalence for therapeutic energy photons and electrons, a linear response
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with dose, and a response that is independent of conditions such as dose-rate, beam en-
ergy, temperature or pressure. Further, their plastic scintillators can be manufactured
to have sub-millimetre dimensions, minimising the perturbations of water media during
dosimetric measurements. However, during LINAC dosimetry, a PSD’s scintillation sig-
nals are degraded by Cerenkov radiation. The light output produced by the optical fibre is
dependent on the volume of optical fibre irradiated, and the Cerenkov radiation measured
depends on the irradiation angle between the optical fibre and the radiation beam. Given
these dependences, the magnitude of Cerenkov radiation varies significantly depending on
the irradiation conditions, thus a correction method must be applied to identify the magni-
tude of Cerenkov radiation measured by the photodetector and remove this estimate from
the measured PSD signals.

Existing correction methods for PSDs were reviewed briefly in Section 2.2.6. Exist-
ing temporal methods use pulse gating and slow plastic scintillators to temporally avoid
Cerenkov radiation; these methods have not been able to achieve accuracies comparable
to background subtraction and chromatic removal as a large portion of the scintillation is
emitted prior to the pulse gating threshold [76, 79]. Of the existing PSD stem signal cor-
rection methods, chromatic removal is the most robust and accurate method for dosimetry
with LINACs [6]. Background subtraction achieves comparable accuracies to chromatic
removal in radiation fields with low spatial dose gradients. However, when background
subtraction is applied in radiation fields with high spatial dose gradients, the PSD’s un-
certainties are inflated [6]. As such, novel temporal stem signal correction methods are
investigated with the aim of achieving accuracies superior to background subtraction and
chromatic removal, whilst avoiding the increases in dose-uncertainty when being applied
in high dose gradient fields.

In Section 2.1.3, it was posited that the luminescence signals measured during radiation
dosimetry could be modelled by the convolution of the time-dependent dose-rate and a
luminescence impulse response function (LIRF). In this chapter, this luminescence model
is incorporated into novel temporal Cerenkov radiation correction methods. Two subsets
of temporal methods are investigated, with one subset using least squares curve-fitting,
and the other using neural networks. The proposed correction methods are compared
against background subtraction in favourable conditions i.e. radiation fields with low
spatial dose gradients. Corrected PSD responses are compared with reference data to
quantify the accuracy of the proposed correction methods.

3.2 Materials and methods

Beam profiles were measured using a Varian Clinac 21iX LINAC (Varian, USA) at Illawarra
Cancer Care Centre, Wollongong Hospital. Measurements were made using the LINAC’s
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photon beam at energies of 6 MV and 10 MV, and for field sizes of 3 cm × 3 cm, 5 cm
× 5 cm and 10 cm × 10 cm. For all measurements, the repetition rate was fixed at
600 MU/min. All fields were jaw-defined, measured with an in-house PSD and a compact
ionisation chamber (CC13, Scanditronix/Wellhofer, Germany). For the 3 cm × 3 cm and
5 cm × 5 cm field sizes, beam profiles were measured along the cross-plane axis. For the
10 cm× 10 cm field size, beam profiles were measured along the cross-plane and in-plane
axes. Gammex RMI-457 Solid Water was used as the phantom material for measurements
with the in-house PSD. Two linear translation stages (LTS150, Thorlabs Inc., USA) were
used to control the off-axis position of the PSD along the in-plane and cross-plane axes.
A scanning water tank (Blue Phantom 2, IBA Dosimetry, Germany) was used as the water
phantom for measurements with the ionisation chamber, with the chamber orientated so
that it’s central axis was parallel to the in-plane axis. The PSD and cylindrical chamber
were set up so that their effective point of measurements were aligned to depths of 1.5 cm
for the 6 MV beam and 2.1 cm for the 10 MV beam.

3.2.1 The PSD dosimetry system

The in-house PSD consisted of a cylindrical volume of BC444 plastic scintillator (Saint
Gobain, France) optically coupled to a plastic optical fibre (Eska CK-40, Mitsubishi
Chemical Co., Japan). The plastic scintillator had a length of 0.5 mm and a diameter
of 2 mm. The optical fibre had an approximate length of 20 m, an inner core diameter
of (0.98 ± 0.06) mm, a cladding diameter of (1.00 ± 0.06) mm and a jacket diameter
of 2.0 mm. The reference probe consisted of a bare Eska CK-40 plastic optical fibre with
matching dimensions and materials to the PSD’s optical fibre, with no scintillator attached
so that only Cerenkov radiation could be measured. The tip of the PSD (i.e. the scintil-
lator and adjacent fibre) and the tip of the reference probe were coated with a diffusive
reflective paint (BC620, Saint Gobain, France) to make the probes light tight and increase
the scintillation collection efficiency of the PSD. At the opposite end of the PSD and refer-
ence probe, the optical fibres were fitted with male FC optical connectors for reproducible
connection to the photodetectors.

The PSD and reference probe were read out by two matching photomultiplier tubes
(PMTs; RCA-4526, RCA Corporation, USA). These PMTs had a rise time of 2.5 ns,
adequate to temporally resolve BC444’s scintillation. For all measurements, the PMTs
were operated in DC mode at their maximum gain. A digital oscilloscope (PicoScope
PS6404D, PicoTech, USA) was used to simultaneously record both the PSD and reference
probe signals as voltage-time waveforms. The digital oscilloscope’s resistance was set to
1 MΩ, and it’s bandwidth to 500 MHz. For all measurements, the digital oscilloscope
sampled the PMT outputs at 625 MHz with each waveform consisting of 10000 samples.
The LINAC’s synchronisation pulse was used to trigger the digital oscilloscope, allowing
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for reproducible temporal measurements of the PSD and reference probe signals. Signal
averaging was used to reduce the magnitude of measurement noise in measured signals,
such that recorded waveforms consisted of the average response from 100 consecutive
LINAC pulses. The averaged PSD and reference probe signals were saved to a personal
laptop; all stem signal corrections were applied post-measurement.

For measurements in Solid Water, a perspex housing aperture was used to protect the
PSD and reference probe from mechanical damage. The housing aperture consisted of a
1 cm thick sheet of PMMA with 30 cm × 30 cm cross section, machined with a 2.2 mm
wide × 4.4 mm deep groove. Prior to placing the PSD and reference probe in the hous-
ing aperture’s groove, the housing groove was filled with ultrasound gel (Aquasonic 100,
Parker Laboratories Inc., USA) to prevent the formation of air gaps around the PSD dur-
ing measurements. The PSD and reference probe were then placed in the housing groove
with the reference probe downstream from the PSD, aligned so that equal lengths of op-
tical material were irradiated during the measurements. The perspex housing was then
sandwiched between 10 cm of Solid Water downstream of the housing, and the 1.4 cm
and 2.0 cm thickness of Solid Water upstream of the housing to achieve the required mea-
surement depth. This Solid Water-perspex sandwich was placed on the linear translation
stage for the measurement of beam profiles. For the 3 cm × 3 cm and 5 cm × 5 cm field
sizes, profiles were measured along the cross-plane axis with the PSD orientated so that
it’s optical fibre was aligned parallel to the cross-plane axis. For the 10 cm × 10 cm field
size, both cross-plane and in-plane profiles were measured, with the PSD aligned so that
the optical fibre was aligned parallel to the cross-plane axis. The PSD beam profiles were
measured using a step and measure methodology, such that the PSD was moved 1 mm
and the PSD’s response at this position was recorded.

Figure 3.1: Left: 3D model of the PSD in the Solid Water phantom. Right: correspond-
ing picture of the experimental setup. Published in Madden et al. 2018 [168]
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3.2.2 Background subtraction

The PSD and reference probe were set up in the optical fibre housing so they were abreast
and aligned with their central axis parallel to one another. The PMTs were cross cali-
brated prior to each beam profile scan to ensure that the Cerenkov radiation measured
with one PMT matched that measured by the other. The cross calibration measurements
were performed by measuring the PSD and reference probe responses at the centre of
each profile’s radiation field, disconnecting them from their PMTs, connecting them to
each-other’s prior PMTs and remeasuring their responses. From these measurements, the
cross calibration factor, Cal, was calculated as:

Cal =

√
S1

S2
·C1

C2
(3.1)

Where S1 and C1 were the PSD and reference probe signals measured with the PSD’s
PMT, and S2 and C2 were the PSD and reference probe signals measured with the refer-
ence probe’s PMT. The Cerenkov radiation of the PSD was then corrected by multiplying
the reference probe signal by the calibration factor and subtracting this from the PSD
measured signal. The dose deposited in the scintillator was calculated by integrating this
corrected PSD signal.

3.2.3 Least squares corrections

Measured PSD signals are comprised solely of scintillation and Cerenkov radiation. Thus,
measured PSD signals can be modelled as a linear combination of a scintillation signal,
S(t), and a Cerenkov radiation signal, C(t). The corresponding least squares model given
this information is given by:

ŷ(t) = aS(t)+bC(t)+ c s.t. a,b≥ 0 (3.2)

Where ŷ(t) is the modelled PSD signala, a and b are scaling coefficients for the mod-
elled scintillation and Cerenkov radiation, respectively, and c is a bias coefficient related
to the PMT’s voltage offset. From the review of time-resolved fluorescence literature in
Section 2.1.3, the expected scintillation can be modelled as the convolution of a time-
dependent stimulus with an impulse response function. For the time-resolved scintillation
measurements presented in this chapter, the time-dependent stimulus corresponds to the
LINAC’s time-dependent dose-rate of the photon beam, Ḋ(t). Organic scintillators such
as the BC444 plastic scintillator follow a mono-exponential rise and decay in response to a
single radiation event [15]; this mono-exponential rise and decay corresponds to BC444’s

aThe notation where ˆ is used above a variable, e.g. ŷ(t), denotes that this is an estimator or a model of
the corresponding variable, e.g. y(t). In this case, ŷ(t) is the modelled rtOSL signal and y(t) is the measured
rtOSL signal.
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impulse response function for scintillation. Given this, BC444’s scintillation impulse re-
sponse function, h(t), can be defined as in Equation 3.3. The expected scintillation, S(t),
produced in response to a time-dependent dose-rate, Ḋ(t) can be modelled as:

S(t) = Ḋ(t)∗h(t) s.t. h(t) = e
(
− t

τd

)
− e
(
− t

τr

)
(3.3)

Where τd is BC444’s exponential decay constant, τr is it’s exponential rise constant
and ∗ is the linear convolution operation. Conveniently, Cerenkov radiation has a sub-
nanosecond exponential decay constant [169], and so measured Cerenkov radiation sig-
nals are proportional to the LINAC’s time-dependent dose-rate during beam deliveryb.
The time-dependent Cerenkov radiation, C(t), is measured by the reference probe, and
can be measured simultaneously with the PSD signal as in the background subtraction
method. It should be noted that the time-dependence of the measured Cerenkov radiation
will not depend on the position of the optical fibres given that this time-dependence is
proportional only to the instantaneous dose-rate of the LINAC. Given that there is no de-
pendence on where the reference probe is positioned, these least squares corrections avoid
the high spatial dose gradient constraint inherent to background subtraction. Substituting
C(t) for Ḋ(t), the least squares problem is stated as:

minimise
(
||ŷ(t)− y(t)||2

)
s.t. ŷ(t) = a

(
C(t)∗h(t)

)
+bC(t)+ c (3.4)

Where y(t) is the measured PSD signal. It should be noted that the non-negativity
constraints for a and b are omitted from the least squares problem to increase computation
speed. The coefficients a, b and c can be determined through ordinary least squares (OLS),
provided τd’s and τr’s nominal values are known and treated as constants. Saint Gobain
lists BC444’s exponential decay constant as τd = 285 ns, and BC444’s exponential rise
constant as τr = 19.5 ns. Alternatively, τd and τr can be optimised during the fitting
process via non-linear least squares (NLLS), with the potential for reduced uncertainties
in the fitted model of the PSD signal. Both the OLS and NLLS approaches are investigated
in this chapter.

OLS correction

Though the OLS scheme allows for a fast analytical calculation of the coefficients a, b

and c, noisy regression variables can cause these coefficients to be incorrectly estimated
via the analytical OLS solution [170]. For the measurements presented in this chapter,
measured Cerenkov radiation signals, C(t), have significant measurement noise, thus the
analytical solution for the coefficients a, b and c are not taken as the optimal solution.
Instead, gradient descent is applied to iteratively optimise these coefficients using the

bThis result is true if and only if Cerenkov radiation’s decay constant is much shorter the PMT’s rise
constant; the RCA-4526 PMTs have a 2.5 ns rise constant.
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sum of the squared errors as the cost function. Initial estimates for the coefficients a0, b0

and c0 were calculated using this OLS analytical solution. Defining β = [a0 b0 c0]
T , the

OLS analytical solution is given by:

β =
(
XT X)−1XT ỹ s.t. X = [S̃ C̃ 1̃] (3.5)

Where S̃ is the expected scintillation S(t) in column vector formc, C̃ is the measured
Cerenkov radiation C(t) in column vector form, 1̃ is column vector of 1s with equivalent
length to S̃ and C̃, and ỹ is the measured PSD signal in column vector form. At the ith

iteration, the sum of the squared errors, SSEi, was calculated as:

SSEi = ∑
t

(
ŷi(t)− y(t)

)2 (3.6)

Where ŷi(t) was the modelled PSD signal at the ith iteration, calculated as in Equation
3.4 using the ith estimates of the coefficients a, b and c. The derivatives of the SSE with
respect to the coefficients are calculated at each iteration, defined at the ith iteration as:

dSSEi

dai
= 2∑

t
S(t) ·

(
ŷi(t)− y(t)

)
dSSEi

dbi
= 2∑

t
C(t) ·

(
ŷi(t)− y(t)

)
dSSEi

dci
= 2∑

t

(
ŷi(t)− y(t)

)
(3.7)

Where · denotes element-wise multiplication (also referred to as the Hadamard prod-
uct). At the ith iteration, the coefficients were updated:

ai+1 = ai−η
dSSEi

dai

bi+1 = bi−η
dSSEi

dbi

ci+1 = ci−η
dSSEi

dci
(3.8)

Where η was the step length for gradient descent, set initially as 0.01. A backtracking
line search was used to evaluate whether proposed step lengths were too large, employed
to improve computational efficiency. It should be noted that the line search does not affect
the optimal values of a, b and c determined through gradient descent. The stopping con-
dition for gradient descent was chosen as: “if SSEi ≥ 0.9999 SSEi−1, stop”. Defining the

cThe notation where ˜is used above a variable, e.g. S̃ denotes that the corresponding variable, e.g. S(t)
is in vector form: S̃ , [S(0) S(1) . . . S(N−1)]T .
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optimised coefficients as â, b̂ and ĉ, the corrected PSD signal is calculated simply as âS(t).
From a temporal perspective, background subtraction would calculated the corrected PSD
signal as y(t)− b̂C(t)− ĉ. Given both expressions, the PSD’s corrected dose-response, R

can be calculated as:

R =
1
2

∫ (
âS(t)+ y(t)− b̂C(t)− ĉ

)
dt (3.9)

Full MATLAB code of the OLS gradient descent algorithm is presented in Appendix
A.1. For brevity, pseudocode of the OLS gradient descent algorithm is presented belowd:

1: h(t)← e
(
− t

τd

)
− e
(
− t

τr

)
2: S(t)←C(t)∗h(t)

3: Calculate a0, b0, c0

4: while true do
5: ŷi← aiS̃+biC̃+ ci

6: SSEi← ∑
(
ŷi− y

)2

7: if SSEi ≥ 0.9999 SSEi−1 then
8: Stop iterating
9: end if

10: Calculate dSSEi
dai

, dSSEi
dbi

, dSSEi
dci

11: Update ai+1, bi+1, ci+1

12: end while
13: Calculate R

NLLS correction

In the NLLS method, the exponential coefficients τd and τr are optimised simultaneously
with the coefficients a, b and c. As for the OLS model, gradient descent was used to
optimise the fitting coefficients with respect to the SSE (defined previously in Equation
3.6). It should be noted that the NLLS gradient descent algorithm follows the same flow
in logic as in the OLS algorithm.

Initial estimates for the exponential coefficients were τd0 = 285 ns, τr0 = 19.5 ns; the
initial estimates a0, b0 and c0 were calculated using the OLS analytical solution in Equa-
tion 3.5 with values τd0 and τr0 substituted to calculate the expected scintillation, S(t), in
Equation 3.3. At the ith iteration, the modelled PSD signal, ŷi(t), was calculated as in
Equation 3.4, substituting ai, bi, ci, τdi and τri for a, b, c, τd and τr. Following this, the
ith iteration’s SSE was calculated as in Equation 3.6. Derivatives of the SSE with respect
to ai, bi, ci, τdi and τri were calculated for each iteration; the derivatives dSSEi

dai
, dSSEi

dbi
and

dThe notation x← 1 means set the value of x to 1.
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dSSEi
dci

match those calculated for the OLS model, defined in Equation 3.7. The derivatives
dSSEi
dτdi

and dSSEi
dτri

are defined below in Equation 3.10:

dSSE
dτdi

= 2∑
t

((
C(t)∗ t · e

−t
τdi

τdi
2

)
·
(

ŷi(t)− y(t)
))

dSSE
dτri

=−2∑
t

((
C(t)∗ t · e

−t
τri

τri
2

)
·
(

ŷi(t)− y(t)
))

(3.10)

Where ŷi(t) was the modelled PSD signal at the ith iteration. At the ith iteration, τdi and
τri were updated as in Equation 3.11, and the coefficients ai, bi and ci were updated as in
Equation 3.8.

τdi+1 = τdi−η · dSSEi

dτdi

τri+1 = τri−η · dSSEi

dτri

(3.11)

Where η was the step length for gradient descent, set to 0.01 initially. As for the
OLS optimisation algorithm, a backtracking line search was used to optimise the step
length prior to coefficient updates. The stopping criteria for the NLLS algorithm was:
“stop if SSEi ≥ 0.9999 SSEi−1”, matching that for the OLS algorithm. The corrected
dose-response, R, was calculated the same as in the OLS algorithm, with R defined in
Equation 3.9. Pseudocode for the NLLS algorithm is presented below; the full MATLAB
implementation is presented in Appendix A.2.

1: h(t)← e

(
− t

τd0

)
− e
(
− t

τr0

)
2: S(t)←C(t)∗h(t)

3: Calculate a0, b0, c0

4: while true do

5: h(t)← e

(
− t

τdi

)
− e
(
− t

τri

)
6: S(t)←C(t)∗h(t)

7: ŷi← aiS̃+biC̃+ ci

8: SSEi← ∑
(
ŷi− y

)2

9: if SSEi ≥ 0.9999 SSEi−1 then
10: Stop iterating
11: end if
12: Calculate dSSEi

dai
, dSSEi

dbi
, dSSEi

dci
, dSSE

dτdi
, dSSE

dτri
13: Update ai+1, bi+1, ci+1, τdi+1 , τri+1

14: end while
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15: Calculate R

3.2.4 Neural network corrections

Neural networks are machine learning algorithms that employ computational models in-
spired by the brain to mimic the brain’s learning capabilities. Of the various types of
neural networks, feed forward neural networks are particularly attractive due to their
structured nature. In general, feed forward neural networks are universal function ap-
proximators [171, 172], capable of being trained to model complicated, abstract and non-
linear relationships between input and output data. Given this ability, neural networks
were trained to receive a time-dependent PSD signal as an input and predict the time-
dependent Cerenkov radiation present in the input PSD signal. To train neural networks to
perform such analysis, measurements of both the PSD and reference probe signals are re-
quired. However, once the neural networks are trained, no reference probe measurements
are required, making these corrections free of the high spatial dose gradient constraints of
background subtraction. Two types of feed forward neural network were investigated for
this correction: shallow Artificial Neural Networks (ANNs) and deep Convolutional Neu-
ral Networks (CNNs). Shallow ANNs were investigated for the proof of concept, whereas
deep CNNs were investigated to improve the accuracy of neural network corrections. The
architectures, training methods and Cerenkov radiation corrections for each type of neural
network are described below.

Shallow ANNs

Architecture The shallow ANNs were multilayer perceptrons consisting of a 1000 node
input layer, a single hidden layer with 100 nodes and a 1000 node output layer. Batch
normalisation was used to mitigate backpropagated gradients from vanishing or exploding
[173]. The activation functions for these ANNs were leaky rectified linear units (leaky
ReLU) with activation coefficient of 0.01, also chosen to mitigate the vanishing gradients
that can be encountered when using sigmoid activation functions [174]. A diagram of the
ANN architecture is shown in Figure 3.2.

Data preprocessing Data preprocessing was applied to transform the measured wave-
forms into a reproducible format, important for optimising the trained ANN’s perfor-
mance [176]. The amplitude of measured signals were dependent on the PMT’s gains,
therefore measured signals were dependent on the ambient temperature. Transmission
through the optical fibre is affected by bends in the optical fibre, thus the amplitude of
measured signals also varied with the experimental setup. Min-max normalisation was
applied to the measured PSD signals to ensure that inputs to the ANN were expressed
over a fixed dynamic range, making analysis robust with respect to variations in signal
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Figure 3.2: Structure of the artificial neural networks developed and trained for temporal
Cerenkov radiation separation. Published in Madden et al. 2018 [175].

amplitude. The min-max transform is defined in Equation 3.12 [177]. By definition,
min-max normalisation expresses the measured signals over the interval [0,1].

Inorm(t) =
I(t)−min(I(t))

max(I(t))−min(I(t))
(3.12)

With I(t) being the measured PSD signal and Inorm(t) being the normalised PSD signal
to be input to the ANN. Additional preprocessing was applied to shorten the normalised
waveforms from lengths of 10000 samples to lengths of 1000 samples. It was expected
that the trained ANNs would perform optimally when input signals were comprised max-
imally of scintillation, with minimal Cerenkov radiation and measurement noise. Given
this belief, the scintillation decay tail was targeted for analysis with the shallow ANNs.
To reproducibly shorten the measured signals, the decay tail was found by fitting a square
pulse to the measured Cerenkov radiation signal, C(t). The least squares fitting model
was given by Ĉ(t) in Equation 3.13:

Ĉ(t) = α
[
θ(t−T1)−θ(t−T1−TPulse)

]
+β (3.13)

Where θ(t) was the unit step function. In this model, the parameter T1 corresponds to
the time when the radiation beam delivery begins, TPulse is the duration of the radiation
pulse, and α and β were the fitting coefficients. Gradient descent was applied to optimise
the parameters T1, TPulse, α and β to minimise the SSE between Ĉ(t) and C(t). Once
optimised, the normalised PSD signal was shortened by sampling at times (T̂1+ T̂Pulse) ns
≤ t < (T̂1 + T̂Pulse +1600) ns, such that 1600 ns corresponds to 1000 samples. The mea-
sured waveforms are shown in Figure 3.3 (left), with the preprocessed waveforms shown
in Figure 3.3 (right).

Training data synthesis The time-dependence of measured Cerenkov radiation and
scintillation signals varies with beam energy, observable in Figure 3.3. To compensate
for this variation, two ANNs were trained for the Cerenkov radiation correction: one
ANN was trained to analyse signals measured at the 6 MV beam energy, and the other
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Figure 3.3: Left: measured PSD and reference probe signals for the 6 MV and 10 MV
beam energies. Right: preprocessed PSD and reference probe signals for the 6 MV and
10 MV beam energies. 6 MV Total and 10 MV Total are the combined scintillation and
Cerenkov radiation signals for the 6 MV and 10 MV beam energies, respectively. 6 MV
Cerenkov and 10 MV Cerenkov are the sole Cerenkov radiation signals at the 6 MV
and 10 MV beam energies, respectively. The responses shown were measured with the
scintillator tip positioned at the centre of a 10 cm × 10 cm field. Published in Madden et
al. 2018 [175].

was trained for analysis at the 10 MV beam energy. Both ANNs were trained in MAT-
LAB 2018a using the Deep Learning Toolbox. Mixed scintillation and Cerenkov radiation
signals were the input data, and corresponding Cerenkov radiation signals were the target
data for training.

Typically in machine learning problems, impractically large quantities of training data
are required to train these algorithms to high accuracies. For the ANNs developed, it was
expected that a minimum of tens of thousands of input-output pairs would be required to
train the shallow ANN to sufficient accuracy; too large to be measured. To achieve such a
large training data size, the training data was generated synthetically from a secondary set
of measured data, different from those used to test the ANN. The secondary dataset was
measured using the same setup as described in Section 3.2.1. This secondary dataset was
acquired by scanning the LINAC’s photon beam in 2 dimensions, similar to the method-
ology described in Archer et al. 2020 [178]. The measured data set consisted of a 2D
scan of a 1 cm × 1 cm field and a 2D scan of a 3 cm × 3 cm field. The secondary dataset
consisted of a total of 1117 measured PSD and reference probe signals. The algorithm for
developing training data for the shallow ANNs was as follows:

1. Perform background subtraction to determine the sole scintillation response for a
corresponding Cerenkov radiation response.

2. For each sole scintillation and Cerenkov radiation response, record the minimum
and maximum signal levels, as well as the amplitude (defined as the difference
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between the maximum and minimum signal levels of a sole response). Determine
the global minimum and maximum signal levels for the set of sole scintillation
responses; repeat for the set of Cerenkov radiation responses. Record the maximum
and minimum amplitudes of scintillation and Cerenkov radiation signals.

3. Apply min-max normalisation to each sole scintillation response using the global
minimum and maximum signal levels of scintillation. Repeat for each Cerenkov ra-
diation response using the global minimum and maximum signal levels of Cerenkov
radiation. These normalised responses serve as models for the expected Cerenkov
radiation and scintillation responses.

4. Scintillation and Cerenkov radiation dose-response profiles are modelled with the
hypothetical PSD orientated parallel to the scanning axis. An empirical model is
used to approximate the scintillation dose-response profile, as in Equation 3.14. The
Cerenkov radiation response profile is the theoretical response of the optical fibre
to the photon beam whose profile is equivalent to the scintillator response profile,
as in Equation 3.15:

S(x,FS) =
Smin

Smin +Smax
+

Smax

Smin +Smax
· 1

1+ exp(−4
√

2 · |x+0.5FS|)
(3.14)

C(x,FS) =
Cmin

Cmin +Cmax
+

Cmax

Cmin +Cmax
·
∫ x

−∞

S(x′,FS)dx′

FSrel
(3.15)

S(x,FS) and C(x,FS) are the relative dose-responses of scintillation and Cerenkov
radiation as a function of PSD position, x, and the width of the modelled photon
beam, FS. Smin and Smax are the minimum and maximum scintillation signal am-
plitudes, while Cmin and Cmax are the minimum and maximum Cerenkov radiation
signal amplitudes. FSrel is the maximum width of experimentally measured beam
profiles, compensating for the linear relationship between the length of optical fibre
irradiated and the magnitude of measured Cerenkov radiation responses [73]. The
constant 4

√
2 in Equation 3.14 was empirically chosen so that the synthetic dose

profiles had a penumbra width of 5 mm. The modelled dose profiles for the 6 MV,
5 cm × 5 cm and 10 cm × 10 cm field sizes are plotted against the measured 6 MV,
5 cm × 5 cm and 10 cm × 10 cm dose profiles in Figure 3.4.

5. Dose profiles are modelled for FS = (1, 1.2, 1.4, ..., 14.6, 14.8, 15) cm. The mod-
elled profiles are sampled for their relative dose across the positions x = (-1.5FS,
-1.48FS, -1.46FS, ..., 1.46FS, 1.48FS, 1.5FS).

6. A random pair of normalised sole scintillation and Cerenkov radiation responses (as
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in step 3) are chosen for each combination of position and modelled photon beam
width. The random pair of sole responses are scaled by their respective relative
doses (as in step 4) and their respective maximum signal amplitude (as in step 2).
These resultant scaled responses are the sole scintillation and Cerenkov radiation
responses that are expected to be produced experimentally.

7. A training input waveform is synthesised by adding the sole synthetic scintillation
response, the sole synthetic Cerenkov radiation response and Gaussian noise. A
training Cerenkov radiation waveform is synthesised by adding zero mean Gaus-
sian noise to the sole synthetic Cerenkov radiation response. The training set is
developed by synthesising training waveforms across the 10721 combinations of
FS and x.

The model for the scintillator dose profile in Equation 3.14 was an empirical model
that uses the sigmoid distribution to approximate the shape of experimentally measured
relative dose profiles. The modelled relative Cerenkov radiation dose profile, C(x,FS)

in Equation 3.15 is the theoretical integral response of the irradiated fibre to the mod-
elled photon beam with dose profile, S(x,FS). The modelled relative dose profiles and
experimentally measured dose profiles are plotted in Figure 3.4 for comparison with the
modelled profiles.

Figure 3.4: S(x, FS) and C(x, FS) are the modelled scintillation and Cerenkov radiation
responses for a 10 cm × 10 cm modelled beam using Equations 1 and 2, respectively,
while BS Scintillation and BS Cerenkov are the corresponding experimentally measured
scintillator and Cerenkov radiation dose profiles at an energy of 10 MV. Published in
Madden et al. 2018 [175]
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Training conditions The shallow ANNs were modelled in MATLAB 2018a using the
Deep Learning Toolbox. The shallow ANNs were trained using stochastic gradient de-
scent with a minibatch size of 100. The initial learning rate was set to 0.005. The learning
rate was decreased by a factor of 0.9 every epoch (108 iterations). L2 weight decay was
applied with a weight decay factor of 0.001. Weights were initialised randomly using
Glorot initialisation for the fully connected layers [179]. The synthetically produced data
was used as the training dataset, and the secondary set of measured data that generated the
synthetic dataset was used as the validation set during training. The mean squared error
was used as the loss function during training.

Early stopping was used to terminate training before the ANNs had overfitted to the
synthetic training data. The ANNs were evaluated on the validation dataset every 25 it-
erations. The mean squared error for the validation set was recorded every evaluation.
Similarly, the values of the ANN’s weights were recorded for every evaluation on the val-
idation dataset. Training of the ANNs was terminated after 20 consecutive failures on the
validation set, i.e. when the validation set error did not decrease below a minimum vali-
dation set error for 20 consecutive validation evaluations. Once training was terminated,
the ANN’s optimal weights were chosen to be those that achieved the lowest validation
set error.

Cerenkov radiation correction The ANN correction used the optimal values for the
weights founding during training. The preprocessed PSD signals from the testing set
were input to the ANN. The ANN’s output corresponded to the predicted Cerenkov radia-
tion present in the input PSD signals. Cerenkov radiation was corrected by subtracting the
ANN’s output from the input PSD signal and multiplying by the value Cmax obtained dur-
ing preprocessing. This ANN corrected signal was integrated to obtain the ANN corrected
PSD response.

Convolutional Neural Networks

Architecture The architecture of the deep CNNs was modelled around that of AlexNet
[180] and VGGNet [181], both of which achieved their state of the art accuracy with a
simple, deep structure. In this work, the CNN’s structures were optimised for their perfor-
mance by varying the types of layers used, the order of the layers, layer size and network
depth. The optimal structure found is presented in Figure 3.5, modelled in MATLAB
2018a using the Deep Learning toolbox.

The CNN’s input size was 3500 × 1. The CNN’s first layer was an average pooling
layer with a span of 21 and a stride of 1, smoothing input signals to improve the robustness
of the CNN with respect to noise. From the 2nd to 21st layers, 5 stacks of convolutional
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Figure 3.5: Architecture of the developed CNNs. The notation 3 × 1 conv 4 at layer 2
denotes that four 3x1 convolutions are independently applied to the incoming 3500 × 1
array, with the output being a 3500 × 1 × 4 array. The average pooling layers at layers
5, 9, 13, 17 and 21 downsample the incoming waveforms by a factor of 2. The activation
parameter for each leaky ReLU layer was 0.1. The dropout rate for each dropout layer
was 0.15 for the 6 MV energy and 0.1 for the 10 MV energy. Published in Madden et al.
2018 [168].

layers, normalisation layers, activation layers and pooling layers were implemented. Con-
volutional layers were limited to 3× 1 array sizes and a stride of 1. Similar to in VGGNet,
the number of convolutional filters per layer increased as the depth increased, with 4, 8,
16, 32 and 64 filters used in layers 2, 6, 10, 14 and 18, respectively [181]. Batch normali-
sation was applied prior to each of the activation layers to mitigate gradient vanishing and
gradient explosion during traininge [173]. Leaky rectified linear units (Leaky ReLU) were
used as the activation function. The optimal leaky ReLU activation coefficient was found
to be 0.1. Local average pooling layers with a size of 2 × 1 and a stride of 2 were used to
downsample each of the feature maps by a factor of 2. After the 5 stacks of convolution,
normalisation, activation and pooling layers, the input 3500 × 1 array was mapped to 64
109 × 1 feature maps.

From the 22nd to the 42nd layers, 5 stacks of fully connected layers, normalisation lay-
ers, activation layers and dropout layers were implemented to upsample the feature maps
from a 109 × 1 array to a 3500 × 1 array at the output. Batch normalisation was imple-
mented prior to the leaky ReLU activations to mitigate vanishing and exploding gradients

eIt is generally accepted that batch normalisation mitigates gradient vanishing and gradient explosion
during the training of ANNs and CNNs. However, batch normalisation was shown to induce significant
gradient explosion in deep networks at the beginning of training [182].



CHAPTER 3. NOVEL STEM SIGNAL CORRECTION METHODS FOR PSDS 51

during training. The optimal leaky ReLU activation coefficient was 0.1. Dropout lay-
ers were implemented to improve the accuracy and generalisation of trained CNNs. The
optimal dropout probability was 0.15 [183].

Data preprocessing As for the ANNs, preprocessing was applied to transform the mea-
sured waveforms into a reproducible format. Measured PSD signals were normalised
using the min-max normalisation in Equation 3.12. The 10000 sample length measured
signals were shortened to a length of 3500 samples, using the same fitting model as in
Equation 3.13 as for the ANNs. For the CNNs, the PSD and reference probe signals were
shortened for times T1− 80 ns ≤ tT1 + 5520 ns. The measured waveforms are shown in
Figure 3.6 (left), with the preprocessed waveforms shown in Figure 3.6 (right).

Figure 3.6: Left: measured PSD and reference probe signals for the 6 MV and 10 MV
beam energies. Right: preprocessed PSD and reference probe signals for the 6 MV and
10 MV beam energies. 6 MV Total and 10 MV Total are the combined scintillation and
Cerenkov radiation signals for the 6 MV and 10 MV beam energies, respectively. 6 MV
Cerenkov and 10 MV Cerenkov are the sole Cerenkov radiation signals at the 6 MV
and 10 MV beam energies, respectively. The responses shown were measured with the
scintillator tip positioned at the centre of a 10 cm × 10 cm field. Published in Madden et
al. 2018 [168].

Training data synthesis Two CNNs were trained for the Cerenkov radiation correction,
where one CNN was trained for use with the 6 MV beam energy and the other was trained
for the 10 MV beam energy. As for the ANNs, it was expected that impractically large
data sizes were going to be required to train the deep CNNs to acceptable accuracies.
To obtain such a large dataset, training data was synthesised from a smaller set of data
measured from the same setup as described in Section 3.2.4. The same training data
synthesis algorithm to that of the ANN was applied to generate training data, described
in Section 3.2.4. A total of 10721 input-output pairs were synthesised for the training of
each of the CNNs.
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Training conditions The deep CNNs were modelled in MATLAB 2018a using the
Deep Learning Toolbox. Stochastic gradient descent was applied with a minibatch size of
76. The initial learning rate was set to 0.005. The learning rate was decreased by a factor
of 0.3 every epoch (every 140 iterations). L2 weight decay was applied with a weight
decay factor of 0.01. Weights in the fully connected layers were initialised randomly un-
der Glorot initialisation conditions [179]. Convolution kernels were initialised randomly
using He initialisation [184]. The synthetically produced data was used as the training
set, split up into 140 minibatches. The secondary set of measured data was used as the
validation set during training. The mean squared error was chosen as the cost function
for training. Early stopping was used as the termination condition during training. The
CNNs were evaluated on the validation set once every 20 iterations. The validation pa-
tience was set to 10, such that when 10 consecutive validation failures occurred, training
was terminated. The optimal weights and convolution kernels for the CNNs were those
that achieved the lowest validation error. Each CNN took approximately 4 minutes to
train on a personal computer using a NVIDIA GeForce GTX 1060 graphics card.

Cerenkov radiation correction The CNN correction used the optimal values for the
weights and convolution kernels found during training. The preprocessed PSD signals
from the testing set were passed to the CNN as inputs. The CNN’s output corresponded
to the predicted Cerenkov radiation present in the input PSD signals. Cerenkov radiation
was corrected by subtracting the CNN’s output from the input PSD signal, and multiplying
by the value Cmax obtained during preprocessing. The CNN corrected signal was then
integrated to obtain the CNN corrected PSD response.

3.2.5 Analysis

Dosimetric performance

To assess the performance of each stem signal correction method, global dose differences
were calculated between each of the corrected responses and the ionisation chamber re-
sponses. Mean absolute differences (MADs) were calculated to determine the average
deviation between each corrected PSD beam profiles and corresponding ionisation cham-
ber beam profiles. Linear interpolation was used to sample the ionisation chamber profiles
at positions where the PSD measurements were made. The dose differences and MADs
between background subtraction corrected responses and the ionisation chamber were
taken as the benchmark when evaluating the proposed temporal stem signal correction
methods. The MAD for each correction method is calculated as:

MAD =
1

Npos
∑
x
|DPSD(x)−DIC(x)| (3.16)
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Where DPSD(x) is the corrected PSD dose-response at position x, DIC(x) is the ionisa-
tion chamber dose-response at position x, and Npos are the number of measurement po-
sitions in each beam profile. It should be noted that the penumbral regions are excluded
when calculating MADs due to the large dose gradient in this region. The positions in-
cluded when calculating dose differences and MADs were those that occurred when the
ionisation chamber’s response was less than 10 %, and measurement positions within the
central 80 % of the beam’s width.

Comparison of time-dependent scintillation with known scintillation

Each correction method’s estimate of the time-dependent scintillation should closely match
that the time-dependent scintillation calculated using background subtraction. For the
case of the OLS and NLLS methods, the scintillation present in the modelled PSD signal
is estimated by Ŝ = âS(t). It should be noted that gradient descent algorithm was set up
to optimise the error between the modelled PSD signal, ŷ(t) = âS(t)+ b̂C(t)+ ĉ, and the
measured PSD signal, y(t). However, the time dependence of the estimated scintillation
depends on the exponential rise and decay constants, τr and τd . As a result, â, b̂ and ĉ im-
plicitly depend on τr and τd , and so the modelled scintillation given by Ŝ = âS(t) may not
match the known scintillation (calculated by background subtraction). For the case of the
ANN and CNN methods, the ANN and CNN were trained to estimate the time-dependent
Cerenkov radiation present in input PSD signals. Consequently, the time-dependent scin-
tillation can be estimated as the difference between the input PSD signal and the output
Cerenkov radiation estimate. The performance of these ANNs and CNNs in predicting
the time-dependent scintillation implicitly depends on how “well” the synthesised training
data reflects the measured data. Consequently, there exists the possibility for systematic
deviations between estimated scintillation and known scintillation. To identify whether
there are significant systematic deviations between the estimated time-dependent scintil-
lation and known scintillation, relative mean differences (RMDs) are calculated for the
out of field regions and central regions (as defined above in Section 3.2.5). The relative
mean difference is calculated as in Equation 3.17:

RMD =
1

max(SBS)
∑

Ŝ−SBS

N
(3.17)

Where Ŝ is the estimate for the scintillation, SBS is the scintillation calculated by back-
ground subtraction and N is the length of the scintillation signals. To quantify how far on
average the modelled scintillation signals deviated from the known scintillation signals,
relative mean absolute differences (RMADs) between the modelled and known scintilla-
tion signals are calculated. These RMADs are defined in Equation 3.18 below:
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RMAD =
1

max(SBS)
∑
|Ŝ−SBS|

N
(3.18)

Through comparison of each method’s calculated RMDs with it’s RMADs, the sig-
nificance of systematic trends can be quantified. Direct comparison of one correction
method’s RMADs with another correction method’s are problematic, as the ANN and
CNN analyse a fraction of the measured waveforms, whereas the OLS and NLLS signals
analyse the entire duration of measured waveforms. To enable direct comparison of the
OLS and NLLS estimates with the ANN, the OLS and NLLS estimates of scintillation
were cropped to match the fraction of the waveform that the ANN had used. To enable di-
rect comparison of the OLS and NLLS estimates of scintillation with the CNN’s estimate
of scintillation, the OLS and NLLS estimates of scintillation were cropped to match the
segment of the waveform that the CNN had used. Through comparison of each methods
RMADs with those calculated by other methods, the methods can be quantified in terms
of their ability to model the time-dependent scintillation.

3.3 Results

3.3.1 Dosimetric performance

The 7 measured beam profiles are presented in Figures 3.7−3.13, with corresponding
global dose-differences presented below each profile. The MADs between each of the
corrected PSD profiles and corresponding ionisation chamber profiles are presented in
Table 3.1, along with the global MAD for each of the correction methods. For Figures
3.7−3.9 and Figures 3.11−3.12, the PSD was orientated so that it’s optical fibre was
aligned parallel to the scanning axis of the beam profile. For Figures 3.10 and 3.13, the
PSD was orientated so that it’s optical fibre was aligned perpendicular to the scanning
axis of the beam profile.

For the 6 MV, 3 cm × 3 cm profile presented in Figure 3.7, the PSD’s penumbras were
narrower than those measured by the ionisation chamber as the PSD’s spatial resolution
was significantly greater than the ionisation chamber’s spatial resolution. As a result, there
were significant disagreements between the PSD and ionisation chamber in the penum-
bral regions. On average, the background subtraction corrected responses (referred to as
BS corrected responses for the remainder of this chapter) remained within 1.1 % of the
ionisation chamber. The OLS and NLLS responses had MADs of 1.1 %, matching that
of the BS correction. The ANN and CNN corrections performed marginally poorer, with
the ANN having a MAD of 1.2 % and the CNN having a MAD of 1.3 %. For the ANN,
the main source of error had occurred in the central region with respect to the ionisation
chamber, underestimating the dose at +9.4 mm by 4.5 %, attributed to a random fluctua-
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Figure 3.7: Top: Cross-plane beam profile at 6 MV, 3 cm × 3 cm. Bottom: dose dif-
ferences between each of the corrected PSD responses with respect to the ionisation
chamber. In the legend, OLS is the PSD response corrected using the OLS correction
method, NLLS is the PSD response corrected using the NLLS correction, ANN is the
PSD response corrected using the ANN correction, CNN is the PSD response corrected
using the CNN correction, BS is the PSD response corrected using background subtrac-
tion and IC is the ionisation chamber response. Results for BS, IC and CNN published
in [168].

tion. For the case of the CNN, the source of the inflated error was poor performance in the
out of field regions, such that the CNN had systematically under-responded by an average
value of 1.9 % with respect to the ionisation chamber.

For the 6 MV, 5 cm× 5 cm profile presented in Figure 3.8, there are significant slants in
the central region of the BS, OLS and NLLS profiles (i.e. for positions between −20 mm
and +20 mm). For the BS, OLS and NLLS corrections, this slant was attributed to gain
drift that had occurred in the PSD’s PMT. When scanning the PSD through the radia-
tion field, the PSD had originated from the +55 mm position and finished at the −55 mm
position. The LINAC was set to continuously deliver it’s photon beam during the scan,
with the PMTs consistently in operation for the duration of the scan. As a result, the
PMTs consistently produced waste heat, and so the PMT’s dynodes increased in temper-
ature as the scan progressed. Consequently, the PMT’s sensitivity increased as the PSD
was scanned from +55 mm to −55 mm. For the OLS and NLLS corrections, the gradi-
ent descent optimisation process negates the effects of PMT gain drift that stems from
the reference probe’s PMT by adjusting the value calculated for b̂. However, gain drift
stemming from the PSD’s PMT causes the OLS and NLLS estimates of scintillation to
increase, causing the OLS and NLLS profiles to suffer from the same dosimetric trends as
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Figure 3.8: Top: Cross-plane beam profile at 6 MV, 5 cm × 5 cm. Bottom: dose dif-
ferences between each of the corrected PSD responses with respect to the ionisation
chamber. In the legend: OLS, NLLS, ANN, CNN, BS and IC are defined as in Figure
3.7. Results for BS, ANN, CNN and IC were published in Madden et al. 2018 [168,
175].

the BS profile. As a result of these gain drift effects, the BS dose differences ranged from
an overestimation of 1.0 % at the −19 mm position to an underestimation of 1.7 % at the
+19 mm position with respect to the ionisation chamber. The OLS and NLLS corrections
experienced exacerbated overestimation and underestimations when compared with the
BS correction as the OLS and NLLS corrections were less reproducible, having increased
magnitudes of random fluctuations in their profiles. The OLS and NLLS corrections had
a maximum overestimation of 1.6 % at the −19 mm position, and a maximum underesti-
mation of 2.5 % at the +19 mm position. For the central region in this profile, the MADs
for BS, OLS and NLLS were 0.8 %, 1.0 % and 0.9 %, respectively.

For the ANN and CNN in Figure 3.8, the slant runs in the opposite direction to that of
the BS, OLS and NLLS corrections. The source of this disagreement between the neural
networks corrections and the BS, OLS and NLLS corrections was attributed to a sys-
tematically poor performance of the neural networks when estimating Cerenkov radiation
present in measured PSD signals. The ANN and CNN profiles have significant fluctua-
tions in their calculated doses for the central region of the profile, suggesting suboptimal
reproducibility of the ANNs and CNNs under these conditions. Conversely, the fluctu-
ations are near negligible in the out of field regions, suggesting the ANN’s and CNN’s
performance was more reproducible in the out of field regions than the central regions.

In the out of field regions in Figure 3.8 (i.e. at positions more than 30 mm away from
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the centre of the field), each of the correction method’s responses systematically devi-
ated from the ionisation chamber by maximum values of 1.9 % for BS, 2.8 % for OLS,
2.4 % for NLLS, 2.1 % for the ANN and 1.6 % for the CNN. BS remained within 1 % of
the ionisation chamber at the positive out of field positions i.e. for positions greater than
+30 mm. BS overestimated the dose with respect to the ionisation chamber by an average
value of 0.8 % for the negative out of field positions i.e. positions less than−30 mm. This
deviation arose due to the aforementioned PMT gain drift. The OLS and NLLS correc-
tions performed similarly in the out of field regions, systematically over-estimating the
dose measured by the ionisation chamber with an average value of 1.4 %. The ANN cor-
rection systematically overestimated the dose with respect to the ionisation chamber by
an average value of 0.9 % for these out of field regions. The CNN correction systemati-
cally underestimated the dose with respect to the ionisation chamber by an average value
of 1.0 % for these out of field regions.

Figure 3.9: Top: Cross-plane beam profile at 6 MV, 10 cm × 10 cm. Bottom: dose
differences between each of the corrected PSD responses with respect to the ionisation
chamber. In the legend: OLS, NLLS, ANN, CNN, BS and IC are defined as in Figure
3.7. Results for BS, ANN, CNN and IC were published in Madden et al. 2018 [168,
175].

For the 6 MV, 10 cm× 10 cm cross-plane profile presented in Figure 3.9, no slants were
observed in the central regions of the PSD profiles, unlike those in Figure 3.8. In the cen-
tral regions (i.e. for positions between −40 mm and +40 mm), the BS corrected profiles
remained within 1.7 % of the ionisation chamber, having a MAD of 0.5 %. The OLS and
NLLS corrections performed similarly to the BS correction in the central regions, each
having MADs of 0.6 %. However, the OLS and NLLS corrections had maximum dose
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differences of 4.3 %, inflated as they had decreased reproducibilities and increased fluc-
tuations in the central regions of their profiles observable in Figure 3.8. The ANN profile
in Figure 3.9 had inflated deviations with respect to the ionisation chamber in the central
region, attributed to suboptimal performance of the ANN. As a result, the ANN’s MAD
was 1.2 % in the central region, having a maximum difference in dose of 7.4 %. The CNN
correction reproduced the trends of the BS correction in the profile’s central region. The
CNN had a MAD of 1.0 % and a maximum dose difference of 2.2 % in the central region,
inflated above BS due to the random fluctuations present in the CNN profile.

For the out of field regions in Figure 3.9 (i.e. for positions more than 56 mm from the
centre of the field), BS remained within 1.5 % of the ionisation chamber, and had a MAD
of 0.5 %. The OLS and NLLS corrections performed similarly to each other in the out of
field regions, having MADs of 1.2 % and 1.4 %, and maximum dose differences of 2.3 %
and 3.2 %, respectively. The ANN and CNN corrections reproduced the trends of the
BS profiles in the out of field regions. The ANN had a MAD of 0.6 % and a maximum
difference in dose of 1.6 %. Similarly, the CNN had a MAD of of 0.4 % and a maximum
difference in dose of 1.0 %. Each of the correction methods were reproducible in the out
of field regions, such that the dose differences plotted in Figure 3.9 had reduced random
fluctuations when compared against their corresponding differences in the central region.

Figure 3.10: Top: In-plane beam profile at 6 MV, 10 cm × 10 cm. Bottom: dose dif-
ferences between each of the corrected PSD responses with respect to the ionisation
chamber. In the legend: OLS, NLLS, ANN, CNN, BS and IC are defined as in Figure
3.7. Results for BS, ANN, CNN and IC were published in Madden et al. 2018 [168,
175].

For the 6 MV, 10 cm × 10 cm in-plane profile presented in Figure 3.10, the PSD was
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orientated so that it’s optical fibre was perpendicular to the in-plane axis. Central regions
occurred for positions between −40 mm and +40 mm. The BS profile had a slant in it’s
central region that did not appear in the corresponding OLS and NLLS profiles. When
compared against the ionisation chamber, BS overestimated the dose by 1.3 % at−39 mm
to an underestimated the dose by 2.0 % at +39 mm. As outlined earlier, the OLS and
NLLS corrections mitigate the effects of gain drift in the reference probe’s PMT, but these
methods are unable to mitigate gain drift effects stemming from the PSD’s PMT. Given
that this slant is only observed for the BS profile, it was determined that the reference
probe’s PMT had be affected by gain drift. In the central region, BS had a MAD of 0.9 %,
OLS had a MAD of 0.6 %, NLLS had a MAD of 0.4 % and the CNN had a MAD of 0.6 %.
The ANN performed poorly in the central region, reproducing the trends present in the
ANN profiles in Figures 3.8 and 3.9.

For the out of field regions in Figure 3.10 (i.e. for positions more than 56 mm from
the centre of the field), all corrected PSD profiles remained in close agreement with the
ionisation chamber. On average, the BS corrected profiles remained within 0.4 % of the
ionisation chamber, and had a maximum dose difference of 0.7 %. The OLS correc-
tion had a MAD of 0.3 % and had a maximum dose difference of 0.8 % with respect to
the ionisation chamber. Similarly, the NLLS correction had a MAD of 0.3 % with re-
spect to the ionisation chamber, and a maximum disagreement of 0.6 %. The ANN and
CNN performed similarly to the other correction methods, remaining in close agreement
with the ionisation chamber. The ANN correction had a MAD of 0.2 % and a maximum
disagreement of 0.7 %, and the CNN correction had a MAD of 0.3 % and a maximum
disagreement of 0.7 %.

For the 10 MV, 5 cm × 5 cm profile presented in Figure 3.11, the BS, OLS and NLLS
profiles had matching slants in their central regions (i.e. for positions between −20 mm
and +20 mm). Following the same logic outlined for the profile presented in Figure 3.8,
the source of these slants was gain drift that affected the PSD’s PMT. The BS correction
had a MAD of 0.9 % and a maximum difference in dose of 2.5 % with respect to the
ionisation chamber, exacerbated due to the PMT gain drift during the measurement of this
profile. The OLS and NLLS corrections had MADs of 0.7 % and 0.9 %, and maximum
differences in dose of 1.7 % and 2.8 % with respect to the ionisation chamber in this
region. The ANN and CNN profiles did not possess any slants in their central region,
however there were significant random fluctuations, suggesting their reproducibility was
poor for these measurement conditions. As a result of their suboptimal performances in
these measurement conditions, the ANN and CNN corrections had MADs of 1.4 % and
1.0 %, and maximum differences in dose of 4.7 % and 4.3 % with respect to ionisation
chamber, respectively.

For the out of field regions in Figure 3.11 (i.e. for positions more than 31 mm from
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Figure 3.11: Top: Cross-plane beam profile at 10 MV, 5 cm × 5 cm. Bottom: dose
differences between each of the corrected PSD responses with respect to the ionisation
chamber. In the legend: OLS, NLLS, ANN, CNN, BS and IC are defined as in Figure
3.7. Results for BS, ANN, CNN and IC were published in Madden et al. 2018 [168,
175].

the centre of the field), the BS corrected profiles remained within 1.3 % of the ionisation
chamber, having a MAD of 0.7 %. The OLS corrected profile remained within 1.8 % of
the ionisation chamber, overestimating the out of field dose on average by 1.2 %. Simi-
larly, the NLLS corrected profile remained within 2.1 % of the ionisation chamber in the
out of field regions, systematically overestimating the dose measured by the ionisation
chamber by an average value of 1.3 %. The ANN correction systematically underesti-
mated the dose at the negative out of field positions by a maximum of 2.0 %. Conse-
quently, the ANN correction had a MAD of 1.3 % in these out of field regions. The CNN
corrected profiles remained within 1.8 % of the ionisation chamber for the out of field
positions, having a MAD of 0.4 % in the out of field region.

For the 10 MV, 10 cm × 10 cm cross-plane profile presented in Figure 3.12, the PSD
was orientated so it’s optical fibre was aligned parallel to the cross plane axis. No slants
were present in the central region of the BS, OLS, NLLS or CNN corrected profiles (i.e.

at for positions between −40 mm and +40 mm), however a slant was present in the ANN
profile. The BS corrected profile remained in close agreement with the ionisation cham-
ber, having a MAD of 0.3 % and a maximum dose difference of 0.8 %. The OLS and
NLLS corrections had inflated MADs and maximum dose differences when compared
against the BS correction, arising from the increased random fluctuations in the OLS and
NLLS profiles. The corresponding MAD was 0.5 % for both the OLS and NLLS correc-
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Figure 3.12: Top: Cross-plane beam profile at 10 MV, 10 cm × 10 cm. Bottom: dose
differences between each of the corrected PSD responses with respect to the ionisation
chamber. In the legend: OLS, NLLS, ANN, CNN, BS and IC are defined as in Figure
3.7. Results for BS, ANN, CNN and IC were published in Madden et al. 2018 [168,
175].

tions, and the maximum differences were 1.5 % for the OLS correction and 1.2 % for the
NLLS correction. The ANN corrected profile was slanted in the central region, exacerbat-
ing the ANN correction’s MAD to 0.8 % and it’s maximum dose difference to 2.5 %. The
CNN corrected profile had significant random fluctuations in it’s central region, leading
to an increased MAD of 0.8 % and an increased maximum dose difference of 1.7 % when
compared against the BS, OLS and NLLS corrections.

For the out of field region in Figure 3.12 (i.e. for positions further than 57 mm away
from the centre of the field), the BS corrected profile remained within 1.0 % of the ion-
isation chamber. The BS correction overestimated the out of field dose with respect to
the ionisation chamber by an average value of 0.7 %. The OLS correction had overesti-
mated the dose by an average value of 1.2 %, with a maximum difference of 2.6 % with
respect to the ionisation chamber. Similar to the OLS correction, the NLLS correction
had overestimated the dose by an average value of 1.7 %, with a maximum difference of
3.8 %. Comparing the OLS and NLLS profiles, the NLLS’s inflated MAD and maximum
difference are attributed to the NLLS correction having significant random fluctuations
in the out of field region. For the negative out of field region in Figure 3.12, the ANN
corrected profile remained close to the ionisation chamber, having a maximum difference
of 0.5 % in this region. However, the ANN correction systematically under-estimated the
dose with respect to the ionisation chamber at the positive out of field regions by an aver-
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age value of 1.6 %. Conversely, the CNN correction overestimated the dose in the out of
field regions. At the negative out of field positions, the CNN correction overestimated the
dose with respect to the ionisation chamber by an average value of 2.5 %; at the positive
out of field region, the CNN correction overestimated the dose by an average value of
1.1 %.

Figure 3.13: Top: In-plane beam profile at 10 MV, 10 cm × 10 cm. Bottom: dose dif-
ferences between each of the corrected PSD responses with respect to the ionisation
chamber. In the legend: OLS, NLLS, ANN, CNN, BS and IC are defined as in Figure
3.7. Results for BS, ANN, CNN and IC were published in Madden et al. 2018 [168,
175].

For the 10 MV, 10 cm× 10 cm in-plane profile 3.13, the PSD was orientated so that it’s
optical fibre was aligned perpendicular to the in-plane axis. Central regions occurred for
positions between −40 mm and +40 mm. A slant was present in the central region of the
BS, OLS and NLLS profiles, suggesting gain drift had occurred in the PSD’s PMT during
the measurement of this profile. As for all previously discussed profiles, the OLS and
NLLS profiles had increased random fluctuations when compared against corresponding
BS profiles. In this profile’s central region, the BS correction had a MAD of 0.7 % and
a maximum dose difference of 1.4 % with respect to the ionisation chamber. The OLS
correction had a MAD of 0.7 % and a maximum dose difference of 1.7 %. The NLLS cor-
rection performed similarly to the OLS correction, having a 0.7 % MAD, and a maximum
dose difference of 1.6 %. The ANN and CNN corrected profiles had slants and significant
random fluctuations in the central regions, increasing their maximum dose differences
above those of the BS, OLS and NLLS corrected profiles. In the central regions, the ANN
corrected profiles had a maximum difference in dose of 4.0 %, and the CNN corrected
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profiles had a maximum difference in dose 3.0 %.

For the out of field regions in Figure 3.13 (i.e. for positions further away than 57 mm
from the centre of field), the BS correction systematically deviated from the ionisation
chamber. For the negative out of field positions, the BS correction overestimated the dose
by an average value of 0.8 %; however, the BS corrected profiles remained within 0.6 % of
the ionisation chamber for the positive out of field positions. The OLS correction overes-
timated the dose by an average value of 0.7 % in the out of field regions, with a maximum
difference in dose of 1.7 %. The NLLS corrected profile was in the best agreement with
the ionisation chamber, having a MAD of 0.3 % and a maximum difference in dose of
1.1 %. The ANN correction had a MAD of 0.9 % and a maximum difference in dose of
1.9 %. The CNN correction performed poorly in the negative out of field region, system-
atically under-estimating the dose with respect to the ionisation chamber by an average
value of 2.4 %. The maximum dose differences for the ANN and CNN corrections in the
out of field regions were 1.9 % and 3.8 %, respectively.

Beam energy, Field size BS (%) OLS (%) NLLS (%) ANN (%) CNN (%)
6 MV, 3 × 3 cm2 0.8 1.1 1.1 1.2 1.3
6 MV, 5 × 5 cm2 0.8 1.2 1.2 1.2 1.2

6 MV, 10 × 10 cm2 0.5 0.8 0.9 1.0 0.8
6 MV, 10 × 10 cm2* 0.7 0.5 0.4 1.7 0.5

10 MV, 5 × 5 cm2 0.8 1.0 1.1 1.3 0.6
10 MV, 10 × 10 cm2 0.5 0.7 0.9 1.1 1.1
10 MV, 10 × 10 cm2* 0.7 0.8 0.6 1.6 1.5

Global MAD 0.7 0.8 0.8 1.3 1.0

Table 3.1: In this table, MADs between the ionisation chamber and the corrected PSD
responses are are reported for each beam profile. Global MAD corresponds to the global
MAD between the ionisation chamber responses and the corrected PSD dose-responses.
In the top row, BS corresponds to the MADs of the background subtraction correction,
OLS corresponds to the MADs of the temporal OLS correction, NLLS corresponds to the
MADs of the NLLS correction, ANN corresponds to the MADs of the ANN correction
and CNN corresponds to the MADs of the CNN correction. In the first column, * denotes
that profiles were measured along the in-plane axis, whereas an absence of * denotes that
profiles were measured along the cross-plane axis. Results for BS, ANN, CNN and IC
were published in Madden et al. 2018 [168, 175].

From the MAD statistics in Table 3.1, the BS correction was the most robust and ac-
curate correction method investigated, having a global MAD of 0.7 %. The OLS and
NLLS corrections were the next best performing correction methods, both having global
MADs of 0.8 %. The BS correction’s most significant source of error was PMT gain drift,
which caused systematic deviations between the corrected PSD response and the ionisa-
tion chamber. Statistically, the ANN and CNN corrections had the poorest performance
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of the investigated corrections. Both the ANN and CNN correction had consistently per-
formed poorly in the central regions of the profiles, systematically deviating from the BS,
OLS and NLLS corrections.

With regards to the central regions of the presented profiles, the BS, OLS and NLLS
corrections all had global MADs of 0.7 %. From the profiles presented in Figures 3.7−3.13,
the BS correction was statistically the most robust and reproducible correction in the cen-
tral, with the BS corrected profiles being spatially smooth. In comparison, the OLS and
NLLS corrections were less reproducible, having noticeable fluctuations present in the
central regions of their profiles. Though suffering from a reduced reproducibility, the per-
formance of the OLS and NLLS corrections matched the performance of the BS correc-
tion as the BS correction was affected by PMT gain drift for 4 of the 7 profiles measured.
It should be noted that the OLS and NLLS correction methods were less prone to PMT
gain drift as they mitigate the effects of gain drift stemming from the reference probe’s
PMT, though these corrections were still susceptible to PMT gain drift stemming from
the PSD’s PMT.

With regards to the out of field regions, the BS correction tended to systematically
deviate from the ionisation chamber when gain drift had occurred in either of the PMTs.
Similar to the central regions, the BS corrected profiles were spatially smooth in the out of
field regions. The performance of the OLS and NLLS corrections was inconsistent from
one profile to another. For the profiles in Figures 3.7, 3.10 and 3.13, the OLS and NLLS
profiles remained close to the ionisation chamber in the out of field regions. However, for
the profiles in Figures 3.8, 3.9, 3.11 and 3.12, the OLS and NLLS corrections systemati-
cally overestimated the dose with respect to the ionisation chamber by average values of
1.2 % and 1.4 % respectively. The ANN and CNN corrections performed inconsistently
from one profile to another, often deviating systematically from the ionisation chamber.
The global MADs for the out of field region were 0.6 % for BS, 1.0 % for OLS, 1.1 %
for NLLS, 0.8 % for the ANN correction and 1.1 % for the CNN correction. These re-
sults suggest that the BS correction was most suitable correction in the out of field region,
provided that gain drift effects are mitigated.

3.3.2 Comparison of estimated scintillation with known scintillation

RMDs and RMADs between each correction method’s estimated scintillation and the
known scintillation were calculated using Equations 3.17 and 3.18. The OLS and NLLS
estimates of scintillation and the known scintillation were cropped to match the temporal
regions used by the ANN and CNN, enabling for direct comparisons with the ANN and
CNN estimates of scintillation. The calculated RMADs and RMDs are presented in Table
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3.2. Examples of each correction method’s estimated scintillation signal and correspond-
ing known scintillation signal are shown in Figures 3.14 and 3.15.

Central Out of field
RMD (%) RMAD (%) RMD

RMAD (%) RMD (%) RMAD (%) RMD
RMAD (%)

OLS −0.5 2.1 −26 -0.5 7.8 −5.9
NLLS −0.3 1.9 −18 -0.2 8.3 −2.2
ANN 3.3 3.8 87 19 25 79
OLS −2.4 5.4 −44 5.7 13 43

NLLS 1.8 3.6 50 10 16 66
CNN 5.0 11 46 14 47 29

Table 3.2: Relative mean differences and relative mean absolute differences calculated
between estimated scintillation and known scintillation. In the top row, Central and Out
of field corresponds to the global average RMD and RMAD calculated for the central and
out of field regions, respectively (as defined in Section 3.2.5). In the second row of the
first column: OLS, NLLS and ANN corresponds to the RMDs and RMADs calculated for
the ANN’s temporal region of interest. In the bottom row of the first column: OLS, NLLS
and CNN corresponds to the RMDs and RMADs calculated for the CNN’s temporal
region of interest.

Estimates of the scintillation are shown for the ANN’s temporal region of interest in
Figure 3.14. For this temporal region of interest (i.e. the scintillation decay tail), the OLS
and NLLS estimates of scintillation were closer to the known scintillation than the ANN’s
estimate of the scintillation in the central regions of measured profiles. For these central
regions, the NLLS estimate of scintillation had best matched the known scintillation, hav-
ing a RMAD of 1.9 %. The OLS estimate of scintillation was marginally poorer, having
a mean RMAD of 2.1 % with respect to the known scintillation. From the RMDs in the
central region, the OLS correction underestimated the scintillation present on average by
0.5 % relative to the amplitude of the scintillation pulse. The NLLS correction reproduced
this trend, systematically underestimating the scintillation present on average by 0.3 %
with respect to the amplitude of the scintillation signal. The ANN correction produced
the least accurate estimate of the known scintillation when analysing the scintillation de-
cay tail, having a RMAD of 3.8 %. The ANN correction systematically overestimated the
scintillation present in the central region, having a RMD that was 87 % of it’s RMAD.
The ANN’s systematic overestimation of the scintillation can be observed in the top left
corner of Figure 3.14.

Similar trends were observed for the out of field region for the ANN’s temporal region
of interest. The OLS and NLLS corrections performed similarly to one another, with the
OLS correction having a RMAD of 7.8 % and the NLLS correction having a RMAD of
8.3 %. Comparing the RMDs with the RMADs, the OLS and NLLS corrections appeared
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Figure 3.14: Left: measured and estimated signals recorded at the centre of the 6 MV,
10 cm × 10 cm field. Right: measured and estimated signals recorded at a position of
−80 mm for the 6 MV, 10 cm × 10 cm field (corresponding to 30 mm outside the 10 cm
× 10 cm field). In the legends, raw corresponds to the measured PSD signal, and BS,
OLS, NLLS and CNN correspond to their calculated scintillation signals.

to be free of systematic over-estimation or underestimation trends in the out of field re-
gions as their RMDs were less than 0.5 % of the amplitude of known scintillation signals.
With reference to the measured PSD signals in Figure 3.14, increased magnitudes of noise
are present in the known scintillation measured in the out of field region, compared to the
known scintillation measured in the central region. These inflated RMADs for the out of
field region arise partially due to the poor signal to noise ratio of the measured PSD signals
in the out of field region. The ANN correction was the worst descriptor of the scintilla-
tion present, having and RMAD of 25 % with respect to the amplitude of the scintillation
present. The ANN’s increased RMAD when comparing the central region against the out
of field region can be partially attributed to the increased measurement noise in this re-
gion. However, through comparison of the RMD and RMAD, the most significant source
of the ANN’s inflated RMAD resulted from a systematic underestimation the scintillation
present by an average value of 19 % relative to the amplitude of scintillation.

Estimated scintillation signals for the CNN’s temporal region of interest are shown in
Figure 3.15. For the CNN’s temporal region of interest, the OLS and NLLS estimates
of scintillation were superior to corresponding CNN estimates of scintillation. In the
central region, the NLLS estimate best matched the known scintillation, having a RMAD
of 3.6 % relative to the amplitude of the scintillation. The OLS correction performed
marginally poorer than the NLLS correction, having a RMAD of 5.4 %. From the RMDs,
the OLS correction tended to systematically underestimate the scintillation by an average
value of 2.4 % in the central region of the profiles. Conversely, the NLLS correction
tended to systematically overestimate the scintillation signal by an average value of 1.8 %
in the central region. The CNN correction was the poorest model of the time-dependent
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Figure 3.15: Left column: measured and estimated signals recorded at the centre of the
6 MV, 10 cm × 10 cm field. Right column: measured and estimated signals recorded at a
position of −80 mm for the 6 MV, 10 cm × 10 cm field (corresponding to 30 mm outside
the 10 cm × 10 cm field). In the legends, raw corresponds to the measured PSD signal,
and BS, OLS, NLLS and CNN correspond to their calculated scintillation signal.

scintillation in the central region, having a RMAD of 11 % with respect to the amplitude of
the known scintillation. From it’s RMD, the CNN correction systematically overestimated
the scintillation by an average value of 5.0 % relative to the amplitude of scintillation.
These systematic trends of the OLS, NLLS and CNN corrections are observable in the
bottom left corner of Figure 3.15.

For the out of field regions in the scope of the CNN’s temporal region of interest, each of
the correction methods systematically overestimated the scintillation present. The OLS
estimate of scintillation was on average the best descriptor of the known scintillation,
having a RMAD of 13 %. The NLLS estimate of scintillation was a poorer descriptor of
the known scintillation than the OLS estimate, having a RMAD of 16 % relative to the
amplitude of the known scintillation. Through comparison of RMD with RMADs, the
systematic overestimation trend was least significant for the OLS correction, with OLS
having a RMD of 5.7 %. Comparatively, the NLLS correction had on average overesti-
mated the scintillation by 10 % relative to the known scintillation’s amplitude. The CNN’s
estimate was the worst descriptor of the time-dependent scintillation. From the RMDs,
the CNN systematically overestimated the scintillation by a value of 14 % relative to the
known scintillation. It should be noted that the CNN’s estimates were noisy in the out of
field regions, leading to an inflation of it’s RMAD to 47 %. The overestimation trends are
present in the bottom right graph in Figure 3.15.
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3.4 Discussion

In terms of dosimetric performance, background subtraction was the most effective cor-
rection method investigated in this chapter. Background subtraction was characterised
by a global MAD of 0.7 % in the central regions of profiles and a global MAD of 0.6 %
for the out of field regions. The most significant source of systematic error was PMT
gain drift, which could not be corrected when analysing the measured PSD and reference
probe signals. Despite these gain drift effects, the BS profiles remained within 2.5 % of
the ionisation chamber in the central regions, and 1.9 % of the ionisation chamber for the
out of field regions (excluding the 6 MV, 3 cm × 3 cm profile). Comparatively, the next
best performing correction, the OLS correction had a global MAD of 0.7 % in the central
region and 0.8 % in the out of field region. However, the OLS correction had maximum
discrepancies of 4.3 % and 2.8 % for the central and out of field regions, respectively. The
NLLS correction had performed similarly to the OLS correction for all profiles measured,
however it’s global MAD had increased to 0.8 % for the out of field region. Comparing
the BS correction against the other corrections, the BS corrected profiles tended to re-
main spatially smooth, whereas the other corrections produced profiles with significant
spatial fluctuations. Given the analytic nature of the OLS, NLLS, ANN and CNN correc-
tions, the spatial fluctuations were expected to arise as a consequence of the significant
measurement noise present in the measured signals.

PMT gain drift could not be corrected for during the analysis of the beam profiles in this
chapter. To correct for PMT gain drift in the beam profiles, multiple calibration measure-
ments must be taken immediately before and after the profiles are scan. These multiple
calibration measurements were not taken during the measurement of the presented beam
profiles, omitted at the time of measurement. This omission occurred as negligible PMT
gain drift was expected to occur in the approximate 9 minutes taken to measure each pro-
file. It should be noted that the majority of other reported PSD dosimetry systems in the
literature are not susceptible to PMT gain drift effects as the majority of the reported PSD
dosimetry systems utilise other types of photodetectors that are much less temperature
sensitive than the PMTs used in this work. For example, the commercial PSD dosimetry
systems Exradin W1 and Exradin W2 (Standard Imaging, USA) use photodiodes as their
photodetector [185]. Research groups investigating spectral Cerenkov radiation correc-
tion methods typically utilise charged coupled devices [74]. Alternatively, there exists
PMTs that have integrated cooling systems that control the PMT’s temperature; these
PMTs mitigate the PMT gain drift phenomenon.

When calculating RMDs and RMADs, the known scintillation was calculated using
background subtraction, and was assumed to be correct and certain. However, this as-
sumption was invalid when PMT gain drift occurred, as in Figures 3.8, 3.10, 3.11 and
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3.13. Calculated RMDs and RMADs were uncertain as a result. For this reason, the
correction methods were not classified as being successful or unsuccessful models of
the time-dependent scintillation. Instead, the RMDs and RMADs were used to determine
which estimates best matched BS, where BS had performed superior to all other estimates
for dosimetry.

Through comparison of the known scintillation with those estimated by the proposed
methods, the NLLS estimate of scintillation was a better descriptor of the known scintil-
lation than the OLS estimate of scintillation in the central region of the beam profiles. For
the out of field regions, measured signals suffered from significant quantities of measure-
ment noise, and both the OLS and NLLS estimates of scintillation were comparatively
poorer descriptors of the known scintillation than in the central regions. For the central
regions, it seems intuitive that the NLLS correction was the better estimator of the time-
dependent scintillation given the NLLS correction could optimise the parameters τd and
τr, whereas the OLS correction had used fixed values of τd = 285 ns and τr = 19.5 ns.
The optimal values for τd and τr are plotted in Figure 3.16 as a function of measurement
position for each of the NLLS profiles measured in the 10 cm × 10 cm fields. From these
distributions of τd and τr, mean values and standard deviations were calculated, limited
to the central regions of the profiles. For the 6 MV beam energy, τd had a mean value of
(272±5) ns and τr had a mean value of (0.53±0.13) ns, taking 2 standard deviations as
the uncertainty. For the 10 MV beam energy, τd had a mean value of (275±6) ns and τr

had a mean value of (0.85±0.43) ns. Given the difference between the NLLS optimised
values of τd and τr and the expected values of τd = 285 ns and τr = 19.5 ns supplied
by Saint Gobain, these results indicate that the OLS estimate calculated a sub-optimal
time-dependent scintillation.

Curiously, the OLS and NLLS estimates of the total PSD signals closely match one an-
other, as well as the measured PSD signal in spite of the OLS’s suboptimal estimate of the
time-dependent scintillation. This agreement is observable in Figure 3.17, where BS total
is the measured scintillation, OLS total is the OLS’s estimate of the PSD signal and NLLS
total is the NLLS’s estimate of the PSD signal. It should be noted that the OLS estimate
of scintillation (OLS scint) does not reproduce the sharp spikes of the known scintillation
(BS scint) that occur between 5800 ns and 6500 ns in Figure 3.17. Conversely, the NLLS
estimate of scintillation (NLLS scint) successfully reproduces these sharp spikes of the
known scintillation signal between 5800 ns and 6500 ns. Given that the OLS and NLLS
estimates of the total signal closely match the measured PSD signal, it is expected that
the OLS algorithm systematically underestimates the value of â and overestimates the
value of b̂ to compensate for the less temporally resolved estimate of the time-dependent
scintillation (calculated using τd = 285 ns and τr = 19.5 ns). This tendency explains the
difference between the NLLS RMD and OLS RMD in the central regions, where the OLS
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Figure 3.16: Top: values for τd for the 10 cm× 10 cm fields optimised during the NLLS
method, plotted as a function of measurement position. Bottom: corresponding values
for τd optimised through the NLLS method plotted as a function of measurement. In the
legend, * denotes that the profile was measured along the in-plane axis and the absence
of * denotes the profile was measured along the cross-plane axis, as in Table 3.1, and
Figures 3.10 and 3.13.

estimate of scintillation systematically underestimates the NLLS estimate of scintillation
by a value of 4.2 % relative to the amplitude of the known scintillation. For this rea-
son, the NLLS corrections should be used in preference to the OLS corrections when the
exponential constants of the scintillator have not been verified experimentally.

Each of the ANNs and CNNs had comparatively poor performances with regards to
the BS, OLS and NLLS corrections. The ANN had performed worse than the CNN for
dosimetry, having increased MADs for all profiles except the 3 cm × 3 cm profile pro-
file presented in Figure 3.7. In all profiles except the 3 cm × 3 cm profile, the central
regions of the ANN profile possessed significant slants. These slants appeared in the
corresponding CNN profiles of Figures 3.8, 3.11 and 3.13, however the CNN did not re-
produce these trends in Figures 3.9, 3.10 or 3.12. Given that these slants were reproduced
in some of the CNN profiles but not all CNN profiles, and these slants appeared for pro-
files at both beam energies, these slants arose partially due to some sub-optimal aspect
of the training methodology common to both the ANNs and CNNs methods. One likely
sub-optimal aspect was the generative model used to synthesise the training data for the
ANNs and CNNs. The generative model assumed that the sole scintillation responses cal-
culated by BS were exactly correct, having subtracted the exact magnitude of Cerenkov
radiation present from the total PSD signal. This assumption would be voided PMT gain
drift during the measurement of the PSD and reference probe signals. In retrospect, the
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Figure 3.17: OLS and NLLS estimates of the total PSD signal and the scintillation,
compared against the measured PSD signal and known scintillation. In the legend, BS
total is the measured PSD signal, OLS total is the OLS estimate of the modelled PSD
signal, NLLS total is the NLLS estimate of the modelled PSD signal, BS scint is the
scintillation calculated using BS, OLS scint is the OLS’s estimate of scintillation and
NLLS scint is the NLLS’s estimate of scintillation.

PMTs were susceptible to PMT gain drift, with gain drift affecting 4 of 7 measured pro-
files. Consequently, it is likely that the synthesised training data had incorrect estimates
of the scintillation and Cerenkov radiation present in the preprocessed training data sig-
nals. As a result, the trained ANNs and CNNs would be prone to systematic deviations
when analysing real data. Such a result would cause the ANN’s and CNN’s calculated
RMDs and RMADs to be inflated above those of the OLS and NLLS, as was observed.
To improve the performance of the ANN and CNNs, a better generative model would be
required to synthesise the training data.

The translation of trained ANNs and CNNs for analysis with other LINACs or PSD
dosimetry systems is not recommended. For the case of the single Varian 21iX Clinac
that was used for all measurement in this chapter, there was significant variation in the
time dependence of Cerenkov radiation at beam energies of 6 MV and 10 MV. Given
this, there is likely to be significant variations in the time dependences of scintillation
and Cerenkov radiation signals when comparing measured PSD signals from one LINAC
against those from another LINAC. The CNN’s performance is expected to be degraded
when analysing PSD signals measured with different LINACs to those that were used to
generate their training data. For the case of translation with other PSD dosimetry systems,
the time dependence of the scintillation will vary in the event other scintillator materials
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are used.

The training data was synthesised using theoretical beam profiles to closely match the
distribution of the testing dataset. It is expected that the trained ANNs and CNNs would
perform poorly in significantly different measurement conditions as the training distribu-
tion was highly specific, modelling the dose profiles of the testing dataset. Additionally,
the training dataset was limited to a size of 10721 training samples due to CPU and GPU
memory constraints at the time of training. Bends in the optical fibres affect the collection
and transmission of optical signals, which consequently affects the intensity of measured
scintillation and Cerenkov radiation signals. For the training data synthesis framework
presented in this chapter, variations in the setup of the optical fibres are not accounted for.
To train the ANNs and CNNs to for improved generalisation with regards to variations
in setup, it is recommended that the scaling factors be sampled from a random uniform
distribution with a minimum value of 0 and maximum value greater than Smax and Cmax

instead of the modelled dose profiles used in this work. Additionally, for improved per-
formance, it is recommended that the networks be trained on a larger training dataset.

In the literature, the most popular alternative to the BS correction is the chromatic re-
moval method, having been investigated thoroughly by several research groups [74, 76,
186]. Of all the publications in the literature, only one direct comparison of the BS correc-
tion and chromatic removal is reported. Archambault et al. compared the chromatic re-
moval and background subtraction corrections, evaluating their corrected responses with
respect to an ionisation chamber [76]. For the few photon beam PDDs measured, chro-
matic removal had a MAD of 0.52 % and BS had a MAD of 0.67 %. The global MAD for
BS reported in this chapter was 0.7 %, matching that reported by Archambault et al. [76].
Though comparisons between BS and chromatic removal are limited, the performance of
chromatic removal method appears superior to the OLS and NLLS corrections.

In future work, it is anticipated that the proposed NLLS and CNN corrections will be
investigated further. The implementation of gain drift correction methods would benefit
each of these corrections. For the case of the NLLS correction, the corrected profiles
would not have had slants in their central regions as in Figures 3.8, 3.11 and 3.13, leading
to reduced MADs and maximum discrepancies. For the case of the CNN correction,
the training data would have better reflected the real data used to test the CNN, and it
is anticipated that the CNN would be free of it’s systematic deviations with respect to
the ionisation chamber. Additionally, the PSD dosimetry system should be optimised to
increase the signal to noise ratio of measured signals. Archambault et al. had reported
that optical filtration had improved the signal to noise ratio of both BS’s and chromatic
removal’s estimates of scintillation [76]. Consequently, each of the presented correction
methods may benefit from the use optical filtration, reducing the random fluctuations
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in the presented profiles. With these optimisations, the performance of the NLLS and
CNN corrections are expected to improve, potentially matching that of chromatic removal
reported in the literature.

3.5 Conclusions

From the MAD statistics calculated, the BS correction was determined to be the most
accurate stem signal correction method that can be applied with the developed in-house
PSD dosimetry system. The OLS and NLLS corrections had performed at a similar level
of accuracy to BS when compared with the ionisation chamber in the central regions of
profiles, however the BS correction’s performance was superior to the OLS and NLLS
corrections in the out of field regions of the profiles. Providing that the PSD is not be-
ing used in radiation fields with high spatial dose gradients, the BS correction is recom-
mended over the current temporal methods. For measurements in radiation fields with
high spatial dose gradients, the NLLS correction is recommended as an alternative to the
BS correction. This recommendation is given as NLLS correction’s performance matched
the BS correction’s performance in the central region, and the NLLS estimate of scintilla-
tion was semantically better than OLS. In general, the trained ANNs performed poorly as
they were unable to reproducibly identify the time-dependent Cerenkov radiation present
in the scintillation decay tail; consequently, the proposed ANN correction is not recom-
mended. In general, the trained CNNs had generally poor performances, being trained on
synthetic data that could not accurately represent the real data. However, the CNN had
uncharacteristically outperformed the BS correction for the profile presented in Figure
3.10. If the CNN was trained with suitable training data, the results of Figure 3.10 sug-
gests that the CNN correction could also be a worthwhile alternative to the BS correction
for measurements in high spatial dose gradients.



Chapter 4

Feasibility of PSDs for MRI-LINAC
dosimetry

This chapter presents the experimental investigations with an in-house plastic scintillation
dosimeter (PSD) and the Australian MRI-LINAC. The PSD dosimetry system used the
same photomultiplier tubes (PMTs) and digital oscilloscope as for the measurements in
Chapter 3. However, the PSD was different from that used in the temporal stem signal
correction investigations in Chapter 3. Output factors measured with the Farmer chamber
and microDiamond detector were published in Madden et al. 2019 [106]. However, the
PSD output factors presented in this chapter differed from those published in Madden et

al. 2019 [106], re-measured using the daisy chain methodology described in Section 4.2.3
to avoid the effects of PMT gain drift. Presented beam profiles for the PSD and film were
published in Madden et al. 2020 [187]. The presented percent depth dose distributions
(PDDs) for the PSD, film and Farmer chamber were published in Madden et al. 2021
[188]. Monte Carlo simulations were built and run using the Geant4 simulation toolkit
post-publication to provide additional reference data.
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4.1 Introduction

PSDs have a set of advantageous qualities that make them highly water equivalent for
the high energy photons and electrons produced by LINACs and near-correctionless for
relative dosimetry with LINACs. Given this set of qualities, PSDs were suspected to be
highly suitable for relative dosimetry with MRI-LINACs. Previous studies investigating
PSDs for MRI-LINAC dosimetry characterised the change in response arising with the
magnetic field [164, 165], characterised their directional dependence in magnetic fields
[166] and investigated how stem signals are affected by magnetic fields [189]. No studies
had investigated whether PSDs remain feasible for relative dosimetry with MRI-LINACs;
the work in this chapter aims to quantify how accurate PSDs are for relative dosimetry
with MRI-LINACs.

4.2 Materials and methods

4.2.1 The Australian MRI-LINAC

The Australian MRI-LINAC consists of a 1 T open-bore MRI-scanner (Agilent, UK) and
an industrial linear accelerator (Linatron-MP, Varex, USA). The linear accelerator is a hor-
izontal beamline that is fitted with multileaf collimators (Millennium 120, Varian, USA)
as the Linatron has no secondary collimators, and so all fields are defined with the MLCs.
As discussed in Section 2.3, the Australian MRI-LINAC uses an in-line orientation such
that the fringe magnetic field extends outward in the direction of the Linatron. The Lina-
tron and MLCs were mounted on rails so that the source to isocentre distance (SID) could
be varied, allowing for them to be positioned so that the fringe field’s influence on beam
formation and MLC operation can be mitigated. Achievable SIDs ranged from 1.869 m
to 3.269 m. For all measurements, the Linatron had a nominal beam energy of 6 MV and
was set to deliver pulses of radiation at a frequency of 200 Hz.

4.2.2 The PSD dosimetry system

The in-house PSD consisted of a cylindrical volume of plastic scintillator optically cou-
pled to a plastic optical fibre, modelled in Figure 4.1. The plastic scintillator material
used was BC444 (Saint Gobain, France), chosen for it’s relatively slow decay constant
that enables temporal based Cerenkov radiation correction methods. The plastic scintil-
lator volume had a diameter of 2 mm and a length of 0.8 mm. The plastic optical fibre
used was a jacketed Eska CK-40 (Mitsubishi Chemicals Co., Japan). The plastic optical
fibre had an inner core diameter of (0.98 ± 0.06) mm, a cladding diameter of (1.00 ±
0.06) mm, a jacket diameter of 2 mm and an approximate length of 15 m. The reference
probe consisted of a bare Eska CK-40 plastic optical fibre with matching dimensions and
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materials to the optical fibre of the PSD, however no scintillator was attached in order to
measure only Cerenkov radiation. The tip of the PSD (i.e. scintillator and adjacent fibre)
and the reference probe was coated with black paint to make them light tight. At the distal
end of the PSD and reference probe, the optical fibres were fitted with male FC optical
connectors to make connections with the photodetectors fibre more reproducible.

Figure 4.1: 3D model of the in-house PSD with a cutaway to show the coupling of the
PSD to the optical fibre; published in Madden et al. 2021 [188].

Two matching PMTs (RCA-4526, RCA Corporation, USA) were used for all measure-
ments. These PMTs had a rise time of 2.5 ns, an adequate temporal resolution to resolve
the slow scintillation signal. For all measurements, the PMTs were operated in DC mode,
at their maximum gain to make their operational characteristics as reproducible as possi-
ble across all experimental measurements. A digital oscilloscope (PicoScope PS6404D,
PicoTech, USA) was used to simultaneously record the photoconverted PSD and reference
probe signals as voltage-time waveforms, with each waveform saved on a personal com-
puter. For all measurements, the digital oscilloscope sampled at a frequency of 625 MHz.
1 MΩ resistance was used, with a maximum available bandwidth of 500 MHz. A typical
waveform recorded by the digital oscilloscope is presented in Figure 4.2.

For all measurements, a triggering signal was used to synchronise the digital oscillo-
scope’s recorded waveforms with each pulse of radiation. No synchronisation signal was
produced by the Linatron as is usually the case for clinical LINACs. Instead an external
trigger signal was provided by using a “fast” dosimeter placed in the path of the radia-
tion beam; the oscilloscope has functionality that allows for signals prior to the trigger to
be included in the measured waveforma. For all PSD measurements, a scintillating fibre

aThe oscilloscope continuously samples signals while waiting for the trigger and transfers them into
it’s memory buffers; once the trigger signal is received, the oscilloscope keeps a user-specified number of
samples prior to the trigger and incorporates these samples into the desired waveform
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Figure 4.2: Typical PSD and reference probe waveforms produced in response to the
MRI-LINAC’s pulsed radiation beam. PSD signals (blue) are comprised of scintilla-
tion and Cerenkov radiation, and reference probe signals (red) are comprised purely of
Cerenkov radiation. Published in Madden et al. 2019 [106].

(BCF-60, Saint Gobain, France) and silicon photomultipliers (MiniSM-30035, SensL,
Ireland) were used to produce the trigger signal. The scintillating fibre was placed in
the path of the radiation beam upstream of the MLCs, such that it would be irradiated
whilst remaining out of the field shaped by the MLCs. The setup of the triggering fibre is
modelled in Figure 4.5.

For all measurements, a fixed quantity of monitor units was delivered. During beam
delivery, the PSD and reference probe’s responses to each individual pulse of radiation
were stored in the oscilloscope’s memory buffer as individual waveforms. After beam
delivery had terminated, the stored waveforms were summed across all radiation pulses,
integrating the PSD and reference probe signals to reduce the memory required to save
the data and reduce the statistical noise in measured signals.

Stem signal correction method

The background subtraction method was applied to correct for Cerenkov radiation stem
effect in measured PSD signals. The implementation of the background subtraction method
matches that described in the Chapter 3. The reader is referred to Section 3.2.2 for details
on background subtraction’s implementation.

Gain drift correction

Due to PMT gain drift, the calibration factor can vary over long measurement periods.
PMT gain drift occurs as the PMT’s gain is dependent on it’s temperatures. As the PMTs
are operated, they produce waste heat and their gains increase with increasing tempera-
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ture. This effect is problematic for background subtraction, requiring corrections for the
gain drift effect when measurements occur over a long period of time. For the measure-
ment of output factors and beam profiles, an interpolation based gain drift correction was
used. In the interpolation based gain drift correction, the time when each measurement
was taken (from the computer’s clock) was recorded along with the PSD and reference
probe signals. The PMTs were cross calibrated before and after the measurements were
taken, with the time of calibrations recorded. Linear interpolation was then used to predict
the calibration factor that would be measured at each measurement time.

For the measurement of the presented output factors and PDDs, a daisy chaining method-
ology was used to improve the robustness of the interpolation based gain drift correction.
In this daisy chaining methodology, a reference measurement was taken between each of
the output factor and PDD measurements. For the output factors, the reference field size
was chosen to be the response in the 10.5 cm× 10.5 cm field. For the PDDs, the reference
depth was chosen to be the 10 cm depth. Through analysis of the change in responses at
the reference point, the change in each PMT’s gain was determined.

4.2.3 Experimental measurements

Output factors

Relative output factors were measured with the in-house PSD, a Farmer ionisation cham-
ber (FC65G, Scanditronix/Wellhofer, Germany) and a microDiamond detector (PTW60019,
IBA Dosimetry, Germany). Gammex RMI457 Solid Water was used as the phantom ma-
terial for all output factor measurements. A 30 cm × 30 cm × 30 cm phantom size was
used for all measurements, with the 10 cm depth aligned to the MRI’s isocentre. The out-
put factors were measured at an SID of 2.469 m, and at depths of 10 cm and 20 cm. Field
sizes ranged between between 2.6 cm × 2.6 cm and 21.0 × 21.0 cm.

The Farmer chamber was orientated with it’s central axis aligned vertically, perpen-
dicular to the photon beam and magnetic field. The Farmer chamber was inserted into a
3 cm thick slab of Solid Water with a housing bore hole. The bore hole was filled with
water prior to the Farmer chamber’s insertion to prevent the formation of air gaps around
the chamber. For the perpendicular chamber orientation in the 1 T in-line magnetic field,
the Farmer chamber’s EPOM is located 0.4 times the radius upstream from the chamber’s
geometric centre. The Farmer chamber’s radius was 3.1 mm, such that the effective point
of measurement was located approximately 1 mm upstream from the chamber’s centre.
This EPOM was accounted for when setting up, such that an extra 1 mm of Solid Water
was used to achieve the desired depth of measurement. A perspex stand was used to hold
the Solid Water slabs vertically and clamp them together to mitigate the formation of air
gaps between the slabs; this stand is shown in Figure 4.3. The Farmer chamber was read
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out by a reference class electrometer (DOSE-1, Scanditronix/Wellhofer, Germany) at a
300 V bias. No correction factors were applied to it’s response as these are cancelled
out when normalising by the response at the 10.5 cm × 10.5 cm field size for the relative
output factors. The Farmer chamber’s response was measured 3 times at each field size to
determine the reproducibility of it’s response in these conditions, serving as a benchmark
for the reproducibility of the PSD.

Figure 4.3: Labelled picture of the perspex stand used clamp the Solid Water together
whilst stood vertically.

The microDiamond detector was orientated horizontally with it’s central axis antipar-
allel to the photon beam and magnetic field; this setup orientation is visible in 4.4 (a).
An in-house housing aperture was used to house the microDiamond detector, consisting
of a 3 cm × 3 cm rectangular block of Solid Water that was machined with a bore hole.
This bore hole was machined to tightly fit the microDiamond detector face on and flush
to it’s surface such that the formation of air gaps was mitigated; the microDiamond is
shown housed in the 3 cm × 3 cm rectangular block of Solid Water in Figure 4.4 (b).
Depth of measurement was controlled by shifting the microDiamond’s housing back and
placing machined 3 cm × 3 cm pieces of Solid Water in front of the housing. The micro-
Diamond’s EPOM was located 1 mm behind it’s packaging’s surface [190]; this EPOM
was accounted for when setting up the microDiamond for measurements at the desired
depths. The microDiamond was read out by the same electrometer as the Farmer cham-
ber (DOSE-1, Scanditronix/Wellhofer, Germany). The microDiamond’s response was
measured 3 times at each field size to determine the standard deviation of it’s response.

The setup for the PSD measurements of output factors is modelled in Figure 4.5. An
optical fibre housing aperture was used to house the PSD and reference probe. The hous-
ing aperture consisted of a 1 cm × 30 cm × 30 cm slab of perspex with a 2 mm wide ×



CHAPTER 4. FEASIBILITY OF PSDS FOR MRI-LINAC DOSIMETRY 80

Figure 4.4: Pictures of the Solid Water setup used for the microDiamond detector. In
(a), the microDiamond detector setup is shown for the measurement of output factors
in Solid Water. In (b), the Solid Water housing for the microDiamond detector is show,
with the microDiamond detector seated in the housing. Published in Roberts et al. 2019
[133].

4 mm deep housing groove machined into it’s surface. The housing groove was filled with
ultrasound gel (Aquasonic 100, Parker Laboratories Inc., USA) to avoid the formation of
air gaps between the PSD and the perspex. The PSD and reference probe were aligned
so that equal lengths of optical material were irradiated, and were placed in the housing
groove. The PSD was placed so that it was upstream of the reference probe when set up
in Solid Water. The optical fibre housing was stood vertically and orientated such that the
PSD’s and reference probe’s central axes were aligned vertically as shown in Figure 4.5.
The perspex stand was used to hold the slabs of Solid Water and the optical fibre housing
for all measurements to prevent the formation of air gaps between the Solid Water slabs
and the perspex housing. The PSD’s EPOM was located at the geometric centre of the
scintillator; this intrinsic 1 mm EPOM was accounted for when determining the desired
measurement depth. The PSD’s response was measured 3 times at each field size to de-
termine the standard deviation in it’s response, and 2 times for each reference field size to
determine the standard deviation in each reference measurement.

Beam profiles

Relative beam profiles were measured with the in-house PSD and radiochromic film
(GafChromic EBT3, Ashland Inc., USA). Beam profiles were measured at SIDs of 1.869 m
and 2.469 m, for depths of 1 cm, 5 cm, 10 cm and 20 cm. Each phantom was set up so that
the 10 cm depth was aligned to the MRI’s isocentre. The nominal field size at isocentre
was 1.9 cm × 1.9 cm for the 1.869 m SID and 2.6 cm × 2.6 cm at 2.469 m SID.

The PSD’s setup for the measurement of beam profiles is shown in Figure 4.6. The
PSD’s phantom consisted of a perspex water tank filled with de-ionised water. The tank’s
outer dimensions were 37 cm × 30 cm × 42 cm and it’s wall thickness was 8 mm. A
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Figure 4.5: 3D model showing the Australian MRI-LINAC and the Solid Water setup
used by the in-house PSD for the measurement of output factors and PDDs. Published
in Madden et al. 2021 [188].

manual linear translation stage (MT-DDA, Med Tech Inc., USA) was used to vertically
position the PSD at desired off axis positions. The translation stage’s minimum step size
was 0.1 mm, thus the PSD’s off axis position had an uncertainty of 0.05 mm. A 1 cm
× 2 cm × 16 cm piece of Solid Water was machined with a 2 mm deep × 4 mm wide
housing groove to hold the PSD and reference probe while in the water tank. The PSD
and reference prove were aligned and placed abreast in the housing groove such that the
PSD was upstream of the reference probe. The PSD and reference probe were orientated
horizontally so that their central axes were perpendicular to the photon beam and magnetic
field to minimise the Cerenkov radiation collected by each optical fibre. A step size of
2.5 mm was used to sample each beam profile with the PSD. Each off axis position was
measured 3 times to determine the standard deviation in the PSD’s response.

Gammex RMI457 Solid Water was the phantom material for all film measurements.
The film was orientated perpendicular to the photon beam and magnetic field, sandwiched
between vertical slabs of Solid Water; a diagram of this setup is shown in Figure 4.7 (b).
The perspex stand was used to tightly press the Solid Water slabs together in order to
mitigate the formation of air gaps between the film and Solid Water slabs. The batch of
films was calibrated using a 6 MV Elekta photon beam at the Liverpool Cancer Therapy
Centre. The processing and handling of films followed published recommendations [69,
191]. All films were read out 24 hours after they were irradiated. Films were scanned at a
resolution of 72 dpi with 48 bit RGB colour depth using an EPSON V700 Photo flat bed
scanner (EPSON, Japan). All scanning corrections were turned off when scanning the
films. A thin sheet of glass was placed on top of the film to prevent bowing of the films
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Figure 4.6: Labelled 3D model showing the Australian MRI-LINAC and the water tank
setup for the measurement of vertical beam profiles with the in-house PSD. Published in
Madden et al. 2020 [187].

during readout. A black paper sheet with a cut-out was used to reproducibly position each
film on the scanner, reducing the scanner readout uncertainty due to non-uniformity. Only
the red channel was used when converting the film’s optical density to absorbed doses.
Once converted, a 5 pixel wide moving average filter was applied to each profile to reduce
statistical noise.

During analysis, the empirical penumbra model developed by Tang et al. was fit to each
of the PSD and film profiles’ penumbra [192]. This model was used to determine the po-
sitions of the 20 %, 50 % and 80 % relative dose values in each penumbra. The penumbra
model was favoured over linear interpolation as the PSD’s 2.5 mm step size makes linear
interpolation an inaccurate method in determining the sought positions. Penumbra widths
were calculated by finding the penumbral positions where the relative doses were 20 %
and 80 % of the maximum dose in the fit models. The central position of each profile was
calculated by taking the average of the left and right 50 % dose positions; all beam profiles
were translated so that their calculated central position was aligned with the origin.

Percent depth dose distributions

Relative percent depth dose distributions were measured along the central axis with the
in-house PSD, a Farmer chamber (Scanditronix/Wellhofer FC65G, Germany) and ra-
diochromic film (GafChromic EBT3 film, Ashland Inc., USA). PDDs were measured at
an SID of 2.469 m for field sizes ranging between 2.6 cm × 2.6 cm to 18.4 cm × 18.4 cm.
The 10 cm depth of the phantom was aligned to the MRI’s isocentre. Gammex RMI457
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Figure 4.7: Diagram showing the film setup in Solid Water. In (a) the setup for PDD
measurements is shown, and in (b) the setup for beam profile measurements are shown
for each of the measurement depths. Courtesy of Natalia Roberts.

Solid Water was the phantom material for all measurements. The PSD was placed up-
stream of the reference probe in the optical fibre housing and orientated vertically, match-
ing the setup described for the measurement of output factors. The optical fibre’s housing
groove was filled with ultrasound gel, and the Solid Water slabs were held in the perspex
aperture. Similarly, the Farmer chamber was housed in the Solid Water housing used
during the measurement of output factors. The bore hole was again filled with water and
the Farmer chamber was orientated with it’s central axis aligned vertically. For measure-
ments with film, the film was orientated horizontally and sandwiched between two 15 cm
thicknesses of Solid Water as shown in Figure 4.7. The film readout analysis procedure
matched that described for the measurement of beam profiles. The film used in the mea-
surement of PDDs belonged to the same batch as those used for the measurement of beam
profiles.

4.2.4 Monte Carlo simulations

Monte Carlo simulations were built using the Geant4 simulation toolkit (version 10.7.p02).
The Australian MRI-LINAC was previously modelled in Geant4 [193], with the simula-
tion geometry optimised so that simulated beam profiles and PDDs had matched corre-
sponding measured distributions to within ±2 % [193]. This previously modelled simu-
lation geometry of the Australian MRI-LINAC was used to obtain reference data for the
experimentally measured output factors, beam profiles and percent depth dose distribu-
tions in this chapter.
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In each simulation the MRI scanner, the linear accelerator’s head and the MLC leaves
were modelled and positioned in the world volume to match the experimental setup. The
MRI scanner and it’s components were modelled following vendor specifications of the
scanner components and their component’s materials. The linear accelerator’s head was
modelled based upon the vendor’s specifications of materials and geometry; modelled
components included the transmission target, the primary collimators, the monitor cham-
ber and the exterior casing. For the MLCs, each individual leaf was modelled following
vendor specifications for geometry and materials. The MRI’s magnetic field was mod-
elled externally in COMSOL Multiphysics (Stockholm, Sweden) using a finite element
method, modelled for each simulation geometry; it should be noted that the magnetic
field influences the linear accelerator’s electron beam upstream of the transmission target
and significantly affects secondary electron transport downstream of transmission target
[194]. These resultant fringe magnetic fields are dependent on the source-isocentre dis-
tance and the potential magnetic shielding effects introduced by the MLCs [119, 195,
196], hence this magnetic field modelling was performed for each simulation geometry.
Modelled magnetic fields were stored in a lookup table, and read into the simulations with
identical geometries. The modelled physics processes for the simulations were the photo-
electric effect, Compton scattering, pair production, internal gamma conversion, multiple
scattering, bremsstrahlung, ionisation and annihilation. Range cuts were defined to be
0.1 mm for all particles, and the step limit was defined to be 1 mm.

Figure 4.8: Simulation geometry of the Australian MRI-LINAC modelled in Geant4
with cutaway to show the components of the linear accelerator and MRI scanner.

Each simulation was split into two independent run stages. In the first stage, an elec-
tron beam was fired at the LINATRON’s transmission target and the particles crossing a
plane upstream of the MLCs were scored in a phasespace file. In the second stage of the
simulations, the phasespace files were used to generate a radiation beam directed at the



CHAPTER 4. FEASIBILITY OF PSDS FOR MRI-LINAC DOSIMETRY 85

MRI’s isocentre. In all second stage simulations, a 30 cm cube of G4Water was placed
with it’s geometric centre 5 cm downstream from the MRI scanner’s isocentre, such that
the 10 cm depth was aligned with the MRI’s isocentre. In these second stage simulations,
the dose distribution deposited in this volume of water were scored in a scoring mesh with
1 mm × 1 mm × 1 mm voxel.

Each simulation geometry was split into 200 identical simulations. 108 primary elec-
trons were fired in each of the first simulations to generate each phase space files, with ap-
proximately 3.3×106 particles scored in each phasespace file. As a result, approximately
2× 1010 primary electrons were generated per simulation geometry and approximately
6.6×108 particles were scored in the 200 phasespace files. For each of the second stage
simulations, the primary particles in the phasespace files were recycled by a factor of 99
so that an approximate total of 6.6×1010 primary particles were run for each simulation
geometry. The modelled geometry of these simulations are shown in Figure 4.8.

4.2.5 Analysis

Dose differences

To assess the performance of the in-house PSD, global dose-differences were calculated
between the PSD measured distributions and reference distributions. For the case of film
measured and simulated dose in water distributions, linear interpolation was used to pre-
dict the dose at positions where other detector responses were measured; these interpo-
lated distributions were used as the reference distributions when calculating the differ-
ences. Differences were calculated using Equation 4.1 (defined as ∆D) [197].

∆D(r) = DE(r)−DR(r) (4.1)

Where DE(r) is the dose in the evaluated distribution at position r, DR(r) is the dose in
the reference distribution at position r. To determine whether dose differences between
two distributions were statistically acceptable, these differences were compared against
the corresponding combined uncertainty in the dose differences. For measurements with
film, the batch of film used for measurements in this chapter had a relative uncertainty of
3.2 % [134]. For simulations and the measurements with the PSD, Farmer chamber and
microDiamond, standard deviations were calculated in each of their responses at each
measurement position. The uncertainty in each of their responses was taken as two stan-
dard deviations of the corresponding mean response at that position, as recommended by
NIST primary standards for the reporting of all dosimetric quantities in medical physics
[198]. The combined uncertainty in the dose differences was then taken as the sum of
the corresponding two detector’s uncertainties at each point in the distribution. When the
magnitude of the dose difference was less than the corresponding combined uncertainty,
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the dose difference was acceptable within the 95 % confidence interval.

Mean absolute differences

Mean absolute differences (MADs) were calculated between each set of measured dis-
tributions to determine the average deviation between the PSD, the reference detectors
and the simulated distributions. Calculated MAD values were compared to correspond-
ing MAD values for MRI-LINAC dosimetry published in the literature, with the aim of
providing context of the performance of the PSD. MADs were calculated using Equation
4.2:

MAD =
1
N

N

∑
i=1
|∆D(ri)| (4.2)

Where ∆D(ri) is the dose difference at position ri, and N is the number of points in the
reference distribution.

Gamma index

The difference in dose metric is not suitable for comparing distributions in high spatial
dose gradients, e.g. the penumbral regions of beam profiles. For beam profiles, global
gamma indices (γ) were calculated between the in-house PSD and the reference data
for a more suitable comparison of distributions that includes the penumbral regions of
beam profiles. The γ metric combines the difference in dose metric with the distance to
agreement metric [197]; the distance to agreement corresponds to the minimum euclidean
distance between two distributions at equivalent doses. These differences in dose and dis-
tance to agreements are compared against preset criteria (δD and δ r) to evaluate whether
the point in the evaluated distribution lies within an acceptable error with respect to a
point in the reference distribution. The formalism for calculation of the γ is:

• Calculate the difference in doses between all reference distributions (i.e. film and
simulations) and the evaluated distribution (i.e. the in-house PSD).

• Calculate the distance to agreement between all reference distributions (i.e. film
and simulations) and the evaluated distribution (i.e. the in-house PSD).

Defining rR as the position in the reference distribution, rE as the position in the evalu-
ated distribution, the γ is calculated for each rE using Equation 4.3:

γ(rE) = min

(√(
rR− rE

δ r

)2

+

(
D(rR)−D(rE)

δD

)2
)

(4.3)
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Where D(rE) is the dose in the evaluated distribution at position rE , δ r is the distance
to agreement criterion and δD is the difference in dose criterion. The rationale behind
this calculation is: δ r and δD form an ellipsoid about each point in the reference dis-
tribution. When points in the evaluated distribution lie within one of these ellipsoids, γ

will have value ≤ 1 and the evaluated dose at this point is deemed to be passable for
the δD(%)/δ r(mm) criterion. From the set of γ(rE)s calculated for evaluated distribu-
tions, the percentage of γ(rE) passing the criterion (referred to as the γ pass-rate) is used
to determine whether the evaluated distribution is acceptable. Typically, the evaluated
distribution is deemed acceptable when the pass-rate ≥ 95 % for a δD(%)/δ r(mm) crite-
rion [197]. For the beam profiles presented in this chapter, the γs and passing rates were
calculated for criterion of 1 %/1 mm, 2 %/2 mm and 3 %/3 mm.

4.3 Results

4.3.1 Output factors

The output factors measured at 10 cm and 20 cm depth are presented in the top of Figures
4.9 and 4.10, respectively, with the corresponding uncertainties in the measured responses
plotted at the bottom of Figures 4.9 and 4.10, respectively. Dose differences between each
of the detectors are presented in the middle of Figures 4.9 and 4.10. MADs and maximum
differences in dose are reported in Table 4.1. It should be noted that the Farmer chamber
was susceptible to partial volume effects in the 2.6 cm × 2.6 cm field, causing an under-
response at this field size. The Farmer chamber was not used to measure the response in
this 2.6 cm × 2.6 cm field.

For the 10 cm depth, the PSD, Farmer chamber and microDiamond detector were all
within an average value of 0.3 % of each other. Maximum differences in dose at this
depth were 0.7 % between the PSD and Farmer chamber, 0.9 % between the PSD and mi-
croDiamond detector, and 0.4 % between the Farmer chamber and microDiamond. These
maximum differences were less than the corresponding uncertainty of the dose differ-
ences. No systematic trends are present when comparing the PSD, Farmer chamber and
microDiamond measured output factors. Given this, differences between the output fac-
tors arise as a result of statistical measurement fluctuations. The Monte Carlo simulation
results had standard deviations greater than 2 % for all field sizes, and so the simulated
output factors had uncertainties greater than 4 %. Given these uncertainties, all dose dif-
ferences with respect to the simulated output factors were less than the corresponding
uncertainties in the dose differences. The PSD, Farmer chamber and microDiamond de-
tector had MADs of 1.2 %, 1.7 % and 1.2 % with respect to the simulated doses in water,
respectively. Maximum differences with respect to simulations were 3.0 % for the PSD,
2.1 % for the Farmer chamber, and 2.3 % for the microDiamond detector. No systematic
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Figure 4.9: Top: output factors at the 2.469 m SID, 10 cm depth. Middle: differences
in dose between each detector and the simulation. Bottom: Uncertainties in each of the
output factors. In the legend, PSD is the in-house PSD, IC is the Farmer chamber, mD is
the microDiamond detector and Sims are the Monte Carlo simulations.

trends were present when comparing the simulated output factors to the measured out-
put factors, suggesting that all reported difference arose as a result of random statistical
fluctuations.

The maximum differences between the simulations and the PSD, and the simulations
and microDiamond detector occurred for the 2.6 cm × 2.6 cm, with the PSD and micro-
Diamond under-responding with respect to the simulations. This under-response may be
inflated by detector misalignment. For small fields such as the 2.6 cm × 2.6 cm, it is rec-
ommended that detectors are aligned to peak dose in the small field within a tolerance less
than 1 mm [12]. The PSD and microDiamond were both aligned to the MRI-LINAC’s
isocentre projection lasers by eye, such that there was potential for misalignment that
could cause a decrease in measured output factor at the 2.6 cm × 2.6 cm field size. Typi-
cally, it is recommended that the centre of the field is found using a scanning water tank
for these real-time dosimeters [12]; however, this approach could not be applied at the
time of measurement given no MRI compatible scanning water tank was available. Thus
for measurements in the 2.6 cm × 2.6 cm field, there was the potential for misalignment
induced underestimations in the small field.
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Figure 4.10: Top: output factors at the 2.469 m SID, 20 cm depth. Middle: differences
in dose between each detector and the simulation. Bottom: Uncertainties in each of the
output factors. As in Figure 4.9, PSD is the in-house PSD, IC is the Farmer chamber,
mD is the microDiamond detector and Sims are the Monte Carlo simulations.

For the 20 cm depth, MADs were 0.9 % between the PSD and Farmer chamber, 1.2 %
between the PSD, and microDiamond detector and 1.4 % between the Farmer chamber
and microDiamond detector. Maximum differences were 2.3 % between the PSD and
Farmer chamber, 2.6 % between the PSD and microDiamond detector and 2.8 % between
the Farmer chamber and the microDiamond detector. Differences between the PSD and
Farmer chamber were less than the difference’s corresponding uncertainty, however, dif-
ferences between the PSD and microDiamond were unacceptable for the 2.6 cm× 2.6 cm,
13.1 cm× 13.1 cm and 21.0 cm× 21.0 cm field sizes. The excessive differences at 2.6 cm
× 2.6 cm may be explained by detector misalignment, however these other disagreement
cannot be explained by such setup related effects. Differences between the Farmer cham-
ber and microDiamond were unacceptable for the 3 largest field sizes, in which it appears
that the microDiamond increasingly under-responded with respect to the PSD and the
Farmer chamber as field size increased above 10.5 cm × 10.5 cm. It should be noted that
the microDiamond’s uncertainties at these field sizes had significantly decreased below
it’s uncertainties for field sizes below 10.5 cm × 10.5 cm, though the source of this re-
sult could not be determined. Simulated doses were on average within 1.5 %, 1.4 % and



CHAPTER 4. FEASIBILITY OF PSDS FOR MRI-LINAC DOSIMETRY 90

10 cm MAD 20 cm MAD Global MAD Global max
(%) (%) (%) (%)

PSD - IC 0.3 0.9 0.6 2.3
PSD - mD 0.3 1.2 0.7 2.6

PSD - Sims 1.2 1.5 1.3 3.0
IC - mD 0.3 1.4 0.9 2.8

IC - Sims 1.0 1.4 1.2 3.1
mD - Sims 1.2 0.7 0.9 2.3

Table 4.1: 10 cm MAD and 20 cm MAD are the mean absolute differences for the output
factors at 10 cm depth and 20 cm depth. Global MAD is the global mean of the absolute
dose differences and Global max is the maximum difference in dose. As in Figures 4.9
and 4.10, PSD is the in-house PSD, IC is the Farmer chamber, mD is the microDiamond
detector and Sims are the simulated doses.

0.7 % of the PSD, Farmer chamber and microDiamond detector, respectively. Standard
deviations in the simulated doses ranged between 2.5 % and 3.0 %, such that all dose
differences were smaller than the corresponding uncertainties in these dose differences.

In the literature, Farmer type ionisation chambers and the PTW60019 microDiamond
have been studied extensively to validate their responses in the presence of magnetic
fields, important for QA dosimetry with MRI-LINACs. For in-line orientation MRI-
LINACs, the response of Farmer chambers remains within 1 % of their corresponding
responses with no magnetic field present [199]. With the microDiamond orientated paral-
lel to the in-line magnetic field, the response of the microDiamond detector varied by less
than 1 % compared to it’s corresponding response with no magnetic field present [149].
With regards to the presented output factors, calculated MADs and maximum differences
were similar for the PSD, Farmer chamber and microDiamond detector. Given the Farmer
chamber and microDiamond detector were valid and suitable for these output factor mea-
surements, the PSD can be concluded to also be suitable for the measurement of output
factors with the in-line MRI-LINAC.

Typically for clinical LINACs, the shape of output factors arises due to two independent
effects [200]. Firstly, as field size increases, the dose deposited in the dosimeter increases
due to increasing contributions of scattering radiation. Secondly, as field size increases,
the dose-rate in the LINAC’s monitor chamber decreases due to decreasing scattering
from the secondary collimators and MLCs, and so the duration required to deliver the
prescribed quantity of monitor units decreases as field size increases. In the Monte Carlo
simulations, the first effect is implicitly incorporated into the simulation but the latter ef-
fect was not taken into account. The simulations are expected to remain valid due to the
unique characteristics of the Australian MRI-LINAC: the LINAC has no secondary col-
limators and the fitted MLCs are positioned approximately 50 cm downstream from the



CHAPTER 4. FEASIBILITY OF PSDS FOR MRI-LINAC DOSIMETRY 91

LINAC’s transmission target. The simulated output factors were within acceptable agree-
ment of all other detectors, hence the effect where increasing field size leads to increasing
measurement duration was negligible; otherwise this effect would have caused systematic
disagreements between simulated output factors and the measured output factors.

4.3.2 Beam profiles

The measured and simulated beam profiles at 1.869 m SID are presented in Figures 4.11
and 4.12. Similarly, the measured and simulated beam profiles at 2.469 m SID are pre-
sented in Figures 4.13 and 4.14. In these profiles, the error bars correspond to the un-
certainty in the PSD’s response, and the shaded regions correspond to the uncertainty in
film’s response and the simulation’s doses. During the calculation of dose differences
and γs, each beam profile was treated as a relative beam profile. To conserve space, the
profiles in Figures 4.11−4.14 are shown scaled by the relative central axis PDD response
of the PSD for corresponding depths of measurement. To calculate differences in dose
between the PSD and film, and the PSD and simulations, linear interpolation was used
to sample each of the film and simulated profiles at positions where corresponding PSD
measurements were made. For differences between the simulated profiles and film pro-
files, linear interpolation was used to sample the film profiles at positions where the dose
in water was simulated. MADs were calculated for the central regions of the beam pro-
files (i.e. for off-axis positions within the central 80 % of the beam’s width) and out of
field regions of the beam profile (positions where the relative dose was less than 10 %).
Global MADs are presented in Table 4.2.

For the profiles measured at 1.869 m SID in Figures 4.11 and 4.12, the central region
ranged between −7.6 mm and +7.6 mm, and the out of field regions were located for
off axis positions further than +13.5 mm from the centre of the field. For the central
region, the dose differences between the PSD and film were less than the correspond-
ing uncertainty in the dose differences. Similarly, the dose differences between the PSD
and simulations, and film and the simulations were less than each dose difference’s un-
certainties for this central region. MADs for the central region were 1.1 % between the
PSD and film, 1.5 % between the PSD and simulations, and 1.2 % between the film and
simulations.

For the out of field regions at 1.869 m SID, the PSD and film profiles were generally
in close agreement. The dose differences between the PSD and film were less than these
dose difference’s uncertainties for all out of field positions in these profiles, except for the
−15 mm position at 10 cm depth. This was the only disagreement, and so it was expected
to be the result of a random statistical fluctuation. The dose differences between the PSD
and simulations, and film and simulations had their profiles in agreement for the positions
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Figure 4.11: Beam profiles measured with the in-house PSD and radiochromic film, for
the 1.869 m SID, 1.9 cm × 1.9 cm field. In these figures, PSD is the in-house PSD and
Film is EBT3 film. Error bars correspond to the uncertainty in the PSD’s response, and
shaded regions corresponds to the uncertainty in film’s response. Results for the PSD
and film were published in Madden et al. 2020 [187].

further than ±15 m from the centre of the field, but fall out of agreement for positions
between the ±(13.5−15) mm positions. This occurred as the simulated beam profiles
had narrower full widths at half maximums (FWHMs) and penumbral widths than the
PSD and film profiles. As a result, the PSD and film profiles had higher relative doses
than those that were simulated between the ±(13.5−15) mm positions. These out of field
dose differences between the simulations and measured doses were inflated as a result.
MADs for the out of field regions were 0.4 % between the PSD and film, 0.7 % between
the PSD and simulations, and 0.8 % between the simulations and film. It was expected
that simulated profiles had narrowed penumbra and FWHMs due to minor differences
between the modelled MLC leaves and the true MLC leaves [201].

For the 2.469 m SID profiles in Figures 4.13 and 4.14, the central region was defined
between −10.4 mm and +10.4 mm, and the out of field regions occurred at positions less
than −16.5 mm and positions greater than +16.5 mm. Similar to the profiles measured
at 1.869 m SID, the PSD, film and simulated profiles had dose differences that were less
than the corresponding uncertainty in the dose differences for the central regions of the
beam profiles. MADs for the central region of these profiles were 1.0 % between the
PSD and film, 1.6 % between the PSD and simulations, and 1.3 % between the film and
simulations. Similar to the profiles measured at 1.869 m SID, the out of field differences
were within agreement for the PSD and film, such that their dose differences were less
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Figure 4.12: Right: Beam profiles measured for the 1.869 m SID for the 1.9 cm× 1.9 cm
field, with the PSD compared against simulated beam profiles. In this figure, PSD is the
in-house PSD and Sims are the simulated dose profiles. Error bars correspond to the
uncertainty in the PSD’s response, and shaded regions corresponds to the uncertainties
in the simulated dose.

than the uncertainty in the dose differences. For the out of field region at 1 cm depth, the
simulations over-estimated the dose with respect to the PSD and film. As for the simulated
profiles at 1.869 m SID, the simulated profiles at 2.469 m SID had narrowed FWHMs and
penumbras, causing inflation of the simulation’s MADs with respect to the PSD and film.
MADs for the out of field regions were 0.5 % between the PSD and film, 1.5 % between
the PSD and simulations, and 1.5 % between the film and simulations.

Global γs were calculated for the 1 %/1 mm, 2 %/2 mm and 3 %/3 mm criterion with no
dose threshold. The global γs shown in Figure 4.15 evaluate the PSD profiles using the
film profiles. Similarly, the global γs shown in Figure 4.16 evaluate the PSD profiles using
the simulations as reference distributions. Global γs shown in Figure 4.17 evaluate the
simulated profiles using the film as reference distributions; film was used as the reference
distribution in this case as it’s spatial sampling frequency was ≈0.36 pixels/mm, smaller
than the simulation’s sampling frequency of 1 mm/voxel, making film the more suitable
reference distribution. Global γ pass-rates are presented in Table 4.2.

For the γs evaluating the PSD with reference to film presented in Figure 4.15, the central
regions and out of field regions were all within the 3 %/3 mm agreement, such that all γs
were less than 1 in these regions. This result was expected given the maximum difference
in dose between the PSD and film was 2.2 % in the central regions and 1.5 % in the out of
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Figure 4.13: Beam profiles measured with the in-house PSD and radiochromic film, for
an 2.469 m SID 2.6 cm × 2.6 cm field. In the legend, PSD is the in-house PSD and Film
is EBT3 film. Error bars correspond to the uncertainty in the PSD’s response, and shaded
regions corresponds to the uncertainty in film’s response. Results for the PSD and film
were published in Madden et al. 2020 [187].

field regions. In the penumbral regions, all but 1 of the PSD’s measurement positions were
within the 3 %/3 mm agreement with film. The corresponding mean pass-rate was 99.4 %,
acceptable for the 3 %/3 mm criteria. At 2 %/2 mm, the PSD remained in agreement with
film for the central regions, such that all γs were less than 1 in these regions. However,
there were 3 failures in the penumbral regions for the 2 %/2 mm criteria. This increased
failure rate in the penumbras arose from a combination of the 0.36 mm spatial sampling
frequency of film, and the high spatial dose gradient of the MRI-LINAC’s penumbral
widths. From previous investigations, the penumbra width in film ranged between (3.4
± 0.4) mm and (3.9 ± 0.2) mm at 1.869 m SID in the 1.9 cm × 1.9 cm sized field, and
between (4.0 ± 0.4) mm and (4.6 ± 0.9) mm at 2.469 m SID in the 2.6 cm × 2.6 cm
sized field [187]. In this penumbral region, film averages a minimum relative change in
response of 4.6 %/pixel. As a result, an increased failure rate occurred in the penumbral
region. The mean pass-rate for the 2 %/2 mm criteria was 98.1 %, therefore the PSD was
in acceptable agreement with film for the 2 %/2 mm criteria. At 1 %/1 mm, there were
increased failures in each of regions. In the central region, dose differences greater than
1 % caused 6 failures, such that γ was less than one. For the out of field regions, there
were 5 failures, and there were 10 failures in the penumbral regions. The number of
failures in the penumbral regions was inflated due to the aforementioned combination of
film’s spatial sampling frequency and the narrow penumbra widths of these beam profiles.
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Figure 4.14: Beam profiles measured with the PSD, compared against simulated beam
profiles, for an 2.469 m SID 2.6 cm × 2.6 cm field. In these figures, PSD is the in-house
PSD and Sims are the simulated dose profiles. Error bars correspond to the uncertainty in
the PSD’s response, and shaded regions corresponds to the uncertainty in the simulated
distributions.

The mean pass-rate between the PSD and film for the 1 %/1 mm criteria was 85.8 %, and
therefore unacceptable given this criteria.

The γs evaluating the PSD with respect to the simulations are presented in Figure 4.16.
For the 3 %/3 mm criteria, the PSD was within acceptable agreement with the simulations
for the central and out of field regions, such that all γs were less than 1 in the out of field
regions and all γs except one were less than one in the central regions. However, there
were 25 failures in the penumbral regions, some of which have γ values that were too large
to be shown in the 3 %/3 mm criteria’s graph in Figure 4.16. Due to the 1 mm/voxel spa-
tial sampling frequency of the simulations, there were increased frequencies of failures in
the penumbral regions when evaluating the PSD with respect to simulations, compared to
when the PSD was evaluated with respect to film. Additionally, the simulations had nar-
rowed FWHMs and penumbras compared to the PSD and film, causing a further increase
in the penumbral region’s failure rate. The mean pass-rate between the PSD and simula-
tions was 83.9 %, unacceptable within the 3 %/3 mm criteria. For the 2 %/2 mm criteria,
there were increased rates of failure in the out of field and penumbral regions, whereas the
number of failures in the central region remained at 1. The number of failures in the out
of field increased to 7, arising as a result of the significant random statistical fluctuations
associated with the high uncertainty in the out of field doses (observable in Figures 4.12
and 4.14), as well as an over-estimation in the out of field dose at 1 cm depth, 2.469 m
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Figure 4.15: Gamma indices between PSD and film for each set of beam profiles; results
were published in Madden et al. 2020 [187].

SID. The number of failures in the penumbral regions increased to 32. The mean pass-
rate when evaluating the PSD with respect to simulations at 2 %/2 mm was 75.2 %. For
the 1 %/1 mm criteria, failure rates increased in each of the regions. The increased failure
rates in the central and out of field regions was exacerbated due to the significant statis-
tical uncertainty in the simulated doses, observable in the error bars of Figures 4.12 and
4.14. At the 1 %/1 mm criteria, the PSD and simulation had a mean pass-rate of 46.0 %.

For the γs evaluating the simulations with reference to film presented in Figure 4.17,
the central regions and out of field regions were all acceptable for 3 %/3 mm criteria, such
that all γs were less than 1 in these regions. All instances of failures at 3 %/3 mm occurred
in the penumbral regions, arising from the simulation’s narrowed FWHMs and penum-
bral widths when compared against the PSD’s and film’s profiles. The mean pass-rate
for the 3 %/3 mm criteria was 97.5 %, therefore the simulations were acceptable given a
3 %/3 mm criteria when evaluated with respect to film. For the 2 %/2 mm criteria, there
were increased failure rates for the central, out of field and penumbral regions. The in-
crease in failure rates for the central regions arose as dose differences exceeded 2 %,
owing to the significant uncertainties in the simulation’s and film’s profiles in the central
regions (observable as the shaded regions in Figures 4.11−4.14). Failures in the out of
field region arose as the simulated dose profiles at 1 cm depth, 2.469 m SID had increased
out of field doses. Increased failure rates in the penumbral region arose as many of the
simulated doses in the penumbral regions caused the calculated γs to exceed 1 with a
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Figure 4.16: Gamma indices between the PSD and simulations for each set of beam
profiles.

2 mm distance to agreement, whereas many of these simulated doses in the penumbral
region were acceptable given the 3 mm distance to agreement. For the 2 %/2 mm crite-
ria, the mean pass-rate when evaluating the simulated profiles with respect to film was
83.4 %, therefore the simulations were unacceptable within this 2 %/2 mm criteria. For
the 1 %/1 mm criteria, failure rates were significantly increased in all regions of the pro-
files. Aforementioned disagreements were exacerbated, causing the mean pass-rate to
decrease to 58.4 % at 1 %/1 mm.

The PSD’s performance in the measurement of MRI-LINAC beam profiles was as-
sessed by comparing the calculated statistics against those published in the literature for
other detectors. Chen et al. compared beam profiles measured by a micro-ionisation

Central OOF 1 %/1 mm 2 %/2 mm 3 %/3 mm
MAD (%) MAD (%) γ (%) γ (%) γ (%)

PSD - Film 1.1 0.4 85.8 98.1 99.4
PSD - Sims 1.5 1.1 46.0 75.2 83.9
Sims - Film 1.2 1.2 58.4 83.4 97.5

Table 4.2: Table presenting the Global MADs and γs for the measured and simulated
beam profiles. Central MAD columns refer to the global MADs calculated in the central
regions of the profile, and OOF MAD columns refer to the global MADs calculated in
the out of field regions of each profile. Each of the γ columns reports the mean pass-rate
for each of the criterion.
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Figure 4.17: Gamma indices between the simulations and film for each set of beam
profiles.

chamber, a Farmer chamber and GafChromic EBT3 film against those calculated by the
MRI-LINAC’s treatment planning system [147]. These detectors were found to be within
1 % global agreement for central regions and 2 % global agreement for out of field re-
gions. For the same conditions, the PSD and film had a maximum difference of 2.2 % for
the central regions and 1.5 % agreement for the out of field regions. Given these statistics,
it can be concluded that the PSD performed similarly to the investigated ionisation cham-
bers and radiochromic film. Roed et al. compared 1.5 T perpendicular MRI-LINAC beam
profiles measured with GafChromic EBT3 film, a microDiamond detector and Fricke type
gel [202]. The film and microDiamond detector profiles were within 2 % global agree-
ment for all positions, comparable to the performance 2.2 % maximum difference between
the PSD and film.

O’Brien et al. applied global γ analysis to evaluate beam profiles measured by a Farmer
chamber, multiple micro-ionisation chambers, a microDiamond detector and multiple
diode detectors for the 2 %/0.2 mm criterion [137]. Each profile was evaluated with ref-
erence to the mean of all detector’s profile. The mean global pass-rate was 96.9 % with
no magnetic field present, and 89.2 % in the presence of the 1.5 T perpendicular magnetic
field. It was concluded that the increased failure rate arose due to varying degrees of asym-
metry and lateral shift as these effects are dependent on the dosimeter’s density [135]. It
should be noted that the diode detectors under-estimate the lateral shift and asymmetry
that occurs in water, whereas the ionisation chambers over-estimate the lateral shift and
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asymmetry that occurs in water. Through taking the mean of all detector’s profiles, the
mean beam profiles average the lateral shifts of the diodes and the ionisation chambers.
For the case of the PSD used in the presented work, it’s sensitive volume had a density
of 1.032 g/cm3, and so it’s expected that the PSD would have experienced a lateral shift
and asymmetry matching that of water given water’s density of 1 g/cm3. Given this, the
PSD could have been expected to closely match the mean beam profile calculated for the
γ analysis. For the γ analysis between the PSD and film at 2 %/2 mm, the only failures
occurred in the penumbral region, with these failures occurring as the film could not pro-
vide an adequate number of samples to satisfy the 2 % dose difference component of the
γ analysis. Given this result and the PSD’s highly water equivalent sensitive volume, it
is plausible that the PSD would have remained close to the mean beam profile if it was
applied in O’Brien et al.’s study.

4.3.3 Percent depth dose distributions

PDDs measured in the 2.6 cm× 2.6 cm, 5.3 cm× 5.3 cm, 10.5 cm× 10.5 cm and 18.4 cm
× 18.4 cm fields are presented at the top of Figures 4.18−4.21, respectively. Correspond-
ing dose differences are presented in the middle of Figures 4.18−4.21. All PDDs were
normalised to the response at 5 cm depth. The Farmer chamber PDDs were not measured
for the 2.6 cm × 2.6 cm sized field as the Farmer chamber suffers from partial volume ef-
fects in this small field. Uncertainties in the PDDs are presented in the bottom of Figures
4.18−4.21. MADs for each set of dose differences are presented in Table 4.3, along with
the global mean MADs.

For the PDDs measured in the 2.6 cm × 2.6 cm field (presented in Figure 4.18), the
PSD systematically under-responded with respect to the film PDDs between depths of
1 mm and 15 mm, with a maximum under-response of 4.0 % at the 1 mm depth. These
dose differences were less than the corresponding uncertainty in the dose differences. For
depths between 1 mm and 15 mm, the PSD and film under-responded when compared
against the simulated dose distributions. These under-responses were most significant at
the 1 mm depth, being 15.7 % between the PSD and simulations, and 11.7 % between
the film and simulations. The dose differences between the PSD and simulations, and
the film and simulations were unacceptable only at the 1 mm depth, with the dose dif-
ferences between 3 mm and 15 mm being less than the corresponding uncertainty in the
dose differences. These discrepancies in the entrance region were expected to arise due
to two separate effects induced by the high lateral dose gradient of the electron focal spot
[133]. Firstly, the PSD and film were aligned to the central axis by eye to the MRI-
LINAC’s isocentre-projection lasers. These lasers were reported to have a positioning
uncertainty of 1.6 mm with respect to the MRI-LINAC’s isocentre for the 2.469 m SID
[134]. From previous investigations [128, 133], the focal spot also has significantly high
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Figure 4.18: Top: central axis PDDs for the 2.469 m SID, 2.6 cm× 2.6 cm field. Bottom:
dose differences between each of the PDDs. In the legend, PSD is the PSD, Film is the
GafChromic EBT3 film, and Sims are the simulated dose distributions in water. Results
for the PSD and film were published in Madden et al. 2021. [188]

spatial dose gradients orthogonal to the central depth axis. Given the alignment method
for film, small offsets from the central axis would cause an underestimation of the doses
in the entrance region, as observed in the 2.6 cm× 2.6 cm field. The other effect expected
to cause disagreements between the PSD, film and simulations in the entrance regions
are partial volume effects. The PSD’s sensitive volume had a diameter of 2 mm and a
length of 0.8 mm. In the simulations, the 1 mm3 dose scoring voxels were geometrically
centred at half-integer values, e.g 0.5,1.5, ...,n+ 0.5. To determine the PDD responses
along the central axis, the simulations were averaged across the 2 voxels × 2 voxels that
intersected the central axis, effectively making the simulation’s sensitive volume a 2 mm
× 2 mm cross section with a 1 mm thickness. In comparison to the PSD and simulations,
film’s sensitive volume was approximately 30 µm × 0.36 mm, mitigating the partial vol-
ume effects for these high spatial dose gradients. Consequently, there was the potential
for differing degrees of partial volume effects to perturb the entrance doses of the PSD,
film and simulations.

For depths between 20 mm and 200 mm, there were no systematic over-response or
under-response trends present when comparing the PSD and the simulations. All dose
differences between the PSD and simulations were less than their dose difference’s uncer-
tainty for these depths. When comparing the PSD and film, and the film and simulations,
there was a systematic trend where the film increasingly under-responded as depth in-
creased beyond 50 mm. For depths greater than 15 mm, the maximum difference between



CHAPTER 4. FEASIBILITY OF PSDS FOR MRI-LINAC DOSIMETRY 101

the PSD and film was 3.7 %, and the maximum difference between the simulations and
film was 4.3 %. The calculated MADs for depths between 15 mm and 200 mm were 2.1 %
between the PSD and film, 0.9 % between the PSD and simulations, and 1.9 % between
the film and simulations. Due to the systematic deviations between the PSD and film,
the dose differences between the PSD and film were unacceptable at depths greater than
135 mm, whereas depths between the simulations and film were acceptable for all depths
greater than 15 mm except the 190 mm depth. Evidently, there was a systematic exper-
imental setup uncertainty that could be not accounted for, causing systematic deviations
between the PSD and film, as well as the film and simulations. For PDD measurements
in small fields, angular misalignments from the depth axis are reported to be potential
sources of such increasing dose differences with increasing depth. In a Monte Carlo study
by Khelashvili et al., a 1◦ misalignment between a LINAC’s gantry angle and the central
depth axis caused dose differences greater than 2 % at 15 cm depth in small fields [203].
Alignment for the film and PSD was performed with reference to the LINAC’s isocentre
projection laser; the observed trends in differences between the PSD and film could result
from angular misalignment.

Figure 4.19: Top: central axis PDDs for the 2.469 m SID, 5.3 cm× 5.3 cm field. Bottom:
dose differences between each of the PDDs. In the legend, PSD is the in-house PSD, IC
is the Farmer ionisation chamber, Film is the GafChromic EBT3 film, and Sims are the
simulated distributions in water. Results for the PSD, Farmer chamber and film were
published in Madden et al. 2021 [188].

For the 5.3 cm × 5.3 cm field size PDDs presented in Figure 4.19, there were signifi-
cant disagreements between the PSD, film and simulations for depths between 1 mm and
15 mm. At these depths, the PSD and film had a difference of 26.7 %, the PSD and sim-
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ulations had a maximum difference of 22.3 %, and the film and simulations had a max-
imum difference of 13.3 %. Dose differences were unacceptable between the PSD and
film for depths between 1 mm and 7 mm, acceptable between the PSD and simulations at
all depths except 1 mm, and acceptable between the film and simulations for all depths
except 3 mm. As discussed earlier, there were effects that were expected to systematically
induce these inflated differences; these were detector misalignment and partial volume
effects.

For depths between 20 mm and 200 mm, the PSD and simulations remained in close
agreement, with no systematic trends present between the PSD and simulations. At these
depths, the dose difference between the PSD and simulations was less than the uncer-
tainty in the dose differences. Similarly, when comparing the Farmer chamber and film
at these depths, there were no systematic differences and the corresponding dose differ-
ences were less than the uncertainty in these differences. However, when comparing the
PSD and simulations with the film and Farmer chamber, there were systematic differences
between the PSD and film, the PSD and the Farmer chamber, the simulations and film,
and the simulations and the Farmer chamber. At the 200 mm depth, the PSD’s response
was 1.7 % greater than the Farmer chamber’s response and 1.5 % greater than the film’s
response. Similarly, at 200 mm, the simulated doses were 1.0 % greater than the Farmer
chamber’s response and 0.8 % greater than the film’s response. It should be noted that all
systematic differences were less than the corresponding uncertainties in these dose differ-
ences, except between the PSD and the Farmer chamber at depths greater than or equal
to 160 mm. These systematic differences may have arisen due to an angular misalign-
ment from the central axis. The corresponding MADs are reported in Table 4.3 for depths
between 15 mm and 200 mm.

For the 10.5 cm × 10.5 cm field size PDDs presented in Figure 4.20, there were sys-
tematic differences between the PSD, film and simulations for depths between 1 mm and
15 mm. Unlike the previous PDDs at field sizes of 2.6 cm × 2.6 cm, the PSD and simu-
lations under-responded with respect to the film. The simulation’s under-response arose
due to partial volume effects experienced, whereas the PSD’s under-response likely arose
due to a combination of partial volume effects and misalignment from the central axis.
At these depths, the PSD and film were not in agreement for the depths between 1 mm
and 9 mm, the film and simulations were not in agreement for depths between 1 mm and
7 mm, and the PSD and simulations were in agreement for all depths except the 1 mm
depth.

For the depths between 20 mm and 200 mm, all PDDs were generally within agreement,
and any systematic differences between the PSD and film, the PSD and Farmer chamber,
the simulations and film, and the simulations and the Farmer chamber were reduced in
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Figure 4.20: Top: central axis PDDs for the 2.469 m SID, 10.5 cm × 10.5 cm field.
Bottom: dose differences between each of the PDDs. As in Figure 4.19, PSD is the in-
house PSD, IC is the Farmer chamber, Film is the GafChromic EBT3 film and Sims are
the simulated dose distributions in water. Results for the PSD, Farmer chamber and film
were published in Madden et al. 2021 [188].

comparison to the trends present for the 2.6 cm × 2.6 cm and 5.3 cm × 5.3 cm fields. The
only significant systematic deviation occurred between the PSD and film, and the PSD
and the Farmer chamber for depths greater than 170 mm. At these depths, the maximum
difference between the PSD and film was inflated to 2.7 %, and the maximum difference
between the PSD and the Farmer chamber was inflated to 2.3 %. The remaining maxi-
mum differences between depths 20 mm and 200 mm were 2.0 % between the PSD and
simulations, 1.9 % between the film and Farmer chamber, 2.4 % between the simulations
and film, and 3.2 % between the simulations and the Farmer chamber. For the depths be-
tween 20 mm and 200 mm, dose differences between each of the PDDs were less than the
corresponding difference’s uncertainties, except between the PSD and the Farmer cham-
ber for depths between 175 mm and 200 mm. Corresponding MADs are reported in Table
4.3. Angular misalignment is less severe as field size increases [203], therefore angular
misalignment cannot be the sole cause of the differences between the PSD and film, and
the PSD and the Farmer chamber at this field size.

For the 18.4 cm × 18.4 cm field size PDDs presented in Figure 4.21, there were signif-
icant systematic disagreements between the PSD and film, and the PSD and simulations
between depths of 1 mm and 15 mm. Dose differences between the PSD and film were un-
acceptable for all depths between 1 mm and 15 mm, and the dose differences between the
film and simulations were only acceptable at the 13 mm and 15 mm depths. For reference,
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Figure 4.21: Top: central axis PDDs for the 2.469 m SID, 18.6 cm × 18.6 cm field.
Bottom: dose differences between each of the PDDs. As in Figure 4.19’s legend, PSD
was the in-house PSD, IC was the Farmer ionisation chamber, Film was the GafChromic
EBT3 film and Sims were the simulated dose distributions in water. Results for the PSD,
Farmer chamber and film were published in Madden et al. 2021 [188].

the PSD and simulations had dose differences that were less than the corresponding uncer-
tainty in these dose differences at all depths between 1 mm and 15 mm, except at the 7 mm
depth. The disagreements at this field size were the most severe out of all the PDDs mea-
sured. As for the 2.6 cm× 2.6 cm, the 5.3 cm× 5.3 cm and 10.5 cm× 10.5 cm field sizes,
the simulations under-responded as a result of partial volume effects and the PSD likely
under-responded due to the combination of partial volume effects and potential misalign-
ment from the centre of the field. These effects were most severe at the 18.4 cm× 18.4 cm
as the fluence of electrons focused by the fringe magnetic field increases with field size,
thereby escalating the dose in the entrance region as field size increased. It should be
noted that the PSD, film and simulations were all highly water equivalent dosimeters with
small sensitive volumes. In spite of these qualities the significant and unacceptable dose
differences arose between each of the distributions, mainly due to partial volume effects
that lead to the under-estimation of dose by the PSD and simulations. Given these results,
the in-house PSD is conclusively not suitable for measurements in the electron focal spot
of the Australian MRI-LINAC. This limitation could be easily addressed by reducing the
PSD’s sensitive volume thickness and using a scanning water tank to find the centre of the
focal spot prior to measurements.

For depths between 20 mm and 200 mm in the 18.4 cm× 18.4 cm sized field, there was
no under-response trend between the PSD and the Farmer chamber, and the Farmer cham-
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ber and simulations. Dose differences between the PSD, Farmer chamber and simulations
were all less than their dose difference’s uncertainties between these depths, except for
the PSD and Farmer chamber at depths of 180 mm and 200 mm. These two unacceptable
differences arose as a result of random statistical fluctuations. With regards to the film
measured PDDs, the film over-responded with respect to the PSD, Farmer chamber and
simulations for depths between 100 mm and 200 mm. This over-response gradually in-
creased in magnitude as depth increased from 100 mm to 155 mm, and then decreased in
magnitude as depth increased from 155 mm and 200 mm. Given the nature of this trend,
the film was expected to have had a significant non-uniformity when it was read out,
causing this apparent trend. As a result of this trend, dose differences were unacceptable
between the PSD and film from depths of 150 mm to 180 mm, and unacceptable between
the Farmer chamber and film from depths between 130 mm and 175 mm. The corre-
sponding dose differences between the simulations and film remained within agreement
between depths of 20 mm and 200 m. For depths between 20 mm and 200 mm, the max-
imum differences were 2.2 % between the PSD and the Farmer chamber, 4.7 % between
the PSD and film, 2.2 % between the PSD and simulations, 4.6 % between the Farmer
chamber and film, 2.2 % between the Farmer chamber and film, and 5.1 % between the
film and simulations.

To assess whether the PSD’s performance was suitable, these MAD and maximum
difference statistics are compared to values reported for other dosimeters in the literature.
In O’Brien et al. [137], PDDs were measured with a 1.5 T perpendicular magnetic field
using a micro-volume ionisation chamber, a thimble ionisation chamber, a microDiamond
detector and multiple diode detectors. In a 2 cm× 2 cm field, the ionisation chambers and
solid state detectors had a maximum disagreement approaching 2.2 % at 10 cm depth,
increasing as depth increased; this trend was not observed in the 10 cm × 10 cm field,
with all detectors being within 1 % of the accepted PDD. In Chen et al. [147], a Farmer
chamber, a micro-volume ionisation chamber and a microDiamond detector were used
to measure PDDs with a 1.5 T MRI-LINAC, compared against the treatment planning
system’s beam model. Measured PDDs were within 2 % of the beam model, reported
to be within 1 % for most measurement points, acceptable for all measurement depths
given the detector’s and beam model’s uncertainties. Galavis et al. [185] applied the
commercial PSDs Exradin W1 and W2 (Standard Imaging, USA) for the measurement of
a non-MRI LINAC’s PDD in a scanning water tank. The maximum discrepancy between
the PDD responses was 2.5 % relative to the response at 5 cm depth. It should be noted
that the Exradin W1 and W2 PSDs have the same constituents and dimensions, thus the
source of discrepancies were not related to differences in detector geometry.

For the 10.5 cm × 10.5 cm and 18.4 cm × 18.4 cm field size, it is conclusive that the
PSD performed similarly to the other detectors in the literature given the calculated MADs
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2.6 × 2.6 5.3 × 5.3 10.5 × 10.5 18.4 × 18.4 Global
cm2 (%) cm2 (%) cm2 (%) cm2 (%) mean (%)

PSD - IC - 0.9 0.6 0.5 0.7
PSD - Film 2.1 1.1 0.7 1.9 1.4
PSD - Sims 0.9 0.9 1.0 0.8 0.9
IC - Film - 0.5 0.4 1.7 1.0
IC - Sims - 0.9 0.8 0.8 0.8

Film - Sims 1.9 1.0 0.9 2.2 1.5

Table 4.3: In this table, MADs between the PDDs are reported. In the second to fifth
columns, the MADs are reported for depths between 15 mm and 200 mm for each of the
field sizes. In the sixth column, the Global mean reports the mean MAD across all field
sizes. In the first column, PSD, IC, Film and Sims are defined as in Figure 4.19

and maximum differences. For these field sizes, the PSD deviated by no more than 2.0 %
with respect to the Farmer chamber, and dose differences were generally acceptable with
reference to the simulations and film. For the 2.6 cm × 2.6 cm and 5.3 cm × 5.3 cm
fields, the PDDs appeared to systematically overestimate the depth-dose response with
respect to the Farmer chamber and film as depth increased. In the literature, the Farmer
chamber and film have been validated for the conditions they were applied in. Curiously,
the simulated PDDs matched the PSD’s PDDs for these field sizes; these simulations were
previously verified to match measured data within ±2 % [193]. Given these conflicting
trends between the PSD and reference distributions for the 2.6 cm × 2.6 cm and 5.3 cm ×
5.3 cm field size, a definitive conclusion cannot be reached with regards to the suitability
of the PSD for these measurement conditions.

4.4 Discussion

From the comparison of output factors and beam profiles, the in-house PSD was in agree-
ment with each of the references when 2 standard deviations in each calculated dose was
taken as the uncertainty. The corresponding calculated MADs and dose differences sug-
gested that the in-house PSD performed comparably to other dosimeters in the literature
that are considered accurate and suitable for MRI-LINAC dosimetry, supporting that the
in-house PSD was also accurate and suitable for MRI-LINAC dosimetry. From the com-
parison of the PDDs, the PSD remained in agreement with the reference distributions at
depths greater than 15 mm for the 10.5 cm × 10.5 cm and 18.4 cm × 18.4 cm field sizes.
However, systematic disagreements were observed between the in-house PSD and some
of the references at depths greater than 15 mm for the 2.6 cm × 2.6 cm and 5.3 cm ×
5.3 cm field size. Detector misalignment was identified as one potential source of the sys-
tematic disagreements, though it could not be identified whether detector misalignment
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had occurred for any of the measured distributions; in future studies, this could be ad-
dressed by measuring the PDDs using a scanning water tank to ensure that detectors are
aligned to the central axis. Due to the plausibility of detector misalignment when mea-
suring PDDs, conclusions about the suitability of the in-house PSD for these conditions
cannot be drawn.

One promising opportunity for fibre-coupled PSDs is the measurement of detector spe-
cific correction factors with MRI-LINACs. It is expected that the PSD’s response will be
free from effects that increase a dosimeter’s uncertainties given their high water equiva-
lence and near-correctionless response for LINACs. Consequently, PSDs are expected to
be one of the most effective detectors for this niche measurement. Unfortunately, the mea-
surement of such detector specific correction factors could not be investigated as the PSD
system was sensitive to significant changes in set up. This sensitivity arose as transmis-
sion through the optical fibre is strongly dependent on any bends in said optical fibre and
their bend radius. The measurement of such detector specific correction factors can only
be achieved for the Australian MRI-LINAC by significantly changing where the PSD is
set up between measurements. Given that the optical fibres were each approximately 20 m
long, there was a high likelihood that the optical fibre was subject to significant changes
in it’s bends and bending radius between measurements, compromising any correction
factors measured.

With regards to the entrance region of the PDDs, the in-house PSD, film and simu-
lations systematically disagreed with each other. It was identified that there were likely
varying degrees of volume averaging given their different sensitive volume sizes, leading
to disagreements between all three detectors. However, with regards to the PSD, there are
likely two additional sources of effect which also perturbed it’s response in this region.
Firstly, in the background subtraction correction it is assumed that equal magnitudes of
Cerenkov radiation were produced in each of the optical fibres. In the setup for the PDDs,
the PSD and reference probe aligned upstream and downstream from one another. The
assumption of equal magnitudes of Cerenkov radiation being measured by each optical
fibre was invalid in the entrance region as there was a high spatial dose gradient directed
depth-wise along the central axis. This potential source of uncertainty could easily be
addressed through the application of an alternative correction method. Secondly, the PSD
may have suffered from an under-response to low energy electrons. In the entrance region
of the PDDs, the MRI’s in-line fringe field directs scattered and contaminant electrons
between the LINAC and isocentre towards the MRI’s isocentre [128]. Plastic scintilla-
tors can suffer from ionisation quenching in response to low energy electrons given the
corresponding high linear energy transfers of these electrons [204, 205]. Consequently,
there may be an energy dependence in effect that caused the PSD to under-respond in the
entrance region of the PDDs with the Australian MRI-LINAC. Given these three potential



CHAPTER 4. FEASIBILITY OF PSDS FOR MRI-LINAC DOSIMETRY 108

sources of perturbation, the investigated in-house PSD was not suitable for measurements
in the electron focal spot of the Australian MRI-LINAC.

The measurements in this chapter were limited in scope, consisting solely of measure-
ments with the Australian MRI-LINAC. At the time of writing, many of the MRI-LINAC
systems are perpendicular orientation MRI-LINACs. For these systems, the perpendicular
magnetic field imparts a Lorentz force on the secondary electrons that shifts them later-
ally. At the macroscopic level, the perpendicular magnetic field causes dose distributions
to become laterally skewed and asymmetric, whilst also reducing the penetration depth of
secondary electrons. The magnitude of these effects is dependent on the medium’s mate-
rial density. For dosimeters that are not water equivalent, the magnitude of these magnetic
field induced effects can deviate from the corresponding magnitudes experienced by wa-
ter. Consequently, the dose distributions measured by non-water equivalent dosimeters
can misrepresent the dose distributions that are deposited in water. Such misrepresenta-
tions have been observed for diodes, microDiamond and ionisation chambers [137, 138].
Given that PSDs are highly water equivalent, it was hypothesised that PSDs would expe-
rience similar magnitudes of these magnetic field induced effects to those experienced by
water. Unfortunately, the hypothesis that PSDs would experience matching similar mag-
netic field induced effects to those of water for perpendicular MRI-LINACs could not be
investigated as the Australian MRI-LINAC has an in-line orientation.

Another limitation of the work in this chapter was that only one in-house PSD was in-
vestigated. The plastic scintillator used in this chapter was BC444 (Saint Gobain, France),
a polyvinyl toluene (PVT) based plastic scintillator with a long exponential decay con-
stant. Many other commercial plastic scintillators exist, used by other research groups
for a variety of reasons. Material properties such as water equivalence, effective atomic
number and density are dominated by the plastic base of these scintillators. It should be
noted that most plastic scintillators applied for dosimetry with LINACs use either PVT
or polystyrene as the plastic base. PVT and polystyrene are very similar in terms of
their water equivalence through Burlin cavity theory, their effective atomic number and
their material densities [87, 206]. At a technical level, there exists the potential for slight
differences between the performance of different plastic scintillators given that they are
similar, but not identical. However, it can generally be expected that the many of the
plastic scintillators would perform similarly in the scope of MRI-LINAC dosimetry given
the similarities in material properties of PVT based and polystyrene based scintillators.
Due to the limited scope of the investigations in this chapter, as well as the investigations
by Yoon et al. [166] and Galavis et al. [185], it is recommended that PSDs are verified
with an MRI-LINAC system to ensure that they are suitable and accurate in the desired
conditions. To determine whether PSD systems in general are suitable for MRI-LINAC
dosimetry, further study of the many other PSDs is required.
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4.5 Conclusion

Given the many desirable dosimetric properties that are ubiquitous for PSDs, it was ex-
pected that all PSDs in general would be suitable for MRI-LINAC dosimetry. The pre-
sented results for the output factors and beam profiles supported this notion, such that the
in-house PSD performed comparably with respect to other dosimeters that were proven
suitable for relative MRI-LINAC dosimetry. For the case of PDDs, the discrepancy in
trends between the film, Farmer chamber and simulations at the 2.6 cm × 2.6 cm and
5.3 cm × 5.3 cm field sizes prevented conclusions from being drawn with regards to the
suitability of the PSD for measurements in these conditions. For PDD measurements in
the electron focal spot with the Australian MRI-LINAC, the PSD was observed to suffer
from significant partial volume effects, arising from the steep spatial dose gradients in
this entrance region. From these PDD measurements, the in-house PSD was conclusively
not suitable as it’s sensitive volume was too large, though this result is not reflective of
all PSDs and it could be mitigated by reducing the sensitive volume thickness. Given
the peculiar results of Galavis et al. [185] where two PSDs of identical construction
measured PDDs with discrepancies up to 2.5 %, conclusions about the suitability of all
PSDs with MRI-LINACs should not be drawn from the results presented in this chapter
alone. Instead, it is recommended that the PSDs are verified prior to measurements with
an MRI-LINAC.



Chapter 5

Non-linearity correction of real-time
OSL

This chapter presents the investigations into novel non-linearity corrections for real-time
optically stimulated luminescence (rtOSL) signals. Experimental measurements from this
chapter were carried out at Royal Adelaide Hospital using an in-house fibre-coupled BeO
dosimeter, a superficial X-ray unit and a clinical LINAC. The novel non-linearity correc-
tions were tested using the BeO’s rtOSL signals. The performance of these novel correc-
tions were compared against the only other non-linearity correction for rtOSL signals, the
∆rtOSL correction. The results from these investigations are published in the following
peer-reviewed journal articles:

L. Madden, A. Santos, E. Li, R. Gowda, E. Bezak, S. Afshar, A. Rosenfeld. Temporal
modelling of beryllium oxide ceramics’ real-time OSL for dosimetry with a superficial
140 kVp X-ray beam. Phys. Medica. 2020; 80:17-22. 10.1016/j.ejmp.2020.10.003.

L. Madden, E. Lukas, A. Santos, M. Ganija, P. Veitch, A. Rosenfeld, E. Li. Deconvolu-
tion analysis improves real-time OSL of BeO ceramic. Radiat. Meas. 2021; 149:106680.
10.1016/j.radmeas.2021.106680

5.1 Introduction

Fibre-coupled luminescent dosimeters possess a wealth of desirable qualities that are
promising for a range of challenging dosimetry conditions [30]. The luminescent mate-
rials comprising their sensitive volumes typically have high sensitivities to radiation, and
these sensitive volumes can be manufactured to sub-millimetre sizes to achieve high spa-
tial resolutions [6, 34]. The compact dosimeter size and all-optical arrangement of these
dosimeters (i.e. no electronics or wires required around the sensitive volume) minimises
the perturbation of water media during dosimetric measurements [6, 34]. Fibre-coupled
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dosimetry systems utilising beryllium oxide (BeO) as the luminescent sensitive volume
possess these attractive qualities and inherit BeO’s near-tissue equivalence [207, 208], it’s
energy independent OSL response [110] and it’s dose-rate independence [30]. This set
of attractive qualities makes fibre-coupled BeO dosimeters promising for applications in
challenging clinical dosimetry conditions such as in vivo dose monitoring.

However, fibre-coupled luminescent dosimeters have encountered challenges that have
limited their applications as in vivo dosimeters. Stem signals are produced when the solid-
core optical fibres of these dosimeters are irradiated. Correction methods are required to
preserve a fibre-coupled luminescent dosimeter’s accuracy [6, 34]. For materials that can
be optically stimulated to produce luminescence such as BeO, the rtOSL technique allows
for real-time stem signal correction [24, 109]. In the rtOSL technique, an optical stim-
ulus is periodically pulsed on and off as the luminescent material is irradiated, and it is
assumed that the lifetimes of the luminescence signals and stem signals are significantly
shorter than the temporal resolution of the data acquisition system. Optical signals mea-
sured while the stimulus is on are assumed to be comprised of radioluminescence (RL),
optically stimulated luminescence (OSL) and stem signals. Conversely, the optical signals
measured while the stimulus is off are assumed to be comprised of only RL and stem sig-
nals (for the same assumptions). The rtOSL signal is calculated by taking the difference
between the optical signals measured while the stimulus is on and off; a visualisation of
typical signals measured with the rtOSL measurement technique is shown in Figure 5.1.

Figure 5.1: Visualisation of the OSL and RL signals measured during the rtOSL tech-
nique. Image from Gaza et al. 2004 [24]

Typically when OSL signals are read out post-irradiation, their OSL response is propor-
tional to the absorbed dose [24]. However, the measured rtOSL’s intensity is supra-linear



CHAPTER 5. NON-LINEARITY CORRECTION OF REAL-TIME OSL 112

with respect to the absorbed dose [24, 30]. This supra-linearity arises due to the complex
kinetics inherent to the rtOSL measurement technique [24]. Only one correction method
currently exists that restores the linearity between rtOSL signals and the absorbed dose,
referred to as the ∆rtOSL correction [24]. In this correction, the measured rtOSL sig-
nal is multiplied by a correction function that accounts for the partial emptying of traps
during each stimulus pulse [24, 30]. This correction function is typically optimised post-
measurement, where corrected rtOSL signals have been reported to be highly linear with
absorbed dose [24, 109].

In this chapter, two novel alternative methods are investigated for the real-time cor-
rection of the rtOSL supra-linearity. In both proposed methods, the rtOSL signals are
modelled using the convolution of a time-dependent dose-rate and a luminescence im-
pulse response function (LIRF), as described previously in Sections 2.1.3 and 3.2.3. With
the current computational power available at the time of writing, both corrections can be
performed in real-time provided the LIRF is known prior to the required measurements.
In the work presented, the feasibility of these correction methods are investigated post-
measurement using a fibre-coupled BeO system, with the proposed corrections method
compared against the ∆rtOSL correction.

5.2 Materials and methods

5.2.1 Experimental measurements

Superficial X-ray measurements

Measurements were taken with a superficial X-ray unit (Gulmay D3150, Gulmay Med-
ical Ltd., UK) at Royal Adelaide Hospital. All measurements used the 140 kVp X-ray
beam energy with 8 mm aluminium half value layer and a 5 cm beam diameter. Gammex
RMI Solid Water was used as the phantom material for all measurements. For all mea-
surements, the BeO dosimeter was positioned at the surface of 8 cm of Solid Water. This
setup is modelled in Figure 5.2, with a close up of the BeO-optical fibre coupling shown
in the figure’s top right corner. The instantaneous dose-rate dependence of the BeO rtOSL
dosimeter was investigated by varying the source-surface distances (SSDs). The rtOSL
signals were measured at SSDs of 15 cm, 25 cm, 35 cm, 45 cm and 55 cm; these SSDs had
nominal dose-rates (at the surface of water) of 3.88 Gy/min, 1.42 Gy/min, 0.72 Gy/min,
0.44 Gy/min and 0.29 Gy/min, respectively.

The fibre-coupled BeO dosimeter consisted of a cylindrical volume of pure BeO ce-
ramic (Thermalox 995, Materion, USA) with a 1 mm diameter and a 1 mm length, op-
tically coupled to two silica optical fibres. The first optical fibre (FP400URT, Thorlabs,
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Figure 5.2: 3D model of the superficial X-ray measurement setup with a cutaway in the
photon beam to show the BeO dosimeter (not to scale). Close up of the BeO ceramic
volume and optical fibres is shown in the top right corner. Published in Madden et al.
[209].

USA) was used to collect the BeO luminescence signal, and had an approximate length
of 20 m, a pure silica core with 400 µm nominal diameter, a hard polymer cladding
with 425 µm nominal diameter and numerical aperture of 0.50. The second optical fi-
bre (FG200UEA, Thorlabs, USA) was used to transport the optical stimulus light to the
BeO ceramic, and had an approximate length of 20 m, a pure silica core with 200 µm
nominal diameter, a fluorine-doped silica cladding with 220 µm nominal diameter and a
numerical aperture of 0.22. The two optical fibres were aligned parallel and positioned
abreast, end-butt coupled to the BeO volume as shown in Figure 5.2. A photomulti-
plier tube (H7360-01, Hamamatsu, Japan) was used to measure the luminescence signals
transported through the signal collection fibre. A 40 mW laser diode with 450 nm peak
emission wavelength (Z-laser, Germany) was used as the optical stimulus, and was con-
nected to the stimulus fibre. The PMT output was recorded at a sampling frequency of 1
kHz using a data acquisition card (USB-6341, National Instruments Inc., USA). The data
acquisition card also controlled the laser diode optical stimulus, such that the laser diode
pulsed a 2 Hz square wave with 50 % duty cycle for the rtOSL measurement scheme. For
all measurements with the superficial X-ray unit, the BeO dosimeter was irradiated for
5 minutes and optically bleached for 5 minutes post-irradiation to substantially empty
the optically active trapping centres. An example of the measured rtOSL, stem+RL and
stem+RL+rtOSL signal is presented in Figure 5.3.
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Figure 5.3: Sample measured waveform during the rtOSL measurement scheme. In the
plots, Total corresponds to the laser on signal (blue), stem corresponds to the laser off
signal (black) and rtOSL corresponds to the difference between the laser on and laser off
signal (red). Published in Madden et al. 2020 [209].

Clinical LINAC measurements

Further measurements were taken with a linear accelerator (Truebeam, Varian, USA) at
Royal Adelaide Hospital. All measurements used the 6 MV flattening filter free photon
beam, with Gammex RMI457 Solid Water as the phantom material. To prevent mechan-
ical damage to the dosimeter while it was sandwiched between the Solid Water slabs,
the dosimeter was housed in a 4 mm thick cardboard sheet. The cardboard housing was
sandwiched between 1.3 cm of Solid Water placed upstream of the dosimeter for build-
up, and 12 cm of Solid Water placed downstream of the dosimeter for backscatter. This
setup is modelled in Figure 5.4, with a close up of the BeO-optical fibre coupling shown
in the figure’s top right corner. The dose-rate dependence of BeO’s rtOSL response was
investigated by varying the LINAC’s repetition rate and the SSD. For all measurements,
a 10 cm × 10 cm jaw-defined field was used. For the repetition rate dependence measure-
ments, 400 Monitor Units (MU) were delivered with the source-surface distance fixed at
100 cm, and the repetition rate was varied between 400 MU/min and 1400 MU/min. For
the SSD measurements, the repetition rate was fixed at 800 MU/min and the SSD was
varied between 62.5 cm and 143 cm.

The BeO dosimeter differed from that used for the superficial X-ray measurements,
such that it was modified to improve it’s signal to noise ratio. The BeO dosimeter con-
sisted of a cylindrical volume of pure BeO ceramic (Thermalox 995, Materion, USA)
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Figure 5.4: 3D model of the setup in Solid Water with a cutaway to show the BeO
dosimeter. Close up of the BeO dosimeter and optical fibres are shown in the top right
corner. The green optical fibre is the stimulus fibre, and the blue optical fibre is the
collection fibre.

with a length of 1 mm and a diameter of 1 mm, coupled to two optical fibres. The first
optical fibre (FP600URT, Thorlabs, USA) was used to collect BeO’s luminescence signal,
and had an approximate length of 20 m, a pure silica core with 600 µm nominal diam-
eter, a hard polymer cladding with 630 µm nominal diameter and a numerical aperture
of 0.50. The second optical fibre (SH2001, Eska, Mitsubishi Chemical Co., Japan) was
not permanently coupled to the BeO ceramic, but was set up so it’s tip was in contact
with the ceramic during experimental measurements. This second optical fibre was used
to transport the optical stimulus signal, and had an approximate length of 20 m, a PMMA
core with 200 µm nominal diameter, a fluorinated polymer cladding with 220 µm nom-
inal diameter and a numerical aperture of 0.50. The fibre-coupled BeO dosimeter used
with the LINAC is shown in Figure 5.4, with a close up of the BeO-optical fibre couplings
shown in the figure’s top right corner. The same H3760-01 photomultiplier tube and USB
data acquisition card were used to measure and record the luminescence signal at a 1 kHz
sampling frequency. The same 40 mW laser diode was used to optically stimulate the
BeO ceramic with a 2 Hz, 50 % duty cycle square wave. After each irradiation, the BeO
volume was optically bleached for 20 minutes to substantially empty the optically active
trapping centres.
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5.2.2 Non-linearity correction methods

∆rtOSL correction

The supra-linear behaviour of rtOSL signals arises due to the competing kinetics describ-
ing the filling and emptying of optically active traps during irradiation and inconsistent
optical stimulation [109]. The concentration of filled optically active traps increases at a
rate proportional to the dose-rate. Each stimulus pulse liberates some constant fraction
of the filled optically active traps. As a result, the OSL signal measured during the nth

stimulus pulse is reduced in intensity due to the liberations caused by previous n− 1
stimulus pulses. To restore proportionality between the measured OSL and the absorbed
dose, the ∆rtOSL method corrects the OSL signal measured during the nth stimulus pulse
by correcting for the depletion effects of previous n−1 stimulations [24]:

D̂∆rtOSL(n) = Ĩ(n)+
n−1

∑
i=1

Ĩ(i) ·F(D)n−i (5.1)

Where D̂∆rtOSL(n) is the corrected rtOSL signal during the nth stimulus pulse, Ĩ(n) is the
rtOSL signal measured during the nth stimulus pulse, and F(D) accounts for the depletion
of the rtOSL signal due to previous stimulus pulses [24]. F(D) is typically determined
algorithmically post-measurement from the shape of the OSL curve [24], and D̂∆rtOSL(n)

has a time dependence that is proportional to the time-dependent accumulated dose in
BeO. For measurements with the superficial X-ray source, the depletion correction factor
was determined algorithmically with optimal value of 1.0017. For measurements with the
LINAC, the depletion correction factor was similarly determined with the optimal value
determined to be 1.0040. For the ∆rtOSL correction method, the integral dose in BeO
was calculated as I′(N), with N being the length of the measured rtOSL waveform.

Deconvolution correction

Luminescence signals can be modelled using the convolution of a time-dependent stim-
ulus with a luminescence impulse response function (LIRF) [43]. For the measurements
in this chapter, the measured rtOSL, I(t), is modelled using the convolution of the time-
dependent dose-rate, Ḋ(t), (referred to as the dose-rate profile) and BeO’s LIRF (for it’s
rtOSL response), h(t):

I(t) ∝ h(t)∗ Ḋ(t) (5.2)

Where ∗ is the linear convolution operation. Proportionality is used in Equation 5.2 to
preserve dimensionality. Equation 5.2 can be represented in discrete time using matrix
multiplication, this is desirable as this representation takes the form of a least squares
problem, allowing for fast computations of h(t) when Ḋ(t) is known and Ḋ(t) when h(t)
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[210]. For BeO, the RL and OSL have luminescence lifetimes of the order of tens of mi-
croseconds or shorter [211, 212], and so the stem+RL signal decays so fast that it appears
instantaneous at the 2 Hz timescale used during the rtOSL technique in this chapter. Fur-
ther, the stem signals produced by optical fibres have lifetimes that are of the order of tens
of microseconds or shorter [169], also appearing instantaneous at the 2 Hz timescale used
by the data acquisition card. Given these signals are so fast they appear instantaneous at
the 2 Hz timescale, the measured stem+RL signal has a time-dependence that matches the
time-dependent dose-rate. The stem+RL signal can be substituted for Ḋ(t), and the least
squares representation of Equation 5.2 is given by:


I(1)
I(2)

...
I(N)

 ∝


Ḋ(1) 0 ... 0
Ḋ(2) Ḋ(1) ... 0

...
... . . . ...

Ḋ(N) Ḋ(N−1) ... Ḋ(1)

 ·


h(1)
h(2)

...
h(N)


Ĩ ∝ Ḋ · h̃ (5.3)

Where Ĩ is the measured rtOSL in column vector form, N is the number of samples
in measured rtOSL signals, the N ×N matrix, Ḋ, is a lower triangular Toeplitz matrix
constructed from Ḋ(t), and h̃ is BeO’s LIRF in column vector form. From classical kinetic
modelling, BeO’s post-irradiation OSL is given by a sum of m exponential decays, where
m is the number of optically active traps in BeO [16]. BeO’s LIRF can thus be modelled
using a non-negative linear combination of M exponential decays, defined in discrete time
in Equation 5.4:
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a1

a2
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h̃ = E · â (5.4)

Where E is the library of M exponentials and â are the fitting coefficients. The expo-
nential decay parameters remained fixed at predefined values to reduce computation times
whilst avoiding the more cumbersome non-linear least squares optimisation. The fitting
coefficients, a1, a2, ..., aM were constrained to non-negative values to enforce sparsity
and prevent overfitting of a1, a2, ..., aM to noise in the measured rtOSL signals. The
non-negative least squares problem to be solved for the optimal coefficients of â:
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min
(
||Ĩ− Ḋ ·E · â||2

)
s.t. â� 0 (5.5)

In this work, MATLAB’s built-in non-negative least squares solver lsqnonneg was used
to determine â in Equation 5.5. For rtOSL signals, the rate at which traps are emptied
depends on the optical stimulus’ intensity [24, 109], therefore the LIRF and â are affected
by LASER intensity. The BeO dosimetry system varied between measurements with the
superficial X-ray unit and the LINAC, hence â varies between these measurements. From
the 5 rtOSL signals measured with the superficial X-ray unit, â was calculated, normalised
so that Σâ = 1 and averaged to determine the optimal fitting coefficients â for the BeO
dosimetry system used with the superficial X-ray measurements. Similarly, from the 11
rtOSL signals measured with the LINAC, â was calculated, normalised so that Σâ = 1 and
averaged to determine the optimal fitting coefficients for the BeO dosimetry system used
with the LINAC. Full MATLAB code of this LIRF calculation is presented in Appendix
A.3.

With the two optimal âs calculated, h(t) was calculated as in Equation 5.4. Equation
5.3 can be reformulated with the lower-triangular Toeplitz matrix constructed using h̃,
the LIRF. Defining H as the lower triangular Toeplitz matrix constructed using h̃, the
convolutional model of luminescence can be expressed as in 5.6:


I(1)
I(2)

...
I(N)

=


h(1) 0 ... 0
h(2) h(1) ... 0

...
... . . . ...

h(N) h(N−1) ... h(1)

 ·


Ḋ(1)
Ḋ(2)

...
Ḋ(N)


Ĩ = H · Ḋ (5.6)

From this expression of the expected luminescence, the ordinary least squares solution
for an unknown ˙DOLS is given by ˙DOLS in Equation 5.7:

ḊOLS = (HT H)−1HT Ĩ (5.7)

The ordinary least squares solution to deconvolution problems are known to exacer-
bates measurement noise and produce estimates with sub-optimal signal qualities [213],
hence ḊOLS was not taken as the optimal solution. Instead, Tikhonov regularised least
squares was applied to enforce smooth solutions of Ḋ in the deconvolution problem in
Equation 5.6. The regularised least squares problem for smooth solutions of Ḋ was [213]:

min
(
||Ĩ−H · Ḋ||2 +α||LḊ||2

)
(5.8)
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Where α is the regularisation hyperparameter and L was chosen to be the first-order
finite difference matrix (defined in [214]) for smoothness of Ḋ [213]. The Tikhonov
regularised least squares solution for the dose-rate profile in BeO is given by ḊRLS in
Equation 5.9 [213]:

ḊRLS =
(
HT H+αLT L

)−1HT Ĩ (5.9)

α’s value influences the estimated ḊRLS(t), with increasing values of α leading to
increasingly biased solutions. An equivalent minimisation problem to that in Equation
5.8 can be achieved under a Bayesian framework for Tikhonov regularised least squares
[215]. The Tikhonov least squares estimator ḊRLS is equivalent to the posterior mean
estimator for Ḋ when imposing a Gaussian smoothness prior on Ḋ [215]. Under this
framework, the Maximum A Posteriori solution for Ḋ(t) uses α = α̂ in Equation 5.10
[215]:

α̂ =
σ2

I

σ2
D

s.t. σ
2
I = var

(
Ĩ−H · ḊOLS

)
, σ

2
D = var

(
LḊOLS

)
(5.10)

Where σ2
I are the variance of the ordinary least squares residual given by (Ĩ−H ·ḊOLS)

and σ2
D is the variance of the first order time derivative of DOLS. This value of α̂ was

chosen as it analytically determines an optimal trade off between the smoothness of ˙DOLS

and the fit of H · ḊRLS to measured rtOSL signals, Ĩ [215], effectively de-noising the ḊRLS

without degrading the time-dependence of ḊRLS. The regularised least squares estimate,
ḊRLS, was calculated using α̂ . The accumulated dose signal, D̂RLS was calculated by
integrating ḊRLS with respect to time, with the boundary condition that the dose in BeO
at time t = 0 is zero:

D̂RLS(t) =
∫ t

0
ḊRLS(t ′)dt ′ s.t. D̂RLS(t = 0) = 0 (5.11)

The dose deposited in BeO is given by D̂RLS(t = tN) where tN is the last time when
the rtOSL was measured. MATLAB code for the deconvolution correction method is
presented in Appendix A.4

Exponential correction

An rtOSL signal’s supra-linearity arises as a result of the opposition between the filling
and emptying of traps [24, 109]. The concentration of filled traps increases at a rate
proportional to the dose-rate, and the concentration of filled traps decreases at a rate pro-
portional to the concentration of filled traps. The population of filled traps can be crudely
modelled as:
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dn(t)
dt

= k1Ḋ(t)− k2n(t) (5.12)

Where dn
dt is the rate of change of the filled traps, Ḋ(t) is the time-dependent dose-

rate, n is the filled trap population, and k1 and k2 are constants. The kinetics modelled in
Equation 5.12 are non-linear, but are approximately first order in nature. The rtOSL signal
experiences a depletion that is approximately first order with respect to time. These deple-
tion effects can be empirically cancelled out through multiplication with an exponential
function to restore linearity with the accumulated dose:

˜I(t) · eF(D)t = D(t) · constant (5.13)

Where ˜I(t) is the measured rtOSL, F(D) is a coefficient to correct for the approximately
first order depletion effects inherent to the rtOSL, and D(t) is the accumulated dose as a
function of time. Rearranging the terms in this expression, the exponential constant F(D)

can be determined analytically:

ln
(

D(t)
Ĩ(t)

)
= F(D)t + constant (5.14)

Where F(D) corresponds to the slope when ln
(

D(t)
Ĩ(t)

)
is plotted as a function time,

hence linear regression can be used to determine this slope. Though the accumulated dose
is not known, the stem+RL signal has a time dependence matching the time-dependent
dose-rate as the stem signal, RL and OSL have short luminescence lifetimes. The accu-
mulated dose can be modelled by the integral of the stem+RL signal with respect to time,
provided the field size and irradiation angle remain constant during the irradiation. The
degradation effects of measurement noise can be mitigated through substitution of the
measured rtOSL signal with a noiseless model of the rtOSL signal. Substituting the opti-
mal LIRF calculated previously for h(t) in the deconvolution correction, and the stem+RL
signal for Ḋ(t), a noiseless model of the rtOSL, I(t) can be calculated as in Equation 5.2.
Substituting the noiseless model of the rtOSL I(t) for the measured rtOSL Ĩ(t), F(D) is
calculated as:

F(D) = slope
(

ln
(

D(t)
I(t)

))
(5.15)

The measured rtOSL is corrected by multiplying the measured rtOSL by the exponen-
tial correction function:

D̂exp(t) = Ĩ(t) · eF(D)t (5.16)

As in the ∆rtOSL correction method, the corrected rtOSL, D̂exp(t), has a time-dependence
proportional to the time-dependent accumulated dose in BeO. The integral dose in BeO



CHAPTER 5. NON-LINEARITY CORRECTION OF REAL-TIME OSL 121

was calculated as the final value of the corrected rtOSL signal, D̂exp(tN), where tN was
the final time in the measured rtOSL signal.

5.2.3 Analysis

Time-dependence of corrected rtOSL

Given the stem+RL signal has a time-dependence matching Ḋ, the integral of the stem+RL
signal has a time dependence matching the accumulated dose in BeO as a function of time,
D(t). Through curve fitting, the integral stem+RL signal can be fit to each of the corrected
rtOSL signals using the ordinary least squares model:

min
(
||D̂(t)−Y (t)||2

)
s.t. Y (t) = b ·

∫
stem+RL(t)dt + c (5.17)

Where D̂(t) are each of the corrected rtOSL signals, stem+RL(t) is the measured
stem+RL signal and b and c are fitting coefficients. The uncertainty in each of the fits
of Y (t) to each of the corrected rtOSL signals, D̂(t) is given by the root mean squared
error (RMSE) between Y (t) and D̂(t) [216]:

RMSE =

√
1
N ∑

(
D̂(t)−Y (t)

)2 (5.18)

Where N is the length of the corrected rtOSL signal D̂(t).

Dosimetry

BeO’s OSL and rtOSL are dose-rate independent [7, 30]. During the repetition rate mea-
surements with the LINAC, the same nominal dose was delivered and so the corrected
rtOSL responses can be compared directly. For these measurements, the corrected re-
sponses were normalised so that the mean response corresponded to a relative dose of
100 %. With these corrected responses normalised to a mean relative dose of 100 %,
mean absolute doses (MADs) can be calculated as in Equation 5.19 to quantify how the
average corrected response deviated from the mean:

MAD =
1

Nmeas

Nmeas

∑
i=1
|D̂i−100%| (5.19)

Where D̂i is the corrected rtOSL response and Nmeas are the number of measured re-
sponses. Similarly, standard deviations can be calculated as an additional measure of
how dispersed the corrected rtOSL responses are about a relative dose of 100 %. Dur-
ing the SSD measurements with the LINAC, 800 MU was delivered by the LINAC at
800 MU/min, such that the BeO dosimeter was irradiated for 1 minute. Similarly for the
SSD measurements with the superficial X-ray unit, the BeO dosimeter was irradiated for
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5 minutes during each measurement. For each of the measurements with the SSD, the
corrected rtOSL responses can be normalised by the inverse squared SSD to account for
the change in dose deposited in BeO due to the variation of the SSD. The normalised
responses can be further normalised so that their mean corresponds to a relative dose of
100 %, and mean MADs and SDs can be calculated.

To determine how measurement noise affected the corrected rtOSL responses, each of
the correction methods were applied independently to the measured and fitted rtOSL sig-
nals. Measured rtOSL signals were inherently noisy, whereas fitted rtOSL signals were
noiseless. Comparisons of the MADs and standard deviations calculated from the mea-
sured rtOSL signals allow for the robustness of each correction method to be established
in the presence of measurement noise. Conversely, the MADs, standard deviations and
RMSEs calculated from the fitted rtOSL signals serve as the estimates of each method’s
accuracy in optimal conditions.

5.2.4 Simulation of real-time deconvolution

The exponential and deconvolution corrections can be performed in real-time, provided
that the optimal LIRF is known prior to the real-time measurements. However, the expo-
nential correction requires the stem+RL signal for correction of the rtOSL. The stem+RL
signal can vary with field size and irradiation angle, the stem+RL signal has the potential
to deviate from the dose-rate profile when the field size or irradiation angle varies. As
the field size and irradiation angle have the potential to vary during in vivo dosimetry, the
exponential correction may not be viable for in vivo, real-time dosimetry measurements.

A computational simulation was performed to simulate the deconvolution correction
in real-time and determine the time required to compute the corrected rtOSL signal. In
this simulation, the measured rtOSL signal was sampled from it’s first point to it’s ith

point, with i iterated from 2 to N (the length of the rtOSL signal) to simulate the real-time
measurement of rtOSL. Similarly, the time array was sampled from 1 to i at each iteration,
and was used to calculate the LIRF from Equation 5.4 in real-time (with the optimal fitting
coefficients known prior to the simulation). The calculated LIRF and sampled rtOSL was
then used for the deconvolution analysis at each iteration. The time taken to compute
the LIRF and perform each correction was recorded at each iteration to determine the
feasibility of deconvolution as a real-time rtOSL correction.
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Figure 5.5: Left column: Lifetime distribution and corresponding LIRFs from measure-
ments with the superficial X-ray unit. Right column: Lifetime distribution and corre-
sponding LIRFs from measurements with the LINAC. Top: distribution of exponential
lifetimes for BeO’s rtOSL LIRF, normalised by the sum of all fitting coefficients in the
distribution. Bottom: Optimal LIRF for measured rtOSL signals.

5.3 Results

5.3.1 Fitting an LIRF to measured rtOSL

For the signals measured using the superficial X-ray unit, the exponential decay parame-
ters (τ1, τ2, ..., τM) were set to (ε , 1, 2, ..., 700) s with ε being a machine epsilon to avoid
division by zero. The optimum fitting coefficients, â, were calculated for each rtOSL sig-
nal measured with the superficial X-ray unit, averaged to find the global optimum fitting
coefficients. The global fitting coefficients are presented in Figure 5.5 (top), correspond-
ing to the distribution of exponential lifetimes for BeO’s real-time optically stimulated
luminescence. The most significant lifetimes for these measurements occurred for decay
constants of 151 s and 700 s, comprising 28 % and 19 % of the total distribution. There
was also a cluster of constants between 16 s and 40 s, with this cluster comprising 21 %
of the total distribution. A more widely distributed cluster of lifetimes occurred for decay
constants between 276 s and 338 s, comprising 31 % of the total distribution.

Similarly, the exponential decay parameters (τ1, τ2, ..., τM) were set to (ε , 1, 2, ...,
400) s for the rtOSL signals measured using the LINAC. The optimal fitting coefficients,
â, were calculated for each rtOSL signal measured with the LINAC, averaged to find the
global optimum fitting coefficients. The global fitting coefficients are presented in Figure
5.5 (top), corresponding to the distribution of exponentials for BeO’s rtOSL. The most
significant clusters of lifetimes in the optimal LIRF occur for decay constants between 1 s
and 10 s, comprising 56 %, and 400 s, comprising 15 % of the total distribution. There also
exists a cluster of decay constants spanning between 138 and 152 s comprising 12 % of
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Figure 5.6: Left column: Fit and measured rtOSL signals from measurements with the
superficial X-ray unit. Right column: Fit and measured rtOSL signals from the repetition
rate measurements with the LINAC. Points correspond to the measured rtOSL signals,
solid lines correspond to the fitted rtOSL signals, and shading corresponds to 2 standard
deviations in the fitted rtOSL signals.

the lifetime distribution, and a more sparsely populated cluster for constants between 10 s
and 62 s comprising 14 % of the lifetime distribution. The global optimal LIRF was cal-
culated using Equation 5.4, substituting the global optimal fitting coefficients for â. The
global LIRF calculated from the distribution of lifetimes is shown in Figure 5.5 (bottom),
normalised to the LIRF at time t = 0 s.

I(t) was calculated using Equation 5.2, substituting the optimal LIRFs shown in Figure
5.5 for h(t) and the measured stem+RL signals for Ḋ(t). I(t) was fit to the measured
rtOSL using the ordinary least squares fitting model:

min
(
||Ĩ(t)− Î||2

)
s.t. Î = eI(t)+ f (5.20)

Where Î was the fitted rtOSL, Ĩ(t) was the measured rtOSL, and e and f are fitting
coefficients. The fitted rtOSL signals, Î(t), and the corresponding measured rtOSL sig-
nals, Ĩ(t), from the superficial X-ray unit shown in Figure 5.6 (left); the fit and measured
rtOSL signals for the repetition rate measurements with the LINAC are shown in Fig-
ure 5.6 (right). Shading corresponds to the 95 % confidence interval in each of the fitted
rtOSL signals. As can be seen in Figure 5.6, the fitted rtOSL qualitatively closely matched
the measured rtOSL.

5.3.2 Calculation of F(D) using exponential correction

The fitted rtOSL Î(t) was plotted as a function of the accumulated dose, shown in Figure
5.7 (left) for the measurements with the superficial X-ray unit. The corresponding natural
log of the accumulated dose divided by the fitted rtOSL was plotted against time, shown
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in Figure 5.7 (right). The expected linearity trend was not observed in the first 30 seconds
of irradiation; for this reason, the first 30 seconds of each fit was excluded when fitting
the linear trend. From Equation 5.15, the rtOSL decay correction F(D) was calculated
by fitting a linear trend-line to the natural log of the accumulated dose divided by the
rtOSL, and the time axis. The optimal value of F(D) was calculated to be (1.9×10−3 ±
5.8×10−5) s−1. The same analysis was repeated for the rtOSL signals measured with the
LINAC. The optimal value for the depletion factor, F(D) was calculated to be (7.0×10−3

± 2.1×10−4) s−1.

Figure 5.7: Left: Fitted rtOSL signal plotted as a function of accumulated dose (corre-
sponding to duration of irradiation multiplied by each nominal dose-rate). Right: Plot
of ln

(
D(t)
Y (t)

)
as a function of time for calculation of F(D). Linear trend lines are fit to(

D(t)
Y (t)

)
versus time to determine each rtOSL’s F(D). Published in Madden et al. [209].

5.3.3 Time dependence of corrected rtOSL

The measured rtOSL signals were corrected using the aforementioned correction meth-
ods. A sample of the measured and corrected rtOSL signals are plotted in Figure 5.8, mea-
sured using the LINAC. In the presented waveform, the LINAC’s beam delivery began at
11 s and concluded at 71 s; these are marked with the magenta dashed line in Figure 5.8.
Each of the corrected rtOSL signals increases linearly during irradiation, proportional to
the accumulated dose in BeO. During the post-irradiation readout, the ∆rtOSL and expo-
nential corrected signals were approximately stable with time, whereas the deconvolution
corrected signal was more stable during this period.

The stem+RL signal was integrated and fitted to the corrected rtOSL signals as de-
scribed in Equation 5.17, with the fit of the integral stem+RL signal to each correction
method’s corrected rtOSL shown in Figure 5.9. Each of the corrected rtOSL signals have
time-dependence matching that of the integral stem+RL signal, plotted in black for each
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Figure 5.8: Example of measured and corrected rtOSL signals, measured using the
LINAC. The measured rtOSL is uncorrected, ∆rtOSL is the corrected rtOSL using the
∆rtOSL method, Exponential is the corrected rtOSL using the exponential correction and
Deconvolution is the corrected rtOSL using the deconvolution correction.

of the correction methods. The deconvolution corrected rtOSL signal had an observably
smaller magnitude of noise than the ∆rtOSL and exponential corrected rtOSL signals,
with the α̂ regularisation parameter acting as a smoothing operator. The uncertainty of
each fit is given by two times the RMSE between the fit integral stem+RL signal and the
corrected rtOSL as defined in Equation 5.18. In Figure 5.9, the 95 % confidence interval
is plotted as the magenta shaded region (2 times the RMSE), too small to be seen for
the deconvolution method given it’s improved SNR. Deconvolution’s global RMSE was
smallest, indicating the deconvolution corrected rtOSL was the best descriptor for the
absorbed dose in BeO as a function of time.

5.3.4 Dosimetry

The correction methods were applied to the measured rtOSL signals and the fitted rtOSL
signals. Responses were calculated for each of the correction methods using the mea-
sured rtOSL signals and the resultant dose-rate dependences are plotted in Figures 5.10
and 5.11. For the responses calculated with the fitted rtOSL signals, the resultant dose-
rate dependences are plotted in Figures 5.12 and 5.13. RMSEs for each of the corrected
responses were plotted at the bottom of Figures 5.10−5.13. From each of the dose-rate
dependences, MADs and standard deviations were calculated, reported in Tables 5.1 and
5.2. The global mean RMSEs for each correction method are also reported in Tables 5.1
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Figure 5.9: Fits of the integral stem+RL signal to each corrected rtOSL signal. In each
of the plots, Fit dose corresponds to the fit integral stem+RL signal to the corrected
rtOSL, 95 % CI corresponds to the 95 % confidence interval (equal to 2 times the RMSE)
and ∆rtOSL, Exp and Deconv correspond to the ∆rtOSL, exponential and deconvolution
correction methods.

and 5.2.

Performance of correction methods using measured signals

Global MAD Global SD Global RMSE
∆rtOSL: SXR 10.2 % 16.5 % 5.9 %

Exponential: SXR 10.6 % 16.6 % 10.5 %
Deconvolution: SXR 6.2 % 7.4 % 4.6 %

∆rtOSL: LINAC 4.4 % 6.4 % 7.3 %
Exponential: LINAC 4.1 % 5.4 % 4.6 %

Deconvolution: LINAC 1.5 % 1.9 % 2.0 %

Table 5.1: Table reporting the performance of rtOSL correction methods with measured
rtOSL signals. In the top row, Global MAD is the global mean of the absolute dose dif-
ferences for each correction method, Global SD is the standard deviation of the integral
responses, and Global RMSE is the average of the root mean squared error for the fit of
the integral stem+RL signals to the corrected rtOSL signals. In the left column, SXR cor-
responds to the statistics calculated from measurements with the superficial X-ray unit,
LINAC corresponds to the statistics calculated from measurements with the LINAC.

Corrected responses calculated from the rtOSL signals measured with the superficial X-
ray unit are shown in Figure 5.10. The ∆rtOSL corrected responses remained close to the
expected 100 % mean relative dose for dose-rates of 0.2928 Gy/min, 1.4169 Gy/min and
3.884 Gy/min, however the ∆rtOSL corrected responses overestimated the mean 100 %
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Figure 5.10: Top: Integral responses for the superficial X-ray unit using measured rtOSL
signals. In the legend, ∆rtOSL, Exp and Deconv corresponds to the ∆rtOSL, exponential
and deconvolution correction methods. Bottom: the RMSE in each integral response is
plotted, calculated between the fit accumulated dose to the corrected rtOSL signals.

response by 25.4 % at 0.4373 Gy/min and underestimated the mean 100 % response by
20.9 % at 0.7229 Gy/min. A matching trend is observed for the corresponding exponential
corrected responses, hence this overestimation and underestimation at the 0.4373 Gy/min
and 0.7229 Gy/min dose-rates were expected to arise as a result of the significant mea-
surement noise present in these measured rtOSL signals. As a result of these significant
deviations in the corrected responses at 0.4373 Gy/min and 0.7229 Gy/min, the ∆rtOSL
corrected responses had a MAD of 10.2 %; excluding the responses at 0.4373 Gy/min and
0.7229 Gy/min, the ∆rtOSL corrected responses reduced the MAD to 1.5 %. Similarly, the
exponential corrected responses had a MAD of 10.6 % when including the responses at
0.4373 Gy/min and 0.7229 Gy/min, and 2.4 % excluding the responses at 0.4373 Gy/min
and 0.7229 Gy/min. On average, the ∆rtOSL correction was characterised by a mean
RMSE of 5.9 % in it’s corrected responses, whereas the exponential correction had a
mean uncertainty of 10.5 % in it’s corrected responses.

Unlike the ∆rtOSL and exponential corrected responses from the superficial X-ray
unit, the deconvolution corrected responses did not suffer from the overestimation at
0.4373 Gy/min and the underestimation at 0.7229 Gy/min. The deconvolution corrected
responses systematically underestimated the dose in BeO as dose-rate decreased. This
trend arose from a combination of two factors: regularisation during the least squares de-
convolution, and the decreasing SNRs of measured rtOSL signals with decreasing dose-
rate observable in Figure 5.6. For the Tikhonov regularised least squares approach to
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Figure 5.11: Top: Integral responses for the LINAC using measured rtOSL signals. In
the legend, ∆rtOSL, Exp and Deconv corresponds to the ∆rtOSL, exponential and decon-
volution correction methods. The suffix Rep corresponds to the dose-rate dependencies
measured with varying repetition rate, and the suffix Inv sq corresponds to the dose-rate
dependencies measured by varying the SSD. Bottom: the RMSEs in each integral re-
sponse is plotted, calculated between the fit accumulated dose to the corrected rtOSL
signals.

deconvolution used in this work, the regularisation biases estimates of ḊRLS towards be-
ing temporally smooth. Increasing values of α̂ causes estimates of ḊRLS to become in-
creasingly smooth, but less sensitive to small changes in the measured rtOSL signal [216,
217]. As a result, the calculated D̂RLS(t) had a reduced amplitude relative to what would
have been expected by the ordinary least squares model. Due to the decreasing SNRs
with dose-rate, the value of α̂ calculated using Equation 5.10 increased as the dose-rate
decreased. The deconvolution corrected responses had a MAD of 6.2 % when normalised
to the mean response, improving on the 10.2 % and 10.6 % MADs for the ∆rtOSL and
exponential corrections. Deconvolution’s RMSEs decreased as the dose-rate increased,
reaching a minimum of 1.6 % at 3.884 Gy/min. Globally, deconvolution corrected rtOSL
signals had a mean RMSE of 4.6 %, improving upon the 5.9 % mean RMSE of the ∆rtOSL
correction and 10.5 % mean RMSE of the exponential correction. From the statistics cal-
culated from the 5 measured rtOSL signals, the deconvolution correction was more robust
than the ∆rtOSL and exponential corrections.

Corrected responses calculated from the rtOSL signals measured with the LINAC are
shown in Figure 5.11. There were no systematic trends for any of the correction methods
as a function of dose-rate. The deconvolution corrected responses had a global MAD
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of 1.5 %, whereas the ∆rtOSL and exponential corrected responses had global MADs of
4.4 % and 4.1 % respectively. The deconvolution corrected responses had a maximum
deviation from the mean of 3.3 %, less than the MADs of the ∆rtOSL and exponential
corrected responses with these signals. for these corrected signals. The deconvolution
correction achieved the lowest MAD, standard deviation and RMSE for these 11 noisy
rtOSL signals, such that the deconvolution correction was more accurate and reproducible
than the ∆rtOSL and exponential corrections for the LINAC’s rtOSL signals. From the
integral responses in Figures 5.10 and 5.11, and the statistics in Table 5.1, it is conclusive
that the deconvolution correction improves upon the performance of ∆rtOSL correction
method with noisy rtOSL signals.

Performance of correction methods using fitted signals

Figure 5.12: Top: Integral responses for the superficial X-ray unit using fitted rtOSL
signals. In the legend, ∆rtOSL, Exp and Deconv corresponds to the ∆rtOSL, exponential
and deconvolution correction methods. Bottom: the RMSEs in each integral response
is plotted, calculated between the fit accumulated dose to the corrected rtOSL signals.
Results for the exponential correction published in Madden et al. [209].

The corrected responses calculated using the fitted rtOSL signals with the superficial
X-ray unit are show in Figure 5.12. There were no systematic trends present in the cor-
rected responses with respect to the dose-rate. The deconvolution corrected responses
were characterised by a MAD of 1.7 %, and a standard deviation of 2.2 %. The expo-
nential corrected response were the next best correction with these fitted rtOSL signals,
where the exponential corrected responses had a MAD of 2.0 % and a standard devia-
tion of 2.6 %. The ∆rtOSL correction had the poorest performance with the fitted rtOSL
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Figure 5.13: Top: Integral responses for the LINAC using measured rtOSL signals. In
the legend, ∆rtOSL, Exp and Deconv corresponds to the ∆rtOSL, exponential and decon-
volution correction methods; the suffix Rep corresponds to the dose-rate dependencies
measured with varying repetition rate, and the suffix Inv sq corresponds to the dose-rate
dependencies measured by varying the SSD. Bottom: the RMSEs in each integral re-
sponse is plotted, calculated between the fit accumulated dose to the corrected rtOSL
signals.

signals, such that the ∆rtOSL corrected responses had a MAD of 3.0 % and a standard
deviation of 4.0 %. For the corrected responses in Figure 5.12, the deconvolution method
was the most accurate correction method when using fitted rtOSL signals. It should be
noted that the deconvolution corrected rtOSL had an average RMSE of 0.1 %. When
applying the deconvolution correction to the fitted rtOSL signals, the distortion effect
of the LIRF gets cancelled out and the integral stem+RL signal remains. The integral
stem+RL signal was also used as the time-dependent accumulated dose when calculating
the RMSE, hence the resultant RMSE approaches zero. Given this, the RMSEs calculated
for the deconvolution correction are misleading when compared to the RMSEs calculated
from the fitted signals using the ∆rtOSL and exponential corrections.

The corrected responses calculated using the fitted rtOSL signals from the LINAC are
shown in Figure 5.13. There were no systematic trends present for the corrected rtOSL
responses as a function of dose-rate. The deconvolution correction was the most effective
method for these fitted rtOSL signals, such that the deconvolution corrected responses
had a MAD of 1.5 % and a standard deviation 1.8 %. The exponential correction was the
next most accurate correction method, with the exponential corrected responses having a
MAD of 2.5 % and a standard deviation of 3.5 %. The ∆rtOSL correction had the poorest
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Global MAD Global SD Global RMSE
∆rtOSL: SXR 3.0 % 4.0 % 5.0 %

Exponential: SXR 2.0 % 2.6 % 6.5 %
Deconvolution: SXR 1.7 % 2.2 % 0.1 %

∆rtOSL: LINAC 3.6 % 4.8 % 7.0 %
Exponential: LINAC 2.5 % 3.5 % 4.1 %

Deconvolution: LINAC 1.5 % 1.8 % 0.1 %

Table 5.2: Table reporting the performance of rtOSL correction methods with fitted
rtOSL signals. In the top row, Global MAD is the global mean of the absolute dose dif-
ferences for each correction method, Global SD is the standard deviation of the integral
responses, and Global RMSE is the average of the root mean squared error for the fit of
the integral stem+RL signals to the corrected rtOSL signals. In the left column, SXR cor-
responds to the statistics calculated from measurements with the superficial X-ray unit,
LINAC corresponds to the statistics calculated from measurements with the LINAC.

performance, where the ∆rtOSL corrected responses had a MAD of 3.6 % and a standard
deviation of 4.8 %.

The MADs, standard deviations and RMSEs achieved with the fitted rtOSL signals
are reported in Table 5.2. Each correction method achieved reduced MADs, standard
deviations and RMSEs when correcting the fitted rtOSL signals, compared against their
corresponding statistics from the measured rtOSL signals reported in Table 5.1. This im-
provement of performance was most significant for the rtOSL signals from the superficial
X-ray unit. Comparing the results from the superficial X-ray unit’s measured and fitted
signals, the ∆rtOSL correction’s MAD was reduced from 10.2 % to 3.0 %, the exponential
correction’s MAD was reduced from 10.6 % to 2.0 %, and the deconvolution correction’s
MAD was reduced from 6.2 % to 1.5 %; similar improvements occurred for their standard
deviations. Improvements in performance of the correction methods was reduced when
comparing the statistics calculated from the LINAC’s measured and fitted rtOSL signals.
This reduced improvement arose due to a number of setup related factors. Firstly, the BeO
dosimetry system had been optimised to reduce measurement noise in measured rtOSL
signals. Additionally, the LINAC’s dose-rate was significantly higher than the dose-rate
from the superficial X-ray unit, hence the LINAC’s measured rtOSL signals had greater
signal levels. It should be noted that the deconvolution corrected responses had a MAD
of 1.5 % and a standard deviation of 1.9 % when correcting the measured rtOSL signals
from the LINAC as in Figure 5.11. From these comparisons between measured rtOSL
signals and fitted rtOSL signals, it is recommended that rtOSL dosimetry systems should
be optimised for reduced measurement noise in order to minimise the uncertainties in
corrected rtOSL responses.
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5.3.5 Simulation of real-time deconvolution

The real-time simulation of the deconvolution correction is presented in Figure 5.14. In
this file, each iteration is plotted as a single frame, with the computation time for decon-
volution plotted in the bottom section. The simulation was performed in MATLAB 2021a
on a 64 bit desktop computer with a 3.5 GHz Intel Core i7 CPU and 16 GB of installed
RAM. The maximum time to calculate the LIRF and the deconvolution correction in a
given iteration was approximately 18 ms, promising for real-time measurements where
the time between measured rtOSL samples is 500 ms. The time to compute the deconvo-
lution correction increased as the number of samples in the rtOSL increased, seen in the
bottom section.

Figure 5.14: Simulation of the deconvolution correction applied for real-time use. Top:
Measured rtOSL is the measured rtOSL signal (in black), Deconvolution is the decon-
volution corrected rtOSL signal (in blue), Fit dose is the absorbed dose model fit to the
corrected rtOSL (in magenta) and the magenta shading is the 95 % confidence interval
in the fit dose. Bottom: the computation time required to calculate the deconvolution
correction during each iteration.
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5.4 Discussion

5.4.1 General discussion

From the results presented in Figures 5.10−5.13 and Tables 5.1 and 5.2, it is conclu-
sive that the deconvolution correction was the most robust and accurate rtOSL correction
method investigated. For all sets of measured and fitted rtOSL signals, the deconvolution
achieved the lowest MAD and standard deviation in it’s corrected responses. However, the
deconvolution correction suffered from a systematic underestimation of the absorbed dose
in BeO as the SNR decreased; this was observed in the analysis of the measured rtOSL
signals with the superficial X-ray unit, but not the LINAC. This systematic underestima-
tion arose as the optimal regularisation parameter, α̂ , was determined algorithmically and
increased in value as the SNR decreased. To mitigate this systematic trend, a number
of approaches could be taken to increase the SNR of measured rtOSL signals, includ-
ing optimisation of the measurement system, signal de-noising, and the application of
increasingly robust deconvolution methods. Alternatively, direct correction of the ampli-
tude may be achievable by performing singular value decomposition on ḊRLS and scaling
it’s singular values [218].

From the comparison of the performances of each correction with measured and fitted
responses, improvement of the SNRs lead to significant improvements in performance.
With regards to the translation of rtOSL dosimeters to real-time dosimetry measurements,
the rtOSL dosimeter’s uncertainties may be inflated due to poor SNRs, especially when
the dose-rate is expected to be low. The SNR of measured rtOSL signals could be im-
proved by increasing the stimulus intensity, e.g. by using a more powerful laser diode
and improving the optical coupling between the laser diode and stimulus fibre. Addition-
ally, by increasing the diameter of the collection fibre or using a single fibre for both
stimulus and collection, the measured rtOSL signal’s intensity is increased. With regards
to translating rtOSL dosimeters for real-time dosimetry, the rtOSL system’s hardware
should be optimised to improve it’s SNR to ensure accuracy of corrected rtOSL signals
and reduce dosimetric uncertainties to clinically acceptable standards, regardless of which
correction method is applied.

In terms of robustness with respect to noise, the deconvolution corrected rtOSL was
the best time-dependent descriptor of the time-dependent accumulated dose for measured
rtOSL signals, having the lowest RMSE of each of the corrections in Table 5.1. De-
convolution’s improved robustness with respect to noise arises as Tikhonov regularisa-
tion effectively de-noises the measured rtOSL as it is corrected. It should be noted that
deconvolution is unable to completely recover the time-dependent absorbed dose from
measured rtOSL signals due to the degradations caused by measurement noise.
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From the real-time simulation of the deconvolution correction, the maximum time taken
to compute the optimal LIRF and the correct the rtOSL was 18 ms, sufficiently short to
allow for the deconvolution correction to be applied in real-time. The ∆rtOSL and ex-
ponential correction methods are more difficult to apply algorithmically in real-time as
the ∆rtOSL requires prior knowledge of the value of F(D) and the exponential correction
requires that there is no change in field size or irradiation angle. However, both correc-
tions could be implemented in real-time if a pre-irradiation measurement were performed,
allowing for both methods to determine their required F(D)s prior to the real-time mea-
surements. Due to the simplicity of the ∆rtOSL and exponential corrections, it is expected
that they would also be feasible for real-time correction if F(D) was known prior to real-
time dosimetric measurements.

With regards to the exponential correction, the relationship between ln
(

D(t)
I(t)

)
and time

in Figure 5.7 was non-linear as the kinetics of rtOSL bleaching are non-first order in na-
ture [219, 220]. Given that the assumption is approximately true, but not theoretically
true, the exponential correction had it’s MADs and uncertainties inflated. Conversely,
the ∆rtOSL correction is a theoretically derived correction, and should not suffer from
such increases in MADs and uncertainties. However, the exponential correction typically
had reduced MADs, standard deviations and RMSEs when compared to the ∆rtOSL cor-
rection. The comparatively poorer performance of the ∆rtOSL correction is attributed to
several factors. F(D)’s optimal value can not be determined analytically in the ∆rtOSL
correction. The value of F(D) for the ∆rtOSL correction can be optimised numerically
using the measured rtOSL signal. However, measurement noise is increasingly exacer-
bated as signal lengths increase. It should be noted that heavy signal averaging has been
applied to measured rtOSL signals in the literature to reduce measurement noise, how-
ever, this technique inflates the uncertainties in measured rtOSL signals [30] as it heavily
blurs and temporally distorts the measured rtOSL signals. In the exponential correction,
F(D) is calculated using a fitted rtOSL signal. Given this, it proposed that F(D) could
be optimised numerically using a fitted rtOSL signal for the ∆rtOSL correction. Alter-
natively, approaches improving the SNR could be applied, such as signal de-noising or
optimisation of the measurement system.

The exponential library approach was chosen to model the LIRF as it assumed no in-
formation about BeO’s kinetics or the kinetics of real-time optically stimulated lumi-
nescence. At the time of writing, the transitions occurring in BeO’s band structure are
uncertain [221], and so BeO’s kinetics are uncertain given that the theoretically predicted
LIRF implicitly depends on the transitions modelled throughout BeO’s band structure
[221]. The kinetics of rtOSL depends upon many factors, including the intensity of the
stimulus light and the band structure of the luminescent material [109]. Additionally, the
concentration of trapping species in this material can vary between multiple samples of
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the same luminescent material, leading to variations between their rtOSL responses. The
exponential library approach avoided assumptions about kinetics, and allows for direct
translation of the deconvolution method to other materials that produce OSL. Addition-
ally, the optimal coefficients fit to the exponential library may provide insight into the
kinetics of a material such as BeO whose kinetics are uncertain.

5.4.2 Inference of kinetics from the LIRF

The LIRF characterises the rate at which holes and electrons recombine after being stim-
ulated. This rate depends on two processes: the stimulation of trapped electrons, and
the recombination of free electrons and holes. For a single trapping species, these two
processes can be described simply using Bateman equations with three species. The mea-
sured OSL in response to continuous stimulation is given by:

OSL(t) ∝
e−λ1t

λ2−λ1
+

e−λ2t

λ1−λ2
(5.21)

where λ1 is the stimulation rate of trapped charges and λ2 is the spontaneous recombi-
nation rate of free electrons and holes. It should be noted that these decay rates, λ1 and λ2,
are equivalent the inverse of corresponding exponential decay constants. From the liter-
ature on time-resolved OSL measurements with BeO, the decay constants characterising
spontaneous recombination of free electrons and holes are short-lived, up to an order of
tens of µs [212]. When fitting the LIRF, we noted that all components had exponential
decay constants much greater than 1 s, hence it can be concluded that λ2 � λ1. There-
fore, the LIRF is dominated by the relatively slow stimulation rate of traps, and so the
mono-exponential e−λ1t models the OSL from a single trapping species. Assuming that
each trapping species is independent from other trapping species, this mono-exponential
models the OSL of each of the optically active traps.

The distribution of fitting coefficients, â, indirectly models the distribution of optically
active trapping species in BeO. The total number of photons emitted by each trapping cen-
tre is proportional to the total number of optically active traps stimulated. An important
consideration when inferring kinetics from the modelled LIRF is that the total number
of photons emitted during an exponential decay is dependent on the lifetime of lumines-
cence [222, 223]. The area under each exponential in the exponential library is given
by
∫

∞

0 e−
t
τi dt = τi, therefore the concentration of optically active traps stimulated with a

decay constant τi is proportional to âi
τi

. From this relationship, the relative concentration
of each trapping species can be inferred from the LIRF.

As stimulus intensity increases by a factor of k, the recombination rate increases by a
factor of k and the decay constants of the fitted LIRF will be reduced by a factor of k−1.
In terms of universality of the results of the LIRF, the spread of the distribution of âi

τi
will
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also narrow by a factor of k−1 as stimulus intensity increases by a factor of k. Given these
properties, the distribution of âi

τi
is expected to be scale invariant, and so the distribution

of âi
τi

may be able to be correlated with distributions of trapping centres in a material. This
hypothesis can be tested directly by comparing the distribution of âi

τi
versus τi for the fitted

SXR’s and LINAC’s fitted LIRFs in Figure 5.5. Shown in Figure 5.15 are log-log graphs
of âi

τi
versus τi for the fitted SXR’s and LINAC’s fitted LIRFs, where the log-log graph

was used for scale invariance.

Figure 5.15: Comparison of fitted LIRF’s âi
τi

versus τi. Top: âi
τi

versus τi for the LINAC’s
LIRF. Bottom: âi

τi
versus τi for the SXR’s LIRF. Correlated clusters of lifetimes in âi

τi
versus τi have been circled, and are hypothesised to be related to trapping centre species
in BeO.

In Figure 5.15, there are matching clusters in each of the âi
τi

versus τi distributions;
these clusters have been circled and linked. There were significant differences between
the irradiation conditions and stimulus conditions when measuring rtOSL with the SXR
and the LINAC. The only aspect that remained consistent was that the BeO ceramic was
the same for both measurements. Therefore, this result supports the hypothesis that the
distribution of âi

τi
versus τi from a fitted LIRF can be correlated with traps in a material.

Further work is required to investigate which lifetimes correlate with which trapping cen-
tre species, and to determine why the components of âi

τi
versus τi that were not circled had

differed significantly.
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5.4.3 Translation of theory, algorithm and results

The convolutional model of luminescence is a model for predicting the time-dependent lu-
minescence produced in response to a time-dependent source that induces luminescence.
In this model, the LIRF is effectively a transfer function between the stimulus and the
produced luminescence, describing how the luminescent material temporally distorts the
time-dependent stimulus when it produces its luminescence. This model is also capable of
predicting the time-resolved organic scintillation, radioluminescence, and post-irradiation
OSL. For time-resolved organic scintillation measurements, the stimulus corresponds to
the dose-rate, and the fitted coefficients â characterise the distribution of scintillating
molecules. For time-resolved inorganic radioluminescence measurements, the stimulus
corresponds to the dose-rate, and the fitted coefficients â characterise the distribution
of recombination centres in the luminescent material. For post-irradiation OSL measure-
ments, the stimulus is not the absorbed dose-rate, but the time-dependent optical stimulus,
and the fitting coefficients â characterise the two step process recombination of stimulated
trapped charges. The convolutional model of luminescence and the ability to infer kinetics
from fitted LIRFs could be important tools considering the increasing interest in lumines-
cent dosimetry. Furthermore, these techniques may prove useful for the high dose-rate
modality, FLASH radiation therapy given that high temporal resolutions are required to
resolve the absorbed dose-rate.

When translating this theory for use with other inorganic materials, deep traps may
cause changes in sensitivity as the luminescent dosimeter is irradiated [20]; the severity
and occurrence of such deep trap sensitisation effects is material dependent. When deep
trap sensitisation effects are significant, it is expected that the convolutional model of
luminescence will not properly model the time-dependent luminescence measured due
to the complicated, non-linear kinetics that give rise to these non-linearities. Similarly,
it is expected that the deconvolved luminescence may require correction for these non-
linearities.

With regards to the design of the exponential library, the exponential library approxi-
mates a continuous distribution of exponential decays. To ensure that the LIRF can ac-
curately model the distribution of trapping centres of a material, the graduations between
the decay constants in the exponential library must be “small enough” and the span of the
library should be “wide enough” to approximate a continuous distribution. In this work,
integer graduations (i.e. τ = (ε , 1, 2, ...) s) and the 401 s span were sufficient to model
BeO’s LIRF. When aiming to translate this theory to other time-dependent luminescence
measurements, these graduations and spans should be adjusted as necessary to optimise
the fit of the expected luminescence to the measured luminescence. When calculating an
LIRF for a given material, several rtOSL signals should be measured and averaged. Each
fitted LIRF is effectively a probably distribution of trapping centres in the material; with
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more data, the fitted distribution of trapping centres can be expected to more accurately
reflect the distribution of trapping centres in the luminescent material. If the distribution
of trapping centres were known to follow a well-defined structure like a Gaussian mixture
model with a known number of components, fewer measurements of the rtOSL would be
required.

5.5 Conclusion

From the dose-rate dependence measurements in this chapter, deconvolution was quan-
tified to be the most robust and accurate correction method for rtOSL dosimetry. The
deconvolution correction was demonstrated to be feasible for real-time applications, re-
quiring at most 18 ms to correct the measured rtOSL signal. From these results, the de-
convolution correction is recommended for the correction of rtOSL signals. The expo-
nential correction was the next most robust and accurate correction method investigated,
improving upon the performance of the ∆rtOSL correction. From the comparisons of each
correction method’s performance using measured and fitted rtOSL signals, measurement
noise was demonstrated to inflate the uncertainties of corrected rtOSL signals. Therefore,
it is recommended that rtOSL dosimetry systems are optimised for minimal measurement
noise in order to ensure the accuracy of corrected rtOSL signals. Heavy signal averag-
ing should be avoided as it temporally distorts the time-dependence of rtOSL signals and
inflates the uncertainty of corrected rtOSL responses. Other de-noising approaches may
be suitable provided the rtOSL’s time-dependence remains unaffected. Alternatively, the
convolutional model of luminescence can be applied to fit a model of the rtOSL signal to
the measured rtOSL signals, such that the fitted rtOSL signal is a noiseless estimate of the
measured rtOSL signal.

The convolutional model of luminescence and LIRF fitting technique is a simple linear
model than can be used for other luminescence measurements, such as time-resolved scin-
tillation, time-resolved radioluminescence, and time-resolved OSL. In this work, it was
hypothesised that the distribution of trapping centres in a material could be inferred from
a fitted LIRF. From the comparison of the two LIRFs in this work, there were correlations
between clusters of lifetimes in the distributions of âi

τi
versus τi; this result was taken as

evidence to support the hypothesis. Further work is required to verify that distributions
of trapping centres in a material can be inferred from the distributions of âi

τi
versus τi, as

well as limitations of such inferences.



Chapter 6

Conclusions and future work

6.1 Conclusion

This thesis presented the investigations into fibre-coupled luminescent dosimeters as po-
tential solutions for two specific challenging cases of dosimetry in modern radiation ther-
apy clinics: MRI-LINAC dosimetry and real-time in vivo dosimetry. With fibre-coupled
luminescent dosimeters being entirely optical in nature whilst having compact sensitive
sizes, dosimeter induced perturbations are minimised during dosimetric measurements.
These qualities are particularly advantageous when the perturbation of water leads to
increased uncertainties in the measured dose, as can be the case during MRI-LINAC
dosimetry and real-time in vivo dosimetry.

PSDs were identified as promising candidates for MRI-LINAC dosimetry given their
highly water equivalent compositions and their near-correctionless performance with clin-
ical LINACs. In Chapter 2 the literature on radiation induced luminescence, PSD dosime-
try and dosimetry with LINACs and MRI-LINACs was reviewed. During the review, the
Cerenkov radiation stem effect was identified to be of particular concern during dosimetry
with LINACs, requiring a dedicated correction method to preserve the PSD’s accuracy. In
Chapter 3, novel and existing stem signal correction methods were investigated for their
reliability and their performance during dosimetry with LINACs. From these measure-
ments, it was determined that background subtraction was the most suitable correction
investigated provided that PMT gain drift could be mitigated. For measurements in con-
ditions where background subtraction’s accuracy could not be guaranteed, the non-linear
least squares correction was the most suitable alternative correction method investigated,
being on an average 0.1 % less accurate than background subtraction. Optimisation of the
PSD dosimetry system was expected to further improve the performance of the investi-
gated corrections.

In Chapter 4, an in-house PSD was applied for MRI-LINAC dosimetry with the Aus-
tralian MRI-LINAC. In these measurements, background subtraction was applied to cor-

140
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rect the stem effect, with PMT gain drift correction methods integrated into these experi-
mental measurements. Output factors, beam profiles and PDDs were measured using the
in-house PSD and various other dosimeters known to be accurate and valid with in-line
MRI-LINACs. Monte Carlo simulations were also built and run to provide additional
reference data. Comparing the performance of the PSD to other dosimeters in the liter-
ature, the in-house PSD achieved similar performances to these other dosimeters in the
literature for the measurement of output factors and beam profiles, suggesting that the
in-house PSD remained accurate for MRI-LINAC dosimetry. For the PDDs, there were
systematic disagreements between the reference detectors, preventing conclusions from
being drawn with regards to the suitability of the PSD in these measurement conditions.
Further investigations with other PSD systems are required to verified that PSDs are in-
herently accurate and reliable for dosimetry with MRI-LINACs. These investigations
were a significant first step in demonstrating that PSDs in general are effective for relative
MRI-LINAC dosimetry.

Fibre-coupled luminescent dosimeters have many of the qualities required for accurate
real-time in vivo dosimetry during LINAC and brachytherapy treatments. In Chapter 2,
the literature on fibre-coupled luminescence dosimetry and desirable luminescent mate-
rials was reviewed. BeO was identified as a desirable luminescent material for real-time
in vivo dosimetry during both LINAC and brachytherapy treatments given it’s near-tissue
equivalence and minimal energy dependence over both the brachytherapy and LINAC en-
ergy ranges. As with PSDs, the fibre-coupled BeO dosimeter required an accurate stem
signal correction method to preserve the accuracy of it’s luminescence response. With the
long term aim of applying the fibre-coupled BeO dosimeter for real-time in vivo dosime-
try, it was identified that the fibre-coupled BeO dosimeter could only use one optical fibre,
otherwise the dosimeter would not fit into a catheter. For this reason, the rtOSL technique
was identified as the most suitable correction method for a fibre-coupled BeO dosimeter
intended as a real-time in vivo dosimeter.

In previous investigations of such a fibre-coupled BeO rtOSL dosimeter, the dosimeter
had unacceptable uncertainties in it’s dose-response. These uncertainties were inflated
during the correction of the non-linear measured rtOSL signal, which was non-linear with
respect to the absorbed dose. In order to reduce the uncertainties in the BeO dosimeter,
novel rtOSL correction methods were developed. These novel correction methods were
presented and applied in Chapter 5. From measurements with a superficial X-ray unit and
a clinical LINAC, the deconvolution correction was determined to be a superior correction
method to the prior correction method, significantly improving upon it’s performance for
all investigations. The novel deconvolution correction was also demonstrated to be ap-
plicable in real-time, making it highly suitable for use during real-time dosimetry. The
deconvolution correction was therefore recommended for the correction of rtOSL sig-
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nals. From investigations using noiseless models of the time-dependent rtOSL, it was
determined that all of the correction methods had significantly improved performances
when no measurement noise was present in the rtOSL signals. From this result, it was
also recommended that fibre-coupled dosimetry systems should be optimised to increase
the signal to noise ratio to ensure accurate dosimetry with rtOSL dosimeters. These in-
vestigations were a significant step in realising an accurate and reliable fibre-coupled
BeO dosimeter that can be applied for real-time in vivo dosimetry during LINAC and
brachytherapy treatments.

For the translation of the fibre-coupled luminescence dosimeters and stem signal cor-
rection methods reported in this thesis, these dosimeters and stem signal correction meth-
ods face a limitation with regards to their setup. The accuracy of fibre-coupled lumines-
cent dosimeters with LINACs is partially dependent on the setup of the dosimeter relative
to the radiation beam. In Chapters 3 and 4, the in-house PSD was set up orthogonal to
the radiation beam to minimise the production and collection of Cerenkov radiation. A
stem signal correction method’s accuracy is expected to be degraded when the PSD is
aligned parallel to the radiation beam given that the length of irradiated optical fibre in-
creases and the collection efficiency increases due to the strong directional dependence of
Cerenkov radiation emissions. Consequently, it is expected that the PSD’s accuracy will
become degraded when the PSD is orientated parallel to the photon beam during dosi-
metric measurements. Given this limitation, for LINAC and MRI-LINAC dosimetry, it is
recommended that other PSDs and fibre-coupled luminescence dosimeters be orientated
perpendicular to the radiation beam to optimise the dosimeter’s accuracy.

6.2 Future work

To further improve the accuracy of the stem signal correction methods investigated in
Chapter 3, there are several potential optimisations of the PSD system that could be imple-
mented. Firstly, the application of alternative photodetectors that are free from PMT gain
drift would directly improve the results of background subtraction and the least squares
corrections, whilst indirectly improving trained neural networks by improving how well
their training data matches measured data. Secondly, optimisations that improve the signal
to noise ratio of measured signals would improve the accuracy of the least squares cor-
rections and the neural network corrections, given these corrections are analytic in nature.
In the literature, optical filtration has been reported to improve the signal to noise ratio
of measured PSD and Cerenkov radiation signals. Signal de-noising techniques such as
wavelet analysis, Fourier filtering, Wiener filtering, bilateral filtering and non-local means
filtering could be applied post-measurement, and may be successful given they attenuate
noise while preserving sharp changes in signal.
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Given the results using the PSD for MRI-LINAC dosimetry in Chapter 4, further inves-
tigations need to be carried out with other PSD systems and other MRI-LINACs to deter-
mine whether PSD can be generally considered to be suitable for MRI-LINAC dosimetry.
With regards to the experimentally measured PDDs in Chapter 4, it was plausible that
detector misalignment was responsible for deviations between the in-house PSD, Farmer
chamber and film. For measurements with a point dosimeter, PDDs should be measured
using a scanning water tank to mitigate detector misalignment. The PSD system used in
Chapter 4 would benefit from the optimisations mentioned in the paragraph above, such
that and the PSD would have an improved reproducibility in it’s response. The chromatic
removal correction may further improve the performance of the PSD given that it has been
reported to have an improved performance over background subtraction. With regards to
further measurements with such an optimised in-house PSD dosimetry system, the in-
house PSD should be modified to make it more reproducible with respect to significant
changes in the setup, allowing for the measurement of detector specific correction factors.

The results for the deconvolution correction in Chapter 5 were an important step in the
realisation of an in vivo, real-time fibre-coupled BeO dosimeter. Future work should aim
to optimise and characterise the BeO rtOSL dosimeter for QA dosimetry with brachyther-
apy sources. Further, the fibre-coupled BeO rtOSL dosimeter should be investigated for
it’s feasibility as a real-time in vivo for brachytherapy treatments. With regards to im-
proving the deconvolution correction, other approaches to LIRF modelling should be in-
vestigated with the potential to improve the accuracy of the deconvolution correction.
A wealth of alternative LIRF modelling techniques can be found in literature for fluo-
rescence lifetime imaging and analysis. Additionally, such LIRF modelling techniques
from fluorescence lifetime imaging may be useful in relating measured luminescence re-
sponses to a material’s kinetics during irradiation. Optimisation of the dosimetry system
to improve the signal to noise ratio is paramount in ensuring that the corrected response
is accurate. Aforementioned signal de-noising methods such as wavelet analysis, Fourier
filtering, Wiener filtering, bilateral filtering and non-local means filtering should also be
explored to further optimise the signal to noise ratio without compromising the time-
dependence of the measured rtOSL signal.
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Appendix A

MATLAB code

A.1 OLS correction MATLAB code

1 function [OLS dose] = OLS analysis(PSD signal,stem signal)

2 %%PSD signal is the measured PSD signal, and stem signal is the ...

measured reference probe signal. PSD signal and stem signal ...

are m by n arrays, consistning of n column vectors, each ...

with a length of m samples.

3 [m1, n1] = size(PSD signal);

4 [m2, n2] = size(stem signal);

5

6 % Align mean background voltage with zero assuming beam on does ...

not occur in the first 500 samples

7 Cerenkov fit = stem signal - ones(m2, 1) * ...

mean(stem signal(1:500, 1:n2));

8 Combined fit = PSD signal - ones(m1, 1) * mean(PSD signal(1:500, ...

1:n1));

9

10 tau d = 285 / 1.6; % set decay constant to 285 ns. Division by ...

1.6 accounts for the 1.6 ns/sample of the digital oscilloscope

11 tau r = 19.5 / 1.6; % set rise constant to 19.5 ns.

12

13 LIRF = exp(-(1:1500) ./ tau d) - exp(-(1:1500) ./ tau r); % ...

Calculate LIRF, h(t)

14

15 model scint = zeros(m2, n2); % initialise the modelled scintillation

16 M2 = 1:m2;

17

18 for N2 = 1:n2

19 dummy scint = conv(Cerenkov fit(M2, N2), LIRF); % calculate ...

the modelled scintillation as the convolution of the ...

165
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LIRF and stem signal

20 model scint(M2, N2) = (dummy scint(M2) - ones(m2, 1) * ...

mean(dummy scint(1:500))) ./ (max(dummy scint) - ...

mean(dummy scint(1:500))); % apply min-max normalisation ...

to modelled scintillation to improve computational speed ...

of gradient descent

21

22 Cerenkov fit(M2, N2) = (Cerenkov fit(M2, N2) - ones(m2, 1) * ...

mean(Cerenkov fit(1:500, N2))) ./ (max(Cerenkov fit(M2, ...

N2)) - mean(Cerenkov fit(1:500, N2))); % also min-max ...

normalise the stem signal to improve computational speed ...

of gradient descent

23 end

24

25 % define parameters for LS algorithm

26 lr = 0.01; % initialise the step length with a value of 0.01

27 c param = 0.5; % parameter used in backtracking line search

28 lr limit = sqrt(eps); % parameter used to break line search if ...

lr < limit, prevents infinite loops.

29

30 OLS dose = zeros(n1, 1);

31

32 for N1 = 1:n1

33 if N1==1 && (m1 6=m2 | | n1 6=n2)

34 disp('Error: PSD signal array has different size to stem ...

signal array!')

35 break

36 end

37

38 fitS = model scint(1:m1, N1); % column vector form of ...

modelled scintillation

39 fitC = Cerenkov fit(1:m1, N1); % column vector form of ...

measured stem signal

40 fitT = Combined fit(1:m1, N1); % column vector form of ...

measured PSD signal

41

42 X = [fitS fitC ones(m1, 1)]; % Ordinary least squares ...

variables used to calculate first estimate of parameters

43 beta = (X' * X) \ X' * Combined fit; % Ordinary least ...

squares analytical solution

44 a = beta(1); % initial estimate of the scaling parameter for ...

scintillation

45 b = beta(2); % initial estimate of the scaling parameter for ...

stem signal

46 c = beta(3); % initial estimate of the scaling parameter for ...

voltage offset

47
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48 old err = inf; % initialise the SSE 0 with value of infinity

49

50 while true % Gradient descent algorithm

51 est = a * fitS + b * fitC + c*ones(m1, 1); % calculate ...

estimate, yˆ(t)

52 err = 0.5*sum((fitT - est).ˆ2); % calculate SSE

53

54 if err ≥ 0.9999*old err % stopping criterion

55 break

56 else % Acceptable improvement made, record improved ...

parameters

57 best a = a;

58 best b = b;

59 best c = c;

60 old err = err; % also update the current fit error

61 end

62

63 % Backpropagate for derivatives

64 d err d est = - 2* (fitT - est)';

65

66 % derivatives of the SSE with respect to the fitting ...

parameters

67 d err d a = d err d est * fitS;

68 d err d b = d err d est * fitC;

69 d err d c = sum(d err d est);

70

71 % do backtracking line search

72 seach dir = - [d err d a d err d b d err d c];

73 grad mag = norm(seach dir);

74

75 while true

76 new err = 0.5*sum((fitT - ((a - lr * d err d a) * ...

fitS + (b - lr * d err d b) * fitC + (c - lr * ...

d err d c) * ones(m1, 1))).ˆ2);

77

78 if old err - new err ≥ lr * grad mag * c param

79 break; % condition satisfied, don't need to ...

modify lr

80 elseif lr ≤ lr limit % step length is below ...

specified limit

81 break % no improvements made, parameters are ...

optimised and gradient descent loop will end ...

at next evaluation of SSE

82 end

83 lr = lr * 0.5; % halve the step length and try again

84 end

85
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86 % Update fitting parameters

87 a = a - lr * d err d a;

88 b = b - lr * d err d b;

89 c = c - lr * d err d c;

90 end

91

92 OLS dose(N1) = 0.5 * sum(fitT - best b * fitC - best c * ...

ones(m1, 1) + best a * sum(fitS)); % calculate integral ...

response

93 end

94 end

A.2 NLLS correction MATLAB code

1 function [OLS dose] = NLLS analysis(PSD signal,stem signal)

2 %%PSD signal is the measured PSD signal, and stem signal is the ...

measured reference probe signal. PSD signal and stem signal ...

are m by n arrays, consistning of n column vectors, each ...

with a length of m samples.

3

4 [m1, n1] = size(PSD signal);

5 [m2, n2] = size(stem signal);

6

7 % Align mean background voltage with zero assuming beam on does ...

not occur in the first 500 samples

8 Cerenkov fit = stem signal - ones(m2, 1) * ...

mean(stem signal(1:500, 1:n2));

9 Combined fit = PSD signal - ones(m1, 1) * mean(PSD signal(1:500, ...

1:n1));

10

11 tau d = 285 / 1.6; % initialise decay constant to 285 ns. ...

Division by 1.6 accounts for the 1.6 ns/sample of the ...

digital oscilloscope

12 tau r = 19.5 / 1.6; % initialise rise constant to 19.5 ns.

13

14 LIRF = exp(-(1:1500) ./ tau d) - exp(-(1:1500) ./ tau r); % ...

Calculate LIRF, h(t)

15 model scint = zeros(m2, n2); % initialise the modelled scintillation

16 M2 = 1:m2;

17

18 for N2 = 1:n2
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19 dummy scint = conv(Cerenkov fit(M2, N2), LIRF); % calculate ...

the modelled scintillation as the convolution of the ...

LIRF and stem signal

20 model scint(M2, N2) = (dummy scint(M2) - ones(m2, 1)* ...

mean(dummy scint(1:500))) ./ (max(dummy scint) - ...

mean(dummy scint(1:500))); % apply min-max normalisation ...

to modelled scintillation to improve computational speed ...

of gradient descent

21

22 Cerenkov fit(M2, N2) = (Cerenkov fit(M2, N2) - ones(m2, 1) * ...

mean(Cerenkov fit(1:500, N2))) ./ (max(Cerenkov fit(M2, ...

N2)) - mean(Cerenkov fit(1:500, N2))); % also min-max ...

normalise the stem signal to improve computational speed ...

of gradient descent

23 end

24

25 % define parameters for LS algorithm

26 lr = 0.01; % initialise step length with a value of 0.01

27 c param = 0.5; % parameter used in backtracking line search

28 lr limit = sqrt(eps); % parameter used to break line search if ...

lr < limit, prevents infinite loops.

29

30 OLS dose = zeros(n1, 1);

31

32 for N1 = 1:n1

33 if N1==1 && (m1 6=m2 | | n1 6=n2)

34 disp('Error: PSD signal array has different size to stem ...

signal array!')

35 break

36 end

37

38 fitS = model scint(1:m1, N1);

39 fitC = Cerenkov fit(1:m1, N1);

40 fitT = Combined fit(1:m1, N1);

41

42 X = [fitS fitC ones(m1, 1)]; % Ordinary least squares ...

variables as first estimate

43 beta = (X' * X) \ X' * fitT;

44 a = beta(1);

45 b = beta(2);

46 c = beta(3);

47

48 old err = inf; % initialise the SSE 0 with value of infinity

49

50 while true % Gradient descent algorithm

51 est = a * fitS + b * fitC + c*ones(m1, 1); % calculate ...

estimate, yˆ(t)
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52 err = 0.5*sum((fitT - est).ˆ2); % calculate SSE

53

54 if err ≥ 0.9999*old err % stopping criterion

55 break

56 else % Acceptable improvement made, record improved ...

parameters

57 best a = a;

58 best b = b;

59 best c = c;

60 best tau d = tau d;

61 best tau r = tau r;

62 old err = err; % also update the current fit error

63 best S = fitS;

64 end

65

66 % Backpropagate for derivatives

67 d err d est = 2 * (est - fitT)';

68

69 % derivatives of the SSE with respect to the fitting ...

parameters

70 d err d a = d err d est * fitS;

71 d err d b = d err d est * fitC;

72 d err d c = sum(d err d est);

73

74 d est d tau d = (1:m1)' ./ tau d.ˆ2 .* exp(-(1:m1)' ./ ...

tau d);

75 d est d tau r = -(1:m1)' ./ tau r.ˆ2 .* exp(-(1:m1)' ./ ...

tau r);

76 d err d tau d = d err d est * d est d tau d;

77 d err d tau r = d err d est * d est d tau r;

78

79 % do backtracking line search

80 seach dir = -[d err d a d err d b d err d c ...

d err d tau d d err d tau r];

81 grad mag = norm(seach dir); % gradient magnitude by ...

steepest descent

82

83 while true

84 new impulse = exp(-(1:1500) ./ (tau d - lr * ...

d err d tau d)) - exp(-(1:1500) ./ (tau r - lr * ...

d err d tau r));

85 newS = conv(fitC, new impulse);

86 newS = (newS(1:m1) - mean(newS(1:500))) ./ ...

(max(newS(1:m1)) - mean(newS(1:m1)));

87

88 new a = a - lr * d err d a;

89 new b = b - lr * d err d b;
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90 new c = c - lr * d err d c;

91

92 new err = 0.5*sum((fitT - (new vs * newS + new vc * ...

fitC + new v0 * ones(m1, 1))).ˆ2);

93

94 if old err - new err ≥ lr * grad mag * c param

95 break; % condition satisfied, don't need to ...

modify lr

96 elseif lr ≤ lr limit % step length is below ...

specified limit

97 break % no improvements made, parameters are ...

optimised and gradient descent loop will end ...

at next evaluation of SSE

98 end

99 lr = lr * 0.5; % halve the step length

100 end

101

102 % Update fitting parameters

103 a = a - lr * d err d a;

104 b = b - lr * d err d b;

105 c = c - lr * d err d c;

106 tau d = tau d - lr * d err d tau d;

107 tau r = tau r - lr * d err d tau r;

108 fitS = newS; % need to update the scintillation vectors ...

as exponential rise and decay constants have changed

109 end

110

111 OLS dose(N1) = 0.5 * sum(fitT - best b * fitC - best c * ...

ones(m1, 1) + best a * sum(best S)); % calculate ...

integral response

112 end

113

114 end

A.3 LIRF calculation MATLAB code

1 function [LIRF,nnls dist] = LIRF fit(rtOSL signal, stem sig, ...

time ind)

2 %%rtOSL signal is the measured rtOSL signal, stem sig is the ...

measured stem+RL signal and time ind are times when the ...

rtOSL signals was measured, e.g. (0, 0.5, 1, ...)s. Each of ...

these inputs are assumed to be column vectors with equal length.
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3

4 decay lib = [eps 1:1:700]; % set decay constants to eps, 1, 2, ...

..., M

5 stem toe = tril(toeplitz(stem sig)); % initialise toeplitz ...

matrix for linear convolution

6 conv lib = zeros(length(rtOSL signal), length(decay lib));

7 exp lib = exp(- time ind * (1 ./ decay lib)); % initialise the ...

library of M exponentials

8

9 for el = 1:length(decay lib)

10 conv lib(:,el) = stem toe * exp(- time ind ./ decay lib(el));

11 end

12

13 nnls dist = lsqnonneg(conv lib, rtOSL signal); % nonnegative ...

least squares solution for distribution of lifetimes

14 LIRF = exp lib * nnls dist; % optimal estimate of the LIRF

15 end

A.4 Deconvolution rtOSL correction MATLAB code

1 function [deconv signal] = GD deconv(rtOSL signal,LIRF)

2 %%rtOSL signal is the measured rtOSL signal, and LIRF is the ...

estimated LIRF. Both are assumed to be column vectors, and ...

it is assumed that the rtOSL signal is longer than the LIRF.

3 if length(LIRF) < length(rtOSL signal) % pad the LIRF with zeros ...

if shorter than the measured rtOSL signal

4 LIRF = [LIRF; zeros(length(rtOSL signal) - length(LIRF),1)];

5 end

6 S toe = tril(toeplitz(LIRF)); % precalculate lower triangular ...

toeplitz matrix for linear convolution

7 DR = pinv(S toe' * S toe) * S toe' * rtOSL signal; % OLS ...

analytical solution to deconvolution

8

9 % Calculate first order finite difference matrix

10 L1 = zeros(size(S toe));

11 [La,¬] = size(L1);

12 for l1 = 1:length(La)-1

13 L1(l1, l1) = 0.5;

14 L1(l1, l1+1) = -0.5;

15 end

16 L1(La, La) = 0.5;

17
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18 alpha = var(rtOSL signal - S toe * DR) ./ var(L1 * DR); % ...

optimal alpha parameter

19 deconv signal = (S toe' * S toe + alpha .* L1' * L1) \ S toe' * ...

rtOSL signal; % RLS solution for deconvolved signal

20 end
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